[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016056306A1 - アルミニウム合金ブレージングシートおよびろう付け方法 - Google Patents

アルミニウム合金ブレージングシートおよびろう付け方法 Download PDF

Info

Publication number
WO2016056306A1
WO2016056306A1 PCT/JP2015/073203 JP2015073203W WO2016056306A1 WO 2016056306 A1 WO2016056306 A1 WO 2016056306A1 JP 2015073203 W JP2015073203 W JP 2015073203W WO 2016056306 A1 WO2016056306 A1 WO 2016056306A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
aluminum alloy
plate
aluminum
core material
Prior art date
Application number
PCT/JP2015/073203
Other languages
English (en)
French (fr)
Inventor
伊藤 泰永
知樹 山吉
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to JP2016552858A priority Critical patent/JPWO2016056306A1/ja
Priority to CN201580054821.6A priority patent/CN106794556A/zh
Priority to EP15848667.0A priority patent/EP3205440A4/en
Priority to US15/517,700 priority patent/US10300563B2/en
Publication of WO2016056306A1 publication Critical patent/WO2016056306A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/088Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal for domestic or space-heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements

Definitions

  • the present invention relates to an aluminum alloy brazing sheet used for brazing aluminum in an inert gas atmosphere or in a vacuum, and a brazing method using the aluminum alloy brazing sheet.
  • Brazing joining is widely used as a joining method for aluminum products having many fine joints such as aluminum heat exchangers and machine parts.
  • it is essential to destroy the oxide film covering the surface and bring the molten brazing material into contact with the base metal or the molten brazing material.
  • a method of using a flux and a method of heating in a vacuum both of which have been put into practical use.
  • brazing joints The range of application of brazing joints is wide-ranging, but the most typical ones are automotive heat exchangers. Most automotive heat exchangers such as radiators, heaters, condensers, and evaporators are made of aluminum, and most of them are manufactured by brazing. Among the brazing methods, non-corrosive flux is applied and nitrogen is applied. The method of heating in a gas atmosphere now dominates.
  • Li, Be, Ba, Ca, etc. as a clad material for brazing and joining without using flux in an inert gas atmosphere, between the core material and the brazing material.
  • Containing a metal powder having a solidus temperature lower than the solidus temperature of any of the core material and the brazing material, and heating to a temperature equal to or higher than the solidus temperature of the metal powder A clad material was proposed in which a liquid phase was generated in a metal powder to join a core material and a brazing material in a planar shape, and then hot clad rolled.
  • the method of supplying Li, Be, Ba, Ca, etc. into the brazing material with the metal powder has the following difficulties in manufacturing the material. That is, in the process of manufacturing a clad material at a production factory, the brazing material thickness before rolling becomes considerably thick, and thus a large amount of metal powder needs to be interposed between the core material and the brazing material. Therefore, increasing the amount of addition of Li, Be, Ba, Ca, etc. results in the formation of a strong oxide film on the surface of the metal powder, so the oxide film is destroyed even when heated above the solidus temperature of the metal powder. Therefore, it becomes difficult to uniformly join the core material and the brazing material in a planar shape.
  • the metal powder remains at the interface in the form of powder without being joined, the clad property by hot rolling will be affected, and the material during rolling will be peeled off, or bulge will be likely to occur during softening heating.
  • special safety management is required at the manufacturing site, and it is necessary to strictly control the metal powder so that it does not mix with other materials. In addition to instability, this results in increased costs.
  • the core material and the sacrificial anode material each have a role to play. If the amount of Mg added increases, erosion due to melting brazing will occur excessively, the corrosion resistance will be adversely affected, and the amount of Mg added Is limited, the destructive action of the oxide film on the surface of the brazing material becomes poor. On the other hand, if Li, Be, Ba, and Ca are added to the core material and the sacrificial anode material, the addition amount is further limited as compared with Mg. Therefore, expect the destruction effect of the oxide film intended in the above proposal. It is difficult.
  • the present invention has been made to solve the above problems, and its purpose is to quickly diffuse any one of Li, Be, Ba, and Ca into the brazing material during brazing heating, thereby melting the brazing material.
  • Aluminum alloy brazing sheet capable of achieving excellent brazing properties by eluting these elements into the molten brazing after the start to effectively weaken the oxide film on the surface of the brazing material, and the aluminum alloy It is to provide a brazing method using a brazing sheet.
  • an aluminum alloy brazing sheet according to claim 1 contains Si: 6 to 13% on one side or both sides of an aluminum or aluminum alloy core material, and the brazing material comprising the balance Al and inevitable impurities Is a brazing sheet that is used for brazing aluminum in an inert gas atmosphere or in a vacuum, and Li: 0.05% or more, Be: 0.05 between a core material and a brazing material % Or more, Ba: 0.05% or more, Ca: 0.05% or more of one type or two or more types, containing the balance Al and unavoidable impurities and being clad. It is characterized by that. In the following description, all alloy component contents are expressed in mass%.
  • An aluminum alloy brazing sheet according to claim 2 is formed by clad a brazing material containing Si: 6 to 13% and the balance Al and unavoidable impurities on one or both sides of an aluminum or aluminum alloy core.
  • a brazing sheet used for brazing aluminum in a gas atmosphere or in a vacuum wherein Li: 0.05% or more, Be: 0.05% or more, Ba: 0.05 between a core material and a brazing material %, Ca: 0.05% or more of one or two or more of the plate-like material consisting of Al and inevitable impurities, and Zn: 0.9-6%, the balance
  • a sacrificial anode material made of Al and inevitable impurities is clad so as to be arranged in the order of a core material, a sacrificial anode material, a plate material, and a brazing material.
  • An aluminum alloy brazing sheet according to claim 3 is formed by clad a brazing material containing Si: 6 to 13% and the balance Al and inevitable impurities on one side of an aluminum or aluminum alloy core, and on the other side of the core , Zn: a brazing sheet containing 0.9 to 6%, clad with a sacrificial anode material composed of the balance Al and inevitable impurities, and used for brazing aluminum in an inert gas atmosphere or in vacuum
  • the aluminum alloy brazing sheet according to claim 4 is characterized in that in any one of claims 1 to 3, the plate material further contains Mg: 0.4 to 4.0%.
  • the aluminum alloy brazing sheet according to claim 5 is characterized in that in any one of claims 1 to 4, the plate material further contains Si: 2 to 13%.
  • the aluminum alloy brazing sheet according to claim 6 is characterized in that, in any one of claims 1 to 5, the brazing material further contains Bi: 0.004 to 0.2%.
  • the aluminum alloy brazing sheet according to claim 7 is the aluminum alloy brazing sheet according to any one of claims 1 to 6, wherein the core material of the aluminum alloy is Mn: 1.8% or less, Si: 1.2% or less, Fe: 1.0% or less Cu: 1.5% or less, Zn: 0.8% or less, Ti: 0.2% or less, Zr: 0.5% or less, or one or two or more of them, from the remaining aluminum and unavoidable impurities It is characterized by becoming.
  • the aluminum alloy brazing sheet according to claim 8 is characterized in that, in claim 57, the core material of the aluminum alloy further contains Mg: 0.4 to 1.3%.
  • a brazing method according to claim 9 is characterized in that the aluminum alloy brazing sheet according to any one of claims 1 to 8 is assembled and brazed and joined in an inert gas atmosphere or in a vacuum without applying a flux.
  • a brazing method assembles the aluminum alloy brazing sheet according to any one of claims 1 to 7, and applies a fluoride-based flux of 1 to 20 g / m 2 to all or part of the brazed joint. It is characterized in that it is applied in a quantity and brazed in an inert gas atmosphere.
  • Li, Be, Ba, Ca, and Mg contained in the plate-like material all have low free energy for oxide formation, these elements diffuse into the brazing material during brazing heating.
  • a unique oxide is formed in the aluminum oxide film covering the surface of the metal, and the formation of the unique oxide induces the destruction of the aluminum oxide film.
  • Li, Be, Ba, and Ca are effective regardless of the brazing heating rate by addition to the plate material, but when adding Mg to the plate material, the brazing heating rate This is particularly effective when the speed is high.
  • the formation of a unique oxide proceeds even during the manufacturing stage of the brazing sheet, so that the added elements are not only wasted, but the surface oxide film is more robust. Therefore, it is necessary to perform an etching process before brazing to peel off the oxide film.
  • the above element is supplied to the brazing material through the plate material or the core material, the formation of a unique oxide does not proceed in the brazing sheet manufacturing stage, and the plate is heated in the brazing heating stage. Diffusion from the brazing material or core material into the brazing material.
  • brazing heating is performed in an inert gas atmosphere having a low oxygen concentration, even if trace elements of Li, Be, Ba, and Ca contained in the plate material during brazing heating reach the brazing material surface,
  • the oxide film is not brittle enough to strengthen the oxide film, and the oxide formed uniquely becomes a starting point for dividing the oxide film after melting the brazing filler metal, so that the oxide film becomes brittle.
  • the melting of the plate-shaped material into the molten solder proceeds with the start of the melting of the brazing material, the above elements are eluted at a stretch into the molten wax. Since the diffusion of elements in the molten braze proceeds much faster than in solids, the formation of a unique oxide rapidly proceeds on the surface of the brazing material, and the destruction of the oxide film is promoted.
