WO2015136881A1 - 非水電解質二次電池 - Google Patents
非水電解質二次電池 Download PDFInfo
- Publication number
- WO2015136881A1 WO2015136881A1 PCT/JP2015/001075 JP2015001075W WO2015136881A1 WO 2015136881 A1 WO2015136881 A1 WO 2015136881A1 JP 2015001075 W JP2015001075 W JP 2015001075W WO 2015136881 A1 WO2015136881 A1 WO 2015136881A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- lithium
- magnesium
- secondary battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0034—Fluorinated solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a non-aqueous electrolyte secondary battery.
- Non-aqueous electrolyte secondary batteries represented by lithium-ion batteries are often used as driving power sources for portable electronic devices such as mobile phones including smartphones, portable computers, PDAs, and portable music players. In addition, it can be used as a power source for driving electric vehicles and hybrid electric vehicles, solar power generation, wind power generation and other applications to suppress output fluctuations, and system power peak shift applications to use power during the daytime at night. Also in storage battery systems, non-aqueous electrolyte secondary batteries are increasingly used.
- the charge voltage of the battery is increased in addition to the measure to increase the capacity of the active material, the measure to increase the filling amount of the active material per unit volume, and the like.
- the charging voltage of the battery is increased, the crystal structure deterioration of the positive electrode active material and the reaction between the positive electrode active material and the non-aqueous electrolyte are likely to occur.
- Patent Document 1 describes that after positive electrode active material LiCoO 2 is charged at 4.2 to 4.3 V with respect to lithium, electrochemically replacing a part of lithium with magnesium. Reported that the lithium layer is stabilized and the crystal structure at high voltage is stabilized.
- this method has a structure in which magnesium is substituted into the lithium layer in a lithium extraction region having a potential of 4.3 V or less with respect to lithium.
- a high potential charge of 4.53 V or more is performed on the basis of a further higher potential lithium, all the magnesium in the lithium layer is extracted, the crystal structure becomes unstable, and the charge / discharge cycle decreases.
- a nonaqueous electrolyte secondary battery includes a positive electrode having a positive electrode active material that absorbs and releases lithium ions, a negative electrode having a negative electrode active material that absorbs and releases lithium ions, and a nonaqueous electrolyte.
- the positive electrode active material is a cobalt composite oxide having a layered rock salt structure and containing magnesium in the lithium layer, and the magnesium is present in the lithium layer after charging with a potential of 4.53 V or more on the basis of lithium, And the compound containing magnesium on a negative electrode exists in 4.5 mol% or more and 10 mol% or less with respect to the magnesium in the said positive electrode, It is characterized by the above-mentioned.
- Li 1-a Mg a Co 1-b M b O 2 (in the general formula, 0 ⁇ a ⁇ 0.05, 0 ⁇ b ⁇ 0.1, M is Al Mg, Mn, Ni, Fe, Ti, Zn, Mo, V, Sr, Sn, Sb, W, Ta, Nb, Ge, Zr and Ba At least one element selected from:
- a magnesium raw material is added to the lithium cobalt composite oxide in a state where the lithium / cobalt composition ratio is less than 1, and firing is performed. It is preferable.
- magnesium can be uniformly present in the lithium layer. Therefore, even when lithium is extracted at a high potential of 4.53 V or more on the basis of lithium, the magnesium can be stably present in the lithium layer. It is possible to stabilize the crystal structure of the lithium layer and suppress the phase transition from the O3 structure to the H1-3 structure in which the crystal structure is largely collapsed. Further, it is preferable to replace a part of cobalt with nickel, manganese, and aluminum at the same time. High capacity can be achieved by substituting nickel, and even when charging with a potential of 4.53 V or more with respect to lithium from which lithium is extracted by replacing manganese or aluminum, which has a strong bond with oxygen. It becomes possible to stabilize the crystal structure of the metal layer.
- a is preferably 0 ⁇ a ⁇ 0.05.
- the charge / discharge capacity due to the relative decrease in the amount of lithium decreases.
- a part of magnesium is replaced by the transition metal layer, which causes the crystal structure in the transition metal layer to become unstable, which may reduce the charge / discharge cycle.
- b is preferably 0 ⁇ b ⁇ 0.1. Even in the case of b> 0.1, the charge / discharge cycle can be improved by simultaneously replacing nickel, manganese and aluminum.
- part of magnesium in the lithium layer in the positive electrode active material during the charge / discharge cycle is deposited on the negative electrode active material as a compound containing magnesium.
- the rare earth compound preferably contains at least one selected from the group consisting of erbium hydroxide and erbium oxyhydroxide.
- the oxide preferably contains at least one selected from aluminum oxide, zirconium oxide, magnesium oxide, copper oxide, boron oxide, and lanthanum oxide.
- the negative electrode active material in the present invention a material using a material capable of inserting and extracting lithium is preferable.
- lithium metal, a lithium alloy, a carbon compound, a metal compound, etc. can be mentioned.
- these negative electrode active materials may be used alone or in combination of two or more.
- the carbon compound include carbon materials such as a carbon material having a turbulent layer structure, natural graphite, artificial graphite, and glassy carbon. These are preferable because the change in crystal structure that occurs during charge and discharge is very small, a high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained.
- graphite is preferable because of its large capacity and high energy density.
- lithium metal and a lithium alloy are also mentioned. Since the potential of the alloy system is higher than that of graphite, when the battery is charged / discharged at the same voltage, the positive electrode potential is also increased, so that further increase in capacity can be expected.
- the metal of the alloy include tin, lead, magnesium, aluminum, boron, gallium, silicon, indium, zirconium, germanium, bismuth, and cadmium. In particular, it is preferable that at least one of silicon and tin is included. Silicon and tin have a large ability to occlude and release lithium, and a high energy density can be obtained.
