WO2016043397A1 - Glass defect detection method and apparatus using hyperspectral imaging technique - Google Patents
Glass defect detection method and apparatus using hyperspectral imaging technique Download PDFInfo
- Publication number
- WO2016043397A1 WO2016043397A1 PCT/KR2015/003634 KR2015003634W WO2016043397A1 WO 2016043397 A1 WO2016043397 A1 WO 2016043397A1 KR 2015003634 W KR2015003634 W KR 2015003634W WO 2016043397 A1 WO2016043397 A1 WO 2016043397A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- image
- defect
- defects
- hyperspectral
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/958—Inspecting transparent materials or objects, e.g. windscreens
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Definitions
- the present invention relates to a glass defect detection method, and more particularly to a glass defect detection method using a hyperspectral image.
- a plurality of images are irradiated at various angles to acquire images from a single camera, thereby obtaining images.
- a combination of four or more images obtained from a single camera or a combination of eight to twelve images with two or more cameras disposed at the top and the bottom thereof detects defects and good products.
- a glass defect detection method using a hyperspectral imaging method generates a hyperspectral image of glass, and the hyperspectral image is composed of spectroscopic images of different bands. Selecting at least one spectroscopic image of a band including a defect corresponding to a predetermined test item in the generated hyperspectral image; Measuring a gray value for each defect in the spectroscopic image; Processing defect detection data for each defect in the spectroscopic image; And detecting defects by using a spectroscopic image selected for each band corresponding to the inspection item, measured shade values, and processed defect detection data.
- the present invention has the effect of accurately detecting a variety of defects in the inspection of the appearance of the glass and film. In particular, it accurately detects defects such as printing or discoloration, and accurately classifies floating foreign substances such as dust and stains, thereby maximizing inspection yield.
- FIG. 1 illustrates a glass defect inspection apparatus for generating a hyperspectral image as an exemplary embodiment of the present invention.
- FIG. 2 illustrates an example in which defects according to inspection items of the inspection target glass 140 are detected and spectral data for each defect is displayed.
- FIG. 3 illustrates an embodiment in which a spectroscopic image of a band in which a defect is detected in a hyperspectral image of the inspection target glass 140 is detected as an exemplary embodiment of the present invention.
- a defect is detected according to an inspection item of the inspection target glass 140, and the wavelength value measured for each detected defect and a preset reference value are disclosed.
- FIG. 5 illustrates, as a preferred embodiment of the present invention, a shade value measurement value and defect detection (Blob) data of a defect detected according to an inspection item of an inspection object glass 140.
- FIG. 6 shows an example of defect detection (Blob) data of a defect as a preferred embodiment of the present invention.
- FIG. 7 illustrates an example of detecting a glass defect using all of image data, spectroscopic data, and spatial data as an exemplary embodiment of the present invention.
- FIG. 8 illustrates a glass defect detection flowchart using a hyperspectral imaging technique according to an exemplary embodiment of the present invention.
- a glass defect detection method using a hyperspectral imaging method generates a hyperspectral image of glass, and the hyperspectral image is composed of spectroscopic images of different bands. Selecting at least one spectroscopic image of a band including a defect corresponding to a predetermined test item in the generated hyperspectral image; Measuring a gray value for each defect in the spectroscopic image; Processing defect detection data for each defect in the spectroscopic image; And detecting defects by using a spectroscopic image selected for each band corresponding to the inspection item, measured shade values, and processed defect detection data.
- the defect detection data for the defect includes at least one or more of the coordinates, the center of gravity coordinates, the area, the circumferential length, and the diagonal length of each defect.
- the defects are classified by type using band information of a spectroscopic image in which each defect is detected.
- a glass defect detection method using a hyperspectral imaging technique may include generating a hyperspectral image of glass using an imaging apparatus and a spectroscope; Acquiring image data, spectral data, and spatial data measurement values for the defects corresponding to each of the preset inspection items using the generated hyperspectral image; Analyzing preset image data, spectral data, and spatial data reference values and measured values of the image data, spectral data, and spatial data with respect to defects corresponding to each of the inspection items; And classifying a defect corresponding to the inspection item as defective when the image data, the spectral data, and the spatial data measurement values exceed the preset image data, the spectral data, and the spatial data reference values.
- a glass defect detection method using a hyperspectral imaging technique includes: generating a hyperspectral image of an inspection target glass using an imaging apparatus and a spectroscope; A hyperspectral image analysis step of displaying each defect corresponding to a predetermined inspection item in the hyperspectral image as image data, spectral data and spatial data values; and using all of the displayed image data, spectral data and spatial data values Detecting whether each defect is defective.
- FIG. 1 illustrates a glass defect inspection apparatus for generating a hyperspectral image as an exemplary embodiment of the present invention.
- the glass defect inspection apparatus 100 includes a hyperspectral camera 102 and a hyperspectral image processing apparatus 150.
- the hyperspectral camera 102 includes image capturing apparatuses 110 and 120, a spectrometer 130, a slit 132, and a focusing lens 134.
- Image capturing apparatus (110, 120) is composed of a camera 110 and a detector (120).
- the glass defect inspection apparatus 100 generates a hyperspectral image of the inspection target glass 140 by using the image photographing apparatus 110 and 120 and the spectrometer 130.
- Hyperspectral image refers to an image having a very high spectral resolution composed of more than one hundred consecutive bands or channel-specific spectroscopic images.
- the spectroscope 130 disperses the light incident from the optical lenses of the imaging apparatuses 110 and 120 into a spatial pixel and a spectral pixel in a hyperspectral camera using a diffraction grating.
- Examples of the spectrometer 130 include a reflective grating diffractometer, an acoustic optical bragg grating diffractometer and a volume phase holographic grating diffractometer, and a spectral sensor of a Fabry-Perrot Filter directly applied to a detector. And does not exclude additional spectroscopic components.
- examples of the inspection target glass 140 include a bare glass, a print glass, a touch screen pattern, a smartphone cover glass and a film.
- the hyperspectral image provides spectroscopic information, spatial information, and image information for each pixel of the image by combining the image photographing apparatus 110 and 120 and the spectrometer 130.
- the glass defect inspection apparatus 100 irradiates an illumination light source to the glass 140 to be inspected, and hyperspectrally distributes light information of the glass 140 that is reflected, transmitted, excited, and absorbed from the irradiated light source in the form of a hyperspectral image.
- the image processing apparatus 150 acquires the image and displays the test result on the screen display unit.
- the illumination light source generator may be manufactured as a light source having a short wavelength or multiple wavelengths according to the purpose of the inspection object, and may be installed at the upper and lower portions thereof and irradiate the sample.
- an external unwanted noise light source may be incident to the hyperspectral camera, and thus, the hyperspectral image generator should be manufactured in a dark zone condition to minimize errors.
- the hyperspectral image processing apparatus 150 may be implemented together with the glass defect inspection apparatus 100 or as a separate device capable of wired and wireless communication with the glass defect inspection apparatus 100.
- Examples of the hyperspectral image processing apparatus 150 include a thin terminal, a handheld device, a computer, a smartphone, a notebook, and the like.
- the hyperspectral image processing apparatus 150 may display the captured hyperspectral image as image data, spectral data, and spatial data values. In addition, the hyperspectral image processing apparatus 150 may detect a defect in the hyperspectral image by using the displayed image data, spectral data, and spatial data values. The hyperspectral image processing apparatus 150 displays the defects corresponding to the preset inspection item by using the photographed hyperspectral image as image data, spectral data, and spatial data values, and displays the displayed image data, spectral data, and spatial data values. All of the defects can be detected using the above.
- a gray scale value may be used. From the image data of the hyperspectral image generated by the glass defect inspection apparatus 100, one or more images of spectral bands can be selected to display a joke value as a value between 0 and 255 (8 bits), and the expression of the joke value is 0 to 255. It is not limited to (8 bits). In this regard, reference is made to the description related to FIGS. 5 to 6.
- the spectral data uses a wavelength value of the hyperspectral image.
- the glass defect inspection apparatus 100 may reclassify the detected defects by type by using a characteristic that the detected defects have different wavelengths for each property. In this regard, reference is made to the description of FIGS. 2 to 4.
- the spatial data may use (x, y) position or coordinate value of each pixel of the hyperspectral image.
- coordinate values such as 100 pixels, 100 pixels or 10 mm, 10 mm may be used.
- FIG. 2 illustrates an example in which defects according to inspection items of the inspection object glass 140 are detected and spectral data for each defect is displayed.
- the spectral data includes wavelength information of an image for each wavelength band that is continuously obtained for each unit of spectral resolution in the spectral region. For example, when the spectral region is 400 nm to 1,000 nm and the spectral resolution is 2 nm, the spectral data can be obtained from the images obtained in the order of 400 nm, 402 nm, 404 nm, ..., 1000 nm.
- the inspection items are print color 210, print discoloration 212, scratches 214, 234, foreign objects 216, 218, 220, 222, imprint 224, chipping 226 , Blobs 228, Mura 230, dents 232, IR or camera hole defects 236.
- the print color 210 is lambda 1
- the print discoloration 212 is lambda 2
- the scratches 214 and 234 are lambda 3 in the window area, and the scratch occurs across the printing unit and the window area.
- the spectral data value was measured as ⁇ 11.
- the spectral data values of the dust 216 were ⁇ 4, the hair 218 was ⁇ 5, the salinity was (220) ⁇ 6, and the conveyor belt 222 was ⁇ 7.
- the image 224 is ⁇ 8, the chipping 226 is ⁇ 9, the stain 228 is ⁇ 10, the Mura 230 is ⁇ 13, the dent 232 is ⁇ 12, and IR or camera hole defects. (236) was measured for spectral data as ⁇ 14.
- FIG. 3 illustrates an embodiment of reclassifying the defects detected by the glass defect inspection apparatus (FIGS. 1 and 100) according to a preferred embodiment of the present invention.
- the glass defect inspection apparatus may reclassify the hyperspectral image generated for the inspection target glass 310 for each type of detected defect.
- the glass defect inspection apparatus may classify an image by material and display the hyperspectral image composed of images captured by one or more consecutive bands or channels (310, 312, 314, 316). , 318, 320, 330 and 340).
