[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015137300A1 - 排水処理方法 - Google Patents

排水処理方法 Download PDF

Info

Publication number
WO2015137300A1
WO2015137300A1 PCT/JP2015/056921 JP2015056921W WO2015137300A1 WO 2015137300 A1 WO2015137300 A1 WO 2015137300A1 JP 2015056921 W JP2015056921 W JP 2015056921W WO 2015137300 A1 WO2015137300 A1 WO 2015137300A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic powder
treatment tank
sludge
water
treated
Prior art date
Application number
PCT/JP2015/056921
Other languages
English (en)
French (fr)
Inventor
洋輔 花井
栄寿 中田
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2016507742A priority Critical patent/JP6091039B2/ja
Priority to CN201580007027.6A priority patent/CN105960380B/zh
Publication of WO2015137300A1 publication Critical patent/WO2015137300A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/286Magnetic plugs and dipsticks disposed at the inner circumference of a recipient, e.g. magnetic drain bolt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0335Component parts; Auxiliary operations characterised by the magnetic circuit using coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a wastewater treatment method for treating wastewater using magnetic force.
  • the activated sludge method is a wastewater treatment technology that has existed for a long time. It has a biological treatment tank and a sedimentation tank, and the sludge grown in the biological treatment tank is separated by precipitation in the sedimentation tank, and the precipitated sludge is returned to the biological treatment tank. It is.
  • the decomposition of organic matter depends on the microbial reaction, so it is necessary to take a long processing time, and the sludge that is a lump of microorganisms that proliferated with the decomposition of organic matter is generated in large quantities as surplus sludge. There is.
  • increasing the activated sludge concentration in the reaction tank can be mentioned.
  • the factor that determines the activated sludge concentration in the reaction tank is the concentration of the return sludge accumulated in the settling tank.
  • the upper limit of the return sludge concentration is as low as several thousand mg / L to 10000 mg / L, and increasing the return sludge concentration is a challenge for increasing the activated sludge concentration in the reaction tank. Yes.
  • magnetized activated sludge method As a method for solving the above problems, there is a magnetized activated sludge method.
  • the magnetized activated sludge method magnetic powder is added in a biological treatment tank, combined with the sludge (microorganisms) grown in the biological treatment tank to give magnetism, and the magnetic powder and sludge bonded to it are magnetically separated. This is an operation method in which solid-liquid separation is performed and this is returned to the biological treatment tank (Patent Documents 1 to 3 below).
  • the concentration of the returned sludge can be increased to several 10000 mg / L to 100,000 mg / L, which is about 10 times that of the activated sludge method.
  • an object of the present invention is to reduce the excess amount of sludge in the biological treatment tank in the wastewater treatment method using the magnetized activated sludge method, and reduce the amount of magnetic powder discharged outside the system along with the sludge extraction.
  • An object of the present invention is to provide a wastewater treatment method that enables operation with reduced running costs.
  • the wastewater treatment method of the present invention is a wastewater treatment method in which wastewater containing organic matter is introduced into a treatment tank, and the wastewater is biologically treated with activated sludge in the treatment tank.
  • Organic powder concentration (mg) that adds magnetic powder to the water to be treated and predominates the microorganisms belonging to the genus Bacillus or Geobacillus as the microflora, and introduces micronutrients necessary for the microorganisms into the treatment tank / L) and the inflow amount, or an addition amount proportional to the inflow amount of the waste water, and magnetism is applied to the treated water after biological treatment, and the magnetic powder and the The sludge to which the magnetic powder is bonded is subjected to solid-liquid separation, and all or part of the solid powder and the sludge to which the magnetic powder is bonded are returned to the treatment tank.
  • a wastewater treatment method for introducing wastewater containing organic matter into a treatment tank and biologically treating the wastewater with activated sludge in the treatment tank, wherein magnetic powder is added to the water to be treated in the treatment tank and microorganisms After dominating microorganisms belonging to the genus Bacillus or Geobacillus as a flora and reaching a steady operation, the concentration (mg / L) of activated sludge suspended matter (MLSS) in the treated water in the treatment tank is in a steady state The addition of trace nutrients necessary for the microorganism is started only when the rate of change exceeds a predetermined rate of change, and the concentration of activated sludge suspended solids (MLSS) in the water to be treated in the treatment tank (mg / L) ) Until it reaches a steady state or starts to decrease again, and the addition of the micronutrients is performed, and magnetism is applied to the treated water after biological treatment.
  • the magnetic powder Combined sludge was subjected to solid
  • the magnetic powder and the sludge combined with the magnetic powder are separated from the treated water by magnetic force and returned to the treatment tank. It can be recovered together with the powder and will not dissipate outside the system. Therefore, in the conventional method, a sedimentation tank that is necessary for collecting sludge containing microbiota is not an essential configuration, and the equipment configuration can be simplified. In addition, since microorganisms belonging to the genus Bacillus or Geobacillus are dominant as the microflora of biological treatment, the generation of excess sludge can be suppressed, and magnetic powder does not have to be drawn out as extra sludge. Can be reduced.
  • the use cost can be suppressed, and the growth inhibition of the microorganisms due to the excessive addition of the micronutrients is prevented. be able to.
  • the organic matter volume load (kg / m 3 ⁇ day) is 1.0 or more and 1.5 or less.
  • the concentration (mg / L) of activated sludge suspended matter (MLSS) in the water to be treated in the treatment tank is 8000 or more and less than 30000.
  • the magnetic powder and sludge combined with the magnetic powder are used as a system. It is preferable to perform the operation so that the concentration (mg / L) of the activated sludge suspended matter (MLSS) in the water to be treated in the treatment tank is less than 30000.
  • the return speed of the magnetic powder and sludge combined with the magnetic powder into the treatment tank is determined by the concentration (mg / mg) of activated sludge suspended matter (MLSS) in the water to be treated in the treatment tank.
  • MMS activated sludge suspended matter
  • the ratio of the concentration (mg / L) of the magnetic powder to 1 of the concentration (mg / L) of the activated sludge organic suspended matter (MLVSS) in the water to be treated in the treatment tank is 0.2 or more and 3 or less.
  • microorganisms belonging to the genus Bacillus or Geobacillus sp. Bacillus circulans, Bacillus coagulans, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus subtilis, Geobacillus stearothermophilus, Geobacillus thermoglucosidasius, selected from the group consisting of Geobacillus Toebii, and Geobacillus Zalihae It is preferable that it is 1 type or 2 types or more.
  • the magnetic powder contains iron and the trace nutrient does not contain iron.
  • the wastewater treatment method of the present invention in the wastewater treatment method using the magnetized activated sludge method, excessive proliferation of sludge in the biological treatment tank is suppressed, and the amount of magnetic powder discharged outside the system is reduced with sludge extraction. As a result, driving with reduced running costs is possible.
  • FIG. 1 shows a schematic configuration diagram of a wastewater treatment apparatus for carrying out the wastewater treatment method according to the present invention.
  • This waste water treatment apparatus includes a treatment tank 1 for biological treatment with activated sludge, a magnetic powder tank 2 for adding magnetic powder to water to be treated in the treatment tank 1, and microorganisms belonging to the genus Bacillus or Geobacillus.
  • An apparatus 3 for dominating, and magnetic separation means 4 for solid-liquid separation of magnetic powder and sludge combined with the magnetic powder from post-treatment water after biological treatment are provided. These are communicated by piping, and the contents can be retained or moved by a pump or a valve (not shown) until a predetermined processing is performed.
  • Waste water containing organic substances is introduced into the treatment tank 1 from the waste water supply line L1.
  • the drainage supply line L1 is provided with a flow meter 17 and an organic matter concentration measuring device 18, and the inflow amount of wastewater introduced into the treatment tank 1 by the flow meter 17 is the amount of wastewater introduced into the treatment tank 1 by the organic matter concentration measuring device 18.
  • Each organic substance concentration (mg / L) can be measured.
  • the concentration (mg / L) of activated sludge suspended matter (MLSS) in the water to be treated in the treatment tank 1 can be measured by the MLSS concentration measuring device 19.
  • the organic matter concentration (mg / L) of the wastewater and the activated sludge suspended matter (MLSS) concentration (mg / L) in the water to be treated can be measured by the suspended solids analysis method described in Japanese Industrial Standards JIS K 101. it can.
  • the treated water biologically treated in the treatment tank 1 is sent to the magnetic separation means 4 through the take-out line L2, and the magnetic separation means 4 and the sludge combined with the magnetic powder and the treated water whose water quality has been purified. Then, it is separated into solid and liquid. The treated water is discharged out of the system through the discharge line L3.
  • the magnetic separation means 4 is represented as a structure communicating with a pipe extending from the treatment tank 1.
  • the magnetic powder and its magnetic powder are obtained from the treated water after biological treatment. Any means can be used as long as it can solid-liquid-separate the sludge combined, and the structure need not necessarily be in communication with the pipe extending from the treatment tank 1.
  • FIG. 1 also shows an adjustment tank for adjusting the amount of inflow of waste water, a sedimentation basin for removing floating substances contained in the inflow water, an aeration means for introducing oxygen into the water to be treated in the treatment tank, and treated water.
  • disinfecting means for disinfecting are not shown, it is a matter of course that these facilities may be installed as appropriate.
  • a sedimentation tank may be provided after the magnetic separation means 4 so that solids (including sludge) that could not be removed by the magnetic separation means 4 are precipitated and separated.
  • magnetic powder is added to the water to be treated in the treatment tank 1.
  • the magnetic powder can be added in powder form or can be added in a state where the magnetic powder is dispersed in a dispersion medium such as water.
  • the material of the magnetic powder may be paramagnetic powder or ferromagnetic powder, and examples thereof include iron oxide, cobalt, chromium oxide, and ferrite.
  • sludge containing microflora that proliferated with organic matter decomposition forms flocs, and the magnetic powder enters pores, indentations, etc. that are formed by the three-dimensional structure of the sludge flocs. It is in a state of being combined with sludge, or at least easily in a state of being coupled with sludge due to electrical interaction or the like, and biological treatment of the waste water is performed in this state.
  • the particle size of the magnetic powder is usually in the range of 0.05 ⁇ m to 10 ⁇ m. Those having a range of 0.05 ⁇ m or more and 5 ⁇ m or less are more preferable.
  • the coercive force of the magnetic powder is usually 10 4 / 4 ⁇ A.
  • the ratio of the concentration (mg / L) of the magnetic powder to 1 of the concentration (mg / L) of the activated sludge organic suspended matter (MLVSS) in the water to be treated in the treatment tank 1 is 0. It is preferable to add so that it may become 2 or more and 3 or less, and it is more preferable to add so that it may become 0.5 or more and 2 or less. If it is less than this range, the efficiency of solid-liquid separation of the magnetic powder and sludge combined with the magnetic powder from the treated water after biological treatment tends to deteriorate, and if it exceeds this range, the cost of the magnetic powder also increases. Therefore, neither is preferable.
  • concentration (mg / L) of the activated sludge organic suspended solids (MLVSS) in to-be-processed water can be measured with the analysis method of the suspended solids described in Japanese Industrial Standards JIS K 101.
  • any biological treatment can be used as long as it is a biological treatment that is introduced and decomposes and removes pollutant components of the wastewater by microorganisms in the activated sludge.
  • activated sludge containing aerobic microorganisms such as ammonia-oxidizing bacteria and nitrite-oxidizing bacteria
  • activated sludge containing aerobic microorganisms such as nitrite-oxidizing bacteria and anaerobic microorganisms such as denitrifying bacteria.
  • “dominance” means that the number is dominant in the microflora in the water to be treated in the treatment tank 1. Whether it is dominant or not is determined by randomly identifying the biota living in the treatment tank 1 by determining the 16S rDNA sequence, etc. You can ask and know if it exists at a rate of. Specifically, it is preferable that about 1 ⁇ 10 6 to 1 ⁇ 10 9 bacteria are present in 1 mL of water to be treated in the treatment tank 1 for microorganisms belonging to the desired genus species.
  • the apparatus 3 for dominating the microorganisms belonging to the genus Bacillus or Geobacillus is, as a means of dominance, (1) micronutrients required by microorganisms belonging to the genus Bacillus or Geobacillus in the treatment tank 1 (In this case, the apparatus 3 may constitute a tank for supplying trace nutrients for adding trace nutrients to the treated water in the treatment tank 1), (2) Bacillus genus Alternatively, a microorganism belonging to the genus Geobacillus is added to the water to be treated in the treatment tank 1 (in this case, the apparatus 3 may constitute a microorganism supply tank for adding the microorganism to the water to be treated in the treatment tank 1.
  • the seed sludge obtained during the operation of the wastewater treatment operated by dominating the microorganisms belonging to the genus Bacillus or Geobacillus is added to the treated water in the treatment tank 1 (in this case, the device) 3 is a treatment tank for the seed sludge (4)
  • the microorganisms belonging to the genus Bacillus or Geobacillus are highly resistant to high temperatures due to the property of being resistant to high temperatures. Sterilize and relatively increase the proportion of microorganisms belonging to the genus Bacillus or Geobacillus (in this case, the apparatus 3 heats the seed sludge and heats the seed sludge for adding to the treated water in the treatment tank 1 -A supply tank may be configured.), Etc., etc.
  • the means (1), (2), and (3) are preferable because they are simple and effective, and the state of dominance by the means can be easily predicted.
  • micronutrient salts examples include sodium silicate, iron (II) chloride, iron (III) chloride, iron sulfate, aluminum oxide, calcium oxide, magnesium oxide, and the like, and a mixture of two or more of these is used. May be.
  • iron as a micronutrient is sufficiently supplied from the magnetic powder. It is preferable to use a micronutrient containing salt. Thereby, the usage-amount of trace nutrient can be reduced.
  • the micronutrients are introduced into the treatment tank 1 together with the dominance of the microorganisms, and the organic matter concentration (mg / L) and the inflow amount of the wastewater introduced into the treatment tank 1. Add in proportion to the amount of wastewater to be introduced. Thereby, the usage-amount of trace nutrient can be reduced and the use cost can be held down. Moreover, the growth inhibition of the microorganisms due to the excessive addition of trace nutrients can be prevented.
  • an organic substance concentration (mg / mg) by an organic substance concentration measuring device 18 is obtained from the apparatus 3 (in this case, constituting a trace nutrient supply tank) for dominating the microorganisms. L) and the addition amount proportional to the inflow amount by the flow meter 17 or the addition amount proportional to the inflow amount by the flow meter 17, the trace nutrient is added to the water to be treated in the treatment tank 1. Yes.
  • the micronutrient is A ⁇ B ⁇ K 1 (K 1 is a predetermined coefficient). Add by volume.
  • the organic substance concentration need not always be measured at all times as long as it is measured before the start of operation and a target is provided.
  • A is 200 (mg / L)
  • B is 1000 (L)
  • trace nutrients may be added 2g.
  • the organic matter concentration (mg / L) or the inflow amount of the waste water is set to a certain time width, for example, 30 minutes, and the average in the time width is obtained to determine the amount of the trace nutrient added. It is preferable. Thereby, more efficient control reflecting the actual situation can be performed.
  • the concentration of activated sludge suspended solids (MLSS) in the water to be treated in the treatment tank 1 (mg / L) after reaching the steady operation with the dominance of the microorganism. ) Increases beyond the predetermined rate of change from the steady state, the addition of the above-mentioned trace nutrients is started, and the concentration (mg / L) of activated sludge suspended matter (MLSS) in the water to be treated in the treatment tank 1 Continue adding the micronutrients until) again reaches steady state or begins to decrease.
  • the rate of change is, for example, 10% in a typical example, but is not limited to this. Any change rate suitable for wastewater treatment can be set.
  • the MLSS concentration measuring device is used after the steady operation is reached from the apparatus 3 (in this case, constituting a trace nutrient supply tank) for predominating the microorganisms. Only when the concentration (mg / L) of activated sludge suspended matter (MLSS) according to 19 has increased from the steady state to a rate of change exceeding 10%, the micronutrient is added to the water to be treated in the treatment tank 1. It is like that.
  • the steady operation is a state in which the operation of wastewater treatment is performed so that the rate of change in the concentration (mg / L) of activated sludge suspended matter (MLSS) in the treated water in the treatment tank 1 does not exceed a predetermined range. It is.
  • the predetermined range of the rate of change is, for example, ⁇ 10% in a typical example, but is not limited to this similarly to the above, and the rate of change set arbitrarily according to the characteristics of wastewater treatment It may be within a predetermined range.
  • the steady state of the MLSS concentration is, for example, an average value of the MLSS concentration in a predetermined period (for example, 3 days in a typical example) before the measurement date.
  • the period for obtaining the average value may be set arbitrarily.
  • the average concentration of MLSS for 3 days from the day before the measurement date is compared to determine the rate of change. If the rate of change exceeds 10% and the MLSS concentration is increased, the addition of the micronutrient is started. When the concentration of the liquid becomes a steady state again or the rate of change thereof is 0% or less, that is, starts to decrease, the addition of the micronutrient is stopped.
  • microorganisms belonging to the genus Bacillus or Geobacillus include, for example, Bacillus circulans (for example, NBRC13626 strain), Bacillus coagulans (for example, NBRC12583 strain, etc.), Bacillus lentus (for example, NBRC16444 strain, etc.), Bacillus RCRCilis 200 (for example, NBRC16444 strain, etc.) microorganisms belonging to the genus Bacillus such as megaterium (for example, NBRC15308 strain), Bacillus bsubtilis (for example, NBRC101239 strain), Geobacillus ro stearothermophilus (for example, NBRC12550 strain, etc.), Geobacillus luthermogluco Examples include microorganisms belonging to the genus Geobacillus such as sidasis (for example, NBRC107763 strain), Geobacillus toebii (for example, NBRC107807 strain), and Geobacillus
  • the magnetic separation means 4 is for solid-liquid separation of magnetic powder and sludge (including microbiota) combined with the magnetic powder from post-treatment water after biological treatment, and the liquid portion after the solid-liquid separation. While the treated water with purified water is taken out from the discharge line L3, the magnetic powder and the sludge combined with the magnetic powder are collected and returned to the treatment tank 1 as the return sludge through the return line L4. The amount of activated sludge necessary for biological treatment is secured with the water to be treated. Moreover, you may discharge
