[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015115555A1 - 油圧式オートテンショナ - Google Patents

油圧式オートテンショナ Download PDF

Info

Publication number
WO2015115555A1
WO2015115555A1 PCT/JP2015/052546 JP2015052546W WO2015115555A1 WO 2015115555 A1 WO2015115555 A1 WO 2015115555A1 JP 2015052546 W JP2015052546 W JP 2015052546W WO 2015115555 A1 WO2015115555 A1 WO 2015115555A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
leak gap
hole
rod
pressure chamber
Prior art date
Application number
PCT/JP2015/052546
Other languages
English (en)
French (fr)
Inventor
唯久 田中
前野 栄二
洋生 森本
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014016457A external-priority patent/JP6234252B2/ja
Priority claimed from JP2014030558A external-priority patent/JP6263409B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2015115555A1 publication Critical patent/WO2015115555A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0829Means for varying tension of belts, ropes, or chains with vibration damping means
    • F16H7/0836Means for varying tension of belts, ropes, or chains with vibration damping means of the fluid and restriction type, e.g. dashpot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/0806Compression coil springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0848Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
    • F16H2007/0859Check valves

Definitions

  • the present invention relates to a hydraulic auto tensioner used for adjusting the tension of a belt that drives an auxiliary machine such as an alternator, a water pump, and a compressor of an air conditioner.
  • an engine equipped with an ISG (Integrated Starter Generator) idle stop mechanism that stops the engine when the vehicle stops and starts the engine instantly when the vehicle starts when the accelerator pedal is depressed. Proposed.
  • ISG Integrated Starter Generator
  • FIGS. 11A and 11B show an engine belt transmission device equipped with an ISG idle stop mechanism that achieves both engine accessory drive and engine start, and a crankshaft pulley P 1 attached to a crankshaft 71.
  • the belt 74 between the accessory pulley P 3 attached to a rotating shaft of the auxiliary machine 73 such as a water pump during normal operation of the engine, as shown in FIG. 11 (a)
  • the starter-generator 72 and the auxiliary 73 by rotation in the direction indicated by the arrow of the crankshaft pulley P 1, to function starter-generator 72 as a generator I am doing so.
  • starter generator 72 when the engine is started by driving the starter generator 72, as shown in FIG. 11 (b), rotates the crankshaft pulley P 1 by rotation in the direction indicated by the arrow of the starter-generator pulley P 2, starter The generator 72 is caused to function as a starter.
  • the belt transmission device as described above, a tension pulley 75 provided on the crankshaft pulley P 1 and the starter generator belt portion 74a over the pulley P 2, the swingable pulley arm 76 for rotatably supporting the tension pulley 75
  • the adjustment force of the hydraulic auto tensioner A is applied to urge the pulley arm 76 in the direction in which the tension pulley 75 presses the belt 74, so that the tension change of the belt 74 is absorbed by the hydraulic auto tensioner A.
  • a sealed reservoir chamber is provided between the inner periphery of the cylinder and the outer periphery of the valve sleeve, and the lower portion of the reservoir chamber and the lower portion of the pressure chamber communicate with each other through an oil passage formed in the bottom surface of the cylinder.
  • a check valve is installed in the lower end, and when the pushing force is applied to the rod and the pressure in the pressure chamber becomes higher than the pressure in the reservoir chamber, the check valve is closed to block the communication between the oil passage and the pressure chamber. ing.
  • the connecting piece provided on the upper surface of the spring seat is rotatably connected to the engine block E shown in FIG. 11A, and the connecting piece provided on the lower surface of the cylinder is connected.
  • the leak gap is set to a size that can absorb the belt tension fluctuation during the normal operation of the engine, the leak gap is large, and therefore, the rod 74 is largely pushed in when the engine is started by driving the starter generator 72, and the belt 74 This may cause slack in the belt, and slippage at the contact portion between the belt 74 and the pulleys P 1 to P 3 , which may reduce the life of the belt and cause engine start failure due to the starter / generator 72.
  • the leak gap is set to a size that can absorb fluctuations in the tension of the belt 74 when the engine is started by driving the starter generator 72, the tension of the belt 74 during normal operation of the engine is reduced because the leak gap is small. Since the belt 74 becomes too high and the belt 74 becomes over-tensioned, the belt 74 and the bearings that rotatably support the pulleys P 1 to P 3 are liable to be damaged, resulting in a problem of increased fuel consumption.
