[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015133622A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2015133622A1
WO2015133622A1 PCT/JP2015/056717 JP2015056717W WO2015133622A1 WO 2015133622 A1 WO2015133622 A1 WO 2015133622A1 JP 2015056717 W JP2015056717 W JP 2015056717W WO 2015133622 A1 WO2015133622 A1 WO 2015133622A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
radiator
heat
pressure
flow path
Prior art date
Application number
PCT/JP2015/056717
Other languages
English (en)
French (fr)
Inventor
伊東 大輔
岡崎 多佳志
石橋 晃
真哉 東井上
繁佳 松井
裕樹 宇賀神
拓未 西山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP15758593.6A priority Critical patent/EP3118541B1/en
Priority to US15/120,807 priority patent/US9970693B2/en
Priority to CN201580012408.3A priority patent/CN106068427B/zh
Priority to JP2016506195A priority patent/JP6042026B2/ja
Priority to EP18154965.0A priority patent/EP3343129B1/en
Publication of WO2015133622A1 publication Critical patent/WO2015133622A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/23High amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • Patent Document 1 describes a heat source device including an upstream refrigeration cycle and a downstream refrigeration cycle.
  • the water heat exchanger of the upstream refrigeration cycle is connected to the upstream side of the flow path of the heat load medium, and the water heat exchanger of the downstream refrigeration cycle is connected to the downstream side thereof.
  • Patent Document 1 since each of the two radiators (water heat exchangers) is provided in a separate refrigeration cycle, high-efficiency operation is possible depending on conditions.
  • Patent Document 1 does not describe, for example, that the condensation operation and the supercritical operation can coexist when the refrigerant whose critical temperature is close to the air temperature is used, and the capacity of the radiator. Therefore, there are problems that the compressor efficiency may be deteriorated and that it is difficult to reduce the amount of refrigerant.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a refrigeration cycle apparatus that can improve the operation efficiency and reduce the amount of refrigerant. .
  • the refrigeration cycle apparatus includes a first refrigerant circuit and a second refrigerant circuit that circulate refrigerant having the same composition, and the first refrigerant circuit condenses the refrigerant and radiates heat to an external fluid.
  • the second refrigerant circuit is provided with a second radiator that radiates heat to an external fluid while maintaining the refrigerant in a supercritical state. Is arranged on the upstream side of the second radiator with respect to the flow of the external fluid, and the capacity of the refrigerant flow path of the second radiator is the same as that of the refrigerant flow path of the first radiator. It is smaller than the capacity.
  • FIG. 3 is a ph diagram showing the state of refrigerant in refrigerant circuits 11 and 12 of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. It is a refrigerant circuit diagram which shows schematic structure of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. It is a ph diagram which shows the state of the refrigerant
  • FIG. 1 A refrigeration cycle apparatus according to Embodiment 1 of the present invention will be described.
  • the refrigeration cycle apparatus according to the present embodiment is used, for example, as a heat source machine that generates hot water by heating water or brine in a refrigeration air conditioner or a hot water supply apparatus.
  • FIG. 1 is a refrigerant circuit diagram showing a schematic configuration of a refrigeration cycle apparatus according to the present embodiment.
  • the refrigeration cycle apparatus of the present embodiment includes a refrigerant circuit 11 and a refrigerant circuit 12 provided separately from the refrigerant circuit 11.
  • the refrigerant circuits 11 and 12 circulate the refrigerant independently of each other.
  • the refrigerant of the same composition is used for the refrigerant circuit 11 and the refrigerant circuit 12, but different refrigerants may be used.
  • the refrigerant an HFC refrigerant, an HFO refrigerant, a CO 2 refrigerant, or the like can be used.
  • the refrigerant circuit 11 is provided with a compressor 21, a radiator 31, an expansion device 41, and an evaporator 51 in this order.
  • the compressor 21, the radiator 31, the expansion device 41, and the evaporator 51 are connected by refrigerant piping.
  • the refrigerant circuit 12 is provided with a compressor 22, a radiator 32, an expansion device 42, and an evaporator 52 in this order.
  • the compressor 22, the radiator 32, the expansion device 42, and the evaporator 52 are connected by refrigerant piping.
  • the compressors 21 and 22 are fluid machines that suck in and compress a low-temperature and low-pressure refrigerant and discharge it as a high-temperature and high-pressure refrigerant.
  • the compressor 22 of the refrigerant circuit 12 compresses the refrigerant to a pressure equal to or higher than the critical pressure during normal operation to make it a supercritical state (hereinafter, the supercritical refrigerant is referred to as “supercritical refrigerant”).
  • the compressor 21 of the refrigerant circuit 11 compresses the refrigerant to a pressure equal to or lower than the critical pressure in a normal operation to make a high-pressure gas state.
  • the pressure of the refrigerant compressed by the compressor 21 is lower than the pressure of the refrigerant compressed by the compressor 22.
  • the radiators 31 and 32 are water heat exchangers that exchange heat between the high-temperature and high-pressure refrigerant compressed by the compressor 21 and water (an example of an external fluid).
  • the radiators 31 and 32 for example, plate heat exchangers in which a plurality of heat transfer plates are stacked are used.
  • the radiator 32 of the refrigerant circuit 12 radiates heat to water while maintaining the refrigerant in a supercritical state, and the radiator 31 of the refrigerant circuit 11 condenses the gas refrigerant. It dissipates heat to water.
  • the refrigerant pressure when the radiator 32 radiates heat is higher than the refrigerant pressure when the radiator 31 radiates heat.
  • the refrigerant temperature during heat dissipation of the radiator 32 is higher than the refrigerant temperature during heat dissipation of the radiator 31.
  • the capacity (volume) of the refrigerant channel in the radiator 32 is smaller than the capacity of the refrigerant channel in the radiator 31.
  • the radiators 31 and 32 are plate heat exchangers, for example, the number of heat transfer plates of the radiator 32 may be smaller than the number of heat transfer plates of the radiator 31, The height of each heat transfer plate may be lower than the height of each heat transfer plate of the radiator 31.
  • the size relationship in the vertical direction between the radiator 31 and the radiator 32 represents the size relationship of the capacity of the refrigerant flow path (however, it represents the ratio of the capacity of the refrigerant flow path). is not).
  • the heat transfer area between the refrigerant and water in the radiator 32 is smaller than the heat transfer area between the refrigerant and water in the radiator 31.
  • the refrigerant flow path in the radiator 32 is narrower than the refrigerant flow path in the radiator 31.
  • the diameter of the heat transfer tubes in the radiator 32 is smaller than the tube diameter of the heat transfer tubes in the radiator 31.
  • the radiators 31 and 32 are connected in series via the water pipe 60. That is, the radiators 31 and 32 are arranged in series with respect to the flow of water (in FIG. 1, the flow direction of the water is indicated by solid arrows).
  • the radiator 31 is disposed upstream of the radiator 32 in the flow of water. Since the refrigerant temperature of the radiator 32 is higher than the refrigerant temperature of the radiator 31, the temperature gradient between the refrigerant and water in each of the radiators 31 and 32 can be made uniform by arranging as described above. It is possible to increase the heat exchange efficiency.
  • the expansion device 41 decompresses and expands the high-pressure liquid refrigerant into a low-pressure gas-liquid two-phase refrigerant, and the expansion device 42 expands the high-pressure supercritical refrigerant under reduced pressure to form a low-pressure gas-liquid two-phase refrigerant and To do.
  • expansion devices 41 and 42 expansion valves, capillary tubes, or the like are used.
  • the evaporators 51 and 52 are heat exchangers that evaporate the gas-liquid two-phase refrigerant decompressed by the expansion devices 41 and 42 by heat exchange with, for example, outdoor air.
  • the critical temperature (59.2 ° C.) of R1123 is lower.
  • a refrigerant containing R1123 for example, a single refrigerant of R1123 or a mixed refrigerant containing R1123
  • the difference between the critical temperature of the refrigerant and the temperature of the external fluid (in this example, water) becomes small.
  • the refrigerant circuit 11 can easily perform the condensation operation and the refrigerant circuit 12 can easily perform the supercritical operation.
  • a mixed refrigerant for example, R32, R1234yf, or the like can be used as the refrigerant mixed with R1123.
  • the mixing ratio of R1123 in the mixed refrigerant is, for example, 50 wt% or more.
  • the operating physical properties are close, so the specifications of the components of the refrigerant circuits 11 and 12 can be made common. Therefore, cost reduction of the refrigerant circuits 11 and 12 is realizable.
  • the specifications of the refrigerant storage tank and the refrigerant sealing device can be shared or shared. Therefore, compared to the case where different refrigerants are used in the refrigerant circuits 11 and 12, the facility cost can be reduced.
  • FIG. 2 is a ph diagram showing the state of the refrigerant in the refrigerant circuits 11 and 12 of the refrigeration cycle apparatus.
  • the low-temperature and low-pressure gas refrigerant (point 1a in FIG. 2) is sucked into the compressor 21 and compressed (compression stroke) to become a high-temperature and high-pressure gas refrigerant (point 2a).
  • the high-temperature and high-pressure gas refrigerant dissipates heat to water in the radiator 31, and is cooled and condensed (condensation process). Thereby, it becomes a high-pressure liquid refrigerant (point 3a).
  • a gas refrigerant having a density of about 100 kg / m 3 undergoes a phase change to a liquid refrigerant having a density of about 1000 kg / m 3 through a two-phase state.
  • the high-pressure liquid refrigerant is decompressed and expanded (expansion stroke) by the expansion device 41, and becomes a low-pressure two-phase refrigerant (point 4a).
  • the low-pressure two-phase refrigerant is heated and evaporated by heat exchange with air in the evaporator 51 (evaporation process), and becomes a low-temperature and low-pressure gas refrigerant (point 1a).
  • the low-temperature and low-pressure gas refrigerant (point 1b) is sucked into the compressor 22 and compressed (compression stroke) to become a high-temperature and high-pressure supercritical refrigerant (point 2b).
  • the high-temperature and high-pressure supercritical refrigerant dissipates heat to water in the radiator 32 (heat dissipation process), and is cooled to become a relatively low-temperature supercritical refrigerant (point 3b). In the heat release process, the temperature of the supercritical refrigerant decreases from about 60 ° C.
  • the density of the supercritical refrigerant increases from about 700 kg / m 3 to about 1000 kg / m 3 .
  • the pressure of the supercritical refrigerant decreases in the heat dissipation process.
  • the low-temperature supercritical refrigerant is decompressed by the expansion device 42 and expands (expansion stroke), and becomes a low-pressure two-phase refrigerant (point 4b).
  • the low-pressure two-phase refrigerant is heated and evaporated by the heat exchange with air in the evaporator 52 (evaporation process), and becomes a low-temperature and low-pressure gas refrigerant (point 1b).
  • the refrigerant states of the refrigerant circuit 11 and the refrigerant circuit 12 are compared.
  • the pressure and temperature of the refrigerant (point 2b) after the compression stroke in the refrigerant circuit 12 are both higher than the pressure and temperature of the refrigerant (point 2a) after the compression stroke in the refrigerant circuit 11.
  • the pressure (pressure at the time of heat radiation) and temperature of the refrigerant (point 2b to point 3b) in the radiator 32 of the refrigerant circuit 12 are the pressure and temperature of the refrigerant (point 2a to point 3a) in the radiator 31 of the refrigerant circuit 11. Both are higher than
  • the refrigerant density changes from about 100 kg / m 3 to about 1000 kg / m 3
  • the refrigerant density is 700 kg / m 3. changes from m 3 about to about 1000kg / m 3.