  • wastewater containing organic matter is treated in the treatment tank 1 by sludge containing a microflora that predominates microorganisms belonging to the genus Bacillus or Geobacillus. Since microorganisms belonging to the genus Bacillus or genus Geobacillus have a high sludge resolution (ability to decompose microorganisms), the present invention can suppress the growth of microorganisms in the sludge. For this reason, only when the concentration (mg / L) of activated sludge suspended solids (MLSS) in the water to be treated in the treatment tank increases beyond 30000, the sludge in which the magnetic powder and the magnetic powder are combined is used.
  • MMS activated sludge suspended solids
  • the system can be pulled out of the system and operated so that the concentration (mg / L) of activated sludge suspended solids (MLSS) in the water to be treated in the treatment tank is less than 30000. Thereby, the usage-amount of magnetic powder can be reduced.
  • the magnetic separation means 4 may be any means as long as it can solid-liquid separate the magnetic powder and the sludge combined with the magnetic powder from the treated water after the biological treatment, and there is no particular limitation on the structure and the like. Hereinafter, various forms of the magnetic separation means 4 will be described with reference to FIGS.
  • FIG. 2 shows a first example of the form of the magnetic separation means 4.
  • the flow path 5 communicating with the pipe extending from the treatment tank 1 is provided, and the flow path 5 has a predetermined volume, so that the treated water after biological treatment passes through the flow path 5. It passes through while staying for a predetermined time when passing.
  • the turntable 6 is arranged so that its lower half is immersed in post-treatment water after biological treatment flowing through the flow path 5, and is rotated by a driving means (not shown).
  • the rotation direction along the circumferential direction of the turntable 6 is the forward direction with respect to the flow in the portion immersed in the treated water after the biological treatment.
  • a plurality of the rotating disks 6 are coaxially aligned in parallel along a depth direction (not shown) in FIG. 2 and arranged at predetermined intervals in the width direction of the flow path 5 with a slight gap therebetween. It is arranged to cover almost the whole. Magnets are arranged in a range that can substantially cover the entire surface of the rotating disk 6 or the depth of flowing water in the flow path 5. The magnetic powder and the sludge combined with the magnetic powder are attached to the surface of the rotating disk 6 by the magnetic attractive force of the magnet.
  • Scrapers 7 are arranged along the surfaces on both sides of the rotating disk 6 at the portion of the rotating disk 6 exposed from the water surface of the treated water, and magnetic powder and magnetic powder adhering to the rotating rotating disk 6 are combined. Scraped sludge. The magnetic powder scraped off by the scraper 7 and the sludge combined with the magnetic powder are dropped onto a discharge chute or the like (not shown), separated from the treated water, and taken out to a predetermined location.
  • FIG. 3 shows a second example of the form of the magnetic separation means 4.
  • a rotating drum 8 is arranged instead of the rotating disk 6 shown in FIG.
  • a magnet is disposed on the surface of the rotating drum 8.
  • the rotating drum 8 is disposed so that the lower half is immersed in the treated water, and a scraper 9 is disposed along the surface of the rotating drum 8 at a portion exposed from the water surface of the treated water. . Therefore, the magnetic powder contained in the treated water or the sludge combined with the magnetic powder adheres to the surface of the rotating drum 8 by the magnet on the surface of the rotating drum 8, is scraped off by the scraper 9, and is separated from the treated water. Is done.
  • FIG. 4 shows a third example of the form of the magnetic separation means 4.
  • an electromagnet 10 capable of turning on and off the generation of a magnetic field is inserted and disposed in the processing tank 1. Further, a scraper 11 that moves so as to rub the surface of the electromagnet 10 is provided. And when discharging
  • FIG. 5 shows a fourth example of the form of the magnetic separation means 4.
  • the treatment tank 1 is provided with a discharge pipe 12 for discharging the treated water, and a part of the treated water is returned to the treatment tank 1 from the middle of the discharge pipe 12.
  • the pipe 13 branches and the return pipe 13 is connected to the processing tank 1.
  • a magnetism generating drum 14 that rotates in the flow direction of the treated water is disposed in the vicinity of the return pipe 13 of the discharge pipe 12 and outside the pipe. And the sludge M which this magnetic powder couple
  • FIG. 6 shows a fifth example of the form of the magnetic separation means 4.
  • the treatment tank 1 is provided with a discharge pipe 12 for discharging the treated water, and a part of the treated water is passed through the three-way valve 15 from the middle of the discharge pipe 12. Is returned to the treatment tank 1, and the return pipe 13 is connected to the treatment tank 1.
  • the three-way valve 15 switches the flow path of the treated water between the discharge pipe 12 side and the return pipe 13 side.
  • a magnetism generating module 16 such as an electromagnet capable of controlling magnetism generation ON / OFF is provided.
  • the treated water flow path is set to the discharge pipe 12 side by the three-way valve 15, and the treated water is discharged to the discharge pipe 12.
  • the magnetic powder in the treated water and the sludge combined with the magnetic powder are magnetically adsorbed at the magnetism generating module 16, and only the purified treated water flows out from the discharge pipe 12.
  • the generation of magnetism in the magnetism generating module 16 is released, and when the treated water is further discharged by setting the flow path of the treated water to the return pipe 13 side by the three-way valve 15, FIG. As shown in b), the magnetic powder adsorbed on the magnetism generating module 16 and the sludge combined with the magnetic powder are released from the magnetic attraction force and flow into the return pipe 13 side with the treated water. Returned in.
  • Magnets used in these magnetic separation means include permanent magnets such as ferrite magnets, rubber magnets, samarium cobalt magnets, iron-chromium-cobalt magnets, neodymium magnets, plastic magnets, superconducting electromagnets, bulk magnets, electromagnets, etc. Any type of magnetic material may be used as long as it generates a magnetic field, but it is preferable to use a permanent magnet that is generally available at a low cost, for example, a ferrite magnet. Also, plastic magnets using ferrite magnets are stable and can be used even in an exposed state. However, depending on the situation of the installation location, the surface should be coated with a material excellent in durability, corrosion resistance, etc. It is preferable.
  • Neodymium magnets, samarium cobalt magnets, and the like are powerful magnets, but they are susceptible to corrosion and need to be coated with anticorrosion.
  • anticorrosion coating various methods such as coating with a resin excellent in durability and corrosion resistance and coating with a stainless steel plate such as SUS304 can be adopted.
  • the arrangement of the magnetic poles on the surface of the magnetic separation means is preferably in a state in which N poles and S poles are alternately arranged at a magnetization interval of 2 to 20 mm.
  • the magnetizing interval is narrowed, the saturation adhesion amount of the magnetic powder-containing sludge is reduced, and when the magnetizing interval is widened, the adhesion force of the magnetic powder-containing sludge is weakened.
  • the size (diameter and length) of the magnetic separation means and the number of rotations in the rotating magnetic separation process are arbitrary and can be selected according to the processing amount. Installation space, manufacturing cost, and operating cost It may be set in consideration of the above.
  • the structure and shape of the member having the magnet of the magnetic separation means can adopt various shapes such as a plate shape, a disk shape, and a rod shape, and are combined with a sludge collecting means such as a scraper according to these shapes.
  • a sludge collecting means such as a scraper according to these shapes.
  • means for separating the adsorbed magnetic powder and the sludge combined with the magnetic powder means such as jetting of a liquid substance such as water, and jetting of compressed air can be employed in addition to a scraper.
  • the wastewater targeted by the present invention is not particularly limited as long as it contains organic matter.
  • household wastewater, cereal starch manufacturing industry, dairy manufacturing industry, meat center, sugar manufacturing industry, livestock food manufacturing industry examples include wastewater from livestock farming, meat product manufacturing, meat ham / sausage manufacturing, fish paste product manufacturing, fishery food manufacturing, organic chemical industry, and inorganic chemical industry.
  • concentration in the processing tank 1 can be raised, even if it is the waste_water
  • the organic matter volume load (kg / m 3 ⁇ day) means the amount of organic matter flowing into the treatment tank per unit volume.
  • the concentration (mg / L) of activated sludge suspended matter (MLSS) in the water to be treated in the treatment tank 1 is 8000 or more and less than 30000. If the concentration (mg / L) of activated sludge suspended solids (MLSS) in the water to be treated in the treatment tank 1 is within this range, the efficiency of wastewater treatment is stable and long-term operation that does not require maintenance is possible. Because there is, running costs can be reduced.
  • the return speed of the magnetic powder and sludge combined with the magnetic powder into the treatment tank is determined by the concentration (mg / mg) of activated sludge suspended matter (MLSS) in the water to be treated in the treatment tank.
  • L it is preferable to operate by increasing or decreasing in steps.
  • the return speed is adjusted by adjusting the rotation speed of the rotating disk 6, and in the case of the magnetic separation means 42 of the form shown in FIG.
  • the magnetic separation means 43 in the form shown in FIG. 4 by adjusting the speed, in the case of the magnetic separation means 44 in the form shown in FIG.
  • the adjustment is performed by adjusting the switching of the three-way valve 15 and the timing for turning on / off the magnetism generating module 16. can do. According to this, the quantity by which the magnetic powder and the sludge combined with the magnetic powder are discharged out of the system through the discharge line L3 can be minimized. More specifically, for example, in the case of the magnetic separation means 42 of the form shown in FIG.
  • the rotational speed of the rotating drum 8 is 4 rpm, and when the MLSS concentration is 15000 or more and less than 22000, When the speed is 6 rpm and the rotational speed is 22,000 or more and less than 30000, the return speed can be increased or decreased stepwise, for example, the rotational speed is 10 rpm.
  • the concentration (mg / L) of the activated sludge suspended matter (MLSS) in the water to be treated in the treatment tank 1 can be measured by the MLSS concentration measuring device 19 and constantly monitored, but for a certain period of time.
  • a width for example, 30 minutes, and determine the average of the concentration (mg / L) of activated sludge suspended matter (MLSS) in the time width to determine whether or not the above threshold is exceeded. Thereby, more efficient control reflecting the actual situation can be performed.
  • ⁇ Test Example 1> 1 is a wastewater treatment apparatus having the configuration shown in FIG. 1, using a wastewater treatment apparatus having a 5 L capacity as the treatment tank 1 and a drum type of the form shown in FIG. 3 as the magnetic separation means 4.
  • a test was conducted.
  • Total amount of nitrogen 100 mg / L
  • the aeration in the treatment tank was intermittent aeration that was turned ON / OFF every 30 minutes at an aeration rate of 5 L / min.
  • the treated water in the treatment tank 1 at the start of operation is pure Bacillus subtilis NBRC101239 strain in canteen drainage (CODcr (chemical oxygen demand): 200 mg / L).
  • the cells obtained by culturing were added so as to have a concentration of 1000 mg / mL.
  • about 1 ⁇ 10 6 to 7 ⁇ 10 7 bacteria were present in 1 mg of cells obtained by culturing in the canteen drainage.
  • magnetite dispersed in water as magnetic powder (particle size: about 0.5 to 4.0 ⁇ m, coercive force: about 1 ⁇ 10 5 / 4 ⁇ to 2 ⁇ 10 5 / 4 ⁇ A / m)
  • concentration (mg / L) of magnetic powder to the concentration (mg / L) of activated sludge organic suspended matter (MLVSS) in the water to be treated in the final treatment tank 1 at the end of the test is 1
  • An appropriate amount was supplied to the water to be treated in the treatment tank 1 in a timely manner so as to be about 1: 1.
  • Example 1 The above wastewater treatment test was taken as Example 1.
  • Comparative Example 1 a wastewater treatment test by a conventionally known magnetized activated sludge method was performed. Specifically, wastewater treatment is performed in the same manner as above except that activated sludge from a sewage treatment plant is added to the treated water in the treatment tank 1 at the start of wastewater treatment operation instead of the cells of Bacillus subtilis NBRC101239 strain. A test was conducted. In this condition, the concentration of the activated sludge organic suspended matter (MLVSS) of the water to be treated in the treatment tank 1 exceeds 13000 mg / L and the viscosity of the water to be treated in the treatment tank 1 is in the latter part of the test. In order not to affect the evaluation of water quality, it became difficult to treat the quality of the treated water.
  • MVSS activated sludge organic suspended matter
  • activated sludge from a sewage treatment plant was added to the treated water in the treatment tank 1 at the start of wastewater treatment operation instead of the cells of Bacillus subtilis NBRC101239 strain, and the magnetic separation means 4 Instead, a 1-L sedimentation tank was arranged, and the residence time for solid-liquid separation of the returned sludge in the sedimentation tank was set to 12 hours, and a wastewater treatment test by a conventionally known activated sludge method was performed.
  • the concentration of the activated sludge organic suspended matter (MLVSS) of the water to be treated in the treatment tank 1 is about 4000 mg / L or less and does not exceed 13000 mg / L. It was.
  • the water quality of the treated water was measured using a simple analyzer (“Rapid Water Quality Analyzer DR890”, manufactured by HACH), and the average of the water quality every 3 days was obtained from the 15th day when the water quality was stabilized. The results are shown in Table 1 below.
  • Example 1 CODcr (chemical oxygen demand) of the water quality of the test water: 2000 mg / L, TN (total nitrogen amount): 100 mg / L was used as the quality of the treated water. It was possible to purify water to CODcr: 163 mg / L and TN: 3 mg / L. Moreover, SS (amount of suspended solids) in the treated water was about 25 mg / L.
  • Comparative Example 1 the quality of the treated water was CODcr: 235 mg / L, TN: 14 mg / L, and the SS (floating substance amount) in the treated water was about 41 mg / L.
  • the water quality of the treated water was CODcr: 663 mg / L, TN: 72 mg / L, and the SS (floating substance amount) in the treated water was about 129 mg / L.
  • Example 1 in which microorganisms belonging to the genus Bacillus are dominant as the microbial flora in the magnetized activated sludge method, Comparative Example 1 by the conventionally known magnetized activated sludge method and Control Example 1 by the conventionally known activated sludge method Compared with, it was excellent in purification ability.
  • FIG. 7 shows the concentration change of the activated sludge organic suspended matter (MLVSS) in the treatment tank 1 during the test period for Example 1 and Comparative Example 1.
  • the sludge was drawn out of the system so that the concentration of the activated sludge organic suspended matter (MLVSS) in the treatment tank 1 did not exceed 13000 mg / L.
  • the portion where the concentration of the activated sludge organic suspended solids (MLVSS) exceeded 13000 mg / L was drawn out of the system to the activated sludge organic suspended solids (MLVSS) of the treated water in the treatment tank 1. The sum of sludge is shown.
  • Example 1 the concentration of the activated sludge organic suspended matter (MLVSS) of the water to be treated in the treatment tank 1 was equilibrated at about 9000 mg / L, whereas in Comparative Example 1, It further increased beyond 13000 mg / L without equilibration. This is because the concentration of the return sludge was increased by the magnetized activated sludge method, so that the sludge proliferated excessively. On the other hand, when microorganisms belonging to the genus Bacillus were dominant, there was no need to extract sludge and no need to replenish magnetic powder.
  • MVSS activated sludge organic suspended matter
  • the wastewater treatment method that predominates the microorganisms belonging to the genus Bacillus as the microbial flora in the magnetized activated sludge method is due to the organic matter treatment ability due to the high concentration of the returned sludge and the auto-oxidation action of the microorganisms. It became clear that the sludge reduction action is well balanced and the purification ability can be demonstrated very efficiently. In addition, it became clear that there was no need to extract sludge and no need to replenish magnetic powder even under conditions of high concentration simulated drainage as used in this test example.
  • Example 2 In Example 1 of Test Example 1, instead of the microorganism belonging to the genus Bacillus, Geobacillus stearothermophilus NBRC12550 strain was used as the microorganism belonging to the genus Geobacillus, and it was used as a canal drainage (CODcr (chemical oxygen demand): 200 mg / L). In the same manner as in Example 1 of Test Example 1, except that the cells obtained by pure culture in Example 1 were added to the water to be treated in the treatment tank 1 at the start of operation so as to have a concentration of 1000 mg / mL. 2 wastewater treatment tests were conducted. In addition, about 1 ⁇ 6 6 to 2 ⁇ 10 7 bacteria were present in 1 mg of cells obtained by culturing in canteen drainage.
  • CODcr chemical oxygen demand
  • CODcr chemical oxygen demand
  • TN total nitrogen amount
  • SS amount of suspended solids
  • Example 2 in which microorganisms belonging to the genus Geobacillus are dominant as the microbial flora in the magnetized activated sludge method, the microorganism flora belongs to the genus Bacillus in the magnetized activated sludge method shown in Example 1 of Test Example 1.
  • the purification ability was excellent as in the case of dominating microorganisms.
  • FIG. 8 shows the change in the concentration of the activated sludge organic suspended matter (MLVSS) in the treatment tank 1 during the test period, together with the result of Comparative Example 1 of Test Example 1 shown in FIG.
  • the sludge was drawn out of the system so that the concentration of the activated sludge organic suspended matter (MLVSS) in the treatment tank 1 did not exceed 13000 mg / L.
  • concentration of the activated sludge organic suspended solid (MLVSS) shown in 8 exceeded 13000 mg / L, it pulled out of the system to the activated sludge organic suspended solid (MLVSS) of the to-be-processed water in the processing tank 1.
  • the sum of sludge is shown.
  • Example 2 in which microorganisms belonging to the genus Geobacillus are dominant as the microbial flora in the magnetized activated sludge method, the microbial flora in the magnetized activated sludge method shown in Example 1 of Test Example 1 is used.
  • the concentration of activated sludge organic suspended matter (MLVSS) in the treatment water in the treatment tank 1 is about 8500 mg / L to achieve an equilibrium state.
  • the wastewater treatment method that predominates the microorganisms belonging to the genus Geobacillus as the microbial flora in the magnetized activated sludge method is due to the organic matter treatment ability due to the high concentration of returned sludge and the oxidative action of microorganisms It became clear that the sludge reduction action is well balanced and the purification ability can be demonstrated very efficiently. In addition, it became clear that there was no need to extract sludge and no need to replenish magnetic powder even under conditions of high concentration simulated drainage as used in this test example.
  • Treatment tank 2 Magnetic powder tank 3: Equipment for predominating microorganisms belonging to the genus Bacillus or Geobacillus (micronutrient salt tank) 4, 41, 42, 43, 44, 45: magnetic separation means 5: flow path 6: rotating disk 7, 9, 11: scraper 8: rotating drum 10: electromagnet 12: discharge pipe 13: return pipe 14: magnetism generating drum 15: Three-way valve 16: Magnetic generation module 17: Flow meter 18: Organic substance concentration measuring device 19: MLSS concentration measuring device