  • Mg is contained in the plate-like material
  • the temperature rising rate is fast, the inclusion of Mg in the plate material is effective.
  • the destruction of the oxide film on the surface of the brazing material due to the diffusion of Li, Be, Ba, Ca contained in the plate material is not in time, and the destruction of the oxide film is mainly after the melting of the brazing material. Will progress.
  • Si is contained in the plate material and the melting of the plate material is advanced simultaneously with the melting of the brazing material.
  • the addition of Si to the plate-like material when Mg is contained in the plate-like material is particularly effective when the rate of temperature rise is even faster.
  • the diffusion to the brazing material is greater than the method of adding to the core material and the sacrificial anode material and diffusing into the brazing material. Since the process proceeds at a high concentration and the supply amount of the above-mentioned elements to the brazing material increases with the start of melting of the brazing material, the formation of a unique oxide effective for breaking the oxide film is concentrated. The concentrated progress of the unique oxide formation just before the brazing joint induces the destruction of the aluminum oxide film efficiently and strongly, so the brazing performance is remarkably improved, and no etching process is performed before brazing However, stable brazing properties can be obtained.
  • the points to keep in mind when brazing and joining without using flux in an inert gas atmosphere are the oxygen concentration and moisture content (dew point) in the atmosphere, and the flux is used when the oxygen concentration in the atmosphere increases. In some cases, it may be difficult to braze and join. Even when the brazing sheet of the present invention is used, if the oxygen concentration in the nitrogen gas atmosphere is 20 ppm or less, brazing can be stably performed without using a flux, but the oxygen concentration in the atmosphere is 20 ppm. If, for example, a product with a hollow structure is to be brazed and joined, the inside can be joined soundly without the use of flux by the action of Li, Be, Ba, Ca or Mg, but external joining properties Problems will arise.
  • the brazing property is improved by the flux that has been melted and activated immediately before melting of the brazing material, so that a sound brazing joint is obtained, and Li, Be, Since Ba, Ca, or Mg acts effectively and the oxide film becomes brittle, the amount of flux to be applied can be reduced as compared with a general brazing sheet.
  • a fluoride flux having a basic composition of KF and AlF 3 is generally used.
  • this flux reacts with Mg and the flux function is lowered, a combination of flux application and addition of Mg to the material is used. Is generally not preferred.
  • a small amount of Mg that does not excessively reduce the flux function can be added. The amount added is less than 0.1% when added to the brazing material, and added to the plate or core material. Is less than 0.2%.
  • the brazing material and the core material of the brazing sheet of the present invention can be applied with general materials that can be produced regardless of location (materials that can be produced or procured in various parts of the world), If it is a factory that can manufacture aluminum clad materials, it can be produced anywhere in the world regardless of location.
  • a plate-like material that is a special material, a plate coil or ingot slab rolled in the country or abroad may be obtained, and those cut materials may be used. Since plate-like materials account for only a few percent of brazing sheets, and practically around 1%, even if plate coils and ingot slabs are imported and used, the impact on transportation costs and customs costs will not be affected. Few.
  • the above-mentioned degree of freedom of location is effective not only in the production of materials but also in locations where products such as heat exchangers are produced.
  • acid and alkali are used for the etching process before brazing, but it requires a large load for the liquid management and waste liquid treatment. In many cases, it is difficult to carry out etching at overseas processing manufacturers. According to the present invention, such a problem can be solved.
  • the brazing sheet of the present invention is formed by clad a brazing material containing Si: 6 to 13% and the balance Al and inevitable impurities on one or both sides of an aluminum alloy core material, in an inert gas atmosphere or in a vacuum
  • Li is 0.05% or more
  • Be is 0.05% or more
  • Ba is 0.00% between the core material and the brazing material.
  • It is characterized by being clad with a plate-like material containing one or more of 05% or more and Ca: 0.05% or more, and the balance Al and unavoidable impurities.
  • the brazing material clad on the core material is a normal one, and the Si content is specified to be 6 to 13%. If the Si content is less than 6%, the bondability is inferior, and if it exceeds 13%, cracks are likely to occur during material production, making it difficult to produce a brazing sheet.
  • a unique oxide is formed in the aluminum oxide film, and the formation of this unique oxide induces the destruction of the aluminum oxide film, thereby significantly improving the brazing property. It plays a role in supplying these elements to the brazing material.
  • a preferable upper limit is 1.5%, and if it exceeds 1.5%, cracking is likely to occur during casting and rolling into a plate-like material.
  • the plate material Li: 0.05% or more, Be: 0.05% or more, Ba: 0.05% or more, Ca: 0.05% or more of one type or two or more types,
  • An alloy having a composition composed of the balance Al and inevitable impurities may be cast, and the resulting ingot may be cut into a plate shape, or a rolled plate obtained by rolling the ingot (hot rolled plate) Cold rolled sheet) can also be applied.
  • Li 0.05% or more, Be: 0.05% or more, Ba: 0.05% or more, Ca: 0.05% or more
  • a sacrificial anode material consisting of the balance Al and inevitable impurities, a core material, a sacrificial anode It is characterized by being clad so as to be arranged in the order of material, plate-like material, brazing material, heat exchanger and machine parts manufactured by assembling this aluminum alloy brazing sheet and brazing
  • the sacrificial anode material provides an anticorrosive effect.
  • the content of Zn in the sacrificial anode material is in the range of 0.9 to 6%. If it is less than 0.9%, the anticorrosion effect is not sufficient. If it exceeds 6%, corrosion is promoted and corrosion penetration occurs. The service life is reduced.
  • a brazing material containing Si: 6 to 13% and the balance Al and inevitable impurities is clad on one side of an aluminum alloy core, and Zn: 0.
  • Mg 0.4 to 4.0%
  • the plate-like material By adding Mg: 0.4 to 4.0% to the plate-like material, it is possible to promote the destruction of the oxide film, particularly when the heating rate during brazing is fast. If the content of Mg contained in the plate-like material is less than 0.4%, the effect of promoting the destruction of the oxide film on the brazing material surface is poor, and if it exceeds 4.0%, the bondability during clad rolling is poor. Production of a brazing sheet becomes difficult. If the Mg content in the plate material exceeds 4.0% when used in combination with flux coating, Mg diffused from the plate material to the brazing material surface during brazing heating reacts with the flux and Reduce functionality.
  • the destruction of the oxide film can be promoted particularly when the temperature rise rate during brazing is high.
  • the content of Si contained in the plate-like material is less than 2%, the effect of promoting the destruction of the oxide film on the surface of the brazing material is poor.
  • the content exceeds 13%, cracking is likely to occur during rolling, and the production of a brazing sheet It becomes difficult.
  • the brazing material may contain Si: 6 to 13% and Bi: 0.004 to 0.2%.
  • the amount of Bi added to the brazing material is less than 0.004%, the effect of improving the brazing bondability is not sufficient, and when it exceeds 0.2%, a specific oxide is formed, and the flowability of the molten braze or Fillet forming ability is non-uniform.
  • the core material pure aluminum or Mn: 1.8% or less, Si: 1.2% or less, Fe: 1.0% or less, Cu: 1.5% or less, Zn: 0.8% or less, Ti : Aluminum alloy containing 0.2% or less, Zr: 0.5% or less, the balance aluminum and unavoidable impurities, or Mg: 0.4-1 It is preferable to use an aluminum alloy containing 3%.
  • Mn functions effectively to improve the strength and adjust the potential, but if it exceeds 1.8%, cracking tends to occur during material rolling.
  • a preferred lower limit for improving the strength is 0.3%.
  • Si effectively functions to improve the strength, but if it exceeds 1.2%, the melting point is lowered and local melting occurs during brazing, causing deformation in the core material and lowering the corrosion resistance.
  • a preferred lower limit is 0.3%.
  • Fe effectively functions to improve strength, but if it exceeds 1.0%, the corrosion resistance is lowered and giant precipitates are easily generated.
  • a preferable lower limit for improving the strength is 0.2%.
  • Cu functions effectively for strength improvement and potential adjustment, but if contained over 1.5%, intergranular corrosion tends to occur and the melting point is lowered, which is not preferable.
  • a preferable lower limit for improving the strength is 0.2%.
  • Zn effectively functions to adjust the potential, but if it exceeds 0.8%, the potential of the natural electrode is lowered and the penetration life due to corrosion is shortened.
  • a preferred lower limit is 0.1%.
  • Ti effectively functions to cause the corrosion to progress in a layered manner. However, if it exceeds 0.2%, huge precipitates are likely to be generated, which hinders rolling properties and corrosion resistance.
  • a preferred lower limit is 0.06%.
  • Zr functions effectively in increasing the crystal grain size, but if it exceeds 0.5%, cracking is likely to occur during material production. A preferred lower limit is 0.2%.
  • Mg in the core material of the aluminum alloy, it is possible to improve the strength of the brazing sheet and promote the destruction of the brazing oxide film.
  • the Mg content of the core material is less than 0.4%, the improvement in strength is poor, and when brazing without using a flux in an inert gas atmosphere or in vacuum, the brazing material oxide film is weak. The conversion effect becomes poor.
