[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015129873A1 - 無線基地局、ユーザ端末、無線通信方法及び無線通信システム - Google Patents

無線基地局、ユーザ端末、無線通信方法及び無線通信システム Download PDF

Info

Publication number
WO2015129873A1
WO2015129873A1 PCT/JP2015/055905 JP2015055905W WO2015129873A1 WO 2015129873 A1 WO2015129873 A1 WO 2015129873A1 JP 2015055905 W JP2015055905 W JP 2015055905W WO 2015129873 A1 WO2015129873 A1 WO 2015129873A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
ftn
radio resource
resource region
signal
Prior art date
Application number
PCT/JP2015/055905
Other languages
English (en)
French (fr)
Inventor
佐和橋 衛
輝雄 川村
祥久 岸山
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US15/121,935 priority Critical patent/US10177887B2/en
Priority to EP15754699.5A priority patent/EP3113395B1/en
Publication of WO2015129873A1 publication Critical patent/WO2015129873A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/068Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection by sampling faster than the nominal bit rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques
    • H04L27/2698Multicarrier modulation systems in combination with other modulation techniques double density OFDM/OQAM system, e.g. OFDM/OQAM-IOTA system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • H04B1/71072Successive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03821Inter-carrier interference cancellation [ICI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present invention relates to a radio base station, a user terminal, a radio communication method, and a radio communication system applicable to a next generation communication system.
  • LTE Long Term Evolution
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • SDM Spatial Division Multiplexing
  • MIMO Multiple Input Multiple Output
  • CoMP Coordinated Multi-Point
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • FTN Faster-Than-Nyquist
  • ICI intercarrier interference
  • the reference signal used for channel estimation receives a large ICI from another symbol, the cell throughput may be deteriorated.
  • the influence of ICI on cell-specific reference signals (CRS) distributed over resource blocks is increased.
  • CRS cell-specific reference signals
  • radio resource allocation is adjusted so that the reference signal is not affected by ICI, the information symbols to which FTN can be applied are extremely limited, and the effect of increasing frequency utilization efficiency by FTN cannot be obtained.
  • the present invention has been made in view of such points, and in a wireless communication system using FTN, a wireless base station, a user terminal, a wireless communication method, and a wireless communication system capable of reducing interference with a predetermined signal are provided.
  • the purpose is to provide.
  • a radio base station is a radio base station that communicates with a user terminal, and includes a first radio resource region that multiplexes symbols at a rate lower than or equal to Nyquist rate, and a symbol at a rate faster than Nyquist rate.
  • a second radio resource region that multiplexes the signal, a control unit that controls the signal to be time-division multiplexed, and a signal that is time-division-multiplexed to the first radio resource region and the second radio resource region
  • a transmission unit for transmitting to the user terminal is a radio base station that communicates with a user terminal, and includes a first radio resource region that multiplexes symbols at a rate lower than or equal to Nyquist rate, and a symbol at a rate faster than Nyquist rate.
  • a second radio resource region that multiplexes the signal, a control unit that controls the signal to be time-division multiplexed, and a signal that is time-division-multiplexed to the first
  • the maximum throughput per user terminal mainly depends on the scheduling method (range) for each user terminal by the radio base station.
  • various techniques for improving throughput are being studied.
  • MIMO SDM Spatial Division Multiplexing
  • MIMO SDM Multiple Input Multiple Output
  • LTE Long Term Evolution
  • a peak data rate of 300 Mbps or more can be realized by MIMO SDM with a maximum of 4 antennas.
  • LTE-A Rel. 10 LTE
  • a peak data rate of 1 Gbps or more can be realized by a single user / multiuser MIMO SDM with a maximum of 8 antennas.
  • CoMP Coordinated Multi-Point
  • a plurality of transmission / reception points cooperate with each other to transmit / receive signals. That is, by using radio resources (time, frequency, power resource, etc.) of a plurality of nodes (cell sites), it is possible to increase the throughput of cell edge user terminals.
  • radio resources of a plurality of cells are used for one user terminal, a trade-off with cell throughput should be considered, and high-speed scheduling between cells is important.
  • the antenna space or signal space may be increased.
  • Increasing the antenna space is possible by increasing the number of MIMO multiplexed antennas.
  • LTE-A employs MIMO SDM with a maximum of 8 antennas, it is conceivable to further increase the number of antennas (for example, 24 to 36). It is also conceivable to introduce a polarization antenna into the antenna and apply vertical polarization and horizontal polarization to signals to be transmitted and received.
  • the signal space can be increased by increasing the modulation level.
  • the maximum is 64QAM, but the signal space can be increased by further increasing the number of modulation levels (for example, 256QAM, 512QAM).
  • NOMA non-orthogonal multiple access
  • signals to a plurality of user terminals are non-orthogonally multiplexed for the same radio resource by changing transmission power according to channel gain (for example, RSRP (Reference Signal Received Power)) or path loss.
  • channel gain for example, RSRP (Reference Signal Received Power)
  • path loss for example, RSRP (Reference Signal Received Power)
  • OFDMA Orthogonal multiplexing scheme
  • ICI intercarrier interference
  • the data rate can be improved by increasing the radio resources.
  • a plurality of frequency bands can be integrated and used by spectrum aggregation technology such as carrier aggregation and dual connectivity.
  • FTN Frester-Than-Nyquist
  • the Nyquist rate is an upper limit of a symbol rate at which a symbol transmitted in a finite band (for example, an LTE system band) can be uniquely decoded.
  • ISI inter-symbol interference
  • ISI time domain interference
  • ICI frequency domain Interference
  • FIG. 1 is an explanatory diagram of signal transmission below Nyquist rate and FTN signal transmission.
  • Waveforms W1 and W2 in FIG. 1A represent symbols that are multiplexed at a rate below the Nyquist rate (eg, multiplexed with a Nyquist interval). If sampling is performed at a time when the intensity of each waveform is maximum, the intensity of the other signal can be almost ignored, so that interference does not occur.
  • waveforms W1-W4 in FIG. 1B represent symbols multiplexed by FTN (for example, multiplexed with an interval of 1/2 the Nyquist interval).
  • ISI and / or ICI are generated by the symbols W3 and W4 at the sampling time of W1 (for example, the time when the signal intensity is maximum).
  • FIG. 2 is a conceptual diagram of OFDM symbols and FTN symbols.
  • the FTN symbol is a symbol multiplexed at a higher symbol rate than the Nyquist rate.
  • FIG. 2 shows a case where a cyclic prefix (CP: Cyclic Prefix) is not added to each symbol.
  • CP Cyclic Prefix
  • the OFDM symbol length is equal to the FFT block length and is also equal to the OFDM symbol interval. Therefore, ISI does not occur unless the multipath of the transmission path is taken into consideration. Also, basically no ICI occurs.
  • the FTN symbol length is equal to the FFT block length, but the FTN symbol interval is shorter than the OFDM symbol interval. Therefore, ISI occurs. In addition, due to the occurrence of ISI before and after, ICI occurs due to the discontinuity of the carrier frequency in a predetermined symbol interval.
  • an interference canceller that removes ISI and ICI is essential for an FTN receiver that receives and processes FTN signals.
  • interference is caused by a linear mean square error (LMMSE) linear noise-square error (LMMSE) interference suppression filter and a log-likelihood ratio (LLR) of each bit of the decoder output.
  • LMMSE linear mean square error
  • LMMSE linear noise-square error
  • LLR log-likelihood ratio
  • a turbo soft interference canceller (SIC: Soft Interference Canceller) that generates a soft decision estimate of a given symbol and performs subtraction processing to be subtracted from the received signal is suitable from the viewpoint of performance and computational complexity.
  • FIG. 3 is a diagram for explaining the characteristics of the FTN signal generation method.
  • the method using Inverse Fast Fractional Fourier Transform (IFFrFT) in FIG. 3 is a method for directly generating FTN symbols that have undergone intersymbol interference.
  • the generation method can be realized by one IFFrFT unit, but the calculation amount is slightly complicated (medium) because the calculation of IFFrFT uses a kernel function.
  • To change the FTN multiplexing efficiency (how much each FTN symbol is superimposed and multiplexed in time), it is necessary to change the kernel function.
  • IFFrFT is used instead of Inverse Fast Fourier Transform (IFFT)
  • IFFT Inverse Fast Fourier Transform
  • the method using a plurality of IFFTs in FIG. 3 is a method of generating by adding a time domain signal subjected to IFFT to OFDM / OQAM (or OFDM) symbols.
  • This generation method requires a relatively large amount of computation because the number of IFFTs increases as the FTN multiplexing efficiency increases and symbol (subcarrier) shift pre-processing is required. To change the FTN multiplexing efficiency, it is necessary to change the number of IFFTs. Further, since a plurality of IFFTs are used, it is not possible to flexibly switch between normal OFDM signals and FTN signals.
  • the normal OFDM signal (normal OFDM / OQAM signal) represents a signal in which symbols are multiplexed at a symbol rate equal to or lower than the Nyquist rate.
  • OFDM / OQAM Offset Quadrature Amplitude Modulation
  • T symbol period
  • OFDM / OQAM Offset Quadrature Amplitude Modulation
  • This is a method of multiplexing (mapping) only in-phase components in T / 2).
  • OFDM / OQAM achieves a symbol rate twice that of OFDM.
  • the information bit rate is the same as that of OFDM. Become.
  • FIG. 4 is an explanatory diagram showing an example of the arrangement of OFDM / OQAM signal points.
  • FIG. 4 shows a method of alternately mapping the in-phase component (black circle) and the quadrature component (white circle) of the original OFDM symbol to the in-phase component of the OFDM / OQAM symbol.
  • the method of mapping conversion of the FTN symbol of FIG. 3 to the OFDM / OQAM symbol is a method of performing IFFT by projecting the FTN symbol to the OFDM / OQAM symbol.
  • the FTN mapping / demapping process increases as the FTN multiplexing efficiency increases, so that the amount of calculation is slightly complicated (medium).
  • To change the FTN multiplexing efficiency it is necessary to change the projection coefficient table.
  • Since normal OFDM can be realized by not applying FTN mapping switching between a normal OFDM signal and an FTN signal can be performed flexibly.
  • a staggered arrangement in which reference signals for transmission path estimation (RS: Reference Signal) are alternately arranged.
  • RS Reference Signal
  • the reference signal for example, CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information Reference Signal), DM-RS (Demodulation Reference Signal), or the like is used.
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DM-RS Demodulation Reference Signal
  • Doppler shift frequency selective fading due to multipath and time selective channel fluctuation (Doppler shift) determined by the moving speed of the user terminal.
  • FIG. 5 is an explanatory diagram showing an example in which reference signals of a plurality of antenna ports are allocated to radio resources in a staggered arrangement.
  • FIG. 5 shows 1 RB (resource block), which is the minimum unit of radio resources for performing frequency scheduling.
  • One RB is composed of 12 subcarriers ⁇ 14 symbols.
  • a radio resource area of 1 subcarrier ⁇ 1 symbol is referred to as 1RE (resource element).
  • the reference signal RS # 1 is allocated to symbols # 1 and # 8 of subcarriers # 1 and # 7 and symbols # 5 and # 12 of subcarriers # 4 and # 10.
  • Reference signal RS # 2 is arranged in symbols # 1 and # 8 of subcarriers # 4 and # 10 and symbols # 5 and # 12 of subcarriers # 1 and # 7.
  • the reference signals RS # 3 and RS # 4 are staggered in resources different from those of other reference signals.
  • the reference signal is preferably in a staggered arrangement.
  • FTN orthogonal multiple access
  • an FTN symbol at a predetermined subcarrier position gives a large ICI to FTN symbols at many subcarrier positions on both sides.
  • the reference signal receives a large ICI from other FTN symbols, leading to an increase in channel estimation error. Further, when the symbol arrangement is adjusted so that ICI is not given to the staggered RS, information symbols to which FTN can be applied are extremely limited, and the effect of increasing frequency utilization efficiency by FTN cannot be obtained.
  • the present inventors have conceived that in a wireless communication system to which FTN is applied, a predetermined symbol is orthogonally multiplexed so as not to receive ISI and ICI from the FTN symbol.
  • the inventors of the present invention have a first radio resource region for multiplexing symbols at a rate equal to or lower than the Nyquist rate, and a second radio resource region for multiplexing symbols at a rate faster than the Nyquist rate.
  • TDM time division multiplexing
  • the first radio resource region is also referred to as an orthogonal multiplexing unit
  • the second radio resource region is also referred to as a non-orthogonal multiplexing unit.
  • the first embodiment is transmission / reception processing when FTN is applied to OFDM / OQAM.
  • FTN transmitter transmission side
  • FTN receiver reception side
  • a radio base station may be used as the FTN transmitter
  • a user terminal may be used as the FTN receiver.
  • the wireless communication method may include processing steps realized by the FTN transmission processing unit 300 and the FTN reception processing unit 400.
  • the user terminal when the user terminal can transmit an OFDM / OQAM signal, the user terminal may include the FTN transmission processing unit 300 and the radio base station may include the FTN reception processing unit 400.
  • FIG. 6 shows an example of a signal transmission processing unit applying FTN to OFDM / OQAM according to the first embodiment.
  • the FTN transmission processing unit 300 includes a channel encoding unit 301, an interleaver 302, a modulation mapping unit 303, an OQAM mapping unit 304, an FTN mapping unit 305, a multicarrier modulation (IFFT) unit 306, and a transmission filter (IOTA). Filter) 307 at least.
  • IFFT multicarrier modulation
  • IOTA transmission filter
  • Channel encoding section 301 performs error correction encoding (channel encoding) on the input transmission bits and outputs the result to interleaver 302.
  • error correction encoding channel encoding
  • a turbo code can be used for channel coding.
  • the interleaver 302 performs bit interleaving on the bits encoded by the channel encoding unit 301 and outputs the bits to the modulation mapping unit 303 in order to suppress the occurrence of burst loss.
  • the modulation mapping unit 303 performs modulation mapping (data modulation) on the bits interleaved by the interleaver 302.
  • modulation method for example, digital modulation such as QPSK (Quadrature Phase Shift Keying), 16QAM (Quadrature Amplitude Modulation), and 64 QAM can be used.
  • QPSK Quadrature Phase Shift Keying
  • 16QAM Quadrature Amplitude Modulation
  • 64 QAM QAM
  • channel coding unit 301 and the modulation mapping unit 303 determine a channel coding rate and a modulation scheme based on channel state information (CSI) fed back from the FTN receiver, and the channel coding rate and modulation.
  • Channel coding processing and modulation processing can be performed in accordance with the system.
  • the OQAM mapping unit 304 performs OQAM mapping (OQAM conversion) on the input from the modulation mapping unit 303 and outputs the result to the FTN mapping unit 305.
  • OQAM-converted symbols are also referred to as FTN symbols because they are densely multiplexed by FTN (arranged at a higher symbol rate than Nyquist rate).
  • the FTN mapping unit 305 performs FTN mapping on the FTN symbol input from the OQAM mapping unit 304 and outputs the result to the IFFT unit 306.
  • the FTN mapping generates OFDM / OQAM symbols that are actually transmitted. That is, a plurality of FTN symbol signals are superimposed on each OFDM / OQAM symbol. Detailed processing of FTN mapping will be described later.
  • the IFFT unit 306 applies IFFT to the OFDM / OQAM symbol subjected to FTN mapping by the FTN mapping unit 305 to convert it into a time domain signal, and outputs it to the transmission filter 307.
  • the transmission filter 307 applies the band limitation by the transmission filter to the signal converted by the IFFT unit 306 and outputs it as a transmission signal.