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

 生物処理槽での汚泥の過剰な増殖が抑えられ、汚泥引抜とともに系外に排出される磁性粉の排出量が低減されて、ランニングコストを抑えた運転が可能となる、磁化活性汚泥法による排水処理方法を提供する。 有機物を含む排水を処理槽1に導入し、その排水を処理槽1内での活性汚泥により生物処理する排水処理方法において、前記処理槽1内の被処理水に磁性粉を添加するとともに微生物叢としてバチルス属又はジオバチルス属に属する微生物を優占化させ、前記微生物に必要な微量栄養塩を前記処理槽に導入する排水の有機物濃度(mg/L)及び流入量、又は前記排水の流入量に比例した添加量で添加するとともに、生物処理後の処理後水に磁気分離手段4により磁気を作用させて、その磁力により前記処理後水から前記磁性粉と該磁性粉が結合した汚泥を固液分離し、固液分離した前記磁性粉と該磁性粉が結合した汚泥の全部又は一部を前記処理槽1内に戻す。

Description

排水処理方法
 本発明は、磁力を利用して排水を処理する排水処理方法に関する。
 活性汚泥法は古くから存在する排水処理技術であり、生物処理槽と沈殿槽を備え、生物処理槽で増殖した汚泥を沈殿槽で沈殿分離し、沈殿した汚泥を生物処理槽に返送する運転方法である。活性汚泥法では、有機物の分解を微生物反応に依存するため、処理時間を長くとる必要があり、また、有機物分解に伴い増殖した微生物の塊である汚泥が、余剰汚泥として大量に発生するという問題がある。これらの問題への解決方法として、反応槽内の活性汚泥濃度を高濃度化することが挙げられる。活性汚泥の濃度を高く保つことで処理速度を向上させることができ、また、微生物が持つ自己酸化作用による汚泥削減が促進され、余剰汚泥の発生量の低減が見込まれる。反応槽における活性汚泥濃度を決定する因子は、沈殿槽で堆積した返送汚泥の濃度である。通常の重力沈殿槽では、返送汚泥の濃度の上限が数1000mg/L~10000mg/Lと低く、返送汚泥の濃度を高くすることが反応槽内の活性汚泥濃度の高濃度化の課題となっている。
 上記課題を解決する方法として磁化活性汚泥法が挙げられる。磁化活性汚泥法は、生物処理槽にて磁性粉を添加し、生物処理槽で増殖した汚泥(微生物)に結合させて磁性を付与したうえ、磁性粉とそれに結合した汚泥を磁気分離手段を用いて固液分離し、これを生物処理槽に返送する運転方法である(下記特許文献1~3)。磁化活性汚泥法により、返送汚泥の濃度は数10000mg/L~100000mg/L程度と、活性汚泥法と比較して10倍程度まで高濃度化できる。これにより、微生物反応に依存した有機物分解の処理効率を向上させることができ、また、微生物が持つ自己酸化作用による汚泥削減が促進される。下水などの有機物が低濃度で含まれる排水の場合には、見かけ上の余剰汚泥の発生量をゼロとすることも可能である。
国際公開第2004/054935号公報 特開2005-161160号公報 特開2005-161161号公報
 しかしながら、磁化活性汚泥法を有機物が高濃度で含まれる排水に適用しようとすると、返送汚泥が高濃度化するために、生物処理槽で汚泥が過剰に増加し、曝気不良と撹拌不良を引き起こし、増殖した汚泥が処理水質を低下させる要因となっていた。その対策として、汚泥引抜による活性汚泥濃度の最適化を行っていたが、生物処理槽で増殖した汚泥(微生物)は磁性粉と強固に結合しており、汚泥引抜とともに磁性粉も系外に排出されてしまう。このため、磁性粉の追加添加が必要となり、ランニングコストが高くなるという問題があった。
 そこで、本発明の目的は、磁化活性汚泥法による排水処理方法において、生物処理槽での汚泥の過剰な増殖が抑えられ、汚泥引抜とともに系外に排出される磁性粉の排出量が低減されて、ランニングコストを抑えた運転が可能となる、排水処理方法を提供することにある。
 上記目的を達成するため、本発明の排水処理方法は、有機物を含む排水を処理槽に導入し、その排水を処理槽内での活性汚泥により生物処理する排水処理方法であって、前記処理槽内の被処理水に磁性粉を添加するとともに微生物叢としてバチルス属又はジオバチルス属に属する微生物を優占化させ、前記微生物に必要な微量栄養塩を前記処理槽に導入する排水の有機物濃度(mg/L)及び流入量、又は前記排水の流入量に比例した添加量で添加するとともに、生物処理後の処理後水に磁気を作用させて、その磁力により前記処理後水から前記磁性粉と該磁性粉が結合した汚泥を固液分離し、固液分離した前記磁性粉と該磁性粉が結合した汚泥の全部又は一部を前記処理槽内に戻すことを特徴とする。
 また、有機物を含む排水を処理槽に導入し、その排水を処理槽内での活性汚泥により生物処理する排水処理方法であって、前記処理槽内の被処理水に磁性粉を添加するとともに微生物叢としてバチルス属又はジオバチルス属に属する微生物を優占化させ、定常運転に達した以降は、前記処理槽内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)が定常状態から所定の変化率を超えて増加した場合に限り、前記微生物に必要な微量栄養塩の添加を開始し、前記処理槽内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)が再び定常状態となるか又は減少し始めるまで、前記微量栄養塩の添加を続けるとともに、生物処理後の処理後水に磁気を作用させて、その磁力により前記処理後水から前記磁性粉と該磁性粉が結合した汚泥を固液分離し、固液分離した前記磁性粉と該磁性粉が結合した汚泥の全部又は一部を前記処理槽内に戻すことを特徴とする。
 本発明の排水処理方法によれば、磁力により処理後水から磁性粉とその磁性粉が結合した汚泥を固液分離し、これを処理槽内に戻すので、生物処理に必要な微生物叢を磁性粉とともに回収することができ、系外に散逸してしまうことがない。よって、従来法では微生物叢を含む汚泥の回収に必要であった沈殿槽が必須構成ではなく、設備構成を簡素化できる。また、生物処理の微生物叢としてバチルス属又はジオバチルス属に属する微生物を優占化させるので、余剰汚泥の発生が抑えられ、磁性粉を余剰汚泥として系外に引抜かなくてもよいので、磁性粉の使用量を軽減できる。更に、上記微生物に必要な微量栄養塩を、排水処理の実状況に応じて添加するので、その使用コストを抑えることができ、また、微量栄養塩の過剰添加による上記微生物の生育阻害を防止することができる。
 本発明の排水処理方法においては、有機物容積負荷(kg/m・日)が1.0以上1.5以下となるように、前記有機物を含む排水を前記処理槽に導入することが好ましい。
 また、定常運転に達した以降は、前記処理槽内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)が8000以上30000未満となるように運転を行うことが好ましい。
 また、前記処理槽内の被処理水中の活性汚泥浮遊物質(MLSS)の濃度(mg/L)が30000以上を超えて増加した場合に限り、前記磁性粉と該磁性粉が結合した汚泥を系外に引抜き、前記処理槽内の被処理水中の活性汚泥浮遊物質(MLSS)の濃度(mg/L)が30000未満となるように運転を行うことが好ましい。
 また、前記磁性粉と該磁性粉が結合した汚泥の全部又は一部の前記処理槽内への返送速度を、前記処理槽内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)に応じて、段階的に増減させて運転を行うことが好ましい。
 また、前記処理槽内の被処理水中の活性汚泥有機性浮遊物(MLVSS)の濃度(mg/L)の1に対する前記磁性粉の濃度(mg/L)の比が0.2以上3以下となるように、前記磁性粉を添加することが好ましい。
 また、前記バチルス属又はジオバチルス属に属する微生物が、Bacillus circulans、Bacillus coagulans、Bacillus lentus、Bacillus licheniformis、Bacillus megaterium、Bacillus subtilis、Geobacillus stearothermophilus、Geobacillus thermoglucosidasius、Geobacillus toebii、及びGeobacillus zalihaeからなる群から選ばれた1種又は2種以上であることが好ましい。
 また、前記磁性粉が鉄を含み、前記微量栄養塩が鉄を含まないことが好ましい。
 本発明の排水処理方法によれば、磁化活性汚泥法による排水処理方法において、生物処理槽での汚泥の過剰な増殖が抑えられ、汚泥引抜とともに系外に排出される磁性粉の排出量が低減されて、ランニングコストを抑えた運転が可能となる。
本発明による排水処理方法を実施するための排水処理装置の概略構成図である。 本発明の排水処理方法に用いられる磁気分離手段の形態の第1の例を示す説明図である。 本発明の排水処理方法に用いられる磁気分離手段の形態の第2の例を示す説明図である。 本発明の排水処理方法に用いられる磁気分離手段の形態の第3の例を示す説明図である。 本発明の排水処理方法に用いられる磁気分離手段の形態の第4の例を示す説明図である。 本発明の排水処理方法に用いられる磁気分離手段の形態の第5の例を示す説明図である。 試験例1の比較例1及び実施例1について試験期間中の処理槽内の活性汚泥有機性浮遊物(MLVSS)の濃度変化を示す図表である。 試験例2の実施例2について試験期間中の処理槽内の活性汚泥有機性浮遊物(MLVSS)の濃度変化を試験例1の比較例1の結果とともに示す図表である。
 以下、図面を参照しつつ本発明の実施形態を説明する。
 図1には、本発明による排水処理方法を実施するための排水処理装置の概略構成図を示す。この排水処理装置は、活性汚泥による生物処理のための処理槽1と、処理槽1内の被処理水に磁性粉を添加するための磁性粉タンク2と、バチルス属又はジオバチルス属に属する微生物を優占化させるための装置3と、磁性粉とその磁性粉が結合した汚泥を生物処理後の処理後水から固液分離するための磁気分離手段4と、を備えている。これらは配管により連通し、図示しないポンプやバルブによって、所定の処理が成されるまでそれぞれ内容物を留め置いたり、他に移動させたりすることができるようになっている。
 処理槽1には、排水供給ラインL1から有機物を含む排水が導入される。排水供給ラインL1には流量計17と有機物濃度測定器18が配設され、流量計17により処理槽1に導入する排水の流入量が、有機物濃度測定器18により処理槽1に導入する排水の有機物濃度(mg/L)が、それぞれ測定できるようになっている。また、処理槽1内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)が、MLSS濃度測定器19により測定できるようになっている。排水の有機物濃度(mg/L)や被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)は、日本工業規格JIS K 101に記載の懸濁物質の分析方法で測定することができる。
 処理槽1で生物処理された処理後水は、取出しラインL2を通して磁気分離手段4に送られ、磁気分離手段4で、磁性粉及びその磁性粉が結合した汚泥と、水質が浄化された処理水とに、固液分離される。処理水は、排出ラインL3を通して系外に排出される。
 一方、磁気分離手段4で固液分離された磁性粉及びその磁性粉が結合した汚泥の全部又は一部は、返送ラインL4を通して、処理槽1内に戻される。なお、余剰汚泥は必要に応じて汚泥取出しラインL5を通して系外に排出される。
 なお、図1では、磁気分離手段4は、処理槽1から延びる配管と連通した構造体として表わされているが、後述するように、生物処理後の処理後水から磁性粉とその磁性粉が結合した汚泥を固液分離できる手段であればよく、必ずしも処理槽1から延びる配管と連通した構造体である必要はない。また、図1には、排水の流入量を調整する調整槽、流入水に含まれる浮遊物を除去する沈澱池、処理槽内の被処理水に酸素を導入するための曝気手段、処理水を消毒するための消毒手段などは図示しないが、これらの設備を適宜設置してもよいことは勿論である。更に、磁気分離手段4以降に沈殿槽を設けて、磁気分離手段4では除去しきれなかった固形物(汚泥を含む)を沈殿、分離するようにしてもよい。
 磁性粉タンク2からは、処理槽1内の被処理水に磁性粉が添加される。磁性粉は、粉末状で添加したり、あるいは水などの分散媒に磁性粉を分散した状態で添加したりすることができる。磁性粉の材質としては、常磁性粉あるいは強磁性粉のいずれであってもよく、例えば、酸化鉄、コバルト、酸化クロム、フェライトなどが挙げられる。処理槽1内の被処理水では、有機物分解に伴い増殖した微生物叢を含む汚泥がフロックを形成し、磁性粉が、汚泥フロックの3次元構造体が構成する孔、くぼみ等に入り込んだり、静電的な相互作用を及ぼしたりして、汚泥と結合した状態となり、あるいは少なくとも結合しやすい状態となっており、その状態で排水の生物処理がなされる。
