WO2016056526A1 - 工作機械及びこの工作機械の制御装置 - Google Patents
工作機械及びこの工作機械の制御装置 Download PDFInfo
- Publication number
- WO2016056526A1 WO2016056526A1 PCT/JP2015/078262 JP2015078262W WO2016056526A1 WO 2016056526 A1 WO2016056526 A1 WO 2016056526A1 JP 2015078262 W JP2015078262 W JP 2015078262W WO 2016056526 A1 WO2016056526 A1 WO 2016056526A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cutting
- workpiece
- tool
- vibration
- axis direction
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23G—THREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
- B23G3/00—Arrangements or accessories for enabling machine tools not specially designed only for thread cutting to be used for this purpose, e.g. arrangements for reversing the working spindle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B25/00—Accessories or auxiliary equipment for turning-machines
- B23B25/02—Arrangements for chip-breaking in turning-machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23G—THREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
- B23G1/00—Thread cutting; Automatic machines specially designed therefor
- B23G1/02—Thread cutting; Automatic machines specially designed therefor on an external or internal cylindrical or conical surface, e.g. on recesses
- B23G1/04—Machines with one working-spindle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/007—Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
- B23Q15/12—Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/182—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
- G05B19/186—Generation of screw- or gearlike surfaces
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4093—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2260/00—Details of constructional elements
- B23B2260/062—Electric motors
- B23B2260/0625—Linear motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23G—THREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
- B23G2240/00—Details of equipment for threading other than threading tools, details of the threading process
- B23G2240/08—Evacuation of chips or fines
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/36—Nc in input of data, input key till input tape
- G05B2219/36198—Gear, thread cutting
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37435—Vibration of machine
Definitions
- the present invention relates to a machine tool for threading a workpiece and a control device for the machine tool.
- a workpiece holding means for holding a workpiece
- a tool post for holding a cutting blade as a cutting tool for cutting the workpiece
- Feed means for feeding the cutting tool in a predetermined machining feed direction
- an actuator as vibration means for relatively reciprocatingly vibrating the work holding means and the tool post in the radial direction of the work, the work and the work
- a cutting apparatus that includes a main shaft as a rotating means for relatively rotating a cutting tool, and performs a cutting process by reciprocally oscillating the cutting blade while feeding the main shaft and the cutting blade in a workpiece radial direction ( For example, see Patent Document 1).
- the above-described conventional cutting apparatus is only required to have a relationship in which the phase of the vibration waveform of the cutting blade in one rotation of the workpiece and the phase of the vibration waveform of the cutting blade in the next rotation are reversed.
- Application to thread cutting in which a thread portion is formed in a workpiece by performing a spiral cutting process over a number of times is not considered.
- an object of the present invention is to provide a machine tool capable of performing threading processing while cutting chips, and control of the machine tool. Is to provide a device.
- the invention according to claim 1 is a workpiece holding means for holding a work, a tool post for holding a cutting tool for cutting the work, and a relative movement of the work holding means and the tool rest with respect to the work.
- a feeding means for feeding the cutting tool in a predetermined machining feeding direction; a vibrating means for relatively reciprocally vibrating the work holding means and the tool rest in the radial direction of the work; and a relative movement of the work and the cutting tool.
- a rotation means for rotating the workpiece and the workpiece and the cutting tool relative to each other along the machining feed direction while relatively rotating the workpiece and the cutting tool, and a plurality of them along the same cutting path forming a predetermined spiral shape.
- the workpiece and the cutting tool are reciprocally oscillated, and the vibration pattern at the time of each incision process involving the reciprocal vibration is a part of the machined part at the time of the predetermined incision process, and a part that has already been cut by another incision process is partially.
- the vibration setting means is configured to change the phase of the vibration with respect to the rotation of the workpiece.
- the invention according to claim 3 further includes the above-described problem by the fact that the vibration setting means is configured to change the frequency of the vibration. It is a solution.
- the vibration setting means may change the amplitude of the reciprocating vibration in each cutting process.
- the invention according to claim 5 includes a workpiece holding means for holding a workpiece, a tool rest for holding a cutting tool for cutting the workpiece, and a relative movement between the workpiece holding means and the tool rest relative to the workpiece.
- a feeding means for feeding the cutting tool in a predetermined machining feeding direction; a vibrating means for relatively reciprocally vibrating the work holding means and the tool rest in the radial direction of the work; and a relative movement of the work and the cutting tool.
- a machine tool having a rotating means for rotating the same, and relatively moving the workpiece and the cutting tool along the processing feed direction while relatively rotating the workpiece and the cutting tool, and forming the same spiral shape.
- a machine tool control device that performs threading to form a threaded portion on the workpiece by performing incision processing a plurality of times along a cutting path, and includes the reciprocating vibration.
- the pattern of vibration at the time of cutting is set so that the portion that has been cut by other cutting processing is partially included in the cutting processing portion at the time of predetermined cutting processing, at the time of predetermined multiple cutting processing,
- the above-described problem is solved by adopting a configuration in which the workpiece and the cutting tool are reciprocally vibrated by the vibration means.
- the cutting part at the time of a predetermined cutting process is cut by another cutting process. Since the part that has already been included is parted, chips generated during cutting are cut off, so when threading a workpiece, it is possible to avoid long-connected chips from being wound around the workpiece or cutting tool. It is possible to avoid damaging the work surface of the workpiece.
- the phase of vibration during the previous cutting process and the phase of vibration during the current cutting process are Since the part that has been changed so as to be different and the part that has been cut by the previous cutting process is partially included in the cutting part at the time of the current cutting process, chips generated during cutting can be easily divided.
- the vibration frequency at the previous cutting process and the vibration frequency at the current cutting process are Since the part that has been changed so as to be different and the part that has been cut by the previous cutting process is partially included in the cutting part at the time of the current cutting process, chips generated during cutting can be easily divided.
- the cutting tool vibrates in accordance with the cutting amount at the time of each cutting process. Since the amplitude of is set to an appropriate amplitude amount, the cutting part at the time of the current cutting process partially includes the part that has been cut by the previous cutting process, so that chips generated during cutting can be easily divided. Can do.
- the machine tool control device of the invention of claim 5 can obtain the same effect as the effect of the invention of claim 1.
- deployment schematic diagram which shows the position of the cutting tool with respect to the workpiece
- the present invention relates to a workpiece holding means for holding a workpiece, a tool post for holding a cutting tool for cutting the workpiece, and a cutting tool in a predetermined processing feed direction with respect to the workpiece by relative movement of the workpiece holding means and the tool rest.
- a feed means for feeding the workpiece a vibrating means for relatively reciprocally vibrating the work holding means and the tool post in the radial direction of the work, and a rotating means for relatively rotating the work and the cutting tool. Threaded parts are formed on the workpiece by performing multiple feeds along the same cutting path that forms a predetermined spiral while relatively moving the tool along the feed direction while relatively rotating the tool.
- a machine tool for performing thread cutting and a control device for the machine tool wherein the vibration means reciprocally vibrates the workpiece and the cutting tool during a predetermined plurality of times of cutting.
- the vibration setting means is provided to set the vibration pattern at the time of each cutting with vibration so that the cutting part at the predetermined cutting process partially includes the part already cut by the other cutting process. Therefore, when cutting chips generated during cutting and threading the workpiece, it is possible to avoid long-connected chips from being wound around the workpiece or cutting tool, or damaging the workpiece surface of the workpiece. As long as it is a thing, the concrete embodiment may be what kind of thing.