  • the density of the liquid refrigerant after the condensation process and the density of the supercritical refrigerant after the heat release process are approximately the same, but the density of the gas refrigerant before the condensation process and the density of the supercritical refrigerant before the heat release process are greatly different.
  • the density of the refrigerant in the refrigerant flow path of the radiator 32 of the refrigerant circuit 12 is larger than the density of the refrigerant in the refrigerant flow path of the radiator 31 of the refrigerant circuit 11.
  • the density of the refrigerant in the refrigerant channel of the radiator is an average density of all the refrigerants in the refrigerant channel of the radiator.
  • the heat radiator 32 in which a relatively high density refrigerant circulates has lower heat transfer performance than the heat radiator 31 in which a relatively low density refrigerant circulates.
  • the heat transfer performance can be improved by reducing the capacity of the refrigerant flow path and increasing the flow rate of the refrigerant.
  • coolant amount of a refrigerating-cycle apparatus can be reduced by making the capacity
  • the pressure loss of the radiator 32 through which the supercritical refrigerant flows is smaller than that of the radiator 31 through which the condensed liquid refrigerant flows.
  • the refrigerant flow path in the radiator 32 can be further reduced in diameter.
  • the diameter of the refrigerant flow path in the radiator 32 the flow rate of the refrigerant in the radiator 32 can be increased, and the heat transfer performance of the radiator 32 can be improved.
  • the capacity of the refrigerant flow path in the radiator 32 can be reduced, and the amount of refrigerant in the refrigeration cycle apparatus can be reduced.
  • the radiator that radiates heat to the water in the water pipe 60 radiates heat to the water while the refrigerant 31 condenses the refrigerant and radiates heat to the water, and the refrigerant is maintained in a supercritical state. And the radiator 32 to be used. For this reason, the amount of refrigerant can be reduced by reducing the capacity of the refrigerant flow path of the radiator 32. Moreover, compared with the case of operating in a supercritical state with one refrigerant circuit, the high-pressure side pressure of the refrigerant circuit 11 arranged on the upstream side in the flow of water can be reduced, so that highly efficient operation is possible.
  • the refrigeration cycle apparatus includes the refrigerant circuits 11 and 12 that circulate the refrigerant having the same composition, and the refrigerant circuit 11 condenses the refrigerant to external fluid (in this example, A radiator 31 that radiates heat to water) is provided, and the refrigerant circuit 12 is provided with a radiator 32 that radiates heat to an external fluid while maintaining the refrigerant in a supercritical state.
  • the capacity of the refrigerant flow path of the heat radiator 32 is smaller than the capacity of the refrigerant flow path of the heat radiator 31.
  • the refrigeration cycle apparatus includes at least one refrigerant circuit (in this example, two refrigerant circuits 11 and 12) for circulating the refrigerant
  • the refrigerant circuit includes at least one compressor (this In the example, the compressors 21 and 22), a plurality of radiators (in this example, radiators 31 and 32) that radiate heat to an external fluid (in this example, water), and at least one expansion device (in this example, Expansion devices 41 and 42) and at least one evaporator (in this example, evaporators 51 and 52) are provided, and the plurality of radiators are arranged in series with the flow of the external fluid.
  • the pressure at the time of heat radiation of a plurality of radiators is mutually different, and the capacity of the refrigerant channel of a plurality of radiators is mutually different.
  • the density of the refrigerant in the refrigerant flow path of the radiator 32 is larger than the density of the refrigerant in the refrigerant flow path of the radiator 31.
  • the capacity of the refrigerant flow path is smaller than the capacity of the refrigerant flow path of the radiator 31. That is, in the refrigeration cycle apparatus according to the present embodiment, the capacity of the radiator is smaller as the refrigerant density in the refrigerant flow path is larger.
  • the radiator 31 condenses the refrigerant and radiates heat to the external fluid, and the radiator 32 radiates heat to the external fluid while maintaining the refrigerant in a supercritical state. To do.
  • FIG. 3 is a refrigerant circuit diagram showing a schematic configuration of the refrigeration cycle apparatus according to the present embodiment.
  • the refrigeration cycle apparatus of the present embodiment has a refrigerant circuit 13 and a refrigerant circuit 14 provided separately from the refrigerant circuit 13.
  • the refrigerant circuit 13 is provided with a compressor 23, a radiator 33, an expansion device 43, and an evaporator 53 in this order.
  • the refrigerant circuit 14 is provided with a compressor 24, a radiator 34, an expansion device 44, and an evaporator 54 in this order.
  • the compressors 23 and 24 of this example both compress the refrigerant to a pressure equal to or lower than the critical pressure to bring it into a high-pressure gas state.
  • the pressure of the refrigerant compressed by the compressor 23 is lower than the pressure of the refrigerant compressed by the compressor 24.
  • Both the heat radiators 33 and 34 condense the gas refrigerant and dissipate heat to water.
  • the refrigerant pressure (condensation pressure) during heat dissipation of the radiator 34 is higher than the refrigerant pressure (condensation pressure) during heat dissipation of the radiator 33.
  • the refrigerant temperature (condensation temperature) when the radiator 34 radiates heat is higher than the refrigerant temperature (condensation temperature) when the radiator 33 radiates heat.
  • the capacity of the refrigerant channel in the radiator 33 is smaller than the capacity of the refrigerant channel in the radiator 34.
  • the radiators 33 and 34 are arranged in series with respect to the water flow.
  • the radiator 33 is disposed upstream of the radiator 34 in the flow of water. Since the refrigerant temperature of the radiator 34 is higher than the refrigerant temperature of the radiator 33, the heat exchange efficiency can be increased by arranging as described above.
  • FIG. 4 is a ph diagram showing the state of the refrigerant in the refrigerant circuits 13 and 14 of the refrigeration cycle apparatus.
  • the low-temperature and low-pressure gas refrigerant (point 1c in FIG. 4) is sucked into the compressor 23 and compressed (compression stroke) to become a high-temperature and high-pressure gas refrigerant (point 2c).
  • the high-temperature and high-pressure gas refrigerant dissipates heat to water in the radiator 33 and is cooled and condensed (condensation process). Thereby, it becomes a high-pressure liquid refrigerant (point 3c).
  • the high-pressure liquid refrigerant is decompressed and expanded by the expansion device 43 (expansion stroke), and becomes a low-pressure two-phase refrigerant (point 4c).
  • the low-pressure two-phase refrigerant is heated and evaporated by the heat exchange with air in the evaporator 53 (evaporation process), and becomes a low-temperature and low-pressure gas refrigerant (point 1c).
  • the low-temperature and low-pressure gas refrigerant (point 1d) is sucked into the compressor 24 and compressed (compression stroke) to become a high-temperature and high-pressure gas refrigerant (point 2d).
  • the high-temperature and high-pressure gas refrigerant dissipates heat to water in the radiator 34 and is cooled and condensed (condensation process). Thereby, it becomes a high-pressure liquid refrigerant (point 3d).
  • the high-pressure liquid refrigerant is decompressed and expanded by the expansion device 44 (expansion stroke), and becomes a low-pressure two-phase refrigerant (point 4d).
  • the low-pressure two-phase refrigerant is heated and evaporated by heat exchange with air in the evaporator 54 (evaporation process), and becomes a low-temperature and low-pressure gas refrigerant (point 1d).
  • the pressure and temperature of the refrigerant (point 2d) after the compression stroke in the refrigerant circuit 14 are both higher than the pressure and temperature of the refrigerant (point 2c) after the compression stroke in the refrigerant circuit 13.
  • the pressure and temperature of the refrigerant (points 2d to 3d) in the radiator 34 of the refrigerant circuit 14 are both compared with the pressure and temperature of the refrigerant (points 2c to 3c) in the radiator 33 of the refrigerant circuit 13. It is high.
  • the heat exchanger 33 performs heat exchange with water on the upstream side (low temperature side), the refrigerant is easily liquefied.
  • the ratio of the liquid in the refrigerant flow path of the radiator 33 is larger than that in the refrigerant flow path of the radiator 34.
  • the density of the refrigerant in the refrigerant flow path of the radiator 33 of the refrigerant circuit 13 is larger than the density of the refrigerant in the refrigerant flow path of the radiator 34 of the refrigerant circuit 14.
  • the heat radiator 33 in which a relatively high density refrigerant circulates has lower heat transfer performance than the heat radiator 34 in which a relatively low density refrigerant circulates.
  • the heat transfer performance can be improved by reducing the capacity of the refrigerant flow path and increasing the flow rate of the refrigerant.
  • coolant amount of a refrigerating-cycle apparatus can be reduced by making the capacity
  • the refrigeration cycle apparatus includes at least one refrigerant circuit (in this example, two refrigerant circuits 13 and 14) that circulates the refrigerant, and the refrigerant circuit includes at least one refrigerant circuit.
  • a compressor in this example, compressors 23 and 24
  • a plurality of radiators in this example, radiators 33 and 34
  • an external fluid in this example, water
  • at least one expansion device In this example, expansion devices 43 and 44
  • at least one evaporator in this example, evaporators 53 and 54
  • the heat dissipation pressures of the plurality of radiators are different from each other, and the refrigerant flow paths of the plurality of radiators are different from each other.
  • the density of the refrigerant in the refrigerant flow path of the radiator 33 is larger than the density of the refrigerant in the refrigerant flow path of the radiator 34.
  • the capacity of the refrigerant flow path is smaller than the capacity of the refrigerant flow path of the radiator 34. That is, in the refrigeration cycle apparatus according to the present embodiment, as in the first embodiment, the heat sink having a larger refrigerant density in the refrigerant flow path has a smaller capacity.
  • the radiators 33 and 34 both condense the refrigerant and dissipate heat to the external fluid. It is lower than the pressure during heat dissipation.
  • the radiators 33 and 34 both condense the gas refrigerant and radiate heat to the water, but both the radiators 33 and 34 radiate heat to the water while maintaining the refrigerant in a supercritical state. It may be a thing.
  • the heat exchanger 33 performs heat exchange with water on the upstream side (low temperature side)
  • the refrigerant temperature is lower than that of the refrigerant of the radiator 34.
  • the density of the refrigerant in the refrigerant flow path of the radiator 33 becomes larger than the density of the refrigerant in the refrigerant flow path of the radiator 34.
  • the heat radiator 33 in which a relatively high density refrigerant circulates has lower heat transfer performance than the heat radiator 34 in which a relatively low density refrigerant circulates.
  • the heat transfer performance can be improved by reducing the capacity of the refrigerant flow path and increasing the flow rate of the refrigerant.
  • coolant amount of a refrigerating-cycle apparatus can be reduced by making the capacity
  • the capacity of the refrigerant flow path of the radiator 33 is made smaller than that of the radiator 34, thereby The same effect can be obtained.
  • Embodiment 3 A refrigeration cycle apparatus according to Embodiment 3 of the present invention will be described.
  • the refrigeration cycle apparatus according to the present embodiment has the same refrigerant circuit configuration as in the first and second embodiments or the fourth and fifth embodiments described later, and has a low global warming potential (GWP) as the refrigerant.
  • GWP global warming potential
  • a high-pressure refrigerant is used.
  • the mixed refrigerant for example, R32, R1234yf, or the like can be used as the refrigerant mixed with the low GWP high-pressure refrigerant.
  • the mixing ratio of the low GWP high-pressure refrigerant in the mixed refrigerant is, for example, 50 wt% or more.