  • Mg exceeds 1.3% the melting point of the core material is lowered, local melting occurs in the core material during brazing heating, causing deformation of the core material, and erosion of the core material due to melting brazing occurs, brazing Degradation of bondability and corrosion resistance.
  • Brazing using the aluminum alloy brazing sheet of the present invention is performed by assembling the aluminum alloy brazing sheet and brazing and joining in an inert gas atmosphere or in a vacuum without applying a flux. And machine parts.
  • the aluminum alloy brazing sheet is assembled, and a fluoride-based flux is applied to all or a part of the brazed joint at a coating amount of 1 to 20 g / m 2 and brazed in an inert gas atmosphere.
  • a fluoride-based flux is applied to all or a part of the brazed joint at a coating amount of 1 to 20 g / m 2 and brazed in an inert gas atmosphere.
  • a fluoride-based flux is applied at a coating amount of 1 to 20 g / m 2 to a joint having a high degree of difficulty in joining in a processed product such as a heat exchanger or a machine part to be manufactured. It is preferable that if the flux application amount is less than 1 g / m 2 , the effect of the flux application is poor, and if the flux application amount exceeds 20 g / m 2 , the flux residue increases and the appearance of the brazed product is impaired.
  • Example 1 A brazing material, a core material, a plate-shaped material, and a sacrificial anode material having the composition shown in Table 1 are each ingoted by continuous casting, and for the core material, the obtained ingot is 163 mm long, 163 mm wide, and 27 mm thick. Chamfered.
  • the obtained ingot was hot-rolled to a thickness of 3 mm and cut into dimensions of 163 mm in length and 163 mm in width.
  • the obtained ingot was hot-rolled to a thickness of 3 mm, then cold-rolled to 0.25 to 2 mm, and cut into dimensions of 163 mm in length and 163 mm in width.
  • ingot cut products were prepared.
  • the obtained ingot was hot-rolled to a thickness of 3 mm, then cold-rolled to 1.5 mm, and cut into dimensions of 163 mm in length and 163 mm in width.
  • the prepared brazing material, core material, plate-like material and sacrificial anode material were clad-rolled according to a conventional method to obtain a soft clad plate material having a thickness of 0.4 mm, which was used as a test material.
  • test material is pressed into a cup shape and degreased with acetone only (no etching), or degreased with acetone and then etched with weak acid (with etching), and assembled to the cup test piece shown in Figs. It was. Inside the cup test piece, a 0.13 mm-thick 3003 alloy plate material molded and degreased was placed and brazed and joined without using flux. Brazing heating was performed in a nitrogen gas furnace and a vacuum furnace.
  • the nitrogen atmosphere furnace is a two-chamber type experimental furnace consisting of a front chamber and a rear chamber.
  • the temperature increase rate during brazing was adjusted by changing the set temperature in the rear chamber, and the time required from 450 ° C. to 600 ° C. was implemented at three levels of 12 minutes, 6 minutes, and 3 minutes.
  • the oxygen concentration during brazing was 15 to 20 ppm.
  • the vacuum furnace was a batch type single-chamber experimental furnace, and the furnace temperature setting was adjusted so that the required time from 450 ° C. to 600 ° C. was 12 minutes.
  • the furnace pressure during brazing was 5 to 8 ⁇ 10 ⁇ 3 Pa.
  • the heating was terminated, and after cooling to 500 ° C. in the furnace, it was filled with nitrogen gas, returned to atmospheric pressure, taken out and air-cooled.
  • the brazed joint state of the cup test piece was evaluated as follows. Externally, the fillet formed on the outer side of the flared joint is visually observed, ⁇ if the fillet is sound, ⁇ , no fillet is cut, but a slightly unstable fillet is formed, or the fillet shape is uniform Although the fillet is small, the evaluation was made in four stages: ⁇ , the case where the fillet was cut was ⁇ , the case where the fillet was not formed, or the case where the fillet was extremely small and could not be visually observed. . Among these, ⁇ and ⁇ were determined to be acceptable levels. About the inside, the test piece brazed was divided into two parts, and the fillet formation state was visually evaluated in four stages in the same manner as described above, targeting the inner side of the flare joint and the fin joint.
  • test material 17 was heated from 450 ° C. to 600 ° C. in 6 minutes, the supply of Li to the brazing material surface was promoted by the inclusion of Si in the plate material, and the test material 3 containing no Si in the plate material Compared to the bonding state.
  • test material 18 and 19 heated from 450 ° C. to 600 ° C. for 3 minutes, the test material 19 containing both Si and Mg in the plate-like material was superior in the bonding state.
  • Example 1 A brazing material, a core material, a plate-like material, and a sacrificial anode material having the composition shown in Table 2 were each agglomerated by continuous casting to produce a soft clad plate material having a thickness of 0.4 mm in the same manner as in Example 1.
  • a cup test piece was prepared as a test material, brazed and heated under the same conditions as in Example 1 in a nitrogen gas furnace, and the brazed joint state of the cup test piece was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2. In Table 2, those outside the conditions of the present invention are underlined.
  • a clad material not including a plate-like material was produced in the same manner.
  • the test material 22, the test material 23, and the test material 24 do not interpose a plate-like material, and the cup test piece assembled with the test materials 22 to 24 has an external bondability without etching. inferior.
  • the test material 25 had a low Si content in the brazing material, the amount of the brazing filler metal was insufficient, and the jointability was poor both inside and outside.
  • the test material 26 had a high Si content in the brazing material, cracks occurred during the rolling of the material.
  • each of the test materials 27 to 30 has a small content of Li, Be, Ba, and Ca in the plate-like material, the function of destroying the oxide film on the surface of the brazing material is poor, and the test material 31 has a Bi content of the brazing material. Since there were many, a specific oxide was formed, and in all cases, the bondability of the test piece was inferior.
  • test material 32 Since the test material 32 has a high Zn content in the sacrificial anode material, cracks occurred during the rolling of the material.
  • test material 33 contains Mg and Li in a plate-like material, since both contents are small, the oxide film destruction function on the surface of the brazing material is poor and the bonding property is inferior.
  • test material 34 had a high Mg content in the plate-like material, peeling occurred at the interface with the brazing material during clad rolling. Since the test material 35 contained a small amount of Si in the plate-shaped material, no improvement was observed in the bonding state compared to the test material 27. Since the test material 36 contained a large amount of Si in the plate-like material, cracks occurred during the rolling of the material.
  • test material 37 contains Mg in the core material and Li in the plate-like material, since both contents are small, the oxide film destruction function on the surface of the brazing material is poor and the bonding property is inferior. Since the test material 38 has a high Mg content in the core material, erosion of the molten braze progressed due to a decrease in the melting point of the core material, and deformation was also observed in the test material after brazing.
  • Example 2 A brazing material, a core material, a plate-like material, and a sacrificial anode material having the composition shown in Table 3 were each agglomerated by continuous casting to produce a soft clad plate material having a thickness of 0.4 mm in the same manner as in Example 1.
  • a test material it was pressed into a cup shape and degreased only with acetone (no etching), or degreased with acetone, then etched with weak acid (with etching), and 3003 with a thickness of 0.1 mm was degreased inside.
  • plate material was installed, and it assembled
  • Flux diluted with alcohol (fluoride flux based on KF and AlF 3 ) is applied to the outside of the flare-type joint of the cup test piece (arrow part in FIG. 2), and the same as in Example 1 in a nitrogen gas furnace Brazing heating was performed under the conditions, and the brazed joint state of the cup specimen was evaluated in the same manner as in Example 1.
  • the amount of the flux applied was determined by measuring the weight of the test piece with an electronic balance after drying and calculating the difference from the weight of the test piece before applying the flux. The evaluation results are shown in Table 3.
  • the plate-shaped material contains a component other than Mg, Li, Be, Ba or Ca. It was confirmed that the outer surface bondability was stably improved by flux application.
  • Example 2 A brazing material, a core material, and a plate material having the composition shown in Table 4 were each ingoted by continuous casting to produce a soft clad plate material having a thickness of 0.4 mm in the same manner as in Example 1, and this was used as a test material.
  • a cup test piece was prepared in the same manner as in Example 2.
  • the flux KF and AlF 3 was diluted with alcohol on the outside of the flare-type joint of the cup test piece (indicated by the arrow in FIG. 2). Fluoride flux) was applied, brazing heating was performed in a nitrogen gas furnace under the same conditions as in Example 1, and the brazed joint state of the cup specimen was evaluated in the same manner as in Example 1.
  • the evaluation results are shown in Table 4.
  • the brazed joint state has reached an acceptable level, but since the amount of flux applied is small, the amount of flux applied is appropriate. Compared with the cup test piece in which the test material 39 was assembled, the effect of improving the bondability by flux application was not recognized. Since the cup test piece assembled with the test material 45 has a large amount of flux applied, it has a large amount of flux residue after brazing and is not suitable for practical use. Since the test material 46 has a high Mg content in the plate-like material, Mg diffused from the plate-like material to the brazing material surface during the brazing heating reacts with the flux, and the function of the flux is reduced and a solid compound is generated and joined. Sex was inhibited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