- FIG. 1 is a diagram showing an outline of a machine tool 100 including a control device C according to the first embodiment of the present invention.
- the machine tool 100 includes a main shaft 110 and a cutting tool table 130A.
- a chuck 120 is provided at the tip of the main shaft 110.
- the workpiece W is held on the spindle 110 via the chuck 120, and the spindle 110 is configured as a workpiece holding means for holding the workpiece.
- the main shaft 110 is supported by the main shaft 110A so as to be rotationally driven by the power of a main shaft motor (not shown).
- a main spindle motor a conventionally known built-in motor formed between the main spindle 110A and the main spindle 110 in the main spindle 110A can be considered.
- the headstock 110A is mounted on the bed side of the machine tool 100 so as to be movable in the Z-axis direction, which is the axial direction of the main shaft 110, by the Z-axis direction feed mechanism 160.
- the spindle 110 is moved in the Z-axis direction by the Z-axis direction feed mechanism 160 via the spindle stock 110A.
- the Z-axis direction feed mechanism 160 constitutes a main shaft moving mechanism that moves the main shaft 110 in the Z-axis direction.
- the Z-axis direction feed mechanism 160 includes a base 161 integrated with a fixed side of the Z-axis direction feed mechanism 160 such as the bed, and a Z-axis direction guide rail 162 provided on the base 161 and extending in the Z-axis direction. Yes.
- a Z-axis direction feed table 163 is slidably supported on the Z-axis direction guide rail 162 via a Z-axis direction guide 164.
- a mover 165a of the linear servo motor 165 is provided on the Z-axis direction feed table 163 side, and a stator 165b of the linear servo motor 165 is provided on the base 161 side.
- the headstock 110 ⁇ / b> A is mounted on the Z-axis direction feed table 163, and the Z-axis direction feed table 163 is driven to move in the Z-axis direction by driving the linear servo motor 165. As the Z-axis direction feed table 163 moves, the headstock 110A moves in the Z-axis direction, and the spindle 110 moves in the Z-axis direction.
- a cutting tool 130 such as a cutting tool for turning the workpiece W is mounted on the cutting tool base 130A.
- the cutting tool base 130A constitutes a tool post for holding the cutting tool 130.
- the cutting tool base 130A is moved to the bed side of the machine tool 100 by an X-axis direction feed mechanism 150 and a Y-axis direction feed mechanism (not shown), an X-axis direction orthogonal to the Z-axis direction, and the Z-axis direction and the X-axis direction. It is provided so as to be movable in the Y-axis direction orthogonal to.
- the X-axis direction feed mechanism 150 and the Y-axis direction feed mechanism constitute a tool post moving mechanism that moves the cutting tool base 130A in the X-axis direction and the Y-axis direction with respect to the main shaft 110.
- the X-axis direction feed mechanism 150 includes a base 151 that is integral with the fixed side of the X-axis direction feed mechanism 150, and an X-axis direction guide rail 152 that is provided on the base 151 and extends in the X-axis direction.
- An X-axis direction feed table 153 is slidably supported on the X-axis direction guide rail 152 via an X-axis direction guide 154.
- a mover 155a of the linear servo motor 155 is provided on the X-axis direction feed table 153 side, and a stator 155b of the linear servo motor 155 is provided on the base 151 side.
- the X-axis direction feed table 153 is driven to move in the X-axis direction.
- the Y-axis direction feed mechanism is a structure in which the X-axis direction feed mechanism 150 is arranged in the Y-axis direction and has the same structure as the X-axis direction feed mechanism 150. Therefore, illustration and detailed description of the structure are omitted. To do.
- an X-axis direction feed mechanism 150 is mounted on the bed side via a Y-axis direction feed mechanism (not shown), and a cutting tool table 130A is mounted on the X-axis direction feed table 153.
- the cutting tool base 130A moves in the X-axis direction by the movement drive of the X-axis direction feed table 153, and the Y-axis direction feed mechanism operates in the same manner as the X-axis direction feed mechanism 150 in the Y-axis direction. To move in the Y-axis direction.
- a Y-axis direction feed mechanism (not shown) may be mounted on the bed side via the X-axis direction feed mechanism 150, and the cutting tool base 130A may be mounted on the Y-axis direction feed mechanism side. Since the structure in which the cutting tool base 130A is moved in the X-axis direction and the Y-axis direction by the X-axis direction feed mechanism 150 and the X-axis direction feed mechanism 150 is conventionally known, detailed description and illustration are omitted.
- the turret moving mechanism (X-axis direction feeding mechanism 150 and Y-axis direction feeding mechanism) and the main shaft moving mechanism (Z-axis direction feeding mechanism 160) cooperate to provide an X-axis direction feeding mechanism 150 and a Y-axis direction feeding mechanism.
- the cutting tool table 130A is mounted on the cutting tool table 130A by the movement of the cutting tool table 130A in the X-axis direction and the Y-axis direction due to the movement of the main shaft table 110A (main shaft 110) in the Z-axis direction by the Z-axis direction feed mechanism 160.
- the cutting tool 130 is fed relative to the workpiece W in an arbitrary machining feed direction.
- the cutting tool 130 is moved with respect to the workpiece W by feeding means composed of the spindle moving mechanism (Z-axis direction feeding mechanism 160) and the tool post moving mechanism (X-axis direction feeding mechanism 150 and Y-axis direction feeding mechanism).
- a threaded portion is formed on the workpiece W by a cutting tool 130 by performing reciprocal oscillation in the radial direction of W and performing a threading process in a spiral manner over a plurality of times. It is cut.
- both the headstock 110A and the cutting tool base 130A are configured to move, but the headstock 110A is fixed so as not to move to the bed side of the machine tool 100, and the tool post is moved.
- the mechanism may be configured to move the cutting tool base 130A in the X-axis direction, the Y-axis direction, and the Z-axis direction.
- the feeding means and the vibration means are constituted by a tool post moving mechanism that moves the cutting tool base 130A in the X-axis direction, the Y-axis direction, and the Z-axis direction, and is fixedly positioned and rotationally driven.
- the cutting tool 130 can be reciprocated and oscillated with respect to the workpiece W.
- the cutting tool base 130A may be fixed so as not to move to the bed side of the machine tool 100, and the spindle moving mechanism may be configured to move the spindle base 110A in the X axis direction, the Y axis direction, and the Z axis direction.
- the feeding means and the vibration means are constituted by a spindle stock moving mechanism for moving the spindle stock 110A in the X-axis direction, the Y-axis direction, and the Z-axis direction, and the cutting tool table 130A is fixedly positioned.
- the X-axis direction feed mechanism 150, the Y-axis direction feed mechanism, and the Z-axis direction feed mechanism 160 are configured to be driven by a linear servo motor.
- a linear servo motor conventionally known ball screws and servos are used. It can also be driven by a motor.
- the rotating means for relatively rotating the workpiece W and the cutting tool 130 is constituted by the main shaft motor such as the built-in motor, and the relative rotation between the work W and the cutting tool 130 is performed by the main shaft 110. This is done by rotational drive.
- the workpiece W is rotated with respect to the cutting tool 130.
- the cutting tool 130 may be rotated with respect to the workpiece W.
- the rotation of the main shaft 110, the Z-axis direction feed mechanism 160, the X-axis direction feed mechanism 150, and the Y-axis direction feed mechanism are driven and controlled by a control unit C1 included in the control device C.