 磁性粉の粒径は、あまり大きすぎると、磁性粉やそれに結合した汚泥が自重によって被処理水から分離・沈降してしまうので、通常その粒径は0.05μm以上10μm以下の範囲のものが好ましく、0.05μm以上5μm以下の範囲のものがより好ましい。また、磁性粉の保磁力があまり大きすぎると、磁性粉やそれと結合した汚泥が自身の磁力によって凝集し、被処理水から分離・沈降してしまうので、通常、その保磁力は10/4πA/m以上4×10/4πA/m以下の範囲のものが好ましく、2×10/4πA/m以上3×10/4πA/m以下の範囲のものがより好ましい。
 磁性粉の添加量としては、処理槽1内の被処理水中の活性汚泥有機性浮遊物(MLVSS)の濃度(mg/L)の1に対する磁性粉の濃度(mg/L)の比が0.2以上3以下となるように添加することが好ましく、0.5以上2以下となるように添加することがより好ましい。この範囲未満であると、生物処理後の処理後水から磁性粉とその磁性粉が結合した汚泥を固液分離する効率が悪くなる傾向となり、この範囲を超えると、磁性粉のコストも上昇するので、いずれも好ましくない。なお、被処理水中の活性汚泥有機性浮遊物(MLVSS)の濃度(mg/L)は、日本工業規格JIS K 101に記載の懸濁物質の分析方法で測定することができる。
 処理槽1内での生物処理については、処理槽1内に有機物を含む排水を導入し、一定時間滞留させる一方、処理槽1内には生物処理に必要な微生物を含む活性汚泥が滞留し、もしくは投入され、その活性汚泥中の微生物により排水の汚濁成分が分解され、除去される生物処理であればよく、特に制限はない。一般に、例えば、アンモニア酸化菌や亜硝酸酸化菌などの好気性微生物を含む活性汚泥や、亜硝酸酸化菌などの好気性微生物と脱窒菌などの嫌気性微生物を含む活性汚泥などが挙げられる。
 ただし、本発明においては、処理槽1内の被処理水における微生物叢としてバチルス属又はジオバチルス属に属する微生物を優占化させる必要がある。ここで優占化とは、処理槽1内の被処理水における微生物叢においてその数が優占的であることを意味する。優占的であるかどうかは、処理槽1内で生息している生物相を16SrDNA配列の決定などでランダムに同定して、目的とする属種に属する微生物がその他の生物種に対してどのくらいの割合で存在するかを求め、知ることができる。具体的には、目的とする属種に属する微生物を処理槽1内の被処理水1mL中に菌数およそ1×10個~1×10個存在するようにすることが好ましい。
 バチルス属又はジオバチルス属に属する微生物を優占化させるための装置3は、優占化の手段として、(1)バチルス属又はジオバチルス属に属する微生物が必要とする微量栄養塩を処理槽1内の被処理水に添加する(この場合、装置3は微量栄養塩を処理槽1内の被処理水に添加するための微量栄養塩供給用タンクを構成してもよい。)、(2)バチルス属又はジオバチルス属に属する微生物を処理槽1内の被処理水に添加する(この場合、装置3は該微生物を処理槽1内の被処理水に添加するための微生物供給用タンクを構成してもよい。)、(3)別途バチルス属又はジオバチルス属に属する微生物を優占化して運転した排水処理の運転時に得られた種汚泥を処理槽1内の被処理水に添加する(この場合、装置3は該種汚泥を処理槽1内の被処理水に添加するための種汚泥供給用タンクを構成してもよい。)、(4)バチルス属又はジオバチルス属に属する微生物は高温への耐性が高いという性質から加温により雑菌を殺菌し相対的にバチルス属又はジオバチルス属に属する微生物の比率を上げる(この場合、装置3は該種汚泥を加温処理して処理槽1内の被処理水に添加するための種汚泥加温・供給用タンクを構成してもよい。)、などの方法で優占化するなどの手段を施す。このうち、前記(1)、(2)、(3)の手段が、簡便で有効であり、その手段による優占化の状態も予測し易いので、好ましい。
 上記微量栄養塩としては、例えば、ケイ酸ナトリウム、塩化鉄(II)、塩化鉄(III)、硫酸鉄、酸化アルミニウム、酸化カルシウム、酸化マグネシウムなどが挙げられ、これらの2種以上の混合物を用いてもよい。ここで、処理槽1内の被処理水に添加される磁性粉が鉄を含む場合には、その磁性粉から微量栄養としての鉄分は十分に供給されるので、鉄を含まず、好ましくはケイ素を含む微量栄養塩を用いることが好ましい。これにより、微量栄養塩の使用量を削減できる。
 本発明においては、その第1の形態において、上記微生物の優占化とともに、上記微量栄養塩を、処理槽1に導入する排水の有機物濃度(mg/L)及び流入量、又は処理槽1に導入する排水の流入量に比例した添加量で添加する。これにより、微量栄養塩の使用量を低減することができ、その使用コストを抑えることができる。また、微量栄養塩の過剰添加による上記微生物の生育阻害を防止することができる。図1の排水処理装置では、上記微生物を優占化させるための装置3(この場合、微量栄養塩供給用タンクを構成している。)からは、有機物濃度測定器18による有機物濃度(mg/L)及び流量計17による流入量に比例した添加量、あるいは流量計17による流入量に比例した添加量で、上記微量栄養塩が処理槽1内の被処理水に添加されるようになっている。
 より具体的には、例えば、排水の有機物濃度(mg/L)をA、排水の流入量をBとしたとき、上記微量栄養塩をA×B×K(Kは所定の係数)の量で添加する。あるいは、有機物濃度については、運転開始前に測定し、目処を付けておけば、必ずしも常時測定する必要はない。例えば、排水の有機物濃度が一定である場合は、微量栄養塩の添加量は、排水の流入量に比例するため、B×K(K=A×K)である。また、排水の流入量が2倍に増加したときには、上記微量栄養塩を2×B×Kの量で添加する。より具体的には、Aが200(mg/L)、Bが1000(L)、Kが0.01だとすると、微量栄養塩は2g添加すればよい。ここで、排水の有機物濃度(mg/L)あるいは流入量は、一定の時間幅、例えば30分間などを設定して、その時間幅における平均を求めて、上記微量栄養塩の添加量を判定することが好ましい。これにより、実状況を反映した、より効率的な制御を行うことができる。
 本発明においては、その第2の形態において、上記微生物の優占化とともに、定常運転に達した以降は、処理槽1内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)が定常状態から所定の変化率を超えて増加した場合に限り、上記微量栄養塩の添加を開始し、処理槽1内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)が再び定常状態となるか又は減少し始めるまで、上記微量栄養塩の添加を続ける。その変化率としては、例えば典型例で言えば10%などであるが、これに限定されるものではない。排水処理に適した任意の変化率を設定することができる。これにより、微量栄養塩の使用量を低減することができ、その使用コストを抑えることができる。また、微量栄養塩の過剰添加による上記微生物の生育阻害を防止することができる。図1の排水処理装置では、上記微生物を優占化させるための装置3(この場合、微量栄養塩供給用タンクを構成している。)からは、定常運転に達した以降、MLSS濃度測定器19による活性汚泥浮遊物(MLSS)の濃度(mg/L)が定常状態から変化率10%を超えて増加した場合に限り、上記微量栄養塩が処理槽1内の被処理水に添加されるようになっている。そして、処理槽1内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)が再び定常状態となるか又は減少し始めるまで、上記微量栄養塩の添加を続けるようになっている。なお、定常運転とは、処理槽1内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)の変化率が所定範囲を超えないように排水処理の運転を行っている状態である。その変化率の所定範囲としては、例えば典型例で言えば±10%などであるが、上記同様にこれに限定されるものではなく、排水処理の特性に応じて任意に設定された変化率の所定範囲であってよい。また、MLSSの濃度の定常状態とは、例えば、典型例で言えば、測定日前の所定期間(例えば典型例で言えば3日間)のMLSSの濃度の平均値である。この場合も平均値を求めるための期間は任意に設定すればよい。
 より具体的には、例えば、処理槽1内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)が安定してから、測定日の前日から3日間のMLSSの濃度の平均値と測定日のMLSSの濃度を比較して、その変化率を求めて、変化率が10%を超えてMLSSの濃度が増加していたら、上記微量栄養塩の添加を開始し、その後、MLSSの濃度が再び定常状態となるか又はその変化率が0%以下、すなわち減少し始めたら、上記微量栄養塩の添加を中止する、などのようにする。
 バチルス属又はジオバチルス属に属する微生物としては、例えば、Bacillus circulans(例えばNBRC13626株など)、Bacillus coagulans(例えばNBRC12583株など)、Bacillus lentus(例えばNBRC16444株など)、Bacillus licheniformis(例えばNBRC12200株など)、Bacillus megaterium(例えばNBRC15308株など)、Bacillus subtilis(例えばNBRC101239株など)などのバチルス属に属する微生物や、Geobacillus stearothermophilus(例えばNBRC12550株など)、Geobacillus thermoglucosidasius(例えばNBRC107763株など)、Geobacillus toebii(例えばNBRC107807株など)、Geobacillus zalihae(例えばNBRC15313株など)などのジオバチルス属に属する微生物が挙げられる。
 磁気分離手段4は、磁性粉とその磁性粉が結合した汚泥(微生物叢を含む)を生物処理後の処理後水から固液分離するためのものであり、その固液分離後の液部を、水質が浄化された処理水として排出ラインL3から系外に取り出す一方、磁性粉及びその磁性粉が結合した汚泥を回収して返送ラインL4を通して返送汚泥として処理槽1内に戻し、処理槽1内の被処理水で生物処理に必要な活性汚泥量を確保する。また、磁気分離手段4により回収した汚泥は、必要に応じて余剰汚泥として汚泥取出しラインL5を通して系外に排出してもよい。ただし、その場合、汚泥が結合した磁性粉も系外に排出されてしまい、磁性粉を補充する必要が生じる。
 本発明においては、処理槽1内にて、バチルス属又はジオバチルス属に属する微生物を優占化した微生物叢を含む汚泥によって、有機物を含む排水を処理する。バチルス属又はジオバチルス属に属する微生物は、汚泥分解能(微生物を分解する能力)が高いので、本発明では、汚泥中の微生物の増殖を抑制することができる。このため、前記処理槽内の被処理水中の活性汚泥浮遊物質(MLSS)の濃度(mg/L)が30000以上を超えて増加した場合に限り、前記磁性粉と該磁性粉が結合した汚泥を系外に引抜き、前記処理槽内の被処理水中の活性汚泥浮遊物質(MLSS)の濃度(mg/L)が30000未満となるように運転を行うことが可能である。これにより、磁性粉の使用量を削減できる。
 磁気分離手段4は、生物処理後の処理後水から磁性粉とその磁性粉が結合した汚泥を固液分離できる手段であればよく、特にその構造等に制限はない。以下、図2~図6を参照して、磁気分離手段4の各種の形態を説明する。
 図2には、磁気分離手段4の形態の第1の例が示されている。この形態の磁気分離手段41では、処理槽1から延出した配管に連通する流路5が設けられ、流路5が所定容積を有することにより、生物処理後の処理後水が流路5を通過するときに所定時間滞留しつつ通過するようになっている。その流路5の上方からは、回転盤6が、そのおよそ下半部が流路5を流れる生物処理後の処理後水に浸かるように配され、図示しない駆動手段によって回転する。図2では、回転盤6の周方向に沿った回転方向は、生物処理後の処理後水に浸かる部分において流れに対して順方向である。
 また、この回転盤6は、その複数枚が図2中、図示されない奥行き方向に沿って同軸で並列に所定間隔で整列しており、わずかな隙間を開けた状態で、流路5の幅方向のほぼ全体に亘るように配されている。回転盤6の表面の全部、又は流路5の流水の深さをほぼカバーし得る範囲には、磁石が配されている。磁性粉及び磁性粉が結合した汚泥が、上記磁石の磁気吸引力によって、回転盤6の表面に付着するようになっている。