- constituent elements other than tin include alloys of lead, magnesium, aluminum, boron, gallium, silicon, indium, zirconium, germanium, bismuth, cadmium, etc.
- examples thereof include at least one selected from tin, lead, magnesium, aluminum, boron, gallium, indium, zirconium, germanium, bismuth, cadmium and the like.
- Nonaqueous electrolyte solvent The solvent of the non-aqueous electrolyte used in the present invention is not limited to a specific one, and a solvent conventionally used for non-aqueous electrolyte secondary batteries can be used. Examples thereof include cyclic carbonates, chain carbonates, esters, cyclic ethers, chain ethers, nitriles, amides, and the like. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and the like.
- chain carbonate examples include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, and methyl isopropyl carbonate.
- esters examples include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and ⁇ -butyrolactone.
- cyclic ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,4-dioxane, 1,3, Examples include 5-trioxane, furan, 2-methylfuran, 1,8-cineol, and crown ether.
- chain ethers examples include 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl Phenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1, 1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, tetrae
- Examples include tylene glycol dimethyl
- nitriles include acetonitrile
- examples of the amides include dimethylformamide.
- those in which some or all of these hydrogens are fluorinated are preferred. Since the oxidation resistance of the nonaqueous electrolyte is improved by fluorination, decomposition of the electrolytic solution can be prevented even in a high voltage state where the oxidizing atmosphere on the surface of the positive electrode is increased. Moreover, these can be used individually or in combination of multiple, The solvent which combined the cyclic carbonate and the chain carbonate is especially preferable.
- non-aqueous electrolyte secondary battery even at room temperature (25 ° C.) and high temperature (45 ° C.) with a very high charging voltage of 4.53 V or more on the basis of lithium,
- the structure change of the positive electrode active material and the reaction with the electrolytic solution on the active material surface can be suppressed, and further, the deterioration of the negative electrode can be suppressed, so that a long-life nonaqueous electrolyte secondary battery can be obtained.
- the positive electrode active material can be made to have magnesium uniformly present in the lithium layer by adding a magnesium raw material and firing it in a state where the composition ratio of lithium / cobalt is less than 1. For this reason, it is considered that magnesium can be stably present in the positive electrode active material and the crystal structure can be stabilized even when the lithium base is extracted at a high potential of 4.53 V or more.
- FIG. 4 is a perspective view of a wound electrode body in FIG. 3. It is a powder X-ray diffraction measurement view of Li 0.99 Mg 0.01 CoO 2. It is a powder X-ray-diffraction measurement figure before and after the high voltage charge in Experimental example 1. It is a powder X-ray-diffraction measurement figure before and after the high voltage charge in Experimental example 2. It is a powder X-ray-diffraction measurement figure before and after the high voltage charge in Experimental example 3.
- the positive electrode active material was prepared as follows. Lithium carbonate was used as a lithium source, cobalt tetroxide was used as a cobalt source, and magnesium oxide was used as a magnesium source serving as a substitution element for lithium. After dry mixing the molar ratio of lithium and magnesium at 99: 1 and the molar ratio of lithium + magnesium and cobalt at 1: 1, the powder was formed into pellets and fired at 900 ° C. for 24 hours in an air atmosphere. A positive electrode active material was prepared.
- a rare earth compound was adhered to the surface by a wet method as follows. 1000 g of the positive electrode active material was mixed with 3 liters of pure water and stirred to prepare a suspension in which the positive electrode active material was dispersed. While adding an aqueous sodium hydroxide solution so that the pH of the suspension was maintained at 9, a solution in which 1.85 g of erbium nitrate pentahydrate as a rare earth compound source was dissolved was added.
- the suspension was subjected to suction filtration, and further washed with water.
- the powder obtained was dried at 120 ° C. and further subjected to heat treatment at 300 ° C. for 5 hours. Thereby, a positive electrode active material powder in which erbium hydroxide uniformly adhered to the surface of the positive electrode active material was obtained.
- FIG. 1 shows an SEM image of the positive electrode active material with a rare earth compound attached to the surface.
- the average particle size of the erbium compound was 100 nm or less.
- the adhesion amount of this erbium compound was measured using the high frequency inductively coupled plasma emission spectroscopy (henceforth ICP), it was 0.07 mass part in conversion of the erbium element with respect to the positive electrode active material.
- the positive electrode active material having a rare earth compound on the surface prepared as described above 96.5 parts by mass of the positive electrode active material having a rare earth compound on the surface prepared as described above, 1.5 parts by mass of acetylene black as a conductive agent, and 2.0% of polyvinylidene fluoride powder as a binder The mixture was mixed so as to be part by mass, and this was mixed with an N-methylpyrrolidone solution to prepare a positive electrode mixture slurry.
- the positive electrode mixture slurry was applied to both surfaces of a 15 ⁇ m thick aluminum foil as a positive electrode current collector by a doctor blade method to form a positive electrode active material mixture layer on both surfaces of the positive electrode current collector, and then dried. It rolled using the compression roller, it cut
- the aluminum tab as a positive electrode current collection tab was attached to the non-formation part of the positive electrode active material mixture layer of a positive electrode plate, and it was set as the positive electrode plate.
- the amount of the positive electrode active material mixture layer was 39 mg / cm 2, and the thickness of the positive electrode mixture layer was 120 ⁇ m.
- Graphite, carboxymethyl cellulose as a thickener, and styrene butadiene rubber as a binder are weighed so as to have a mass ratio of 98: 1: 1 and dispersed in water to prepare a negative electrode active material mixture slurry.
- This negative electrode active material mixture slurry was applied to both surfaces of a copper negative electrode core having a thickness of 8 ⁇ m by a doctor blade method, and then dried at 110 ° C. to remove moisture, thereby forming a negative electrode active material layer. And it rolled to the predetermined thickness using the compression roller, and cut
- the laminate-type nonaqueous electrolyte secondary battery 20 includes a laminate outer body 21, a spirally wound electrode body 22 including a positive electrode plate and a negative electrode plate, and a positive electrode. It has a positive current collecting tab 23 connected to the plate and a negative current collecting tab 24 connected to the negative plate.