  • R1234yf which has a low GWP and a low pressure, has extremely close thermal properties as a refrigerant to R134a, which is an HFC refrigerant. For this reason, in an automotive air conditioner (car air conditioner) that currently uses the R134a refrigerant alone, performance problems do not become apparent even if the refrigerant is replaced with R1234yf. However, in home and commercial air conditioning equipment or hot water supply equipment using HFC mixed refrigerants R410A and R407C whose boiling point is lower than that of R134a, the operating pressure of R1234yf is low. The amount of circulation needs to be increased.
  • the radiator is divided by two refrigerant circuits as in the first or second embodiment, the pressure on the high-pressure side can be easily lowered as compared with the case of operating with one refrigerant circuit. Further, since the increase in the discharge temperature is suppressed even when the discharge temperature is excessively increased, the compressor can be operated with high efficiency.
  • FIG. 5 is a refrigerant circuit diagram showing a schematic configuration of the refrigeration cycle apparatus according to the present embodiment.
  • the refrigeration cycle apparatus of the present embodiment has one refrigerant circuit 15 that circulates the refrigerant.
  • the refrigerant a low GWP high-pressure refrigerant or a mixed refrigerant thereof may be used as in the third embodiment, or other HFC refrigerant, HFO refrigerant, CO 2 refrigerant, or the like may be used.
  • the refrigerant circuit 15 is provided with a compressor 25, a radiator 35, an expansion device 37, a radiator 36, an expansion device 45, and an evaporator 55 in this order.
  • the compressor 25, the radiator 35, the expansion device 37, the radiator 36, the expansion device 45, and the evaporator 55 are connected by a refrigerant pipe.
  • Two radiators 35 and 36 are connected to the refrigerant circuit 15 in series in the refrigerant flow.
  • Compressor 25 compresses the refrigerant to a pressure equal to or higher than the critical pressure to bring it into a supercritical state.
  • the radiator 35 is an air heat exchanger that performs heat exchange between the high-temperature and high-pressure supercritical refrigerant compressed by the compressor 25 and the indoor air (an example of an external fluid) blown by the indoor fan 38.
  • the radiator 35 radiates heat to room air while maintaining the refrigerant in a supercritical state.
  • a cross-fin type heat exchanger including a plurality of heat transfer fins stacked on each other and a plurality of heat transfer tubes penetrating each heat transfer fin is used.
  • the inside of the heat transfer tube serves as a refrigerant flow path.
  • the expansion device 37 expands the supercritical refrigerant flowing out of the radiator 35 under reduced pressure to form a gas-liquid two-phase refrigerant.
  • an expansion valve or a capillary tube is used as the expansion device 37.
  • the radiator 36 is an air heat exchanger that exchanges heat between the gas-liquid two-phase refrigerant decompressed by the expansion device 37 and the indoor air blown by the indoor fan 38.
  • the radiator 36 condenses the gas-liquid two-phase refrigerant and radiates heat to the room air.
  • a cross fin type heat exchanger is used as the radiator 36.
  • the refrigerant pressure during heat dissipation of the radiator 36 is lower than the refrigerant pressure during heat dissipation of the radiator 35. Further, the refrigerant temperature when the radiator 36 radiates heat is lower than the refrigerant temperature when the radiator 35 radiates heat.
  • the expansion device 45 decompresses and expands the high-pressure liquid refrigerant that has flowed out of the radiator 36 to form a low-pressure gas-liquid two-phase refrigerant.
  • an expansion valve or a capillary tube is used as the expansion device 45.
  • the evaporator 55 is a heat exchanger that evaporates the gas-liquid two-phase refrigerant decompressed by the expansion device 45 by heat exchange with outdoor air blown by the outdoor fan 56.
  • the capacity of the refrigerant channel in the radiator 35 is smaller than the capacity of the refrigerant channel in the radiator 36.
  • the radiators 35 and 36 are cross fin type heat exchangers, for example, the number of rows in the air flow direction of the heat transfer tubes of the radiator 35 is smaller than that of the radiator 36.
  • the size relationship in the left-right direction between the radiator 35 and the radiator 36 represents the size relationship of the capacity of the refrigerant flow path (however, it represents the ratio of the capacity of the refrigerant flow path). is not).
  • the heat transfer area between the refrigerant and water in the radiator 35 is smaller than the heat transfer area between the refrigerant and water in the radiator 36.
  • the refrigerant flow path in the radiator 35 is narrower than the refrigerant flow path in the radiator 31.
  • the tube diameter of the heat transfer tube in the radiator 35 is smaller than the tube diameter of the heat transfer tube in the radiator 36.
  • the radiators 35 and 36 are arranged in series with the flow of the indoor air blown by the indoor fan 38 (in FIG. 5, the flow direction of the indoor air is indicated by white thick arrows).
  • the radiator 36 is disposed upstream of the radiator 35 in the flow of room air. Since the refrigerant temperature of the radiator 35 is higher than the refrigerant temperature of the radiator 36, the heat exchange efficiency can be increased by arranging as described above.
  • FIG. 6 is a ph diagram showing the state of the refrigerant in the refrigerant circuit 15 of the refrigeration cycle apparatus.
  • the low-temperature and low-pressure gas refrigerant (point 1e in FIG. 6) is sucked into the compressor 25 and compressed to become a high-temperature and high-pressure supercritical refrigerant (point 2e).
  • the supercritical refrigerant radiates heat to the room air in the radiator 35 and is cooled to become a relatively low temperature supercritical refrigerant (point 3e).
  • This supercritical refrigerant is decompressed and expanded by the expansion device 37, and becomes a high-pressure two-phase refrigerant (point 4e).
  • This two-phase refrigerant radiates heat to the room air in the radiator 36, and is cooled and condensed. Thereby, it becomes a high-pressure liquid refrigerant (point 5e).
  • This liquid refrigerant is decompressed by the expansion device 45 and expands to become a low-pressure two-phase refrigerant (point 6e).
  • This two-phase refrigerant is heated and evaporated by heat exchange with outdoor air in the evaporator 55, and becomes a low-temperature and low-pressure gas refrigerant (point 1e).
  • the refrigerant states of the radiator 35 and the radiator 36 are compared.
  • the refrigerant is maintained in a supercritical state (points 2e to 3e).
  • the two-phase refrigerant condenses into a liquid refrigerant (points 4e to 5e). Since the refrigerant in the radiator 36 contains gas, the density is relatively low, whereas the refrigerant in the radiator 35 is in a supercritical state, so the density is relatively high. For this reason, the density of the refrigerant in the refrigerant flow path of the radiator 35 is larger than the density of the refrigerant in the refrigerant flow path of the radiator 36.
  • the heat radiator 35 in which a relatively high density refrigerant circulates has lower heat transfer performance than the heat radiator 36 in which a relatively low density refrigerant circulates.
  • the heat transfer performance can be improved by reducing the capacity of the refrigerant flow path and increasing the flow rate of the refrigerant.
  • coolant amount of a refrigerating-cycle apparatus can be reduced by making the capacity
  • the radiator 35 in which the supercritical refrigerant flows is smaller in pressure loss than the radiator 36 in which the condensed liquid refrigerant flows. For this reason, the diameter of the heat transfer tube of the radiator 35 can be further reduced. By reducing the diameter of the heat transfer tube of the radiator 35, the flow rate of the refrigerant in the radiator 35 can be increased, and the heat transfer performance of the radiator 35 can be improved. Further, by reducing the diameter of the heat transfer tube of the radiator 35, the capacity of the refrigerant flow path in the radiator 35 can be reduced, and the amount of refrigerant in the refrigeration cycle apparatus can be reduced.
  • one refrigerant circuit can have a plurality of pressures during heat radiation.
  • the pressure on the high pressure side and the pressure on the low pressure side in the refrigeration cycle can be made closer to each other, operation with higher efficiency is possible as compared with a refrigerant circuit having only one pressure during heat radiation. This effect increases as the number of radiators divided increases.
  • the refrigeration cycle apparatus includes the refrigerant circuit 15 that circulates the refrigerant.
  • the refrigerant circuit 15 condenses the refrigerant and dissipates heat to the external fluid (in this example, indoor air).
  • a radiator 35 that radiates heat to the external fluid while maintaining the refrigerant in a supercritical state.
  • the radiator 36 is upstream of the radiator 35 with respect to the flow of the external fluid.
  • the capacity of the refrigerant channel of the radiator 35 is smaller than the capacity of the refrigerant channel of the radiator 36.
  • the refrigeration cycle apparatus includes at least one refrigerant circuit (one refrigerant circuit 15 in this example) that circulates the refrigerant, and the refrigerant circuit includes at least one compressor (in this example).
  • the compressor 25 a plurality of radiators (in this example, radiators 35 and 36) that radiate heat to an external fluid (in this example, room air), and at least one expansion device (in this example, the expansion device 37).
  • the plurality of radiators are arranged in series with respect to the flow of the external fluid, and the plurality of radiators
  • the pressures at the time of heat dissipation of the radiators are different from each other, and the capacity of the refrigerant flow paths of the plurality of radiators are different from each other.
  • the density of the refrigerant in the refrigerant flow path of the radiator 35 is larger than the density of the refrigerant in the refrigerant flow path of the radiator 36.
  • the capacity of the refrigerant flow path is smaller than the capacity of the refrigerant flow path of the radiator 36. That is, in the refrigeration cycle apparatus according to the present embodiment, as in the first and second embodiments, the capacity of the radiator increases as the refrigerant density in the refrigerant flow path increases.
  • radiators 35 and 36 of this Embodiment are arrange
  • the radiators 35 and 36 are ventilated by the common indoor fan. It may be arranged in parallel to the flow of indoor air to be arranged, or may be arranged on the flow of indoor air substantially independent from each other blown by separate indoor fans.
  • FIG. 7 is a refrigerant circuit diagram showing a schematic configuration of the refrigeration cycle apparatus according to the present embodiment.
  • the refrigeration cycle apparatus according to the present embodiment is different from the fourth embodiment in that two radiators 35 and 36 are connected in parallel in the refrigerant circuit 16.
  • an expansion device 61 is provided on the inlet side of the radiator 36
  • an expansion device 62 is provided on the outlet side of the radiator 35.
  • the refrigerant compressed by the compressor 25 flows into the radiator 35 as it is.
  • the refrigerant compressed by the compressor 25 flows into the radiator 36 after being decompressed by the expansion device 61.
  • the refrigerant pressure when the radiator 36 radiates heat is lower than the refrigerant pressure when the radiator 35 radiates heat. Further, the refrigerant temperature when the radiator 36 radiates heat is lower than the refrigerant temperature when the radiator 35 radiates heat.
  • the capacity of the refrigerant flow path in the radiator 35 is smaller than the capacity of the refrigerant flow path in the heat radiator 36.
  • the radiators 35 and 36 are arranged in series with the flow of room air.
  • the radiator 36 is disposed upstream of the radiator 35 in the flow of room air. Since the refrigerant temperature of the radiator 35 is higher than the refrigerant temperature of the radiator 36, the heat exchange efficiency can be increased by arranging as described above.
  • FIG. 8 is a ph diagram showing the state of the refrigerant in the refrigerant circuit 16 of the refrigeration cycle apparatus.
  • the low-temperature and low-pressure gas refrigerant (point 1f in FIG. 8) is sucked into the compressor 25 and compressed to become a high-temperature and high-pressure supercritical refrigerant (point 2f).
  • a part of the supercritical refrigerant flows into the radiator 35 and the other part flows into the expansion device 61.
  • the supercritical refrigerant that has flowed into the radiator 35 radiates heat to the room air, and is cooled to become a relatively low temperature supercritical refrigerant (point 3f).
  • the supercritical refrigerant is decompressed by the expansion device 62 and expands to become a high-pressure liquid refrigerant (point 4f).
  • the supercritical refrigerant that has flowed into the expansion device 61 is decompressed and expanded to become a high-pressure gas refrigerant (point 5f).
