WO2016052752A1 - 電解液材料の製造方法 - Google Patents
電解液材料の製造方法 Download PDFInfo
- Publication number
- WO2016052752A1 WO2016052752A1 PCT/JP2015/078252 JP2015078252W WO2016052752A1 WO 2016052752 A1 WO2016052752 A1 WO 2016052752A1 JP 2015078252 W JP2015078252 W JP 2015078252W WO 2016052752 A1 WO2016052752 A1 WO 2016052752A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solvent
- electrolyte
- solution
- electrolytic solution
- fluorosulfonylimide salt
- Prior art date
Links
- 239000002001 electrolyte material Substances 0.000 title claims abstract description 81
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000002904 solvent Substances 0.000 claims abstract description 161
- 150000003839 salts Chemical class 0.000 claims abstract description 105
- 239000003792 electrolyte Substances 0.000 claims abstract description 78
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 8
- 239000011737 fluorine Substances 0.000 claims abstract description 8
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 7
- 229910001413 alkali metal ion Inorganic materials 0.000 claims abstract description 4
- 239000008151 electrolyte solution Substances 0.000 claims description 95
- 239000000243 solution Substances 0.000 claims description 71
- 239000000463 material Substances 0.000 claims description 56
- 239000011255 nonaqueous electrolyte Substances 0.000 claims description 53
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 38
- 238000003860 storage Methods 0.000 claims description 28
- 125000004122 cyclic group Chemical group 0.000 claims description 13
- 150000005676 cyclic carbonates Chemical group 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- 230000005611 electricity Effects 0.000 claims description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 238000004321 preservation Methods 0.000 claims 1
- 239000013557 residual solvent Substances 0.000 abstract description 62
- 150000003949 imides Chemical class 0.000 abstract description 47
- 125000001153 fluoro group Chemical group F* 0.000 abstract 1
- -1 fluorosulfonyl Chemical group 0.000 description 105
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 90
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 48
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 36
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 36
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 34
- 229910052744 lithium Inorganic materials 0.000 description 34
- 229910013870 LiPF 6 Inorganic materials 0.000 description 26
- 238000002360 preparation method Methods 0.000 description 23
- 238000002156 mixing Methods 0.000 description 22
- 239000000843 powder Substances 0.000 description 19
- 239000007788 liquid Substances 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 15
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 238000000354 decomposition reaction Methods 0.000 description 11
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 10
- 235000002597 Solanum melongena Nutrition 0.000 description 9
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 239000003125 aqueous solvent Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000012046 mixed solvent Substances 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 4
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 4
- VKPSKYDESGTTFR-UHFFFAOYSA-N 2,2,4,6,6-pentamethylheptane Chemical compound CC(C)(C)CC(C)CC(C)(C)C VKPSKYDESGTTFR-UHFFFAOYSA-N 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OJASMMNWWIJWFK-KUSCCAPHSA-N (3r)-1-[[4-[[(3r)-3-(diethylcarbamoyl)piperidin-1-yl]methyl]phenyl]methyl]-n,n-diethylpiperidine-3-carboxamide;dihydrobromide Chemical compound Br.Br.C1[C@H](C(=O)N(CC)CC)CCCN1CC(C=C1)=CC=C1CN1C[C@H](C(=O)N(CC)CC)CCC1 OJASMMNWWIJWFK-KUSCCAPHSA-N 0.000 description 3
- HYFLWBNQFMXCPA-UHFFFAOYSA-N 1-ethyl-2-methylbenzene Chemical compound CCC1=CC=CC=C1C HYFLWBNQFMXCPA-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000002482 conductive additive Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 239000005001 laminate film Substances 0.000 description 3
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 3
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 3
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- MEBONNVPKOBPEA-UHFFFAOYSA-N 1,1,2-trimethylcyclohexane Chemical compound CC1CCCCC1(C)C MEBONNVPKOBPEA-UHFFFAOYSA-N 0.000 description 2
- GWHJZXXIDMPWGX-UHFFFAOYSA-N 1,2,4-trimethylbenzene Chemical compound CC1=CC=C(C)C(C)=C1 GWHJZXXIDMPWGX-UHFFFAOYSA-N 0.000 description 2
- VCJPCEVERINRSG-UHFFFAOYSA-N 1,2,4-trimethylcyclohexane Chemical compound CC1CCC(C)C(C)C1 VCJPCEVERINRSG-UHFFFAOYSA-N 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- KVZJLSYJROEPSQ-UHFFFAOYSA-N 1,2-dimethylcyclohexane Chemical compound CC1CCCCC1C KVZJLSYJROEPSQ-UHFFFAOYSA-N 0.000 description 2
- AUHZEENZYGFFBQ-UHFFFAOYSA-N 1,3,5-trimethylbenzene Chemical compound CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 2
- SGVUHPSBDNVHKL-UHFFFAOYSA-N 1,3-dimethylcyclohexane Chemical compound CC1CCCC(C)C1 SGVUHPSBDNVHKL-UHFFFAOYSA-N 0.000 description 2
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 2
- QRMPKOFEUHIBNM-UHFFFAOYSA-N 1,4-dimethylcyclohexane Chemical compound CC1CCC(C)CC1 QRMPKOFEUHIBNM-UHFFFAOYSA-N 0.000 description 2
- CHLICZRVGGXEOD-UHFFFAOYSA-N 1-Methoxy-4-methylbenzene Chemical compound COC1=CC=C(C)C=C1 CHLICZRVGGXEOD-UHFFFAOYSA-N 0.000 description 2
- DTFKRVXLBCAIOZ-UHFFFAOYSA-N 2-methylanisole Chemical compound COC1=CC=CC=C1C DTFKRVXLBCAIOZ-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- RFFFKMOABOFIDF-UHFFFAOYSA-N Pentanenitrile Chemical compound CCCCC#N RFFFKMOABOFIDF-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- GGBJHURWWWLEQH-UHFFFAOYSA-N butylcyclohexane Chemical compound CCCCC1CCCCC1 GGBJHURWWWLEQH-UHFFFAOYSA-N 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 229940117389 dichlorobenzene Drugs 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000004210 ether based solvent Substances 0.000 description 2
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 2
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000010416 ion conductor Substances 0.000 description 2
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 2
- 229940011051 isopropyl acetate Drugs 0.000 description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-M isovalerate Chemical compound CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 2
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 2
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 229940078552 o-xylene Drugs 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- DEDZSLCZHWTGOR-UHFFFAOYSA-N propylcyclohexane Chemical compound CCCC1CCCCC1 DEDZSLCZHWTGOR-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- GETTZEONDQJALK-UHFFFAOYSA-N (trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=CC=C1 GETTZEONDQJALK-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- GEWWCWZGHNIUBW-UHFFFAOYSA-N 1-(4-nitrophenyl)propan-2-one Chemical compound CC(=O)CC1=CC=C([N+]([O-])=O)C=C1 GEWWCWZGHNIUBW-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- NOFQKTWPZFUCOO-UHFFFAOYSA-N 2,2,4,4,6-pentamethylheptane Chemical compound CC(C)CC(C)(C)CC(C)(C)C NOFQKTWPZFUCOO-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- CMJLMPKFQPJDKP-UHFFFAOYSA-N 3-methylthiolane 1,1-dioxide Chemical compound CC1CCS(=O)(=O)C1 CMJLMPKFQPJDKP-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229940077398 4-methyl anisole Drugs 0.000 description 1
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- 229910016467 AlCl 4 Inorganic materials 0.000 description 1
- 229910017008 AsF 6 Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- 229910013075 LiBF Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910018286 SbF 6 Inorganic materials 0.000 description 1
- 150000007960 acetonitrile Chemical class 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229930007927 cymene Natural products 0.000 description 1
- MXIRHCBUSWBUKI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCC[CH2+] MXIRHCBUSWBUKI-UHFFFAOYSA-N 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000006001 difluoroethyl group Chemical group 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012025 fluorinating agent Substances 0.000 description 1
- 125000005817 fluorobutyl group Chemical group [H]C([H])(F)C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003784 fluoroethyl group Chemical group [H]C([H])(F)C([H])([H])* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 125000005816 fluoropropyl group Chemical group [H]C([H])(F)C([H])([H])C([H])([H])* 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000003988 headspace gas chromatography Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- LRDFRRGEGBBSRN-UHFFFAOYSA-N isobutyronitrile Chemical compound CC(C)C#N LRDFRRGEGBBSRN-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- KERBAAIBDHEFDD-UHFFFAOYSA-N n-ethylformamide Chemical compound CCNC=O KERBAAIBDHEFDD-UHFFFAOYSA-N 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- NOUWNNABOUGTDQ-UHFFFAOYSA-N octane Chemical compound CCCCCCC[CH2+] NOUWNNABOUGTDQ-UHFFFAOYSA-N 0.000 description 1
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 125000005008 perfluoropentyl group Chemical group FC(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/086—Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/083—Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/48—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/60—Liquid electrolytes characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/62—Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2004—Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/64—Liquid electrolytes characterised by additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to fluorosulfonylimides, and more specifically, to an electrolytic solution material containing N- (fluorosulfonyl) -N- (fluoroalkylsulfonyl) imide and di (fluorosulfonyl) imide, and a method for producing the same.
- N- (fluorosulfonyl) -N- (fluoroalkylsulfonyl) imide fluorosulfonylimides such as di (fluorosulfonyl) imide and derivatives thereof are represented by N (SO 2 F) group or N (SO 2 F) 2 group
- N (SO 2 F) group N (SO 2 F) 2 group
- Patent Document 1 discloses a method for obtaining a powder by removing a reaction solvent from an alkali metal salt of fluorosulfonylimide, but has a problem that it is difficult to remove the solvent because of its high affinity with the reaction solvent, A solvent distillation method that solves this problem is disclosed.
- the halogen-based solvent may corrode the aluminum current collector of the lithium battery due to decomposition, and therefore, it is particularly desired to reduce the amount of the electrolyte used in an automobile battery that is expected to be used for a long time.
- the present invention has been made paying attention to the above-described circumstances, and an object thereof is to provide an electrolytic solution material in which a residual solvent that affects the properties of the electrolytic solution material is reduced, and a method for manufacturing the electrolytic solution material. .
- the production method of the present invention that has solved the above problems is a production method of an electrolytic solution material containing a fluorosulfonylimide salt represented by the following general formula (1) and an electrolytic solution solvent, and the fluorosulfonylimide salt and the electrolytic solution It is characterized in that the solution containing the solvent is reduced in pressure and / or heated to volatilize the production solvent for the fluorosulfonylimide salt.
- R 1 is fluorine or a fluorinated alkyl group having 1 to 6 carbon atoms
- R 2 is an alkali metal ion.
- the electrolyte solution solvent is preferably a cyclic carbonate solvent or a cyclic ester solvent.
- the present invention includes a method for producing a non-aqueous electrolyte characterized in that the electrolyte material obtained by the above-described production method is further mixed with a solvent for preparing a non-aqueous electrolyte.