本願発明は、ろう材表面の酸化皮膜を効果的に脆弱化することによって優れたろう付け性を達成することを可能とするアルミニウム合金ブレージングシートを提供することを目的とする。本願発明のアルミニウム合金ブレージングシートは、アルミニウム合金の心材の片面または両面に、Si:6~13%を含有し、残部Alおよび不可避的不純物からなるろう材をクラッドしてなり、不活性ガス雰囲気中または真空中でアルミニウムをろう付けするために用いるブレージングシートであって、心材とろう材の間に、Li:0.05%以上、Be:0.05%以上、Ba:0.05%以上、Ca:0.05%以上、Mg:0.4%以上のうちの1種または2種以上を含有し、残部Alおよび不可避的不純物からなる板状材を介在させてクラッドされてなることを特徴とする。

Description

アルミニウム合金ブレージングシートおよびろう付け方法
 本発明は、不活性ガス雰囲気中または真空中でアルミニウムをろう付けするために用いるアルミニウム合金ブレージングシートおよび該アルミニウム合金ブレージングシートを用いるろう付け方法に関する。
 アルミニウム製の熱交換器や機械用部品など、細かな接合部を多数有するアルミニウム製品の接合方法としてろう付け接合が広く用いられている。アルミニウム(アルミニウム合金を含む)をろう付け接合するには、表面を覆っている酸化皮膜を破壊して、溶融したろう材を母材あるいは同じく溶融したろう材に接触させることが必須であり、酸化皮膜を破壊するためには、大別してフラックスを使用する方法と真空中で加熱する方法とがあり、いずれも実用化されている。
 ろう付け接合の適用範囲は多岐に及んでいるが、最も代表的なものとして自動車用熱交換器がある。ラジエータ、ヒータ、コンデンサ、エバポレータ等の自動車用熱交換器の殆どはアルミニウム製であり、その殆どがろう付け接合によって製造されており、ろう付け方法のうち、非腐食性のフラックスを塗布して窒素ガス雰囲気中で加熱する方法が現在では大半を占めている。
 近年、電気自動車やハイブリッドカー等での駆動系の変更により、例えばインバータ冷却器のように電子部品を搭載した熱交換器が登場し、フラックスの残渣が問題視されるケースが増えてきている。そのため、インバータ冷却器の一部はフラックスを使用しない真空ろう付け法によって製造されているが、真空ろう付け法は加熱炉の設備費とメンテナンス費が高く、生産性やろう付けの安定性にも問題のあることから、窒素ガス炉中でフラックスを使用しないで接合するニーズが高まっている。
 このニーズに応えるため、先に発明者らは、不活性ガス雰囲気中でフラックスを使用しないでろう付け接合するためのクラッド材として、心材とろう材の間に、Li、Be、Ba、Ca等の少なくとも1種を含有し、且つ心材とろう材のいずれの固相線温度よりも低い固相線温度を有する金属粉末を介在させ、金属粉末の固相線温度以上の温度に加熱して、金属粉末中に液相を生成させて心材とろう材を面状に接合した後、熱間クラッド圧延してなるクラッド材を提案した。
 このクラッド材を用いれば、Li、Be、Ba、Ca等をろう材中に添加した場合のように、素材製造の段階でろう材表面に酸化物を形成することがなく、ろう付けの段階でLi、Be、Ba、Ca等が溶融ろう中に溶出して拡散し、溶融ろう表面の酸化皮膜を脆弱化することができるから、効果的にろう付け性を向上させることができる。
 しかしながら、金属粉末によってLi、Be、Ba、Ca等をろう材中に供給する手法は、材料の製造上、つぎのような難点がある。すなわち、生産工場でクラッド材を製造する工程においては、圧延前のろう材厚さがかなり厚くなるため、心材とろう材の間に大量の金属粉末を介在させる必要が生ずる。そのためにLi、Be、Ba、Ca等の添加量を増加すると、金属粉末の表面に強固な酸化皮膜が形成されるため、金属粉末の固相線温度以上に加熱しても酸化被膜が破壊されず、心材とろう材を面状に均一に接合することが困難になる。金属粉末が接合されずに粉末状に界面に残存すると熱間圧延によるクラッド性に影響し、圧延途中の材料に皮剥がれが生じたり、軟化加熱時にフクレが生じ易くなる。また、酸化性の強い金属粉末を大量に使用するため、製造現場では安全上の特別な管理が必要となり、金属粉末が他の材料に混入しないよう厳密に管理する必要も生じ、品質面での不安定さに加えてコストアップを招く結果となる。
 一方、ろう付け加熱中にろう材中にMgを拡散させることによって、不活性ガス雰囲気中でフラックスを使用することなしにろう付け接合を可能とする方法として、例えば、心材に添加したMgをろう材中に拡散させる手法や、心材とろう材との間に配置する犠牲陽極材に添加したMgをろう材中に拡散させる手法が提案されており、これらの手法によれば、クラッド材の製造時やろう付け加熱中にろう材表面の酸化皮膜形成が防止され、ろう材表面の酸化皮膜の破壊にMgが有効に作用するとしている。
 しかしながら、クラッド材において、心材や犠牲陽極材にはそれぞれ果たすべき役割があり、Mgの添加量が多くなると、溶融ろうによるエロージョンが過度に生じたり、耐食性に悪影響が生じ、また、Mgの添加量が制限されると、ろう材表面の酸化皮膜の破壊作用が乏しくなる。一方、心材や犠牲陽極材にLi、Be、Ba、Caを添加しようとすると、Mgに比べて添加量がさらに制限されるため、前記提案において意図している酸化皮膜の破壊効果を期待することは困難である。
特開2004-358519号公報 特開2013-001941号公報
 本発明は、上記の問題を解消するためになされたもので、その目的は、ろう付け加熱中にLi、Be、Ba、Caのいずれか一種をろう材中に速やかに拡散させ、ろう材溶融開始後にこれらの元素を溶融ろう中に溶出させて、ろう材表面の酸化皮膜を効果的に脆弱化することによって優れたろう付け性を達成することを可能とするアルミニウム合金ブレージングシート、および該アルミニウム合金ブレージングシートを用いるろう付け方法を提供することにある。
 上記の目的を達成するための請求項1によるアルミニウム合金ブレージングシートは、アルミニウムまたはアルミニウム合金の心材の片面または両面に、Si:6~13%を含有し、残部Alおよび不可避的不純物からなるろう材をクラッドしてなり、不活性ガス雰囲気中または真空中でアルミニウムをろう付けするために用いるブレージングシートであって、心材とろう材の間に、Li:0.05%以上、Be:0.05%以上、Ba:0.05%以上、Ca:0.05%以上のうちの1種または2種以上を含有し、残部Alおよび不可避的不純物からなる板状材を介在させてクラッドされてなることを特徴とする。なお、以下の説明において、合金成分の含有量は全て質量%で示す。
 請求項2によるアルミニウム合金ブレージングシートは、アルミニウムまたはアルミニウム合金の心材の片面または両面に、Si:6~13%を含有し、残部Alおよび不可避的不純物からなるろう材をクラッドしてなり、不活性ガス雰囲気中または真空中でアルミニウムをろう付けするために用いるブレージングシートであって、心材とろう材の間に、Li:0.05%以上、Be:0.05%以上、Ba:0.05%以上、Ca:0.05%以上のうちの1種または2種以上を含有し、残部Alおよび不可避的不純物からなる板状材、および、Zn:0.9~6%を含有し、残部Alおよび不可避的不純物からなる犠牲陽極材を、心材、犠牲陽極材、板状材、ろう材の順に配置されるようクラッドされてなることを特徴とする。
 請求項3によるアルミニウム合金ブレージングシートは、アルミニウムまたはアルミニウム合金の心材の片面に、Si:6~13%を含有し、残部Alおよび不可避的不純物からなるろう材をクラッドし、心材の他の片面に、Zn:0.9~6%を含有し、残部Alおよび不可避的不純物からなる犠牲陽極材をクラッドしてなり、不活性ガス雰囲気中または真空中でアルミニウムをろう付けするために用いるブレージングシートであって、心材とろう材の間に、Li:0.05%以上、Be:0.05%以上、Ba:0.05%以上、Ca:0.05%以上のうちの1種または2種以上を含有し、残部Alおよび不可避的不純物からなる板状材を介在させてクラッドされてなることを特徴とする。
 請求項4によるアルミニウム合金ブレージングシートは、請求項1~3のいずれかにおいて、前記板状材が、さらにMg:0.4~4.0%を含有することを特徴とする。
 請求項5によるアルミニウム合金ブレージングシートは、請求項1~4のいずれかにおいて、前記板状材が、さらにSi:2~13%を含有することを特徴とする。
 請求項6によるアルミニウム合金ブレージングシートは、請求項1~5のいずれかにおいて、前記ろう材が、さらにBi:0.004~0.2%を含有することを特徴とする。
 請求項7によるアルミニウム合金ブレージングシートは、請求項1~6のいずれかにおいて、前記アルミニウム合金の心材が、Mn:1.8%以下、Si:1.2%以下、Fe:1.0%以下、Cu:1.5%以下、Zn:0.8%以下、Ti:0.2%以下、Zr:0.5%以下の1種または2種以上を含有し、残部アルミニウムおよび不可避的不純物からなることを特徴とする。
 請求項8によるアルミニウム合金ブレージングシートは、請求項57において、前記アルミニウム合金の心材が、さらにMg:0.4~1.3%を含有することを特徴とする。
 請求項9によるろう付け方法は、請求項1~8のいずれかに記載のアルミニウム合金ブレージングシートを組み付け、フラックスを塗布することなく、不活性ガス雰囲気中または真空中でろう付け接合することを特徴とする。
 請求項10によるろう付け方法は、請求項1~7のいずれかに記載のアルミニウム合金ブレージングシートを組み付け、ろう付け接合部の全部または一部にフッ化物系フラックスを1~20g/mの塗布量で塗布し、不活性ガス雰囲気中でろう付け接合することを特徴とする。
 本発明において、板状材に含有されるLi、Be、Ba、CaおよびMgはいずれも酸化物生成自由エネルギーが低いため、これらの元素はろう付け加熱時にろう材中へ拡散して、ろう材の表面を覆っているアルミニウム酸化皮膜の中に独自の酸化物を形成し、この独自の酸化物の形成によってアルミニウム酸化皮膜の破壊が誘起される。この内、Li、Be、Ba、Caについては、板状材への添加によって、ろう付け加熱の速度によらず効果を発揮するが、Mgを板状材に添加する場合は、ろう付け加熱速度が速い場合において特に効果を発揮する。
 上記元素をろう材に直接添加した場合は、独自の酸化物の形成がブレージングシートの製造段階でも進行するため、添加された上記元素が無駄に消費されるばかりか、表面酸化皮膜がより強固になるため、ろう付け前にエッチング処理を行って酸化皮膜を剥離する必要も生ずる。これに対して、上記元素を板状材あるいは心材を通してろう材に供給する本発明によれば、ブレージングシートの製造段階では独自の酸化物の形成が進行することはなく、ろう付け加熱段階で板状材あるいは心材からろう材中へ拡散する。ろう付け加熱は酸素濃度の低い不活性ガス雰囲気中で行われるため、ろう付け加熱中に板状材に含有されたLi、Be、Ba、Caの微量元素がろう材表面に達したとしても、酸化皮膜を強固にするほどの激しい酸化には至らず、独自に形成された酸化物がろう材溶融後の酸化皮膜を分断する起点となるため、酸化皮膜が脆弱化することとなる。さらに、ろう材の溶融開始に伴って板状材の溶融ろう中への溶解も進行するため、上記元素が溶融ろう中に一気に溶出する。溶融ろう中での元素の拡散は固体中での拡散に比べてきわめて速く進行するため、ろう材表面において独自の酸化物の形成が急速に進行し、酸化皮膜の破壊が促進されるのである。