 回転盤6の処理後水の水面から露出する部分には、回転盤6の両側の表面に沿うようにスクレーパー7が配置されており、回転する回転盤6に付着した磁性粉及び磁性粉が結合した汚泥を掻き落とすようになっている。スクレーパー7で掻き落とされた磁性粉及び磁性粉が結合した汚泥は、図示しない排出シュート等に落とされて処理後水から分離され、所定の箇所に取り出されるようになっている。
 図3には、磁気分離手段4の形態の第2の例が示されている。この形態の磁気分離手段42では、上記図2に示した回転盤6の代わりに、回転ドラム8が配置されている。回転ドラム8の表面には、磁石が配されている。回転ドラム8は、処理後水に下半部が浸漬するように配置されており、処理後水の水面から露出する部分には、回転ドラム8の表面に沿うようにスクレーパー9が配置されている。したがって、処理後水に含まれる磁性粉や磁性粉が結合した汚泥は、回転ドラム8の表面の磁石によって、回転ドラム8の表面に付着し、スクレーパー9によって掻き取られて、処理後水から分離される。
 図4には、磁気分離手段4の形態の第3の例が示されている。この形態の磁気分離手段43では、処理槽1内に、磁場の発生をON,OFFできる電磁石10が挿入配置されている。また、電磁石10の表面をこするように移動するスクレーパー11が設けられている。そして、処理後水を排出する際には、同図(a)に示すように、電磁石10をONにして磁場を発生させ、その表面に磁性粉及び磁性粉が結合した汚泥Mを吸着させる。その状態で処理後水を流すと、磁性粉及び磁性粉が結合した汚泥Mは流れず、浄化された処理後水だけを排出させることができる。次いで、処理後水の排出を停止し、同図(b)に示すように、電磁石10をOFFにして磁場を消失させ、スクレーパー11を下降させることにより、電磁石10に吸着されていた磁性粉及び磁性粉が結合した汚泥Mを落下させることができる。その状態で、再び有機物を含む排水の生物処理を行うことができる。
 図5には、磁気分離手段4の形態の第4の例が示されている。この形態の磁気分離手段44では、処理槽1に、処理後水を排出するための排出管12が設けられ、この排出管12の途中から、処理後水の一部を処理槽1に戻す返送管13が枝分かれして、返送管13は処理槽1に連結されている。そして、排出管12の返送管13が枝分かれしている近傍であってその管外に、処理後水の流れ方向に回転する磁気発生ドラム14が配置され、磁気発生ドラム14の磁力によって、磁性粉及び該磁性粉が結合した汚泥Mが、返送管13方向に引き寄せられるようになっている。その結果、処理後水に含まれる磁性粉及び該磁性粉が結合した汚泥Mの大部分は、返送管側13側に流れ込んで処理槽1に返送され、磁性粉及び該磁性粉が結合した汚泥の大部分が除去されて浄化された処理後水が、排出管12から流出するようになっている。
 図6には、磁気分離手段4の形態の第5の例が示されている。この形態の磁気分離手段45では、処理槽1に、処理後水を排出するための排出管12が設けられ、この排出管12の途中から、三方弁15を介して、処理後水の一部を処理槽1に戻す返送管13が枝分かれして、返送管13は処理槽1に連結されている。三方弁15は、処理後水の流路を排出管12側と返送管13側とで切り換える。排出管12の三方弁15の手前には、磁気の発生をON、OFF制御できる電磁石等の磁気発生モジュール16が設けられている。
 そして、同図(a)に示すように、磁気発生モジュール16で磁気を発生させた状態で、三方弁15により処理後水の流路を排出管12側にして、処理後水を排出管12を通して流出させると、処理後水中の磁性粉及び該磁性粉が結合した汚泥は、磁気発生モジュール16のところで磁気吸着され、浄化された処理後水だけが排出管12から流出する。
 こうして処理後水を流出させた後、磁気発生モジュール16の磁気発生を解除し、三方弁15により処理後水の流路を返送管13側にして更に処理後水を排出させると、同図(b)に示すように、磁気発生モジュール16に吸着されていた磁性粉及び該磁性粉が結合した汚泥は、磁気吸着力を解除されて、処理後水と共に返送管13側に流れ込み、処理槽1内に戻される。
 これらの磁気分離手段に用いられる磁石としては、フェライト磁石、ゴム磁石、サマリウムコバルト磁石、鉄一クロム―コバルト磁石、ネオジム磁石、プラスチック磁石などの永久磁石や、超伝導電磁石、バルク磁石、電磁石などが挙げられ、磁場を発生させるものであればその種類を問わないが、一般的で、安価に入手が可能な永久磁石、例えばフェライト磁石を用いることが好ましい。また、フェライト磁石を用いたプラスチック製磁石は安定しているので、露出した状態でも使用可能であるが、設置場所の状況によっては、表面を耐久性、耐食性等に優れた材料で被覆しておくことが好ましい。なお、ネオジム磁石やサマリウムコバルト磁石等は、強力な磁石であるが、腐食し易いので防食被覆を施しておく必要がある。防食被覆は、耐久性、耐食性に優れた樹脂によるコーティングや、SUS304等のステンレス板による被覆等の各種方法を採用することができる。
 磁気分離手段の表面における磁極の配列は、2~20mmの着磁間隔でN極とS極とを交互に配列した状態とすることが好ましい。この着磁間隔が狭くなると磁性粉含有汚泥の飽和付着量が減少し、着磁間隔が広くなると磁性粉含有汚泥の付着力が弱くなる。磁気分離手段の大きさ(直径や長さ)や、回転するものにおける磁気分離処理時の回転数は任意であり、処理量に応じて選定することが可能で、設置スペースや製造コスト、運転コスト等を考慮して設定すればよい。
 なお、磁気分離手段の磁石を有する部材の構造や形状は、板状、円盤状、棒状等の様々な形状を採用することができ、これらの形状等に合わせたスクレーパーなどの汚泥回収手段と組合せることができる。特に図3に示したような回転ドラム型のものを使用することにより、装置構成も単純化でき、磁気分離装置の製作コストが削減できるだけでなく、保守点検も容易に行うことができる。
 また、吸着された磁性粉及び磁性粉が結合した汚泥を分離する手段としては、スクレーパーの他、水などの液体物の噴射、圧縮空気の噴射などの手段を採用することもできる。
 本発明が対象とする排水としては、有機物を含む排水であれば特に限定はなく、例えば家庭排水や、穀類でんぷん製造業、乳製品製造業、食肉センター、砂糖製造業、畜産食料品製造業、畜産農業、肉製品製造業、食肉ハム・ソーセージ製造業、水産練り製品製造業、水産食料品製造業、有機化学工業製造業、無機化学工業製造業などからの排水が挙げられる。
 本発明では、処理槽1内の汚泥濃度を高めることができるので、有機物が高濃度で含まれる排水であっても、破綻をきたすことなく生物処理を行って、効率的に運転させることが可能である。このため、有機物容積負荷(kg/m・日)が1.0以上1.5以下となるように、有機物を含む排水を処理槽1に導入することが好ましい。有機物容積負荷(kg/m・日)とは、単位容積当たりの処理槽に流入する有機物量を意味する。
 また、定常運転に達した以降は、処理槽1内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)が8000以上30000未満となるように運転を行うことが好ましい。処理槽1内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)がこの範囲であれば、排水処理の効率が安定し、保守等の必要がない長期の運転が可能であるので、ランニングコストを抑えることができる。
 また、前記磁性粉と該磁性粉が結合した汚泥の全部又は一部の前記処理槽内への返送速度を、前記処理槽内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)に応じて、段階的に増減させて運転を行うことが好ましい。その返送速度は、例えば、図2に示す形態の磁気分離手段41の場合、回転盤6の回転速度を調整することで、図3に示す形態の磁気分離手段42の場合、回転ドラム8の回転速度を調整することで、図4に示す形態の磁気分離手段43の場合、電磁石10をON/OFFにするタイミングを調整することで、図5に示す形態の磁気分離手段44の場合、磁気発生ドラム14の回転速度を調整することで、図6に示す形態の磁気分離手段45の場合、三方弁15の切換えと磁気発生モジュール16をON/OFFにするタイミングとを調整することで、それぞれ調整することができる。これによれば、磁性粉とその磁性粉が結合した汚泥が排出ラインL3を通して系外に排出される量を最小限にとどめることができる。より具体的に、例えば、図3に示す形態の磁気分離手段42の場合、MLSS濃度が8000以上15000未満のときは、回転ドラム8の回転速度を4rpmとし、15000以上22000未満のときは、回転速度を6rpmとし、22000以上30000未満のときは、回転速度を10rpmとする、などのようにして上記返送速度を段階的に増減させることができる。ここで、処理槽1内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)は、MLSS濃度測定器19により測定して常時モニターすることが可能であるが、一定の時間幅、例えば30分間などを設定して、その時間幅における活性汚泥浮遊物(MLSS)の濃度(mg/L)の平均を求めて、上記閾値を超えるかどうかを判定することが好ましい。これにより、実状況を反映した、より効率的な制御を行うことができる。
 以下に実施例を挙げて本発明を更に具体的に説明するが、本発明の範囲はこれら実施例によって何ら限定されるものではない。
 <試験例1>
 図1に示した構成の排水処理装置であって、その処理槽1として5L容、その磁気分離手段4として図3に示す形態のドラム型のものを備えた排水処理装置を用いて、排水処理試験を行った。模擬下水として、1Lの水道水に対してグルコース0.7g、でんぷん0.7g、ポリペプトン0.7gを溶解させた高濃度模擬排水(CODcr(化学的酸素要求量):2000mg/L、T―N(全窒素量):100mg/L)を調製し、水温20~25℃、処理時間48時間(1日当たり2.5L)にて、上記排水処理装置に供して排水処理を行った。処理槽内の曝気は、曝気量5L/分で30分ごとにON/OFFする間欠曝気とした。バチルス属に属する微生物を優占化させるため、運転開始時の処理槽1内の被処理水には、Bacillus subtilis NBRC101239株を食堂排水(CODcr(化学的酸素要求量):200mg/L)で純粋培養して得た菌体を、濃度1000mg/mLとなるように添加した。なお、食堂排水で培養して得た菌体1mg中には菌数およそ1×10個~7×10個が存在した。また、磁性粉タンク2には磁性粉として水に分散させたマグネタイト(粒径:およそ0.5~4.0μm、保磁力:およそ1×10/4π~2×10/4πA/m)を配し、試験終了時の最終の処理槽1内の被処理水中の活性汚泥有機性浮遊物(MLVSS)の濃度(mg/L)の1に対する磁性粉の濃度(mg/L)の比がおよそ1:1となるように、処理槽1内の被処理水に適時に適量供給した。
 以上の排水処理試験を、実施例1とした。
 一方、比較例1として、従来公知の磁化活性汚泥法による排水処理試験を実施した。具体的には、排水処理の運転開始時の処理槽1内の被処理水に、Bacillus subtilis NBRC101239株の菌体の代わりに下水処理場の活性汚泥を添加したこと以外、上記と同様に排水処理試験を行った。なお、本条件では、試験後期には、処理槽1内の被処理水の活性汚泥有機性浮遊物(MLVSS)の濃度が13000mg/Lを超過し、処理槽1内の被処理水の粘性が高くなって、曝気不良による溶存酸素不足や撹拌不良による汚泥の堆積、腐敗が生じ、処理水質が悪化する傾向となったので、そのことが水質の評価に影響を与えないようにするため、磁気分離手段4で固液分離した汚泥の一部を系外に引抜き、処理槽1内の被処理水の活性汚泥有機性浮遊物(MLVSS)の濃度が13000mg/Lを超過しないようにする一方、系外に排出された磁性粉に相当する量の磁性粉を補った。
 更に、対照例1として、排水処理の運転開始時の処理槽1内の被処理水に、Bacillus subtilis NBRC101239株の菌体の代わりに下水処理場の活性汚泥を添加したうえ、磁気分離手段4の代わりに1L容の沈殿槽を配し、その沈殿槽における返送汚泥の固液分離のための滞留時間を12時間に設定して、従来公知の活性汚泥法による排水処理試験を実施した。なお、対照例1では、試験期間中、処理槽1内の被処理水の活性汚泥有機性浮遊物(MLVSS)の濃度はおよそ4000mg/L程度以下であり、13000mg/Lを超過することはなかった。
 処理水の水質を、簡易分析装置(「迅速水質分析計DR890」、HACH社製)を用いて測定し、その水質が安定した15日目以降、3日ごとの水質の平均を求めた。その結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001