- the present invention also provides an electrolyte material containing the fluorosulfonylimide salt represented by the above general formula (1) and an electrolyte solvent, wherein the concentration of the fluorosulfonylimide salt contained in the electrolyte material is 30 mass.
- the electrolytic solution material is also characterized in that the residual amount of the production solvent for the fluorosulfonylimide salt in the electrolytic solution material is 3000 ppm or less.
- the electrolytic solution solvent preferably contains 90% by mass or more of a cyclic carbonate solvent or a cyclic ester solvent.
- the present invention also includes a non-aqueous electrolyte obtained from the above-described electrolyte material and an electricity storage device including the non-aqueous electrolyte.
- the present invention is characterized by storing an electrolytic solution material containing the fluorosulfonylimide salt represented by the above general formula (1) and an electrolytic solvent, wherein the concentration of the fluorosulfonylimide salt is 30% by mass or more. And a method of storing the electrolyte material, and the electrolyte material containing the fluorosulfonylimide salt represented by the general formula (1) and the electrolyte solvent, and having a fluorosulfonylimide salt concentration of 30% by mass or more Also included is a method for transporting an electrolyte material characterized by the above.
- the residual solvent is easily volatilized by adding an electrolyte solution to the fluorosulfonylimide salt once powdered and the residual solvent is taken into the powder to dissolve it.
- the electrolyte solution solvent has higher affinity for the fluorosulfonylimide salt than the residual solvent, the residual solvent can be efficiently removed by decompression and / or heating.
- the obtained solution can be used as an electrolyte material as it is.
- the present invention is not limited to the removal of the residual solvent from the powder, but also to a solution in which the fluorosulfonylimide salt is dissolved in the residual solvent, by adding an electrolyte solution solvent and heating under reduced pressure and / or heating. Residual solvent can be removed.
- an electrolyte material containing N- (fluorosulfonyl) -N- (fluoroalkylsulfonyl) imide and di (fluorosulfonyl) imide in which residual solvent that affects the properties of the electrolyte material is reduced. can get.
- the electrolytic solution material is a liquid and no equipment for handling highly hygroscopic fluorosulfonylimide salt powder is required, the production cost can be reduced.
- the non-aqueous electrolyte can be obtained by simply or diluting the electrolyte material of the present invention, the workability is improved, and the non-aqueous electrolyte can be manufactured inexpensively and easily.
- the electrolyte material of the present invention also has an advantage that the amount of HF generated is small when stored in a solution state.
- an electrolytic solution containing a fluorosulfonylimide salt represented by the general formula (1) hereinafter sometimes referred to as “fluorosulfonylimide salt (1)” and a cyclic carbonate solvent or a cyclic ester solvent as main components.
- the material By using the material, it is possible to suppress a temperature rise that causes decomposition of the nonaqueous electrolytic solution, and it is not necessary to adjust the addition rate of the fluorosulfonylimide salt (1) when preparing the nonaqueous electrolytic solution. , Improve productivity. Therefore, according to the method of the present invention, it is possible to produce a fluorosulfonylimide salt-containing nonaqueous electrolytic solution having good quality in a short time as compared with the conventional production method.
- the present inventors have previously obtained fluorosulfonyl By using an electrolyte solution material containing imide salt (1) and a cyclic carbonate solvent or a cyclic ester solvent as main components as a starting material of the nonaqueous electrolyte solution, Even if an electrolyte preparation solvent or other electrolyte salt is added to the material, the deterioration of the non-aqueous electrolyte due to heat generation is suppressed, maintaining good quality, and the non-aqueous electrolyte can be used in a shorter time than before.
- the present invention has been completed by finding that it can be produced.
- a solvent solution prepared by mixing all solvents for preparing an electrolyte to be used such as ethylene carbonate, methyl ethyl carbonate, and diethyl carbonate, is prepared in advance, and a fluorosulfonylimide salt (1) or the like is prepared therein.
- An electrolyte salt was added.
- ethylene carbonate is a solid at room temperature, so it was heated to a temperature exceeding the melting point of ethylene carbonate (usually over 50 ° C.) and then mixed with another solvent for preparing an electrolyte.
- the temperature of the solvent solution at the time of adding the fluorosulfonylimide salt (1) is high, and when the fluorosulfonylimide salt (1) is added, the liquid temperature rises to 60 ° C. or more due to an exothermic reaction, and non-aqueous The electrolyte was degraded.
- productivity was bad and it was a factor of cost increase.
- the liquid temperature does not rise to a temperature at which the decomposition of the electrolyte occurs, even if an exothermic reaction occurs with the addition of these solvents.
- the inventors have found that it is not necessary to control the rate of addition of the electrolyte salt for temperature control, and that a non-aqueous electrolyte can be prepared in a short time, leading to the present invention.
- fluorosulfonylimide includes di (fluorosulfonyl) imide having two fluorosulfonyl groups, N- (fluorosulfonyl) -N— having a fluorosulfonyl group and a fluorinated alkyl group. (Fluoroalkylsulfonyl) imide is included.
- the production method of the present invention is a production method of an electrolytic solution material containing the fluorosulfonylimide salt represented by the general formula (1) and a solvent, wherein the solution containing the fluorosulfonylimide salt and the electrolytic solution solvent is reduced in pressure and It is characterized in that the solvent for producing the fluorosulfonylimide salt is volatilized by heating (hereinafter sometimes referred to as a volatilization step).
- the fluorosulfonylimide salt production solvent is a solvent used in the production of the fluorosulfonylimide salt, and is a solvent contained in the fluorosulfonylimide salt obtained by the conventional production method, and has the same meaning as the residual solvent. is there.
- Examples of the compound represented by the general formula (1) include compounds in which R 1 has fluorine or a fluorinated alkyl group having 1 to 6 carbon atoms.
- the fluorinated alkyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms.
- fluorinated alkyl group having 1 to 6 carbon atoms include, for example, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a difluoroethyl group, a 2,2,2-trifluoroethyl group, Pentafluoroethyl group, 3,3,3-trifluoropropyl group, perfluoro-n-propyl group, fluoropropyl group, perfluoroisopropyl group, fluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, Perfluoro-n-butyl group, perfluoroisobutyl group, perfluoro-t-butyl group, perfluoro-sec-butyl group, fluoropentyl group, perfluoropentyl group, perfluoroisopentyl group, perfluoro-t-pentyl group,
- R 1 is preferably fluorine, trifluoromethyl group, pentafluoroethyl group or perfluoro-n-propyl group, more preferably fluorine, trifluoromethyl group or pentafluoroethyl group.
- R 2 is a cation constituting the compound (1) and represents an alkali metal ion.
- the alkali metal element include lithium, sodium, potassium, rubidium, and cesium, and lithium, sodium, and potassium are preferable, and lithium is more preferable.
- Specific compounds represented by the general formula (1) include lithium di (fluorosulfonyl) imide, sodium di (fluorosulfonyl) imide, lithium (fluorosulfonyl) (trifluoromethylsulfonyl) imide, sodium (fluorosulfonyl) ( And trifluoromethylsulfonyl) imide, lithium (fluorosulfonyl) (pentafluoroethylsulfonyl) imide, and the like. More preferred are lithium di (fluorosulfonyl) imide and lithium (fluorosulfonyl) (trifluoromethylsulfonyl) imide.
- the method for synthesizing the fluorosulfonylimide salt represented by the compound (1) is not particularly limited, and all conventionally known methods can be employed.
- International Publication No. 2011/149095 Japanese Patent Application Laid-Open No. 2010-189372, Japanese Patent Publication No. 8-511274, International Publication No. 2012/108284, International Publication No. 2012/117916, International Publication No. 2012/118063.
- Examples thereof include methods described in JP 2010-280586 A, JP 2010-254543 A, JP 2007-182410 A, and International Publication No. 2010/010613.
- the manufacturing method of the electrolytic solution material containing the fluorosulfonylimide salt represented by the above general formula (1) and the electrolytic solution solvent of the present invention includes a solution obtained by mixing the fluorosulfonylimide salt and the electrolytic solution solvent under reduced pressure and / or heating. And a step of volatilizing the production solvent for the fluorosulfonylimide salt.
- the fluorosulfonylimide salt contains a solvent (hereinafter referred to as a residual solvent or a production solvent) used before the isolation in the powder even after being isolated as a powder (solid).
- the concentration of the production solvent can be reduced by volatilizing the production solvent of the fluorosulfonylimide salt by reducing the pressure and / or heating a solution obtained by dissolving the fluorosulfonylimide salt in the electrolyte solvent.
- the method for producing an electrolyte material of the present invention includes adding an electrolyte solvent to a solution (solution containing a fluorosulfonylimide salt and a solvent) obtained by production or purification of a fluorosulfonylimide salt, and then reducing pressure and / or
- the production solvent may be volatilized by heating, and after producing the fluorosulfonylimide salt by this method, an electrolytic solution material containing the fluorosulfonylimide salt and the electrolytic solution solvent can also be produced. Since the electrolyte solvent has higher affinity and higher boiling point than the residual solvent for the compound (1), the residual solvent can be efficiently volatilized and removed by reducing pressure and / or heating.
- the residual solvent in the present invention is the solvent used in the production reaction of the compound (1), the solvent used in the purification step, and the like.
- the solvent having a medium affinity with the compound (1) is water; alcohol solvents such as methanol, ethanol, propanol, butanol; formic acid, Carboxylic acid solvents such as acetic acid; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone; nitrile solvents such as isobutyronitrile, acetonitrile, valeronitrile, benzonitrile; ethyl acetate, isopropyl acetate, butyl acetate, etc.
- Ester solvents such as diethyl ether, diisopropyl ether, t-butyl methyl ether, cyclopentyl methyl ether; halogen solvents such as HF; nitro group-containing solvents such as nitromethane and nitrobenzene; ethylformamide, N- Mechi Nitrogen-containing organic solvents pyrrolidone and the like; dimethyl sulfoxide; glyme solvents, and the like.
- acetonitrile, valeronitrile, ethyl acetate, isopropyl acetate, butyl acetate, and cyclopentyl methyl ether are preferable.
- Solvents having a low affinity for the compound (1) include toluene, o-xylene, m-xylene, p-xylene, benzene, ethylbenzene, isopropylbenzene, 1,2,3-trimethylbenzene, 1,2,4- Aromatic hydrocarbon solvents such as trimethylbenzene, 1,3,5-trimethylbenzene, tetralin, cymene, methylethylbenzene, 2-ethyltoluene, chlorobenzene, dichlorobenzene; pentane, hexane, heptane, octane, decane, dodecane, undecane , Tridecane, decalin, 2,2,4,6,6-pentamethylheptane, isoparaffin (for example, “Marcazole R” (2,2,4,6,6-pentamethylheptane manufactured by Maruzen Petrochemical Co., Ltd., 2
- Aliphatic hydrocarbon solvents such as trimethylcyclohexane, propylcyclohexane, butylcyclohexane, "Swclean 150" (mixture of C9 alkylcyclohexane manufactured by Maruzen Petrochemical Co., Ltd.); anisole, 2-methylanisole, 3 And aromatic ether solvents such as methylanisole and 4-methylanisole, etc.