  • an IOTA (Isotropic Orthogonal Transform Algorithm) filter is used as the transmission filter, but is not limited thereto.
  • the band limitation by the transmission filter will be described later.
  • FIG. 7 is a conceptual explanatory diagram of FTN symbol mapping processing to OFDM / OQAM symbols according to the first embodiment.
  • the conventional IFFT can be applied by representing the FTN symbol by an orthogonal basis function of an OFDM / OQAM symbol interval.
  • a transmission signal s (t) by OFDM / OQAM can be expressed by (Equation 1).
  • k and l indicate a subcarrier index and a symbol index, respectively.
  • x k, l represents a real-valued data symbol having only the in-phase component phase-shifted by j k + l .
  • p (t) indicates a rectangular wave signal with a period T.
  • the transmission signal to which FTN is applied has a symbol interval of T ⁇ T / 2 and a subcarrier interval of F ⁇ / T for FTN symbols using OFDM / OQAM.
  • T ⁇ is the compression factor of the time domain symbol of the FTN signal
  • F ⁇ is the compression factor of the frequency domain symbol of the FTN signal.
  • waveform shaping (band limitation) is performed by applying a Gaussian filter to the FTN signal.
  • the FTN symbol waveform g k, l (t) is converted into an orthogonal basis function of the OFDM / OQAM symbol interval. Represented by A time waveform ⁇ m, n (t) ⁇ of the orthogonal basis function is defined by (Expression 4).
  • m and n represent the subcarrier index and symbol index of the orthogonal basis function, respectively.
  • the FTN symbol waveform band-limited by the Gaussian filter of (Equation 2) can be projected onto the orthogonal basis function of (Equation 4) using the projection coefficient (FTN mapping coefficient) C k, l, m, n .
  • C k, l, m, n can be calculated by the inner product of g k, l (t) in (Expression 2) and ⁇ m, n (t) in (Expression 4).
  • the projection coefficient C k, l, m, n is given to the subcarrier m and the symbol n of the orthogonal basis function ⁇ m, n (t) by the FTN symbol arranged at the position of the subcarrier k and the symbol l. Indicates the interference factor.
  • the FTN signal of (Expression 3) can be expressed by (Expression 6).
  • the FTN mapping unit 305 applies (Equation 7) to the FTN symbols x k, l having the symbol interval T ⁇ T / 2 and the subcarrier interval F ⁇ / T, and the symbol interval T / 2 and the subcarrier interval. Convert to F ⁇ / T OFDM / OQAM symbol x ′ m, n .
  • the product of the symbol interval and the sub-carrier interval (T ⁇ F ⁇ / 2) is less than 1/2 of the symbol (FTN symbol), the product of the symbol interval and sub-carrier spacing of 1/2 OFDM / OQAM (Orthogonal Frequency Map to Division Multiple Access / Offset Quadrature Amplitude Modulation) symbol.
  • Equation 7 p and q indicate the number of symbols used for projection in the time direction and frequency direction, respectively.
  • One OFDM / OQAM symbol x ′ m, n is generated from a total of nine FTN symbols of + 1, l ⁇ 1, x k, l ⁇ 1, x k ⁇ 1, l ⁇ 1 .
  • the conversion of (Equation 7) is performed by the delay element, the multiplier, and the adder.
  • the configuration is not limited thereto.
  • the band limitation by the transmission filter 307 of FIG. 6 will be described in detail.
  • the above orthogonal basis function ⁇ m, n (t) is not a rectangular window used in normal OFDM, but for the localization of the projection to the basis function of the FTN symbol, An IOTA pulse (IOTA window function) is used. In this case, it can be realized by applying an IOTA filter to the IFFT waveform.
  • ICI subcarrier interference
  • the IOTA filter is basically a Gaussian function, and can realize a time response and a frequency response of the same shape.
  • FIG. 9 is a diagram illustrating an example of a time response of the IOTA filter.
  • ⁇ 0 represents the OFDM / OQAM symbol length.
  • the IOTA filter has good convergence characteristics in the time domain.
  • FIG. 10 is a diagram illustrating an example of each frequency response when using IOTA and a rectangular window function.
  • LTE radio parameters are assumed, and the subcarrier interval of OFDM / OQAM is 30 kHz (the subcarrier interval of the base OFDM is 15 kHz).
  • the leakage power to adjacent subcarriers can be reduced as compared with the case where the rectangular wave function is applied.
  • the IOTA filter As described above, by applying the IOTA filter, good convergence characteristics can be realized in the time and frequency domains. For this reason, in the first embodiment, by applying an IOTA filter from the viewpoint of reducing the amount of calculation of (Expression 7) of the FTN mapping unit and increasing the accuracy of the turbo SIC soft decision symbol estimation value, The interference power is localized by narrowing the dispersion of FTN symbols with respect to / OQAM symbols.
  • Example 11 represents that an IOTA filter is applied to X ′ n (pT s ) indicating a signal portion after IFFT.
  • FIG. 11 shows an example of a signal reception processing unit applying FTN to OFDM / OQAM according to the first embodiment.
  • the FTN reception processing unit 400 includes a reception filter (IOTA filter) 401, a multicarrier demodulation / separation (FFT) unit 402, an FTN demapping unit 403, an OQAM demapping unit 404, an LLR calculation unit 405, and a deinterleaver.
  • IOTA filter reception filter
  • FFT multicarrier demodulation / separation
  • OQAM demapping unit 404 an LLR calculation unit 405, and a deinterleaver.
  • channel decoding unit 407, interleaver 412, soft decision symbol estimation value generation unit 414, OQAM mapping unit 415, interference symbol soft decision symbol estimation value generation unit 421, FTN mapping unit 422, and synthesis unit 423 at least.
  • each part is equipped with two or more and can implement parallel processing.
  • the FFT unit 402 and the like can be processed in parallel.
  • the FTN reception processing unit 400 may have a function of estimating a channel response.
  • the reception filter 401 performs an IOTA filter process on the input reception signal and outputs it to the FFT unit 402.
  • FFT section 402 applies multicarrier demodulation / separation by FFT to convert a time domain signal into a frequency domain signal, and outputs a symbol at each subcarrier position of OFDM / OQAM to combining section 423.
  • the synthesizing unit 423 subtracts an interference symbol soft decision symbol estimation value, which will be described later, from the received signal after the FFT processing by the FFT unit 402, and outputs the result to the FTN demapping unit 403. Note that, when the soft decision symbol estimated value of the interference symbol is not calculated, such as the process of the first round of the turbo SIC, the synthesis unit 423 subtracts 0 or does not perform any processing, thereby performing the FFT processing.
  • the reception signal may be output as it is.
  • the FTN demapping unit 403 performs a demapping process for reproducing the FTN symbol on the OFDM / OQAM symbol input from the combining unit 423 using a matched filter (MF), and converts the FTN symbol into the FTN demapping unit 403.
  • the data is output to the OQAM demapping unit 404.
  • the FTN demapping it is preferable to use the same projection coefficient C k, l, m, n as that used in the FTN mapping unit 305 of the FTN transmitter.
  • the FTN symbol at the position of subcarrier k and symbol l after FTN demapping is expressed by (Equation 12).
  • the FTN symbol of interest is reproduced by collecting FTN symbols mapped to a plurality of OFDM / OQAM symbol positions.
  • the FTN symbol at the position of the symbol l 1 in the subcarrier k 1 of (Expression 12) is expressed by (Expression 13).
  • the first term in parentheses on the right side indicates the FTN symbol at the (k 1 , l 1 ) position of interest.
  • the second term in parentheses indicates the ISI and ICI from other FTN symbols at the position of the FTN symbol (k 1 , l 1 ).
  • the FTN symbol at a predetermined position is affected by ISI and ICI from other FTN symbols in the course of the demapping process.
  • the OQAM demapping unit 404 acquires modulation symbols from the FTN symbols input from the FTN demapping unit 403 by OFDM / OQAM demapping. Also, the modulation symbol is demodulated and output to the LLR calculator 405.
  • the LLR calculation unit 405 calculates a posterior log likelihood ratio (a posteriori LLR) based on the demodulated symbol input from the OQAM demapping unit 404 and outputs the posterior log likelihood ratio to the deinterleaver 406.
  • a posteriori LLR can be calculated by a Max-Log-MAP decoder.
  • LMMSE Linear Minimum Mean-Square Error
  • the deinterleaver 406 deinterleaves the symbol demodulated by the LLR calculation unit 405 and outputs it to the channel decoding unit 407.
  • the channel decoding unit 407 calculates an a posteriori LLR of information bits and parity bits from the symbol after deinterleaving by the deinterleaver 406 and outputs it.
  • interference cancellation by turbo SIC is applied to separate each modulation symbol. Specifically, a soft decision estimation value of a symbol that causes interference is generated based on the posterior LLR, and an iterative process of subtracting from the received signal is performed.
  • a turbo SIC configuration symbols for the number of received diversity branches are in-phase combined, and then the combined Euclidean distance between the combined signal and the received symbol replica of all the transmitted signal combinations is calculated. You may calculate.
  • a transmission signal is generated using the information symbol output from the channel decoding unit 407 by performing the same process as the FTN transmission processing unit 300, and a soft-decision symbol estimation value of the interference symbol is generated.
  • the interleaver 412 and the OQAM mapping unit 415 may have the same configuration as the processing on the transmission side (interleaver 302 and OQAM mapping unit 304) described above, and thus description thereof is omitted.
  • soft decision symbol estimation value generation section 414 has positions of all OFDM symbols (or OFDM / OQAM symbols) of all subcarriers based on the LLR of each information bit and parity bit output from interleaver 412. Generate an estimate of the soft decision symbols.
  • the interference symbol soft decision symbol estimation value generation unit 421 generates interference symbol soft decision symbol estimation values based on the FTN symbols output from the OQAM mapping unit 415.
  • the soft decision symbol estimated value of an interference symbol refers to a soft decision estimated value of information symbols at symbol positions of all subcarriers that interfere with a predetermined information symbol of interest.
  • the soft decision symbol estimation value generation unit 421 for the interference symbol subtracts the soft decision symbol estimation value of the symbol of interest from all the soft decision symbol estimation values generated by the soft decision symbol estimation value generation unit 414. Calculate the signal.
  • the a posteriori LLR of coded bits is used to generate soft decision symbol estimates for each transmission stream.
  • an external LLR is used to generate a soft decision symbol estimate, but it is preferable to use a posterior LLR in the first embodiment.
  • the interference level is high, it is possible to achieve a better error rate by using the posterior LLR than when using the external LLR.
  • the FTN mapping unit 422 maps the symbol estimated value of the subcarrier position that causes interference with respect to the symbol of interest based on the soft decision symbol estimated value of the interference symbol according to (Equation 7).
  • the configuration of the FTN mapping can be the same as that of the FTN mapping unit 305.
  • combining section 423 subtracts the soft decision symbol estimated value of the interference symbol output from FTN mapping section 422 from the received signal after the FFT processing by FFT section 402. As a result, ISI and ICI that affect the symbol of interest can be reduced.
  • the process of subtracting the soft decision symbol estimate value of the interference symbol is performed on all information symbols, and one round of the repetition process is completed. In the next round repetition process, the processing after the FTN demapping unit 403 is executed again on the signal output from the previous repetition process.
  • a transmission bit sequence (decoded bit) is reproduced by making a hard decision on the a posteriori LLR of the Max-Log-MAP decoder output.
  • the FTN reception processing unit 400 may determine that the loop is the final repetition loop and output the decoded bit when the predetermined reception signal is repeated a predetermined number of times (for example, Nitr times).
  • a first radio resource region that multiplexes symbols at a rate equal to or lower than the Nyquist rate
  • a second radio resource region non-null rate that multiplexes symbols at a higher rate than the Nyquist rate
  • TDM Time division multiplexing
  • normal OFDM or OFDM / OQAM
  • FTN is applied.
  • the wireless communication method to which the second embodiment is applied is not limited to the method of the first embodiment as long as it is a wireless communication method to which FTN is applied.
  • FIG. 12 is a diagram illustrating an example of interference that an FTN symbol at a predetermined subcarrier position gives to an OFDM / OQAM symbol at each subcarrier position.
  • FTN symbols are arranged as in the lower part of FIG. 12, for example, the FTN symbol in the center of the figure can be FTN-mapped to a wide range of OFDM / OQAM symbols.
  • the upper part of FIG. 12 shows the interference that the FTN symbol in the center of the figure gives to other OFDM / OQAM symbols.
  • the interference factor can be expressed by, for example, the projection coefficient C k, l, m, n of the first embodiment.
  • ICI can occur in OFDM / OQAM symbols at many subcarrier positions by FTN mapping.
  • FIG. 13 is a diagram illustrating an example of reference signal multiplexing according to the second embodiment.
  • symbol # 1 which is the first symbol of each subframe, is set as an orthogonal multiplexing unit, and the reference signal symbol is allocated within the region of the orthogonal multiplexing unit.
  • symbols # 2- # 14 in each subframe are set as a non-orthogonal multiplexing unit to which FTN is applied, and symbols other than the reference signal (for example, data symbols and control information symbols) are multiplexed.
  • the first symbol of each subframe is an orthogonal multiplexing unit, it is possible to reduce interference with symbols in the orthogonal multiplexing unit while suppressing reduction in FTN multiplexing efficiency.
  • the symbol position where the orthogonal multiplexing unit is set is not limited to the first symbol, and may be a predetermined position in the subframe. Further, it is preferable that the orthogonal multiplexing unit is set so that the reference signal is multiplexed at a predetermined period. However, the symbol position of the orthogonal multiplexing unit may be different for each subframe. Also, a plurality of orthogonal multiplexing units may be set in the subframe. For example, the symbol # 1 that is the first symbol in the subframe and the symbol # 14 that is the final symbol in the subframe may be set as the orthogonal multiplexing unit. Further, symbol # 7 and / or symbol # 8, which is a symbol located at the center in the subframe, may be set as the orthogonal multiplexing unit.
  • FIG. 14 is a diagram illustrating an example of a specific symbol arrangement for reference signal multiplexing according to the second embodiment.
  • FIG. 14 shows a configuration in which a reference signal or control information symbol is allocated to the orthogonal multiplexing unit allocated to symbol # 1 of each subframe, and the subcarrier position of the reference signal symbol is different between subframes. .
  • reference signal symbols related to the same transmission antenna may be multiplexed in the orthogonal multiplexing unit, or reference signal symbols related to different transmission antennas may be multiplexed (for example, frequency division multiplexing (FDM)).
  • FDM frequency division multiplexing
  • the latter configuration can be used when RS symbols of a plurality of transmission antennas for multi-antenna transmission / reception (MIMO multiplexing) or transmission diversity are multiplexed in the orthogonal multiplexing unit.
  • FIG. 15 is a diagram illustrating an example of a specific symbol arrangement for reference signal multiplexing according to the second embodiment.
  • reference signals RS # 1 to RS # 4 respectively corresponding to transmission antennas # 1 to # 4 are transmitted to different orthogonal subcarrier positions in the orthogonal multiplexing unit assigned to symbol # 1 that is the first symbol of each subframe.
  • the configuration multiplexed is shown in FIG.
  • the reference signal is arranged in at least a part of the orthogonal multiplexing unit, it is necessary to perform channel estimation with other frequency and time resources.
  • channel estimation of each subcarrier position is performed in the frequency direction for the orthogonal multiplexing unit.
  • the channel response at each subcarrier position is estimated by interpolating the channel response at each subcarrier position in the frequency domain (for example, weighted in-phase addition).
  • MMSE minimum mean square error