- the control unit C1 is set in advance so as to control the head stock 110A or the cutting tool base 130A to move in the respective directions while reciprocatingly oscillating along the corresponding moving directions using the respective feeding mechanisms as vibration means. ing.
- each feed mechanism is controlled by the control unit C ⁇ b> 1 to perform threading by performing a spiral cutting process for seven times as an example.
- the number of times of cutting is the number of times of cutting as to how many times of cutting are performed to achieve thread cutting.
- the vibration of the cutting tool 130 is expressed in a straight line for easy understanding.
- the control unit C1 functions as a control unit that causes the trajectory of the cutting tool at the backward movement in the continuous n + 1-th cutting process (n is an integer of 1 or more) to the position of the trajectory of the cutting tool in the n-th cutting process. To do.
- the control unit C1 changes the vibration pattern such as the phase of vibration at the time of cutting in the continuous n-th and n + 1-th cutting processes, so that the n-th cutting is performed at the cutting process portion at the n + 1-th cutting process. It also functions as a vibration setting means for setting a vibration pattern at the time of each cutting process involving reciprocating vibration so that a part that has been cut by machining is partially included.
- the vibration frequency by the vibration means is fixed, and the cutting tool 130 vibrates at a rate of twice in the X-axis direction as an example with respect to one rotation of the workpiece.
- the cutting tool 130 in the first cutting process, is reciprocated so that the cutting process starts from the start of the reciprocation of the reciprocating vibration, and the tip of the cutting tool 130 is moved to the workpiece during the reciprocation of the reciprocating vibration of the cutting tool 130.
- the outer peripheral surface of W is reached. Chips are divided at the portion where the tip of the cutting tool 130 reaches the outer peripheral surface of the workpiece W.
- control unit C1 changes the phase at the time of the second cutting process with respect to the phase at the time of the first cutting process, and at the time of the backward movement in the second cutting process.
- the trajectory of the tool 130 is controlled to reach the position of the trajectory of the cutting tool 130 in the first cutting process.
- the phase of the reciprocating vibration in the second cutting (n + 1: n is an integer of 1 or more) is opposite to the phase of the reciprocating vibration in the first (n-th) cutting.
- the reciprocating vibration is set so that the cutting process starts from the start of the reciprocating vibration, and the trajectory of the cutting tool 130 during the second cutting process is determined as the reciprocal vibration in the first cutting process.
- the position of the locus of the cutting tool 130 when switching from moving to returning is reached.
- the chips are divided. In other words, under the control of the control unit C1, the cutting part at the time of backward movement in the second cutting process comes into contact with the cutting part at the time of forward movement in the first cutting process.
- the cutting part at the time of forward movement in the first cutting process and the cutting part at the time of backward movement in the second cutting process are in contact with each other, so that the cutting tool 130 at the time of forward movement in the first cutting process
- the cutting portion at the time of backward movement in the second cutting is partially included as a “point” in theory, and the cutting tool 130 does not perform any cutting on the workpiece W in this portion.
- the chip generated from the workpiece W at the time of the cutting process is caused by the idle movement (the cutting part at the time of the forward movement at the first cutting process and the second cutting process). It is divided sequentially by the point where it comes into contact with the cutting part at the time of backward movement.
- the third to sixth incisions are executed in the same relationship as the relationship between the first incision and the second incision.
- the amplitude of the reciprocating vibration matches the cutting amount at the time of the cutting process, so that the cutting parts at the time of two consecutive cutting processes are in contact with each other. Since the amount of cut in the cutting process is reduced in one thread cutting process, the amplitude of the reciprocating vibration is controlled to be smaller every time the number of cutting processes is repeated. Thereby, the unevenness
- FIG. 4 shows a conceptual diagram in which the locus of the cutting tool 130 in one thread groove in FIG. 3 is observed from the Z-axis direction of the workpiece W.
- the cutting condition in FIG. 3 is that the frequency of the cutting tool 130 per rotation of the main shaft is two times. Therefore, when the workpiece W is observed from the Z-axis direction, an elliptical shape is formed. There are two idling operations for the length (one rotation of the workpiece). Then, as the incision process is continuously performed twice and three times, the area remaining in the major axis direction which has been in the elliptical shape in the previous incision process is advanced while the amplitude is reduced in the next incision process. As a result, the formation of the thread groove proceeds and the flatness of the processed surface increases.
- the user sets the number of rotations of the main shaft 110, the frequency of the cutting tool 130 per one rotation of the main shaft, and the like in the control unit C1 through the numerical value setting unit C2. It is configured.
- the setting of the number of rotations, the number of vibrations and the like to the control unit C1 can be input as parameters to the control unit C1, and for example, the number of rotations, the number of vibrations, the amplitude, the number of cuttings, etc.
- the frequency can be set as an argument in the program block (one line of the program).
- the locus of the cutting tool 130 during the backward movement in the (n + 1) -th cutting process reaches the position of the locus of the cutting tool 130 when switched during the backward movement from the forward movement in the n-th cutting process. Then, the cutting part at the time of backward movement in the n + 1-th cutting process and the cutting part at the time of forward movement in the n-th cutting process are theoretically in contact with each other at the “point”.
- the trajectory of the cutting tool 130 at the time of backward movement in the (n + 1) th cutting process may exceed the position of the trajectory of the cutting tool 130 at the time of switching from the forward movement to the backward movement in the nth cutting process.
- control unit C1 controls the cutting part at the time of backward movement in the n + 1-th cutting process and the cutting part at the time of forward movement in the n-th cutting process so as to overlap with each other including the contact state. May be performed.
- the cutting part at the time of the (n + 1) th cutting process partially includes a part that has been cut by the nth cutting process.
- the amplitude can be set, for example, by the ratio (amplitude cutting ratio) to the cutting depth of the actual cutting tool with respect to the workpiece.
- the amplitude and the cutting depth are set to be the same, but the amplitude is larger than the cutting depth. It may be set. For example, by setting the amplitude cutting ratio to be larger than 1, the amplitude is set to be larger than the cutting amount, and the locus of the cutting tool 130 during the backward movement in the (n + 1) th cutting is restored from the forward movement in the nth cutting. The trajectory position of the cutting tool 130 when switched during movement can be exceeded.
- the amplitude of the reciprocating vibration becomes smaller as the number of cutting processes is repeated, and the cutting tool 130 at the time of return movement in the n + 1th cutting process is obtained.
- the amount of the trajectory exceeding the position of the trajectory of the cutting tool 130 when the trajectory is switched from the forward movement to the backward movement in the n-th cutting process is sequentially reduced. Therefore, an amount exceeding the trajectory position of the cutting tool 130 at the time of backward movement in the n + 1-th cutting process exceeds the position of the trajectory of the cutting tool 130 at the time of switching from the forward movement to the backward movement in the n-th cutting process. Also, it can be set as an amplitude guaranteed value.
- the cutting tool 130 when the trajectory of the cutting tool 130 in the backward movement is smaller than the amplitude guaranteed value is switched during the backward movement from the forward movement in the n-th cutting process.
- the amplitude can be a value obtained by adding the guaranteed amplitude value to the cut amount.
- the amplitude cutting ratio and the guaranteed amplitude value can be input as parameters to the control unit C1 in the same manner as the rotation speed and vibration frequency of the main shaft 110, or can be set or described in a machining program, for example. It can be set as an argument in one line of the program).