- a defect of bare glass when having a wavelength of ⁇ 1 310 For example, a defect of bare glass when having a wavelength of ⁇ 1 310, a defect of printing when having a wavelength of ⁇ 2 312, a defect of printing when having a wavelength of ⁇ 2 312, and a floating foreign material defect when having a wavelength of ⁇ 3 to ⁇ 4 (314, 316).
- the wavelength is ⁇ 5 (318), it is a fixed foreign matter defect, if it has a wavelength of ⁇ 6 (320), IR or a camera hole defect, if it has a wavelength of ⁇ 7 (322), the print blot defect, ⁇ 6 (320)
- it is classified as a chipping defect in the case of having a wavelength distributed in the range of ⁇ 10 to ⁇ 30 330, and as a scratch in the case of having a wavelength distributed in the range of ⁇ 20 to ⁇ 40 340.
- the criteria of defect classification for each wavelength ⁇ are not limited thereto, and may be applied in various combinations.
- FIG. 4 illustrates an embodiment in which spectroscopic data of defects detected in a hyperspectral image of a glass to be inspected is measured as an exemplary embodiment of the present invention.
- the hyperspectral image 400 of the smartphone cover glass is largely divided into the print area 401 and the window area 402.
- the inspection item of the print area 401 includes an IR hole 410, a print color 412, a color change 414, and a scratch 416.
- Inspection items of the window area 402 include dust 418, conveyor belt 420, stain 422, scratch 424, and stamp 426.
- the IR hole 410 is 630 nm
- the printing color 412 is 455 nm
- the printing discoloration 414 is 480 nm
- the scratch 416 is The wavelength value of 495 nm was measured.
- the wavelength measurement value 430 measured according to each inspection item exceeds the wavelength reference value 440 and the wavelength error range 450.
- the wavelength measurement value 430 is 480 nm to 484 nm, while the wavelength reference value is 451 nm and the wavelength error is +/ ⁇ . 5 nm appears to exceed the tolerance.
- the print discoloration 414 inspection item is detected as a defect.
- Figure 5 is a preferred embodiment of the present invention, as a preferred embodiment of the present invention, measured by inspection items (510, 512, 514, 516, 518, 520, 522, 524, 526) of the inspection target glass
- the measurement values 530 and 550 of the image data and the spatial data and the predetermined spatial data reference value 552 for each inspection item are shown.
- FIG. 6 shows defect detection (Blob) data of the spot 522 detected in the window region 502 of FIG.
- Defect detection (Blob) data includes the coordinates (x, y) of the inspection item, the center of gravity (600), the area size, the length of the diagonal (S600) and the length of the circumference (S610).
- defect detection data for defects in the processed hyperspectral image may be extracted and used.
- image processing is performed to detect defects, among which a smoothing filter (averaging, Gaussian, etc.) for removing noise, an edge filter (Sobel filter, Canny filter) for contour detection, a morphological morphology processing technique (Erosion, swelling, removal, filling, etc.), defect detection functions (number of defects, location, center, area, contour information, etc.), image binarization (single binarization, dynamic binarization)
- a smoothing filter averaging, Gaussian, etc.
- an edge filter Sobel filter, Canny filter
- morphological morphology processing technique Erosion, swelling, removal, filling, etc.
- defect detection functions number of defects, location, center, area, contour information, etc.
- image binarization single binarization, dynamic binarization
- the present invention is not limited thereto and may include all techniques for recognizing a defect of an object in an image.
- each spectroscopic image in which a defect is detected is extracted at least or more (FIG. 3, 310, 312, 314, 316, 318, 320, 330 and 340. Thereafter, it is determined whether the wavelength of the defect detected in each spectroscopic image exceeds a predetermined range, and primarily, whether the defect belongs to the defect.
- the gray value of the detected defect is measured as in the exemplary embodiment illustrated in FIG. 5 (530).
- the image is smoothed using a smoothing filter
- the contour detection filter is used to detect the contour of the test object
- the morphological morphology processing technique is used to express the morphological aspects of the image and perform various mathematical operations.
- the GV binary value 540 may be performed through a binarization filter according to a purpose before or after performing the above various image processing.
- the image processing method may be variously modified according to the purpose of detecting a defect, and the present invention may not be limited thereto and may include all techniques for recognizing a defect of an object in an image.
- the defect detection data 550 may be derived using the GV binary value 540 and the defect detection function calculated in FIG. 5.
- FIG. 7 illustrates an example of detecting a defect using all of spectral data, image data, and spatial data.
- the spectral image is selected using a spectroscopic data including a defect to be detected in the hyperspectral image of the inspection target (see FIG. 3). Thereafter, the gray value of the defect is measured using image data of the defect in the selected spectroscopic image (see FIG. 5). Thereafter, defect detection data is extracted from the binarized image obtained by binarizing the measured gray value using a defect detection function of a defect (see FIG. 5).
- a spectroscopic image including a defect corresponding to the inspection item is selected.
- a defect corresponding to a predetermined inspection item is detected in each of the print area 701 and the window area 702 in the selected spectroscopic image.
- Examples of preset inspection items include IR 710, color 712, color change 714, scratch 716, foreign material 1 718 in the window area 702, and the like. There is foreign material 2 720, stain 722, scratch 724 and chipping 726.
- the bands 730 in which the IR 710 defects are detected are 630 nm, 632 nm, and 634 m, and the shaded values 740 are 51, 55, and 80 in each band.
- the bands in which the color 712 defect was detected were 450 nm and 452 nm, and the shaded value 740 was measured as 0 and 0 in each band.
- Discoloration 714 was detected in the areas of 454nm and 458nm, and the shade value 740 was measured as 10 and 15 in each band.
- the shade value 740 was measured as 10 and 15 in each band.
- the scratch 716 the foreign material 1 718, the foreign material 2 720, the stain 722, the scratch 724 and the chipping 726, the detected band and the shade value 740 in each band, respectively.
- the spectral data and the image data obtained by the above method are then subjected to image processing (742, 744, 746).
- image processing include at least one of image processing using a filter, mathematical and logical operation processing, and binarization processing.
- the defect detection data of the defect is calculated using the gray value 740 value and the defect detection function (Blob) (750).
- the defect detection data refer to the description of FIGS. 5 to 6.
- the spatial data of the defect detection data it is determined whether the total number of defects for each band of the image, the individual positions of the defects, the individual centers, the individual areas, and the individual contour information pass the preset criteria 760.
- the above process compares or calculates the difference with the predetermined standard and classifies it as good or bad, rework, etc. (S780).
- FIG. 8 is a flowchart illustrating a glass defect detection using a hyperspectral imaging technique according to a preferred embodiment of the present invention.
- the glass defect inspection apparatus (FIGS. 1 and 100) of the present invention generates a hyperspectral image of the inspection target glass by using a hyperspectral imaging camera (FIGS. 1 and 102) (S800).
- a spectroscopic image (see FIG. 3) of a band including a defect corresponding to a predetermined test item is selected (S810).
- one or more spectroscopic images may be selected.
- the gray value of the defect is measured in the selected spectral image (S820). Thereafter, the selected spectral image is binarized by performing mathematical and logical operations or image capturing methods, and defect detection data for defects in the binarized hyperspectral image is calculated (S830).
- the present invention can also be embodied as computer readable code on a computer readable recording medium.
- the computer-readable recording medium includes all kinds of recording devices in which data that can be read by a computer system is stored.
- Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disks, optical data storage devices, and the like.
- the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Disclosed is a glass defect detection apparatus using a hyperspectral imaging technique. The glass defect detection apparatus comprises: a hyperspectral image generation unit for generating a hyperspectral image of glass to be inspected, using an image photographing device and a spectroscope; a hyperspectral image analyzing unit for displaying each defect corresponding to a predetermined inspection item as image data, spectroscopic data, and spatial data values, using the hyperspectral image; and a fault detection unit for detecting a fault among the defects using all of the displayed image data, spectroscopic data, and spatial data values.
Description
본 발명은 글라스 결함 검출 방법에 관한 것으로, 보다 상세히 초분광영상을 이용한 글라스 결함 검출 방법에 관한 것이다. The present invention relates to a glass defect detection method, and more particularly to a glass defect detection method using a hyperspectral image.
종래에는 단일 카메라에서 여러 개의 영상을 획득하기 위하여 다양한 각도로 복수의 조명을 조사하여 영상을 취득하였다. 이렇게 단일 카메라에서 획득한 4개 이상의 영상을 조합하거나 상부와 하부에 배치된 두 개 이상의 카메라로 8개 ~ 12개의 영상 조합하여 시료의 불량과 양품을 검출하고 있는 상황이다. 다수의 조명조건에 의한 멀티 영상이 있더라도 농담치(Gray Value)로 불량과 양품을 표현하는 것은 한계가 있어왔고, 글라스 및 필름 검사시 결함을 종류별로 검출하는데 제약이 있었다. 특히, 인쇄 또는 변색과 같은 속성 정보를 분류하지 못해 검사 수율을 극대화시킬 수 없는 문제가 있었다. Conventionally, a plurality of images are irradiated at various angles to acquire images from a single camera, thereby obtaining images. In this way, a combination of four or more images obtained from a single camera or a combination of eight to twelve images with two or more cameras disposed at the top and the bottom thereof detects defects and good products. Even if there are multiple images under a large number of lighting conditions, expressing defects and good products in gray values has been limited, and there have been limitations in detecting defects by type during glass and film inspection. In particular, there is a problem that can not maximize the inspection yield because it does not classify the attribute information such as printing or discoloration.
본 발명에서는 글라스 및 필름의 외관검사에서 다양한 결함을 검출하는 정확도를 높이고, 결함의 종류별로 분류를 제공하고자 한다.In the present invention, to improve the accuracy of detecting various defects in the inspection of the appearance of the glass and film, and to provide a classification by the type of defects.