  • An object of the present invention is to provide a hydraulic auto tensioner that can apply an appropriate tension to the belt during normal operation of the engine and when the engine is started with a starter generator.
  • a valve sleeve is projected from the bottom of a bottomed cylinder filled with oil, and the lower end of the rod is slidably inserted into the valve sleeve.
  • a pressure spring is provided in the valve sleeve, and a return spring that urges the cylinder and the rod in the extending direction is incorporated between a spring seat provided at the top of the rod and the bottom surface of the cylinder, and the inner circumference of the cylinder and the valve sleeve
  • An oil passage that communicates between the lower part of the reservoir chamber and the lower part of the pressure chamber formed between the outer circumferences of the pressure chambers and closes when the pressure in the pressure chamber becomes higher than the pressure in the reservoir chamber in the lower end of the valve sleeve.
  • a first check valve that shuts off the communication between the chamber and the oil passage, and closes the first check valve when a pushing force is applied to the rod,
  • a hydraulic auto tensioner that leaks into a reservoir chamber from a leak channel provided in an upper portion of the pressure chamber so as to buffer a pushing force applied to the rod by a hydraulic damper action by oil in the pressure chamber.
  • the leak passage is connected to the pressure chamber via a communication passage having an axial hole that opens at a lower end surface of the rod and a radial hole that communicates with an upper portion of the axial hole and opens at an outer diameter surface of the rod.
  • a configuration is adopted in which opening and closing is possible by a second check valve whose set pressure is higher than that of the first check valve.
  • a spring seat at the end of the rod is attached to a tensioner attachment target such as an engine block.
  • the closed end of the cylinder is connected to a pulley arm that supports the tension pulley.
  • the belt tension increases rapidly and the pressure in the pressure chamber increases rapidly.
  • the first check valve is closed and, after the first check valve is closed, the second check valve is closed to block the communication path between the pressure chamber and the first leak gap.
  • the oil in the pressure chamber leaks from the second leak gap into the reservoir chamber. Since the flow resistance of the second leak gap is large, the pressure drop in the pressure chamber is small, and the belt tension required to drive the crankshaft is suppressed because the push of the rod is suppressed by the hydraulic damper action in the pressure chamber. To prevent slippage between the belt and the pulley.
  • a pin when the first leak gap is formed, a pin is fitted into the radial hole in the communication path, and a spiral groove is provided between the fitting surface of the pin and the radial hole.
  • the groove may be the first leak gap.
  • a guide cylinder is provided in the axial hole in the communication path, a radial groove is provided on the upper end surface of the guide cylinder, and a spiral groove communicating with the radial hole is provided on the upper outer periphery, and the spiral groove is used as the first leak gap. It is good.
  • annular leak gap formed between the sliding surfaces of the rod and the valve sleeve is defined as a second leak gap.
  • a valve seat fitted in the lower end portion of the axial hole in the communication path, and a valve hole formed in the valve seat are connected to the valve seat.
  • the second check valve when the second check valve is configured to press the check ball directly by the coil spring and urge it in the opening direction, the check ball is opened by using a coil spring whose inner diameter is smaller than the check ball diameter and weak in elastic force. It is necessary to urge toward the direction.
  • the second check valve is easily closed during normal operation, leading to unnecessary valve closing, and there is a possibility that the flow rate cannot be regulated by the first leak gap.
  • the hydraulic damper force cannot be set small, the belt tension during normal operation increases, and fuel consumption increases.
  • a coil spring having a larger elastic force than the diameter of the check ball can be employed by urging the check ball in the opening direction via the pusher. For this reason, there is no inconvenience that the second check valve is unnecessarily closed during normal operation, and the hydraulic damper force can be set small by regulating the flow rate by the first leak gap. As a result, the belt tension during normal operation can be lowered, and the fuel consumption can be improved.
  • a guide hole having a diameter larger than the diameter of the check ball is provided continuously at the lower end of the valve hole formed in the valve seat, and the check ball for opening and closing the valve hole is freely movable in the guide hole.