- the wound electrode body 22 includes a positive electrode plate, a negative electrode plate, and a separator each having a strip shape, and the positive electrode plate and the negative electrode plate are wound in a state of being insulated from each other via the separator. Yes.
- a concave portion 25 is formed in the laminate outer package 21, and one end side of the laminate outer package 21 is folded back so as to cover the opening portion of the concave portion 25.
- the end portion 26 around the concave portion 25 is welded to the portion that is folded back and is opposed to the inside of the laminate outer package 21.
- a wound electrode body 22 is housed together with a non-aqueous electrolyte inside the sealed laminate outer body 21.
- the positive electrode current collecting tab 23 and the negative electrode current collecting tab 24 are arranged so as to protrude from the laminated outer package 21 sealed with the resin member 27, respectively. The electric power is supplied to the outside through this. Between each of the positive electrode current collection tab 23 and the negative electrode current collection tab 24, and the laminate exterior body 21, the resin member 27 is arrange
- the laminated nonaqueous electrolyte secondary battery was produced as follows. That is, the positive electrode plate and the negative electrode plate manufactured as described above were wound through a separator made of a polyethylene microporous membrane, and a polypropylene tape was attached to the outermost periphery to prepare a cylindrical wound electrode body. . Next, this was pressed into a flat wound electrode body. In addition, a sheet-like laminate material having a five-layer structure of polypropylene resin layer / adhesive layer / aluminum alloy layer / adhesive material layer / polypropylene resin layer is prepared, and this laminate material is folded to form a bottom portion and a cup-like shape. An electrode body storage space was formed.
- a flat wound electrode body and a nonaqueous electrolyte were inserted into the cup-shaped electrode body storage space in a glove box under an argon atmosphere. Thereafter, the inside of the laminate exterior body was decompressed to impregnate the separator with the nonaqueous electrolyte, and the opening of the laminate exterior body was sealed. In this way, a laminated nonaqueous electrolyte secondary battery having a height of 62 mm, a width of 35 mm, and a thickness of 3.6 mm (a dimension excluding the sealing portion) was produced.
- the laminate type nonaqueous electrolyte secondary battery was charged to 4.50 V and discharged to 2.50 V, and the discharge capacity was 800 mAh.
- the monopolar cell 10 includes a positive electrode 11, a negative electrode 12, a measurement electrode part 14 in which a separator 13 is disposed between the positive electrode 11 and the negative electrode 12, and a reference electrode 15.
- a reference electrode portion 16 is provided.
- Each of the measurement electrode portion 14 and the reference electrode portion 16 is filled with a non-aqueous electrolyte 18.
- the negative electrode 12 and the reference electrode 15 are made of lithium metal.
- the negative electrode 12 has a size that can be opposed to the positive electrode 11.
- the theoretical capacity of the produced monopolar cell 10 is 100 mAh.
- Example 2 Nickel hydroxide and manganese dioxide were used as nickel and manganese sources as a substitution element source for cobalt.
- Lithium / magnesium molar ratio is 99: 1
- cobalt, nickel, manganese molar ratio is 90: 5: 5
- lithium + magnesium and cobalt + nickel + manganese molar ratio is 1: 1
- the powder is mixed. Molded into pellets and fired at 900 ° C. for 24 hours in an air atmosphere to prepare a positive electrode active material.
- Example 3 A monopolar cell 10 and a laminated nonaqueous electrolyte secondary battery 20 were produced in the same manner as in Experimental Example 2, except that the positive electrode active material was prepared so that the molar ratio of lithium and magnesium was 97: 3. .
- Example 4 A monopolar cell 10 and a laminated nonaqueous electrolyte secondary battery 20 were produced in the same manner as in Experimental Example 1 except that the positive electrode active material was prepared so as not to replace magnesium.
- Table 1 below shows the charge / discharge cycle results and the amount of magnesium compound on the negative electrode.
- the maintenance rate was 65% after 100 cycles, while in Experiments 1 to 3, the value was as high as 88% or more.
- Experimental Example 4 was 47%, which was significantly lower than the room temperature, while Experimental Examples 1 to 3 were 62% or more, exceeding the Experimental Example 4. This is probably because magnesium was stably present in the lithium layer, so that the crystal structure of the lithium layer was stabilized and charge / discharge cycle characteristics could be improved.
- Experimental Examples 1 to 3 it was confirmed that 4.6% or more of the magnesium compound was deposited on the negative electrode with respect to magnesium in the positive electrode. It is considered that the magnesium compound deposited on the negative electrode became a protective film for the negative electrode, and the reaction between the negative electrode surface and the electrolyte accompanying the charge / discharge cycle was suppressed, so that the charge / discharge cycle characteristics could be improved.
- Example 5 A monopolar cell 10 and a laminated nonaqueous electrolyte secondary battery 20 were produced in the same manner as in Experimental Example 1, except that the positive electrode active material was prepared so that the molar ratio of lithium and magnesium was 97: 3.
- Example 6 A monopolar cell 10 and a laminate type nonaqueous electrolyte secondary battery 20 were produced in the same manner as in Experimental Example 1 except that the positive electrode active material was prepared so that the molar ratio of lithium and magnesium was 95: 5.
- Table 2 shows the charge / discharge cycle results.
- Experimental Example 4 had a maintenance rate of 65% after 100 cycles, while Experimental Examples 1, 5, and 6 had a high value of 83% or more.
- Experimental Example 4 was 47%, which was significantly lower than room temperature, while Experimental Examples 1, 5, and 6 were 50% or more, exceeding the Experimental Example 4. This is considered that even when a large amount of magnesium was substituted, the crystal structure of the lithium layer was stabilized and the charge / discharge cycle characteristics could be improved.