  • the gas refrigerant radiates heat to the room air in the radiator 36, and cools and condenses itself. Thereby, it becomes a high-pressure liquid refrigerant (point 4f).
  • This liquid refrigerant merges with the liquid refrigerant decompressed by the expansion device 62, and further decompressed and expanded by the expansion device 45. Thereby, it becomes a low-pressure two-phase refrigerant (point 6f).
  • This two-phase refrigerant is heated and evaporated by heat exchange with outdoor air in the evaporator 55, and becomes a low-temperature and low-pressure gas refrigerant (point 1f).
  • the refrigerant states of the radiator 35 and the radiator 36 are compared.
  • the refrigerant is maintained in a supercritical state (points 2f to 3f).
  • the gas refrigerant is condensed into a liquid refrigerant (points 5f to 4f). Since the refrigerant in the radiator 36 contains gas, the density is relatively low, whereas the refrigerant in the radiator 35 is in a supercritical state, so the density is relatively high. For this reason, the density of the refrigerant in the refrigerant flow path of the radiator 35 is larger than the density of the refrigerant in the refrigerant flow path of the radiator 36.
  • the heat radiator 35 in which a relatively high density refrigerant circulates has lower heat transfer performance than the heat radiator 36 in which a relatively low density refrigerant circulates.
  • the heat transfer performance can be improved by reducing the capacity of the refrigerant flow path and increasing the flow rate of the refrigerant.
  • coolant amount of a refrigerating-cycle apparatus can be reduced by making the capacity
  • the radiator 35 in which the supercritical refrigerant flows is smaller in pressure loss than the radiator 36 in which the condensed liquid refrigerant flows. For this reason, the diameter of the heat transfer tube of the radiator 35 can be further reduced. By reducing the diameter of the heat transfer tube of the radiator 35, the flow rate of the refrigerant in the radiator 35 can be increased, and the heat transfer performance of the radiator 35 can be improved. Further, by reducing the diameter of the heat transfer tube of the radiator 35, the capacity of the refrigerant flow path in the radiator 35 can be reduced, and the amount of refrigerant in the refrigeration cycle apparatus can be reduced.
  • one refrigerant circuit can have a plurality of pressures during heat radiation.
  • the pressure on the high pressure side and the pressure on the low pressure side in the refrigeration cycle can be made closer to each other, operation with higher efficiency is possible as compared with a refrigerant circuit having only one pressure during heat radiation. This effect increases as the number of radiators divided increases.
  • the refrigeration cycle apparatus includes the refrigerant circuit 16 that circulates the refrigerant.
  • the refrigerant circuit 16 condenses the refrigerant and dissipates heat to the external fluid (in this example, indoor air).
  • a radiator 35 that radiates heat to the external fluid while maintaining the refrigerant in a supercritical state.
  • the radiator 36 is upstream of the radiator 35 with respect to the flow of the external fluid.
  • the capacity of the refrigerant channel of the radiator 35 is smaller than the capacity of the refrigerant channel of the radiator 36.
  • the refrigeration cycle apparatus includes at least one refrigerant circuit (one refrigerant circuit 16 in this example) that circulates the refrigerant, and the refrigerant circuit includes at least one compressor (in this example). , Compressor 25), a plurality of radiators (in this example, radiators 35 and 36) that radiate heat to an external fluid (in this example, room air), and at least one expansion device (in this example, expansion device 45). , 61, 62) and at least one evaporator (evaporator 55 in this example), and the plurality of radiators are arranged in series with respect to the flow of the external fluid. The heat radiation pressures of the radiators are different from each other, and the refrigerant flow paths of the plurality of radiators are different from each other.
  • the density of the refrigerant in the refrigerant flow path of the radiator 35 is larger than the density of the refrigerant in the refrigerant flow path of the radiator 36.
  • the capacity of the refrigerant flow path is smaller than the capacity of the refrigerant flow path of the radiator 36. That is, in the refrigeration cycle apparatus according to the present embodiment, as in the first, second, and fourth embodiments, the capacity of the radiator increases as the refrigerant density in the refrigerant flow path increases.
  • radiators 35 and 36 of this Embodiment are arrange
  • the radiators 35 and 36 are ventilated by the common indoor fan. It may be arranged in parallel to the flow of indoor air to be arranged, or may be arranged on the flow of indoor air substantially independent from each other blown by separate indoor fans.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the refrigeration cycle apparatus provided with two radiators is taken as an example.
  • the present invention can also be applied to a refrigeration cycle apparatus provided with three or more radiators.
  • a refrigeration cycle apparatus provided with three radiators if the density of the refrigerant in the refrigerant flow path is different for each of the three radiators, the larger the refrigerant density, the smaller the refrigerant flow capacity. What should I do.
  • Three or more radiators may be provided in parallel or in series with one refrigerant circuit, or may be provided in separate refrigerant circuits.
  • an air conditioner dedicated to heating and a heat source unit dedicated to hot water generation operation are given as examples.
  • a flow path switching device such as a four-way valve is provided in the refrigerant circuit, and heating operation and cooling operation (hot water generation) The operation and the cold water generation operation) may be switched.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 冷凍サイクル装置は、同一組成の冷媒を循環させる冷媒回路11、12を備え、冷媒回路11には、冷媒を凝縮させて外部流体に放熱する放熱器31が設けられており、冷媒回路12には、冷媒を超臨界状態に維持したまま外部流体に放熱する放熱器32が設けられており、放熱器31は、外部流体の流れに対して放熱器32よりも上流側に配置されており、放熱器32の冷媒流路の容量は、放熱器31の冷媒流路の容量よりも小さいものである。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル装置に関するものである。
 特許文献1には、上流側冷凍サイクルと下流側冷凍サイクルとを備えた熱源機が記載されている。この熱源機において、上流側冷凍サイクルの水熱交換器は熱負荷媒体の流路の上流側に接続されており、下流側冷凍サイクルの水熱交換器はその下流側に接続されている。
特開2008-267722号公報
 特許文献1の熱源機では、2つの放熱器(水熱交換器)のそれぞれが別々の冷凍サイクルに設けられているため、条件によっては高効率の運転が可能となる。しかしながら、特許文献1には、例えば、臨界温度が空気温度に近い冷媒を用いた場合に凝縮運転と超臨界運転とが混在し得ることや、放熱器の容量についての記載はない。したがって、圧縮機効率が悪化してしまう場合があるという問題点や、冷媒量の削減が困難となるという問題点があった。
 本発明は、上述のような問題点を解決するためになされたものであり、運転効率を向上させることができるとともに、冷媒量を削減することができる冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、同一組成の冷媒を循環させる第1の冷媒回路及び第2の冷媒回路を備え、前記第1の冷媒回路には、冷媒を凝縮させて外部流体に放熱する第1の放熱器が設けられており、前記第2の冷媒回路には、冷媒を超臨界状態に維持したまま外部流体に放熱する第2の放熱器が設けられており、前記第1の放熱器は、外部流体の流れに対して前記第2の放熱器よりも上流側に配置されており、前記第2の放熱器の冷媒流路の容量は、前記第1の放熱器の冷媒流路の容量よりも小さいものである。
 本発明によれば、複数の放熱器の冷媒流路の容量を放熱時の圧力に応じて適切に設定することにより、冷凍サイクル装置の運転効率を向上させることができるとともに、冷媒量を削減することができる。
本発明の実施の形態1に係る冷凍サイクル装置の概略構成を示す冷媒回路図である。 本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路11、12における冷媒の状態を示すp-h線図である。 本発明の実施の形態2に係る冷凍サイクル装置の概略構成を示す冷媒回路図である。 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路13、14における冷媒の状態を示すp-h線図である。 本発明の実施の形態4に係る冷凍サイクル装置の概略構成を示す冷媒回路図である。 本発明の実施の形態4に係る冷凍サイクル装置の冷媒回路15における冷媒の状態を示すp-h線図である。 本発明の実施の形態5に係る冷凍サイクル装置の概略構成を示す冷媒回路図である。 本発明の実施の形態5に係る冷凍サイクル装置の冷媒回路16における冷媒の状態を示すp-h線図である。
実施の形態1.