  • the pusher has a push rod for squeezing the valve body, which is slidably inserted into the valve hole, and a spring seat which is provided on the push rod and supports the end of the coil spring. Is the outer diameter that is slidably guided on the inner diameter surface of the communication path, and the lower end opening is the upper opening of the valve hole while the spring seat is seated on the upper end surface of the valve seat.
  • the first leak gap and the second leak gap are not limited to those described above.
  • it may consist of the following configurations a to c.
  • Configuration a Two annular leak gaps with different clearances are provided between the sliding surfaces of the rod and the valve sleeve, with an axial gap provided so that the leak gap with a small clearance is located on the pressure chamber side.
  • a leak gap having a large amount is designated as a first leak gap, and a leak gap having a small gap is designated as a second leak gap.
  • Configuration b A cylindrical core is incorporated in the axial hole in the communication path, and an annular leak gap formed between the outer diameter surface of the core and the inner diameter surface of the axial hole is defined as the first leak gap.
  • An annular leak gap formed between the sliding surfaces of the valve sleeve and the rod is used as the second leak gap.
  • Configuration c A cylindrical core is incorporated in the axial hole in the communication path, and the spiral groove formed on the outer diameter surface of the core is used as the first leak gap, and is formed between the sliding surface of the rod and the valve sleeve.
  • the annular leak gap formed as a second leak gap.
  • the second check valve having the following configuration can be adopted. That is, it consists of a check ball provided so as to be able to contact and separate from the seat surface formed in the axial hole of the communication path, and a coil spring that urges the check ball in a direction away from the seat surface, A valve retainer having an oil passage hole in a lower end portion of the axial hole is used to prevent the check ball from being removed.
  • the response of the second check valve can be improved, and the starter generator A relatively large hydraulic damper force can be instantaneously generated when the engine is started. As a result, it is possible to prevent the generation of abnormal noise due to the slip of the belt and to suppress the reduction in the life due to the wear of the belt and the pulley.
  • the check ball in the first check valve is made of steel
  • the check ball of the second check valve is made of ceramic.
  • the ceramic silicon carbide, silicon nitride, alumina, or aluminum nitride can be employed.
  • the leak flow path that leaks the oil in the pressure chamber to the reservoir chamber is divided into two leak paths, the first leak gap and the second leak gap.
  • a second check valve which is formed by a leak gap, opens and closes the first leak gap having a small flow path resistance and communicates with the pressure chamber by pressure fluctuation in the pressure chamber, and the set pressure is higher than that of the first check valve.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of a hydraulic auto tensioner according to the present invention.
  • Sectional drawing which expands and shows the formation site of the 1st leak gap of FIG. 1, and the 2nd leak gap Sectional view along line III-III in FIG.
  • Sectional drawing which shows the state which the oil in a pressure chamber has leaked from the 2nd leak clearance
  • Sectional drawing which shows 2nd Embodiment of the hydraulic auto tensioner which concerns on this invention
  • Sectional drawing which shows 3rd Embodiment of the hydraulic auto tensioner which concerns on this invention
  • Sectional drawing which shows the state in which the oil in the pressure chamber of the hydraulic auto tensioner shown in FIG.
  • FIG. 1 to 4 show a first embodiment of a hydraulic auto tensioner according to the present invention.
  • the cylinder 1 has a bottom portion, and a connecting piece 2 connected to the pulley arm 76 of FIG. 11A is provided on the bottom surface of the bottom portion.
  • the connecting piece 2 is provided with a shaft insertion hole 2a penetrating from one side surface to the other side surface, a cylindrical fulcrum shaft 2b in the shaft insertion hole 2a, and a sliding bearing 2c for rotatably supporting the fulcrum shaft 2b.
  • the fulcrum shaft 2b is fixed by tightening a bolt that is inserted into the fulcrum shaft 2b and threadedly engaged with the pulley arm 76, and the cylinder 1 and the pulley arm 76 are relatively positioned around the fulcrum shaft 2b. It is a rotatable connection.
  • a sleeve fitting hole 3 is provided on the bottom surface of the cylinder 1, and a lower end portion of a steel valve sleeve 4 is press-fitted into the sleeve fitting hole 3.
  • the lower portion of the rod 5 is slidably inserted into the valve sleeve 4, and a pressure chamber 6 is provided in the valve sleeve 4 below the rod 5 by the insertion of the rod 5.