- a diffraction peak intensity ratio 003/104 between plane indices 003 and 104 was calculated.
- This diffraction intensity is generally a measure of cation mixing occupied by lithium divalent nickel ions (0.69 ⁇ ) having an ionic radius close to that of lithium ions (0.76 ⁇ ) in the lithium layer, and when the peak intensity ratio decreases. It is said that the ratio of cation mixing increases and the intensity ratio is 1.37 or less. Since divalent magnesium ions (0.72 ⁇ ) are also close to the ionic radii of lithium ions and nickel ions, the possibility of cation mixing of magnesium was judged from the intensity ratio.
- Table 3 shows the measurement results of the diffraction peak intensity ratio 003/104. Compared to 1.39 in Experimental Example 4, Experimental Examples 1-3 and Experimental Examples 5-6 were 1.37 or less, and it was confirmed that magnesium was present in the lithium layer.
- reference numeral 31 in FIGS. 6 to 11 denotes a pre-charging electrode
- reference numeral 32 denotes a 4.50V charging electrode
- reference numeral 33 denotes a 4.60V charging electrode.
- the 003 peak shifts to a low angle with charging, then starts to shift to a high angle, and moves to a higher angle side than the peak before charging when the H1-3 structure is reached.
- Experimental Example 4 as shown in FIG. 11, it can be seen that the 4.60 V charging electrode 33 is moved to the high angle side from the peak of the pre-charging electrode 31.
- the non-aqueous electrolyte secondary battery according to one aspect of the present invention can be applied to applications that require a particularly high capacity and a long life, such as a mobile phone, a notebook computer, a smartphone, and a tablet terminal.
- Nonaqueous electrolyte 20 Nonaqueous electrolyte secondary battery 21. Laminated exterior body 22. Winding electrode body 23. Positive electrode current collecting tab 24. Negative electrode current collecting tab 31. Pre-charge electrode 32.4.50V charge electrode 33.4.60V charge electrode
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
上記、非水電解質二次電池を高容量化する方策としては、活物質の容量を高くする方策や、単位体積当たりの活物質の充填量を増やすといった方策の他、電池の充電電圧を高くするという方策がある。但し、電池の充電電圧を高くした場合には、正極活物質の結晶構造劣化や正極活物質と非水電解液との反応が生じやすくなる。
本発明における正極活物質としては、一般式Li1-aMgaCo1-bMbO2(前記
一般式において、0<a≦0.05、0≦b≦0.1、MはAl、Mg、Mn、Ni、Fe、Ti、Zn、Mo、V、Sr、Sn、Sb、W、Ta、Nb、Ge、ZrおよびBa
から選択される少なくとも1種の元素)で表される。
本発明における負極活物質としては、リチウムを吸蔵・放出可能な材料を用いるものが好ましい。例えば、リチウム金属、リチウム合金、炭素化合物、金属化合物等を挙げることが出来る。また、これらの負極活物質を一種類で使用してもよく、また二種類以上組み合わせて使用してもよい。炭素化合物としては、乱層構造を有する炭素材料、天然黒鉛、人造黒鉛、ガラス状炭素などの炭素材料が挙げられる。これらは、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることが出来るので好ましい。特に、黒鉛は容量が大きく、高いエネルギー密度を得ることができるため好ましい。また、リチウム金属やリチウム合金も挙げられる。合金系は黒鉛に比べて電位が高いため、同じ電圧で電池の充放電を行った場合、正極電位も高くなるため、さらなる高容量化が期待できる。合金の金属としては、スズ、鉛、マグネシウム、アルミニウム、ホウ素、ガリウム、ケイ素、インジウム、ジルコニウム、ゲルマニウム、ビスマス、カドニウム等が挙げられ、特にケイ素およびスズの少なくとも一方を含むことが好ましい。ケイ素及び、スズはリチウムを吸蔵・放出する能力が大きく、高エネルギー密度を得ることが出来る。
本発明で用いる非水電解質の溶媒は、特定のものに限定されるものではなく、非水電解質二次電池に従来から用いられてきた溶媒を使用することが出来る。例えば、環状炭酸エステル、鎖状炭酸エステル、エステル類、環状エーテル類、鎖状エーテル類、ニトリル類、アミド類等が挙げられる。上記環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどが挙げられる。上記鎖状炭酸エステルとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネートなどが挙げられる。上記エステル類としては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトンなどが挙げられる。上記環状エーテル類としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテルなどが挙げられる。上記鎖状エーテル類としては、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルなどが挙げられる。上記ニトリル類としては、アセトニトリル等、上記アミド類としては、ジメチルホルムアミド等が挙げられる。そして、特に、これらの水素の一部または全部をフッ素化されているものが好ましい。フッ素化により非水電解質の耐酸化性が向上するため、正極表面の酸化雰囲気が高まる高電圧状態でも電解液の分解を防ぐことが出来る。
また、これらを単独または複数組み合わせて使用することができ、特に、環状カーボネートと鎖状カーボネートとを組み合わせた溶媒が好ましい。