- solvents may be used singly or as a mixture of two or more thereof: toluene, o-xylene, m -Xylene, p-xylene, ethylbenzene, isopropylbenzene, 1,2,4-trimethylbenzene, hexane, heptane, chlorobenzene, dichlorobenzene, dichloromethane, 1,2-dichloroethane are preferred.
- the electrolyte solvent in the present invention has higher affinity with the compound (1) than the residual solvent, and can be suitably used in the volatilization process, and a solvent that can be used as an electrolyte solution material can be used. .
- a solvent that can be used as an electrolyte solution material can be used.
- the residual solvent can be efficiently removed.
- the electrolytic solution material of the present invention can be used as it is as an electrolytic solution for a lithium secondary battery by mixing necessary solvents, additives, electrolytes and the like. What is necessary is just to select the electrolyte solution solvent to be used suitably from affinity of an electrolyte solution solvent and the said compound (1), affinity of a residual solvent and the said General formula (1), the boiling point of each solvent, etc.
- examples of the solvent having high affinity with the compound (1) include carbonate solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate; dimethoxymethane, 1,2-dimethoxyethane, etc.
- a linear ether solvent such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxane, 4-methyl-1,3-dioxolane and the like; a cyclic ester solvent such as ⁇ -butyrolactone and ⁇ -valerolactone
- a sulfolane solvent such as sulfolane and 3-methylsulfolane; N, N-dimethylformamide, dimethyl sulfoxide, N-methyloxazolidinone and the like.
- carbonate solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate (particularly cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate), and ⁇ -butyrolactone.
- a cyclic ester solvent such as ⁇ -valerolactone is preferred.
- the solution used in the volatilization step can be prepared by mixing an electrolytic solution solvent with the powder of the fluorosulfonylimide salt represented by the general formula (1). I can do it. Further, the volatilization step may be performed by mixing an electrolyte solution solvent with a solution obtained by producing and purifying the fluorosulfonylimide salt represented by the general formula (1) in a solvent.
- the amount of residual solvent contained before the volatilization step is not particularly limited as to the lower limit, but with respect to 100 g of the fluorosulfonylimide salt represented by the general formula (1), For example, 1000 g or less is preferable, more preferably 100 g or less, still more preferably 10 g or less, and most preferably 1 g or less.
- 1000 g or less is preferable, more preferably 100 g or less, still more preferably 10 g or less, and most preferably 1 g or less.
- the solvent is distilled off before the volatilization step (before the electrolyte solvent is added) It is preferable to reduce the amount of solvent so that the amount of residual solvent falls within the above range.
- the amount of the electrolyte solvent used is not particularly limited with respect to the lower limit, and may be appropriately adjusted depending on the amount of the residual solvent.
- 10000 g or less is preferable with respect to 100 g of the fluorosulfonylimide salt represented by the general formula (1), more preferably 1000 g or less, still more preferably 500 g or less, further preferably 200 g or less, more preferably 100 g or less, Most preferably, it is 50 g or less.
- the amount of the electrolyte solvent used is preferably, for example, 1 to 1000 parts by mass with respect to 100 parts by mass of the fluorosulfonylimide salt represented by the general formula (1).
- the amount is more preferably 5 to 500 parts by mass, further preferably 10 to 300 parts by mass, particularly preferably 30 to 200 parts by mass, and still more preferably 50 to 100 parts by mass.
- the volatilization step only needs to include a step of reducing and / or heating the fluorosulfonylimide salt represented by the general formula (1) and the electrolyte solvent, and can be performed under normal pressure or under reduced pressure. From the viewpoint of preventing the decomposition of the fluorosulfonylimide salt by heat, it is desirable to carry out under reduced pressure.
- the degree of vacuum may be adjusted as appropriate according to the type of residual solvent and the type of electrolyte solvent, but is not particularly limited. For example, it is preferably 200 kPa or less, more preferably 40 kPa or less, and even more preferably 15 kPa or less. And particularly preferably 5 kPa or less.
- the volatilization temperature is not particularly limited as long as it is appropriately adjusted according to the degree of pressure reduction, the type of residual solvent, and the type of electrolyte solvent, but it is performed at a relatively low temperature in order to prevent decomposition of the fluorosulfonylimide salt due to heat. Is desirable. For example, it is preferably 10 to 110 ° C., more preferably 15 to 80 ° C., further preferably 20 to 60 ° C., and particularly preferably 30 to 50 ° C.
- the volatilization time may be appropriately adjusted according to the degree of vacuum, heating temperature, amount of residual solvent, etc., and is not particularly limited. For example, it is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours, More preferably, it is 1 to 8 hours, and particularly preferably 2 to 5 hours.
- a device capable of reducing pressure and / or heating used in the volatilization process may be appropriately selected according to the amount of solution, degree of pressure reduction, heating temperature, and the like.
- a tank reactor, a tank reactor capable of depressurization, and the like can be mentioned.
- the concentration of the fluorosulfonylimide salt represented by the general formula (1) contained in the electrolyte solution material is not particularly limited as long as it is appropriately adjusted depending on the type of the electrolyte solvent. For example, 15 to 95% by mass It is preferably 20 to 90% by mass, more preferably 30 to 90% by mass.
- the general formula (1) included in the electrolytic solution material is used from the viewpoint that the electrolyte salt concentration in the nonaqueous electrolytic solution can be appropriately set.
- the concentration of the represented fluorosulfonylimide salt is preferably 30% by mass or more, more preferably 40% by mass or more, and still more preferably 50% by mass or more.
- the electrolyte material of the present invention has good stability due to the concentration of the fluorosulfonylimide salt represented by the general formula (1) being 30% by mass or more, and causes corrosion of containers used for storage and transportation. Since generation of (hydrofluoric acid) is suppressed, it is also suitable for storage and transportation of the fluorosulfonylimide salt represented by the general formula (1).
- the above-mentioned electrolytic solution solvent can be used, but cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, or ⁇ -butyrolactone, ⁇ -valerolactone, etc. It is preferable to include a cyclic ester solvent. Among them, it is preferable to contain ethylene carbonate or ⁇ -butyrolactone, and ethylene carbonate is particularly preferable.
- the cyclic carbonate or cyclic ester solvent is preferably contained in an amount of 90% by mass or more, more preferably 95% by mass or more, and still more preferably 98% by mass or more based on the total amount of the electrolyte solution solvent.
- the amount of residual solvent in the electrolyte solution material is not particularly limited as long as it is appropriately adjusted according to the type of residual solvent concentration in the electrolyte solution material.
- it is preferably 3000 ppm or less, more preferably 2000 ppm or less, and even more preferably 1000 ppm.
- it is particularly preferably 500 ppm or less, and most preferably 200 ppm or less. Since the residual amount of the production solvent for the fluorosulfonylimide salt contained in the electrolytic solution is within the above range, the amount of the solvent in the obtained nonaqueous electrolytic solution can be suppressed. Therefore, the nonaqueous electrolytic solution was used. In the battery, side reactions during driving are suppressed, and swelling of the battery can be suppressed.
- the electrolyte material obtained by the production method of the present invention includes a battery having a charging / discharging mechanism such as a primary battery, a lithium ion secondary battery, and a fuel cell, an electrolytic capacitor, an electric double layer capacitor, a solar cell, an electrochromic display element, and the like. It is suitably used as a material for an ionic conductor constituting the electricity storage device (electrochemical device).
- the present invention also includes a non-aqueous electrolyte obtained using the above electrolyte material and a method for producing a non-aqueous electrolyte using the electrolyte material.
- a non-aqueous electrolyte can be obtained by mixing the electrolyte material with a non-aqueous electrolyte preparation solvent as necessary.
- Various electrolytes and additives may be added to the non-aqueous electrolyte for the purpose of improving battery characteristics, and a solvent suitable for dissolving the electrolyte may be added to the electrolyte material.
- the electrolyte material A non-aqueous electrolyte can be prepared by adding a desired solvent.
- the solvent for preparing an electrolytic solution is not particularly limited as long as it is compatible with the electrolytic solution solvent and can dissolve and disperse a desired electrolyte salt.
- any conventionally known solvent used for batteries such as a non-aqueous solvent, a medium used in place of the solvent, a medium such as a polymer gel, and the like can be used.
- the electrolyte solution solvent contains the electrolyte solution material, the same type of solvent as the electrolyte solution solvent may be further added to the electrolyte solution material as necessary, and any of the above-described electrolyte solution solvents should be used. Can do.
- the electrolyte preparation solvent may be either liquid or solid, but liquid is preferred for efficient mixing.
- the temperature of the solvent for preparing an electrolytic solution is not particularly limited, and may be room temperature, but the temperature may be appropriately adjusted as necessary.
- carbonate esters such as chain carbonate esters and cyclic carbonate esters, lactones, and ethers are preferred, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, Propylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, and the like are more preferable, and carbonate solvents such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate are more preferable.
- the said solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
- an electrolyte salt different from the fluorosulfonylimide salt (1) (hereinafter sometimes referred to as “other electrolyte salt”) may be mixed in the electrolyte material.
- Other electrolyte salts may be added to the electrolyte material before adding the electrolyte preparation solvent, but after adding the electrolyte preparation solvent to the electrolyte material in consideration of the dissolution efficiency of other electrolyte salts, It is desirable to add other electrolyte salts.
- electrolyte salt to be added is hardly soluble in ethylene carbonate such as LiPF 6
- a solvent suitable for dissolving the electrolyte salt is added to the electrolyte material as the electrolyte preparation solvent, and then the electrolyte salt is added. It is desirable to add.
- electrolyte salts are not particularly limited, and any conventionally known electrolyte used in the electrolyte solution of a lithium ion secondary battery can be used.
- other electrolyte salts include trifluoromethanesulfonate ion (CF 3 SO 3 ⁇ ), fluorophosphate ion (PF 6 ⁇ ), perchlorate ion (ClO 4 ⁇ ), tetrafluoroborate ion (BF 4 ⁇ ).
- LiPF 6 , LiPF 3 (C 2 F 5 ) 3 , LiBF 4 , and LiBF (CF 3 ) 3 can be mentioned, preferably LiPF 6 and LiBF 4 , and more preferably LiPF 6 .
- the electrolyte solution material of the present invention is mixed with a solvent for preparing an electrolyte solution and other electrolyte salt to produce a non-aqueous electrolyte solution, heat generation when the electrolyte salt is mixed can be suppressed. Decomposition is suppressed and a good quality electrolyte can be obtained.
- the nonaqueous electrolytic solution according to the present invention may contain an additive for the purpose of improving various characteristics of the lithium ion secondary battery.
- the additive may be added at any stage in the production process of the non-aqueous electrolyte, and is not particularly limited.
- the additive may be added after the electrolyte salt is added.
- the present invention includes a method for storing and transporting the electrolyte material of the present invention.