  • a spring seat 7 is fixed to an upper end portion of the rod 5 located outside the cylinder 1, and a return spring 8 incorporated between the spring seat 7 and the bottom surface of the cylinder 1 extends relative to the cylinder 1 and the rod 5. It is energizing in the direction to do.
  • a connecting piece 9 connected to the engine block E shown in FIGS. 11A and 11B is provided on the upper end of the spring seat 7.
  • the connecting piece 9 is formed with a sleeve insertion hole 9a penetrating from one side surface to the other side surface, and a sleeve 9b and a slide bearing 9c for rotatably supporting the sleeve 9b are incorporated in the sleeve insertion hole 9a.
  • the connecting piece 9 is rotatably connected to the engine block E by tightening a bolt that is inserted into the sleeve 9 b and screwed to the engine block E.
  • the spring seat 7 is formed of a molded product, and a cylindrical dust cover 10 that covers the upper outer periphery of the cylinder 1 and a cylindrical spring cover 11 that covers the upper portion of the return spring 8 are simultaneously molded to form the spring seat 7. It is integrated.
  • the spring seat 7 may be an aluminum die-cast molded product, or may be a molded product of a resin such as a thermosetting resin.
  • the entire outer periphery of the spring cover 11 is covered with a cylindrical body 12 that is insert-molded when the spring seat 7 is molded.
  • the cylinder 12 is made of a press-formed product of a steel plate.
  • An oil seal 13 as a seal member is incorporated in the upper opening of the cylinder 1, and the inner periphery of the oil seal 13 is in elastic contact with the outer peripheral surface of the cylinder 12 to close the upper opening of the cylinder 1. This prevents the oil filled inside the tank from leaking to the outside and prevents dust from entering the inside.
  • a sealed reservoir chamber 14 is formed between the cylinder 1 and the valve sleeve 4.
  • the reservoir chamber 14 and the pressure chamber 6 are an oil reservoir comprising an oil passage 15 formed between the fitting surfaces of the sleeve fitting hole 3 and the valve sleeve 4 and a circular recess formed at the center of the bottom surface of the sleeve fitting hole 3. 16 to communicate with each other.
  • a first check valve 17 is incorporated in the lower end portion of the valve sleeve 4.
  • the first check valve 17 includes a check ball 17c for opening and closing the valve hole 17b of the valve seat 17a press-fitted into the lower end portion of the valve sleeve 4 from the pressure chamber 6 side, and urging the check ball 17c toward the valve hole 17b. And a retainer 17e for restricting the opening / closing amount of the check ball 17c.
  • the check ball 17c closes the valve hole 17b and the communication between the pressure chamber 6 and the oil passage 15 is cut off. 6 is prevented from flowing into the reservoir chamber 14 through the oil passage 15.
  • the rod 5 is provided with a communication path 18 that communicates the pressure chamber 6 and the reservoir chamber 14.
  • the communication path 18 includes an axial hole 18 a that opens at the lower end surface of the rod 5, and a radial hole 18 e that communicates with the upper portion of the axial hole 18 a and opens at the outer diameter surface of the rod 5.
  • a pin 20 is press-fitted into the radial hole 18e, and a spiral groove 21 that connects the communication path 18 and the reservoir chamber 14 is formed on the outer diameter surface of the pin 20, and the spiral groove 21 serves as a first leak gap. ing. In addition, you may make it provide the 1st leak clearance 21 which consists of a spiral groove in the internal diameter surface of the radial direction hole 18e.
  • the axial hole 18a is a stepped hole having a large-diameter hole 18b, a medium-diameter hole 18c, and a small-diameter hole 18d in order from the bottom, and a second check is placed in the large-diameter hole 18b of the axial hole 18a.
  • a valve 22 is incorporated.
  • the second check valve 22 includes a valve seat 23, a check ball 26 for opening / closing a valve hole 24 formed on the axis of the valve seat 23, a pusher 27 for pressing the check ball 26, and the pusher 27.
  • a coil spring 28 that urges the check ball 26 in the opening direction, and a valve retainer 29 that regulates the opening / closing amount of the check ball 26.
  • the valve seat 23 is press-fitted into the large-diameter hole portion 18a, and is positioned in the axial direction by contact with the upper end wall of the large-diameter hole portion 18a, and tapers at the lower end of the valve hole 24 formed on the shaft center.