본 발명의 바람직한 일 실시 예로서, 초분광영상화 기법을 이용한 글라스(Glass) 결함 검출 방법은 글라스에 대한 초분광영상을 생성하고, 상기 초분광영상은 서로 다른 대역(band)의 분광영상으로 구성되며, 생성된 초분광영상에서 기설정된 검사 항목에 대응하는 결함이 포함된 대역의 분광영상을 적어도 하나 이상 선택하는 단계; 상기 분광영상 내의 각각의 결함에 대해 농담치(Gray Value)을 측정하는 단계; 상기 분광영상 내의 각각의 결함에 대해 결함검출데이터를 처리하는 단계; 상기 검사항목에 대응하는 결함 각각에 대해 대역별로 선택된 분광 영상, 측정된 농담치 및 처리된 결함검출데이터를 이용하여 불량을 검출하는 단계;를 포함하는 것을 특징으로 한다. In a preferred embodiment of the present invention, a glass defect detection method using a hyperspectral imaging method generates a hyperspectral image of glass, and the hyperspectral image is composed of spectroscopic images of different bands. Selecting at least one spectroscopic image of a band including a defect corresponding to a predetermined test item in the generated hyperspectral image; Measuring a gray value for each defect in the spectroscopic image; Processing defect detection data for each defect in the spectroscopic image; And detecting defects by using a spectroscopic image selected for each band corresponding to the inspection item, measured shade values, and processed defect detection data.
본 발명의 바람직한 일 실시 예에서는 글라스 및 필름의 외관검사에서 다양한 결함을 정확하게 검출할 수 있는 효과가 있다. 특히, 인쇄 또는 변색 등의 결함을 정확하게 검출하며, 먼지와 같은 부유성 이물, 얼룩을 정확히 분류하여 검사 수율을 극대화 시키는 효과가 있다. In one preferred embodiment of the present invention has the effect of accurately detecting a variety of defects in the inspection of the appearance of the glass and film. In particular, it accurately detects defects such as printing or discoloration, and accurately classifies floating foreign substances such as dust and stains, thereby maximizing inspection yield.
도 1 은 본 발명의 바람직한 일 실시예로서, 초분광영상을 생성하는 글라스 결함 검사 장치를 도시한다. 1 illustrates a glass defect inspection apparatus for generating a hyperspectral image as an exemplary embodiment of the present invention.
도 2 는 본 발명의 바람직한 일 실시예로서, 검사 대상 글라스(140)의 검사항목에 따른 결함을 검출하고, 결함별 분광데이터를 표시한 일 예를 도시한다. FIG. 2 illustrates an example in which defects according to inspection items of the inspection target glass 140 are detected and spectral data for each defect is displayed.
도 3 는 본 발명의 바람직한 일 실시예로서, 검사 대상 글라스(140)의 초분광 영상에서 결함이 검출되는 대역의 분광 영상을 검출한 일 실시예를 도시한다. FIG. 3 illustrates an embodiment in which a spectroscopic image of a band in which a defect is detected in a hyperspectral image of the inspection target glass 140 is detected as an exemplary embodiment of the present invention.
도 4 는 본 발명의 바람직한 일 실시예로서, 검사 대상 글라스(140)의 검사항목에 따라 결함을 검출하고, 검출된 결함마다 측정한 파장값과 기설정된 기준값을 개시한다. 4 is a preferred embodiment of the present invention, a defect is detected according to an inspection item of the inspection target glass 140, and the wavelength value measured for each detected defect and a preset reference value are disclosed.
도 5 는 본 발명의 바람직한 일 실시예로서, 검사 대상 글라스(140)의 검사항목에 따라 검출된 결함의 농담치 측정값 및 결함검출(Blob)데이터를 개시한다. FIG. 5 illustrates, as a preferred embodiment of the present invention, a shade value measurement value and defect detection (Blob) data of a defect detected according to an inspection item of an inspection object glass 140.
도 6은 본 발명의 바람직한 일 실시예로서, 결함의 결함검출(Blob)데이터의 일 예를 도시한다. 6 shows an example of defect detection (Blob) data of a defect as a preferred embodiment of the present invention.
도 7 은 본 발명의 바람직한 일 실시예로서, 영상데이터, 분광데이터 및 공간데이터를 모두이용하여 글라스(Glass) 결함을 검출하는 일 예를 도시한다. FIG. 7 illustrates an example of detecting a glass defect using all of image data, spectroscopic data, and spatial data as an exemplary embodiment of the present invention.
도 8은 본 발명의 바람직한 일 실시예로서, 초분광영상화 기법을 이용한 글라스(Glass) 결함 검출 흐름도를 도시한다. FIG. 8 illustrates a glass defect detection flowchart using a hyperspectral imaging technique according to an exemplary embodiment of the present invention.
본 발명의 바람직한 일 실시 예로서, 초분광영상화 기법을 이용한 글라스(Glass) 결함 검출 방법은 글라스에 대한 초분광영상을 생성하고, 상기 초분광영상은 서로 다른 대역(band)의 분광영상으로 구성되며, 생성된 초분광영상에서 기설정된 검사 항목에 대응하는 결함이 포함된 대역의 분광영상을 적어도 하나 이상 선택하는 단계; 상기 분광영상 내의 각각의 결함에 대해 농담치(Gray Value)을 측정하는 단계; 상기 분광영상 내의 각각의 결함에 대해 결함검출데이터를 처리하는 단계; 상기 검사항목에 대응하는 결함 각각에 대해 대역별로 선택된 분광 영상, 측정된 농담치 및 처리된 결함검출데이터를 이용하여 불량을 검출하는 단계;를 포함하는 것을 특징으로 한다. In a preferred embodiment of the present invention, a glass defect detection method using a hyperspectral imaging method generates a hyperspectral image of glass, and the hyperspectral image is composed of spectroscopic images of different bands. Selecting at least one spectroscopic image of a band including a defect corresponding to a predetermined test item in the generated hyperspectral image; Measuring a gray value for each defect in the spectroscopic image; Processing defect detection data for each defect in the spectroscopic image; And detecting defects by using a spectroscopic image selected for each band corresponding to the inspection item, measured shade values, and processed defect detection data.
바람직하게, 결함에 대한 결함검출데이터는 결함 각각의 좌표, 무게 중심 좌표, 면적, 둘레길이, 대각선 길이 중 적어도 하나 이상을 포함하는 것을 특징으로 한다. Preferably, the defect detection data for the defect includes at least one or more of the coordinates, the center of gravity coordinates, the area, the circumferential length, and the diagonal length of each defect.
바람직하게, 결함 각각이 검출된 분광 영상의 대역(band) 정보를 이용하여, 상기 결함을 종류별로 분류하는 것을 특징으로 한다. Preferably, the defects are classified by type using band information of a spectroscopic image in which each defect is detected.
본 발명의 또 다른 바람직한 일 실시 예로서, 초분광영상화 기법을 이용한 글라스(Glass) 결함 검출 방법은 영상촬영장치 및 분광기를 이용하여 글라스에 대한 초분광영상을 생성하는 단계; 상기 생성된 초분광영상을 이용하여 기설정된 검사항목 각각에 대응하는 결함에 대해 영상데이터, 분광데이터 및 공간데이터 측정값을 취득하는 단계; 상기 검사항목 각각에 대응하는 결함에 대해 기설정된 영상데이터, 분광데이터 및 공간데이터 기준값과 상기 영상데이터, 분광데이터 및 공간데이터 측정값을 분석하는 단계; 및 상기 비교 결과, 상기 영상데이터, 분광데이터 및 공간데이터 측정값이 상기 기설정된 영상데이터, 분광데이터 및 공간데이터 기준값을 초과하는 경우 해당 검사항목에 대응하는 결함을 불량으로 분류하는 단계;를 포함한다. According to another preferred embodiment of the present invention, a glass defect detection method using a hyperspectral imaging technique may include generating a hyperspectral image of glass using an imaging apparatus and a spectroscope; Acquiring image data, spectral data, and spatial data measurement values for the defects corresponding to each of the preset inspection items using the generated hyperspectral image; Analyzing preset image data, spectral data, and spatial data reference values and measured values of the image data, spectral data, and spatial data with respect to defects corresponding to each of the inspection items; And classifying a defect corresponding to the inspection item as defective when the image data, the spectral data, and the spatial data measurement values exceed the preset image data, the spectral data, and the spatial data reference values. .
본 발명의 또 다른 바람직한 일 실시예로서, 초분광영상화 기법을 이용한 글라스(Glass) 결함 검출 방법은 영상촬영장치 및 분광기를 이용하여 검사 대상 글라스의 초분광영상을 생성하는 초분광영상생성 단계; 상기 초분광영상에서 기설정된 검사항목에 대응하는 결함 각각을 영상데이터, 분광데이터 및 공간데이터 값으로 표시하는 초분광영상분석 단계;및 상기 표시된 영상데이터, 분광데이터 및 공간데이터 값을 모두 이용하여 상기 결함 각각이 불량인지 여부를 검출하는 단계;를 포함한다. In another preferred embodiment of the present invention, a glass defect detection method using a hyperspectral imaging technique includes: generating a hyperspectral image of an inspection target glass using an imaging apparatus and a spectroscope; A hyperspectral image analysis step of displaying each defect corresponding to a predetermined inspection item in the hyperspectral image as image data, spectral data and spatial data values; and using all of the displayed image data, spectral data and spatial data values Detecting whether each defect is defective.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. Effects and features of the present invention, and methods of achieving them will be apparent with reference to the embodiments described below in detail with reference to the drawings. However, the present invention is not limited to the embodiments disclosed below but may be implemented in various forms.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be denoted by the same reference numerals, and redundant description thereof will be omitted. .
이하의 실시 예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다.In the following embodiments, the terms first, second, etc. are used for the purpose of distinguishing one component from other components rather than a restrictive meaning.
이하의 실시 예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following embodiments, the singular forms “a”, “an” and “the” include plural forms unless the context clearly indicates otherwise.
이하의 실시 예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.In the following embodiments, terms such as include or have means that the features or components described in the specification are present, and does not preclude the possibility of adding one or more other features or components.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. In the drawings, components may be exaggerated or reduced in size for convenience of description. For example, the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, and thus the present invention is not necessarily limited to the illustrated.
도 1 은 본 발명의 바람직한 일 실시예로서, 초분광영상을 생성하는 글라스 결함 검사 장치를 도시한다. 1 illustrates a glass defect inspection apparatus for generating a hyperspectral image as an exemplary embodiment of the present invention.