- the electrolyte material of the present invention includes a fluorosulfonylimide salt represented by the general formula (1) and an electrolyte solvent, and the concentration of the fluorosulfonylimide salt represented by the general formula (1) is 30% by mass or more. Therefore, since the generation of HF (hydrofluoric acid) causing good corrosion and corrosion of containers used for storage and transportation is suppressed, storage of the fluorosulfonylimide salt represented by the general formula (1) Suitable for transportation.
- HF hydrofluoric acid
- the concentration of the fluorosulfonylimide salt represented by the general formula (1) in the electrolytic solution material is preferably 35% by mass, more preferably 40% by mass or more, and further preferably 50% by mass or more.
- the upper limit of the concentration is preferably 95% by mass or less, and more preferably 90% by mass or less.
- the container used for storing and transporting the electrolyte material of the present invention is not particularly limited in the size and material of the container, and conventionally known knowledge can be appropriately referred to.
- a small storage container may be used.
- a large storage container may be used.
- a metal material such as stainless steel or hastelloy, a fluorine resin such as polytetrafluoroethylene (PTFE), or the like may be employed.
- a container is comprised from stainless steel from a viewpoint that a proof pressure is high.
- the inner surface of the container made of a material such as the metal may be coated with a resin.
- the resin used for the coating is not particularly limited.
- PTFE polytetrafluoroethylene
- PFA perfluoroalkyl vinyl ether copolymer
- fluorine resins such as FEP
- olefin resins such as polypropylene
- the coating thickness of the resin coating is not particularly limited, but is preferably 10 to 3000 ⁇ m, more preferably 500 to 1000 ⁇ m.
- the storage container is preferably sealable, and examples of means for enabling sealing of the container include a form in which a valve is provided in a part of the container.
- Lithium Di (fluorosulfonyl) imide 120 g of butyl acetate was added to a reaction vessel made of PFA having a capacity of 500 mL equipped with a stirrer and a condenser, and 16.1 g of di (chlorosulfonyl) imide was added thereto. 75 mmol) was added and dissolved by stirring. To the obtained di (chlorosulfonyl) imide solution, 4.45 g (82.5 mmol) of ammonium chloride was added and stirred at 80 ° C. for 1 hour.
- Example 1 In a 50 ml eggplant flask, 7.56 g of diethyl carbonate was added and dissolved in 4.99 g of lithium di (fluorosulfonyl) imide powder prepared separately containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane. The solution was depressurized at 25 ° C. and 1 kPa for 3 hours to volatilize the solvent. As an electrolytic solution material, 11.64 g of a diethyl carbonate solution of lithium di (fluorosulfonyl) imide was obtained. The resulting solution contained 83 ppm of butyl acetate, but no dichloromethane was confirmed. Dichloromethane, which has a low affinity with lithium di (fluorosulfonyl) imide, could be reduced by the volatilization process.
- Example 2 In a 25 ml eggplant flask, 4.76 g of ethylene carbonate (EC) was dissolved in 3.23 g of lithium di (fluorosulfonyl) imide powder containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane. The solution was depressurized at 25 ° C. and 1 kPa for 3 hours to volatilize the solvent. As an electrolyte material, 7.83 g of an ethylene carbonate solution of lithium di (fluorosulfonyl) imide was obtained. The obtained solution was confirmed to contain 85 ppm of butyl acetate and 40 ppm of dichloromethane.
- EC ethylene carbonate
- Example 3 A solution of 10 g of lithium di (fluorosulfonyl) imide dissolved in 20 g of butyl acetate and 20 g of ethylene carbonate were added to a 100 ml eggplant flask. The solution was heated and depressurized at 60 ° C. and 1.5 kPa for 8 hours to volatilize the solvent. As an electrolytic solution material, 28 g of an ethylene carbonate solution of lithium di (fluorosulfonyl) imide was obtained. The obtained solution was confirmed to contain 60 ppm of butyl acetate. Butyl acetate, which has a moderate affinity with lithium di (fluorosulfonyl) imide, could be reduced by the volatilization process.
- Examples 4-1 to 7-5 Di (fluorosulfonyl) imide was prepared in the same manner as in Example 3 except that the solvent, electrolyte solvent, solution temperature, degree of vacuum, and heating time contained in the di (fluorosulfonyl) imide solution were as shown in Tables 1 to 4. An electrolyte material containing was obtained. The residual solvent amount of the obtained solution is shown in the table.
- Examples 8-1 to 8-3 The same procedure as in Example 3 was used except that the solution consisting of 10 g of lithium di (fluorosulfonyl) imide obtained in Production Example 1 and 20 g of butyl acetate was used, and the solution temperature, the degree of vacuum, and the heating time were as shown in Table 5. An electrolyte material containing di (fluorosulfonyl) imide was obtained. The residual solvent amount of the obtained solution is shown in the table.
- Examples 9-1 to 13-5 Di (fluorosulfonyl) imide was prepared in the same manner as in Example 3 except that the solvent, electrolyte solvent, solution temperature, degree of vacuum, and heating time contained in the di (fluorosulfonyl) imide solution were as shown in Tables 6 to 10. An electrolyte material containing was obtained. The residual solvent amount of the obtained solution is shown in the table.
- Comparative Example 1 In a vacuum dryer, 5 g of lithium di (fluorosulfonyl) imide powder containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane was spread on a petri dish and dried at 60 ° C. and 1 kPa for 12 hours, but the amount of residual solvent did not decrease.
- Comparative Example 2 5 g of lithium di (fluorosulfonyl) imide powder containing 208 ppm of butyl acetate and 4621 ppm of dichloromethane was pulverized in a mortar. It was spread in a petri dish and dried in a vacuum dryer at 60 ° C. and 1 kPa for 12 hours, but the residual solvent amount did not decrease.
- Example 15-1 In a 50 ml eggplant flask, 5.00 g of lithium di (fluorosulfonyl) imide powder containing 208 ppm of residual solvent butyl acetate and 4621 ppm of dichloromethane was added and dissolved by adding 5.10 g of EC. The solution was heated at 60 ° C. and 1 kPa for 3 hours to volatilize the solvent. An electrolyte material composed of LiFSI 5.00 g and EC 5.00 g was obtained. The residual solvent amount of the electrolyte material immediately after preparation was 55 ppm for butyl acetate, 5 ppm for dichloromethane, 20 ppm for water, and 4 ppm for HF.
- This electrolyte material was stored in a stainless steel container at 60 ° C. for 30 days.
- HF in the electrolyte material after storage was 8 ppm. 4 ppm of HF was generated during storage, and converted to the mass of lithium di (fluorosulfonyl) imide (LiFSI), it was 8 ppm / LiFSI-kg.
- HF was quantified using an automatic titrator manufactured by Metrohm. Specifically, neutralization titration was performed with a 0.01N sodium hydroxide / methanol solution using a non-aqueous solvotrode electrode, and the generated acid was converted as HF.
- Example 15-2 In a 50 ml eggplant flask, 5.00 g of lithium di (fluorosulfonyl) imide powder containing 208 ppm of residual solvent butyl acetate and 4621 ppm of dichloromethane was added, and 1.98 g of EC was added and dissolved. This solution was heated at 60 ° C. and 1 kPa for 3 hours to volatilize the solvent. A solution consisting of LiFSI 5.00 g and EC 1.78 g was obtained. To this solution, 3.22 g of ethyl methyl carbonate (EMC) was added to obtain an electrolyte solution material. The amount of residual solvent in the electrolyte material immediately after preparation was 45 ppm for butyl acetate and 6 ppm for dichloromethane. Thereafter, the amount of HF before and after storage was measured in the same manner as in Example 15-1.
- EMC ethyl methyl carbonate
- Example 15-3 In a 50 ml eggplant flask, 5.00 g of lithium di (fluorosulfonyl) imide powder containing 208 ppm of residual solvent butyl acetate and 4621 ppm of dichloromethane was added and dissolved by adding 4.50 g of EC. This solution was heated at 60 ° C. and 1 kPa for 3 hours to volatilize the solvent. A solution consisting of LiFSI 5.00 g and EC 4.40 g was obtained. 0.6 g of EMC was added to this solution to obtain an electrolyte material. The amount of residual solvent in the electrolyte material immediately after preparation was 43 ppm for butyl acetate and 5 ppm for dichloromethane. Thereafter, the amount of HF before and after storage was measured in the same manner as in Example 15-1.
- Example 15-4 In a 50 ml eggplant flask, 5.00 g of lithium di (fluorosulfonyl) imide powder containing 208 ppm of residual solvent butyl acetate and 4621 ppm of dichloromethane was added, and 5.20 g of ⁇ -butyrolactone (GBL) was added and dissolved. This solution was heated at 60 ° C. and 1 kPa for 3 hours to volatilize the solvent. An electrolyte material composed of LiFSI 5.00 g and GBL 5.00 g was obtained. The residual solvent amount of the electrolyte material immediately after preparation was 85 ppm for butyl acetate and 9 ppm for dichloromethane. Thereafter, the amount of HF before and after storage was measured in the same manner as in Example 15-1.
- LiFSI 5.00 g and GBL 5.00 g The residual solvent amount of the electrolyte material immediately after preparation was 85 ppm for butyl acetate and 9 ppm for dichlor
- Example 15-5 In a 50 ml eggplant flask, 6.20 g of lithium di (fluorosulfonyl) imide powder containing 208 ppm of residual solvent butyl acetate and 4621 ppm of dichloromethane was added, and 4.00 g of EC was added and dissolved. This solution was heated at 60 ° C. and 1 kPa for 3 hours to volatilize the solvent. An electrolyte material composed of 6.20 g of LiFSI and 3.80 g of EC was obtained. The amount of residual solvent in the electrolyte material immediately after preparation was 78 ppm for butyl acetate and 7 ppm for dichloromethane. Thereafter, the amount of HF before and after storage was measured in the same manner as in Example 15-1.
- Example 15-6 In a 50 ml eggplant flask, 6.20 g of lithium di (fluorosulfonyl) imide powder containing 208 ppm of residual solvent butyl acetate and 4621 ppm of dichloromethane was added and dissolved by adding 1.50 g of EC. This solution was heated at 60 ° C. and 1 kPa for 3 hours to volatilize the solvent. A solution consisting of 6.20 g of LiFSI and 1.35 g of EC was obtained. 2.45 g of EMC was added to this solution to obtain an electrolyte material. The amount of residual solvent in the electrolyte material immediately after preparation was 95 ppm for butyl acetate and 10 ppm for dichloromethane. Thereafter, the amount of HF before and after storage was measured in the same manner as in Example 15-1.
- Example 15-1 In the same manner as in Example 15-1, a solution consisting of LiFSI 5.00 g and EC 5.00 g was obtained. EC was further added to this solution to obtain an EC solution having LiFSI of 10.2% by mass. The residual solvent amount of this solution was 13 ppm for butyl acetate and 2 ppm for dichloromethane. Thereafter, the amount of HF before and after storage was measured in the same manner as in Example 15-1.