  • a sheet surface 25 is provided.
  • a tapered large-diameter hole portion 24 a is provided in the upper portion of the valve hole 24.
  • the check ball 26 can be separated from the seat surface 25 and closes the valve hole 24 by contact.
  • the pusher 27 has a push rod 27a inserted into the valve hole 24 in the lower part, a spring seat 27b is provided on the push rod 27a, and a protruding shaft 27c is provided on the upper surface of the spring seat 27b. ing.
  • the spring seat 27b is slidable along the inner diameter surface of the medium-diameter hole 18b, and a plurality of axial grooves 30 are spaced apart in the circumferential direction on the outer diameter surface, as shown in FIGS. Formed.
  • each of the plurality of axial grooves 30 faces the large-diameter hole portion 24 a of the valve hole 24 in the vertical direction, and the lower surface of the spring seat 27 b is axially lowered when the pusher 27 is seated on the upper end surface of the valve seat 23.
  • the lower end opening of the groove 30 communicates with the large diameter hole portion 24 a of the valve hole 24.
  • the inner diameter of the coil spring 28 is larger than the diameter of the check ball 26, and the lower end thereof is supported by the spring seat 27 b of the pusher 27 to urge the pusher 27 downward.
  • the spring seat 27b is supported on the upper surface of the valve seat 23, and the check ball 26 is held by the push rod 27a to open the valve hole 24.
  • the valve retainer 29 has a cup shape in which a cylindrical portion 29b is provided on the outer periphery of the circular end plate 29a, and an oil passage hole 31 is formed in the cylindrical portion 29b.
  • the valve retainer 29 is mounted to press-fit the cylindrical portion 29b into the large-diameter hole portion 18a, and restricts the opening / closing stroke of the check ball 26 to a small range.
  • the set pressure of the second check valve 22 is higher than the set pressure of the first check valve 17, and after the first check valve 17 is closed, when the pressure in the pressure chamber 6 further rises, it operates to close the communication path 18.
  • a small-diameter hole portion 4a is provided in the upper part of the inner periphery of the valve sleeve 4, and the rod 5 is slidable along the inner diameter surface of the small-diameter hole portion 4a.
  • An annular leak gap 32 is provided.
  • the leak gap 32 is a second leak gap, and the flow resistance of the second leak gap 32 is larger than that of the first leak gap 21 formed of the spiral groove described above.
  • Each of the first leak gap 21 and the second leak gap 32 causes a hydraulic damper action in the pressure chamber 6 due to viscous resistance when oil in the pressure chamber 6 leaks along the leak gaps 21 and 32. It is like that.
  • the first leak gap 21 is set to a size capable of absorbing fluctuations in the tension of the belt 74 during normal operation of the engine shown in FIG. 11A due to a hydraulic damper action caused by oil leak.
  • the second leak gap 32 is set to such a size that the rod 5 is not pushed suddenly when the engine is started by driving the starter generator 72 shown in FIG.
  • An annular tapered groove 33 having a small diameter at the top is formed on the outer periphery of the lower end of the rod 5, and a retaining ring 34 is incorporated in the tapered groove 33.
  • the outer peripheral portion of the retaining ring 34 is exposed to the outside from the tapered groove 33 and faces the step portion 35 formed on the inner peripheral upper portion of the valve sleeve 4 in the vertical direction, and the rod 5 is prevented from being pulled out by contact with the step portion 35. .
  • the hydraulic auto-tensioner shown in the first embodiment has the above-described configuration.
  • the connecting piece 9 is connected to the engine block, and the connecting piece 2 provided at the closed end of the cylinder 1 is connected to the pulley arm 76 to apply an adjusting force to the pulley arm 76.
  • the oil in the pressure chamber 6 is axially directed from the valve hole 24 as shown by the arrow in FIG.
  • the oil flows into the groove 30, flows into the first leak gap 21 from the medium diameter hole 18 c and the small diameter hole 18 d of the communication passage 18, leaks into the reservoir chamber 14, and is pressurized by the oil flowing through the first leak gap 21.
  • a hydraulic damper force is generated in the chamber 6. The pushing force applied to the hydraulic auto tensioner is buffered by the hydraulic damper force.