글라스결함 검사장치(100)는 초분광카메라(102) 및 초분광 영상처리 장치(150)를 포함한다. 초분광카메라(102)는 영상촬영장치(110, 120), 분광기(130), 슬릿(slit)(132) 및 포커싱 렌즈(Focusing Lens)(134)를 포함한다. 영상촬영장치(110, 120)는 카메라(110)와 디텍터(120)로 구성된다. The glass defect inspection apparatus 100 includes a hyperspectral camera 102 and a hyperspectral image processing apparatus 150. The hyperspectral camera 102 includes image capturing apparatuses 110 and 120, a spectrometer 130, a slit 132, and a focusing lens 134. Image capturing apparatus (110, 120) is composed of a camera 110 and a detector (120).
글라스결함 검사장치(100)는 영상촬영장치(110, 120) 및 분광기(130)를 이용하여 검사 대상 글라스(140)의 초분광영상을 생성한다. 초분광영상은 백 개 이상의 연속된 대역(band) 또는 채널별 분광영상으로 구성된 분광 해상도가 매우 높은 영상을 의미한다. The glass defect inspection apparatus 100 generates a hyperspectral image of the inspection target glass 140 by using the image photographing apparatus 110 and 120 and the spectrometer 130. Hyperspectral image refers to an image having a very high spectral resolution composed of more than one hundred consecutive bands or channel-specific spectroscopic images.
분광기(130)는 영상촬영장치(110, 120)의 광학렌즈로부터 입사된 빛을 회절격자를 이용하여 초분광 카메라 내에서 Spatial Pixel과 Spectral Pixel로 분산(Dispersion)을 수행한다. The spectroscope 130 disperses the light incident from the optical lenses of the imaging apparatuses 110 and 120 into a spatial pixel and a spectral pixel in a hyperspectral camera using a diffraction grating.
분광기(130)의 예로는 반사형(Reflect Grating) 회절기, AOBG(Acoustic Optical Bragg Grating) 회절기 및 투과형(Volume Phase Holographic Grating) 회절기를 포함하고 디텍터에 직접화된 Fabry-Perrot Filter의 분광센서를 포함하며 이외 추가적인 분광기의 구성요소를 배제하지 않는다. 또한, 검사 대상 글라스(140)의 예로는 Bare Glass, Print Glass, Touch Screen Pattern, 스마트폰 커버 글라스 및 필름 등을 포함한다. Examples of the spectrometer 130 include a reflective grating diffractometer, an acoustic optical bragg grating diffractometer and a volume phase holographic grating diffractometer, and a spectral sensor of a Fabry-Perrot Filter directly applied to a detector. And does not exclude additional spectroscopic components. In addition, examples of the inspection target glass 140 include a bare glass, a print glass, a touch screen pattern, a smartphone cover glass and a film.
초분광영상은 영상촬영장치(110, 120)와 분광기(130)를 결합하여 영상의 각 화소 별로 분광 정보, 공간정보, 영상정보를 제공한다. The hyperspectral image provides spectroscopic information, spatial information, and image information for each pixel of the image by combining the image photographing apparatus 110 and 120 and the spectrometer 130.
글라스결함 검사 장치(100)는 조명 광원을 검사 대상인 글라스(140)에 조사하고 그 조사된 광원으로부터 반사, 투과, 여기, 흡수되어 나타난 글라스(140)의 광정보를 초분광영상의 형태로 초분광 영상처리 장치(150)에서 획득하고 영상 처리하여 검사결과를 화면 표시부에 디스플레이 한다. 조명 광원 발생장치는 검사 대상의 목적에 따라서 단파장 또는 다파장의 광원으로 제작될 수 있으며 상부와 하부에 설치되어 시료에 조사시킬 수 있다. 또한 초분광 영상을 획득 시 외부의 원하지 않는 Noise 광원이 초분광카메라로 입사되어 영향을 줄 수 있으므로 에러를 최소화하기 위해서 암실(Dark Zone) 조건 내에 초분광 영상 생성부가 제작되어야 한다. 초분광영상처리장치(150)는 글라스결함 검사 장치(100)에 함께 구현되거나 또는 글라스 결함 검사장치(100)와 유무선 통신이 가능한 별도의 장치로 구현될 수 있다. 초분광영상처리장치(150)의 예로는 씬단말기, 핸드헬드 장치, 컴퓨터, 스마트폰, 노트북 등을 포함한다. The glass defect inspection apparatus 100 irradiates an illumination light source to the glass 140 to be inspected, and hyperspectrally distributes light information of the glass 140 that is reflected, transmitted, excited, and absorbed from the irradiated light source in the form of a hyperspectral image. The image processing apparatus 150 acquires the image and displays the test result on the screen display unit. The illumination light source generator may be manufactured as a light source having a short wavelength or multiple wavelengths according to the purpose of the inspection object, and may be installed at the upper and lower portions thereof and irradiate the sample. In addition, when the hyperspectral image is acquired, an external unwanted noise light source may be incident to the hyperspectral camera, and thus, the hyperspectral image generator should be manufactured in a dark zone condition to minimize errors. The hyperspectral image processing apparatus 150 may be implemented together with the glass defect inspection apparatus 100 or as a separate device capable of wired and wireless communication with the glass defect inspection apparatus 100. Examples of the hyperspectral image processing apparatus 150 include a thin terminal, a handheld device, a computer, a smartphone, a notebook, and the like.
초분광영상처리장치(150)에서는 촬영된 초분광영상을 영상데이터, 분광데이터 및 공간데이터 값으로 표시할 수 있다. 그리고, 초분광영상처리장치(150)에서는 표시된 영상데이터, 분광데이터 및 공간데이터 값을 이용하여 초분광영상 내에서 결함을 검출할 수 있다. 초분광영상처리장치(150)에서는 촬영된 초분광영상을 이용하여 기설정된 검사항목에 대응하는 결함 각각을 영상데이터, 분광데이터 및 공간데이터 값으로 표시하고, 표시된 영상데이터, 분광데이터 및 공간데이터 값을 모두 이용하여 상기 결함 중 불량을 검출할 수 있다. The hyperspectral image processing apparatus 150 may display the captured hyperspectral image as image data, spectral data, and spatial data values. In addition, the hyperspectral image processing apparatus 150 may detect a defect in the hyperspectral image by using the displayed image data, spectral data, and spatial data values. The hyperspectral image processing apparatus 150 displays the defects corresponding to the preset inspection item by using the photographed hyperspectral image as image data, spectral data, and spatial data values, and displays the displayed image data, spectral data, and spatial data values. All of the defects can be detected using the above.
영상데이터의 일 예로 농담치(Gray Scale) 값을 이용할 수 있다. 글라스결함 검사 장치(100)에서 생성한 초분광영상의 영상 데이터에서 하나 이상의 분광 대역의 영상을 선택하여 농담치를 0~255(8비트) 사이의 값으로 표시할 수 있으며 농담치의 표현은 0~255(8비트)에 국한되지 않는다. 이와 관련해서는 도 5 내지 6과 관련한 설명을 참고한다. As an example of the image data, a gray scale value may be used. From the image data of the hyperspectral image generated by the glass defect inspection apparatus 100, one or more images of spectral bands can be selected to display a joke value as a value between 0 and 255 (8 bits), and the expression of the joke value is 0 to 255. It is not limited to (8 bits). In this regard, reference is made to the description related to FIGS. 5 to 6.
그리고, 분광데이터는 초분광영상의 파장(Wavelength)값을 이용한다. 본 발명의 바람직한 일 실시 예에서, 글라스결함 검사 장치(100)는 검출한 결함은 속성별로 서로 다른 파장을 지니는 특성을 이용하여, 검출한 결함을 종류별로 재분류할 수 있다. 이와 관련해서는 도 2 내지 4의 설명을 참고한다. The spectral data uses a wavelength value of the hyperspectral image. According to an exemplary embodiment of the present disclosure, the glass defect inspection apparatus 100 may reclassify the detected defects by type by using a characteristic that the detected defects have different wavelengths for each property. In this regard, reference is made to the description of FIGS. 2 to 4.
공간 데이터는 초분광영상의 각 화소의 (x,y)위치 또는 좌표값을 이용할 수 있다. 일 예로, 100pixels, 100pixels 또는 10mm, 10mm 등의 좌표값을 이용할 수 있다. The spatial data may use (x, y) position or coordinate value of each pixel of the hyperspectral image. For example, coordinate values such as 100 pixels, 100 pixels or 10 mm, 10 mm may be used.
도 2 는 본 발명의 바람직한 일 실시 예로서, 검사 대상 글라스(140)의 검사항목에 따른 결함을 검출하고, 결함별 분광데이터를 표시한 일 예를 도시한다. 2 illustrates an example in which defects according to inspection items of the inspection object glass 140 are detected and spectral data for each defect is displayed.
분광데이터는 Spectral 영역에서 Spectral 해상도의 단위별로 연속적으로 획득한 파장 대역별 영상의 파장 정보를 포함한다. 예를 들어, Spectral 영역이 400nm~1,000nm이고, Spectral 해상도가 2nm인 경우, 분광데이터는 400nm, 402nm, 404nm,...,1000nm 순으로 획득한 영상으로부터 획득이 가능하다. The spectral data includes wavelength information of an image for each wavelength band that is continuously obtained for each unit of spectral resolution in the spectral region. For example, when the spectral region is 400 nm to 1,000 nm and the spectral resolution is 2 nm, the spectral data can be obtained from the images obtained in the order of 400 nm, 402 nm, 404 nm, ..., 1000 nm.
글라스 샘플의 결함을 조사할 때 검사항목은 인쇄 색상(210), 인쇄 변색(212), 스크래치(214, 234), 이물(216, 218, 220, 222), 찍힘(224), 치핑(226), 얼룩(228), 물때(Mura)(230), 덴트(dent)(232),IR 또는 카메라 홀 불량(236) 중 적어도 하나 이상을 포함한다. When inspecting the defect of the glass sample, the inspection items are print color 210, print discoloration 212, scratches 214, 234, foreign objects 216, 218, 220, 222, imprint 224, chipping 226 , Blobs 228, Mura 230, dents 232, IR or camera hole defects 236.