非水溶媒に加えるリチウム塩としては、従来の非水電解質二次電池において電解質として一般に使用されているものを用いることができ、例えば、LiPF6、LiBF4、LiAsF6、LiClO4、LiCF3SO3、LiN(FSO2)2、LiN(ClF2l+1SO2)(CmF2m+1SO2)(l,mは1以上の整数)、LiC(CpF2p+1SO2)(CqF2q+1SO2) (CrF2r+1SO2) (p,q,rは1以上の整数)、Li[B(C2O4)2](ビス(オキサレート)ホウ酸リチウム(LiBOB))、Li[B(C2O4)F2]、Li[P(C2O4)F4]、Li[P(C2O4)2F2]等が挙げられ、これらのリチウム塩は一種類で使用してもよく、また二種類以上組み合わせて使用してもよい。
[正極板の作製]
正極活物質は、以下のように調製した。リチウム源として炭酸リチウムを用い、コバルト源として四酸化コバルトを用い、リチウムの置換元素となるマグネシウム源として、酸化マグネシウムとを用いた。リチウム、マグネシウムのモル比を99:1、リチウム+マグネシウムとコバルトのモル比を1:1で乾式混合した後、粉末をペレットに成型して、空気雰囲気中において、900℃で24時間焼成し、正極活物質を調製した。
黒鉛と、増粘剤としてのカルボキシメチルセルロースと、結着材としてのスチレンブタジエンゴムとを、質量比で98:1:1となるように秤量し、水に分散させて負極活物質合剤スラリーを調製した。この負極活物質合剤スラリーを、厚さ8μmの銅製の負極芯体の両面にドクターブレード法により塗布した後、110℃で乾燥させて水分を除去して、負極活物質層を形成した。そして、圧縮ローラーを用いて所定の厚さに圧延し、所定サイズに裁断して負極板を作製した。
非水溶媒として、フルオロエチレンカーボネート(FEC)と、フッ素化プロピオンカーボネート(FMP)を用意した。25℃における体積比で、FEC:FMP=20:80となるように混合した。この非水溶媒に、ヘキサフルオロリン酸リチウムを濃度が1mol/Lとなるように溶解して、非水電解質を調製した。
ラミネート形非水電解質二次電池20は、図3及び図4に示したように、ラミネート外装体21と、正極板と負極板とを備え偏平状に形成された巻回電極体22と、正極板に接続された正極集電タブ23と、負極板に接続された負極集電タブ24とを有している。巻回電極体22は、それぞれが帯状である正極板、負極板及びセパレーターを有し、正極板と負極板とがセパレーターを介して互いに絶縁された状態で巻回されるようにして構成されている。
即ち、上記のように作製した正極板及び負極板を、ポリエチレン製微多孔質膜からなるセパレーターを介して巻回し、最外周にポリプロピレン製のテープを張り付けて円筒状の巻回電極体を作製した。次いで、これをプレスして偏平状の巻回電極体とした。また、ポリプロピレン樹脂層/接着剤層/アルミニウム合金層/接着材層/ポリプロピレン樹脂層の5層構造からなるシート状のラミネート材を用意し、このラミネート材を折り返して底部を形成するとともにカップ状の電極体収納空間を形成した。
上記ラミネート形非水電解質二次電池(以下パウチセルということがある。)について、下記の条件で充放電試験を行った。
400mAの定電流で電池電圧が4.50Vとなるまで充電し、電池電圧が各値に達した後は、各値の定電圧で40mAとなるまで充電を行った。そして、800mAの定電流で電池電圧が2.50Vとなるまで放電を行い、このときに流れた電気量を測定して1回目の放電容量を求めた。負極に用いられる黒鉛の電位は、リチウム基準で約0.1Vである。このため、電池電圧4.50Vにおいて正極電位はリチウム基準で4.53V以上4.60V程度となる。上記と同じ条件で充放電を繰り返して100回目の放電容量を測定し、容量維持率を以下の式を用いて算出した。また、測定温度は25℃及び45℃で行った。容量維持率(%)=(100回目の放電容量/1回目の放電容量)×100
単極式セルの作製の製造方法について、図2を用いて説明する。単極式セル10は、図2に示したように、正極11、負極12及び上記正極11と負極12との間にセパレーター13が配置される測定極部14と、参照極15が配置される参照極部16を有している。測定極部14及び参照極部16にはそれぞれ非水電解液18が満たされている。負極12及び参照極15は、リチウム金属が用いられている。負極12は、正極11に対して対向可能な寸法となっている。作製された単極式セル10の理論容量は100mAhである。
負極上へのマグネシウム化合物の析出量を算出するため、上記単極式セルを0.15It(=15mA)の定電流により、正極の電位がリチウム基準で4.60Vとなるまで充電した。その後、電池を解体した後、負極のICPを行い化合物の定量を行った。負極のマグネシウム化合物割合(%)=負極中のマグネシウム量/正極活物質中のマグネシウム量×100で算出を行った。
コバルトの置換元素源となるニッケル、マンガン源として、水酸化ニッケル、二酸化マンガンとを用いた。リチウム、マグネシウムのモル比を99:1、コバルト、ニッケル、マンガンのモル比を90:5:5、リチウム+マグネシウムとコバルト+ニッケル+マンガンのモル比を1:1で乾式混合した後、粉末をペレットに成型して、空気雰囲気中において、900℃で24時間焼成し、正極活物質を調製した。それ以外は、上記実験例1と同様にして、単極式セル10及びラミネート形非水電解質二次電池20を作製した。
リチウム、マグネシウムのモル比を97:3になるように正極活物質を調製したこと以外は、実験例2と同様にして、単極式セル10及びラミネート形非水電解質二次電池20を作製した。
マグネシウムを置換しないように正極活物質を調製したこと以外は、実験例1と同様にして単極式セル10及びラミネート形非水電解質二次電池20を作製した。
25℃サイクルにおいて、実験例4は100サイクル後で維持率が65%に対し、実験例1~3は88%以上と高い値となった。また、45℃サイクルでは実験例4は47%と室温より大幅に低下したのに対し、実験例1~3は62%以上と実験例4を上回る値となった。これは、リチウム層にマグネシウムが安定的に存在したことで、リチウム層の結晶構造が安定化し、充放電サイクル特性が改善できたと考えられる。
さらに、実験例1~3では負極上にマグネシウム化合物が正極中のマグネシウムに対し4.6%以上析出していることを確認した。負極上に析出したマグネシウム化合物が負極の保護膜となって、充放電サイクルに伴う負極表面と電解液との反応を抑制したため、充放電サイクル特性を改善できたものと考えられる。
リチウム、マグネシウムのモル比を97:3になるように正極活物質を調製したこと以外は、実験例1と同様にして単極式セル10及びラミネート形非水電解質二次電池20を作製した。
リチウム、マグネシウムのモル比を95:5になるように正極活物質を調製したこと以外は、実験例1と同様にして単極式セル10及びラミネート形非水電解質二次電池20を作製した。
実験例1の正極活物質を粉末X線回折(以下、XRD)にて測定した結果を図5に示す。全てのピークは空間群R-3mに帰属可能であり、図5中3桁の数字で示すように指数付けが可能であった。また、実験例2~6も同様の結果となった。
次に、面指数003と104の回折ピーク強度比003/104を算出した。この回折強度は一般的に、リチウム層にリチウムイオン(0.76Å)とイオン半径が近いニッケル2価のニッケルイオン(0.69Å)が占有するカチオンミキシングの尺度であり、ピーク強度比が小さくなるとカチオンミシキングの比率が大きくなり強度比は1.37以下と言われている。2価のマグネシウムイオン(0.72Å)もリチウムイオンやニッケルイオンのイオン半径と近いため、強度比からマグネシウムのカチオンミキシングの可否を判断した。
次に、作製した正極活物質が高電位充電にO3構造から結晶構造が大きく崩壊するH1-3構造に相転移を抑制しているかを確認するため充電時のXRD測定を行った。上記実験例1~6で作製した単極式セルを0.15It(=15mA)の定電流により、正極の電位がリチウム基準で4.50V及び4.60Vとなるまで充電し、電池解体後、大気中の酸素や水分に反応するのを防ぐため、大気非暴露状態で上記実験1~6の正極活物質のXRD測定を行った。
Claims (7)
- リチウムイオンを吸蔵・放出する正極活物質を有する正極と、リチウムイオンを吸蔵・放出する負極活物質を有する負極と、非水電解質とを備え、前記正極活物質は層状岩塩構造を有しリチウム層中にマグネシウムを含むコバルト複合酸化物であり、リチウム基準で電位が4.53V以上の充電後にリチウム層にマグネシウムが存在しており、かつ負極上にマグネシウムを含む化合物が、前記正極中のマグネシウムに対して、4.5mol%以上10mol%以下存在することを特徴とする非水電解質二次電池。