  • the channel response of each subcarrier position of the orthogonal multiplexing unit of the predetermined subframe and the orthogonal multiplexing unit of the next subframe of the predetermined subframe is interpolated, Estimate the channel response at each FFT block location in the time domain.
  • the weighting method a method similar to that in the frequency domain may be applied.
  • the channel estimation method for each FFT block position is not limited to the above.
  • the orthogonal multiplexing unit that multiplexes the reference signal symbols and the non-orthogonal multiplexing unit that arranges the FTN symbols are subjected to TDM. Therefore, it is possible to reduce the influence of ISI and ICI from the FTN symbol on the radio resource to which the reference signal is allocated.
  • FIG. 16 is a schematic configuration diagram illustrating an example of a wireless communication system according to an embodiment of the present invention.
  • the radio communication system 1 is in a cell formed by a plurality of radio base stations 10 (11 and 12) and each radio base station 10, and is configured to be able to communicate with each radio base station 10.
  • Each of the radio base stations 10 is connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the radio base station 11 is composed of, for example, a macro base station having a relatively wide coverage, and forms a macro cell C1.
  • the radio base station 12 is configured by a small base station having local coverage, and forms a small cell C2.
  • the number of radio base stations 11 and 12 is not limited to the number shown in FIG. Moreover, it is good also as a structure by which either the wireless base station 11 or 12 is not arrange
  • the same frequency band may be used, or different frequency bands may be used.
  • the radio base stations 11 and 12 are connected to each other via an inter-base station interface (for example, optical fiber, X2 interface).
  • the macro base station 11 may be referred to as an eNodeB (eNB), a radio base station, a transmission point, or the like.
  • the small base station 12 may be called an RRH (Remote Radio Head), a pico base station, a femto base station, a Home eNodeB, a transmission point, an eNodeB (eNB), or the like.
  • the user terminal 20 is a terminal that supports various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • the user terminal 20 can execute communication with other user terminals 20 via the radio base station 10. Further, the user terminal 20 may execute direct communication (D2D: Device to Device) with another user terminal 20 without going through the radio base station 10. That is, the user terminal 20 may have a function of directly transmitting / receiving an inter-terminal signal (D2D signal) for D2D discovery, D2D synchronization, D2D communication, and the like.
  • the D2D signal uses SC-FDMA (Single Carrier-Frequency Division Multiple Access) as a basic signal format, but is not limited thereto.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a downlink control channel (PDCCH: Physical Downlink Control Channel, EPDCCH: Enhanced Physical Downlink Control Channel). ), A broadcast channel (PBCH: Physical Broadcast Channel) and the like are used.
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • DCI Downlink control information
  • a synchronization signal MIB (Master Information Block), etc.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), or the like is used as an uplink channel.
  • User data and higher layer control information are transmitted by PUSCH.
  • the signal for D2D discovery for detecting each other between the user terminals 20 may be transmitted using an uplink resource.
  • FIG. 17 is an overall configuration diagram of the radio base station 10 according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101 for MIMO transmission, an amplifier unit 102, a transmission / reception unit (transmission unit) 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. And.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs PDCP layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control (for example, HARQ (Hybrid ARQ) transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, and precoding processing are performed and transferred to each transmitting and receiving unit 103.
  • RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control (for example, HARQ (Hybrid ARQ) transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, and precoding processing are performed and transferred to each transmitting and receiving unit 103.
  • RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control (for example, HAR
  • Each transmission / reception unit 103 converts the downlink signal output from the baseband signal processing unit 104 by precoding for each antenna to a radio frequency band. Moreover, the transmission / reception part 103 comprises the transmission part which concerns on this Embodiment.
  • the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmission / reception antenna 101.
  • the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102, frequency-converted by each transmitting / receiving unit 103, converted into a baseband signal, and sent to the baseband signal processing unit 104. Entered.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits / receives a signal (backhaul signaling) to / from an adjacent radio base station via an inter-base station interface (for example, optical fiber, X2 interface).
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • FIG. 18 is a main functional configuration diagram of the baseband signal processing unit 104 included in the radio base station 10 according to the embodiment of the present invention.
  • the baseband signal processing unit 104 included in the radio base station 10 includes a control unit 501, a transmission signal generation unit 502, an FTN transmission processing unit (transmission processing unit) 503, and a reference signal transmission processing unit. 504 at least.
  • the control unit 501 controls scheduling of downlink user data transmitted on the PDSCH, downlink control information transmitted on both or one of PDCCH and enhanced PDCCH (EPDCCH), downlink reference signals, and the like.
  • the control unit 501 also performs scheduling control of the RA preamble transmitted from the user terminal 20 via the PRACH, uplink data transmitted via the PUSCH, uplink control information transmitted via the PUCCH or PUSCH, and uplink reference signals.
  • Information regarding scheduling (allocation control) such as downlink signals and uplink signals is notified to the user terminal 20 using downlink control signals (DCI).
  • DCI downlink control signals
  • the control unit 501 is based on instruction information from the upper station apparatus 30 acquired via the transmission path interface 106 and feedback information (for example, CSI) transmitted from each user terminal 20 acquired via the transmission / reception unit 103.
  • the radio resource allocation for the downlink signal and the uplink signal is controlled. That is, the control unit 501 has a function as a scheduler. Note that when another radio base station 10 or the upper station apparatus 30 functions as a general scheduler for a plurality of radio base stations 10, the control unit 501 may omit the function as a scheduler.
  • the control unit 501 sets the transmission signal in time in a first radio resource region (orthogonal multiplexing unit) that multiplexes OFDM / OQAM symbols and a second radio resource region (non-orthogonal multiplexing unit) that arranges FTN symbols.
  • the transmission signal generation unit 502, the FTN transmission processing unit 503, and the reference signal transmission processing unit 504 are controlled to perform division multiplexing (TDM) (second embodiment).
  • the control unit 501 preferably performs control so that a signal to be transmitted with high quality is mapped to the orthogonal multiplexing unit.
  • the control unit 501 preferably performs control so that reference signal symbols are allocated to the orthogonal multiplexing unit.
  • the transmission signal generation unit 502 generates a downlink control signal, a downlink data signal, a downlink reference signal, and the like whose assignment has been determined by the control unit 501, and appropriately outputs them to the FTN transmission processing unit 503 and the reference signal transmission processing unit 504. For example, based on an instruction from the control unit 501, the transmission control signal generation unit 502 generates a DL assignment that notifies downlink signal allocation information, an UL grant that notifies uplink signal allocation information, and the like, and transmits FTN. The data is output to the processing unit 503.
  • the transmission signal generation unit 502 Based on an instruction from the control unit 501, the transmission signal generation unit 502 generates information on resources to be allocated by time division multiplexing as downlink control information (DCI) to be transmitted on the downlink control channel (PDCCH, EPDCCH). Alternatively, it may be generated as information to be notified by higher layer signaling (for example, RRC signaling, broadcast signal).
  • the transmission signal generation unit 502 includes, for example, the symbol position of the orthogonal multiplexing unit, the subcarrier position where the reference signal is multiplexed in the orthogonal multiplexing unit, and the orthogonality for each of a plurality of antennas (or antenna ports) as information on resources allocated in time division multiplexing.
  • the subcarrier position of the multiplexing unit may be generated.
  • the FTN transmission processing unit 503 applies FTN to the information symbols output from the transmission signal generation unit 502 based on information on the non-orthogonal multiplexing unit notified from the control unit 501, and transmits information at a rate faster than Nyquist rate.
  • a transmission signal (FTN signal) in which symbols are multiplexed is mapped to a non-orthogonal multiplexing unit and output.
  • the FTN transmission processing unit 503 may be configured to generate and output an FTN signal, and the FTN transmission processing unit 300 described in the first embodiment may be used. Further, the FTN transmission processing unit 503 may be configured to output a normal OFDM signal (OFDM / OQAM signal) by not applying FTN.
  • the reference signal transmission processing unit 504 maps the reference signal output from the transmission signal generation unit 502 to the orthogonal multiplexing unit based on information on the orthogonal multiplexing unit notified from the control unit 501, and performs normal OFDM signal (OFDM). / OQAM signal).
  • the FTN signal and the reference signal output from the FTN transmission processing unit 503 and the reference signal transmission processing unit 504 are transmitted to the user terminal 20 by the transmission / reception unit 103.
  • the FTN transmission processing unit 503 when the FTN transmission processing unit 503 has a configuration capable of switching the output of the FTN signal and the normal OFDM signal (OFDM / OQAM signal), the FTN transmission processing unit 503 notifies the orthogonal multiplexing transmitted from the control unit 501.
  • the reference signal output from the transmission signal generation unit 502 may be mapped to the orthogonal multiplexing unit based on information on the unit. In this case, the reference signal transmission processing unit 504 can be omitted.
  • the FTN transmission processing unit 503 may be configured to map the data signal, control signal, and the like output from the transmission signal generation unit 502 as information symbols (data symbols, control information symbols, etc.) to the orthogonal multiplexing unit.
  • FIG. 19 is an overall configuration diagram of the user terminal 20 according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit (reception unit) 203, a baseband signal processing unit 204, an application unit 205, It is equipped with.
  • radio frequency signals received by a plurality of transmission / reception antennas 201 are each amplified by an amplifier unit 202, converted in frequency by a transmission / reception unit 203, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 204.
  • downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. It is transferred to the transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band. Thereafter, the amplifier unit 202 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmitting / receiving antenna 201.
  • FIG. 20 is a main functional configuration diagram of the baseband signal processing unit 204 included in the user terminal 20 according to the embodiment of the present invention.
  • the baseband signal processing unit 204 included in the user terminal 20 is configured to include at least a control unit 601, an FTN reception processing unit (reception processing unit) 602, and a channel state estimation unit 603. ing.
  • the control unit 601 acquires information on resources allocated by the radio base station by time division multiplexing from the downlink control signal (DCI) or higher layer signaling (for example, RRC signaling, broadcast signal) transmitted from the radio base station 10.
  • DCI downlink control signal
  • RRC signaling radio resource control signal
  • the acquisition method of the information regarding the resource allocated by time division multiplexing is not restricted to this, It may be hold
  • DCI downlink control signal
  • RRC signaling broadcast signal
  • control unit 601 determines (recognizes) the orthogonal multiplexing unit and the non-orthogonal multiplexing unit based on the information regarding the resources to be allocated by the time division multiplexing. Specifically, the control unit 601 determines symbol positions, subcarrier positions, and the like of the orthogonal multiplexing unit and the non-orthogonal multiplexing unit, and performs reception processing (decoding) on the received signal as an FTN signal to the FTN reception processing unit 602. (Mapping, interference removal, etc.) is controlled (second embodiment).
  • the signal corresponding to the orthogonal multiplexing unit may be determined to be an OFDM signal (OFDM / OQAM signal) instead of an FTN signal and perform reception processing.
  • the FTN reception processing unit 602 Under the control of the control unit 601, the FTN reception processing unit 602 performs reception processing on the signal assigned to the orthogonal multiplexing unit among the received signals input from the transmission / reception unit 203 as an FTN signal, and is assigned to the non-orthogonal multiplexing unit
  • the signal is received and processed as a normal OFDM signal (OFDM / OQAM signal).
  • the FTN reception processing unit 602 may have any configuration that can acquire information symbols by applying reception processing to an FTN signal, and may use the FTN reception processing unit 400 described in the first embodiment. Further, the FTN reception processing unit 602 may be configured to be able to decode a normal OFDM signal (OFDM / OQAM signal) by not applying FTN.
  • OFDM orthogonal frequency division multiple access
  • the FTN reception processing unit 602 outputs a signal after multicarrier demodulation (FFT) to the channel state estimation unit 603 for the reference signal arranged in the non-orthogonal multiplexing unit.
  • FFT multicarrier demodulation
  • the channel state estimation unit 603 estimates a channel state (channel response) based on the reference signal input from the FTN reception processing unit 602. In addition, when the information regarding the reference signal multiplexing position for each transmission antenna related to a plurality of transmission antennas is acquired from the control unit 601, the channel state of each antenna can be estimated based on the information.
  • the channel state estimation unit 603 performs channel estimation for radio resources other than the radio resource to which the reference signal is assigned based on the channel estimation result by the reference signal. For example, channel estimation of each subcarrier position in the frequency direction is performed for the orthogonal multiplexing unit, and then channel estimation of each subcarrier and each symbol position is performed in the time direction for the non-orthogonal multiplexing unit.
  • the channel state estimation unit 603 estimates the channel response of each subcarrier position by, for example, interpolating the channel response of each subcarrier position in the frequency domain (for example, weighted in-phase addition). Then, the channel response at each subcarrier position of the orthogonal multiplexing unit of the predetermined subframe and the orthogonal multiplexing unit of the next subframe of the predetermined subframe is interpolated and related to each symbol position in the time domain. Estimate channel conditions.
  • the channel state estimation unit 603 outputs the channel estimation result to the FTN reception processing unit 602.
  • the channel estimation result can be used for FTN symbol demapping processing using (Equation 12) in the FTN demapping unit 403 according to the first embodiment, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 FTNを用いる無線通信システムにおいて、所定の信号への干渉を低減すること。本発明の一態様に係る無線基地局(10)は、ユーザ端末(20)と通信する無線基地局であって、ナイキストレート以下のレートでシンボルを多重する第1の無線リソース領域と、ナイキストレートより高速なレートでシンボルを多重する第2の無線リソース領域と、に信号を時間分割多重するように制御する制御部(501)と、前記第1の無線リソース領域及び前記第2の無線リソース領域に時間分割多重された信号を前記ユーザ端末に送信する送信部(103)と、を有することを特徴とする。