도 2를 참고하면, 인쇄 색상(210)은 λ1, 인쇄 변색(212)은 λ2, 스크래치(214, 234)는 윈도우 영역에 발생한 스크래치(214)의 경우 λ3, 인쇄부와 윈도우 영역에 걸쳐 발생한 스크래치(234)의 경우 λ11로 분광데이터 값이 측정되었다. Referring to FIG. 2, the print color 210 is lambda 1, the print discoloration 212 is lambda 2, and the scratches 214 and 234 are lambda 3 in the window area, and the scratch occurs across the printing unit and the window area. In the case of (234), the spectral data value was measured as λ11.
또한, 이물의 경우 종류에 따라 먼지(216)는 λ4, 머리카락(218)은 λ5, 염분은 (220) λ6, 컨베이어 벨트는(222) λ7로 분광데이터 값이 측정되었다. In the case of the foreign material, the spectral data values of the dust 216 were λ 4, the hair 218 was λ 5, the salinity was (220) λ 6, and the conveyor belt 222 was λ 7.
그 외에, 찍힘(224)은 λ8, 치핑(226)은 λ9, 얼룩(228)은 λ10, 물때(Mura)(230)는 λ13, 덴트(dent)(232)는 λ12, 그리고 IR 또는 카메라 홀 불량(236)은 λ14로 분광데이터 값이 측정되었다. In addition, the image 224 is λ8, the chipping 226 is λ9, the stain 228 is λ10, the Mura 230 is λ13, the dent 232 is λ12, and IR or camera hole defects. (236) was measured for spectral data as λ14.
도 3 은 본 발명의 바람직한 일 실시예로서, 글라스결함 검사장치(도 1, 100)에서 검출한 결함을 종류별로 재분류하는 일 실시예를 도시한다.FIG. 3 illustrates an embodiment of reclassifying the defects detected by the glass defect inspection apparatus (FIGS. 1 and 100) according to a preferred embodiment of the present invention.
글라스결함 검사장치(도 1, 100)는 검사 대상글라스(310)에 대해 생성한 초분광영상을 검출된 결함의 종류별로 재분류할 수 있다. 글라스결함 검사장치(도 1, 100)는 백 개 이상의 연속된 대역(band) 또는 채널별로 촬영된 영상으로 구성된 초분광영상에서 material 별로 영상을 분류하여 표시될 수 있다(310, 312, 314, 316, 318, 320, 330 및 340).The glass defect inspection apparatus (FIGS. 1 and 100) may reclassify the hyperspectral image generated for the inspection target glass 310 for each type of detected defect. The glass defect inspection apparatus (FIGS. 1 and 100) may classify an image by material and display the hyperspectral image composed of images captured by one or more consecutive bands or channels (310, 312, 314, 316). , 318, 320, 330 and 340).
예를 들어, λ1(310)의 파장을 지니는 경우 Bare Glass의 결함으로, λ2(312)의 파장을 지니는 경우 인쇄의 결함으로, λ3 내지 λ4(314, 316)의 파장을 지니는 경우 부유성 이물 결함으로, λ5(318)의 파장을 지니는 경우 고착성 이물 결함으로, λ6(320)의 파장을 지니는 경우 IR 또는 카메라 홀 결함으로, λ7(322)의 파장을 지니는 경우 인쇄 얼룩 결함으로, λ6(320)의 파장을 지니는 경우, λ10 내지 λ30(330) 범위에 분포하는 파장을 지니는 경우 치핑결함으로, 그리고 λ20 내지 λ40(340) 범위에 분포하는 파장을 지니는 경우 스크래치로 분류한다. 추가적으로 파장(λ)별 결함 분류의 기준은 이에 국한되지 않으며 다양한 조합으로 응용될 수 있다.For example, a defect of bare glass when having a wavelength of λ1 310, a defect of printing when having a wavelength of λ2 312, a defect of printing when having a wavelength of λ2 312, and a floating foreign material defect when having a wavelength of λ3 to λ4 (314, 316). For example, if the wavelength is λ5 (318), it is a fixed foreign matter defect, if it has a wavelength of λ6 (320), IR or a camera hole defect, if it has a wavelength of λ7 (322), the print blot defect, λ6 (320) In the case of having a wavelength of, it is classified as a chipping defect in the case of having a wavelength distributed in the range of λ 10 to λ 30 330, and as a scratch in the case of having a wavelength distributed in the range of λ 20 to λ 40 340. In addition, the criteria of defect classification for each wavelength λ are not limited thereto, and may be applied in various combinations.
도 4 는 본 발명의 바람직한 일 실시예로서, 검사 대상 글라스의 초분광영상에서 검출된 결함들의 분광데이터를 측정한 일 실시 예를 도시한다. FIG. 4 illustrates an embodiment in which spectroscopic data of defects detected in a hyperspectral image of a glass to be inspected is measured as an exemplary embodiment of the present invention.
스마트폰 커버 글라스의 초분광영상(400)은 크게 인쇄영역(401)과 윈도우영역(402)로 분리된다. 인쇄영역(401)의 검사 항목은 IR홀(410), 인쇄색상(412), 인쇄변색(414), 스크레치(416)를 포함한다. 윈도우 영역(402)의 검사항목은 먼지(418), 컨베이어 벨트(420), 얼룩(422), 스크레치(424) 및 찍힘(426)을 포함한다. The hyperspectral image 400 of the smartphone cover glass is largely divided into the print area 401 and the window area 402. The inspection item of the print area 401 includes an IR hole 410, a print color 412, a color change 414, and a scratch 416. Inspection items of the window area 402 include dust 418, conveyor belt 420, stain 422, scratch 424, and stamp 426.
스마트폰 커버 글라스의 초분광영상(400)을 측정한 결과 인쇄영역(401)에서 IR홀(410)은 630nm, 인쇄색상(412)은 455nm, 인쇄변색(414)은 480nm 및 스크레치(416)는 495nm의 파장값이 측정되었다. As a result of measuring the hyperspectral image 400 of the smart phone cover glass, in the printing area 401, the IR hole 410 is 630 nm, the printing color 412 is 455 nm, the printing discoloration 414 is 480 nm, and the scratch 416 is The wavelength value of 495 nm was measured.
본 발명의 바람직한 일 실시 예에서는, 각 검사항목에 따라 측정한 파장 측정값(430)이 파장기준값(440) 및 파장 오차범위(450)를 초과하는지를 확인한다. In a preferred embodiment of the present invention, it is checked whether the wavelength measurement value 430 measured according to each inspection item exceeds the wavelength reference value 440 and the wavelength error range 450.
예를 들어, 도 4를 참고하면 인쇄영역(도 4, 401)에서 인쇄 변색(414)의 경우 파장 측정값(430)은 480nm~484nm임에 반해, 파장 기준값은 451nm, 파장 오차는 +/- 5nm 로 허용치를 초과하는 것으로 나타난다. 따라서, 인쇄 변색(414) 검사항목은 결함으로 검출된다.For example, referring to FIG. 4, in the case of printing discoloration 414 in the printing area (FIGS. 4 and 401), the wavelength measurement value 430 is 480 nm to 484 nm, while the wavelength reference value is 451 nm and the wavelength error is +/−. 5 nm appears to exceed the tolerance. Thus, the print discoloration 414 inspection item is detected as a defect.
도 5 는 본 발명의 바람직한 일 실시 예로서, 본 발명의 바람직한 일 실시 예로서, 검사 대상 글라스의 검사항목별(510, 512, 514, 516, 518, 520, 522, 524, 526)로 측정된 영상데이터 및 공간데이터의 측정값(530, 550)과 검사항목별로 기설정된 공간데이터 기준값(552)을 도시한다.Figure 5 is a preferred embodiment of the present invention, as a preferred embodiment of the present invention, measured by inspection items (510, 512, 514, 516, 518, 520, 522, 524, 526) of the inspection target glass The measurement values 530 and 550 of the image data and the spatial data and the predetermined spatial data reference value 552 for each inspection item are shown.
도 6은 도 5의 윈도우영역(502)에서 검출된 얼룩(522)의 결함 검출(Blob)데이터를 표시한다. 결함검출(Blob)데이터는 검사항목의 좌표(x,y), 무게중심(600), 면적 크기, 대각선의 길이(S600) 및 둘레의 길이(S610)을 포함한다. FIG. 6 shows defect detection (Blob) data of the spot 522 detected in the window region 502 of FIG. Defect detection (Blob) data includes the coordinates (x, y) of the inspection item, the center of gravity (600), the area size, the length of the diagonal (S600) and the length of the circumference (S610).
본 발명의 바람직한 일 실시 예에서는, 초분광영상을 영상처리 한 후, 영상처리 된 초분광영상 내의 결함에 대한 결함검출(Blob)데이터를 추출하여 이용할 수 있다. 이 경우, 결함을 검출하기 영상처리를 수행하는데 그 중에 대표적으로 노이즈를 제거하기 위한 평활화 필터(에버리징, 가우시안 등), 윤곽선 검출을 위한 에지 필터(Sobel필터, Canny필터), 형태학적 모폴로지 처리기법(침식, 팽창, 제거, 채움 등), 결함검출(Blob)함수(결함의 개수, 위치, 중심, 면적, 윤곽정보 등), 영상의 2진화(단일 이진화 기법, 동적 이진화 기법) 등이 포함할 수 있으나, 이에 제한되지 않고 영상에서 물체의 결함을 인식할 수 있는 기법을 모두 포함할 수 있다.In a preferred embodiment of the present invention, after processing the hyperspectral image, defect detection data for defects in the processed hyperspectral image may be extracted and used. In this case, image processing is performed to detect defects, among which a smoothing filter (averaging, Gaussian, etc.) for removing noise, an edge filter (Sobel filter, Canny filter) for contour detection, a morphological morphology processing technique (Erosion, swelling, removal, filling, etc.), defect detection functions (number of defects, location, center, area, contour information, etc.), image binarization (single binarization, dynamic binarization) However, the present invention is not limited thereto and may include all techniques for recognizing a defect of an object in an image.