 本発明の実施の形態1に係る冷凍サイクル装置について説明する。本実施の形態に係る冷凍サイクル装置は、例えば、冷凍空調装置や給湯装置において水又はブラインを加熱して温水を生成する熱源機として用いられるものである。図1は、本実施の形態に係る冷凍サイクル装置の概略構成を示す冷媒回路図である。
 図1に示すように、本実施の形態の冷凍サイクル装置は、冷媒回路11と、冷媒回路11とは別に設けられた冷媒回路12と、を有している。冷媒回路11、12は、互いに独立して冷媒を循環させるものである。本例では、冷媒回路11と冷媒回路12とには同一組成の冷媒が用いられているが、互いに異なる冷媒が用いられていてもよい。冷媒としては、HFC系冷媒、HFO系冷媒、CO冷媒等を用いることができる。
 冷媒回路11には、圧縮機21、放熱器31、膨張装置41及び蒸発器51がこの順に設けられている。圧縮機21、放熱器31、膨張装置41及び蒸発器51は、冷媒配管によって接続されている。
 冷媒回路12には、圧縮機22、放熱器32、膨張装置42及び蒸発器52がこの順に設けられている。圧縮機22、放熱器32、膨張装置42及び蒸発器52は、冷媒配管によって接続されている。
 圧縮機21、22は、低温低圧の冷媒を吸入して圧縮し、高温高圧の冷媒にして吐出する流体機械である。本例では、冷媒回路12の圧縮機22は、通常運転時において冷媒を臨界圧力以上の圧力に圧縮して超臨界状態にするものであり(以下、超臨界状態の冷媒を「超臨界冷媒」という場合がある)、冷媒回路11の圧縮機21は、通常運転時において冷媒を臨界圧力以下の圧力に圧縮して高圧のガス状態にするものである。圧縮機21で圧縮された冷媒の圧力は、圧縮機22で圧縮された冷媒の圧力よりも低くなっている。
 放熱器31、32は、圧縮機21で圧縮された高温高圧の冷媒と水(外部流体の一例)との熱交換を行う水熱交換器である。放熱器31、32としては、例えば、複数枚の伝熱プレートが積層されたプレート式熱交換器が用いられる。本例では、通常運転時において、冷媒回路12の放熱器32は、冷媒を超臨界状態に維持したまま水に放熱するものであり、冷媒回路11の放熱器31は、ガス冷媒を凝縮させて水に放熱するものである。後述するように、放熱器32の放熱時の冷媒圧力は、放熱器31の放熱時の冷媒圧力よりも高くなっている。また、放熱器32の放熱時の冷媒温度は、放熱器31の放熱時の冷媒温度よりも高くなっている。
 本実施の形態において、放熱器32における冷媒流路の容量(容積)は、放熱器31における冷媒流路の容量よりも小さくなっている。放熱器31、32がプレート式熱交換器である場合、例えば、放熱器32の伝熱プレートの枚数が放熱器31の伝熱プレートの枚数よりも少なくなっていてもよいし、放熱器32の各伝熱プレートの高さが放熱器31の各伝熱プレートの高さよりも低くなっていてもよい。図1において、放熱器31と放熱器32との間における上下方向の寸法の大小関係は、冷媒流路の容量の大小関係を表している(ただし、冷媒流路の容量の比までを表すものではない)。また、放熱器32における冷媒と水との伝熱面積は、放熱器31における冷媒と水との伝熱面積よりも小さくなっている。さらに、放熱器32における冷媒の流路は、放熱器31における冷媒の流路よりも狭くなっている。例えば、放熱器31、32が伝熱管を用いた熱交換器である場合、放熱器32における伝熱管の管径は、放熱器31における伝熱管の管径よりも小さくなっている。
 また、放熱器31、32は、水配管60を介して直列に接続されている。すなわち、放熱器31、32は、水の流れに対して直列に配置されている(図1では、水の流れ方向を実線矢印で示している)。放熱器31は、水の流れにおいて放熱器32よりも上流側に配置されている。放熱器32の冷媒温度は放熱器31の冷媒温度よりも高いため、上記のように配置することで、放熱器31、32のそれぞれにおける冷媒と水との間の温度勾配を均一化することができ、熱交換効率を高めることができる。
 膨張装置41は、高圧の液冷媒を減圧膨張させて低圧の気液二相冷媒とするものであり、膨張装置42は、高圧の超臨界冷媒を減圧膨張させて低圧の気液二相冷媒とするものである。膨張装置41、42としては、膨張弁又はキャピラリチューブ等が用いられる。
 蒸発器51、52は、膨張装置41、42でそれぞれ減圧された気液二相冷媒を例えば室外空気との熱交換により蒸発させる熱交換器である。
 ところで、R410A(臨界温度:72.5℃)やR134a(臨界温度:101℃)等の従来冷媒と比較すると、R1123の臨界温度(59.2℃)は低くなっている。このため、R1123を含む冷媒(例えば、R1123の単一冷媒、又はR1123を含む混合冷媒)が用いられる場合、冷媒の臨界温度と外部流体(本例では、水)の温度との差が小さくなる。したがって、R1123を含む同一組成の冷媒を冷媒回路11、12の双方に用いることにより、冷媒回路11では凝縮運転を行い、冷媒回路12では超臨界運転を行うことが容易になる。ここで、混合冷媒を用いる場合、R1123と混合される冷媒には、例えば、R32、R1234yf等を用いることができる。混合冷媒中のR1123の混合比は、例えば、50wt%以上である。
 また、冷媒回路11、12で同一組成の冷媒を使用すると、動作物性が近いため、冷媒回路11、12の構成部品の仕様を共通化できる。したがって、冷媒回路11、12の低コスト化を実現することができる。さらに、冷媒回路11、12を製造する製造設備においても、冷媒の貯槽や冷媒封入装置の仕様の共通化、又は共用化が可能になる。したがって、冷媒回路11、12で互いに異なる冷媒を使用する場合に比べ、設備費用を抑えることができる。
 図2は、冷凍サイクル装置の冷媒回路11、12における冷媒の状態を示すp-h線図である。図2を用いて、まず冷媒回路11の冷媒の状態について説明する。低温低圧のガス冷媒(図2の点1a)は、圧縮機21に吸入されて圧縮され(圧縮行程)、高温高圧のガス冷媒(点2a)となる。高温高圧のガス冷媒は、放熱器31において水に放熱し、自身は冷却されて凝縮する(凝縮行程)。これにより、高圧の液冷媒(点3a)となる。凝縮行程では、100kg/m程度の密度を有するガス冷媒が、二相状態を経て、1000kg/m程度の密度を有する液冷媒に相変化する。高圧の液冷媒は、膨張装置41で減圧されて膨張し(膨張行程)、低圧の二相冷媒(点4a)となる。低圧の二相冷媒は、蒸発器51において空気との熱交換により加熱されて蒸発し(蒸発行程)、低温低圧のガス冷媒(点1a)となる。
 次に、冷媒回路12の冷媒状態について説明する。低温低圧のガス冷媒(点1b)は、圧縮機22に吸入されて圧縮され(圧縮行程)、高温高圧の超臨界冷媒(点2b)となる。高温高圧の超臨界冷媒は、放熱器32において水に放熱し(放熱行程)、自身は冷却されて相対的に低温の超臨界冷媒(点3b)となる。放熱行程では、超臨界冷媒の温度が60℃程度から40℃程度に低下し、超臨界冷媒の密度が700kg/m程度から1000kg/m程度に増加する。これに伴い、放熱行程では超臨界冷媒の圧力が低下する。低温の超臨界冷媒は、膨張装置42で減圧されて膨張し(膨張行程)、低圧の二相冷媒(点4b)となる。低圧の二相冷媒は、蒸発器52において空気との熱交換により加熱されて蒸発し(蒸発行程)、低温低圧のガス冷媒(点1b)となる。
 ここで、冷媒回路11及び冷媒回路12の冷媒の状態を比較する。冷媒回路12における圧縮行程後の冷媒(点2b)の圧力及び温度は、冷媒回路11における圧縮行程後の冷媒(点2a)の圧力及び温度と比較していずれも高くなっている。冷媒回路12の放熱器32内における冷媒(点2b~点3b)の圧力(放熱時の圧力)及び温度は、冷媒回路11の放熱器31内における冷媒(点2a~点3a)の圧力及び温度と比較していずれも高くなっている。
 また、冷媒回路11の放熱器31内では、冷媒の密度が100kg/m程度から1000kg/m程度に変化するのに対し、冷媒回路12の放熱器32内では、冷媒の密度が700kg/m程度から1000kg/m程度に変化する。凝縮行程後の液冷媒の密度と放熱行程後の超臨界冷媒の密度とは同程度であるが、凝縮行程前のガス冷媒の密度と放熱行程前の超臨界冷媒の密度とは大きく異なる。このため、冷媒回路12の放熱器32の冷媒流路内の冷媒の密度は、冷媒回路11の放熱器31の冷媒流路内の冷媒の密度よりも大きくなる。ここで、放熱器の冷媒流路内の冷媒の密度とは、当該放熱器の冷媒流路内の全ての冷媒の平均密度である。
 相対的に密度の大きい冷媒が流通する放熱器32は、相対的に密度の小さい冷媒が流通する放熱器31よりも伝熱性能が低くなる。伝熱性能の低い放熱器32では、冷媒流路の容量を小さくして冷媒の流速を高めることにより、伝熱性能を向上させることができる。また、放熱器32の冷媒流路の容量を小さくすることにより、冷凍サイクル装置の冷媒量を削減することができる。
 一方で、超臨界状態の冷媒が流通する放熱器32は、凝縮した液冷媒が流通する放熱器31よりも圧力損失が小さくなる。このため、放熱器32内の冷媒流路は、より細径化することが可能となる。放熱器32内の冷媒流路を細径化することにより、放熱器32内の冷媒の流速を高めることができ、放熱器32の伝熱性能を向上させることができる。また、放熱器32内の冷媒流路を細径化することにより、放熱器32内の冷媒流路の容量を小さくでき、冷凍サイクル装置の冷媒量を削減することができる。
 上述のように、本実施の形態では、水配管60内の水に放熱する放熱器が、冷媒を凝縮させて水に放熱する放熱器31と、冷媒を超臨界状態に維持したまま水に放熱する放熱器32と、に分けられている。このため、放熱器32の冷媒流路の容量を削減することにより、冷媒量を削減できる。また、1つの冷媒回路によって超臨界状態で運転する場合に比べ、水の流れにおいて上流側に配置される冷媒回路11の高圧側圧力を低減できるため、高効率な運転が可能である。
 以上説明したように、本実施の形態に係る冷凍サイクル装置は、同一組成の冷媒を循環させる冷媒回路11、12を備え、冷媒回路11には、冷媒を凝縮させて外部流体(本例では、水)に放熱する放熱器31が設けられており、冷媒回路12には、冷媒を超臨界状態に維持したまま外部流体に放熱する放熱器32が設けられており、放熱器31は、外部流体の流れに対して放熱器32よりも上流側に配置されており、放熱器32の冷媒流路の容量は、放熱器31の冷媒流路の容量よりも小さいものである。
 また、本実施の形態に係る冷凍サイクル装置は、冷媒を循環させる少なくとも1つの冷媒回路(本例では、2つの冷媒回路11、12)を備え、冷媒回路には、少なくとも1つの圧縮機(本例では、圧縮機21、22)と、外部流体(本例では、水)に放熱する複数の放熱器(本例では、放熱器31、32)と、少なくとも1つの膨張装置(本例では、膨張装置41、42)と、少なくとも1つの蒸発器(本例では、蒸発器51、52)と、が設けられており、複数の放熱器は、外部流体の流れに対して直列に配置されており、複数の放熱器の放熱時の圧力は互いに異なっており、複数の放熱器の冷媒流路の容量は互いに異なっているものである。
 また、本実施の形態に係る冷凍サイクル装置は、放熱器32の冷媒流路内の冷媒の密度は、放熱器31の冷媒流路内の冷媒の密度よりも大きいものであり、放熱器32の冷媒流路の容量は、放熱器31の冷媒流路の容量よりも小さいものである。すなわち、本実施の形態に係る冷凍サイクル装置では、冷媒流路内の冷媒の密度が大きい放熱器ほど容量が小さくなっている。
 また、本実施の形態に係る冷凍サイクル装置は、放熱器31は、冷媒を凝縮させて外部流体に放熱するものであり、放熱器32は、冷媒を超臨界状態に維持したまま外部流体に放熱するものである。
実施の形態2.