- the cutting tool 130 is reciprocally oscillated relative to the workpiece W in a direction crossing the machining feed direction, and the threading process is started to perform a spiral cutting process a plurality of times
- the control unit C1 is configured to command the vibration start
- the value following the D is added to the control unit C1 with the G ⁇ command.
- An amplitude guarantee value can be set.
- the vibration frequency N can also be set as the rotation speed of the main shaft 110 per vibration.
- the value following the E (argument E) can set the rotation speed of the spindle 110 per vibration for the control unit C1.
- control unit C1 For example, it is possible to set the control unit C1 with the value (argument K) subsequent to K to determine how many times the cutting is to be performed.
- argument K it is desirable to set the diameter of the workpiece W with respect to the control unit C1.
- the diameter of the workpiece W can be set to the control unit C1 with a value (argument X) following X, for example.
- the machine tool 100 according to the first embodiment of the present invention and the control device C of the machine tool 100 obtained as described above are arranged so that the vibration pattern at the time of each cutting with reciprocating vibration is the n + 1-th cutting process.
- the cutting part is provided with the control unit C1 as vibration setting means for setting so that the part already cut by the n-th cutting process is partially included in the cutting part, when the workpiece W is cut.
- the control unit C1 as vibration setting means for setting so that the part already cut by the n-th cutting process is partially included in the cutting part, when the workpiece W is cut
- the frequency of the reciprocating vibration is constant
- the phase of the reciprocating vibration in the (n + 1) th cutting process is opposite to the phase of the reciprocating vibration in the nth cutting process
- the control unit C1 performs the (n + 1) th cutting process. Thread cutting while efficiently cutting chips by causing the trajectory of the cutting tool 130 during backward movement to reach the position of the trajectory of the cutting tool 130 when switching from the forward movement in the n-th cutting process during the backward movement. Processing can be performed.
- the frequency of reciprocating vibration by the vibration means is changed in the first to sixth incisions.
- the cutting tool 130 vibrates at a rate of once per 8 rotations of the main shaft, and in the second cutting process, the cutting tool 130 is rotated once per 4 rotations of the main shaft.
- the cutting tool 130 vibrates at a rate of once per spindle rotation, and in the fourth cutting process, the cutting tool 130 is 1 per rotation of the spindle.
- the frequency is controlled so that the frequency of the reciprocating vibration increases every time the number of times of cutting is repeated. Thereby, the frequency gradually increases every time the number of times is increased, and the unevenness of the screw bottom surface of the workpiece W by the threading process becomes fine.
- the amplitude of the reciprocating vibration in the cutting process is set in accordance with the cutting amount as in the first embodiment, and is controlled to decrease each time the number of cutting processes is increased.
- the ratio of the amplitude with respect to the cut amount and the increase amount of the amplitude with respect to the cut amount can be set to take values according to the ratio and the increase amount.
- the frequency of the reciprocating vibration in the (n + 1) -th cutting process is the same as the reciprocating vibration in the n-th cutting process.
- the control unit C1 sets the trajectory of the cutting tool 130 during backward movement at a rate of once per a plurality of vibrations in the (n + 1) th cutting process, from the forward movement to the backward movement in the nth cutting process.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Geometry (AREA)
- Turning (AREA)
- Numerical Control (AREA)
- Automatic Control Of Machine Tools (AREA)
- Milling Processes (AREA)
Abstract
Description
工作機械100は、主軸110と、切削工具台130Aとを備えている。
主軸110の先端にはチャック120が設けられている。
チャック120を介して主軸110にワークWが保持され、主軸110は、ワークを保持するワーク保持手段として構成されている。
主軸110は、図示しない主軸モータの動力によって回転駆動されるように主軸台110Aに支持されている。
前記主軸モータとして主軸台110A内において、主軸台110Aと主軸110との間に形成される従来公知のビルトインモータ等が考えられる。
主軸110は、主軸台110Aを介してZ軸方向送り機構160によって、前記Z軸方向に移動する。
Z軸方向送り機構160は、主軸110をZ軸方向に移動させる主軸移動機構を構成している。
Z軸方向ガイドレール162に、Z軸方向ガイド164を介してZ軸方向送りテーブル163がスライド自在に支持されている。
Z軸方向送りテーブル163側にリニアサーボモータ165の可動子165aが設けられ、ベース161側にリニアサーボモータ165の固定子165bが設けられている。
Z軸方向送りテーブル163の移動によって主軸台110AがZ軸方向に移動し、主軸110のZ軸方向への移動が行われる。
切削工具台130Aは、切削工具130を保持する刃物台を構成している。