- 前記正極の一般式がLi1-aMgaCo1-bMbO2(前記一般式において、0<
a≦0.05、0≦b≦0.1、MはAl、Mg、Mn、Ni、Fe、Mg、Ti、Zn、Mo、V、Sr、Sn、Sb、W、Ta、Nb、Ge、ZrおよびBaから選択される少なくとも1種の元素)で表される、請求項1に記載の非水電解質二次電池。 - 前記正極活物質のH1-3への相転移電位がリチウム基準で4.53V以上である、請求項1または請求項2に記載の非水電解質二次電池。
- 前記正極の活物質表面の一部に希土類化合物が付着されている、請求項1~3のいずれか1項に記載の非水電解質二次電池。
- 前記希土類化合物は水酸化エルビウム及びオキシ水酸化エルビウムの少なくとも1種を含む請求項4に記載の非水電解質二次電池。
- 前記非水電解質はフッ素化溶媒を含む請求項1~5のいずれか1項に記載の非水電解質二次電池。
- 前記フッ素化溶媒がフルオロエチレンカーボネート、フッ素化プロピオン酸メチル及びフッ素化メチルエチルカーボネートを含む請求項6に記載の非水電解質二次電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016507339A JP6414589B2 (ja) | 2014-03-11 | 2015-03-02 | 非水電解質二次電池 |
CN201580012310.8A CN106104868B (zh) | 2014-03-11 | 2015-03-02 | 非水电解质二次电池 |
US15/124,541 US9923244B2 (en) | 2014-03-11 | 2015-03-02 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014047174 | 2014-03-11 | ||
JP2014-047174 | 2014-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015136881A1 true WO2015136881A1 (ja) | 2015-09-17 |
Family
ID=54071340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/001075 WO2015136881A1 (ja) | 2014-03-11 | 2015-03-02 | 非水電解質二次電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9923244B2 (ja) |
JP (1) | JP6414589B2 (ja) |
CN (1) | CN106104868B (ja) |
WO (1) | WO2015136881A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018026153A1 (ko) * | 2016-08-02 | 2018-02-08 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
US20180040888A1 (en) * | 2016-08-02 | 2018-02-08 | Samsung Sdi Co., Ltd. | Lithium cobalt composite oxide for lithium secondary battery and lithium secondary battery including positive electrode including the lithium cobalt composite oxide |
KR20180014956A (ko) * | 2016-08-02 | 2018-02-12 | 삼성에스디아이 주식회사 | 리튬이차전지용 리튬 코발트 복합 산화물 및 이를 포함한 양극을 함유한 리튬이차전지 |
JP2018088407A (ja) * | 2016-11-24 | 2018-06-07 | 株式会社半導体エネルギー研究所 | 正極活物質粒子、および正極活物質粒子の作製方法 |
KR20200009034A (ko) * | 2017-05-19 | 2020-01-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지 |
WO2020099991A1 (ja) * | 2018-11-16 | 2020-05-22 | 株式会社半導体エネルギー研究所 | 正極活物質、二次電池、電子機器および車両 |
US11043660B2 (en) | 2016-07-05 | 2021-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide |
US11094927B2 (en) | 2016-10-12 | 2021-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle and manufacturing method of positive electrode active material particle |
US11444274B2 (en) | 2017-05-12 | 2022-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle |
US11670770B2 (en) | 2017-06-26 | 2023-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing positive electrode active material, and secondary battery |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111066187A (zh) * | 2017-08-21 | 2020-04-24 | 株式会社村田制作所 | 电池、电池包、电子设备、电动车辆、蓄电装置及电力系统 |
CN109786738B (zh) * | 2017-11-15 | 2021-02-12 | 华为技术有限公司 | 一种高电压钴酸锂正极材料及其制备方法和锂离子电池 |
EP3855531A4 (en) * | 2018-11-30 | 2022-07-06 | Murata Manufacturing Co., Ltd. | SECONDARY BATTERY |
JP7444542B2 (ja) * | 2019-03-07 | 2024-03-06 | 株式会社コロプラ | ゲームプログラム、方法、および情報処理装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10241691A (ja) * | 1996-12-24 | 1998-09-11 | Hitachi Ltd | 電 池 |
JP2000123834A (ja) * | 1998-10-09 | 2000-04-28 | Gs Melcotec Kk | 非水電解液二次電池 |
JP2001256975A (ja) * | 2000-03-14 | 2001-09-21 | Toyota Central Res & Dev Lab Inc | リチウム二次電池正極活物質用リチウムニッケル複合酸化物、その製造方法およびそれを用いたリチウム二次電池 |
JP2003346797A (ja) * | 2002-05-24 | 2003-12-05 | Japan Storage Battery Co Ltd | ニッケルリチウム複合酸化物を用いた非水電解質二次電池 |
JP2004220952A (ja) * | 2003-01-16 | 2004-08-05 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池用正極活物質 |
WO2006054604A1 (ja) * | 2004-11-19 | 2006-05-26 | Matsushita Electric Industrial Co., Ltd. | 非水電解質二次電池 |
JP2006173137A (ja) * | 2006-01-27 | 2006-06-29 | Hitachi Maxell Ltd | リチウム二次電池 |