  • the first leak gap 21 is set to a size that can absorb fluctuations in the tension of the belt 74 during normal operation of the engine, the tension of the belt 74 during normal operation of the engine will not be too high. And is maintained at an appropriate tension.
  • the communication path 18 is in a state of blocking the communication between the pressure chamber 6 and the first leak gap 21, so that the oil in the pressure chamber 6 is changed as shown by an arrow in FIG. 2 It flows into the leak gap 32 and leaks into the reservoir chamber 14.
  • the hydraulic damper force can be set to be small by regulating the flow rate by the above, and the belt tension during normal operation can be lowered.
  • the pusher 27 is provided with a spring seat 27b that is slidably guided on the inner diameter surface of the medium diameter hole 18c, and the axial groove 30 is provided on the outer diameter surface of the spring seat 27b, thereby suppressing the inclination of the pusher 27. A sufficient oil flow rate can be ensured in the state.
  • FIG. 5 shows a second embodiment of the hydraulic auto tensioner according to the present invention.
  • the axial hole 18a of the communication passage 18 formed in the rod 5 is a stepped hole in which a small diameter hole 18d is formed in the upper part of the large diameter hole 18b, and the small diameter hole 18d is in the small diameter hole 18d.
  • a guide cylinder 40 for slidingly guiding the spring seat 27b of the pusher 27 is provided, and the rod 5 is in a contracted state that most penetrates into the valve sleeve 4 and is located outside the inner diameter surface in a portion positioned higher than the upper end of the valve sleeve 4.
  • a radial hole 18e penetrating the radial surface is provided, and the guide tube 40 is provided with a radial groove 42 on the upper end surface and a spiral groove 43 communicating with the radial groove 42 and the radial hole 18e on the upper outer periphery.
  • the spiral groove 43 serves as a first leak gap.
  • a guide hole 44 is provided below the valve hole 24 formed in the valve seat 23 to guide the check ball 26 so that the check ball 26 can move by a fixed stroke.
  • the communication passage 18 is in a state of blocking the communication between the pressure chamber 6 and the first leak gap 43, so that the oil in the pressure chamber 6 flows between the sliding surfaces of the valve sleeve 4 and the rod 5. It flows into the second leak gap 32 formed therebetween and leaks into the reservoir chamber 14.
  • an appropriate tension can be applied to the belt 74 during normal operation of the engine and when the engine is started by the starter / generator.
  • the tensioner needs to be contracted to some extent until the check valve 26 is completely closed.
  • the present invention can also be applied to an engine having a small torque and having a relatively small difference between the pressure in the pressure chamber 6 at the start of the engine and the pressure in the pressure chamber 6 at the normal operation.
  • FIG. 6 shows a third embodiment of the hydraulic auto tensioner according to the present invention.
  • two large-diameter portions 5a and 5b are vertically provided at the lower end portion of the rod 5 inserted in the cylindrical inner surface of the valve sleeve 4 at intervals in the axial direction.
  • the portion 5a is made smaller than the outer diameter of the lower large diameter portion 5b, and an annular leak gap 45 formed between the outer diameter surface of the upper large diameter portion 5a and the inner diameter surface of the valve sleeve 4 is defined as the first leak gap.
  • annular leak gap 46 formed between the sliding surface of the lower large diameter portion 5b and the valve sleeve 4 is used as the second leak gap.
  • a communication passage 47 that communicates the pressure chamber 6 and the first leak gap 45 is provided at the lower end of the rod 5.
  • the communication passage 47 includes an axial hole 47a that extends in the axial direction from the lower end surface of the rod 5, and a radial hole 47b that intersects the axial hole 47a and opens at the lower outer diameter surface of the upper large-diameter portion 5a.
  • the second check valve 48 is incorporated in the axial hole 47a.
  • the second check valve 48 has a check ball 50 that can be brought into and out of contact with a tapered seat surface 49 formed in the axial hole 47 a, and a direction in which the check ball 50 is separated from the seat surface 49.
  • the ring-shaped valve retainer 52 that holds the check ball 50 in an open state is press-fitted into the lower end portion of the axial hole 47a.