切削工具台130Aは、工作機械100のベッド側に、X軸方向送り機構150及び図示しないY軸方向送り機構によって、前記Z軸方向に直交するX軸方向と、前記Z軸方向及びX軸方向に直交するY軸方向とに移動自在に設けられている。
X軸方向送り機構150とY軸方向送り機構とによって、切削工具台130Aを主軸110に対して前記X軸方向及びY軸方向に移動させる刃物台移動機構が構成されている。
X軸方向ガイドレール152に、X軸方向ガイド154を介してX軸方向送りテーブル153がスライド自在に支持されている。
リニアサーボモータ155の駆動によってX軸方向送りテーブル153が、X軸方向に移動駆動される。
なお、Y軸方向送り機構は、X軸方向送り機構150をY軸方向に配置したものであり、X軸方向送り機構150と同様の構造であるため、図示及び構造についての詳細な説明は割愛する。
切削工具台130Aは、X軸方向送りテーブル153の移動駆動によってX軸方向に移動し、Y軸方向送り機構が、Y軸方向に対して、X軸方向送り機構150と同様の動作をすることによって、Y軸方向に移動する。
この場合、前記送り手段および振動手段が、切削工具台130AをX軸方向、Y軸方向、Z軸方向に移動させる刃物台移動機構から構成され、固定的に位置決めされて回転駆動される主軸110に対して、切削工具台130Aを移動させることによって、切削工具130をワークWに対して加工送り動作させるとともに往復振動させることができる。
この場合、前記送り手段および振動手段が、主軸台110AをX軸方向、Y軸方向、Z軸方向に移動させる主軸台移動機構から構成され、固定的に位置決めされる切削工具台130Aに対して、主軸台110Aを移動させることによって、切削工具130をワークWに対して加工送り動作させるとともに往復振動させることができる。
本実施例では、切削工具130に対してワークWを回転させる構成としたが、ワークWに対して切削工具130を回転させる構成としてもよい。
制御部C1は、各送り機構を振動手段として、各々対応する移動方向に沿って往復振動させながら、主軸台110A又は切削工具台130Aを各々の方向に移動させるように制御するように予め設定されている。
ここで、切り込み回数は、何回の切り込み加工を行うことでねじ切り加工とするかについての切り込み加工の回数である。
なお、図3では、説明をわかり易くするため、切削工具130の振動を直線状にして表現している。
また、制御部C1は、連続するn回目およびn+1回目の切り込み加工における切り込み時の互いの振動の位相などの振動パターンを変えて、n+1回目の切り込み加工時の切削加工部分に、n回目の切り込み加工による切削済みの部分が部分的に含まれるように、往復振動を伴う各切り込み加工時の振動のパターンを設定する振動設定手段としても機能する。
1回目~6回目の切り込み加工においては、振動手段による振動数は固定であり、ワーク1回転に対して、切削工具130が一例としてX軸方向に2回の割合で振動する。
本実施例では、1回目の切り込み加工においては、往復振動の復動の開始から切り込み加工が開始されるように往復振動させ、切削工具130の往復振動の復動時に切削工具130の先端をワークWの外周面まで到達させる。
切削工具130の先端がワークWの外周面まで到達する部分で、切屑が分断される。
この到達させたタイミングで、切屑が分断される。
言い換えると、制御部C1の制御によって、2回目の切り込み加工における復動時の切削加工部分と、1回目の切り込み加工における往動時の切削加工部分とが接する。
1回目の切り込み加工時の往動時の切削加工部分と、2回目の切り込み加工時の復動時の切削加工部分とが接することによって、1回目の切り込み加工における切削工具130の往動時の切削加工部分に、2回目の切り込み加工における復動時の切削加工部分が理論上「点」として部分的に含まれ、この部分では、切削工具130がワークWに対して何ら切削を行わずに空削りする、空振り動作が「点」で生じることにより、切削加工時にワークWから生じる切屑は、前記空振り動作(1回目の切り込み加工時の往動時の切削加工部分と、2回目の切り込み加工時の復動時の切削加工部分とが接する点)によって順次分断される。
1回目の切り込み加工と2回目の切り込み加工との関係と同様の関係で、3回目~6回目の切り込み加工が実行される。
1回のねじ切り加工において、切り込み加工の切り込み量は減少するため、往復振動の振幅は、切り込み加工の回数を重ねる毎に小さくなるように制御される。
これにより、切り込み加工の回数を重ねる毎にワークWのねじ底面の凹凸が徐々に小さくなる。
最後の7回目の切り込み加工では、切削工具130を振動させずにワークWのねじ底面を切削することによって、ワークWのねじ底面の平坦性を向上させることができる。
図4に示すように、図3の切り込みの条件は主軸1回転当たりの切削工具130の振動数が2回であるため、ワークWをZ軸方向から観察すると楕円の形状となり、ワークWの周長(ワーク1回転)に対して2回の空振り動作が入る。
そして、2回、3回と切り込み加工を継続して行うに従って、前回の切り込み加工で楕円形状になっている長径方向に残った領域を次回の切り込み加工で振幅を小さくしながら切り込み加工を進めていくことで、ねじ溝の形成が進むとともに、加工面の平坦性が増していく。
回転数、振動数などの制御部C1への設定は、制御部C1にパラメータとして入力することができる他、例えば回転数、振動数や振幅や切り込み回数などを加工プログラムに記載して設定したり、プログラムブロック(プログラムの1行)において振動数を引数として設定したりすることができる。
言い換えると、制御部C1は、n+1回目の切り込み加工における復動時の切削加工部分と、n回目の切り込み加工における往動時の切削加工部分とが、前記接する状態を含み重複するように、制御を行ってもよい。
要するに、n+1回目の切り込み加工時の切削加工部分に、n回目の切り込み加工による切削済みの部分が部分的に含まれていればよい。
例えば、振幅切込み比率を1より大きくすることによって、振幅を切り込み量より大きく設定し、n+1回目の切り込み加工における復動時の切削工具130の軌跡を、n回目の切り込み加工における往動時から復動時に切り替わったときの切削工具130の軌跡の位置を越えさせることができる。
このため、n+1回目の切り込み加工における復動時の切削工具130の軌跡が、n回目の切り込み加工における往動時から復動時に切り替わったときの切削工具130の軌跡の位置を越える量を、予め、振幅保証値として設定することもできる。
振幅切込み比率や、振幅保証値は、前記主軸110の回転数、振動数などと同様に制御部C1にパラメータとして入力することができる他、例えば加工プログラムに記載して設定したり、プログラムブロック(プログラムの1行)において引数として設定したりすることができる。
なお振動数Nは、1振動当たりの主軸110の回転数として設定することもできる。
例えばEに続く値(引数E)で制御部C1に対して、1振動当たりの主軸110の回転数を設定することができる。
また、1回のねじ切り加工において何回目の切り込み加工まで振動させるかの設定や、何回目の切り込み加工から振動を開始させるか等の設定を、上述した主軸110の回転数、振動数、振幅切込み比率や、振幅保証値などと同様、入力、設定等を行うことができる。
例えば、何回目の切り込み加工まで振動させるかの設定を、Kに続く値(引数K)で制御部C1に対して行うことができる。
なお引数Kを設定する場合は、ワークWの径を制御部C1に対して設定することが望ましい。
ワークWの径は、例えばXに続く値(引数X)で制御部C1に対して設定することができる。
図5に示すように、第2実施例では、1回目~6回目の切り込み加工において、振動手段による往復振動の周波数を変更している。
これにより、回数を追う毎に徐々に周波数が高まってねじ切り加工によるワークWのねじ底面の凹凸が細かくなる。
ただし、切り込み量に対する振幅の比率や、切り込み量に対する振幅の増加量を設定し、前記比率や増加量に応じた値をとるようにすることもできる。
110 ・・・ 主軸
110A・・・ 主軸台
120 ・・・ チャック
130 ・・・ 切削工具
130A・・・ 切削工具台
150 ・・・ X軸方向送り機構
151 ・・・ ベース
152 ・・・ X軸方向ガイドレール
153 ・・・ X軸方向送りテーブル
154 ・・・ X軸方向ガイド
155 ・・・ リニアサーボモータ
155a・・・ 可動子
155b・・・ 固定子
160 ・・・ Z軸方向送り機構
161 ・・・ ベース
162 ・・・ Z軸方向ガイドレール
163 ・・・ Z軸方向送りテーブル
164 ・・・ Z軸方向ガイド
165 ・・・ リニアサーボモータ
165a・・・ 可動子
165b・・・ 固定子
C ・・・ 制御装置
C1 ・・・ 制御部
C2 ・・・ 数値設定部
W ・・・ ワーク
Claims (5)
- ワークを保持するワーク保持手段と、前記ワークを切削加工する切削工具を保持する刃物台と、前記ワーク保持手段と前記刃物台との相対移動によってワークに対して切削工具を所定の加工送り方向に送り動作させる送り手段と、前記ワーク保持手段と前記刃物台とを前記ワークの径方向に相対的に往復振動させる振動手段と、前記ワークと前記切削工具を相対的に回転させる回転手段とを備え、前記ワークと前記切削工具とを相対回転させながら前記加工送り方向に沿って相対的に送り移動させ、所定の螺旋状をなす同一の切削経路に沿って複数回に亘って切り込み加工を行うことで前記ワークにねじ部分を形成するねじ切り加工を行う工作機械であって、
前記振動手段が、所定の複数回の切り込み加工に際して、前記ワークと切削工具とを前記往復振動させ、
前記往復振動を伴う各切り込み加工時の振動のパターンを、所定の切り込み加工時の切削加工部分に、他の切り込み加工による切削済みの部分が部分的に含まれるように設定する振動設定手段を設けた工作機械。 - 前記振動設定手段が、前記ワークの回転に対する前記振動の位相を変更するように構成された請求項1に記載の工作機械。
- 前記振動設定手段が、前記振動の周波数を変更するように構成された請求項1に記載の工作機械。
- 前記振動設定手段が、前記往復振動の振幅を、各切り込み加工の切り込み量に応じて設定するように構成された請求項1乃至請求項3のいずれか1つに記載の工作機械。
- ワークを保持するワーク保持手段と、前記ワークを切削加工する切削工具を保持する刃物台と、前記ワーク保持手段と前記刃物台との相対移動によってワークに対して切削工具を所定の加工送り方向に送り動作させる送り手段と、前記ワーク保持手段と前記刃物台とを前記ワークの径方向に相対的に往復振動させる振動手段と、前記ワークと前記切削工具を相対的に回転させる回転手段とを備えた工作機械に設けられ、前記ワークと前記切削工具とを相対回転させながら前記加工送り方向に沿って相対的に送り移動させ、所定の螺旋状をなす同一の切削経路に沿って複数回に亘って切り込み加工を行うことで前記ワークにねじ部分を形成するねじ切り加工を行う工作機械の制御装置であって、