 一方、Mgを板状材に含有する場合は0.4%以上の含有が必要であり、Li、Be、Ba、Caの必要含有量に比べて多い。したがって、Mgを板状材に含有させ、ゆっくりと昇温すると、拡散でろう材表面に達したMgが過剰に酸化物を形成し、ろう材表面の酸化皮膜が強固になる恐れもある。但し、昇温速度が速い場合においては、板状材へのMgの含有は有効である。
 昇温速度が特に速い場合、板状材中に含有させたLi、Be、Ba、Caの拡散によるろう材表面の酸化皮膜の破壊が間に合わず、酸化皮膜の破壊は主にろう材の溶融後に進行することとなる。ろう材溶融後の酸化皮膜の破壊を速やかに進行させるには、板状材にSiを含有させて、ろう材の溶融と同時に板状材の溶融を進行させることが有効である。板状材中にMgを含有する場合における板状材へのSiの添加は、昇温速度がさらに速い場合において特に有効性を発揮する。
 以上のように、板状材に酸化皮膜を破壊させる元素を含有させる本発明によれば、心材や犠牲陽極材に添加してろう材中に拡散させる方法に比べて、ろう材への拡散が高濃度で進行し、また、ろう材の溶融開始に伴う上記元素のろう材への供給量もより多くなるため、酸化皮膜の破壊に有効な独自酸化物の形成が集中的に行われる。ろう付け接合直前での独自酸化物形成の集中的進行により、アルミニウム酸化皮膜の破壊が効率的かつ強力に誘起されるため、ろう付け性が顕著に向上し、ろう付け前にエッチング処理を行わなくても安定したろう付け性を得ることができる。
 不活性ガス雰囲気中でフラックスを使用することなしにろう付け接合する場合の留意点として、雰囲気中の酸素濃度や水分量(露点)があり、雰囲気中の酸素濃度が高くなると、フラックスを使用することなしにろう付け接合することが困難となる場合がある。本発明のブレージングシートを用いた場合にも、窒素ガス雰囲気中の酸素濃度が20ppm以下であれば、フラックスを使用することなく安定的にろう付けすることができるが、雰囲気中の酸素濃度が20ppmを超えると、例えば中空構造の製品をろう付け接合する場合、内部はLi、Be、Ba、CaあるいはMgの作用によってフラックスを使用しなくても健全に接合することができるが、外部の接合性に問題が生じるようになる。これは、ろう付け加熱中にろう材表面が再酸化することが原因と考えられ、外部については、ろう付け性を向上させるために、接合部にフラックスを塗布して接合する方法を適用することが好ましい。本発明によれば、再酸化の影響が及ぶ外部では、ろう材溶融の直前で溶融、活性化したフラックスによりろう付け性が改善されて健全なろう付け接合が得られ、また、Li、Be、Ba、CaあるいはMgが有効に作用して酸化皮膜が脆弱化するため、一般のブレージングシートに比べて塗布するフラックス量を減少させることができる。このように、フラックスを全面に塗布してろう付け接合する現在主流の方法(CAB法あるいはノコロックろう付け法)に比べて、フラックスの使用量を大幅に減少させることが可能となり、微細な冷媒通路を有する熱交換器においては、フラックスによる目詰まりを回避するなどの効果もある。なお、本発明によれば、フラックスを塗布することにより接合難度の高い継手を確実に接合することも可能である。
 フラックスは、一般的にKFとAlFを基本組成とするフッ化物フラックスが使用されるが、このフラックスはMgと反応してフラックス機能が低下するため、フラックス塗布と材料中へのMg添加の併用は一般的には好ましくない。但し、フラックス機能を過度に低下させない程度の少量のMgであれば添加することができ、その添加量は、ろう材への添加の場合は0.1%未満、板状材や心材への添加の場合は0.2%未満である。なお、上記のフラックス機能の低下が生じ難いCs系フラックスやCs混合系フラックスを使用するろう付け方法もあるが、本発明による方法に比べてコスト高となるとともに接合の安定性も劣る。
 さらに、本発明によれば、つぎのような利点もある。すなわち、本発明のブレージングシートのろう材と心材は、立地を問わずに生産できる一般材質(世界各地で生産あるいは調達可能な材質)を適用することができるから、本発明のブレージングシートは、一般のアルミニウムクラッド材を製造できる工場であれば、世界中どこでも立地を問わずに生産することができる。特殊な材質である板状材には、その国内あるいは国外で圧延された板コイルや鋳塊スラブを入手して、それらの切断材を使用すればよい。板状材はブレージングシートに占める割合が数%以下、実質的には1%前後と少ないため、板コイルや鋳塊スラブを輸入して使用したとしても、輸送費や関税によるコストへの影響は少ない。
 上記立地の自由度は、材料生産のみでなく熱交換器など製品を生産する立地においても有効に発揮される。すなわち、熱交換器の生産において、ろう付け前のエッチング処理には酸やアルカリが使用されるが、その液管理や廃液処理に多大な負荷を要するため、熱交換器等の加工メーカーではエッチング処理の実施を敬遠されることが多く、海外加工メーカーでのエッチングの実施は困難である。本発明によればこのような問題も解消することができる。
実施例において使用するろう付け性を評価するためのカップ試験片を示す外観図である。 カップ試験片の断面図である。
 本発明のブレージングシートは、アルミニウム合金の心材の片面または両面に、Si:6~13%を含有し、残部Alおよび不可避的不純物からなるろう材をクラッドしてなり、不活性ガス雰囲気中または真空中でアルミニウムをろう付けするために用いるものであり、その第一の実施形態は、心材とろう材の間に、Li:0.05%以上、Be:0.05%以上、Ba:0.05%以上、Ca:0.05%以上のうちの1種または2種以上を含有し、残部Alおよび不可避的不純物からなる板状材を介在させてクラッドされてなることを特徴とする。心材にクラッドされるろう材は通常のものであり、Si量は6~13%に規定される。Si含有量が6%未満では接合性が劣り、13%を超えると材料製造時に割れが発生し易くブレージングシートの製造が困難となる。
 心材とろう材の間に介在させる板状材に含有されるLi、Be、Ba、Caは、前記のように、ろう付け加熱時にろう材中へ拡散あるいは溶出し、ろう材の表面を覆っているアルミニウム酸化皮膜の中に独自の酸化物を形成し、この独自の酸化物の形成によってアルミニウム酸化皮膜の破壊を誘起して、ろう付け性を顕著に向上させるものであり、板状材は、これらの元素をろう材に供給するための役割を果たす。
 板状材に含有させるLi、Be、Ba、Caの含有量が各々0.05%未満では、ろう材中へ拡散および溶出する量が不足してろう材表面の酸化被膜の破壊機能を果たし難くなる。好ましい上限値は1.5%であり、1.5%を超えて含有すると、鋳造時、板状材への圧延時に割れが生じ易くなる。
 板状材としては、Li:0.05%以上、Be:0.05%以上、Ba:0.05%以上、Ca:0.05%以上のうちの1種または2種以上を含有し、残部Alおよび不可避的不純物からなる組成を有する合金を鋳造し、得られた鋳塊を板状に切断したものを用いてもよく、鋳塊を圧延して得られた圧延板(熱間圧延板、冷間圧延板)を適用することもできる。
 第二の実施形態は、心材とろう材の間に、Li:0.05%以上、Be:0.05%以上、Ba:0.05%以上、Ca:0.05%以上のうちの1種または2種以上を含有し、残部Alおよび不可避的不純物からなる板状材およびZn:0.9~6%を含有し、残部Alおよび不可避的不純物からなる犠牲陽極材を、心材、犠牲陽極材、板状材、ろう材の順に配置されるようクラッドしてなることを特徴とするもので、このアルミニウム合金ブレージングシートを組み付けてろう付けすることにより製造された熱交換器や機械用部品などに犠牲陽極材により防食効果を与えるものである。
 犠牲陽極材中のZnの含有量は0.9~6%の範囲であり、0.9%未満では防食効果が十分でなく、6%を超えて含有すると、腐食が促進されて、腐食貫通寿命が低下する。
 第三の実施形態は、アルミニウム合金の心材の片面に、Si:6~13%を含有し、残部Alおよび不可避的不純物からなるろう材をクラッドし、心材の他の片面に、Zn:0.9~6%を含有し、残部Alおよび不可避的不純物からなる犠牲陽極材をクラッドしてなり、不活性ガス雰囲気中または真空中でアルミニウムをろう付けするために用いるブレージングシートであって、心材とろう材の間に、Li:0.05%以上、Be:0.05%以上、Ba:0.05%以上、Ca:0.05%以上のうちの1種または2種以上を含有し、残部Alおよび不可避的不純物からなる板状材を介在させてクラッドされてなることを特徴とするもので、犠牲陽極材側に防食効果を与えるものである。
 板状材にさらにMg:0.4~4.0%を含有させることにより、特にろう付け時の昇温速度が速い場合において、酸化皮膜の破壊を促進することができる。板状材に含有させるMgの含有量が0.4%未満では、ろう材表面の酸化皮膜破壊の促進効果が乏しく、4.0%を超えて含有すると、クラッド圧延時の接合性が劣ってブレージングシートの製造が困難となる。また、フラックス塗付と併用する場合において板状材へのMg含有量が4.0%を超えると、ろう付け加熱時に板状材からろう材表面に拡散したMgがフラックスと反応してフラックスの機能を低下させる。
 また、板状材にさらにSi:2~13%を含有させることにより、特にろう付け時の昇温速度が速い場合において、酸化皮膜の破壊を促進することができる。板状材に含有させるSiの含有量が2%未満では、ろう材表面の酸化皮膜破壊の促進効果が乏しく、13%を超えて含有すると、圧延時に割れを発生しやすくなり、ブレージングシートの製造が困難となる。
 ろう材には、Si:6~13%の他、Bi:0.004~0.2%を含有させることもできる。ろう材中へのBiの添加量が0.004%未満では、ろう付け接合性の向上効果が十分でなく、0.2%を超えると特有の酸化物を形成し、溶融ろうの流動性あるいはフィレット形成能が不均一となる。
 心材としては、純アルミニウム、または、Mn:1.8%以下、Si:1.2%以下、Fe:1.0%以下、Cu:1.5%以下、Zn:0.8%以下、Ti:0.2%以下、Zr:0.5%以下の1種または2種以上を含有し、残部アルミニウムおよび不可避的不純物からなるアルミニウム合金、または、このアルミニウム合金にさらにMg:0.4~1.3%を含有するアルミニウム合金を用いるのが好ましい。
 アルミニウム合金の心材の組成において、Mnは強度向上と電位の調整に有効に機能するが、1.8%を超えて含有すると材料圧延時に割れが生じ易くなる。強度向上のために好ましい下限値は0.3%である。Siは強度向上に有効に機能するが、1.2%を超えて含有すると、融点が低下してろう付け時に局部溶融が生じ、心材に変形を生ぜしめ耐食性を低下させる。好ましい下限値は0.3%である。