 
 表1に示すように、実施例1では、供試水の水質のCODcr(化学的酸素要求量):2000mg/L、T―N(全窒素量):100mg/Lを、処理水の水質としてCODcr:163mg/L、T―N:3mg/Lにまで水質浄化することが可能であった。また、処理水中のSS(浮遊物質量)は25mg/L程度であった。
 一方、比較例1では、処理水の水質はCODcr:235mg/L、T―N:14mg/Lであり、処理水中のSS(浮遊物質量)は41mg/L程度であった。また、対照例1では、処理水の水質はCODcr:663mg/L、T―N:72mg/Lであり、処理水中のSS(浮遊物質量)は129mg/L程度であった。
 よって、磁化活性汚泥法においてその微生物叢としてバチルス属に属する微生物を優占化させた実施例1では、従来公知の磁化活性汚泥法による比較例1や、従来公知の活性汚泥法による対照例1に比べて、浄化能力に優れていた。
 図7には、実施例1と比較例1について、試験期間中の処理槽1内の活性汚泥有機性浮遊物(MLVSS)の濃度変化を示す。なお、上述したように、比較例1では処理槽1内の被処理水の活性汚泥有機性浮遊物(MLVSS)の濃度が13000mg/Lを超過しないように汚泥を系外に引抜いたが、図7では、活性汚泥有機性浮遊物(MLVSS)の濃度が13000mg/Lを超過した部分については、処理槽1内の被処理水の活性汚泥有機性浮遊物(MLVSS)に、系外に引抜いた汚泥分を合算した数値を示している。
 図7に示すように、実施例1では処理槽1内の被処理水の活性汚泥有機性浮遊物(MLVSS)の濃度が約9000mg/L程度で平衡状態化したのに対し、比較例1では平衡状態化せずに13000mg/Lを超えてさらに増加した。これは、磁化活性汚泥法により、返送汚泥の濃度が高濃度化されたために、かえって汚泥が過剰に増殖してしまうからであった。これに対し、バチルス属に属する微生物を優占化させると、汚泥の引抜きの必要がなく、磁性粉の補充の必要もなかった。
 以上から、磁化活性汚泥法においてその微生物叢としてバチルス属に属する微生物を優占化させた排水処理法は、返送汚泥の濃度を高濃度化したことによる有機物処理能力と、微生物の自己酸化作用による汚泥削減作用とがよくバランスし、非常に効率よく浄化能力を発揮できることが明らかとなった。また、本試験例で用いられたような高濃度模擬排水の条件でも、汚泥の引抜きの必要がなく、磁性粉の補充の必要もないことが明らかとなった。
 <試験例2>
 試験例1の実施例1において、そのバチルス属に属する微生物に代えて、ジオバチルス属に属する微生物としてGeobacillus stearothermophilus NBRC12550株を用い、それを食堂排水(CODcr(化学的酸素要求量):200mg/L)で純粋培養して得た菌体を濃度1000mg/mLとなるように運転開始時の処理槽1内の被処理水に添加した以外は、試験例1の実施例1と同様にして、実施例2の排水処理試験を行った。なお、食堂排水で培養して得た菌体1mg中には菌数およそ3×10個~2×10個が存在した。
 試験例1と同様に、処理水の水質を、簡易分析装置(「迅速水質分析計DR890」、HACH社製)を用いて測定し、その水質が安定した14日目以降、3日ごとの水質の平均を求めた。その結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002