Description

無線基地局、ユーザ端末、無線通信方法及び無線通信システム
 本発明は、次世代の通信システムに適用可能な無線基地局、ユーザ端末、無線通信方法及び無線通信システムに関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。LTEではマルチアクセス方式として、下り回線(下りリンク)にOFDMA(Orthogonal Frequency Division Multiple Access)をベースとした方式を用い、上り回線(上りリンク)にSC-FDMA(Single Carrier Frequency Division Multiple Access)をベースとした方式を用いている。
 LTEシステムにおいては、さらなるセルスループット向上のための技術が検討されている。例えば、MIMO(Multiple Input Multiple Output)による空間多重(SDM:Spatial Division Multiplexing)や、基地局間協調(CoMP:Coordinated Multi-Point)送受信などが検討されている。
 セルスループット向上の手法として、情報シンボル間の干渉を許容して、無線リソースを高密度多重する非直交マルチアクセスの検討が行われている。非直交マルチアクセスを実現する方法として、ナイキストレート(Nyquist Rate)より早いレートでシンボルを多重する方式であるFTN(Faster-Than-Nyquist)が提案されている。
 しかしながら、FTNを適用する場合には、所定のサブキャリア位置のシンボルが、他のシンボルに対して大きなサブキャリア(搬送波)間の干渉(キャリア間干渉(ICI:Inter Carrier Interference)ともいう)を与える恐れがある。
 このため、FTNを適用する場合、チャネル推定に用いる参照信号が他のシンボルから大きなICIを受けると、セルスループットが劣化する恐れがある。例えば、FTNを適用する場合には、リソースブロックにわたって分散配置されるセル固有参照信号(CRS)へのICIの影響が大きくなる。一方で、参照信号がICIの影響を受けないように無線リソースの割り当てを調整すると、FTNを適用できる情報シンボルが極めて限定され、FTNによる周波数利用効率の増大効果が得られない。
 本発明は、かかる点に鑑みてなされたものであり、FTNを用いる無線通信システムにおいて、所定の信号への干渉を低減することができる無線基地局、ユーザ端末、無線通信方法及び無線通信システムを提供することを目的とする。
 本発明の一態様に係る無線基地局は、ユーザ端末と通信する無線基地局であって、ナイキストレート以下のレートでシンボルを多重する第1の無線リソース領域と、ナイキストレートより高速なレートでシンボルを多重する第2の無線リソース領域と、に信号を時間分割多重するように制御する制御部と、前記第1の無線リソース領域及び前記第2の無線リソース領域に時間分割多重された信号を前記ユーザ端末に送信する送信部と、を有することを特徴とする。
 本発明によれば、FTNを適用する無線通信システムにおいて、所定の信号への干渉を低減することができる。
ナイキストレート以下の信号伝送及びFTNの信号伝送の説明図である。 OFDMシンボル及びFTNシンボルの概念図である。 FTN信号の生成法の特徴を説明する図である。 OFDM/OQAMの信号点の配置の一例を示す説明図である。 複数のアンテナポートの参照信号を無線リソースにStaggered配置で割り当てる一例を示す説明図である。 第1の実施の形態に係る、OFDM/OQAMにFTNを適用した信号の送信処理部の一例を示す図である。 第1の実施の形態に係るOFDM/OQAMシンボルへのFTNシンボルのマッピング処理の概念説明図である。 p=3及びq=3の場合のFTNマッピングの構成の一例を示す図である。 IOTAフィルタの時間応答の一例を示す図である。 IOTA及び矩形波(rectangular)の窓関数を用いた場合のそれぞれの周波数応答の一例を示す図である。 第1の実施の形態に係る、OFDM/OQAMにFTNを適用した信号の受信処理部の一例を示す図である。 所定のサブキャリア位置のFTNシンボルが、各サブキャリア位置のOFDM/OQAMシンボルに与える干渉の一例を示す図である。 第2の実施の形態に係る参照信号多重の一例を示す図である。 第2の実施の形態に係る参照信号多重の具体的なシンボル配置の一例を示す図である。 第2の実施の形態に係る参照信号多重の具体的なシンボル配置の一例を示す図である。 本発明の一実施の形態に係る無線通信システムの一例を示す概略図である。 本発明の一実施の形態に係る無線基地局の全体構成の説明図である。 本発明の一実施の形態に係る無線基地局の機能構成の説明図である。 本発明の一実施の形態に係るユーザ端末の全体構成の説明図である。 本発明の一実施の形態に係るユーザ端末の機能構成の説明図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 無線通信システムにおいては、セルスループット(セル内全ユーザ端末の総スループット)の一層の増大が求められている。ユーザ端末当たりの最大スループットは、主に無線基地局による各ユーザ端末へのスケジューリングの方法(範囲)に依存する。LTEシステムでは、様々なスループット向上技術が検討されている。
 LTEシステムにおいてスループット及び周波数利用効率の増大に最も有効な技術の1つとして、MIMO(Multiple Input Multiple Output)による空間多重(SDM:Spatial Division Multiplexing)がある。MIMO SDMは、複数の送受信アンテナを用いて空間的に信号(ストリーム)を多重化して伝送する方式である。例えば、LTE(Rel. 8 LTE)では、最大4アンテナのMIMO SDMにより、300Mbps以上のピークデータレートを実現することができる。また、LTE-A(Rel. 10 LTE)では、最大8アンテナのシングルユーザ/マルチユーザMIMO SDMにより、1Gbps以上のピークデータレートを実現することができる。
 また、LTEシステムでは、基地局間協調(CoMP:Coordinated Multi-Point)送受信も検討されている。CoMP送受信では、ユーザ端末に対して複数の送受信ポイントが協調して信号の送受信を行う。つまり、複数ノード(セルサイト)の無線リソース(時間、周波数、電力リソースなど)を利用することで、特にセル端ユーザ端末のスループットを増大することが可能である。ただし、1つのユーザ端末に対して複数のセルの無線リソースを用いるため、セルスループットとのトレードオフを考慮すべきであるとともに、セル間の高速スケジューリングが重要となる。
 ピークデータレートを増大するには、物理チャネルの高密度多重も効果的である。物理チャネルの高密度化の方針としては、空間方向、周波数方向、時間方向などが考えられる。
 空間方向の無線リソースを高密度化する場合は、アンテナ空間又は信号空間を増やせばよい。アンテナ空間の増大は、上述のMIMO多重のアンテナ数を増大させれば可能である。例えば、LTE-Aでは、最大8アンテナのMIMO SDMが採用されているが、さらにアンテナ数を増大させる(例えば、24個-36個)ことが考えられる。また、アンテナに偏波アンテナを導入し、送受信する信号に垂直偏波及び水平偏波を適用することも考えられる。
 一方、信号空間の増大は、変調多値数を増やすことで可能である。例えば、LTE-Aでは最大で64QAMであるが、さらに変調多値数を増大する(例えば、256QAM、512QAM)ことで、信号空間を増大することができる。
 周波数方向の無線リソースを高密度化する場合は、非直交マルチアクセス(NOMA:Non-Orthogonal Multiple Access)方式を用いることが考えられる。NOMAでは、例えばチャネルゲイン(例えば、RSRP(Reference Signal Received Power))やパスロスなどに応じて送信電力を異ならせることで、同一の無線リソースに対して複数のユーザ端末への信号が非直交多重される。そのため、OFDMAのような直交多重方式と異なり、サブキャリア(搬送波)間の干渉(キャリア間干渉(ICI:Inter Carrier Interference)ともいう)が発生し得る。
 なお、周波数方向については、無線リソースを増大させることでデータレートを向上することも可能である。例えば、キャリアアグリゲーション(Carrier Aggregation)、デュアルコネクティビティ(Dual Connectivity)などのスペクトルアグリゲーション(Spectrum Aggregation)技術により、複数の周波数帯を統合して用いることができる。
 時間方向の無線リソースを高密度化する場合には、上記とは別の非直交マルチアクセスを用いることが考えられる。例えば、非直交マルチアクセス方式としてFTN(Faster-Than-Nyquist)の原理を適用する。FTNとは、ナイキストレート(Nyquist rate)より早いシンボルレートでシンボルを多重することをいう。ナイキストレートとは、有限の帯域(例えば、LTEのシステム帯域)において伝送したシンボルが一義的に復号できるシンボルレートの上限である。この場合、情報シンボル間の干渉(シンボル間干渉(ISI:Inter Symbol Interference)ともいう)が発生し得る。
 既存の移動通信方式(直交マルチアクセス)では、ナイキストレート以下の速度で、時間及び周波数領域で直交するリソースに情報シンボルを多重することにより、情報シンボル間の干渉(シンボル間干渉(ISI:Inter Symbol Interference)ともいう)やICIを発生させない構成としていた。一方、FTNを適用した通信方式は非直交マルチアクセス方式となるため、直交マルチアクセスに比べて時間当たりの情報シンボル数を増大させることができるが、ISI(時間領域の干渉)やICI(周波数領域の干渉)の影響を受けてしまう。なお、情報シンボルは、所定のビット列に対して変調を行ったシンボルのことであり、データシンボル、制御情報シンボルなどを含む。
 図1は、ナイキストレート以下の信号伝送及びFTNの信号伝送の説明図である。図1Aの波形W1及びW2は、ナイキストレート以下の速度で多重される(例えば、ナイキスト間隔をあけて多重される)シンボルを表している。各波形の強度が最大となる時間でサンプリングすれば、他方の信号の強度はほぼ無視できるため、干渉しない。一方、図1Bの波形W1-W4は、FTNで多重される(例えば、ナイキスト間隔の1/2の間隔をあけて多重される)シンボルを表している。この場合、W1のサンプリング時刻(例えば、信号強度が最大となる時刻)において、W3及びW4のシンボルによってISI及び/又はICIが発生する。
 より概念的な例を用いて、この問題を説明する。図2は、OFDMシンボル及びFTNシンボルの概念図である。ここで、FTNシンボルは、ナイキストレートより高速なシンボルレートで多重されるシンボルである。なお、図2においては、サイクリックプレフィックス(CP:Cyclic Prefix)を各シンボルに付与しない場合を示している。
 OFDMの場合は、OFDMシンボル長はFFTブロック長と等しく、OFDMシンボル間隔とも等しい。したがって、伝送路のマルチパスを考慮しなければ、ISIは発生しない。また、基本的にICIも発生しない。
 FTNの場合は、FTNシンボル長はFFTブロック長と等しいが、FTNシンボル間隔はOFDMシンボル間隔より短い。そのため、ISIが発生する。また、前後のISIの発生により、所定のシンボル区間でキャリア周波数の不連続性に起因してICIが生じる。
 以上を鑑みると、FTN信号を受信処理するFTN受信機には、ISI及びICIを除去する干渉キャンセラが必須である。例えば干渉キャンセラとして、線形平均2乗誤差最小(LMMSE:Linear Minimum Mean-Square Error)干渉抑圧フィルタと、復号器出力の各ビットの対数尤度比(LLR:Log-Likelihood Ratio)と、から干渉を与えるシンボルの軟判定推定値を生成して受信信号から差し引く繰り返し処理を行うターボソフト干渉キャンセラ(SIC:Soft Interference Canceller)が性能及び演算量の観点から適している。
 一方、FTN信号の生成法としては、例えば図3に示すような手法が検討されている。図3は、FTN信号の生成法の特徴を説明する図である。
 図3の逆高速非整数次フーリエ変換(IFFrFT:Inverse Fast Fractional Fourier Transform)を用いる方法は、シンボル間干渉を受けたFTNシンボルを直接生成する方法である。当該生成法は1つのIFFrFT部で実現できるが、IFFrFTの計算はカーネル関数を利用するため、演算量は若干複雑(中程度)である。FTN多重効率(各FTNシンボルを時間的にどの程度重畳して多重するか)の変更は、カーネル関数を変更する必要がある。また、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)でなくIFFrFTを用いるため、通常のOFDM信号とFTN信号との切り替えを柔軟に行うことができない。
 図3の複数のIFFTを用いる方法は、OFDM/OQAM(又はOFDM)シンボルに、IFFTを行った時間領域信号を加算して生成する方法である。当該生成法は、FTN多重効率の増大に従いIFFT数が増大することと、シンボル(サブキャリア)シフトの前処理(pre-processing)が必要なため、演算量は比較的大きい。FTN多重効率の変更は、IFFT数を変更する必要がある。また、複数のIFFTを用いるため、通常のOFDM信号とFTN信号との切り替えを柔軟に行うことができない。なお、通常のOFDM信号(通常のOFDM/OQAM信号)とは、ナイキストレート以下のシンボルレートでシンボルが多重された信号を表す。
 ここで、OFDM/OQAM(Offset Quadrature Amplitude Modulation)は、シンボル周期(シンボル間隔)TのOFDMシンボルの同相(In-phase)成分及び直交(Quadrature)成分を、OFDMのシンボル周期の半分の間隔(=T/2)で同相成分のみに多重(マッピング)する方法である。このため、OFDM/OQAMは、OFDMの2倍のシンボルレートを達成するが、2つのOFDM/OQAMシンボルを用いて1つのOFDMシンボル分の情報を伝送することから、情報ビットレートはOFDMと同じとなる。