 本発明の実施の形態2に係る冷凍サイクル装置について説明する。図3は、本実施の形態に係る冷凍サイクル装置の概略構成を示す冷媒回路図である。図3に示すように、本実施の形態の冷凍サイクル装置は、冷媒回路13と、冷媒回路13とは別に設けられた冷媒回路14と、を有している。冷媒回路13には、圧縮機23、放熱器33、膨張装置43及び蒸発器53がこの順に設けられている。冷媒回路14には、圧縮機24、放熱器34、膨張装置44及び蒸発器54がこの順に設けられている。
 本例の圧縮機23、24はいずれも、冷媒を臨界圧力以下の圧力に圧縮して高圧のガス状態にするものである。圧縮機23で圧縮された冷媒の圧力は、圧縮機24で圧縮された冷媒の圧力よりも低くなっている。
 放熱器33、34はいずれも、ガス冷媒を凝縮させて水に放熱するものである。放熱器34の放熱時の冷媒圧力(凝縮圧力)は、放熱器33の放熱時の冷媒圧力(凝縮圧力)よりも高くなっている。また、放熱器34の放熱時の冷媒温度(凝縮温度)は、放熱器33の放熱時の冷媒温度(凝縮温度)よりも高くなっている。
 本実施の形態において、放熱器33における冷媒流路の容量は、放熱器34における冷媒流路の容量よりも小さくなっている。
 また、放熱器33、34は、水の流れに対して直列に配置されている。放熱器33は、水の流れにおいて放熱器34よりも上流側に配置されている。放熱器34の冷媒温度は放熱器33の冷媒温度よりも高いため、上記のように配置することで熱交換効率を高めることができる。
 膨張装置43、44及び蒸発器53、54については実施の形態1と同様であるので説明を省略する。
 図4は、冷凍サイクル装置の冷媒回路13、14における冷媒の状態を示すp-h線図である。図4を用いて、まず冷媒回路13の冷媒の状態について説明する。低温低圧のガス冷媒(図4の点1c)は、圧縮機23に吸入されて圧縮され(圧縮行程)、高温高圧のガス冷媒(点2c)となる。高温高圧のガス冷媒は、放熱器33において水に放熱し、自身は冷却されて凝縮する(凝縮行程)。これにより、高圧の液冷媒(点3c)となる。高圧の液冷媒は、膨張装置43で減圧されて膨張し(膨張行程)、低圧の二相冷媒(点4c)となる。低圧の二相冷媒は、蒸発器53において空気との熱交換により加熱されて蒸発し(蒸発行程)、低温低圧のガス冷媒(点1c)となる。
 次に、冷媒回路14の冷媒状態について説明する。低温低圧のガス冷媒(点1d)は、圧縮機24に吸入されて圧縮され(圧縮行程)、高温高圧のガス冷媒(点2d)となる。高温高圧のガス冷媒は、放熱器34において水に放熱し、自身は冷却されて凝縮する(凝縮行程)。これにより、高圧の液冷媒(点3d)となる。高圧の液冷媒は、膨張装置44で減圧されて膨張し(膨張行程)、低圧の二相冷媒(点4d)となる。低圧の二相冷媒は、蒸発器54において空気との熱交換により加熱されて蒸発し(蒸発行程)、低温低圧のガス冷媒(点1d)となる。
 冷媒回路14における圧縮行程後の冷媒(点2d)の圧力及び温度は、冷媒回路13における圧縮行程後の冷媒(点2c)の圧力及び温度と比較していずれも高くなっている。冷媒回路14の放熱器34内における冷媒(点2d~点3d)の圧力及び温度は、冷媒回路13の放熱器33内における冷媒(点2c~点3c)の圧力及び温度と比較していずれも高くなっている。
 また、放熱器33ではより上流側(低温側)の水との熱交換が行われるため、冷媒が液化しやすい。これにより、放熱器33の冷媒流路内の冷媒は、放熱器34の冷媒流路内の冷媒よりも液の割合が大きくなる。このため、冷媒回路13の放熱器33の冷媒流路内の冷媒の密度は、冷媒回路14の放熱器34の冷媒流路内の冷媒の密度よりも大きくなる。
 相対的に密度の大きい冷媒が流通する放熱器33は、相対的に密度の小さい冷媒が流通する放熱器34よりも伝熱性能が低くなる。伝熱性能の低い放熱器33では、冷媒流路の容量を小さくして冷媒の流速を高めることにより、伝熱性能を向上させることができる。また、放熱器33の冷媒流路の容量を小さくすることにより、冷凍サイクル装置の冷媒量を削減することができる。
 以上説明したように、本実施の形態に係る冷凍サイクル装置は、冷媒を循環させる少なくとも1つの冷媒回路(本例では、2つの冷媒回路13、14)を備え、冷媒回路には、少なくとも1つの圧縮機(本例では、圧縮機23、24)と、外部流体(本例では、水)に放熱する複数の放熱器(本例では、放熱器33、34)と、少なくとも1つの膨張装置(本例では、膨張装置43、44)と、少なくとも1つの蒸発器(本例では、蒸発器53、54)と、が設けられており、複数の放熱器は、外部流体の流れに対して直列に配置されており、複数の放熱器の放熱時の圧力は互いに異なっており、複数の放熱器の冷媒流路の容量は互いに異なっているものである。
 また、本実施の形態に係る冷凍サイクル装置は、放熱器33の冷媒流路内の冷媒の密度は、放熱器34の冷媒流路内の冷媒の密度よりも大きいものであり、放熱器33の冷媒流路の容量は、放熱器34の冷媒流路の容量よりも小さいものである。すなわち、本実施の形態に係る冷凍サイクル装置では、実施の形態1と同様に、冷媒流路内の冷媒の密度が大きい放熱器ほど容量が小さくなっている。
 また、本実施の形態に係る冷凍サイクル装置は、放熱器33、34は、いずれも冷媒を凝縮させて外部流体に放熱するものであり、放熱器33の放熱時の圧力は、放熱器34の放熱時の圧力よりも低いものである。
 本実施の形態では、放熱器33、34がいずれもガス冷媒を凝縮させて水に放熱するものであるが、放熱器33、34がいずれも冷媒を超臨界状態に維持したまま水に放熱するものであってもよい。この場合、放熱器33ではより上流側(低温側)の水との熱交換が行われるため、冷媒温度が放熱器34の冷媒よりも低くなる。これにより、放熱器33の冷媒流路内の冷媒の密度は、放熱器34の冷媒流路内の冷媒の密度よりも大きくなる。
 相対的に密度の大きい冷媒が流通する放熱器33は、相対的に密度の小さい冷媒が流通する放熱器34よりも伝熱性能が低くなる。伝熱性能の低い放熱器33では、冷媒流路の容量を小さくして冷媒の流速を高めることにより、伝熱性能を向上させることができる。また、放熱器33の冷媒流路の容量を小さくすることにより、冷凍サイクル装置の冷媒量を削減することができる。すなわち、放熱器33、34がいずれも冷媒を超臨界状態に維持したまま水に放熱するものであっても、放熱器33の冷媒流路の容量を放熱器34よりも小さくすることにより、上記と同様の効果が得られる。
実施の形態3.
 本発明の実施の形態3に係る冷凍サイクル装置について説明する。本実施の形態に係る冷凍サイクル装置は、実施の形態1、2又は後述する実施の形態4、5と同様の冷媒回路構成を有するとともに、冷媒として、地球温暖化係数(GWP)が低く、かつ高圧の冷媒が用いられる。混合冷媒を用いる場合、低GWPの高圧冷媒と混合される冷媒には、例えば、R32、R1234yf等を用いることができる。混合冷媒中の低GWPの高圧冷媒の混合比は、例えば、50wt%以上である。
 GWPが低く、かつ低圧であるR1234yfは、冷媒としての熱物性がHFC冷媒であるR134aに極めて近い。このため、現在R134a冷媒を単体で使用している自動車用空調装置(カーエアコン)では、冷媒をR1234yfに置き換えても性能面での問題は顕在化しない。しかし、R134aよりも沸点が低いHFC混合冷媒R410AやR407Cを使用している家庭用や業務用の空調機器又は給湯機器では、R1234yfの動作圧力が低いので、同等の能力を維持しようとすると、冷媒循環量を増大させる必要が生じる。冷媒循環量を増大させると、同一の回路(冷凍サイクル)では回路を流れる冷媒の流速が速くなるので、冷凍サイクルでの冷媒の圧力損失が大きくなり、冷凍サイクルの運転効率が悪化する場合がある。そこで、GWPがR1234yfと同等(0)であり、動作圧力がR1234yfよりも高い冷媒を用いることで、R410AやR407Cの代替であっても、冷凍サイクルの運転効率は悪化しない。
 本実施の形態は、実施の形態1又は2と同様に2つの冷媒回路で放熱器を分けているため、1つの冷媒回路で運転する場合に比べ、高圧側の圧力を下げやすい。また、過度に吐出温度を上げた際でも吐出温度の上昇を抑制するため、圧縮機の高効率な運転が可能となる。
実施の形態4.
 本発明の実施の形態4に係る冷凍サイクル装置について説明する。本実施の形態に係る冷凍サイクル装置は、例えば、室内空気を加熱して空調空気(温風)を生成する空調装置として用いられるものである。図5は、本実施の形態に係る冷凍サイクル装置の概略構成を示す冷媒回路図である。
 図5に示すように、本実施の形態の冷凍サイクル装置は、冷媒を循環させる1つの冷媒回路15を有している。冷媒としては、実施の形態3と同様に低GWPの高圧冷媒や、その混合冷媒を用いてもよいし、それ以外のHFC系冷媒、HFO系冷媒、CO冷媒等を用いてもよい。
 冷媒回路15には、圧縮機25、放熱器35、膨張装置37、放熱器36、膨張装置45及び蒸発器55がこの順に設けられている。圧縮機25、放熱器35、膨張装置37、放熱器36、膨張装置45及び蒸発器55は、冷媒配管によって接続されている。冷媒回路15には、2つの放熱器35、36が冷媒の流れにおいて直列に接続されている。
 圧縮機25は、冷媒を臨界圧力以上の圧力に圧縮して超臨界状態にするものである。
 放熱器35は、圧縮機25で圧縮された高温高圧の超臨界冷媒と、室内ファン38により送風される室内空気(外部流体の一例)と、の熱交換を行う空気熱交換器である。放熱器35は、冷媒を超臨界状態に維持したまま室内空気に放熱するものである。放熱器35としては、例えば、互いに積層された複数の伝熱フィンと、各伝熱フィンを貫通する複数の伝熱管と、を備えたクロスフィン型の熱交換器が用いられる。クロスフィン型の熱交換器では、伝熱管の内部が冷媒流路となる。
 膨張装置37は、放熱器35から流出した超臨界冷媒を減圧膨張させて気液二相冷媒とするものである。膨張装置37としては、膨張弁又はキャピラリチューブ等が用いられる。
 放熱器36は、膨張装置37で減圧された気液二相冷媒と、室内ファン38により送風される室内空気と、の熱交換を行う空気熱交換器である。放熱器36は、気液二相冷媒を凝縮させて室内空気に放熱するものである。放熱器36としては、例えば、クロスフィン型の熱交換器が用いられる。放熱器36の放熱時の冷媒圧力は、放熱器35の放熱時の冷媒圧力よりも低くなっている。また、放熱器36の放熱時の冷媒温度は、放熱器35の放熱時の冷媒温度よりも低くなっている。
 膨張装置45は、放熱器36から流出した高圧の液冷媒を減圧膨張させて低圧の気液二相冷媒とするものである。膨張装置45としては、膨張弁又はキャピラリチューブ等が用いられる。
 蒸発器55は、膨張装置45で減圧された気液二相冷媒を、室外ファン56により送風される室外空気との熱交換により蒸発させる熱交換器である。
 本実施の形態において、放熱器35における冷媒流路の容量は、放熱器36における冷媒流路の容量よりも小さくなっている。放熱器35、36がクロスフィン型熱交換器である場合、例えば、放熱器35の伝熱管の空気流れ方向における列数は、放熱器36のそれよりも少なくなっている。図5において、放熱器35と放熱器36との間における左右方向の寸法の大小関係は、冷媒流路の容量の大小関係を表している(ただし、冷媒流路の容量の比までを表すものではない)。また、放熱器35における冷媒と水との伝熱面積は、放熱器36における冷媒と水との伝熱面積よりも小さくなっている。さらに、放熱器35における冷媒の流路は、放熱器31における冷媒の流路よりも狭くなっている。例えば、放熱器35における伝熱管の管径は、放熱器36における伝熱管の管径よりも小さくなっている。