- Example 2 In the same manner as in Example 15-2, a solution consisting of LiFSI 5.00 g, EC 1.78 g, and EMC 3.22 g was obtained. EC13.88g and EMC25.12g were further added to this solution, and the solution whose LiFSI is 10.2 mass% was obtained. The residual solvent amount of this solution was 14 ppm for butyl acetate and 1 ppm for dichloromethane. Thereafter, the amount of HF before and after storage was measured in the same manner as in Example 15-1.
- the LiFSI concentration in the electrolyte material is 10.2 mass%. It can be seen that the amount of HF generated during storage is significant. From this, it was confirmed that the electrolyte material of the present invention having a predetermined amount or more of LiFSI has an action of suppressing the generation of HF during storage.
- Example A-3 An electrolyte solution material was obtained in the same manner as in Example A-1, except that the conditions for volatilizing the residual solvent in Example A-1 were changed to 25 ° C. and 100 kPa for 3 hours.
- the residual solvent amount at this time was butyl acetate 150 ppm and dichloromethane 1280 ppm.
- the residual solvent amount of this non-aqueous electrolyte was 19 ppm butyl acetate and 119 ppm dichloromethane.
- Comparative Example A-1 An electrolyte material was obtained in the same manner as in Example A-1, except that the operation for volatilizing the residual solvent was not performed in Example A-1.
- the amount of residual solvent at this time was 208 ppm of butyl acetate and 4621 ppm of dichloromethane.
- the residual solvent amount of this non-aqueous electrolyte was butyl acetate 17 ppm and dichloromethane 430 ppm.
- Table 12 in Examples A-1 to A-3, the volume expansion of the battery when stored at 60 ° C. for 1 month was about 0.03 to 0.06 ml, but Comparative Example A-1 Then, the result was 0.21 ml.
- a battery provided with a non-aqueous electrolyte using an electrolyte solution material with a reduced amount of residual solvent it was confirmed that the swelling of the battery when charging and discharging the battery can be suppressed.
- positive electrode sheet 92 2: 2: 4 of positive electrode active material (LiCoO 2 ), conductive additive 1 (acetylene black, AB), conductive additive 2 (graphite), and binder (polyvinylidene fluoride, PVdF)
- positive electrode active material LiCoO 2
- conductive additive 1 acetylene black, AB
- conductive additive 2 graphite
- binder polyvinylidene fluoride, PVdF
- graphite graphite
- VGCF conductive additive
- SBR + CMC binder
- the laminate type lithium ion secondary battery was subjected to a predetermined charge condition (1C, 4.2V or constant current constant) using a charge / discharge test device in an environment of a temperature of 25 ° C. After charging in the voltage mode 0.02C cut, discharging is performed under predetermined discharge conditions (0.2C, discharge end voltage 3.0V, constant current discharge), and then again, the predetermined charge conditions (1C, 4.2V) And constant current constant voltage mode 0.02C cut). The obtained cell was preserve
- Example B-1 Each material was thrown into the mixing kettle in the charging order shown in Table 13 to produce a non-aqueous electrolyte.
- LiFSI and EC having an input order of 1 were used as electrolyte materials prepared by previously mixing LiFSI 11.22 kg and EC 36.36 kg.
- the liquid temperature in the mixing kettle was measured during the production process of the non-aqueous electrolyte, but the temperature did not reach 60 ° C or higher. Specifically, no heat was generated when the electrolyte preparation solvent (EMC, DEC) was added to the electrolyte material. The liquid temperature after adding LiPF 6 rose to 45 ° C., but the electrolytic solution did not decompose.
- EMC electrolyte preparation solvent
- Example B-2 Each material was thrown into the mixing kettle in the charging order shown in Table 14 to produce a non-aqueous electrolyte. Specifically, an electrolyte material prepared by mixing LiFSI 11.22 kg and EC 20.0 kg was charged into a mixing kettle (capacity 150 L), and then EMC 27.82 kg and DEC 35.81 kg were charged as electrolyte solution preparation solvents. . Thereafter, 16.36 kg of EC heated to 60 ° C. as an electrolyte preparation solvent was added to the mixing kettle, and then 9.12 kg of LiPF 6 was added as another electrolyte salt, followed by stirring for 10 minutes to obtain a non-aqueous electrolyte. Got. In addition, it took 10 minutes for each of the electrolyte solution material, the solvent for preparing each electrolyte solution, and the introduction of other electrolyte salts.
- the temperature of the liquid in the mixing kettle was measured during the production process of the non-aqueous electrolyte, the temperature did not reach 60 ° C or higher. Specifically, no heat was generated when the electrolyte preparation solvent (EMC, DEC) was added to the electrolyte material. Further, the liquid temperature after charging EC at 60 ° C. increased to 30 ° C. and the liquid temperature after charging LiPF 6 rose to 50 ° C., but decomposition of the electrolyte did not occur.
- EMC electrolyte preparation solvent
- Comparative Example B-2 Each material was thrown into the mixing kettle in the charging order shown in Table 16 to produce a non-aqueous electrolyte. Specifically, after preparing a non-aqueous solvent solution (40 ° C.) in the same manner as in Comparative Example 1, 11.22 kg of LiFSI was added. Subsequently, 9.12 kg of LiPF 6 was added. After the addition, the mixture was stirred for 10 minutes to obtain a nonaqueous electrolytic solution. The time required for adding each of the electrolyte preparation solvents, LiFSI, and LiPF 6 was 10 minutes.
- the liquid temperature after charging LiFSI rose to 55 ° C., and the liquid temperature after charging LiPF 6 rose to 75 ° C.
- the obtained non-aqueous electrolyte was colored light orange, and decomposition of the electrolyte occurred.
- a starting material is an electrolytic solution material prepared by preliminarily preparing the fluorosulfonylimide salt (1) and ethylene carbonate, and a solvent for preparing the electrolytic solution and other electrolytes. Even if salt was added to generate heat, the liquid temperature was kept low. Therefore, decomposition of the non-aqueous electrolyte solution can be prevented, and a good quality non-aqueous electrolyte solution was obtained. Further, the time required for preparation of the non-aqueous electrolyte was 50 to 60 minutes, and the production efficiency was excellent as compared with Comparative Example B-1.
- Comparative Example B-1 LiFSI and LiPF 6 were dividedly added in order to control the temperature so that the nonaqueous electrolytic solution was not decomposed. As a result, although the temperature increase could be suppressed, the time required for preparation of the non-aqueous electrolyte became long (120 minutes), and the production efficiency was poor compared to Example B-1 and Example B-2.