 図4は、OFDM/OQAMの信号点の配置の一例を示す説明図である。図4には周波数及び時間リソースが示されており、OFDMのシンボル周期T(OFDMシンボル間隔)の半分の間隔(=T/2)で配置される同相成分が示されている。図4は、元々のOFDMシンボルの同相成分(黒円)及び直交成分(白円)を交互に、OFDM/OQAMシンボルの同相成分にマッピングする方法を示している。
 また、図3のFTNシンボルをOFDM/OQAMシンボルにマッピング変換する方法は、FTNシンボルをOFDM/OQAMシンボルに射影してIFFTを施す方法である。当該生成法は、FTN多重効率の増大に従い、FTNマッピング/デマッピング処理が増大するため、演算量は若干複雑(中程度)である。FTN多重効率の変更は、射影係数テーブルを変更する必要がある。一方、FTNマッピングを適用しないことで通常のOFDMを実現できるため、通常のOFDM信号とFTN信号との切り替えを柔軟に行うことができる。
 ところで、既存のLTEシステムや無線LANでは、伝送路推定用の参照信号(RS:Reference Signal)を互い違いに配列するStaggered配置が用いられる。参照信号としては、例えば、CRS(Cell-specific Reference Signal)、CSI-RS(Channel State Information Reference Signal)、DM-RS(Demodulation Reference Signal)などが利用される。Staggered配置によれば、マルチパスによる周波数選択性フェージングや、ユーザ端末の移動速度で決まる時間選択性のチャネル変動(ドップラーシフト)を高精度に推定することが可能である。
 図5は、複数のアンテナポートの参照信号を無線リソースにStaggered配置で割り当てる一例を示す説明図である。図5は、周波数スケジューリングを行う無線リソースの最小単位である1RB(リソースブロック)が示されている。1RBは、12サブキャリア×14シンボルから構成される。また、1サブキャリア×1シンボルの無線リソース領域を1RE(リソースエレメント)という。
 図5では、参照信号RS#1が、サブキャリア#1、#7のシンボル#1、#8及びサブキャリア#4、#10のシンボル#5、#12に配置されている。また、参照信号RS#2が、サブキャリア#4、#10のシンボル#1、#8及びサブキャリア#1、#7のシンボル#5、#12に配置されている。また、参照信号RS#3及びRS#4についても、他の参照信号と異なるリソースにStaggered配置されている。
 既存の無線通信システムでは、OFDMAなどの直交多重アクセスが用いられるため、参照信号は、Staggered配置が好適であった。しかしながら、FTNを適用する場合、所定のサブキャリア位置のFTNシンボルは、両側の多くのサブキャリア位置のFTNシンボルに大きなICIを与えてしまう。
 このため、FTNにStaggered型RS多重を用いた場合、参照信号は他のFTNシンボルから大きなICIを受けて、チャネル推定誤差の増大を招く。また、Staggered型RSにICIを与えないように、シンボル配置を調整すると、FTNを適用できる情報シンボルが極めて限定され、FTNによる周波数利用効率の増大効果が得られない。
 以上から、FTNにStaggered型RS多重を用いる場合には、参照信号への干渉が課題となっている。
 この課題を解決するため、本発明者らは、FTNを適用する無線通信システムにおいて、所定のシンボルを、FTNシンボルからのISI及びICIを受けないように直交多重することを着想した。具体的には、本発明者らは、送信信号を、ナイキストレート以下のレートでシンボルを多重する第1の無線リソース領域と、ナイキストレートより高速なレートでシンボルを多重する第2の無線リソース領域と、に時間分割多重(TDM:Time Division Multiplexing)することを着想した。
 この構成によれば、第1の無線リソース領域のシンボルへの干渉(ICI、ISIなど)を低減することができる。また、第1の無線リソース領域にシンボルとして参照信号シンボルを多重することで、参照信号が割り当てられる無線リソース位置への干渉の影響を低減することが可能である。
 以下、第1の実施の形態として、OFDM/OQAMにFTNを適用する場合の送受信処理を説明し、第2の実施の形態として、第1の無線リソース領域及び第2の無線リソース領域のTDMを説明する。なお、以下では、第1の無線リソース領域を直交多重部とも表し、第2の無線リソース領域を非直交多重部とも表す。
(第1の実施の形態)
 第1の実施の形態は、OFDM/OQAMにFTNを適用する場合の送受信処理である。以下では、説明の簡単のため、FTN送信処理部300を有する送信側(FTN送信機)が、FTN受信処理部400を有する受信側(FTN受信機)にFTNを適用した信号を送信する場合について説明する。例えば、FTN送信機として無線基地局を、FTN受信機としてユーザ端末を用いる構成としてもよい。ただし、上記構成に限られず、無線通信方法として、FTN送信処理部300及びFTN受信処理部400が実現する処理の工程を有していればよい。例えば、ユーザ端末がOFDM/OQAM信号を送信できる場合には、ユーザ端末がFTN送信処理部300を、無線基地局がFTN受信処理部400を具備する構成としてもよい。
(FTN送信処理部)
 図6に、第1の実施の形態に係る、OFDM/OQAMにFTNを適用した信号の送信処理部の一例を示す。FTN送信処理部300は、チャネル符号化部301と、インタリーバ302と、変調マッピング部303と、OQAMマッピング部304と、FTNマッピング部305と、マルチキャリア変調(IFFT)部306と、送信フィルタ(IOTAフィルタ)307と、を少なくとも有する。なお、各部は複数具備されて並列処理を実施できる構成としてもよい。また、複数の送信信号を並列に送信できる構成としてもよい。
 チャネル符号化部301は、入力された送信ビットを誤り訂正符号化(チャネル符号化)して、インタリーバ302に出力する。チャネル符号化には、例えばターボ符号を用いることができる。
 インタリーバ302は、チャネル符号化部301により符号化されたビットを、バーストロスの発生を抑制するために、ビットインタリーブして変調マッピング部303に出力する。
 変調マッピング部303は、インタリーバ302によりインタリーブされたビットを変調マッピング(データ変調)する。変調方式としては、例えばQPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAMなどのデジタル変調を用いることができる。本実施の形態では、QPSKを用いるものとするが、これに限られない。
 なお、チャネル符号化部301及び変調マッピング部303は、FTN受信機からフィードバックされたチャネル状態情報(CSI)などに基づいて、チャネル符号化率及び変調方式を決定し、当該チャネル符号化率及び変調方式に従ってチャネル符号化処理、変調処理を行うことができる。
 OQAMマッピング部304は、変調マッピング部303からの入力にOQAMマッピング(OQAM変換)を行い、FTNマッピング部305に出力する。本実施の形態において、OQAM変換されたシンボルは、FTNにより高密度多重される(ナイキストレートより高速なシンボルレートで配置される)ため、FTNシンボルともいう。
 FTNマッピング部305は、OQAMマッピング部304から入力されたFTNシンボルに対して、FTNマッピングを行い、IFFT部306に出力する。FTNマッピングにより、実際に伝送されるOFDM/OQAMシンボルが生成される。つまり、各OFDM/OQAMシンボルには、複数のFTNシンボル信号が重畳される。FTNマッピングの詳細な処理については、後述する。
 IFFT部306は、FTNマッピング部305によりFTNマッピングされたOFDM/OQAMシンボルに、IFFTを適用して時間領域の信号に変換し、送信フィルタ307に出力する。
 送信フィルタ307は、IFFT部306で変換された信号に対して、送信フィルタによる帯域制限を適用し、送信信号として出力する。本実施の形態では当該送信フィルタとしては、IOTA(Isotropic Orthogonal Transform Algorithm)フィルタを用いるが、これに限られない。送信フィルタによる帯域制限については、後述する。
(FTNマッピング)
 以下、図6のFTNマッピング部305について、図7を参照して詳細に説明する。図7は、第1の実施の形態に係るOFDM/OQAMシンボルへのFTNシンボルのマッピング処理の概念説明図である。第1の実施の形態においては、FTNシンボルをOFDM/OQAMシンボル間隔の直交基底関数で表すことにより、従来のIFFTを適用可能としている。
 図7に示すように、OFDM/OQAMでは一般的に、OFDMのシンボル周期Tの半分の周期(=T/2)の同相成分のみに、OFDMの同相成分及び直交成分をマッピングする。OFDM/OQAMによる送信信号s(t)を(式1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 (式1)において、k及びlは、それぞれサブキャリアインデックス及びシンボルインデックスを示す。xk,lは、jk+lで位相オフセットされた同相成分のみを有する実数値のデータシンボルを示す。p(t)は、OFDM信号の場合には、周期Tの矩形波信号を示す。
 一方、FTNが適用された送信信号は、OFDM/OQAMを用いるFTNシンボルについて、シンボル間隔がTΔT/2で、サブキャリア間隔がFΔ/Tとなる。ここで、TΔはFTN信号の時間領域のシンボルの圧縮ファクタであり、FΔはFTN信号の周波数領域のシンボルの圧縮ファクタである。なお、FTNシンボルのシンボル間隔とサブキャリア間隔の積は、TΔΔ/2となる。Tがナイキスト間隔とすると、TΔΔ=1の場合に通常のOFDM/OQAM信号となり、TΔΔ<1の場合にFTN信号となる。
 また、本実施の形態では、時間及び周波数の局所性を高めるために、FTN信号にガウスフィルタを適用して波形整形(帯域制限)を行う。
 以上から、ガウスフィルタg(t)で帯域制限を行ったFTNシンボル波形gk,l(t)は、(式2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 (式1)及び(式2)から、ガウスフィルタg(t)で帯域制限されたFTN信号は、(式3)で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 (式3)のFTN信号に従来のIFFTを適用可能とするため、第1の実施の形態のFTNマッピングでは、FTNシンボル波形gk,l(t)を、OFDM/OQAMシンボル間隔の直交基底関数で表す。当該直交基底関数の時間波形{φm,n(t)}を(式4)で定義する。
Figure JPOXMLDOC01-appb-M000004
 (式4)において、m及びnは、それぞれ直交基底関数のサブキャリアインデックス及びシンボルインデックスを表す。
 (式2)のガウスフィルタで帯域制限されたFTNシンボル波形は、射影係数(FTNマッピング係数)Ck,l,m,nを用いて(式4)の直交基底関数に射影することができる。(式5)に示すように、Ck,l,m,nは(式2)のgk,l(t)及び(式4)のφm,n(t)の内積で計算できる。
Figure JPOXMLDOC01-appb-M000005
 言い換えると、射影係数Ck,l,m,nは、サブキャリアk及びシンボルlの位置に配置されるFTNシンボルが、直交基底関数φm,n(t)のサブキャリアm及びシンボルnに与える干渉ファクタを示す。
 射影係数Ck,l,m,nを用いると、(式3)のFTN信号は、(式6)で表すことができる。
Figure JPOXMLDOC01-appb-M000006
 以上から、FTNマッピング部305は、シンボル間隔TΔT/2、サブキャリア間隔FΔ/TのFTNシンボルxk,lに(式7)を適用して、シンボル間隔T/2、サブキャリア間隔FΔ/TのOFDM/OQAMシンボルx’m,nに変換する。つまり、シンボル間隔及びサブキャリア間隔の積(TΔΔ/2)が1/2未満のシンボル(FTNシンボル)を、シンボル間隔及びサブキャリア間隔の積が1/2のOFDM/OQAM(Orthogonal Frequency Division Multiple Access/Offset Quadrature Amplitude Modulation)シンボルにマッピングする。
Figure JPOXMLDOC01-appb-M000007
 (式7)において、p及びqは、それぞれ射影に用いるシンボルの時間方向及び周波数方向の数を示す。
 (式6)及び(式7)から、FTN信号は、さらに(式8)で表すことができる。
Figure JPOXMLDOC01-appb-M000008
 図8に、p=3及びq=3の場合のFTNマッピングの構成の一例を示す。この例では、xk+1,l+1、 xk,l+1、 xk-1,l+1、 xk+1,l、 xk,l、 xk-1,l、 xk+1,l-1、 xk,l-1、 xk-1,l-1の計9個のFTNシンボルから、1個のOFDM/OQAMシンボルx’m,nを生成している。図8では、遅延素子、乗算器及び加算器により(式7)の変換を行う構成としているが、当該構成に限られない。
(送信フィルタによる帯域制限)
 以下、図6の送信フィルタ307による帯域制限について、詳細に説明する。第1の実施の形態においては、上述の直交基底関数φm,n(t)として、通常のOFDMで用いられる矩形窓ではなく、FTNシンボルの基底関数への射影の局在化のために、IOTAパルス(IOTA窓関数)を用いる。この場合、IFFT波形にIOTAフィルタを適用することで実現が可能である。
 直交基底関数にOFDMと同様の矩形窓の正弦波を用いた場合、つまりφ(t)=rect(t)(rect(t)は矩形関数)の場合の送信信号s(t)は、(式9)で表される。
Figure JPOXMLDOC01-appb-M000009
 矩形窓の正弦波の周波数領域波形は、sinc関数になるため、FTNシンボルをOFDM/OQAMシンボルへ射影した場合のサブキャリア干渉(ICI)が広範囲に広がることになる。
 (式7)のp及び/又はqを大きくすることでFTNマッピングの周波数及び時間領域を広くすると、ICIを低減することができるが、演算量が増大する。また、FTNマッピングの周波数及び時間領域が広くなると、OFDM/OQAMシンボル位置に多重される各FTNシンボルの電力が非常に小さくなる。このため、FTN受信機でOFDM/OQAMシンボルを用いて実際にチャネル推定を行う場合には、ターボSICに係る軟判定シンボル推定値の精度が劣化する恐れがある。
 一方、直交基底関数にIOTAパルスを用いた場合の送信信号s(t)は、(式10)で表される。
Figure JPOXMLDOC01-appb-M000010