前記往復振動を伴う各切り込み加工時の振動のパターンを、所定の切り込み加工時の切削加工部分に、他の切り込み加工による切削済みの部分が部分的に含まれるように設定して、所定の複数回の切り込み加工に際して、前記ワークと切削工具とを前記振動手段によって前記往復振動させる構成とした工作機械の制御装置。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20167352.2A EP3698904A1 (en) | 2014-10-08 | 2015-10-06 | Machine tool and control device for machine tool |
CN201580054654.5A CN106794521B (zh) | 2014-10-08 | 2015-10-06 | 机床以及该机床的控制装置 |
KR1020207007799A KR102304064B1 (ko) | 2014-10-08 | 2015-10-06 | 공작기계 및 이 공작기계의 제어장치 |
KR1020177010843A KR102183277B1 (ko) | 2014-10-08 | 2015-10-06 | 공작기계 및 이 공작기계의 제어장치 |
US15/517,101 US10589367B2 (en) | 2014-10-08 | 2015-10-06 | Machine tool and control device of the machine tool |
ES15848714T ES2906576T3 (es) | 2014-10-08 | 2015-10-06 | Procedimiento para la fabricación de una rosca |
EP15848714.0A EP3205430B1 (en) | 2014-10-08 | 2015-10-06 | Method for manufacturing a thread |
JP2016553103A JP6709163B2 (ja) | 2014-10-08 | 2015-10-06 | 工作機械及びこの工作機械の制御装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014207105 | 2014-10-08 | ||
JP2014-207105 | 2014-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016056526A1 true WO2016056526A1 (ja) | 2016-04-14 |
Family
ID=55653137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078262 WO2016056526A1 (ja) | 2014-10-08 | 2015-10-06 | 工作機械及びこの工作機械の制御装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10589367B2 (ja) |
EP (2) | EP3698904A1 (ja) |
JP (3) | JP6709163B2 (ja) |
KR (2) | KR102183277B1 (ja) |
CN (1) | CN106794521B (ja) |
ES (1) | ES2906576T3 (ja) |
TW (1) | TWI661883B (ja) |
WO (1) | WO2016056526A1 (ja) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3241637A1 (en) * | 2016-05-03 | 2017-11-08 | Danobat, S. Coop. | Threading method and machine |
WO2019012937A1 (ja) * | 2017-07-13 | 2019-01-17 | シチズン時計株式会社 | ネジ切り加工装置及びネジ切り加工方法 |
JP2019149047A (ja) * | 2018-02-27 | 2019-09-05 | ファナック株式会社 | 制御装置 |
DE102019205035A1 (de) | 2018-04-09 | 2019-10-10 | Fanuc Corporation | Steuerung für Werkzeugmaschine |
DE102019204862A1 (de) | 2018-04-06 | 2019-10-10 | Fanuc Corporation | Steuerung für eine werkzeugmaschine |
DE102019204643A1 (de) | 2018-04-06 | 2019-10-10 | Fanuc Corporation | Steuereinrichtung für eine werkzeugmaschine |
JP2019181606A (ja) * | 2018-04-05 | 2019-10-24 | シチズン時計株式会社 | 工作機械 |
CN111045395A (zh) * | 2018-10-15 | 2020-04-21 | 发那科株式会社 | 数值控制装置 |
WO2020085451A1 (ja) | 2018-10-26 | 2020-04-30 | シチズン時計株式会社 | 工作機械及び制御装置 |
JP2020124793A (ja) * | 2019-02-06 | 2020-08-20 | 株式会社ツガミ | 工作機械 |
JP2020126695A (ja) * | 2014-10-08 | 2020-08-20 | シチズン時計株式会社 | 工作機械及びこの工作機械の制御装置 |
WO2020241524A1 (ja) | 2019-05-29 | 2020-12-03 | シチズン時計株式会社 | 工作機械及びこの工作機械の制御装置 |
JP2021056930A (ja) * | 2019-10-01 | 2021-04-08 | ファナック株式会社 | 数値制御装置、工作機械システム及び数値制御方法 |
JP2021060690A (ja) * | 2019-10-03 | 2021-04-15 | ファナック株式会社 | 工作機械の制御装置 |
JP2021065942A (ja) * | 2019-10-18 | 2021-04-30 | 高松機械工業株式会社 | 工作機械及びこれを用いたネジ切り加工方法 |
WO2021117526A1 (ja) * | 2019-12-10 | 2021-06-17 | シチズン時計株式会社 | 加工装置、加工方法および切削工具 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3213848B1 (en) * | 2014-10-28 | 2024-09-18 | Mitsubishi Electric Corporation | Numerical control device |
JP6470085B2 (ja) * | 2015-03-26 | 2019-02-13 | シチズン時計株式会社 | 工作機械及びこの工作機械の制御装置 |
ES2956772T3 (es) * | 2016-12-22 | 2023-12-27 | Citizen Watch Co Ltd | Máquina herramienta y dispositivo de control para la misma |
CN110475637B (zh) * | 2017-03-29 | 2021-05-04 | 西铁城时计株式会社 | 机床的控制装置以及机床 |
JP6595537B2 (ja) * | 2017-07-27 | 2019-10-23 | ファナック株式会社 | 揺動切削を行う工作機械の制御装置 |
JP6991774B2 (ja) * | 2017-08-01 | 2022-01-13 | シチズン時計株式会社 | 工作機械の制御装置および工作機械 |
EP3654122A4 (en) * | 2017-09-12 | 2021-04-14 | Citizen Watch Co., Ltd. | MACHINE TOOL |
CN111095142B (zh) | 2017-09-28 | 2023-05-30 | 西铁城时计株式会社 | 机床 |
CN109352095B (zh) * | 2018-12-11 | 2020-03-13 | 重庆世潮机械有限公司 | 一种用于滚丝轮修复的切削装置 |
WO2020178932A1 (ja) * | 2019-03-04 | 2020-09-10 | 国立大学法人東海国立大学機構 | 機械加工方法、機械加工装置および切削条件生成装置 |
EP3892405A1 (en) * | 2020-04-08 | 2021-10-13 | AB Sandvik Coromant | A method for cutting metallic threads |
US20230311224A1 (en) | 2022-03-30 | 2023-10-05 | Iscar, Ltd. | Method for cutting a thread on a rotating workpiece |
CN115026316B (zh) * | 2022-04-29 | 2023-10-27 | 沈阳透平机械股份有限公司 | 平衡盘密封结构的加工方法 |
WO2024090373A1 (ja) * | 2022-10-24 | 2024-05-02 | Dmg森精機株式会社 | Ncプログラム作成 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61288952A (ja) * | 1985-04-09 | 1986-12-19 | ウイルヘルム・ヘ−ゲンシヤイト・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング | 工作物を回転加工する際に切断切削くずを製出するための方法及び装置 |
JPH10124127A (ja) * | 1996-10-16 | 1998-05-15 | Mori Seiki Co Ltd | Nc旋盤を用いたねじ切り装置及びその方法 |
JP2006312223A (ja) * | 2005-05-09 | 2006-11-16 | Toyota Motor Corp | 切削加工装置、及び方法 |