- Comparative Example B-2 after preparing a non-aqueous solvent solution, LiFSI and LiPF 6 were added all at once without being divided. As a result, the time required for preparation of the non-aqueous electrolyte solution can be shortened, but since the temperature rise could not be suppressed, the non-aqueous electrolyte solution was decomposed and colored.
- the electrolyte material of the present invention containing the fluorosulfonylimide salt (1) and a cyclic carbonate solvent or a cyclic ester solvent as main components, the temperature rise during the production process can be appropriately controlled.
- the effect of suppressing the decomposition of the non-aqueous electrolyte can be obtained, and that the non-aqueous electrolyte can be prepared more efficiently in a shorter time than before.
- the electrolyte material obtained by the production method of the present invention includes a battery having a charging / discharging mechanism such as a primary battery, a lithium ion secondary battery, and a fuel cell, an electrolytic capacitor, an electric double layer capacitor, a solar cell, an electrochromic display element, and the like. It is suitably used as a material for an ionic conductor constituting the electricity storage device (electrochemical device).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Primary Cells (AREA)
- Fuel Cell (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
Description
本発明は上記の様な事情に着目してなされたものであって、その目的は、電解液材料の特性に影響を与える残留溶媒を削減した電解液材料とその製造方法を提供することにある。
この場合、上記電解液溶媒において、環状カーボネート系溶媒又は環状エステル系溶媒を90質量%以上含むことが好ましい。
また、上記一般式(1)で表されるフルオロスルホニルイミド塩(以下、「フルオロスルホニルイミド塩(1)」ということがある)と環状カーボネート系溶媒または環状エステル系溶媒を主成分として含む電解液材料を用いることで、非水電解液の分解を生じるような温度上昇を抑制できると共に、非水電解液を調製する際に、フルオロスルホニルイミド塩(1)の添加速度の調整が不要となるため、生産性を向上できる。したがって、本発明法によれば、従来の製造方法と比べて短時間で良好な品質を有するフルオロスルホニルイミド塩含有非水電解液を製造できる。
電解液溶媒は上記化合物(1)に対して、残留溶媒よりも親和性が高く、沸点も高いため、減圧及び/又は加熱により残留溶媒を効率よく揮発・除去することができる。
本発明の電解液材料の製造方法において、電解液溶媒の使用量は、例えば、上記一般式(1)で表されるフルオロスルホニルイミド塩100質量部に対して、1~1000質量部が好ましく、より好ましくは5~500質量部、さらに好ましくは10~300質量部、特に好ましくは30~200質量部、さらに特に好ましくは50~100質量部である。
したがって電解液調製用溶媒としては、電解液溶媒と相溶し、所望の電解質塩を溶解、分散させられるものであれば特に限定されない。また本発明では非水系溶媒、溶媒に代えて用いられるポリマー、ポリマーゲル等の媒体等、電池に用いられる従来公知の溶媒はいずれも使用できる。なお、電解液材料には電解液溶媒が含まれているが、必要に応じて電解液材料に更に電解液溶媒と同種の溶媒を添加してもよく、上述した電解液溶媒はいずれも用いることができる。電解液調製用溶媒は液体、固体のいずれでもよいが、効率的に混合するためには液体が好ましい。また電解液調製用溶媒の温度も特に限定されず、室温でよいが必要に応じて適宜温度を調整してもよい。
電解液材料0.05gにジメチルスルホキシド水溶液(ジメチルスルホキシド/超純水=20/80、体積比)200μl、20質量%塩化ナトリウム水溶液2mlを加えて測定溶液とし、これをバイアル瓶に入れ密閉し、ヘッドスペース-ガスクロマトグラフィーシステム(「Agilent6890」、Agilent社製)により、電解液材料に含まれる残留溶媒量を測定した。
装置:Agilent6890
カラム:HP-5(長さ:30m、カラム内径:0.32mm、膜厚:0.25μm)(Agilent社製)
カラム温度条件:60℃(2分保持)、30℃/分で300℃まで昇温、300℃(2分保持)
ヘッドスペース条件:80℃(30分保持)
インジェクター温度:250℃
検出器:FID(300℃)
撹拌装置、冷却器を備えた容量500mLのPFA製反応容器に、酢酸ブチル120gを加え、ここにジ(クロロスルホニル)イミド16.1g(75mmol)を加え攪拌して溶解させた。得られたジ(クロロスルホニル)イミド溶液に、塩化アンモニウム4.45g(82.5mmol)を加え、80℃で1時間攪拌した。ジ(クロロスルホニル)イミド溶液に酸性フッ化アンモニウムNH4F・HFを20.53g(360mmol)加え、80℃で4時間攪拌を続けた。
反応終了後、反応溶液を室温まで冷却した後、固形分を濾過により除去した。ろ液を、分液ロートに移し、そこへ水酸化リチウム・一水和物3.15g(75mmol)を超純水21gに溶解した水溶液を加え、混合した。静置したのち、水層を除去した。再び水酸化リチウム・一水和物1.57g(37mmol)を超純水11gに溶解した水溶液を加え、混合した。静置したのち、水層を除去した。
有機層に、リチウム ジ(フルオロスルホニル)イミド10gを含んだ溶液128gが得られた。得られた溶液を50℃、1.5kPaで1時間加熱して酢酸ブチルを揮発させ、リチウム ジ(フルオロスルホニル)10g、酢酸ブチル20gからなる溶液30gを得た。19F-NMR(溶媒:重アセトニトリル)測定において、内部標準物質として加えたトリフルオロメチルベンゼンの量、及び、これに由来するピークの積分値と、目的生成物に由来するピークの積分値との比較から、有機層に含まれるリチウム ジ(フルオロスルホニル)イミドの量を求めた。
50mlナスフラスコに、別途調製した、酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有するリチウム ジ(フルオロスルホニル)イミド粉体4.99gにジエチルカーボネート7.56gを加えて溶解した。溶液を25℃、1kPaで3時間減圧して溶媒を揮発させた。電解液材料として、リチウム ジ(フルオロスルホニル)イミドのジエチルカーボネート溶液11.64gを得た。得られた溶液は、酢酸ブチルを83ppm含有していたが、ジクロロメタンは確認されなかった。リチウム ジ(フルオロスルホニル)イミドと親和性が低いジクロロメタンは揮発工程により削減できた。
25mlナスフラスコに、酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有するリチウム ジ(フルオロスルホニル)イミド粉体3.23gにエチレンカーボネート(EC)4.76gを加えて溶解した。溶液を25℃、1kPaで3時間減圧して溶媒を揮発させた。電解液材料として、リチウム ジ(フルオロスルホニル)イミドのエチレンカーボネート溶液7.83gを得た。得られた溶液は、酢酸ブチルを85ppm、ジクロロメタンを40ppm含有することを確認した。
100mlナスフラスコに、リチウム ジ(フルオロスルホニル)イミド10gが酢酸ブチル20gに溶解した溶液とエチレンカーボネート20gを加えた。溶液を60℃、1.5kPaで8時間、加熱および減圧して溶媒を揮発させた。電解液材料としてリチウム ジ(フルオロスルホニル)イミドのエチレンカーボネート溶液28gを得た。得られた溶液は、酢酸ブチルを60ppm含有することを確認した。リチウム ジ(フルオロスルホニル)イミドと親和性が中程度の酢酸ブチルは揮発工程により削減できた。
ジ(フルオロスルホニル)イミド溶液に含まれる溶媒、電解液溶媒、溶液温度、減圧度、加熱時間を表1~4の通りとした以外は実施例3と同じようにしてジ(フルオロスルホニル)イミドを含む電解液材料を得た。得られた溶液の残留溶媒量を表に示す。
製造例1で得られたリチウム ジ(フルオロスルホニル)イミド10g、酢酸ブチル20gからなる溶液を用い、溶液温度、減圧度、加熱時間を表5のとおりとした以外は実施例3と同じようにしてジ(フルオロスルホニル)イミドを含む電解液材料を得た。得られた溶液の残留溶媒量を表に示す。
ジ(フルオロスルホニル)イミド溶液に含まれる溶媒、電解液溶媒、溶液温度、減圧度、加熱時間を表6~10のとおりとした以外は実施例3と同じようにしてジ(フルオロスルホニル)イミドを含む電解液材料を得た。得られた溶液の残留溶媒量を表に示す。
真空乾燥器で、酢酸ブチル208ppm、ジクロロメタン4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体5gをシャーレに広げ、60℃、1kPaで12時間乾燥したが残留溶媒量は減少しなかった。
酢酸ブチル208ppm、ジクロロメタン4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体5gを乳鉢で粉砕した。それをシャーレに広げ、真空乾燥器で、60℃、1kPa、12時間乾燥したが残留溶媒量は減少しなかった。
50mlのナスフラスコに、残留溶媒の酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体5.00gを入れ、EC5.10gを加えて溶解した。溶液を60℃、1kPaで3時間加熱して、溶媒を揮発させた。LiFSI5.00gとEC5.00gからなる電解液材料が得られた。
調製直後の電解液材料の残存溶媒量は、酢酸ブチルが55ppm、ジクロロメタンが5ppm、水分は20ppm、HFは4ppmであった。この電解液材料をステンレス鋼製の容器で、60℃で30日保存した。保存後の電解液材料中のHFは8ppmであった。保存中にHFは4ppm発生したことになり、これをリチウム ジ(フルオロスルホニル)イミド(LiFSI)の質量当たりに換算すると、8ppm/LiFSI-kgとなった。
なお、HFの定量は、Metrohm社製の自動滴定装置を用いて行った。具体的には、非水用ソルボトロード電極を用い、0.01N水酸化ナトリウム/メタノール溶液で、中和滴定を行い、発生した酸をHFとして換算した。
50mlのナスフラスコに、残留溶媒の酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体5.00gを入れ、EC1.98gを加えて溶解した。この溶液を60℃、1kPaで3時間加熱して、溶媒を揮発させた。LiFSI5.00gとEC1.78gからなる溶液が得られた。この溶液にエチルメチルカーボネート(EMC)3.22g加え電解液材料を得た。調製直後の電解液材料の残存溶媒量は、酢酸ブチルが45ppm、ジクロロメタンが6ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
50mlのナスフラスコに、残留溶媒の酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体5.00gを入れ、EC4.50gを加えて溶解した。この溶液を60℃、1kPaで3時間加熱して、溶媒を揮発させた。LiFSI5.00gとEC4.40gからなる溶液が得られた。この溶液にEMCを0.6g加え電解液材料を得た。調製直後の電解液材料の残存溶媒量は、酢酸ブチルが43ppm、ジクロロメタンが5ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
50mlのナスフラスコに、残留溶媒の酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体5.00gを入れ、γ-ブチロラクトン(GBL)を5.20g加えて溶解した。この溶液を60℃、1kPaで3時間加熱して、溶媒を揮発させた。LiFSI5.00gとGBL5.00gからなる電解液材料を得た。調製直後の電解液材料の残存溶媒量は、酢酸ブチルが85ppm、ジクロロメタンが9ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
50mlのナスフラスコに、残留溶媒の酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体6.20gを入れ、ECを4.00g加えて溶解した。この溶液を60℃、1kPaで3時間加熱して、溶媒を揮発させた。LiFSI6.20gとEC3.80gからなる電解液材料を得た。調製直後の電解液材料の残存溶媒量は、酢酸ブチルが78ppm、ジクロロメタンが7ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
50mlのナスフラスコに、残留溶媒の酢酸ブチルを208ppm、ジクロロメタンを4621ppm含有したリチウム ジ(フルオロスルホニル)イミド粉体6.20gを入れ、ECを1.50g加えて溶解した。この溶液を60℃、1kPaで3時間加熱して、溶媒を揮発させた。LiFSI6.20gとEC1.35gからなる溶液を得た.この溶液にEMC2.45g加え、電解液材料を得た。調製直後の電解液材料の残存溶媒量は、酢酸ブチルが95ppm、ジクロロメタンが10ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
実施例15-1と同様にして、LiFSI5.00gとEC5.00gからなる溶液を得た。この溶液にさらにECを加え、LiFSIが10.2質量%のEC溶液を得た。この溶液の残存溶媒量は、酢酸ブチルが13ppm、ジクロロメタンが2ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
実施例15-2と同様にして、LiFSI5.00gとEC1.78g、EMC3.22gからなる溶液を得た。この溶液にさらにEC13.88g、EMC25.12gを加え、LiFSIが10.2質量%の溶液を得た。この溶液の残存溶媒量は、酢酸ブチルが14ppm、ジクロロメタンが1ppmであった。後は、実施例15-1と同様にして、保存前後のHF量等を測定した。
実施例2において、エチレンカーボネートの使用量を4.60gとしたこと以外は、実施例2と同様にして、電解液材料を得た。得られた電解液材料に、LiPF62.62gと、EC5.69gと、エチルメチルカーボネート(EMC)18.40gを追加し、リチウム ジ(フルオロスルホニル)イミドが9.3質量%(0.6M)、LiPF6が67.5質量%(0.6M)のEC/EMC=3/7(体積比)混合溶媒の非水電解液を得た。この非水電解液の残留溶媒量は、酢酸ブチル8ppm、ジクロロメタン4ppmであった。