 Feは強度向上に有効に機能するが、1.0%を超えて含有すると耐食性を低下させるとともに巨大析出物も発生し易くなる。強度向上のために好ましい下限値は0.2%である。Cuは強度向上と電位調整に有効に機能するが、1.5%を超えて含有すると粒界腐食が発生し易くなり、融点も低下するので好ましくない。強度向上のために好ましい下限値は0.2%である。
 Znは電位の調整に有効に機能するが、0.8%を超えて含有すると自然電極電位が低下し腐食による貫通寿命が短くなる。好ましい下限値は0.1%である。Tiは腐食を層状に進行させる上で有効に機能するが、0.2%を超えると巨大析出物が生成し易くなり、圧延性や耐食性に支障が生じる。好ましい下限値は0.06%である。Zrは結晶粒径を大きくする上で有効に機能するが、0.5%を超えると材料製造時に割れが生じ易くなる。好ましい下限値は0.2%である。
 アルミニウム合金の心材にMgを含有することで、ブレージングシートの強度を向上させたり、ろう材酸化皮膜の破壊を促進することができる。このとき、心材のMg含有量が0.4%未満では、強度の向上が乏しく、不活性ガス雰囲気中または真空中でフラックスを用いることなしにろう付けする場合においては、ろう材酸化皮膜の脆弱化効果が乏しくなる。Mgを1.3%を超えて含有すると心材の融点が下がり、ろう付け加熱時に心材に局部溶融が生じて、心材に変形を生ぜしめ、溶融ろうによる心材への浸食が発生して、ろう付け接合性や耐食性を劣化させる。
 本発明のアルミニウム合金ブレージングシートを用いるろう付けは、前記のアルミニウム合金ブレージングシートを組み付け、フラックスを塗布することなく、不活性ガス雰囲気中または真空中でろう付け接合することにより行われ、熱交換器や機械用部品などを製造する。
 または、前記のアルミニウム合金ブレージングシートを組み付け、ろう付け接合部の全部または一部にフッ化物系フラックスを1~20g/mの塗布量で塗布し、不活性ガス雰囲気中でろう付け接合することにより行われ、熱交換器や機械用部品などを製造する。
 上記のフラックスを用いるろう付けにおいては、製造すべき熱交換器や機械用部品などの加工品において、接合難度の高い接合部に1~20g/mの塗布量でフッ化物系フラックスを塗布するのが好ましく、フラックス塗布量が1g/m未満ではフラックス塗付の効果が乏しく、フラックス塗布量が20g/mを超えるとフラックス残渣が多くなり、ろう付け品の外観を損ねる。
 以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。なお、これらの実施例は、本発明の一実施態様を示すもので、本発明はこれらに限定されない。
実施例1
 表1に示す組成を有するろう材、心材、板状材、犠牲陽極材をそれぞれ連続鋳造により造塊し、心材については、得られた鋳塊を縦163mm、横163mm、厚さ27mmのサイズに面削した。ろう材については、得られた鋳塊を厚さ3mmまで熱間圧延し、縦163mm、横163mmの寸法に切断した。
 板状材については、得られた鋳塊を厚さ3mmまで熱間圧延し、その後0.25~2mmまで冷間圧延し、縦163mm、横163mmの寸法に切断した。一部の板状材については、鋳塊の切断品を準備した。犠牲陽極材については、得られた鋳塊を厚さ3mmまで熱間圧延し、その後1.5mmまで冷間圧延し、縦163mm、横163mmの寸法に切断した。
 準備されたろう材、心材、板状材、犠牲陽極材を、常法に従ってクラッド圧延し、厚さ0.4mmの軟質クラッド板材とし、これを試験材とした。
 試験材をカップ状にプレス加工し、アセトンで脱脂処理のみを行い(エッチング無し)、またはアセトンで脱脂後、弱酸でエッチング処理し(エッチング有り)、図1~2に示すカップ試験片に組付けた。カップ試験片の内部には、0.1mm厚さの3003合金板材を成形、脱脂したフィンを配置して、フラックスを用いることなくろう付け接合した。ろう付け加熱は窒素ガス炉中および真空炉中で行った。
 窒素雰囲気炉は前室と後室からなる二室型の実験炉で、前室で試験体の温度が450℃に達したところで後室に移動して加熱を続け、試験体の温度が600℃まで達したところで前室に移動して570℃まで冷却した。その後に炉外に取出して空冷した。ろう付け時の昇温速度は後室の設定温度を変えることによって調整し、450℃から600℃までの所要時間として12分、6分、3分の三水準で実施した。ろう付け時の酸素濃度は15~20ppmであった。
 真空炉はバッチ式の一室型実験炉であり、450℃から600℃までの所要時間が12分となるように炉温設定を調整して実施した。ろう付け時の炉内圧力は5~8×10-3Paであった。試験片の温度が600℃に達したところで加熱を終了し、炉内で500℃まで冷却した後に窒素ガスを充填して大気圧に戻し、取出して空冷した。
 カップ試験片のろう付け接合状態はつぎのように評価した。外部についてはフレア継手の外部側に形成されたフィレットを目視観察し、健全なフィレットが形成されたものは◎、フィレット切れはないがやや不安定なフィレットが形成されたもの、あるいはフィレット形状は均一であるがフィレットが小さいものは○、フィレット切れが発生しているものは△、フィレットが形成されていないもの、あるいはフィレットの大きさが極小で目視では観察できないものは×の4段階で評価した。このうち◎と○を合格レベルと判定した。内部についてはろう付けされた試験片を二分割し、フレア継手の内部側とフィンの接合部を対象として、フィレット形成状態を上記と同様に4段階で目視評価した。
 評価結果を表1に示す。表1に示すように、本発明に従う試験材1~21を組み付けたカップ試験片はいずれも、エッチング処理無しでも合格レベルの優れた接合状態が得られることが確認された。なお、試験材14は、板状材として鋳塊の切断材(縦163mm、横163mm、厚さ5mm)を適用したものであるが、試験材14を組み付けたカップ試験片についても同様に優れた接合状態が得られた。
 試験材17では450℃から600℃を6分で加熱したが、板状材へのSiの含有によってろう材表面へのLiの供給が促進され、板状材にSiを含有しない試験材3に比べて接合状態が優った。450℃から600℃を3分で加熱した試験材18と19の比較では、板状材にSiとMgの両方を含有した試験材19の方が接合状態が優った。
Figure JPOXMLDOC01-appb-T000001
比較例1
 表2に示す組成を有するろう材、心材、板状材、犠牲陽極材をそれぞれ連続鋳造により造塊し、実施例1と同様にして厚さ0.4mmの軟質クラッド板材を製造し、これを試験材としてカップ試験片を作製し、窒素ガス炉中において実施例1と同じ条件でろう付け加熱を行い、実施例1と同様にカップ試験片のろう付け接合状態を評価した。評価結果を表2に示す。表2において、本発明の条件を外れたものには下線を付した。なお、比較用の試験材として、板状材を介在させないクラッド材も同様にして製造した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、試験材22、試験材23および試験材24は板状材を介在させないものであり、試験材22~24を組み付けたカップ試験片は、エッチング無しにおいて外部の接合性が劣った。試験材25はろう材のSi含有量が低いため、溶融ろうの量が不足して内部、外部ともに接合性が劣った。試験材26はろう材のSi含有量が多いため、材料の圧延時に割れが発生した。試験材27~30は、それぞれ板状材のLi、Be、Ba、Caの含有量が少ないためろう材表面の酸化皮膜破壊機能が乏しくなり、また、試験材31はろう材のBi含有量が多いため特有の酸化物を形成し、いずれも試験片の接合性が劣った。
 試験材32は犠牲陽極材のZn含有量が多いため、材料の圧延時に割れが発生した。試験材33は、板状材にMgとLiを含有させたものであるが、いずれも含有量が少ないため、ろう材表面の酸化皮膜破壊機能が乏しく接合性が劣った。試験材34は、板状材のMg含有量が多いため、クラッド圧延時にろう材との界面で剥離を生じた。試験材35は板状材に含有したSi量が少ないため、試験材27と比較して接合状態に改善は見られなかった。試験材36は板状材に含有したSi量が多いため、材料の圧延時に割れが生じた。試験材37は、心材にMgを、板状材にLiを含有させているが、いずれも含有量が少ないため、ろう材表面の酸化皮膜破壊機能が乏しく接合性が劣った。試験材38は心材のMg含有量が多いため、心材の融点低下によって溶融ろうの侵食が進行し、ろう付け後の試験材に変形も認められた。
実施例2
 表3に示す組成を有するろう材、心材、板状材、犠牲陽極材をそれぞれ連続鋳造により造塊し、実施例1と同様にして厚さ0.4mmの軟質クラッド板材を製造し、これを試験材としてカップ状にプレス加工し、アセトンで脱脂処理のみを行い(エッチング無し)、またはアセトンで脱脂後、弱酸でエッチング処理し(エッチング有り)、内部に脱脂処理した0.1mm厚さの3003合金板材を成形したフィンを設置して、図1に示すカップ試験片に組付けた。カップ試験片のフレア型継手の外部(図2の矢印部)にアルコールで希釈したフラックス(KFとAlFを基本組成とするフッ化物フラックス)を塗布し、窒素ガス炉中において実施例1と同じ条件でろう付け加熱を行い、実施例1と同様にカップ試験片のろう付け接合状態を評価した。フラックスの塗布量は、乾燥後に試験片の重量を電子天秤で測定し、フラックス塗布前の試験片の重量との差から求めた。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本発明に従う試験材39~43を組み付けたカップ試験片はいずれも合格レベルの優れた接合状態が得られた。試験材39~43はいずれも板状材がMg以外の成分、Li、Be、BaまたはCaを含有するものであり、これらの成分を含有する板状材を介在させたものについては、少量のフラックス塗布によって、外面の接合性が安定的に向上することが確認された。
比較例2
 表4に示す組成を有するろう材、心材、板状材をそれぞれ連続鋳造により造塊し、実施例1と同様にして厚さ0.4mmの軟質クラッド板材を製造し、これを試験材として実施例2と同様にカップ試験片を作製し、実施例2と同様に、カップ試験片のフレア型継手の外部(図2の矢印部)にアルコールで希釈したフラックス(KFとAlFを基本組成とするフッ化物フラックス)を塗布し、窒素ガス炉中において実施例1と同じ条件でろう付け加熱を行い、実施例1と同様にカップ試験片のろう付け接合状態を評価した。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、試験材44を組み付けたカップ試験片は、ろう付け接合状態は合格レベルに達しているが、フラックスの塗布量が少ないため、ろう付け適正量のフラックスを塗布した表3の試験材39を組み付けたカップ試験片に比べてフラックス塗付による接合性の向上効果が認められなかった。試験材45を組み付けたカップ試験片はフラックスの塗布量が多いため、ろう付け後のフラックス残渣が多く実用に適さないものであった。試験材46は板状材のMg含有量が多いため、ろう付け加熱時に板状材からろう材表面に拡散したMgとフラックスが反応し、フラックスの機能が低下するとともに固体化合物が生成して接合性を阻害した。