 
 表2に示すように、実施例2では、供試水の水質のCODcr(化学的酸素要求量):2000mg/L、T―N(全窒素量):100mg/Lを、処理水の水質としてCODcr:179mg/L、T―N:9mg/Lにまで水質浄化することが可能であった。また、処理水中のSS(浮遊物質量)は43mg/L程度であった。
 よって、磁化活性汚泥法においてその微生物叢としてジオバチルス属に属する微生物を優占化させた実施例2では、試験例1の実施例1で示した磁化活性汚泥法においてその微生物叢としてバチルス属に属する微生物を優占化させた場合と同様に、浄化能力に優れていた。
 図8には、実施例2について、試験期間中の処理槽1内の活性汚泥有機性浮遊物(MLVSS)の濃度変化を、図7で示した試験例1の比較例1の結果とともに示す。なお、上述したように、比較例1では処理槽1内の被処理水の活性汚泥有機性浮遊物(MLVSS)の濃度が13000mg/Lを超過しないように汚泥を系外に引抜いたが、図8に示す活性汚泥有機性浮遊物(MLVSS)の濃度が13000mg/Lを超過した部分については、処理槽1内の被処理水の活性汚泥有機性浮遊物(MLVSS)に、系外に引抜いた汚泥分を合算した数値を示している。
 図8に示すように、磁化活性汚泥法においてその微生物叢としてジオバチルス属に属する微生物を優占化させた実施例2では、試験例1の実施例1で示した磁化活性汚泥法においてその微生物叢としてバチルス属に属する微生物を優占化させた場合と同様に、処理槽1内の被処理水の活性汚泥有機性浮遊物(MLVSS)の濃度が約8500mg/L程度で平衡状態化した。
 以上から、磁化活性汚泥法においてその微生物叢としてジオバチルス属に属する微生物を優占化させた排水処理法は、返送汚泥の濃度を高濃度化したことによる有機物処理能力と、微生物の自己酸化作用による汚泥削減作用とがよくバランスし、非常に効率よく浄化能力を発揮できることが明らかとなった。また、本試験例で用いられたような高濃度模擬排水の条件でも、汚泥の引抜きの必要がなく、磁性粉の補充の必要もないことが明らかとなった。
1:処理槽
2:磁性粉タンク
3:バチルス属又はジオバチルス属に属する微生物を優占化させるための装置(微量栄養塩タンク)
4,41,42,43,44,45:磁気分離手段
5:流路
6:回転盤
7,9,11:スクレーパー
8:回転ドラム
10:電磁石
12:排出管
13:返送管
14:磁気発生ドラム
15:三方弁
16:磁気発生モジュール
17:流量計
18:有機物濃度測定器
19:MLSS濃度測定器