본 발명의 바람직한 일 실시 예에서는, 스마트폰 커버 글라스의 초분광영상(500)을 획득한 이후, 도 3 에 도시된 일 실시 예와 같이 결함이 검출된 각각의 분광 영상을 적어도 이상 추출한다(도 3, 310, 312, 314, 316, 318, 320, 330 및 340). 이 후, 각 분광영상에서 검출된 결함의 파장이 기설정된 범위를 초과하는지 판단하여 1차적으로 불량에 속하는지 여부를 판단한다. In a preferred embodiment of the present invention, after acquiring the hyperspectral image 500 of the smart phone cover glass, as shown in FIG. 3, each spectroscopic image in which a defect is detected is extracted at least or more (FIG. 3, 310, 312, 314, 316, 318, 320, 330 and 340. Thereafter, it is determined whether the wavelength of the defect detected in each spectroscopic image exceeds a predetermined range, and primarily, whether the defect belongs to the defect.
그 다음으로, 도 5에 도시된 일 실시 예에서와 같이 검출된 결함의 그 농담치(Gray Value) 값을 측정한다(530). 이 과정에서 영상의 평활화 필터를 이용하여 노이즈 제거 수행하기도 하고, 윤곽검출 필터를 이용하여 검사 대상체의 윤곽을 검출하며, 형태학적 모폴로지 처리기법으로 영상의 형태적인 면을 표현하고, 다양한 수학적 연산을 수행하기도 한다. 또한 상기의 다양한 영상처리를 수행 전이나 후에 목적에 따라 2진화 필터를 통해 GV이진값(540)을 할 수 이따. 그 후 상기의 영상처리방법은 결함을 검출하고자 하는 목적에 따라서 다양하게 변형될 수 있으며 이에 제한되지 않고 영상에서 물체의 결함을 인식할 수 있는 기법을 모두 포함할 수 있다.Next, the gray value of the detected defect is measured as in the exemplary embodiment illustrated in FIG. 5 (530). In this process, the image is smoothed using a smoothing filter, the contour detection filter is used to detect the contour of the test object, and the morphological morphology processing technique is used to express the morphological aspects of the image and perform various mathematical operations. Sometimes. In addition, the GV binary value 540 may be performed through a binarization filter according to a purpose before or after performing the above various image processing. Thereafter, the image processing method may be variously modified according to the purpose of detecting a defect, and the present invention may not be limited thereto and may include all techniques for recognizing a defect of an object in an image.
본 발명의 바람직한 일 실시 예에서는, 도 5에서 산출한 GV이진값(540)과 결함검출(Blob)함수를 이용하여 결함검출데이터(550)를 도출할 수 있다. In an exemplary embodiment of the present invention, the defect detection data 550 may be derived using the GV binary value 540 and the defect detection function calculated in FIG. 5.
도 7 은 본 발명의 바람직한 일 실시 예로서, 분광데이터, 영상데이터 및 공간데이터를 모두 이용하여 결함을 검출하는 일 실시 예를 도시한다. FIG. 7 illustrates an example of detecting a defect using all of spectral data, image data, and spatial data.
본 발명의 바람직한 일 실시 예에서는 분광데이터를 이용하여 검사 대상의 초분광영상에서 검출하고자 하는 결함이 포함된 분광영상을 선택한다(도 3 참고). 이 후, 선택된 분광영상 내의 결함의 영상데이터를 이용하여 결함의 농담치(Gray Value)를 측정한다(도 5 참고). 이 후, 측정된 농담치(Gray Value)을 이진화한 이진화 영상에서 결함의 결함검출(Blob)함수를 이용하여 결함검출데이터를 추출한다(도 5 참고). In a preferred embodiment of the present invention, the spectral image is selected using a spectroscopic data including a defect to be detected in the hyperspectral image of the inspection target (see FIG. 3). Thereafter, the gray value of the defect is measured using image data of the defect in the selected spectroscopic image (see FIG. 5). Thereafter, defect detection data is extracted from the binarized image obtained by binarizing the measured gray value using a defect detection function of a defect (see FIG. 5).
결함검출데이터에서 제공하는 결함의 공간데이터 정보(도 5, 550)를 이용하여, 기설정된 면적 오차(도 5, 552)를 벗어나는지 판단하여 최종적으로 각 결함이 불량인지 여부를 판단한다.Using the spatial data information of the defects provided in the defect detection data (FIGS. 5 and 550), it is determined whether the predetermined area error (FIGS. 5 and 552) deviates, and finally, whether each defect is defective or not.
도 7의 일 실시 예를 참고하여 기술하면 아래와 같다. If described with reference to an embodiment of Figure 7 as follows.
검사 대상 글라스의 초분광영상에서 검사 항목에 대응하는 결함을 포함하고 있는 분광영상을 선택한다. 선택된 분광영상 내에 인쇄영역(701)과 윈도우영역(702) 각각에서 기설정된 검사항목에 해당하는 결함을 검출한다.In the hyperspectral image of the inspection target glass, a spectroscopic image including a defect corresponding to the inspection item is selected. A defect corresponding to a predetermined inspection item is detected in each of the print area 701 and the window area 702 in the selected spectroscopic image.
기설정된 검사항목의 예로는 검사 항목의 예로는 인쇄 영역(701)에 IR(710), 색상(712), 변색(714), 스크래치(716), 윈도우 영역(702)에 이물1(718), 이물2(720), 얼룩(722), 스크래치(724) 및 치핑(726)이 있다. Examples of preset inspection items include IR 710, color 712, color change 714, scratch 716, foreign material 1 718 in the window area 702, and the like. There is foreign material 2 720, stain 722, scratch 724 and chipping 726.
선택된 분광영상 중 IR(710) 결함이 검출된 대역(730)은 630nm, 632nm, 634m이고, 각 대역에서 농담치(740)값은 각각 51, 55, 80이다. 색상(712) 결함이 검출된 대역은 450nm, 452nm 이고, 각 대역에서 농담치(740)값은 각각 0,0으로 측정되었다.Among the selected spectroscopic images, the bands 730 in which the IR 710 defects are detected are 630 nm, 632 nm, and 634 m, and the shaded values 740 are 51, 55, and 80 in each band. The bands in which the color 712 defect was detected were 450 nm and 452 nm, and the shaded value 740 was measured as 0 and 0 in each band.
변색(714) 결함이 검출된 영역은 454nm, 458nm이고, 각 대역에서 농담치(740)값은 각각 10,15로 측정되었다. 이 외에 스크래치(716), 이물1(718), 이물2(720), 얼룩(722), 스크래치(724) 및 치핑(726)에 대해서도 각각 검출된 대역과 각 대역에서의 농담치(740)값을 측정한다. Discoloration 714 was detected in the areas of 454nm and 458nm, and the shade value 740 was measured as 10 and 15 in each band. In addition, for the scratch 716, the foreign material 1 718, the foreign material 2 720, the stain 722, the scratch 724 and the chipping 726, the detected band and the shade value 740 in each band, respectively. Measure
이상의 방법으로 획득한 분광데이터와 영상데이터를 이후 영상처리를 수행한다(742, 744, 746). 영상처리의 예로는 필터를 이용한 영상 처리, 수학적, 논리적 연산 처리 내지 이진화 처리 중 적어도 하나 이상을 포함한다.The spectral data and the image data obtained by the above method are then subjected to image processing (742, 744, 746). Examples of image processing include at least one of image processing using a filter, mathematical and logical operation processing, and binarization processing.
이 후, 농담치(740)값과 결함검출(Blob)함수를 이용하여 결함의 결함검출데이터를 산출한다(750). 결함검출데이터와 관련해서는 도 5 내지 6의 설명을 참고한다. 결함검출데이터의 공간데이터를 활용하여, 영상의 대역별 결함의 총 수, 결함의 개별 위치, 개별 중심, 개별 면적, 개별 윤곽정보 등이 기설정된 기준(760)을 통과하는지 판단한다. Thereafter, the defect detection data of the defect is calculated using the gray value 740 value and the defect detection function (Blob) (750). Regarding the defect detection data, refer to the description of FIGS. 5 to 6. By using the spatial data of the defect detection data, it is determined whether the total number of defects for each band of the image, the individual positions of the defects, the individual centers, the individual areas, and the individual contour information pass the preset criteria 760.
이상의 과정을 통해 기설정된 기준과 차이를 비교하거나 계산하여 양품, 불량, 재작업 등으로 분류한다(S780). The above process compares or calculates the difference with the predetermined standard and classifies it as good or bad, rework, etc. (S780).
도 8은 본 발명의 바람직한 일 실시 예로서, 초분광영상화 기법을 이용한 글라스(Glass) 결함 검출 흐름도를 도시한다.8 is a flowchart illustrating a glass defect detection using a hyperspectral imaging technique according to a preferred embodiment of the present invention.
본 발명의 글라스결함 검사 장치(도 1, 100)는 초분광영상카메라(도 1, 102)를 이용하여 검사 대상 글라스의 초분광영상을 생성한다(S800).The glass defect inspection apparatus (FIGS. 1 and 100) of the present invention generates a hyperspectral image of the inspection target glass by using a hyperspectral imaging camera (FIGS. 1 and 102) (S800).
이 후, 생성된 초분광영상 내에서 기설정된 검사 항목에 대응하는 결함을 포함하고 있는 대역의 분광영상(도 3 참고)을 선택한다(S810). 이 경우 하나 이상의 분광 영상이 선택될 수 있다.Thereafter, in the generated hyperspectral image, a spectroscopic image (see FIG. 3) of a band including a defect corresponding to a predetermined test item is selected (S810). In this case, one or more spectroscopic images may be selected.
선택된 분광 영상 내에 결함의 농담치(Gray Value) 값을 측정한다(S820). 이 후, 선택된 분광 영상을 수학적, 논리적 연산 내지 영상처방법을 수행하여 이진화하고, 이진화된 초분광영상 내의 결함에 대한 결함검출데이터를 산출한다(S830).The gray value of the defect is measured in the selected spectral image (S820). Thereafter, the selected spectral image is binarized by performing mathematical and logical operations or image capturing methods, and defect detection data for defects in the binarized hyperspectral image is calculated (S830).