Claims (10)

  1. アルミニウムまたはアルミニウム合金の心材の片面または両面に、Si:6~13%(質量%、以下同じ)を含有し、残部Alおよび不可避的不純物からなるろう材をクラッドしてなり、不活性ガス雰囲気中または真空中でアルミニウムをろう付けするために用いるブレージングシートであって、心材とろう材の間に、Li:0.05%以上、Be:0.05%以上、Ba:0.05%以上、Ca:0.05%以上のうちの1種または2種以上を含有し、残部Alおよび不可避的不純物からなる板状材を介在させてクラッドされてなることを特徴とするアルミニウム合金ブレージングシート。
  2. アルミニウムまたはアルミニウム合金の心材の片面または両面に、Si:6~13%を含有し、残部Alおよび不可避的不純物からなるろう材をクラッドしてなり、不活性ガス雰囲気中または真空中でアルミニウムをろう付けするために用いるブレージングシートであって、心材とろう材の間に、Li:0.05%以上、Be:0.05%以上、Ba:0.05%以上、Ca:0.05%以上のうちの1種または2種以上を含有し、残部Alおよび不可避的不純物からなる板状材、および、Zn:0.9~6%を含有し、残部Alおよび不可避的不純物からなる犠牲陽極材を、心材、犠牲陽極材、板状材、ろう材の順に配置されるようクラッドされてなることを特徴とするアルミニウム合金ブレージングシート。
  3. アルミニウムまたはアルミニウム合金の心材の片面に、Si:6~13%を含有し、残部Alおよび不可避的不純物からなるろう材をクラッドし、心材の他の片面に、Zn:0.9~6%を含有し、残部Alおよび不可避的不純物からなる犠牲陽極材をクラッドしてなり、不活性ガス雰囲気中または真空中でアルミニウムをろう付けするために用いるブレージングシートであって、心材とろう材の間に、Li:0.05%以上、Be:0.05%以上、Ba:0.05%以上、Ca:0.05%以上のうちの1種または2種以上を含有し、残部Alおよび不可避的不純物からなる板状材を介在させてクラッドされてなることを特徴とするアルミニウム合金ブレージングシート。
  4. 前記板状材が、さらにMg:0.4~4.0%を含有することを特徴とする請求項1~3のいずれかに記載のアルミニウム合金ブレージングシート。
  5. 前記板状材が、さらにSi:2~13%を含有することを特徴とする請求項1~4のいずれかに記載のアルミニウム合金ブレージングシート。
  6. 前記ろう材が、さらにBi:0.004~0.2%を含有することを特徴とする請求項1~5のいずれかに記載のアルミニウム合金ブレージングシート。
  7. 前記アルミニウム合金の心材が、Mn:1.8%以下、Si:1.2%以下、Fe:1.0%以下、Cu:1.5%以下、Zn:0.8%以下、Ti:0.2%以下、Zr:0.5%以下の1種または2種以上を含有し、残部アルミニウムおよび不可避的不純物からなることを特徴とする請求項1~6のいずれかに記載のアルミニウム合金ブレージングシート。
  8. 前記アルミニウム合金の心材が、さらにMg:0.4~1.3%を含有することを特徴とする請求項7に記載のアルミニウム合金ブレージングシート。
  9. 請求項1~8のいずれかに記載のアルミニウム合金ブレージングシートを組み付け、フラックスを塗布することなく、不活性ガス雰囲気中または真空中でろう付け接合することを特徴とするろう付け方法。
  10. 請求項1~7のいずれかに記載のアルミニウム合金ブレージングシートを組み付け、ろう付け接合部の全部または一部にフッ化物系フラックスを1~20g/mの塗布量で塗布し、不活性ガス雰囲気中でろう付け接合することを特徴とするろう付け方法。
PCT/JP2015/073203 2014-10-09 2015-08-19 アルミニウム合金ブレージングシートおよびろう付け方法 WO2016056306A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016552858A JPWO2016056306A1 (ja) 2014-10-09 2015-08-19 アルミニウム合金ブレージングシートおよびろう付け方法
CN201580054821.6A CN106794556A (zh) 2014-10-09 2015-08-19 铝合金钎焊板和硬钎焊方法
EP15848667.0A EP3205440A4 (en) 2014-10-09 2015-08-19 Aluminum alloy brazing sheet and brazing method
US15/517,700 US10300563B2 (en) 2014-10-09 2015-08-19 Aluminum alloy brazing sheet and brazing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-207979 2014-10-09
JP2014207979 2014-10-09

Publications (1)

Publication Number Publication Date
WO2016056306A1 true WO2016056306A1 (ja) 2016-04-14

Family

ID=55652931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073203 WO2016056306A1 (ja) 2014-10-09 2015-08-19 アルミニウム合金ブレージングシートおよびろう付け方法

Country Status (5)

Country Link
US (1) US10300563B2 (ja)
EP (1) EP3205440A4 (ja)
JP (1) JPWO2016056306A1 (ja)
CN (1) CN106794556A (ja)
WO (1) WO2016056306A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017214610A (ja) * 2016-05-30 2017-12-07 株式会社Uacj ブレージングシート及びその製造方法並びにアルミニウム構造体のろう付方法
US20180133845A1 (en) * 2015-05-22 2018-05-17 Uacj Corporation Method of manufacturing an aluminum structure
US20180214964A1 (en) * 2015-07-29 2018-08-02 Uacj Corporation Method of manufacturing an aluminum structure
DE112023000545T5 (de) 2022-03-23 2024-10-31 Uacj Corporation Aluminiumlegierungshartlotblech
DE112023000540T5 (de) 2022-03-23 2024-10-31 Uacj Corporation Aluminiumlegierungshartlotblech