  • the set pressure of the second check valve 48 is higher than the set pressure of the first check valve 17 incorporated in the lower end portion of the valve sleeve 4, and after the first check valve 17 is closed, when the pressure in the pressure chamber 6 further increases, the shaft The direction hole 47a is closed to block communication between the communication passage 47 and the first leak gap 45.
  • the check ball 50 of the second check valve 48 is formed of a ceramic having a specific gravity smaller than that of the check ball 17c made of steel of the first check valve 17 incorporated in the lower end portion of the valve sleeve 4.
  • the ceramic include silicon carbide (SiC), silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), aluminum nitride (AlN), and any ceramic may be employed.
  • annular groove 53 is formed in the upper end portion of the inner diameter surface of the valve sleeve 4, and a retaining ring 54 is incorporated in the annular groove 53, and the upper end surface of the upper large diameter portion 5 a with respect to the inner peripheral portion of the retaining ring 54 is The rod 5 is prevented from coming out of the valve sleeve 4 by the contact. Since the other structure is the same as that of the hydraulic auto tensioner shown in FIG.
  • check ball 50 of the second check valve 48 moves upward due to the pressure increase in the pressure chamber 6 after the first check valve 17 is completely closed, and is separated from the valve retainer 52, as shown in FIG. In addition, it does not move up to a position where it contacts the seat surface 24 and is kept open.
  • the oil in the pressure chamber 6 flows into the communication passage 47 as shown by the arrow in FIG. 7, flows through the first leak gap 45, leaks into the reservoir chamber 14, and flows through the first leak gap 45.
  • a hydraulic damper force is generated in the pressure chamber 6 due to the viscous resistance.
  • the pushing force applied to the hydraulic auto tensioner is buffered by the hydraulic damper force, and the belt 74 is held at an appropriate tension.
  • the communication passage 47 is in a state where the communication between the pressure chamber 6 and the first leak gap 45 is blocked, so that the oil in the pressure chamber 6 is second as shown by the arrow in FIG. It flows from the leak gap 46 into the first leak gap 45 and leaks into the reservoir chamber 14.
  • the time required to generate pressure varies depending on the engine performance. For this reason, if the check ball 50 in the second check valve 48 is made of steel, which is generally employed and has a large specific gravity, it takes time to close the second check valve 48 and applies an appropriate tension to the belt. The belt 74 may slip and generate abnormal noise, or the engine cannot be restarted.
  • the check ball 50 in the second check valve 48 is made of ceramic having a small specific gravity, the second check valve 50 has good responsiveness to pressure fluctuations in the pressure chamber 6, and when the belt tension suddenly increases, 2
  • the check ball 50 of the check valve 48 is instantly seated on the seat surface 49 and immediately closes the communication passage 47. For this reason, the above problems do not occur.
  • FIG. 9 shows a fourth embodiment of the hydraulic auto tensioner according to the present invention.
  • the communication path 18 formed in the rod 5 has the same configuration as the communication path 18 shown in FIG. 2, and a cylindrical core 55 is incorporated in the medium diameter hole portion 18 c.
  • An annular leak gap 56 formed between the outer diameter face and the inner diameter face of the medium diameter hole 18 c is defined as a first leak gap, and the first leak gap 56 is formed in a radial groove formed in the upper end face of the core 55.
  • the small diameter hole 18d communicates with 55a.
  • a second check valve 57 for opening and closing the large diameter hole 18b is incorporated in the large diameter hole 18b of the axial hole 18a.
  • the second check valve 57 has a valve seat 59 formed on the shaft center and a valve seat 58 provided with a radial groove 60 on the upper end surface, and a tapered seat surface 61 formed on the lower end of the valve hole 59.
  • the check ball 62 is provided so as to be freely contacted to and separated from each other, and a coil spring 63 that urges the check ball 62 in a direction away from the seat surface 61.
  • the cap-shaped retainer 29 having an oil passage hole 31 press-fitted into the diameter hole portion 18b is held in an open state.
  • check ball 38 in the second check valve 25 is made of ceramic in the same manner as the check ball 26 shown in FIG.
  • the second check valve 57 is closed by a large pushing force applied to the rod 5 from the belt 74, and the oil in the pressure chamber 6 is closed. Is leaked from the second leak gap 32 having a large flow path resistance to the reservoir chamber 14, and a sudden pressure drop in the pressure chamber 6 is suppressed by the viscous resistance of oil flowing through the second leak gap 32, and the rod 5 is pushed in greatly.