 また、放熱器35、36は、室内ファン38により送風される室内空気の流れに対して直列に配置されている(図5では、室内空気の流れ方向を白抜き太矢印で示している)。放熱器36は、室内空気の流れにおいて放熱器35よりも上流側に配置されている。放熱器35の冷媒温度は放熱器36の冷媒温度よりも高いため、上記のように配置することで熱交換効率を高めることができる。
 図6は、冷凍サイクル装置の冷媒回路15における冷媒の状態を示すp-h線図である。低温低圧のガス冷媒(図6の点1e)は、圧縮機25に吸入されて圧縮され、高温高圧の超臨界冷媒(点2e)となる。この超臨界冷媒は、放熱器35において室内空気に放熱し、自身は冷却されて相対的に低温の超臨界冷媒(点3e)となる。この超臨界冷媒は、膨張装置37で減圧されて膨張し、高圧の二相冷媒(点4e)となる。この二相冷媒は、放熱器36において室内空気に放熱し、自身は冷却されて凝縮する。これにより、高圧の液冷媒(点5e)となる。この液冷媒は、膨張装置45で減圧されて膨張し、低圧の二相冷媒(点6e)となる。この二相冷媒は、蒸発器55において室外空気との熱交換により加熱されて蒸発し、低温低圧のガス冷媒(点1e)となる。
 ここで、放熱器35及び放熱器36の冷媒の状態を比較する。放熱器35では、冷媒が超臨界状態に維持される(点2e~点3e)。一方、放熱器36では、二相冷媒が凝縮して液冷媒となる(点4e~点5e)。放熱器36内の冷媒はガスを含むため密度が比較的小さくなるのに対し、放熱器35内の冷媒は超臨界状態であるため密度が比較的大きくなる。このため、放熱器35の冷媒流路内の冷媒の密度は、放熱器36の冷媒流路内の冷媒の密度よりも大きくなる。
 相対的に密度の大きい冷媒が流通する放熱器35は、相対的に密度の小さい冷媒が流通する放熱器36よりも伝熱性能が低くなる。伝熱性能の低い放熱器35では、冷媒流路の容量を小さくして冷媒の流速を高めることにより、伝熱性能を向上させることができる。また、放熱器35の冷媒流路の容量を小さくすることにより、冷凍サイクル装置の冷媒量を削減することができる。
 一方で、超臨界状態の冷媒が流通する放熱器35は、凝縮した液冷媒が流通する放熱器36よりも圧力損失が小さくなる。このため、放熱器35の伝熱管は、より細径化することが可能となる。放熱器35の伝熱管を細径化することにより、放熱器35内の冷媒の流速を高めることができ、放熱器35の伝熱性能を向上させることができる。また、放熱器35の伝熱管を細径化することにより、放熱器35内の冷媒流路の容量を小さくでき、冷凍サイクル装置の冷媒量を削減することができる。
 また、本実施の形態では、1つの冷媒回路の放熱器を複数に分割しているため、1つの冷媒回路において放熱時の圧力を複数持つことができる。これにより、冷凍サイクルにおける高圧側の圧力と低圧側の圧力とをより近づけることができるため、放熱時の圧力を1つのみ持つ冷媒回路と比較して、高効率での運転が可能になる。この効果は、放熱器の分割数が増えるほど大きくなる。
 以上説明したように、本実施の形態に係る冷凍サイクル装置は、冷媒を循環させる冷媒回路15を備え、冷媒回路15には、冷媒を凝縮させて外部流体(本例では、室内空気)に放熱する放熱器36と、冷媒を超臨界状態に維持したまま外部流体に放熱する放熱器35と、が設けられており、放熱器36は、外部流体の流れに対して放熱器35よりも上流側に配置されており、放熱器35の冷媒流路の容量は、放熱器36の冷媒流路の容量よりも小さいものである。
 また、本実施の形態に係る冷凍サイクル装置は、冷媒を循環させる少なくとも1つの冷媒回路(本例では、1つの冷媒回路15)を備え、冷媒回路には、少なくとも1つの圧縮機(本例では、圧縮機25)と、外部流体(本例では、室内空気)に放熱する複数の放熱器(本例では、放熱器35、36)と、少なくとも1つの膨張装置(本例では、膨張装置37、45)と、少なくとも1つの蒸発器(本例では、蒸発器55)と、が設けられており、複数の放熱器は、外部流体の流れに対して直列に配置されており、複数の放熱器の放熱時の圧力は互いに異なっており、複数の放熱器の冷媒流路の容量は互いに異なっているものである。
 また、本実施の形態に係る冷凍サイクル装置は、放熱器35の冷媒流路内の冷媒の密度は、放熱器36の冷媒流路内の冷媒の密度よりも大きいものであり、放熱器35の冷媒流路の容量は、放熱器36の冷媒流路の容量よりも小さいものである。すなわち、本実施の形態に係る冷凍サイクル装置では、実施の形態1及び2と同様に、冷媒流路内の冷媒の密度が大きい放熱器ほど容量が小さくなっている。
 ここで、本実施の形態の放熱器35、36は、室内ファン38により送風される室内空気の流れに対して直列に配置されているが、放熱器35、36は、共通の室内ファンにより送風される室内空気の流れに対して並列に配置されていてもよいし、別々の室内ファンにより送風される互いに実質的に独立した室内空気の流れ上にそれぞれ配置されていてもよい。
実施の形態5.
 本発明の実施の形態5に係る冷凍サイクル装置について説明する。図7は、本実施の形態に係る冷凍サイクル装置の概略構成を示す冷媒回路図である。図7に示すように、本実施の形態に係る冷凍サイクル装置は、2つの放熱器35、36が冷媒回路16において並列に接続されている点で実施の形態4と異なっている。冷媒回路16において、放熱器36の入口側には膨張装置61が設けられており、放熱器35の出口側には膨張装置62が設けられている。放熱器35には、圧縮機25で圧縮された冷媒がそのまま流入する。一方、放熱器36には、圧縮機25で圧縮された冷媒が膨張装置61で減圧された後に流入する。このため、放熱器36の放熱時の冷媒圧力は、放熱器35の放熱時の冷媒圧力よりも低くなっている。また、放熱器36の放熱時の冷媒温度は、放熱器35の放熱時の冷媒温度よりも低くなっている。
 本実施の形態では、実施の形態4と同様に、放熱器35における冷媒流路の容量が、放熱器36における冷媒流路の容量よりも小さくなっている。また、放熱器35、36は、室内空気の流れに対して直列に配置されている。放熱器36は、室内空気の流れにおいて放熱器35よりも上流側に配置されている。放熱器35の冷媒温度は放熱器36の冷媒温度よりも高いため、上記のように配置することで熱交換効率を高めることができる。
 図8は、冷凍サイクル装置の冷媒回路16における冷媒の状態を示すp-h線図である。低温低圧のガス冷媒(図8の点1f)は、圧縮機25に吸入されて圧縮され、高温高圧の超臨界冷媒(点2f)となる。この超臨界冷媒の一部は放熱器35に流入し、他部は膨張装置61に流入する。放熱器35に流入した超臨界冷媒は室内空気に放熱し、自身は冷却されて相対的に低温の超臨界冷媒(点3f)となる。この超臨界冷媒は、膨張装置62で減圧されて膨張し、高圧の液冷媒(点4f)となる。一方、膨張装置61に流入した超臨界冷媒は減圧されて膨張し、高圧のガス冷媒(点5f)となる。このガス冷媒は、放熱器36において室内空気に放熱し、自身は冷却されて凝縮する。これにより、高圧の液冷媒(点4f)となる。この液冷媒は、膨張装置62で減圧された液冷媒と合流し、さらに、膨張装置45で減圧されて膨張する。これにより、低圧の二相冷媒(点6f)となる。この二相冷媒は、蒸発器55において室外空気との熱交換により加熱されて蒸発し、低温低圧のガス冷媒(点1f)となる。
 ここで、放熱器35及び放熱器36の冷媒の状態を比較する。放熱器35では、冷媒が超臨界状態に維持される(点2f~点3f)。一方、放熱器36では、ガス冷媒が凝縮して液冷媒となる(点5f~点4f)。放熱器36内の冷媒はガスを含むため密度が比較的小さくなるのに対し、放熱器35内の冷媒は超臨界状態であるため密度が比較的大きくなる。このため、放熱器35の冷媒流路内の冷媒の密度は、放熱器36の冷媒流路内の冷媒の密度よりも大きくなる。
 相対的に密度の大きい冷媒が流通する放熱器35は、相対的に密度の小さい冷媒が流通する放熱器36よりも伝熱性能が低くなる。伝熱性能の低い放熱器35では、冷媒流路の容量を小さくして冷媒の流速を高めることにより、伝熱性能を向上させることができる。また、放熱器35の冷媒流路の容量を小さくすることにより、冷凍サイクル装置の冷媒量を削減することができる。
 一方で、超臨界状態の冷媒が流通する放熱器35は、凝縮した液冷媒が流通する放熱器36よりも圧力損失が小さくなる。このため、放熱器35の伝熱管は、より細径化することが可能となる。放熱器35の伝熱管を細径化することにより、放熱器35内の冷媒の流速を高めることができ、放熱器35の伝熱性能を向上させることができる。また、放熱器35の伝熱管を細径化することにより、放熱器35内の冷媒流路の容量を小さくでき、冷凍サイクル装置の冷媒量を削減することができる。
 また、本実施の形態では、1つの冷媒回路の放熱器を複数に分割しているため、1つの冷媒回路において放熱時の圧力を複数持つことができる。これにより、冷凍サイクルにおける高圧側の圧力と低圧側の圧力とをより近づけることができるため、放熱時の圧力を1つのみ持つ冷媒回路と比較して、高効率での運転が可能になる。この効果は、放熱器の分割数が増えるほど大きくなる。
 以上説明したように、本実施の形態に係る冷凍サイクル装置は、冷媒を循環させる冷媒回路16を備え、冷媒回路16には、冷媒を凝縮させて外部流体(本例では、室内空気)に放熱する放熱器36と、冷媒を超臨界状態に維持したまま外部流体に放熱する放熱器35と、が設けられており、放熱器36は、外部流体の流れに対して放熱器35よりも上流側に配置されており、放熱器35の冷媒流路の容量は、放熱器36の冷媒流路の容量よりも小さいものである。
 また、本実施の形態に係る冷凍サイクル装置は、冷媒を循環させる少なくとも1つの冷媒回路(本例では、1つの冷媒回路16)を備え、冷媒回路には、少なくとも1つの圧縮機(本例では、圧縮機25)と、外部流体(本例では、室内空気)に放熱する複数の放熱器(本例では、放熱器35、36)と、少なくとも1つの膨張装置(本例では、膨張装置45、61、62)と、少なくとも1つの蒸発器(本例では、蒸発器55)と、が設けられており、複数の放熱器は、外部流体の流れに対して直列に配置されており、複数の放熱器の放熱時の圧力は互いに異なっており、複数の放熱器の冷媒流路の容量は互いに異なっているものである。
 また、本実施の形態に係る冷凍サイクル装置は、放熱器35の冷媒流路内の冷媒の密度は、放熱器36の冷媒流路内の冷媒の密度よりも大きいものであり、放熱器35の冷媒流路の容量は、放熱器36の冷媒流路の容量よりも小さいものである。すなわち、本実施の形態に係る冷凍サイクル装置では、実施の形態1、2及び4と同様に、冷媒流路内の冷媒の密度が大きい放熱器ほど容量が小さくなっている。
 ここで、本実施の形態の放熱器35、36は、室内ファン38により送風される室内空気の流れに対して直列に配置されているが、放熱器35、36は、共通の室内ファンにより送風される室内空気の流れに対して並列に配置されていてもよいし、別々の室内ファンにより送風される互いに実質的に独立した室内空気の流れ上にそれぞれ配置されていてもよい。
その他の実施の形態.