선택된 분광 영상 내의 결함의 파장데이터(분광 대역), 농담치(Gray Value) 데이터 및 결함검출데이터 등을 모두 이용하여 기설정된 기준에 부합하는지 판단한 후, 부합하는 분류방법에 따라서 양품, 재작업, 결함은 불량으로 분류한다(S840).Determining whether the specified criteria are met by using wavelength data (spectral band), gray value data, and defect detection data of the defect in the selected spectral image, and then according to the classification method, Are classified as bad (S840).
본 방법발명은 또한 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다.The present invention can also be embodied as computer readable code on a computer readable recording medium. The computer-readable recording medium includes all kinds of recording devices in which data that can be read by a computer system is stored.
컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광데이터 저장장치 등이 있다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disks, optical data storage devices, and the like. The computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
이제까지 본 발명에 대하여 그 바람직한 실시예를 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다.So far I looked at the center of the preferred embodiment for the present invention. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention.
그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 균등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the equivalent scope will be construed as being included in the present invention.
Claims (15)
- 초분광영상화 기법을 이용한 글라스(Glass) 결함 검출 방법으로서, Glass defect detection method using hyperspectral imaging technique,글라스에 대한 초분광영상을 생성하고, 상기 초분광영상은 서로 다른 대역(band)의 분광영상으로 구성되며, 생성된 초분광영상에서 기설정된 검사 항목에 대응하는 결함이 포함된 대역의 분광영상을 적어도 하나 이상 선택하는 단계; A hyperspectral image of glass is generated, and the hyperspectral image is composed of spectroscopic images of different bands, and the spectroscopic image of a band including defects corresponding to a predetermined test item is generated from the generated hyperspectral image. Selecting at least one;상기 분광영상 내의 각각의 결함에 대해 농담치를 측정하는 단계; Measuring a shade value for each defect in the spectroscopic image;상기 분광영상 내의 각각의 결함에 대해 결함검출데이터를 산출하는 단계; Calculating defect detection data for each defect in the spectroscopic image;상기 검사항목에 대응하는 결함 각각에 대해 대역별로 선택된 분광 영상, 측정된 농담치 및 결함검출데이터를 이용하여 불량을 검출하는 단계;를 포함하는 것을 특징으로 하는 방법. And detecting a defect using a spectroscopic image, a measured shade value, and defect detection data selected for each band for each defect corresponding to the inspection item.
- 제 1 항에 있어서, 상기 결함에 대한 결함검출데이터는 The method of claim 1, wherein the defect detection data for the defect is결함의 총 수, 결함 각각의 좌표, 무게 중심 좌표, 면적, 둘레길이, 대각선 길이 중 적어도 하나 이상을 포함하는 것을 특징으로 하는 방법. And at least one of a total number of defects, a coordinate of each defect, a center of gravity coordinate, an area, a perimeter, and a diagonal length.
- 제 1 항에 있어서, 상기 결함 각각이 검출된 분광 영상의 대역(band) 정보를 이용하여, 상기 결함을 종류별로 분류하는 것을 특징으로 하는 방법. The method of claim 1, wherein the defects are classified by type using band information of the spectroscopic image in which each of the defects is detected.
- 초분광영상화 기법을 이용한 글라스(Glass) 결함 검출 방법으로서, Glass defect detection method using hyperspectral imaging technique,영상촬영장치 및 분광기를 이용하여 글라스에 대한 초분광영상을 생성하는 단계; Generating a hyperspectral image of the glass by using an imaging apparatus and a spectroscope;상기 생성된 초분광영상을 이용하여 기설정된 검사항목 각각에 대응하는 결함에 대해 영상데이터, 분광데이터 및 공간데이터 측정값을 측정하는 단계; Measuring image data, spectral data, and spatial data measurement values for defects corresponding to each of the preset inspection items using the generated hyperspectral image;상기 검사항목 각각에 대응하는 결함에 대해 기설정된 영상데이터, 분광데이터 및 공간데이터 기준값과 상기 영상데이터, 분광데이터 및 공간데이터 측정값을 비교하는 단계; 및 Comparing preset image data, spectral data, and spatial data reference values with respect to defects corresponding to each of the inspection items, and measurement values of the image data, spectral data, and spatial data; And상기 비교 결과, 상기 영상데이터, 분광데이터 및 공간데이터 측정값이 상기 기설정된 영상데이터, 분광데이터 및 공간데이터 기준값을 비교 또는 연산하여 해당 검사항목에 대응하는 결함을 불량으로 분류하는 단계;를 포함하는 것을 특징으로 하는 방법. And classifying the defect corresponding to the inspection item as defective by comparing or calculating the preset image data, the spectral data, and the spatial data measured values with the preset image data, the spectral data, and the spatial data reference values. Characterized in that the method.
- 제 4 항에 있어서, The method of claim 4, wherein상기 불량으로 분류된 검사항목을 단말기에 디스플레이하는 단계;를 더 포함하고, 상기 단말기는 상기 영상촬영장치와 유무선 통신이 가능한 것을 특징으로 하는 방법. And displaying the test items classified as defective on the terminal, wherein the terminal is capable of wired and wireless communication with the image photographing apparatus.
- 제 5 항에 있어서, 상기 단말기는 The method of claim 5, wherein the terminal상기 분광데이터 측정값을 기준으로 상기 결함을 종류별로 재분류하는 것을 특징으로 하는 방법. And reclassifying the defects by type based on the measured spectroscopic data.
- 제 4 항에 있어서, The method of claim 4, wherein상기 공간데이터는 상기 결함의 총 수, 결함 각각의 좌표, 무게 중심 좌표, 면적, 둘레길이(윤곽정보), 대각선 길이 중 적어도 하나 이상을 포함하는 것을 특징으로 하는 방법. The spatial data includes at least one of the total number of defects, coordinates of each defect, center of gravity coordinates, area, circumferential length (contour information), and diagonal length.
- 제 4 항에 있어서, 상기 검사항목은 The method of claim 4, wherein the test item인쇄 색상, 인쇄 변색, 스크래치, 이물, 찍힘, 치핑, 얼룩, 덴트(dent), 물때(Mura), IR 또는 카메라 홀 불량 중 적어도 하나 이상을 포함하는 것을 특징으로 하는 방법. At least one of print colors, print discolorations, scratches, foreign objects, imprints, chipping, stains, dents, mura, IR, or camera hole defects.
- 초분광영상화 기법을 이용한 글라스(Glass) 결함 검출 방법으로서, Glass defect detection method using hyperspectral imaging technique,영상촬영장치 및 분광기를 이용하여 검사 대상 글라스의 초분광영상을 생성하는 초분광영상생성 단계; A hyperspectral image generation step of generating a hyperspectral image of the inspection target glass using an imaging apparatus and a spectroscope;상기 초분광영상에서 기설정된 검사항목에 대응하는 결함 각각을 영상데이터, 분광데이터 및 공간데이터 값으로 표시하는 초분광영상분석 단계;및 A hyperspectral image analysis step of displaying defects corresponding to a predetermined inspection item in the hyperspectral image as image data, spectral data, and spatial data values; and상기 표시된 영상데이터, 분광데이터 및 공간데이터 값을 모두 이용하여 상기 결함 각각이 불량인지 여부를 검출하는 단계;를 포함하는 것을 특징으로 하는 방법. Detecting whether each of the defects is defective by using all of the displayed image data, spectroscopic data, and spatial data values.
- 초분광영상화 기법을 이용한 글라스(Glass) 결함 검출 장치로서, A glass defect detection device using hyperspectral imaging technique,영상촬영장치 및 분광기를 이용하여 검사 대상 글라스의 초분광영상을 생성하는 초분광영상생성부; A hyperspectral image generator for generating a hyperspectral image of a glass to be inspected by using an imaging apparatus and a spectroscope;상기 초분광영상을 이용하여 기설정된 검사항목에 대응하는 결함 각각을 영상데이터, 분광데이터 및 공간데이터 값으로 표시하는 초분광영상분석부;및 A hyperspectral image analyzer for displaying each defect corresponding to a predetermined inspection item using the hyperspectral image as image data, spectral data, and spatial data values; and상기 표시된 영상데이터, 분광데이터 및 공간데이터 값을 모두 이용하여 상기 결함 중 불량을 검출하는 불량검출부;를 포함하는 것을 특징으로 하는 장치. And a defect detector for detecting defects among the defects using all of the displayed image data, spectroscopic data, and spatial data values.
- 제 9 항에 있어서, 상기 공간데이터는 The method of claim 9, wherein the spatial data is결함의 총 수, 결함 각각의 좌표, 무게 중심 좌표, 면적, 둘레길이, 대각선 길이 중 적어도 하나 이상을 포함하는 것을 특징으로 하는 장치. And at least one of a total number of defects, a coordinate of each defect, a center of gravity coordinate, an area, a perimeter, and a diagonal length.
- 제 9 항에 있어서, 상기 불량검출부는 The method of claim 9, wherein the defect detection unit상기 분광데이터로 결함 각각의 파장값을 이용하고, 상기 영상데이터로 결함 각각의 농담치를 이용하며, 상기 공간데이터로 결함의 총 수, 결함 각각의 좌표, 무게 중심 좌표, 면적, 둘레길이, 대각선 길이 중 적어도 하나 이상을 이용하는 것을 특징으로 하는 장치. The wavelength value of each defect is used as the spectral data, the shade value of each defect is used as the image data, and the total number of defects, the coordinates of each defect, the center of gravity coordinate, the area, the perimeter length, and the diagonal length are used as the spatial data. At least one of the devices.
- 제 9 항에 있어서, The method of claim 9,상기 분광데이터를 이용하여 결함을 종류별로 분류하는 것을 특징으로 하는 장치. And classifying defects by type using the spectroscopic data.
- 제 9 항에 있어서, 상기 기설정된 검사항목은 The method of claim 9, wherein the predetermined test item is인쇄 색상, 인쇄 변색, 스크래치, 이물, 찍힘, 치핑, 얼룩, 덴트(dent), 물때(Mura), IR 또는 카메라 홀 불량 중 적어도 하나 이상을 포함하는 것을 특징으로 하는 장치. A device comprising at least one of print colors, print discolorations, scratches, foreign objects, imprints, chipping, stains, dents, mura, IR, or camera hole defects.