実施例A-1において、残留溶媒を揮発させる条件を25℃、40kPaで3時間とした以外は実施例A-1と同様にして、電解液材料を得た。このときの残留溶媒量は、酢酸ブチル96ppm、ジクロロメタン308ppmであった。得られた電解液材料に、実施例A-1と同量のLiPF6と、ECおよびEMCを追加し、LiFSI9.3質量%(0.6M)、LiPF6が67.5質量%(0.6M)のEC/EMC=3/7(体積比)混合溶媒の非水電解液を得た。この非水電解液の残留溶媒量は、酢酸ブチル9ppm、ジクロロメタン29ppmであった。
実施例A-1において、残留溶媒を揮発させる条件を25℃、100kPaで3時間とした以外は実施例A-1と同様にして、電解液材料を得た。このときの残留溶媒量は、酢酸ブチル150ppm、ジクロロメタン1280ppmであった。得られた電解液材料に、実施例A-1と同量のLiPF6と、ECおよびEMCを追加し、LiFSI9.3質量%(0.6M)、LiPF6が67.5質量%(0.6M)のEC/EMC=3/7(体積比)混合溶媒の非水電解液を得た。この非水電解液の残留溶媒量は、酢酸ブチル19ppm、ジクロロメタン119ppmであった。
実施例A-1において、残留溶媒を揮発させる操作を行わなかった以外は実施例A-1と同様にして、電解液材料を得た。このときの残留溶媒量は、酢酸ブチル208ppm、ジクロロメタン4621ppmであった。得られた電解液材料に、実施例A-1と同量のLiPF6と、ECおよびEMCを追加し、LiFSI9.3質量%(0.6M)、LiPF6が67.5質量%(0.6M)のEC/EMC=3/7(体積比)混合溶媒の非水電解液を得た。この非水電解液の残留溶媒量は、酢酸ブチル17ppm、ジクロロメタン430ppmであった。
表12に示したとおり、実施例A-1~A-3では、60℃で1ヶ月保存した際の電池の体積膨張は0.03~0.06ml程度であったが、比較例A-1では0.21mlという結果であった。残存溶媒量の低減された電解液材料を用いた非水電解液を備えた電池においては、電池を充放電する際の電池の膨れが抑制できることが確認できた。
1.正極シートの作製
正極活物質(LiCoO2)、導電助剤1(アセチレンブラック、AB)、導電助剤2(グラファイト)、及び結着剤(ポリフッ化ビニリデン、PVdF)を92:2:2:4の質量比で混合し、これをN-メチルピロリドンに分散させた正極合剤スラリーをアルミニウム箔に塗布し、乾燥、圧縮することにより正極シートを作製した。
負極活物質(グラファイト)、導電助剤(VGCF)、及び結着剤(SBR+CMC)を97:0.5:2.5の質量比で混合し、これをN-メチルピロリドンと混合して得られた負極合剤スラリーを作製した。4.2V充電での正極の充電容量を計算し、負極のリチウムイオン吸蔵可能容量/正極充電容量=1.1となるように負極合剤スラリーを銅箔(負極集電体)に塗布し、乾燥、圧縮することにより負極シートを作製した。
上記で作製した正極シート1枚と負極シート1枚それぞれの未塗工部分にアルミタブ、ニッケルタブを溶接し、ポリエチレン製セパレーターを挟んで対向させ、巻回機にて巻き取り、巻回体を作製した。作製した巻回体を適正な深さに絞り加工済みのアルミニウムラミネートフィルムと未処理のアルミニウムラミネートフィルムで挟み込み、アルミニウムラミネートフィルム内をそれぞれ上記実施例A-1~A-3と比較例A-1で作製した混合溶媒電解液で満たし、真空状態で密閉し、容量1Ahのラミネート型リチウムイオン二次電池を作製した。
比容量(mAh/g)
ラミネート型リチウムイオン二次電池について、温度25℃の環境下、充放電試験装置(株式会社アスカ電子製ACD-01、以下同じ。)を使用し、所定の充電条件(0.5C、4.2V、定電流定電圧モード)で5時間充電を行った。その後、所定の放電条件(0.2C、放電終止電圧3.0V、定電流放電)で放電を行い、初回の放電容量を記録し、下記式に基づいて電池の質量比容量を算出し、初期放電特性を評価した。
質量比容量(mAh/g)=電池の初回の充電容量(mAh)/正極活物質質量(g)
上記比容量を測定した後、ラミネート型リチウムイオン二次電池について、温度25℃の環境下、充放電試験装置を使用し、所定の充電条件(1C、4.2V又、定電流定電圧モード0.02Cカット)で充電した後、所定の放電条件(0.2C、放電終止電圧3.0V、定電流放電)で放電を行いその後、再び、所定の充電条件(1C、4.2V、定電流定電圧モード0.02Cカット)で充電を行った。得られたセルを60℃の恒温槽に1か月間保存した。保存前後のセルをそれぞれ水に浸漬させて体積を求め、その差分により保存後のセルの膨れ量を得た。結果を表12に示した。
表13に示す投入順序で各材料を混合釜に投入して非水電解液を製造した。表中、投入順序が1であるLiFSIとECは、予めLiFSI11.22kgと、EC36.36kgとを混合して準備した電解液材料として使用した。電解液材料を混合釜(容量150L)に投入した後、電解液調製用溶媒としてEMC27.82kg、ジエチルカーボネート(以下、「DEC」ということがある)35.81kg、他の電解質塩としてLiPF6(キシダ化学株式会社製)9.12kgを混合釜に順次投入した後、10分間撹拌を行って非水電解液を得た。なお、電解液材料、各電解液調製用溶媒、他の電解質塩の投入には夫々10分要した。また表中、「所要時間」は投入開始から投入終了までの時間であり、投入は撹拌しながら行った。各材料を混合釜に投入した後の液温を測定して表1に記載した。他の実施例も同様に温度を測定した。
表14に示す投入順序で各材料を混合釜に投入して非水電解液を製造した。具体的にはLiFSI11.22kgと、EC20.0kgとを混合して準備した電解液材料を混合釜(容量150L)に投入した後、電解液調製用溶媒としてEMC27.82kg、DEC35.81kgを投入した。その後、混合釜に電解液調製用溶媒として60℃に加熱したEC16.36kgを投入し、続いて他の電解質塩としてLiPF69.12kgを投入した後、10分間撹拌を行って非水電解液を得た。なお、電解液材料、各電解液調製用溶媒、他の電解質塩の投入には夫々10分要した。
表15に示す投入順序で各材料を混合釜に投入して非水電解液を製造した。具体的には60℃に加熱したEC溶液36.36kgを混合釜に投入した後、EMC27.82kg、DEC35.81kgを投入して非水溶媒溶液を調製した。続いてLiFSIを投入したが、液温が55℃を超えないようにLiFSI11.22kgを3回(3.74kg/回)に分けて投入した。続いてLiPF69.12kgを3回(3.04kg/回)に分けて投入した。投入後10分間撹拌を行って非水電解液を得た。各電解液調製用溶媒、LiFSI、及びLiPF6の投入所要時間は、夫々10分であった。なお、LiFSI、及びLiPF6の投入所要時間は、合計時間(1回10分×3回)である。
表16に示す投入順序で各材料を混合釜に投入して非水電解液を製造した。具体的には比較例1と同様にして非水溶媒溶液(40℃)を調製した後、LiFSI11.22kgを投入した。続いてLiPF69.12kgを投入した。投入後10分間撹拌を行って非水電解液を得た。各電解液調製用溶媒、LiFSI、及びLiPF6の投入所要時間は、夫々10分であった。
Claims (9)
- 上記電解液溶媒が、環状カーボネート系溶媒又は環状エステル系溶媒である請求項1に記載の電解液材料の製造方法。
- 請求項1又は2に記載の製造方法により得られた電解液材料にさらに非水電解液調製用溶媒を混合することを特徴とする非水電解液の製造方法。
- 上記一般式(1)で表されるフルオロスルホニルイミド塩と電解液溶媒を含む電解液材料であって、電解液材料中に含まれるフルオロスルホニルイミド塩の濃度が30質量%以上であり、電解液材料中のフルオロスルホニルイミド塩の製造溶媒の残存量が3000ppm以下であることを特徴とする電解液材料。
- 上記電解液溶媒において、環状カーボネート系溶媒又は環状エステル系溶媒を90質量%以上含む請求項4に記載の電解液材料。
- 請求項4又は5に記載の電解液材料から得られることを特徴とする非水電解液。
- 請求項6に記載の非水電解液を備えたことを特徴とする蓄電デバイス。
- 上記一般式(1)で表されるフルオロスルホニルイミド塩と電解液溶媒を含み、フルオロスルホニルイミド塩の濃度が30質量%以上である電解液材料を保存することを特徴とする電解液材料の保存方法。
- 上記一般式(1)で表されるフルオロスルホニルイミド塩と電解液溶媒を含み、フルオロスルホニルイミド塩の濃度が30質量%以上である電解液材料を輸送することを特徴とする電解液材料の輸送方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016552361A JP6523314B2 (ja) | 2014-10-03 | 2015-10-05 | 電解液材料の製造方法 |
US15/515,261 US11637320B2 (en) | 2014-10-03 | 2015-10-05 | Method for manufacturing electrolyte solution material |
EP15846096.4A EP3203570A4 (en) | 2014-10-03 | 2015-10-05 | Method for manufacturing electrolyte material |
KR1020177010796A KR102443835B1 (ko) | 2014-10-03 | 2015-10-05 | 전해액 재료의 제조방법 |
CN201580053743.8A CN107112591A (zh) | 2014-10-03 | 2015-10-05 | 电解液材料的制备方法 |
US17/074,416 US11539078B2 (en) | 2014-10-03 | 2020-10-19 | Method for manufacturing electrolyte solution material |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-204815 | 2014-10-03 | ||
JP2014204815 | 2014-10-03 | ||
JP2015118065 | 2015-06-11 | ||
JP2015-118065 | 2015-06-11 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/515,261 A-371-Of-International US11637320B2 (en) | 2014-10-03 | 2015-10-05 | Method for manufacturing electrolyte solution material |
US17/074,416 Division US11539078B2 (en) | 2014-10-03 | 2020-10-19 | Method for manufacturing electrolyte solution material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016052752A1 true WO2016052752A1 (ja) | 2016-04-07 |
Family
ID=55630772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078252 WO2016052752A1 (ja) | 2014-10-03 | 2015-10-05 | 電解液材料の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11637320B2 (ja) |
EP (1) | EP3203570A4 (ja) |
JP (3) | JP6523314B2 (ja) |
KR (1) | KR102443835B1 (ja) |
CN (2) | CN113793986A (ja) |
WO (1) | WO2016052752A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016208607A1 (ja) * | 2015-06-23 | 2016-12-29 | 株式会社日本触媒 | 導電性材料とその製造方法及び精製方法、並びにこの導電性材料を用いた非水電解液並びに帯電防止剤 |
JP2017210392A (ja) * | 2016-05-27 | 2017-11-30 | 株式会社日本触媒 | 電解液材料の製造方法 |
WO2017204302A1 (ja) * | 2016-05-27 | 2017-11-30 | 株式会社日本触媒 | ビス(フルオロスルホニル)イミドアルカリ金属塩の製造方法および非水系電解液の製造方法 |
JP2018055882A (ja) * | 2016-09-27 | 2018-04-05 | 株式会社日本触媒 | ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法、及びビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料 |
JP2018052760A (ja) * | 2016-09-27 | 2018-04-05 | 株式会社日本触媒 | ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法 |
WO2020158299A1 (ja) * | 2019-01-31 | 2020-08-06 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池およびこれに用いる電解液 |
WO2023276561A1 (ja) | 2021-06-30 | 2023-01-05 | 株式会社日本触媒 | 非水電解液の製造方法 |
US12148885B2 (en) | 2019-01-31 | 2024-11-19 | Panasonic Intellectual Property Management Co., Ltd. | Non-aqueous electrolyte secondary battery and electrolytic solution used therefor |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7223221B2 (ja) * | 2017-09-12 | 2023-02-16 | セントラル硝子株式会社 | 非水電解液用添加剤、非水電解液、及び非水電解液電池 |
JP7340685B2 (ja) | 2020-02-27 | 2023-09-07 | 株式会社日本触媒 | 組成物、電解液材料及び電解液 |
JPWO2022030109A1 (ja) * | 2020-08-03 | 2022-02-10 | ||
JP2023554068A (ja) | 2020-12-16 | 2023-12-26 | ローディア オペレーションズ | オニウムスルホニルイミド塩及びアルカリ金属スルホニルイミド塩の製造方法 |
EP4347484A1 (en) | 2021-05-26 | 2024-04-10 | Specialty Operations France | Method for producing alkali sulfonyl imide salts |
KR20240025009A (ko) * | 2021-06-30 | 2024-02-26 | 가부시키가이샤 닛폰 쇼쿠바이 | 조성물의 제조방법 및 비수전해액 |
KR102395110B1 (ko) * | 2021-09-24 | 2022-05-09 | 제이엘켐 주식회사 | 이차전지 전해질용 첨가제로 사용되는 펜타에리쓰리톨 디설페이트의 제조방법 |
WO2023164140A1 (en) * | 2022-02-26 | 2023-08-31 | Purdue Research Foundation | Electrochemical cells and electrolyte compositions therefor |