JP2006324235A (ja) * | 2005-04-20 | 2006-11-30 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
JP2014170739A (ja) * | 2013-02-28 | 2014-09-18 | Samsung Sdi Co Ltd | 複合正極活物質及びその製造方法、該複合正極活物質を採用した正極とリチウム電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06168722A (ja) * | 1992-11-26 | 1994-06-14 | Japan Storage Battery Co Ltd | 非水電解質電池 |
JP4404564B2 (ja) | 2003-03-25 | 2010-01-27 | 三洋電機株式会社 | 非水電解質二次電池、正極活物質 |
KR101587055B1 (ko) * | 2013-08-19 | 2016-01-20 | 주식회사 엘지화학 | 수명특성이 우수한 리튬 코발트계 복합 산화물 및 이를 포함하는 이차전지용 양극 활물질 |
JP6246109B2 (ja) * | 2014-01-20 | 2017-12-13 | マクセルホールディングス株式会社 | リチウム・コバルト含有複合酸化物及びその製造方法、並びにそのリチウム・コバルト含有複合酸化物を用いた非水二次電池用電極及びそれを用いた非水二次電池 |
-
2015
- 2015-03-02 US US15/124,541 patent/US9923244B2/en active Active
- 2015-03-02 CN CN201580012310.8A patent/CN106104868B/zh active Active
- 2015-03-02 WO PCT/JP2015/001075 patent/WO2015136881A1/ja active Application Filing
- 2015-03-02 JP JP2016507339A patent/JP6414589B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10241691A (ja) * | 1996-12-24 | 1998-09-11 | Hitachi Ltd | 電 池 |
JP2000123834A (ja) * | 1998-10-09 | 2000-04-28 | Gs Melcotec Kk | 非水電解液二次電池 |
JP2001256975A (ja) * | 2000-03-14 | 2001-09-21 | Toyota Central Res & Dev Lab Inc | リチウム二次電池正極活物質用リチウムニッケル複合酸化物、その製造方法およびそれを用いたリチウム二次電池 |
JP2003346797A (ja) * | 2002-05-24 | 2003-12-05 | Japan Storage Battery Co Ltd | ニッケルリチウム複合酸化物を用いた非水電解質二次電池 |
JP2004220952A (ja) * | 2003-01-16 | 2004-08-05 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池用正極活物質 |
WO2006054604A1 (ja) * | 2004-11-19 | 2006-05-26 | Matsushita Electric Industrial Co., Ltd. | 非水電解質二次電池 |
JP2006324235A (ja) * | 2005-04-20 | 2006-11-30 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
JP2006173137A (ja) * | 2006-01-27 | 2006-06-29 | Hitachi Maxell Ltd | リチウム二次電池 |
JP2014170739A (ja) * | 2013-02-28 | 2014-09-18 | Samsung Sdi Co Ltd | 複合正極活物質及びその製造方法、該複合正極活物質を採用した正極とリチウム電池 |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11043660B2 (en) | 2016-07-05 | 2021-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide |
US10854878B2 (en) | 2016-08-02 | 2020-12-01 | Samsung Sdi Co., Ltd. | Lithium cobalt composite oxide for lithium secondary battery and lithium secondary battery including positive electrode including the same |
KR20180014956A (ko) * | 2016-08-02 | 2018-02-12 | 삼성에스디아이 주식회사 | 리튬이차전지용 리튬 코발트 복합 산화물 및 이를 포함한 양극을 함유한 리튬이차전지 |
KR20180014955A (ko) * | 2016-08-02 | 2018-02-12 | 삼성에스디아이 주식회사 | 리튬이차전지용 리튬 코발트 복합 산화물 및 이를 포함한 양극을 함유한 리튬이차전지 |
KR102256299B1 (ko) * | 2016-08-02 | 2021-05-26 | 삼성에스디아이 주식회사 | 리튬이차전지용 리튬 코발트 복합 산화물 및 이를 포함한 양극을 함유한 리튬이차전지 |
WO2018026153A1 (ko) * | 2016-08-02 | 2018-02-08 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
US20180040888A1 (en) * | 2016-08-02 | 2018-02-08 | Samsung Sdi Co., Ltd. | Lithium cobalt composite oxide for lithium secondary battery and lithium secondary battery including positive electrode including the lithium cobalt composite oxide |
KR102256296B1 (ko) * | 2016-08-02 | 2021-05-26 | 삼성에스디아이 주식회사 | 리튬이차전지용 리튬 코발트 복합 산화물 및 이를 포함한 양극을 함유한 리튬이차전지 |
US10985367B2 (en) | 2016-08-02 | 2021-04-20 | Samsung Sdi Co., Ltd. | Lithium cobalt composite oxide for lithium secondary battery and lithium secondary battery including positive electrode including the lithium cobalt composite oxide |
US11094927B2 (en) | 2016-10-12 | 2021-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle and manufacturing method of positive electrode active material particle |
JP2020057609A (ja) * | 2016-11-24 | 2020-04-09 | 株式会社半導体エネルギー研究所 | 正極活物質層 |
JP2020047595A (ja) * | 2016-11-24 | 2020-03-26 | 株式会社半導体エネルギー研究所 | 携帯情報端末 |
JP2018088407A (ja) * | 2016-11-24 | 2018-06-07 | 株式会社半導体エネルギー研究所 | 正極活物質粒子、および正極活物質粒子の作製方法 |