- 제 9 항에 있어서, 상기 불량검출부는 The method of claim 9, wherein the defect detection unit상기 표시된 영상데이터, 분광데이터 및 공간데이터 값 중 적어도 하나 이상이 기설정된 값을 벗어나는 경우 결함으로 판단하는 것을 특징으로 하는 장치. And at least one of the displayed image data, spectral data, and spatial data values is determined to be a defect when out of a predetermined value.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0122929 | 2014-09-16 | ||
KR1020140122929A KR102003781B1 (en) | 2014-09-16 | 2014-09-16 | Apparatus for detecting defects on the glass substrate using hyper-spectral imaging |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016043397A1 true WO2016043397A1 (en) | 2016-03-24 |
Family
ID=55533418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/003634 WO2016043397A1 (en) | 2014-09-16 | 2015-04-10 | Glass defect detection method and apparatus using hyperspectral imaging technique |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102003781B1 (en) |
WO (1) | WO2016043397A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109001213A (en) * | 2018-07-19 | 2018-12-14 | 华南理工大学 | A kind of reel-to-reel ultrathin flexible IC exterior substrate detection method |
EP3534151A1 (en) * | 2018-03-02 | 2019-09-04 | Seiko Epson Corporation | Inspection apparatus, inspection system, and inspection method |
CN111445452A (en) * | 2020-03-23 | 2020-07-24 | Oppo(重庆)智能科技有限公司 | Defect detection method and device of electronic product and computer readable storage medium |
CN111693546A (en) * | 2020-06-16 | 2020-09-22 | 湖南大学 | Defect detection system, method and image acquisition system |
CN112465741A (en) * | 2020-10-10 | 2021-03-09 | 湖南大捷智能装备有限公司 | Suspension spring, method and device for detecting defect of valve spring, and storage medium |
US11249032B2 (en) | 2017-11-15 | 2022-02-15 | Corning Incorporated | Methods and apparatus for detecting surface defects on glass sheets |
CN114466183A (en) * | 2022-02-21 | 2022-05-10 | 江东电子材料有限公司 | Copper foil flaw detection method and device based on characteristic spectrum and electronic equipment |
CN115880301A (en) * | 2023-03-06 | 2023-03-31 | 长沙韶光芯材科技有限公司 | System for identifying bubble defects of glass substrate |
CN116297497A (en) * | 2023-05-23 | 2023-06-23 | 武汉大学 | Mobile phone panel quality detection method based on hyperspectral remote sensing |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3053126B1 (en) * | 2016-06-27 | 2019-07-26 | Saint-Gobain Glass France | METHOD AND DEVICE FOR LOCATING THE ORIGIN OF A DEFECT AFFECTING A STACK OF THIN LAYERS DEPOSITED ON A SUBSTRATE |
KR101958539B1 (en) * | 2017-01-17 | 2019-03-14 | 서울시립대학교 산학협력단 | Apparatus and method for discriminating a concrete status using a hyperspectral image |
WO2022085822A1 (en) * | 2020-10-22 | 2022-04-28 | (주)레이텍 | Hyperspectral inspection device capable of detecting soft foreign substance |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030218743A1 (en) * | 2002-05-13 | 2003-11-27 | Klaus Gerstner | Method and apparatus for detecting defects in a continuously moving strip of transparent material |
KR20080060041A (en) * | 2006-12-26 | 2008-07-01 | 엘지디스플레이 주식회사 | Mura test method for liquid crystal display |
KR20120133734A (en) * | 2011-06-01 | 2012-12-11 | 주식회사 나노텍 | Apparatus for Detecting a Defect in Edge of Glass Plate and the Method Thereof |
KR20140012339A (en) * | 2012-07-19 | 2014-02-03 | (주) 인텍플러스 | Display panel inspection apparatus |
KR20140016313A (en) * | 2011-03-21 | 2014-02-07 | 페더럴-모걸 코오포레이숀 | Multi-spectral imaging system and method of surface inspection therewith |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013061185A (en) | 2011-09-12 | 2013-04-04 | Toshiba Corp | Pattern inspection device and pattern inspection method |
-
2014
- 2014-09-16 KR KR1020140122929A patent/KR102003781B1/en active IP Right Grant
-
2015
- 2015-04-10 WO PCT/KR2015/003634 patent/WO2016043397A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030218743A1 (en) * | 2002-05-13 | 2003-11-27 | Klaus Gerstner | Method and apparatus for detecting defects in a continuously moving strip of transparent material |
KR20080060041A (en) * | 2006-12-26 | 2008-07-01 | 엘지디스플레이 주식회사 | Mura test method for liquid crystal display |
KR20140016313A (en) * | 2011-03-21 | 2014-02-07 | 페더럴-모걸 코오포레이숀 | Multi-spectral imaging system and method of surface inspection therewith |
KR20120133734A (en) * | 2011-06-01 | 2012-12-11 | 주식회사 나노텍 | Apparatus for Detecting a Defect in Edge of Glass Plate and the Method Thereof |
KR20140012339A (en) * | 2012-07-19 | 2014-02-03 | (주) 인텍플러스 | Display panel inspection apparatus |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11249032B2 (en) | 2017-11-15 | 2022-02-15 | Corning Incorporated | Methods and apparatus for detecting surface defects on glass sheets |
US11209313B2 (en) | 2018-03-02 | 2021-12-28 | Seiko Epson Corporation | Inspection apparatus, inspection system, and inspection method |
US10837831B2 (en) | 2018-03-02 | 2020-11-17 | Seiko Epson Corporation | Inspection apparatus, inspection system, and inspection method |
EP3534151A1 (en) * | 2018-03-02 | 2019-09-04 | Seiko Epson Corporation | Inspection apparatus, inspection system, and inspection method |
CN109001213A (en) * | 2018-07-19 | 2018-12-14 | 华南理工大学 | A kind of reel-to-reel ultrathin flexible IC exterior substrate detection method |
CN109001213B (en) * | 2018-07-19 | 2021-08-10 | 华南理工大学 | Reel-to-reel ultrathin flexible IC substrate appearance detection method |
CN111445452B (en) * | 2020-03-23 | 2022-03-01 | Oppo(重庆)智能科技有限公司 | Defect detection method and device of electronic product and computer readable storage medium |
CN111445452A (en) * | 2020-03-23 | 2020-07-24 | Oppo(重庆)智能科技有限公司 | Defect detection method and device of electronic product and computer readable storage medium |
WO2021253482A1 (en) * | 2020-06-16 | 2021-12-23 | 湖南大学 | Defect detection system, method, and image capturing system |
CN111693546A (en) * | 2020-06-16 | 2020-09-22 | 湖南大学 | Defect detection system, method and image acquisition system |
CN112465741A (en) * | 2020-10-10 | 2021-03-09 | 湖南大捷智能装备有限公司 | Suspension spring, method and device for detecting defect of valve spring, and storage medium |
CN112465741B (en) * | 2020-10-10 | 2024-03-26 | 湖南大捷智能装备有限公司 | Defect detection method and device for suspension spring and valve spring and storage medium |
CN114466183A (en) * | 2022-02-21 | 2022-05-10 | 江东电子材料有限公司 | Copper foil flaw detection method and device based on characteristic spectrum and electronic equipment |
CN115880301A (en) * | 2023-03-06 | 2023-03-31 | 长沙韶光芯材科技有限公司 | System for identifying bubble defects of glass substrate |
CN115880301B (en) * | 2023-03-06 | 2023-06-06 | 长沙韶光芯材科技有限公司 | Recognition system for bubble defects of glass substrate |
CN116297497A (en) * | 2023-05-23 | 2023-06-23 | 武汉大学 | Mobile phone panel quality detection method based on hyperspectral remote sensing |
CN116297497B (en) * | 2023-05-23 | 2023-08-15 | 武汉大学 | Mobile phone panel quality detection method based on hyperspectral remote sensing |
Also Published As
Publication number | Publication date |
---|---|
KR20160032593A (en) | 2016-03-24 |
KR102003781B1 (en) | 2019-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016043397A1 (en) | Glass defect detection method and apparatus using hyperspectral imaging technique | |
US11830179B2 (en) | Food inspection assisting system, food inspection assisting apparatus and computer program | |
JP6629455B2 (en) | Appearance inspection equipment, lighting equipment, photography lighting equipment | |
US6690464B1 (en) | High-volume on-line spectroscopic composition testing of manufactured pharmaceutical dosage units | |
KR101338576B1 (en) | Defect inspection device for inspecting defect by image analysis | |
Boukouvalas et al. | ASSIST: automatic system for surface inspection and sorting of tiles | |
CN103954634A (en) | Online quality detection system for printed matter | |
JP2006189421A (en) | High-intelligent digital image inspection system and its inspection method | |
WO2022038575A1 (en) | Surface defect detection system | |
US20100039510A1 (en) | Method and DEVICE for PRINT INSPECTION | |
WO2015126111A1 (en) | Apparatus and method for testing conductivity of graphene | |
JP5727709B2 (en) | Residue measuring method and residue measuring apparatus | |
Boukouvalas et al. | An integrated system for quality inspection of tiles | |
JP2009264876A (en) | Inspection system of product quality, and its method | |
KR101536693B1 (en) | Method and system for determantion of melanoma by the multi-wavelength imaging and image processing | |
US20120268588A1 (en) | Method and system for determining optical properties of a lens system | |
JP2007271507A (en) | Defect detecting method, defect detector and defect detecting program | |
JPH1023203A (en) | Paper classification device | |
US20060066846A1 (en) | Apparatus and method for detection of contaminant particles or component defects | |
JP2017116487A (en) | Web defect inspection apparatus | |
JP7411155B2 (en) | Color unevenness inspection device and color unevenness inspection method | |
JP7136064B2 (en) | Apparatus for inspecting surface of object to be inspected and method for inspecting surface of object to be inspected | |
JP3311880B2 (en) | Automatic detection device for fruits and vegetables injury | |
KR101669075B1 (en) | System and method for inspecting defects | |
JP2020187093A (en) | Imaging method and imaging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15842288 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15842288 Country of ref document: EP Kind code of ref document: A1 |