 IOTAフィルタは基本的にはガウス関数であり、同一の形状の時間応答及び周波数応答を実現できる。図9は、IOTAフィルタの時間応答の一例を示す図である。図9において、τはOFDM/OQAMシンボル長を表す。図9に示すように、IOTAフィルタは時間領域で良好な収束特性を有する。
 図10は、IOTA及び矩形波(rectangular)の窓関数を用いた場合のそれぞれの周波数応答の一例を示す図である。この例では、LTEの無線パラメータを仮定しており、OFDM/OQAMのサブキャリア間隔は30kHzである(基となったOFDMのサブキャリア間隔は15kHzである)。図10に示すように、IOTA関数を適用する場合、矩形波関数を適用する場合に比較して、隣接サブキャリアへの漏洩電力を低くすることができる。
 以上説明したように、IOTAフィルタを適用することで、時間及び周波数領域で良好な収束特性を実現できる。このため、FTNマッピング部の(式7)の演算量低減、ターボSICの軟判定シンボル推定値の高精度化などの観点から、第1の実施の形態では、IOTAフィルタを適用することにより、OFDM/OQAMシンボルに対するFTNシンボルの分散を狭くして干渉電力を局在化する。
 IFFT/FFTのサンプリング点数をN、IFFT/FFTのサンプリング周期をTs(=T/N)とおくと、(式10)は整数pを用いて(式11)のように変形することができる。
Figure JPOXMLDOC01-appb-M000011
 (式11)は、IFFT後の信号部分を示すX’n(pTs)に対して、IOTAフィルタを適用することを表している。
(FTN受信処理部)
 図11に、第1の実施の形態に係る、OFDM/OQAMにFTNを適用した信号の受信処理部の一例を示す。FTN受信処理部400は、受信フィルタ(IOTAフィルタ)401と、マルチキャリア復調/分離(FFT)部402と、FTNデマッピング部403と、OQAMデマッピング部404と、LLR計算部405と、デインタリーバ406と、チャネル復号部407と、インタリーバ412と、軟判定シンボル推定値生成部414と、OQAMマッピング部415と、干渉シンボルの軟判定シンボル推定値生成部421と、FTNマッピング部422と、合成部423と、を少なくとも有する。なお、各部は複数具備されて並列処理を実施できる構成としてもよい。例えば、図11では、FFT部402などが並列処理可能となっている。また、FTN受信処理部400は、チャネル応答を推定する機能を有してもよい。
 受信フィルタ401は、入力された受信信号にIOTAフィルタ処理を行い、FFT部402に出力する。
 FFT部402は、FFTによるマルチキャリア復調/分離を適用して、時間領域の信号を周波数領域の信号に変換し、OFDM/OQAMの各サブキャリア位置のシンボルを合成部423に出力する。
 合成部423は、FFT部402によるFFT処理後の受信信号から、後述する干渉シンボルの軟判定シンボル推定値を減算して、FTNデマッピング部403に出力する。なお、合成部423は、ターボSICの1周目の処理など、干渉シンボルの軟判定シンボル推定値が算出されていない場合については、0を減算する又は何も処理しないことで、FFT処理後の受信信号をそのまま出力するように構成してもよい。
 FTNデマッピング部403は、合成部423から入力されたOFDM/OQAMシンボルに対して、マッチトフィルタ(MF:Matched Filter)を用いて、FTNシンボルを再生するデマッピング処理を行い、当該FTNシンボルをOQAMデマッピング部404に出力する。FTNデマッピングには、FTN送信機のFTNマッピング部305で用いたのと同じ射影係数Ck,l,m,nを用いることが好ましい。FTNデマッピング後のサブキャリアk及びシンボルlの位置のFTNシンボルは、(式12)で表される。
Figure JPOXMLDOC01-appb-M000012
 (式12)に示すように、複数のOFDM/OQAMシンボル位置にマッピングされたFTNシンボルをかき集めることにより、着目するFTNシンボルを再生する。(式7)を用いると、(式12)のサブキャリアk1におけるシンボルl1の位置のFTNシンボルは(式13)で表される。
Figure JPOXMLDOC01-appb-M000013
 (式13)において、右辺の括弧内第1項は着目する(k1、l1)位置のFTNシンボルを示す。また、括弧内第2項はFTNシンボル(k1、l1)位置における他のFTNシンボルからのISI及びICIを示す。(式13)から理解されるように、所定の位置のFTNシンボルは、デマッピング処理の過程で、他のFTNシンボルからのISI及びICIの影響を受ける。
 OQAMデマッピング部404は、FTNデマッピング部403から入力されるFTNシンボルに対して、OFDM/OQAMデマッピングにより変調シンボルを取得する。また、変調シンボルに復調処理を行って、LLR計算部405に出力する。
 LLR計算部405は、OQAMデマッピング部404から入力される復調シンボルに基づいて、事後対数尤度比(事後LLR)を計算し、デインタリーバ406に出力する。例えば、Max-Log-MAP復号器によって事後LLRを算出することが可能である。なお、LLR計算の前に、入力に対して線形平均2乗誤差最小(LMMSE:Linear Minimum Mean-Square Error)干渉抑圧フィルタを適用することが好ましい。
 デインタリーバ406は、LLR計算部405により復調されたシンボルをデインタリーブして、チャネル復号部407に出力する。
 チャネル復号部407は、デインタリーバ406によるデインタリーブ後のシンボルから、情報ビット及びパリティビットの事後LLRを算出し、出力する。
 第1の実施の形態では、各変調シンボルを分離するために、ターボSICによる干渉除去を適用する。具体的には、事後LLRに基づいて干渉を与えるシンボルの軟判定推定値を生成して、受信信号から差し引く繰り返し処理を行う。ターボSICの構成として、受信ダイバーシチブランチ数分のシンボルを同相合成後、合成した信号を全ての送信信号の組み合わせの受信シンボルレプリカとの2乗ユークリッド距離を計算することで、各ビットの事後LLRを計算してもよい。
 ターボSICにより繰り返し復号を行うため、チャネル復号部407により出力された情報シンボルを用いてFTN送信処理部300と同様な処理を行って送信信号を生成し、干渉シンボルの軟判定シンボル推定値を生成する。インタリーバ412及びOQAMマッピング部415は、上述した送信側の処理(インタリーバ302及びOQAMマッピング部304)と同様の構成であってよいため、説明を省略する。
 また、図11では、軟判定シンボル推定値生成部414は、インタリーバ412の出力する各情報ビット及びパリティビットのLLRに基づいて、全てのサブキャリアの全てのOFDMシンボル(又はOFDM/OQAMシンボル)位置の軟判定シンボルの推定値を生成する。
 また、干渉シンボルの軟判定シンボル推定値生成部421は、OQAMマッピング部415の出力するFTNシンボルに基づいて、干渉シンボルの軟判定シンボル推定値を生成する。干渉シンボルの軟判定シンボル推定値とは、着目する所定の情報シンボルに干渉を与える全てのサブキャリアのシンボル位置の情報シンボルの軟判定推定値のことをいう。具体的には、干渉シンボルの軟判定シンボル推定値生成部421は、軟判定シンボル推定値生成部414で生成した全ての軟判定シンボル推定値から、着目するシンボルの軟判定シンボル推定値を差し引いた信号を算出する。
 ターボSICの最終繰り返し以外のループでは、各送信ストリームの軟判定シンボル推定値の生成に、符号化ビットの事後LLRを用いる。なお、通常は、軟判定シンボル推定値の生成には外部LLRを用いるが、第1の実施の形態では事後LLRを用いることが好ましい。干渉レベルが高い場合には、外部LLRを用いる場合に比べて事後LLRを用いる方が、良好な誤り率を実現することができる。
 FTNマッピング部422は、干渉シンボルの軟判定シンボル推定値に基づいて、着目するシンボルに対して干渉を及ぼすサブキャリア位置のシンボル推定値を、(式7)に従ってマッピングを行う。FTNマッピングの構成に関しては、FTNマッピング部305と同様とすることができる。
 そして、合成部423は、FFT部402によるFFT処理後の受信信号から、FTNマッピング部422から出力された干渉シンボルの軟判定シンボル推定値を減算する。これにより、着目するシンボルに影響するISI及びICIを低減することができる。
 全ての情報シンボルに対して干渉シンボルの軟判定シンボル推定値を減算する処理を行って、繰り返し工程の1周が完了する。次周の繰り返し工程では、前の繰り返し工程から出力された信号に対して、再びFTNデマッピング部403以降の処理を実行していく。
 ターボSICの最終繰り返しループでは、Max-Log-MAP復号器出力の事後LLRを硬判定することにより、送信ビット系列(復号ビット)を再生する。FTN受信処理部400は、所定の受信信号に対して繰り返しが所定の回数(例えば、Nitr回)行われたときに、最終繰り返しループであると判断して復号ビットを出力してもよい。
 以上、第1の実施の形態によれば、FTNをOFDM/OQAMシンボルで実現することにより、通常のOFDMに比較してスループットを向上することができる。
(第2の実施の形態)
 第2の実施の形態は、ナイキストレート以下のレートでシンボルを多重する第1の無線リソース領域(直交多重部)と、ナイキストレートより高速なレートでシンボルを多重する第2の無線リソース領域(非直交多重部)と、に時間分割多重(TDM:Time Division Multiplexing)し、直交多重部に参照信号を割り当てる。
 第2の実施の形態によれば、直交多重部が設定される時間(シンボル)には通常のOFDM(又はOFDM/OQAM)が適用され、非直交多重部が設定される時間(シンボル)にはFTNが適用される。これにより、参照信号が割り当てられる無線リソースに対して、FTNシンボルからのISI及びICIの影響を低減することができる。
 以下、第1の実施の形態の方式に第2の実施の形態を適用する場合について説明する。なお、第2の実施の形態を適用する無線通信方式は、FTNを適用する無線通信方式であればよく、第1の実施の形態の方式に限られない。
 図12は、所定のサブキャリア位置のFTNシンボルが、各サブキャリア位置のOFDM/OQAMシンボルに与える干渉の一例を示す図である。図12の下部のようにFTNシンボルが配置される場合、例えば図中央のFTNシンボルは、幅広いOFDM/OQAMシンボルにFTNマッピングされ得る。
 図12の上部は、図中央のFTNシンボルが他のOFDM/OQAMシンボルに与える干渉を示している。ここで、干渉ファクタは、例えば第1の実施の形態の射影係数Ck,l,m,nで表すことができる。このように、FTNマッピングによって、多くのサブキャリア位置のOFDM/OQAMシンボルにICIが発生し得る。
 図13は、第2の実施の形態に係る参照信号多重の一例を示す図である。図13においては、各サブフレームの先頭シンボルであるシンボル#1が直交多重部として設定されており、参照信号シンボルは当該直交多重部の領域内で割り当てられる。一方、各サブフレームのシンボル#2-#14は、FTNを適用する非直交多重部として設定されており、参照信号以外のシンボル(例えば、データシンボル、制御情報シンボル)が多重される。このように、各サブフレームの先頭シンボルを直交多重部とする構成によれば、FTN多重効率の低減を抑制しつつ、直交多重部内のシンボルへの干渉を低減することができる。
 なお、直交多重部が設定されるシンボル位置は、先頭シンボルに限られず、サブフレーム内の所定の位置であればよい。また、参照信号が所定の周期で多重されるように直交多重部が設定されることが好ましい。ただし、サブフレームごとに直交多重部のシンボル位置を異ならせる構成としてもよい。また、サブフレーム内に複数の直交多重部が設定されてもよい。例えば、サブフレーム内の先頭シンボルであるシンボル#1及びサブフレーム内の最終シンボルであるシンボル#14が直交多重部として設定されてもよい。また、サブフレーム内の中央に位置するシンボルであるシンボル#7及び/又はシンボル#8が直交多重部として設定されてもよい。
 また、サブフレームごとに直交多重部内の参照信号シンボルが配置されるサブキャリア位置を異ならせる構成としてもよい。図14は、第2の実施の形態に係る参照信号多重の具体的なシンボル配置の一例を示す図である。図14においては、各サブフレームのシンボル#1に割り当てられる直交多重部に、参照信号又は制御情報のシンボルを割り当てるとともに、参照信号シンボルのサブキャリア位置がサブフレーム間で異なる構成が示されている。
 また、直交多重部には、同一の送信アンテナに係る参照信号シンボルを多重してもよいし、異なる複数の送信アンテナに係る参照信号シンボルを多重(例えば、周波数分割多重(FDM))してもよい。後者の構成は、直交多重部にマルチアンテナ送受信(MIMO多重)又は送信ダイバーシチのための複数の送信アンテナのRSシンボルを多重する場合に利用することができる。
 図15は、第2の実施の形態に係る参照信号多重の具体的なシンボル配置の一例を示す図である。図15においては、各サブフレームの先頭シンボルであるシンボル#1に割り当てられる直交多重部に、送信アンテナ#1-#4にそれぞれ対応した参照信号RS#1-RS#4が、異なるサブキャリア位置に多重される構成が示されている。
 第2の実施の形態では、参照信号が直交多重部の少なくとも一部に配置されるため、他の周波数及び時間リソースでのチャネル推定を実施する必要がある。まず、直交多重部について周波数方向に各サブキャリア位置のチャネル推定を行う。例えば、周波数領域の各サブキャリア位置のチャネル応答を内挿補間(例えば、重み付き同相加算)して各サブキャリア位置のチャネル応答(チャネル状態)を推定する。補間に用いる重みとしては、所定のシミュレーションにより求めた固定の重み係数を用いてもよいし、平均2乗誤差最小(MMSE:Minimum Mean Squared Error)規範に従う重み係数を用いてもよい。
 直交多重部のチャネル推定が完了したら、所定のサブフレームの直交多重部と、当該所定のサブフレームの次サブフレームの直交多重部と、の各サブキャリア位置のチャネル応答を内挿補間して、時間領域の各FFTブロック位置のチャネル応答を推定する。重み付き方法は、周波数領域と同様の方法を適用してもよい。なお、各FFTブロック位置のチャネル推定の方法は上記に限られない。
 以上、第2の実施の形態によれば、参照信号シンボルを多重する直交多重部と、FTNシンボルを配置する非直交多重部と、をTDMする。これにより、参照信号が割り当てられる無線リソースに対して、FTNシンボルからのISI及びICIの影響を低減することができる。