 本発明は、上記実施の形態に限らず種々の変形が可能である。
 例えば、上記実施の形態では、2つの放熱器を備えた冷凍サイクル装置を例に挙げたが、本発明は、3つ以上の放熱器を備えた冷凍サイクル装置にも適用できる。例えば、3つの放熱器を備えた冷凍サイクル装置において、3つの放熱器のそれぞれで冷媒流路内の冷媒の密度が異なる場合には、冷媒の密度が大きい放熱器ほど冷媒流路の容量が小さくなるようにすればよい。3つ以上の放熱器は、1つの冷媒回路に並列又は直列に設けられていてもよいし、それぞれ別の冷媒回路に設けられていてもよい。
 また、上記実施の形態では、暖房専用の空調装置や温水生成運転専用の熱源機を例に挙げたが、冷媒回路に四方弁等の流路切替装置を設け、暖房運転及び冷房運転(温水生成運転及び冷水生成運転)を切り換えられるようにしてもよい。
 また、上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。
 11、12、13、14、15、16 冷媒回路、21、22、23、24、25 圧縮機、31、32、33、34、35、36 放熱器、37、41、42、43、44、45、61、62 膨張装置、38 室内ファン、51、52、53、54、55 蒸発器、56 室外ファン、60 水配管。

Claims (3)

  1.  同一組成の冷媒を循環させる第1の冷媒回路及び第2の冷媒回路を備え、
     前記第1の冷媒回路には、冷媒を凝縮させて外部流体に放熱する第1の放熱器が設けられており、
     前記第2の冷媒回路には、冷媒を超臨界状態に維持したまま外部流体に放熱する第2の放熱器が設けられており、
     前記第1の放熱器は、外部流体の流れに対して前記第2の放熱器よりも上流側に配置されており、
     前記第2の放熱器の冷媒流路の容量は、前記第1の放熱器の冷媒流路の容量よりも小さいものである冷凍サイクル装置。
  2.  冷媒を循環させる冷媒回路を備え、
     前記冷媒回路には、冷媒を凝縮させて外部流体に放熱する第1の放熱器と、冷媒を超臨界状態に維持したまま外部流体に放熱する第2の放熱器と、が設けられており、
     前記第1の放熱器は、外部流体の流れに対して前記第2の放熱器よりも上流側に配置されており、
     前記第2の放熱器の冷媒流路の容量は、前記第1の放熱器の冷媒流路の容量よりも小さいものである冷凍サイクル装置。
  3.  冷媒として、R1123を含む冷媒が用いられている請求項1又は請求項2に記載の冷凍サイクル装置。
PCT/JP2015/056717 2014-03-07 2015-03-06 冷凍サイクル装置 WO2015133622A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15758593.6A EP3118541B1 (en) 2014-03-07 2015-03-06 Refrigeration cycle apparatus
US15/120,807 US9970693B2 (en) 2014-03-07 2015-03-06 Refrigeration cycle apparatus
CN201580012408.3A CN106068427B (zh) 2014-03-07 2015-03-06 制冷循环装置
JP2016506195A JP6042026B2 (ja) 2014-03-07 2015-03-06 冷凍サイクル装置
EP18154965.0A EP3343129B1 (en) 2014-03-07 2015-03-06 Refrigeration cycle apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/056022 WO2015132966A1 (ja) 2014-03-07 2014-03-07 冷凍サイクル装置
JPPCT/JP2014/056022 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133622A1 true WO2015133622A1 (ja) 2015-09-11

Family

ID=54054798

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/056022 WO2015132966A1 (ja) 2014-03-07 2014-03-07 冷凍サイクル装置
PCT/JP2015/056717 WO2015133622A1 (ja) 2014-03-07 2015-03-06 冷凍サイクル装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056022 WO2015132966A1 (ja) 2014-03-07 2014-03-07 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US9970693B2 (ja)
EP (2) EP3343129B1 (ja)
JP (1) JP6042026B2 (ja)
CN (1) CN106068427B (ja)
WO (2) WO2015132966A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138625A (ja) * 2019-05-30 2019-08-22 三菱電機株式会社 冷凍サイクル装置
JPWO2020157788A1 (ja) * 2019-01-28 2021-10-14 三菱電機株式会社 空気調和装置
WO2022044168A1 (ja) * 2020-08-26 2022-03-03 三菱電機株式会社 冷凍装置
US20220252306A1 (en) * 2019-07-15 2022-08-11 Johnson Controls Tyco IP Holdings LLP Series flow chiller system
WO2022224382A1 (ja) * 2021-04-21 2022-10-27 三菱電機株式会社 二元冷凍サイクル装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115550A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
CN107804142B (zh) * 2017-10-19 2023-08-08 珠海格力电器股份有限公司 一种热泵系统、电动汽车及其热泵控制方法
CN114909824A (zh) * 2021-02-10 2022-08-16 上海本家空调系统有限公司 一种冷凝器并联式压缩式蒸汽机组
EP4063762A1 (en) 2021-03-26 2022-09-28 Mitsubishi Electric R&D Centre Europe B.V. Cascaded heat pump system with low gwp refrigerant

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176867A (ja) * 1996-12-13 1998-06-30 Toshiba Corp 空気調和装置
JP2004190922A (ja) * 2002-12-10 2004-07-08 Matsushita Electric Ind Co Ltd 熱交換器
JP2005214525A (ja) * 2004-01-30 2005-08-11 Mitsubishi Electric Corp 冷凍機内蔵型ショーケース
JP2006242480A (ja) * 2005-03-03 2006-09-14 Sanden Corp 蒸気圧縮サイクルシステム
JP2007183078A (ja) * 2006-01-10 2007-07-19 Ebara Corp 冷凍機及び冷凍装置
JP2007198693A (ja) * 2006-01-27 2007-08-09 Mayekawa Mfg Co Ltd カスケード型ヒートポンプシステム
JP2009024884A (ja) * 2005-11-04 2009-02-05 Panasonic Corp 冷凍サイクル装置および保冷庫
JP2009222246A (ja) * 2008-03-13 2009-10-01 Mitsubishi Electric Corp ヒートポンプ式給湯機
JP2009243740A (ja) * 2008-03-31 2009-10-22 Fujitsu General Ltd 冷凍サイクル
JP2012184893A (ja) * 2011-03-07 2012-09-27 Mitsubishi Electric Corp 冷凍空調装置
WO2014123120A1 (ja) * 2013-02-05 2014-08-14 旭硝子株式会社 ヒートポンプ用作動媒体およびヒートポンプシステム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7024877B2 (en) * 2003-12-01 2006-04-11 Tecumseh Products Company Water heating system
JP4058696B2 (ja) * 2004-05-28 2008-03-12 日立アプライアンス株式会社 ヒートポンプ給湯システム
WO2005124221A1 (en) * 2004-06-17 2005-12-29 Quantum Energy Technologies Pty Limited Heater for heating crude oil
CN101184963A (zh) * 2005-03-18 2008-05-21 开利商业冷藏公司 热交换器装置
US7765824B2 (en) * 2006-02-01 2010-08-03 Paccar Inc Vehicle interior cooling system
CN101617181B (zh) * 2006-10-10 2012-12-26 开利公司 具有呈串联逆流布置的双通路热交换器的双回路冷却器
JP4999529B2 (ja) * 2007-04-23 2012-08-15 三菱電機株式会社 熱源機および冷凍空調装置
FR2931222B1 (fr) * 2008-05-16 2014-02-21 Batignolles Tech Therm Systeme et procede de vaporisation d'un fluide cryogenique, notamment du gaz naturel liquefie, a base de co2
US8132420B2 (en) * 2008-11-07 2012-03-13 Trane International Inc. Variable evaporator water flow compensation for leaving water temperature control
JP5229031B2 (ja) * 2009-03-18 2013-07-03 ダイキン工業株式会社 空調機
JP5054180B2 (ja) 2010-11-04 2012-10-24 サンデン株式会社 ヒートポンプ式暖房装置
US9599395B2 (en) * 2010-11-15 2017-03-21 Mitsubishi Electric Corporation Refrigerating apparatus
DK2673585T3 (en) * 2011-02-08 2019-03-25 Carrier Corp HARDWOOD PLATE HEAT EXCHANGE FOR WATER COOLED HEAT REJECTION IN COOLING CYCLE
CN103477161B (zh) * 2011-04-21 2016-08-17 开利公司 具有性能提升的跨临界制冷剂蒸汽系统
CN106085363A (zh) 2011-05-19 2016-11-09 旭硝子株式会社 工作介质及热循环系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176867A (ja) * 1996-12-13 1998-06-30 Toshiba Corp 空気調和装置
JP2004190922A (ja) * 2002-12-10 2004-07-08 Matsushita Electric Ind Co Ltd 熱交換器
JP2005214525A (ja) * 2004-01-30 2005-08-11 Mitsubishi Electric Corp 冷凍機内蔵型ショーケース
JP2006242480A (ja) * 2005-03-03 2006-09-14 Sanden Corp 蒸気圧縮サイクルシステム
JP2009024884A (ja) * 2005-11-04 2009-02-05 Panasonic Corp 冷凍サイクル装置および保冷庫
JP2007183078A (ja) * 2006-01-10 2007-07-19 Ebara Corp 冷凍機及び冷凍装置
JP2007198693A (ja) * 2006-01-27 2007-08-09 Mayekawa Mfg Co Ltd カスケード型ヒートポンプシステム
JP2009222246A (ja) * 2008-03-13 2009-10-01 Mitsubishi Electric Corp ヒートポンプ式給湯機
JP2009243740A (ja) * 2008-03-31 2009-10-22 Fujitsu General Ltd 冷凍サイクル
JP2012184893A (ja) * 2011-03-07 2012-09-27 Mitsubishi Electric Corp 冷凍空調装置
WO2014123120A1 (ja) * 2013-02-05 2014-08-14 旭硝子株式会社 ヒートポンプ用作動媒体およびヒートポンプシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3118541A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020157788A1 (ja) * 2019-01-28 2021-10-14 三菱電機株式会社 空気調和装置
JP7086231B2 (ja) 2019-01-28 2022-06-17 三菱電機株式会社 空気調和装置
JP2019138625A (ja) * 2019-05-30 2019-08-22 三菱電機株式会社 冷凍サイクル装置
JP7171511B2 (ja) 2019-05-30 2022-11-15 三菱電機株式会社 冷凍サイクル装置
US20220252306A1 (en) * 2019-07-15 2022-08-11 Johnson Controls Tyco IP Holdings LLP Series flow chiller system
WO2022044168A1 (ja) * 2020-08-26 2022-03-03 三菱電機株式会社 冷凍装置
WO2022224382A1 (ja) * 2021-04-21 2022-10-27 三菱電機株式会社 二元冷凍サイクル装置
JP7471515B2 (ja) 2021-04-21 2024-04-19 三菱電機株式会社 二元冷凍サイクル装置

Also Published As

Publication number Publication date
EP3118541B1 (en) 2022-03-30
US20160363354A1 (en) 2016-12-15
US9970693B2 (en) 2018-05-15
JP6042026B2 (ja) 2016-12-14
CN106068427B (zh) 2018-12-14
CN106068427A (zh) 2016-11-02
EP3118541A4 (en) 2018-04-11
WO2015132966A1 (ja) 2015-09-11
EP3343129B1 (en) 2022-08-10
JPWO2015133622A1 (ja) 2017-04-06
EP3343129A1 (en) 2018-07-04
EP3118541A1 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6042026B2 (ja) 冷凍サイクル装置
JP6125000B2 (ja) 二元冷凍装置
US10605498B2 (en) Heat pump apparatus
JP2011512509A (ja) 冷媒蒸気圧縮システム
JPWO2018029784A1 (ja) 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
JP6888102B2 (ja) 熱交換器ユニットおよび冷凍サイクル装置
WO2016071955A1 (ja) 空気調和装置
EP2578966B1 (en) Refrigeration device and cooling and heating device
JP2014102030A (ja) ヒートポンプ給湯装置
JP6368205B2 (ja) ヒートポンプシステム
US20240027104A1 (en) Refrigeration cycle apparatus
JP6298992B2 (ja) 空気調和機
JP2013124820A (ja) 2段式暖房機及び2段式冷房機
JP2012237518A (ja) 空気調和機
KR102185416B1 (ko) 냉방 시스템
WO2021106084A1 (ja) 冷凍サイクル装置
JP6695034B2 (ja) ヒートポンプ装置
JP7208577B2 (ja) 冷凍サイクル装置
JP7469583B2 (ja) 空調機
WO2017138052A1 (ja) 冷凍サイクル装置
JPWO2016189810A1 (ja) ヒートポンプ装置
CN116438413A (zh) 制冷循环装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506195

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15120807

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015758593

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015758593

Country of ref document: EP