Claims (9)

  1.  有機物を含む排水を処理槽に導入し、その排水を処理槽内での活性汚泥により生物処理する排水処理方法であって、前記処理槽内の被処理水に磁性粉を添加するとともに微生物叢としてバチルス属又はジオバチルス属に属する微生物を優占化させ、前記微生物に必要な微量栄養塩を前記処理槽に導入する排水の有機物濃度(mg/L)及び流入量、又は前記排水の流入量に比例した添加量で添加するとともに、生物処理後の処理後水に磁気を作用させて、その磁力により前記処理後水から前記磁性粉と該磁性粉が結合した汚泥を固液分離し、固液分離した前記磁性粉と該磁性粉が結合した汚泥の全部又は一部を前記処理槽内に戻すことを特徴とする排水処理方法。
  2.  有機物を含む排水を処理槽に導入し、その排水を処理槽内での活性汚泥により生物処理する排水処理方法であって、前記処理槽内の被処理水に磁性粉を添加するとともに微生物叢としてバチルス属又はジオバチルス属に属する微生物を優占化させ、定常運転に達した以降は、前記処理槽内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)が定常状態から所定の変化率を超えて増加した場合に限り、前記微生物に必要な微量栄養塩の添加を開始し、前記処理槽内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)が再び定常状態となるか又は減少し始めるまで、前記微量栄養塩の添加を続けるとともに、生物処理後の処理後水に磁気を作用させて、その磁力により前記処理後水から前記磁性粉と該磁性粉が結合した汚泥を固液分離し、固液分離した前記磁性粉と該磁性粉が結合した汚泥の全部又は一部を前記処理槽内に戻すことを特徴とする排水処理方法。
  3.  有機物容積負荷(kg/m・日)が1.0以上1.5以下となるように、前記有機物を含む排水を前記処理槽に導入する請求項1又は2記載の排水処理方法。
  4.  定常運転に達した以降は、前記処理槽内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)が8000以上30000未満となるように運転を行う請求項1~3のいずれか1つに記載の排水処理方法。
  5.  前記処理槽内の被処理水中の活性汚泥浮遊物質(MLSS)の濃度(mg/L)が30000以上を超えて増加した場合に限り、前記磁性粉と該磁性粉が結合した汚泥を系外に引抜き、前記処理槽内の被処理水中の活性汚泥浮遊物質(MLSS)の濃度(mg/L)が30000未満となるように運転を行う請求項1~4のいずれか1つに記載の排水処理方法。
  6.  前記磁性粉と該磁性粉が結合した汚泥の全部又は一部の前記処理槽内への返送速度を、前記処理槽内の被処理水中の活性汚泥浮遊物(MLSS)の濃度(mg/L)に応じて、段階的に増減させて運転を行う請求項1~5のいずれか1つに記載の排水処理方法。
  7.  前記処理槽内の被処理水中の活性汚泥有機性浮遊物(MLVSS)の濃度(mg/L)の1に対する前記磁性粉の濃度(mg/L)の比が0.2以上3以下となるように、前記磁性粉を添加する請求項1~6のいずれか1つに記載の排水処理方法。
  8.  前記バチルス属又はジオバチルス属に属する微生物が、Bacillus circulans、Bacillus coagulans、Bacillus lentus、Bacillus licheniformis、Bacillus megaterium、Bacillus subtilis、Geobacillus stearothermophilus、Geobacillus thermoglucosidasius、Geobacillus toebii、及びGeobacillus zalihaeからなる群から選ばれた1種又は2種以上である請求項1~7のいずれか1つに記載の排水処理方法。
  9.  前記磁性粉が鉄を含み、前記微量栄養塩が鉄を含まない請求項1~8記載の排水処理方法。
     
     
PCT/JP2015/056921 2014-03-14 2015-03-10 排水処理方法 WO2015137300A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016507742A JP6091039B2 (ja) 2014-03-14 2015-03-10 排水処理方法
CN201580007027.6A CN105960380B (zh) 2014-03-14 2015-03-10 排水处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014051084 2014-03-14
JP2014-051084 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015137300A1 true WO2015137300A1 (ja) 2015-09-17

Family

ID=54071744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056921 WO2015137300A1 (ja) 2014-03-14 2015-03-10 排水処理方法

Country Status (3)

Country Link
JP (1) JP6091039B2 (ja)
CN (1) CN105960380B (ja)
WO (1) WO2015137300A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154721A1 (ja) * 2016-03-08 2017-09-14 富士電機株式会社 排液処理装置および排液処理方法
EP3456689A4 (en) * 2016-05-09 2019-04-24 Fuji Electric Co., Ltd. METHOD FOR WASTEWATER TREATMENT, WASTEWATER TREATMENT DEVICE AND ACTIVE FOR TREATMENT OF WASTEWATER
CN111333176A (zh) * 2020-03-18 2020-06-26 国合恒新环保江苏有限公司 一种磁泥污水处理工艺
JPWO2021117309A1 (ja) * 2019-12-13 2021-06-17
CN115870087A (zh) * 2022-12-13 2023-03-31 攀钢集团攀枝花钢铁研究院有限公司 一种微生物絮凝-磁浮联合回收微细粒级钛铁矿的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200052821A (ko) * 2018-11-07 2020-05-15 가부시키가이샤 쿄교쿠엔지니어링 하수처리 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359759B2 (ja) * 1981-02-13 1988-11-21
JPH08252594A (ja) * 1995-03-16 1996-10-01 Ishikawajima Harima Heavy Ind Co Ltd 硝化脱窒装置
JPH11244886A (ja) * 1998-02-27 1999-09-14 Ishikawajima Harima Heavy Ind Co Ltd 廃水中の重油分を分解する方法及び装置
JP2002263684A (ja) * 2001-03-13 2002-09-17 Hiromi Ikechi 微生物による廃水の処理方法及び装置
JP2004275960A (ja) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 有機性排水の処理方法
WO2011136188A1 (ja) * 2010-04-26 2011-11-03 Irie Ryozo 排水処理方法、システムおよび汚濁物分解活性測定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359759B2 (ja) * 1981-02-13 1988-11-21
JPH08252594A (ja) * 1995-03-16 1996-10-01 Ishikawajima Harima Heavy Ind Co Ltd 硝化脱窒装置
JPH11244886A (ja) * 1998-02-27 1999-09-14 Ishikawajima Harima Heavy Ind Co Ltd 廃水中の重油分を分解する方法及び装置
JP2002263684A (ja) * 2001-03-13 2002-09-17 Hiromi Ikechi 微生物による廃水の処理方法及び装置
JP2004275960A (ja) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 有機性排水の処理方法
WO2011136188A1 (ja) * 2010-04-26 2011-11-03 Irie Ryozo 排水処理方法、システムおよび汚濁物分解活性測定方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154721A1 (ja) * 2016-03-08 2017-09-14 富士電機株式会社 排液処理装置および排液処理方法
JP2017159206A (ja) * 2016-03-08 2017-09-14 富士電機株式会社 排液処理装置および排液処理方法
KR20180088870A (ko) * 2016-03-08 2018-08-07 후지 덴키 가부시키가이샤 배액 처리 장치 및 배액 처리 방법
KR102124567B1 (ko) * 2016-03-08 2020-06-18 후지 덴키 가부시키가이샤 배액 처리 장치 및 배액 처리 방법
US10960404B2 (en) 2016-03-08 2021-03-30 Fuji Electric Co., Ltd. Drainage processing apparatus and drainage processing method
EP3456689A4 (en) * 2016-05-09 2019-04-24 Fuji Electric Co., Ltd. METHOD FOR WASTEWATER TREATMENT, WASTEWATER TREATMENT DEVICE AND ACTIVE FOR TREATMENT OF WASTEWATER
JPWO2021117309A1 (ja) * 2019-12-13 2021-06-17
JP7350886B2 (ja) 2019-12-13 2023-09-26 株式会社東芝 水処理装置
CN111333176A (zh) * 2020-03-18 2020-06-26 国合恒新环保江苏有限公司 一种磁泥污水处理工艺
CN115870087A (zh) * 2022-12-13 2023-03-31 攀钢集团攀枝花钢铁研究院有限公司 一种微生物絮凝-磁浮联合回收微细粒级钛铁矿的方法
CN115870087B (zh) * 2022-12-13 2024-05-14 攀钢集团攀枝花钢铁研究院有限公司 一种微生物絮凝-磁浮联合回收微细粒级钛铁矿的方法

Also Published As

Publication number Publication date
JP6091039B2 (ja) 2017-03-08
JPWO2015137300A1 (ja) 2017-04-06
CN105960380B (zh) 2019-07-23
CN105960380A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
JP6091039B2 (ja) 排水処理方法
Dapena-Mora et al. Monitoring the stability of an Anammox reactor under high salinity conditions
Zieliński et al. Influence of static magnetic field on sludge properties
Guo et al. Enhanced aerobic granulation by applying the low-intensity direct current electric field via reactive iron anode
US9688554B2 (en) Bioremediation reactor system and method
CN102923866A (zh) 一种利用变化磁场进行污水强化处理的装置及其污水处理方法
JP5994253B2 (ja) 有機性排水の生物処理装置及び方法
Cui et al. Start-up of halophilic nitrogen removal via nitrite from hypersaline wastewater by estuarine sediments in sequencing batch reactor
Okabe et al. Nitrification in wastewater treatment
US20130193068A1 (en) Modification of existing wastewater systems with substrate supported biofilms
WO2012162518A2 (en) Method for the remediation of water generated from natural resource production operations
Baddour et al. Biological treatment of poultry slaughterhouses wastewater by using aerobic moving bed biofilm reactor
KR20180087368A (ko) 배수 처리 방법 및 배수 처리 시스템
Tawfik et al. Physico-chemical factors affecting the E. coli removal in a rotating biological contactor (RBC) treating UASB effluent
Roy et al. High-strength ammonium wastewater treatment by MBR: Steady-state nitrification kinetic parameters
US8715503B2 (en) Method for the remediation of salt-containing wastewater streams
Hoseinzadeh et al. Low frequency-low voltage alternating electric current-induced anoxic granulation in biofilm-electrode reactor: a study of granule properties
Pan et al. Effects of loading rate and aeration on nitrogen removal and N 2 O emissions in intermittently aerated sequencing batch reactors treating slaughterhouse wastewater at 11 C
Hattori et al. Effects of an external magnetic field on the flock size and sedimentation of activated sludge
Nasr et al. Performance evaluation of El-Agamy wastewater treatment plant–Egypt
Dey et al. Aspects of Microbial Biofilms in Water Treatment
Kundu et al. Anoxic-oxic treatment of abattoir wastewater for simultaneous removal of carbon, nitrogen and phosphorous in a sequential batch reactor (SBR)
Jahan et al. Activated sludge and other aerobic suspended culture processes
Choi et al. Synergistic role of powdered activated carbon (PAC) for aerobic granular sludge (AGS) formation and organic micropollutant (OMPs) removal
Naz et al. Assessment of an integrated tire-derived rubber media-fixed biofilm reactor (TDR-FBR) and sand column filter (SCF) for wastewater treatment at low temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507742

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15760883

Country of ref document: EP

Kind code of ref document: A1