(無線通信システムの構成)
 以下、本発明の一実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記第1の実施の形態、第2の実施の形態に係る無線通信方法が用いられる。
 図16は、本発明の一実施の形態に係る無線通信システムの一例を示す概略構成図である。図16に示すように、無線通信システム1は、複数の無線基地局10(11及び12)と、各無線基地局10によって形成されるセル内にあり、各無線基地局10と通信可能に構成された複数のユーザ端末20と、を備えている。無線基地局10は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。
 図16において、無線基地局11は、例えば相対的に広いカバレッジを有するマクロ基地局で構成され、マクロセルC1を形成する。無線基地局12は、局所的なカバレッジを有するスモール基地局で構成され、スモールセルC2を形成する。なお、無線基地局11及び12の数は、図16に示す数に限られない。また、無線基地局11又は12のいずれかが配置されていない構成としてもよい。
 マクロセルC1及びスモールセルC2では、同一の周波数帯が用いられてもよいし、異なる周波数帯が用いられてもよい。また、無線基地局11及び12は、基地局間インターフェース(例えば、光ファイバ、X2インターフェース)を介して互いに接続される。
 なお、マクロ基地局11は、eNodeB(eNB)、無線基地局、送信ポイント(transmission point)などと呼ばれてもよい。スモール基地局12は、RRH(Remote Radio Head)、ピコ基地局、フェムト基地局、Home eNodeB、送信ポイント、eNodeB(eNB)などと呼ばれてもよい。
 ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでいてもよい。ユーザ端末20は、無線基地局10を経由して他のユーザ端末20と通信を実行できる。また、ユーザ端末20は、無線基地局10を経由せずに、他のユーザ端末20と直接通信(D2D:Device to Device)を実行してもよい。すなわち、ユーザ端末20はD2D発見、D2D同期、D2D通信などのための端末間信号(D2D信号)を直接送受信する機能を有してもよい。なお、D2D信号はSC-FDMA(Single Carrier-Frequency Division Multiple Access)を基本の信号フォーマットとするが、これに限られない。
 上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、下り制御チャネル(PDCCH:Physical Downlink Control Channel、EPDCCH:Enhanced Physical Downlink Control Channel)、報知チャネル(PBCH:Physical Broadcast Channel)などが用いられる。PDSCHにより、ユーザデータ、上位レイヤ制御情報、報知信号としてのSIB(System Information Block)などが伝送される。PDCCH、EPDCCHにより、下り制御情報(DCI)が伝送される。また、PBCHにより、同期信号や、MIB(Master Information Block)などが伝送される。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、無線通信システム1では、上りリンクリソースを用いて、ユーザ端末20間で互いを検出するためのD2D発見用信号が送信されてもよい。
 図17は、本発明の一実施の形態に係る無線基地局10の全体構成図である。無線基地局10は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部(送信部)103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid ARQ)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われて各送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、各送受信部103に転送される。
 各送受信部103は、ベースバンド信号処理部104からアンテナごとにプリコーディングして出力された下り信号を無線周波数帯に変換する。また、送受信部103は、本実施の形態に係る送信部を構成する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101により送信する。
 一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、基地局間インターフェース(例えば、光ファイバ、X2インターフェース)を介して隣接無線基地局と信号を送受信(バックホールシグナリング)する。また、伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。
 図18は、本発明の一実施の形態に係る無線基地局10が有するベースバンド信号処理部104の主な機能構成図である。図18に示すように、無線基地局10が有するベースバンド信号処理部104は、制御部501と、送信信号生成部502と、FTN送信処理部(送信処理部)503と、参照信号送信処理部504と、を少なくとも含んで構成されている。
 制御部501は、PDSCHで送信される下りユーザデータ、PDCCHと拡張PDCCH(EPDCCH)の両方、又はいずれか一方で伝送される下り制御情報、下り参照信号などのスケジューリングを制御する。また、制御部501は、ユーザ端末20からPRACHで伝送されるRAプリアンブル、PUSCHで伝送される上りデータ、PUCCH又はPUSCHで伝送される上り制御情報、上り参照信号のスケジューリングの制御も行う。下り信号、上り信号などのスケジューリング(割り当て制御)に関する情報は、下り制御信号(DCI)を用いてユーザ端末20に通知される。
 制御部501は、伝送路インターフェース106を介して取得した上位局装置30からの指示情報や、送受信部103を介して取得した各ユーザ端末20から送信されたフィードバック情報(例えば、CSI)に基づいて、下りリンク信号及び上りリンク信号に対する無線リソースの割り当てを制御する。つまり、制御部501は、スケジューラとしての機能を有している。なお、別の無線基地局10又は上位局装置30が、複数の無線基地局10に対して統括的なスケジューラとして機能する場合、制御部501は、スケジューラとしての機能を省略してもよい。
 制御部501は、送信信号を、OFDM/OQAMシンボルを多重する第1の無線リソース領域(直交多重部)と、FTNシンボルを配置する第2の無線リソース領域(非直交多重部)と、に時間分割多重(TDM)するように、送信信号生成部502と、FTN送信処理部503と、参照信号送信処理部504と、を制御する(第2の実施の形態)。制御部501は、直交多重部に、高品質に伝送すべき信号をマッピングするように制御することが好ましい。例えば、制御部501は、直交多重部に、参照信号シンボルを割り当てるように制御することが好ましい。
 送信信号生成部502は、制御部501により割り当てが決定された下り制御信号や下りデータ信号、下り参照信号などを生成して、FTN送信処理部503及び参照信号送信処理部504に適宜出力する。例えば、送信制御信号生成部502は、制御部501からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント、上り信号の割り当て情報を通知するULグラントなどを生成して、FTN送信処理部503に出力する。
 また、送信信号生成部502は、制御部501からの指示に基づいて、時間分割多重で割り当てるリソースに関する情報を、下り制御チャネル(PDCCH、EPDCCH)で送信する下り制御情報(DCI)として生成してもよいし、上位レイヤシグナリング(例えば、RRCシグナリング、報知信号)で通知する情報として生成してもよい。送信信号生成部502は、時間分割多重で割り当てるリソースに関する情報として、例えば、直交多重部のシンボル位置、直交多重部内で参照信号を多重するサブキャリア位置、複数のアンテナ(又はアンテナポート)それぞれに対する直交多重部のサブキャリア位置などを、生成してもよい。
 FTN送信処理部503は、制御部501から通知される非直交多重部に関する情報に基づいて、送信信号生成部502から出力された情報シンボルにFTNを適用して、ナイキストレートより高速なレートで情報シンボルを多重した送信信号(FTN信号)を、非直交多重部にマッピングして出力する。
 なお、FTN送信処理部503は、FTN信号を生成して出力できる構成であればよく、第1の実施の形態で述べたFTN送信処理部300を用いてもよい。また、FTN送信処理部503は、FTNを適用しないことで、通常のOFDM信号(OFDM/OQAM信号)を出力できる構成としてもよい。
 参照信号送信処理部504は、制御部501から通知される直交多重部に関する情報に基づいて、送信信号生成部502から出力された参照信号を直交多重部にマッピングして、通常のOFDM信号(OFDM/OQAM信号)として出力する。
 FTN送信処理部503及び参照信号送信処理部504から出力されたFTN信号及び参照信号は、送受信部103によってユーザ端末20に送信される。
 なお、FTN送信処理部503がFTN信号及び通常のOFDM信号(OFDM/OQAM信号)の出力を切り替え可能な構成を有する場合には、FTN送信処理部503が、制御部501から通知される直交多重部に関する情報に基づいて、送信信号生成部502から出力された参照信号を直交多重部にマッピングする構成としてもよい。この場合、参照信号送信処理部504を省略する構成とすることができる。
 また、FTN送信処理部503は、送信信号生成部502から出力されたデータ信号や制御信号などを、情報シンボル(データシンボル、制御情報シンボルなど)として直交多重部にマッピングする構成としてもよい。
 図19は、本発明の一実施の形態に係るユーザ端末20の全体構成図である。図19に示すように、ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部(受信部)203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。
 下りリンクのデータについては、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部204でFFT処理や、誤り訂正復号、再送制御の受信処理などがなされる。この下りリンクのデータのうち、下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。
 図20は、本発明の一実施の形態に係るユーザ端末20が有するベースバンド信号処理部204の主な機能構成図である。図20に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部601と、FTN受信処理部(受信処理部)602と、チャネル状態推定部603と、を少なくとも含んで構成されている。
 制御部601は、無線基地局10から送信された下り制御信号(DCI)又は上位レイヤシグナリング(例えば、RRCシグナリング、報知信号)から、無線基地局が時間分割多重で割り当てるリソースに関する情報を取得する。ただし、時間分割多重で割り当てるリソースに関する情報の取得方法はこれに限られず、予めユーザ端末20に保持されていてもよいし、他のユーザ端末20から通知される構成としてもよい。
 また、制御部601は、当該時間分割多重で割り当てるリソースに関する情報に基づいて、直交多重部及び非直交多重部を判断(認識)する。具体的には、制御部601は、直交多重部及び非直交多重部のシンボル位置、サブキャリア位置などを判断して、FTN受信処理部602に対して、受信信号をFTN信号として受信処理(デマッピング、干渉除去など)を実施するか否かを制御する(第2の実施の形態)。例えば、直交多重部に該当する信号は、FTN信号ではなくOFDM信号(OFDM/OQAM信号)と判断して受信処理を行う構成としてもよい。
 FTN受信処理部602は、制御部601の制御に従って、送受信部203から入力された受信信号のうち、直交多重部に割り当てられた信号をFTN信号として受信処理し、非直交多重部に割り当てられた信号を通常のOFDM信号(OFDM/OQAM信号)として受信処理する。
 なお、FTN受信処理部602は、FTN信号に受信処理を適用して情報シンボルを取得できる構成であればよく、第1の実施の形態で述べたFTN受信処理部400を用いてもよい。また、FTN受信処理部602は、FTNを適用しないことで、通常のOFDM信号(OFDM/OQAM信号)を復号できる構成としてもよい。
 また、FTN受信処理部602は、非直交多重部に配置される参照信号について、マルチキャリア復調(FFT)後の信号をチャネル状態推定部603に出力する。
 チャネル状態推定部603は、FTN受信処理部602から入力された参照信号に基づいて、チャネル状態(チャネル応答)を推定する。なお、制御部601から、複数の送信アンテナに係る送信アンテナごとの参照信号多重位置に関する情報を取得した場合には、当該情報に基づいて各アンテナのチャネル状態を推定することができる。
 また、チャネル状態推定部603は、参照信号によるチャネル推定結果に基づいて、参照信号が割り当てられた無線リソース以外のチャネル推定を実施する。例えば、直交多重部について周波数方向に各サブキャリア位置のチャネル推定を行った後、非直交多重部について時間方向に各サブキャリア及び各シンボル位置のチャネル推定を行う。
 具体的には、チャネル状態推定部603は、例えば、周波数領域の各サブキャリア位置のチャネル応答を内挿補間(例えば、重み付き同相加算)して各サブキャリア位置のチャネル応答を推定する。そして、所定のサブフレームの直交多重部と、当該所定のサブフレームの次サブフレームの直交多重部と、の各サブキャリア位置のチャネル応答を内挿補間して、時間領域の各シンボル位置に係るチャネル状態を推定する。
 チャネル状態推定部603は、チャネル推定結果をFTN受信処理部602に出力する。チャネル推定結果は、例えば第1の実施の形態に係るFTNデマッピング部403において、(式12)を用いてFTNシンボルのデマッピング処理に利用することができる。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2014年2月28日出願の特願2014-039562に基づく。この内容は、全てここに含めておく。
 