WO2015146946A1 (ja) * | 2014-03-26 | 2015-10-01 | シチズンホールディングス株式会社 | 工作機械の制御装置及びこの制御装置を備えた工作機械 |
WO2015146945A1 (ja) * | 2014-03-26 | 2015-10-01 | シチズンホールディングス株式会社 | 工作機械の制御装置及びこの制御装置を備えた工作機械 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US991336A (en) * | 1910-09-27 | 1911-05-02 | William F Mangels | Amusement apparatus. |
US3174404A (en) * | 1959-06-15 | 1965-03-23 | Textron Inc | Method and apparatus for cutting material |
CH407701A (de) * | 1961-09-06 | 1966-02-15 | Fischer Ag Georg | Steueranlage zum Brechen von Spänen an spanabhebenden Vorrichtungen |
DE3069915D1 (en) * | 1979-12-13 | 1985-02-14 | Japan Res Dev Corp | Production of short metal fibers |
JPS5715626A (en) * | 1980-06-24 | 1982-01-27 | Pilot Pen Co Ltd:The | Accurate thread vibration cutting lathe |
JPS6027298B2 (ja) * | 1981-08-24 | 1985-06-28 | まさる 隈部 | 歯牙切削装置 |
DE3862474D1 (de) * | 1987-02-04 | 1991-05-29 | Taga Electric Co Ltd | Ultraschallschneidvorrichtung. |
JP2541667B2 (ja) * | 1989-09-28 | 1996-10-09 | オークマ株式会社 | ねじ切り加工装置 |
US5035142A (en) * | 1989-12-19 | 1991-07-30 | Dryga Alexandr I | Method for vibratory treatment of workpieces and a device for carrying same into effect |
US6349600B1 (en) * | 1999-03-15 | 2002-02-26 | The Government Of The United States Of America, As Represented By The Secretary Of Commerce | Device for stable speed determination in machining |
JP2001150201A (ja) | 1999-11-22 | 2001-06-05 | Mitsubishi Materials Corp | 振動工具による切削方法及び切削装置 |
JP4539499B2 (ja) * | 2004-11-09 | 2010-09-08 | 株式会社デンソー | 振動加工装置及び振動加工方法 |
DE102005035576A1 (de) * | 2005-07-29 | 2007-02-01 | Fms Drehtechnik Schaffhausen Ag | Verfahren und Vorrichtung zum Herstellen von Gewinden, insbesondere für Bohrgestänge oder dergleichen |
US7508116B2 (en) * | 2005-09-07 | 2009-03-24 | Panasonic Corporation | Method and apparatus for vibration machining with two independent axes |
US7687975B2 (en) * | 2007-03-27 | 2010-03-30 | Panasonic Corporation | Vibration assisted machining system with stacked actuators |
JP2012045693A (ja) * | 2010-08-30 | 2012-03-08 | Momose Seisakusho:Kk | 工具振動装置 |
DE102011077568B4 (de) * | 2011-06-15 | 2023-12-07 | Dmg Mori Ultrasonic Lasertec Gmbh | Werkzeugmaschine, Werkstückbearbeitungsverfahren |
JP5908386B2 (ja) * | 2012-10-30 | 2016-04-26 | オークマ株式会社 | 工作機械 |
JP5624163B2 (ja) * | 2013-01-17 | 2014-11-12 | ファナック株式会社 | ねじ切りサイクルの再加工を行う機能を有する数値制御装置 |
ES2906576T3 (es) * | 2014-10-08 | 2022-04-19 | Citizen Watch Co Ltd | Procedimiento para la fabricación de una rosca |
DE102016214697A1 (de) * | 2016-08-08 | 2018-02-08 | Sauer Gmbh | Verfahren und Vorrichtung zum Aufbringen einer Oberflächenstrukturierung auf einem Werkstück an einer Werkzeugmaschine |
JP6530780B2 (ja) * | 2017-05-16 | 2019-06-12 | ファナック株式会社 | 揺動切削のための表示装置および加工システム |
-
2015
- 2015-10-06 ES ES15848714T patent/ES2906576T3/es active Active
- 2015-10-06 CN CN201580054654.5A patent/CN106794521B/zh active Active
- 2015-10-06 EP EP20167352.2A patent/EP3698904A1/en active Pending
- 2015-10-06 WO PCT/JP2015/078262 patent/WO2016056526A1/ja active Application Filing
- 2015-10-06 JP JP2016553103A patent/JP6709163B2/ja active Active
- 2015-10-06 KR KR1020177010843A patent/KR102183277B1/ko active IP Right Grant
- 2015-10-06 EP EP15848714.0A patent/EP3205430B1/en active Active
- 2015-10-06 TW TW104132847A patent/TWI661883B/zh active
- 2015-10-06 KR KR1020207007799A patent/KR102304064B1/ko active IP Right Grant
- 2015-10-06 US US15/517,101 patent/US10589367B2/en active Active
-
2020
- 2020-05-20 JP JP2020088071A patent/JP7304315B2/ja active Active
-
2023
- 2023-02-28 JP JP2023030504A patent/JP7450780B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61288952A (ja) * | 1985-04-09 | 1986-12-19 | ウイルヘルム・ヘ−ゲンシヤイト・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング | 工作物を回転加工する際に切断切削くずを製出するための方法及び装置 |
JPH10124127A (ja) * | 1996-10-16 | 1998-05-15 | Mori Seiki Co Ltd | Nc旋盤を用いたねじ切り装置及びその方法 |
JP2006312223A (ja) * | 2005-05-09 | 2006-11-16 | Toyota Motor Corp | 切削加工装置、及び方法 |
WO2015146946A1 (ja) * | 2014-03-26 | 2015-10-01 | シチズンホールディングス株式会社 | 工作機械の制御装置及びこの制御装置を備えた工作機械 |
WO2015146945A1 (ja) * | 2014-03-26 | 2015-10-01 | シチズンホールディングス株式会社 | 工作機械の制御装置及びこの制御装置を備えた工作機械 |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023071820A (ja) * | 2014-10-08 | 2023-05-23 | シチズン時計株式会社 | 工作機械及びこの工作機械の制御装置 |
JP2020126695A (ja) * | 2014-10-08 | 2020-08-20 | シチズン時計株式会社 | 工作機械及びこの工作機械の制御装置 |
EP3241637A1 (en) * | 2016-05-03 | 2017-11-08 | Danobat, S. Coop. | Threading method and machine |
WO2019012937A1 (ja) * | 2017-07-13 | 2019-01-17 | シチズン時計株式会社 | ネジ切り加工装置及びネジ切り加工方法 |
JP7036822B2 (ja) | 2017-07-13 | 2022-03-15 | シチズン時計株式会社 | ネジ切り加工装置及びネジ切り加工方法 |
US11554420B2 (en) | 2017-07-13 | 2023-01-17 | Citizen Watch Co., Ltd. | Threading device and threading method |