JP7094692B2 (ja) | 2016-11-24 | 2022-07-04 | 株式会社半導体エネルギー研究所 | リチウムイオン二次電池 |
US11444274B2 (en) | 2017-05-12 | 2022-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle |
US11489151B2 (en) | 2017-05-12 | 2022-11-01 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle |
KR20230005406A (ko) * | 2017-05-19 | 2023-01-09 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지 |
KR20220111734A (ko) * | 2017-05-19 | 2022-08-09 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지 |
KR20220111735A (ko) * | 2017-05-19 | 2022-08-09 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지 |
KR20200094803A (ko) * | 2017-05-19 | 2020-08-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지 |
KR102655146B1 (ko) * | 2017-05-19 | 2024-04-04 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지 |
KR102656986B1 (ko) * | 2017-05-19 | 2024-04-11 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지 |
KR20230005407A (ko) * | 2017-05-19 | 2023-01-09 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지 |
KR102502813B1 (ko) * | 2017-05-19 | 2023-02-23 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지 |
KR20200009034A (ko) * | 2017-05-19 | 2020-01-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지 |
KR102591354B1 (ko) * | 2017-05-19 | 2023-10-19 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지 |
US11799080B2 (en) | 2017-05-19 | 2023-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery |
KR102645512B1 (ko) * | 2017-05-19 | 2024-03-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지 |
KR102665139B1 (ko) | 2017-05-19 | 2024-05-10 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지 |
US11670770B2 (en) | 2017-06-26 | 2023-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing positive electrode active material, and secondary battery |
WO2020099991A1 (ja) * | 2018-11-16 | 2020-05-22 | 株式会社半導体エネルギー研究所 | 正極活物質、二次電池、電子機器および車両 |
JP7558811B2 (ja) | 2018-11-16 | 2024-10-01 | 株式会社半導体エネルギー研究所 | 正極活物質、二次電池、電子機器および車両 |
Also Published As
Publication number | Publication date |
---|---|
JP6414589B2 (ja) | 2018-10-31 |
US20170018808A1 (en) | 2017-01-19 |
CN106104868A (zh) | 2016-11-09 |
CN106104868B (zh) | 2018-07-13 |
US9923244B2 (en) | 2018-03-20 |
JPWO2015136881A1 (ja) | 2017-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6414589B2 (ja) | 非水電解質二次電池 | |
JP5315591B2 (ja) | 正極活物質および電池 | |
JP6428647B2 (ja) | 非水電解質二次電池及び非水電解質二次電池の製造方法 | |
JP6117117B2 (ja) | 非水電解質二次電池の正極及び非水電解質二次電池 | |
CN108352525B (zh) | 非水电解质二次电池用正极活性物质和非水电解质二次电池 | |
WO2012014793A1 (ja) | リチウムイオン二次電池 | |
US20130071745A1 (en) | Electrode active material, preparation method thereof, and electrode and lithium battery containing the same | |
JP6399388B2 (ja) | 非水電解質二次電池 | |
US20120115043A1 (en) | Nonaqueous electrolyte secondary battery | |
US10340521B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2007200862A (ja) | 非水電解質二次電池 | |
JP6607188B2 (ja) | 正極及びそれを用いた二次電池 | |
WO2014068831A1 (ja) | 非水電解質二次電池 | |
JP7519635B2 (ja) | リチウム二次電池 | |
KR20170024490A (ko) | 복합 양극 활물질, 이를 포함하는 양극 및 리튬 전지 | |
JP6660599B2 (ja) | 非水電解質二次電池用正極活物質、及び非水電解質二次電池 | |
JP6868799B2 (ja) | 非水電解質二次電池用正極活物質 | |
JP5241766B2 (ja) | 非水電解質二次電池及びその充電方法 | |
JP7407377B2 (ja) | マグネシウムイオン二次電池、マグネシウムイオン二次電池用正極活物質及びマグネシウムイオン二次電池用正極 | |
JP2015176644A (ja) | 非水電解質二次電池用正極活物質及び非水電解質二次電池 | |
KR102344364B1 (ko) | 리튬전지 | |
JP6237792B2 (ja) | 非水電解質二次電池 | |
WO2018117634A1 (ko) | 금속이 도핑된 고전압용 양극 활물질 | |
JP2013137939A (ja) | 非水電解質二次電池 | |
JP6512110B2 (ja) | 非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15761626 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016507339 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15124541 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15761626 Country of ref document: EP Kind code of ref document: A1 |