KR102702418B1 (ko) | 2022-11-14 | 2024-09-03 | 주식회사 천보비엘에스 | 산 및 수분이 저감된 리튬 비스(플루오로설포닐)이미드 용액의 제조방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009054407A (ja) * | 2007-08-27 | 2009-03-12 | Sony Corp | 電解液および二次電池 |
WO2011149095A1 (ja) * | 2010-05-28 | 2011-12-01 | 株式会社日本触媒 | フルオロスルホニルイミドのアルカリ金属塩およびその製造方法 |
JP2013211224A (ja) * | 2012-03-30 | 2013-10-10 | Mitsubishi Chemicals Corp | 非水系電解液及びそれを用いたリチウム二次電池 |
JP2014201453A (ja) * | 2013-04-01 | 2014-10-27 | 株式会社日本触媒 | フルオロスルホニルイミドのアルカリ金属塩の製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW238254B (ja) * | 1991-12-31 | 1995-01-11 | Minnesota Mining & Mfg | |
DE69535612T2 (de) * | 1994-03-21 | 2008-07-24 | Centre National De La Recherche Scientifique (C.N.R.S.) | Ionenleitendes material mit guten korrosionshemmenden eigenschaften |
JP5315582B2 (ja) | 2001-07-26 | 2013-10-16 | ダイキン工業株式会社 | リチウムビス(ペンタフルオロエタンスルホニル)イミド含有組成物の脱水方法 |
JP2006210816A (ja) * | 2005-01-31 | 2006-08-10 | Tokuyama Corp | 非水電解液 |
US9153836B2 (en) | 2007-08-23 | 2015-10-06 | Sony Corporation | Electrolytic solutions and battery |
JP4831018B2 (ja) | 2007-08-28 | 2011-12-07 | 日本電気株式会社 | 並列巡回符号生成装置および並列巡回符号検査装置 |
EP2257495B1 (en) * | 2008-03-31 | 2013-07-03 | Nippon Shokubai Co., Ltd. | Sulfonylimide salt and method for producing the same |
JP6093516B2 (ja) * | 2011-09-30 | 2017-03-08 | 株式会社日本触媒 | 電解液及びその製造方法、並びに、これを用いた蓄電デバイス |
JP5930290B2 (ja) * | 2012-03-22 | 2016-06-08 | 学校法人 関西大学 | リチウムイオン二次電池およびこれを含む電気機器 |
JP6018820B2 (ja) * | 2012-07-04 | 2016-11-02 | 株式会社日本触媒 | リチウム二次電池用非水電解液及びこれを備えたリチウム二次電池 |
KR20140082573A (ko) * | 2012-12-24 | 2014-07-02 | 주식회사 엘지화학 | 비수성 전해액 및 이를 포함하는 리튬 이차 전지 |
-
2015
- 2015-10-05 JP JP2016552361A patent/JP6523314B2/ja active Active
- 2015-10-05 KR KR1020177010796A patent/KR102443835B1/ko active IP Right Grant
- 2015-10-05 US US15/515,261 patent/US11637320B2/en active Active
- 2015-10-05 CN CN202110841995.4A patent/CN113793986A/zh active Pending
- 2015-10-05 CN CN201580053743.8A patent/CN107112591A/zh active Pending
- 2015-10-05 EP EP15846096.4A patent/EP3203570A4/en active Pending
- 2015-10-05 WO PCT/JP2015/078252 patent/WO2016052752A1/ja active Application Filing
-
2019
- 2019-02-08 JP JP2019021302A patent/JP6918855B2/ja active Active
-
2020
- 2020-10-19 US US17/074,416 patent/US11539078B2/en active Active
-
2021
- 2021-07-20 JP JP2021119435A patent/JP7194784B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009054407A (ja) * | 2007-08-27 | 2009-03-12 | Sony Corp | 電解液および二次電池 |
WO2011149095A1 (ja) * | 2010-05-28 | 2011-12-01 | 株式会社日本触媒 | フルオロスルホニルイミドのアルカリ金属塩およびその製造方法 |
JP2013211224A (ja) * | 2012-03-30 | 2013-10-10 | Mitsubishi Chemicals Corp | 非水系電解液及びそれを用いたリチウム二次電池 |
JP2014201453A (ja) * | 2013-04-01 | 2014-10-27 | 株式会社日本触媒 | フルオロスルホニルイミドのアルカリ金属塩の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3203570A4 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016208607A1 (ja) * | 2015-06-23 | 2017-12-07 | 株式会社日本触媒 | 導電性材料とその製造方法及び精製方法、並びにこの導電性材料を用いた非水電解液並びに帯電防止剤 |
WO2016208607A1 (ja) * | 2015-06-23 | 2016-12-29 | 株式会社日本触媒 | 導電性材料とその製造方法及び精製方法、並びにこの導電性材料を用いた非水電解液並びに帯電防止剤 |
US10461365B2 (en) | 2015-06-23 | 2019-10-29 | Nippon Shokubai Co., Ltd. | Conductive material and manufacturing method and purification method for same, and non aqueous electrolyte solution and antistatic agent using said conductive material |
KR102209506B1 (ko) | 2016-05-27 | 2021-01-28 | 가부시기가이샤 닛뽕쇼꾸바이 | 비스(플루오로설포닐)이미드 알칼리 금속염의 제조방법 및 비수계 전해액의 제조방법 |
JP7042018B2 (ja) | 2016-05-27 | 2022-03-25 | 株式会社日本触媒 | 電解液材料の製造方法 |
JP2017210392A (ja) * | 2016-05-27 | 2017-11-30 | 株式会社日本触媒 | 電解液材料の製造方法 |
KR20190003710A (ko) | 2016-05-27 | 2019-01-09 | 가부시기가이샤 닛뽕쇼꾸바이 | 비스(플루오로설포닐)이미드 알칼리 금속염의 제조방법 및 비수계 전해액의 제조방법 |
JPWO2017204302A1 (ja) * | 2016-05-27 | 2019-04-11 | 株式会社日本触媒 | 非水系電解液の製造方法 |
WO2017204302A1 (ja) * | 2016-05-27 | 2017-11-30 | 株式会社日本触媒 | ビス(フルオロスルホニル)イミドアルカリ金属塩の製造方法および非水系電解液の製造方法 |
US10829377B2 (en) | 2016-05-27 | 2020-11-10 | Nippon Shokubai Co., Ltd. | Method for producing bis(fluorosulfonyl)imide alkali metal salt and method for producing non aqueous electrolytic solution |
JP2018052760A (ja) * | 2016-09-27 | 2018-04-05 | 株式会社日本触媒 | ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法 |
JP2018055882A (ja) * | 2016-09-27 | 2018-04-05 | 株式会社日本触媒 | ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法、及びビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料 |
JPWO2020158299A1 (ja) * | 2019-01-31 | 2020-08-06 | ||
WO2020158299A1 (ja) * | 2019-01-31 | 2020-08-06 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池およびこれに用いる電解液 |
US12148885B2 (en) | 2019-01-31 | 2024-11-19 | Panasonic Intellectual Property Management Co., Ltd. | Non-aqueous electrolyte secondary battery and electrolytic solution used therefor |
WO2023276561A1 (ja) | 2021-06-30 | 2023-01-05 | 株式会社日本触媒 | 非水電解液の製造方法 |
KR20240026207A (ko) | 2021-06-30 | 2024-02-27 | 가부시키가이샤 닛폰 쇼쿠바이 | 비수전해액의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
EP3203570A1 (en) | 2017-08-09 |
JP2021182551A (ja) | 2021-11-25 |
JP2019083204A (ja) | 2019-05-30 |
JP7194784B2 (ja) | 2022-12-22 |
JP6918855B2 (ja) | 2021-08-11 |
KR20170063765A (ko) | 2017-06-08 |
KR102443835B1 (ko) | 2022-09-15 |
CN113793986A (zh) | 2021-12-14 |
JP6523314B2 (ja) | 2019-05-29 |
US11539078B2 (en) | 2022-12-27 |
US20210036371A1 (en) | 2021-02-04 |
US20170214092A1 (en) | 2017-07-27 |
JPWO2016052752A1 (ja) | 2017-09-14 |
EP3203570A4 (en) | 2018-05-23 |
US11637320B2 (en) | 2023-04-25 |
CN107112591A (zh) | 2017-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7194784B2 (ja) | 電解液材料 | |
JP7247263B2 (ja) | 非水性電解質組成物 | |
JP6353564B2 (ja) | 電解液及びこれを備えたリチウムイオン二次電池 | |
JP6428631B2 (ja) | 二次電池用非水電解液及びリチウムイオン二次電池 | |
JP2018035054A (ja) | ビス(フルオロスルホニル)イミドアルカリ金属塩の製造方法ならびにビス(フルオロスルホニル)イミドアルカリ金属塩組成物 | |
EP3293807B1 (fr) | Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion | |
WO2013146359A1 (ja) | 二次電池用非水電解液およびリチウムイオン二次電池 | |
JPWO2017065145A1 (ja) | 非水電解液電池用電解液及びそれを用いた非水電解液電池 | |
JPWO2017204303A1 (ja) | ビス(フルオロスルホニル)イミドアルカリ金属塩の製造方法 | |
JP6018820B2 (ja) | リチウム二次電池用非水電解液及びこれを備えたリチウム二次電池 | |
JP2020533753A (ja) | 高容量、ミクロンスケール、体積変化アノード粒子を有する金属イオン電池セルのための電解質 | |
CN110400968A (zh) | 一种非水电解液、含有该非水电解液的动力电池及含有该动力电池的车辆 | |
JP2018035059A (ja) | リチウムビス(フルオロスルホニル)イミド組成物 | |
JP7042018B2 (ja) | 電解液材料の製造方法 | |
JP2014072102A (ja) | 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール | |
JP2018035060A (ja) | リチウムビス(フルオロスルホニル)イミド組成物 | |
JP6587101B2 (ja) | 非水電解液二次電池 | |
JP2014022291A (ja) | 非水電解液及びこれを用いたリチウム二次電池 | |
JP2016058326A (ja) | 非水電解液及びこれを備えたリチウムイオン二次電池 | |
JP6212180B2 (ja) | 非水電解液及びこれを用いたリチウム二次電池 | |
WO2020246519A1 (ja) | 非水電解液用容器、及び非水電解液の保存方法 | |
CN118040044B (zh) | 一种电解液与锂离子电池 | |
JP2012216387A (ja) | 電気化学デバイス及び電気化学デバイス用非水電解液 | |
JP2014139916A (ja) | 電池用電極及びこれを用いた電池 | |
JP2014143029A (ja) | 電池用電極及びこれを用いた電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15846096 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016552361 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15515261 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015846096 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177010796 Country of ref document: KR Kind code of ref document: A |