Claims (10)

  1.  ナイキストレート以下のレートでシンボルを多重する第1の無線リソース領域と、ナイキストレートより高速なレートでシンボルを多重する第2の無線リソース領域と、に信号を時間分割多重するように制御する制御部と、
     前記第1の無線リソース領域及び前記第2の無線リソース領域に時間分割多重された信号をユーザ端末に送信する送信部と、を有することを特徴とする無線基地局。
  2.  前記制御部は、各サブフレームの先頭シンボルを、前記第1の無線リソース領域として制御することを特徴とする請求項1に記載の無線基地局。
  3.  前記制御部は、前記第1の無線リソース領域に参照信号シンボルを割り当てるように制御することを特徴とする請求項1又は請求項2に記載の無線基地局。
  4.  前記制御部は、前記第1の無線リソース領域の一部に制御情報シンボルを割り当てるように制御することを特徴とする請求項3に記載の無線基地局。
  5.  複数の送信アンテナを有し、
     前記制御部は、前記第1の無線リソース領域に各送信アンテナに係る参照信号シンボルを周波数分割多重して割り当てるように制御することを特徴とする請求項3に記載の無線基地局。
  6.  ナイキストレート以下のレートでシンボルを多重する第1の無線リソース領域と、ナイキストレートより高速なレートでシンボルを多重する第2の無線リソース領域と、に時間分割多重された信号を受信する受信部と、
     前記第1の無線リソース領域に多重された参照信号シンボルに基づいて、チャネル状態を推定するチャネル状態推定部と、を有することを特徴とするユーザ端末。
  7.  前記チャネル状態推定部は、前記参照信号シンボルが割り当てられた複数のサブキャリア位置のチャネル応答に基づいて、前記第1の無線リソース領域の各サブキャリア位置のチャネル応答を推定することを特徴とする請求項6に記載のユーザ端末。
  8.  前記チャネル状態推定部は、所定のサブフレームの前記第1の無線リソース領域と、当該所定のサブフレームの次サブフレームの前記第1の無線リソース領域と、の各サブキャリア位置のチャネル応答に基づいて、前記第2の無線リソース領域の各サブキャリア位置及び各シンボル位置のチャネル応答を推定することを特徴とする請求項7に記載のユーザ端末。
  9.  ユーザ端末と通信する無線基地局における無線通信方法であって、
     ナイキストレート以下のレートでシンボルを多重する第1の無線リソース領域と、ナイキストレートより高速なレートでシンボルを多重する第2の無線リソース領域と、に信号を時間分割多重するように制御する工程と、
     前記第1の無線リソース領域及び前記第2の無線リソース領域に時間分割多重された信号を前記ユーザ端末に送信する工程と、を有することを特徴とする無線通信方法。
  10.  無線基地局とユーザ端末が通信する無線通信システムであって、
     前記無線基地局は、ナイキストレート以下のレートでシンボルを多重する第1の無線リソース領域と、ナイキストレートより高速なレートでシンボルを多重する第2の無線リソース領域と、に信号を時間分割多重するように制御する制御部と、
     前記第1の無線リソース領域及び前記第2の無線リソース領域に時間分割多重された信号を前記ユーザ端末に送信する送信部と、を有することを特徴とする無線通信システム。
     
PCT/JP2015/055905 2014-02-28 2015-02-27 無線基地局、ユーザ端末、無線通信方法及び無線通信システム WO2015129873A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/121,935 US10177887B2 (en) 2014-02-28 2015-02-27 Radio base station, user terminal and radio communication method
EP15754699.5A EP3113395B1 (en) 2014-02-28 2015-02-27 Wireless base station, user terminal, wireless communication method and wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014039562A JP6254019B2 (ja) 2014-02-28 2014-02-28 無線基地局、ユーザ端末、無線通信方法及び無線通信システム
JP2014-039562 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129873A1 true WO2015129873A1 (ja) 2015-09-03

Family

ID=54009186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055905 WO2015129873A1 (ja) 2014-02-28 2015-02-27 無線基地局、ユーザ端末、無線通信方法及び無線通信システム

Country Status (4)

Country Link
US (1) US10177887B2 (ja)
EP (1) EP3113395B1 (ja)
JP (1) JP6254019B2 (ja)
WO (1) WO2015129873A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623542A (zh) * 2016-07-13 2018-01-23 华为技术有限公司 一种发送参考信号的方法、相关设备及通信系统
WO2018052061A1 (ja) * 2016-09-16 2018-03-22 株式会社Nttドコモ 送信装置及び無線通信方法
US10374855B2 (en) 2015-12-28 2019-08-06 Sony Corporation Apparatus and method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453463B (zh) * 2013-08-05 2018-04-03 Lg电子株式会社 在无线通信系统中从装置对装置终端发送信号的方法和设备
WO2016165761A1 (en) * 2015-04-15 2016-10-20 Telefonaktiebolaget Lm Ericsson (Publ) Multi-stream faster-than-nyquist transmission using bandwidth partitioning
EP3151434A1 (en) * 2015-10-01 2017-04-05 Mitsubishi Electric R&D Centre Europe B.V. Method for demodulating received symbols using a turbo-demodulation scheme comprising an iterative channel equalization and wherein an iterative channel decoder is used in the turbo-demodulation scheme
WO2017149965A1 (ja) * 2016-03-01 2017-09-08 株式会社日立製作所 受信機、送信機、および信号復号方法
KR102455847B1 (ko) * 2016-07-29 2022-10-19 한국전자통신연구원 Ftn 기반 신호 수신 장치 및 방법
JP6817562B2 (ja) * 2016-10-18 2021-01-20 パナソニックIpマネジメント株式会社 端末及び通信方法
JPWO2018083924A1 (ja) * 2016-11-01 2019-08-08 日本電気株式会社 基地局、端末装置、方法、プログラム、及び記録媒体
CN109981223B (zh) * 2019-04-02 2022-06-21 中国科学院上海高等研究院 基于frft的多载波ftn发送/接收方法及相关设备
CN114520680B (zh) * 2020-11-20 2023-06-23 维沃移动通信有限公司 信息传输方法、装置、通信设备及存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070093262A1 (en) 2005-10-21 2007-04-26 Shupeng Li Transmitting data on an uplink associated with multiple mobile stations in a spread spectrum cellular system
KR101611272B1 (ko) * 2008-11-07 2016-04-11 엘지전자 주식회사 참조 신호 전송 방법
JP5501034B2 (ja) * 2010-03-01 2014-05-21 シャープ株式会社 通信システム、送信装置、受信装置
KR101676079B1 (ko) * 2010-06-16 2016-11-14 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 기준 신호를 전송 및 디코딩하기 위한 방법 및 장치
JP5869836B2 (ja) 2011-05-20 2016-02-24 株式会社Nttドコモ 受信装置、送信装置及び無線通信方法
WO2012173568A1 (en) * 2011-06-17 2012-12-20 Telefonaktiebolaget L M Ericsson (Publ) Improving wireless device performance in heterogeneous networks
US8873504B2 (en) * 2012-08-29 2014-10-28 Motorola Mobility Llc Flexible low complexity reference signal filtering for LTE receivers
EP3039836A1 (en) * 2013-08-29 2016-07-06 Interdigital Patent Holdings, Inc. Methods and apparatus for faster than nyquist rate multi-carrier modulation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DEEPAK DASALUKUNTE: "Multicarrier Faster-Than- Nyquist Transceivers: Hardware Architecture and Performance Analysis", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, vol. 58, no. Issue:4, April 2011 (2011-04-01), pages 827 - 838, XP011352197 *
SHUHEI HOSHIBA: "Basic BLER Study of Faster- than-Nyquist for OFDM/OQAM in Multipath Fading Channel", IEICE TECHNICAL REPORT, vol. 113, no. 386, 16 January 2014 (2014-01-16), pages 187 - 192 *
T.HIRANO: "TDM Based Reference Signal Multiplexing for Faster-than-Nyquist Signaling Using OFDM/OQAM, Communication Systems(ICCS", 2014 IEEE INTERNATIONAL CONFERENCE ON, 19 November 2014 (2014-11-19), pages 437 - 441, XP055220647 *
TAKAHIRO HIRANO: "TDM Based Reference Signal Multiplexing for Faster-than-Nyquist Signaling Using OFDM/OQAM", IEICE TECHNICAL REPORT, vol. 114, no. 180, 12 August 2014 (2014-08-12), pages 85 - 90, XP055220647 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374855B2 (en) 2015-12-28 2019-08-06 Sony Corporation Apparatus and method
CN107623542A (zh) * 2016-07-13 2018-01-23 华为技术有限公司 一种发送参考信号的方法、相关设备及通信系统
CN107623542B (zh) * 2016-07-13 2023-09-01 华为技术有限公司 一种发送参考信号的方法、相关设备及通信系统
WO2018052061A1 (ja) * 2016-09-16 2018-03-22 株式会社Nttドコモ 送信装置及び無線通信方法

Also Published As

Publication number Publication date
EP3113395A4 (en) 2017-08-30
EP3113395A1 (en) 2017-01-04
JP2015164257A (ja) 2015-09-10
EP3113395B1 (en) 2020-01-15
JP6254019B2 (ja) 2017-12-27
US20170078061A1 (en) 2017-03-16
US10177887B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
JP6345949B2 (ja) ユーザ端末、無線基地局、無線通信方法及び無線通信システム
JP6254019B2 (ja) 無線基地局、ユーザ端末、無線通信方法及び無線通信システム
KR102591054B1 (ko) 필터 뱅크 다중 캐리어 시스템에서의 신호 송수신 방법 및 장치
JP6462891B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
US8971265B2 (en) Communication system, communication method and base station
JP5539362B2 (ja) Pucchの空間符号送信ダイバーシチ方法及びシステム
JP5635183B2 (ja) シンボル間の電力の配分を最適化するための方法および装置
KR101564479B1 (ko) V-mimo 복조를 위한 저감된 복잡도의 채널 추정 및 간섭 제거를 위한 방법 및 시스템
JP6077529B2 (ja) 無線通信システムで専用基準信号のための制御チャネル伝送方法および装置
WO2015129874A1 (ja) 無線基地局、ユーザ端末、無線通信方法及び無線通信システム
EP3042462A1 (en) Device and method of enhancing downlink ue-specific demodulation reference signal to facilitate inter -cell interference supression
WO2016158537A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
WO2013161588A1 (ja) 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
JP2019501560A (ja) 多長ztのdft−s−ofdm送信
Kamath et al. Transmit receive chain in LTE
WO2014045755A1 (ja) 無線通信システム、ユーザ端末、無線基地局及び無線通信方法
CN111431680B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
EP4229841A1 (en) Enabling inter carrier interface compensation for interleaved mapping from virtual to physical resource blocks
KR20100035565A (ko) 다중안테나를 갖는 무선 통신 시스템에서 레퍼런스 신호를 상향 전송하는 방법
Berardinelli et al. Open loop transmit diversity solutions for LTE-A Uplink
Mountassir Contributions to LTE implementation
Banawan COLLABORATIVE MULTIPLE INPUT MULTIPLE OUTPUT AND TURBO EQUALIZATION TECHNIQUES FOR THE UPLINK OF THE LTE-ADVANCED SYSTEM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754699

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15121935

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015754699

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015754699

Country of ref document: EP