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10183362B2 (en) * 2014-03-19 2019-01-22 Uacj Corporation Clad aluminum alloy material with excellent corrosion resistance and brazeability and method for producing the same
US20180326540A1 (en) * 2015-11-13 2018-11-15 Gränges Ab Brazing sheet and production method
JP6909744B2 (ja) * 2018-03-07 2021-07-28 株式会社Uacj フラックスフリーろう付用アルミニウム合金ブレージングシート
KR102610732B1 (ko) * 2018-10-10 2023-12-07 현대자동차주식회사 알루미늄 브레이징용 플럭스 조성물 및 이를 이용하는 알루미늄의 브레이징 방법
JPWO2020204167A1 (ja) * 2019-04-04 2020-10-08
US20230286083A1 (en) * 2020-08-21 2023-09-14 Nippon Light Metal Company, Ltd. Aluminum alloy filler metal, aluminum alloy welded structure, and method for welding aluminum material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214475A (ja) * 1991-01-23 1993-08-24 Furukawa Alum Co Ltd 低温ろう付け用高強度・高耐食性アルミニウム合金クラッド材
JP2000303132A (ja) * 1999-04-20 2000-10-31 Kobe Steel Ltd 耐エロージョン特性に優れたAl合金ブレージングシート
JP2013233552A (ja) * 2012-05-07 2013-11-21 Sumitomo Light Metal Ind Ltd アルミニウム合金ブレージングシート
WO2014097820A1 (ja) * 2012-12-21 2014-06-26 三菱アルミニウム株式会社 アルミニウム材のろう付方法およびろう付構造体
JP2014176892A (ja) * 2013-03-15 2014-09-25 Uacj Corp 熱交換器
JP2015033716A (ja) * 2013-08-09 2015-02-19 株式会社Uacj アルミニウム合金ブレージングシートの製造方法および該製造方法で得られるアルミニウム合金ブレージングシート

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196749A (ja) * 1975-02-24 1976-08-25 Mufuratsukusurozukeyoaruminiumugokinro
JPS59205467A (ja) * 1983-05-09 1984-11-21 Nippon Light Metal Co Ltd アルミニウム材の表面に亜鉛拡散処理に適した亜鉛析出層を形成する方法
US5148862A (en) * 1990-11-29 1992-09-22 Sumitomo Light Metal Industries, Ltd. Heat exchanger fin materials and heat exchangers prepared therefrom
JPH08302439A (ja) * 1995-05-08 1996-11-19 Mitsubishi Alum Co Ltd 耐食性およびろう付け性に優れた熱交換器用ブレージングシート
EP0936024B1 (en) * 1997-05-06 2002-08-07 Showa Denko Kabushiki Kaisha Flux composition for brazing of aluminum material and method for brazing of aluminum material
JP3651582B2 (ja) * 2000-07-28 2005-05-25 神鋼アルコア輸送機材株式会社 アルミニウムブレージングシート
US6555251B2 (en) * 2000-12-21 2003-04-29 Alcoa Inc. Multi-layer, heat treatable brazing sheet with aluminum interlayer
JP4537019B2 (ja) 2003-06-04 2010-09-01 古河スカイ株式会社 アルミニウム材のろう付け方法
JP4824358B2 (ja) * 2005-07-22 2011-11-30 株式会社デンソー 表面性状に優れたアルミニウム合金押出材とその製造方法、および熱交換器用多孔管ならびに該多孔管を組み込んだ熱交換器の製造方法
DE602006017415D1 (de) * 2005-08-31 2010-11-18 Showa Denko Kk Plattierplatte und herstellungsverfahren dafür
JP4477668B2 (ja) * 2007-12-25 2010-06-09 株式会社神戸製鋼所 アルミニウム合金製ブレージングシート
JP4473908B2 (ja) * 2007-12-27 2010-06-02 株式会社神戸製鋼所 熱交換器用アルミニウム合金クラッド材、および、その製造方法
JP5279277B2 (ja) * 2008-01-09 2013-09-04 住友軽金属工業株式会社 熱交換器のチューブ材用ブレージングシート並びに熱交換器及びその製造方法
US20110204124A1 (en) * 2008-11-10 2011-08-25 Aleris Aluminum Koblenz Gmbh Process for fluxless brazing of aluminium and brazing filler alloy for use therein
JP5466409B2 (ja) * 2009-01-22 2014-04-09 株式会社神戸製鋼所 熱交換器用アルミニウム合金クラッド材
JP5704835B2 (ja) * 2009-05-27 2015-04-22 株式会社神戸製鋼所 熱交換器用アルミニウム合金製ブレージングシート
US20110240280A1 (en) * 2010-03-31 2011-10-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy brazing sheet and heat exchanger
US8247084B2 (en) * 2010-05-18 2012-08-21 Kobe Steel, Ltd. Aluminum alloy brazing sheet
JP5944626B2 (ja) 2011-06-15 2016-07-05 株式会社デンソー 熱交換器の製造方法
JP2013123749A (ja) * 2011-12-16 2013-06-24 Sumitomo Light Metal Ind Ltd アルミニウム材のフラックスレスろう付け方法および該ろう付け方法に用いるブレージングシート
JP6147470B2 (ja) * 2012-03-30 2017-06-14 株式会社神戸製鋼所 熱交換器用アルミニウム合金ブレージングシート
BR112015001784B1 (pt) * 2012-07-27 2019-12-03 Graenges Sweden Ab material de tira com excelente resistência à corrosão após brasagem
JP6154645B2 (ja) * 2013-03-29 2017-06-28 株式会社神戸製鋼所 ろう付け接合構造体
JP6132347B2 (ja) * 2013-07-31 2017-05-24 株式会社Uacj アルミニウム合金ブレージングシートおよびその製造方法
WO2015162911A1 (ja) * 2014-04-22 2015-10-29 株式会社Uacj アルミニウム製クラッド材及びその製造方法、熱交換器用アルミニウム製クラッド材及びその製造方法、ならびに、当該熱交換器用アルミニウム製クラッド材を用いたアルミニウム製熱交換器及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214475A (ja) * 1991-01-23 1993-08-24 Furukawa Alum Co Ltd 低温ろう付け用高強度・高耐食性アルミニウム合金クラッド材
JP2000303132A (ja) * 1999-04-20 2000-10-31 Kobe Steel Ltd 耐エロージョン特性に優れたAl合金ブレージングシート
JP2013233552A (ja) * 2012-05-07 2013-11-21 Sumitomo Light Metal Ind Ltd アルミニウム合金ブレージングシート
WO2014097820A1 (ja) * 2012-12-21 2014-06-26 三菱アルミニウム株式会社 アルミニウム材のろう付方法およびろう付構造体
JP2014176892A (ja) * 2013-03-15 2014-09-25 Uacj Corp 熱交換器
JP2015033716A (ja) * 2013-08-09 2015-02-19 株式会社Uacj アルミニウム合金ブレージングシートの製造方法および該製造方法で得られるアルミニウム合金ブレージングシート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3205440A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180133845A1 (en) * 2015-05-22 2018-05-17 Uacj Corporation Method of manufacturing an aluminum structure
US20180214964A1 (en) * 2015-07-29 2018-08-02 Uacj Corporation Method of manufacturing an aluminum structure
JP2017214610A (ja) * 2016-05-30 2017-12-07 株式会社Uacj ブレージングシート及びその製造方法並びにアルミニウム構造体のろう付方法
WO2017208940A1 (ja) * 2016-05-30 2017-12-07 株式会社Uacj ブレージングシート及びその製造方法並びにアルミニウム構造体のろう付方法
CN109072352A (zh) * 2016-05-30 2018-12-21 株式会社Uacj 钎焊板及其制造方法以及铝结构体的钎焊方法
US10737357B2 (en) 2016-05-30 2020-08-11 Uacj Corporation Brazing sheet, manufacturing method thereof, and aluminum structure brazing method
DE112017002731B4 (de) 2016-05-30 2022-01-20 Uacj Corporation Hartlötblech, Herstellungsverfahren hierfür und Aluminiumstrukturhartlötverfahren
DE112023000545T5 (de) 2022-03-23 2024-10-31 Uacj Corporation Aluminiumlegierungshartlotblech
DE112023000540T5 (de) 2022-03-23 2024-10-31 Uacj Corporation Aluminiumlegierungshartlotblech

Also Published As

Publication number Publication date
EP3205440A1 (en) 2017-08-16
US10300563B2 (en) 2019-05-28
US20170304956A1 (en) 2017-10-26
JPWO2016056306A1 (ja) 2017-08-17
CN106794556A (zh) 2017-05-31
EP3205440A4 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
WO2016056306A1 (ja) アルミニウム合金ブレージングシートおよびろう付け方法
JP6648999B2 (ja) アルミニウム合金ブレージングシート
WO2017010288A1 (ja) アルミニウム合金ブレージングシート
JP6312968B1 (ja) ブレージングシート及びその製造方法
JP6263574B2 (ja) ブレージングシート及びその製造方法並びにアルミニウム構造体のろう付方法
JP5352001B1 (ja) アルミニウム材のろう付方法およびろう付構造体
JP6188511B2 (ja) フラックスレスろう付け用アルミニウム合金ブレージングシートおよびその製造方法
WO2018043277A1 (ja) アルミニウム合金ブレージングシート
JP6236253B2 (ja) アルミニウム合金ブレージングシートの製造方法および該製造方法で得られるアルミニウム合金ブレージングシート
JP2012050993A (ja) アルミニウム材のフラックスレスろう付け方法およびフラックスレスろう付け用アルミニウムクラッド材
JP6916715B2 (ja) ブレージングシート及びその製造方法
WO2016194672A1 (ja) アルミニウム合金クラッド材およびろう付け方法
JP2012050995A (ja) フラックスレスろう付用アルミニウム合金ろう材シートおよびアルミニウム材のフラックスレスろう付け方法
JP2012024827A (ja) アルミニウム材のフラックスレスろう付方法およびフラックスレスろう付用アルミニウム合金ブレージングシート
CN112672845B (zh) 硬钎焊片材及其制造方法
WO2016175066A1 (ja) アルミニウム製熱交換器
JP2012030244A (ja) アルミニウム材のフラックスレスろう付方法
JP7221631B2 (ja) アルミニウム合金ブレージングシートおよびその製造方法
WO2021199116A1 (ja) アルミニウム合金ブレージングシートおよびその製造方法
JP2013049085A (ja) アルミニウム材のフラックスレスろう付方法
JP7290605B2 (ja) アルミニウム合金ブレージングシート、及び、アルミニウム合金ろう付体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552858

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15517700

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015848667

Country of ref document: EP