JPWO2019012937A1 (ja) * | 2017-07-13 | 2020-05-21 | シチズン時計株式会社 | ネジ切り加工装置及びネジ切り加工方法 |
JP2019149047A (ja) * | 2018-02-27 | 2019-09-05 | ファナック株式会社 | 制御装置 |
US10814398B2 (en) | 2018-02-27 | 2020-10-27 | Fanuc Corporation | Controller for chip cutting when processing a rotating workpiece |
JP2019181606A (ja) * | 2018-04-05 | 2019-10-24 | シチズン時計株式会社 | 工作機械 |
JP7057703B2 (ja) | 2018-04-05 | 2022-04-20 | シチズン時計株式会社 | 工作機械 |
DE102019204862A1 (de) | 2018-04-06 | 2019-10-10 | Fanuc Corporation | Steuerung für eine werkzeugmaschine |
US11086284B2 (en) | 2018-04-06 | 2021-08-10 | Fanuc Corporation | Controller for machine tool |
US10859995B2 (en) | 2018-04-06 | 2020-12-08 | Fanuc Corporation | Controller for machine tool |
JP2019185287A (ja) * | 2018-04-06 | 2019-10-24 | ファナック株式会社 | 工作機械の制御装置 |
DE102019204643A1 (de) | 2018-04-06 | 2019-10-10 | Fanuc Corporation | Steuereinrichtung für eine werkzeugmaschine |
DE102019205035B4 (de) | 2018-04-09 | 2024-01-18 | Fanuc Corporation | Steuerung für Werkzeugmaschine |
US10802461B2 (en) | 2018-04-09 | 2020-10-13 | Fanuc Corporation | Controller for machine tool |
JP2019185355A (ja) * | 2018-04-09 | 2019-10-24 | ファナック株式会社 | 工作機械の制御装置 |
DE102019205035A1 (de) | 2018-04-09 | 2019-10-10 | Fanuc Corporation | Steuerung für Werkzeugmaschine |
CN111045395A (zh) * | 2018-10-15 | 2020-04-21 | 发那科株式会社 | 数值控制装置 |
TWI781353B (zh) * | 2018-10-26 | 2022-10-21 | 日商西鐵城時計股份有限公司 | 工作機械以及控制裝置 |
JP7195110B2 (ja) | 2018-10-26 | 2022-12-23 | シチズン時計株式会社 | 工作機械及び制御装置 |
US11977363B2 (en) | 2018-10-26 | 2024-05-07 | Citizen Watch Co., Ltd. | Machine tool and control device |
WO2020085451A1 (ja) | 2018-10-26 | 2020-04-30 | シチズン時計株式会社 | 工作機械及び制御装置 |
JP2020066119A (ja) * | 2018-10-26 | 2020-04-30 | シチズン時計株式会社 | 工作機械及び制御装置 |
JP7232656B2 (ja) | 2019-02-06 | 2023-03-03 | 株式会社ツガミ | 工作機械 |
JP2020124793A (ja) * | 2019-02-06 | 2020-08-20 | 株式会社ツガミ | 工作機械 |
WO2020241524A1 (ja) | 2019-05-29 | 2020-12-03 | シチズン時計株式会社 | 工作機械及びこの工作機械の制御装置 |
KR20220013488A (ko) | 2019-05-29 | 2022-02-04 | 시티즌 도케이 가부시키가이샤 | 공작 기계 및 이 공작 기계의 제어 장치 |
US11378930B2 (en) | 2019-10-01 | 2022-07-05 | Fanuc Corporation | Numerical controller, machine tool system, and numerical control method |
JP2021056930A (ja) * | 2019-10-01 | 2021-04-08 | ファナック株式会社 | 数値制御装置、工作機械システム及び数値制御方法 |
JP7497968B2 (ja) | 2019-10-01 | 2024-06-11 | ファナック株式会社 | 数値制御装置、工作機械システム及び数値制御方法 |
US11396073B2 (en) | 2019-10-03 | 2022-07-26 | Fanuc Corporation | Control device for machine tool |
JP2021060690A (ja) * | 2019-10-03 | 2021-04-15 | ファナック株式会社 | 工作機械の制御装置 |
US11717926B2 (en) | 2019-10-03 | 2023-08-08 | Fanuc Corporation | Control device for machine tool |
JP7391594B2 (ja) | 2019-10-03 | 2023-12-05 | ファナック株式会社 | 工作機械の制御装置 |
JP2021065942A (ja) * | 2019-10-18 | 2021-04-30 | 高松機械工業株式会社 | 工作機械及びこれを用いたネジ切り加工方法 |
WO2021117526A1 (ja) * | 2019-12-10 | 2021-06-17 | シチズン時計株式会社 | 加工装置、加工方法および切削工具 |
JP2021092936A (ja) * | 2019-12-10 | 2021-06-17 | シチズン時計株式会社 | 加工装置、加工方法および切削工具 |
JP7516035B2 (ja) | 2019-12-10 | 2024-07-16 | シチズン時計株式会社 | 加工装置、加工方法および切削工具 |
Also Published As
Publication number | Publication date |
---|---|
JP7450780B2 (ja) | 2024-03-15 |
KR20170063769A (ko) | 2017-06-08 |
EP3205430A1 (en) | 2017-08-16 |
EP3698904A1 (en) | 2020-08-26 |
CN106794521B (zh) | 2019-09-06 |
JPWO2016056526A1 (ja) | 2017-07-27 |
KR102304064B1 (ko) | 2021-09-24 |
EP3205430B1 (en) | 2021-12-08 |
KR20200033977A (ko) | 2020-03-30 |
EP3205430A4 (en) | 2018-05-30 |
CN106794521A (zh) | 2017-05-31 |
JP2023071820A (ja) | 2023-05-23 |
TWI661883B (zh) | 2019-06-11 |
US10589367B2 (en) | 2020-03-17 |
US20170304920A1 (en) | 2017-10-26 |
TW201613707A (en) | 2016-04-16 |
KR102183277B1 (ko) | 2020-11-26 |
ES2906576T3 (es) | 2022-04-19 |
JP7304315B2 (ja) | 2023-07-06 |
JP6709163B2 (ja) | 2020-06-10 |
JP2020126695A (ja) | 2020-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7304315B2 (ja) | 工作機械及びこの工作機械の制御装置 | |
JP6416217B2 (ja) | 工作機械の制御装置及びこの制御装置を備えた工作機械 | |
JP6416218B2 (ja) | 工作機械の制御装置及びこの制御装置を備えた工作機械 | |
JP6470085B2 (ja) | 工作機械及びこの工作機械の制御装置 | |
JP6297711B2 (ja) | 工作機械及びこの工作機械の制御装置 | |
JP6343676B2 (ja) | 工作機械及びこの工作機械の制御装置 | |
JP7046919B2 (ja) | 工作機械の制御装置および工作機械 | |
JPWO2017051745A1 (ja) | 工作機械の制御装置及びこの制御装置を備えた工作機械 | |
JP6289766B2 (ja) | 工作機械の制御装置、工作機械 | |
WO2020241524A1 (ja) | 工作機械及びこの工作機械の制御装置 | |
WO2019073908A1 (ja) | 工作機械 | |
JP2018043306A (ja) | 工作機械およびその制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15848714 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015848714 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015848714 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016553103 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15517101 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177010843 Country of ref document: KR Kind code of ref document: A |