  • the belt 74 is held at the belt tension necessary to drive the crankshaft 71.
  • the check ball 62 in the second check valve 57 is made of ceramic, the response of the second check valve 57 to the pressure fluctuation in the pressure chamber 6 is good, and when the belt tension suddenly increases, 2
  • the check ball 62 of the check valve 57 is instantly seated on the seat surface 61 and immediately closes the lower large-diameter hole portion 18b of the communication passage 18 to securely hold the belt 74 at an appropriate tension.
  • the annular leak gap formed between the outer diameter surface of the core 55 and the inner diameter surface of the medium diameter hole 18c is defined as the first leak gap 56, but in the fifth embodiment shown in FIG.
  • the spiral groove 65 may be formed on the outer diameter surface of the core 64, and the spiral groove 65 may be used as the first leak gap.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

油圧式オートテンションナの圧力室(6)内のオイルをリークさせるリーク流路を、ロッド(5)に形成された連通路(18)を介して圧力室(6)とリザーバ室(14)を連通する流路抵抗の小さな第1リーク隙間(21)と流路抵抗の大きな第2リーク隙間(32)で形成し、連通路(18)を第1チェックバルブ(17)より設定圧力が高くされた第2チェックバルブ(22)により開閉自在とする。エンジンの通常運転時、圧力室(6)のオイルを流路抵抗の小さな第1リーク隙間(21)からリザーバ室(14)にリークさせ、スタータ・ジェネレータでのエンジン始動時に、圧力室(6)のオイルを流路抵抗の大きな第2リーク隙間(32)からリザーバ室(14)にリークさせて、ベルトに適正な張力を付与する。

Description

油圧式オートテンショナ
 この発明は、オルタネータやウォータポンプ、エアコンディショナのコンプレッサ等の補機を駆動するベルトの張力調整用に用いられる油圧式オートテンショナに関する。
 二酸化炭素の排出量を削減するため、車両の停止時にエンジンを停止し、アクセルペダルの踏み込みによる車両の発進時にエンジンを瞬時に始動させるISG(Integrated Starter Generator)のアイドルストップ機構が搭載されたエンジンが提案されている。
 図11(a)、(b)は、エンジン補機駆動とエンジン始動を両立するISGのアイドルストップ機構が搭載されたエンジンのベルト伝動装置を示し、クランクシャフト71に取り付けられたクランクシャフトプーリPと、ISGのスタータ・ジェネレータ72の回転軸に取り付けられたスタータ・ジェネレータプーリPと、ウォータポンプ等の補機73の回転軸に取り付けられた補機プーリP間にベルト74を掛け渡し、エンジンの通常運転時、図11(a)に示すように、クランクシャフトプーリPの矢印で示す方向の回転によりスタータ・ジェネレータ72および補機73を駆動し、スタータ・ジェネレータ72をジェネレータとして機能させるようにしている。
 一方、スタータ・ジェネレータ72の駆動によるエンジンの始動時、図11(b)に示すように、スタータ・ジェネレータプーリPの矢印で示す方向の回転によりクランクシャフトプーリPを回転させて、スタータ・ジェネレータ72をスタータとして機能させるようにしている。
 上記のようなベルト伝動装置においては、クランクシャフトプーリPとスタータ・ジェネレータプーリPにわたるベルト部74aにテンションプーリ75を設け、そのテンションプーリ75を回転自在に支持する揺動可能なプーリアーム76に油圧式オートテンショナAの調整力を付与してテンションプーリ75がベルト74を押圧する方向にプーリアーム76を付勢し、ベルト74の張力変化を油圧式オートテンショナAにより吸収するようにしている。
 油圧式オートテンショナAとして、下記特許文献1や特許文献2に記載されたものが従来から知られている。この油圧式オートテンショナにおいては、シリンダの底面上に突設されたバルブスリーブ内にロッドの下端部を摺動自在に挿入して、バルブスリーブ内に圧力室を形成し、上記ロッドの上端部に設けられたばね座とシリンダの底面間にリターンスプリングを組み込んで、ロッドとバルブスリーブを伸長する方向に付勢している。
 また、シリンダの内周とバルブスリーブの外周間に密閉されたリザーバ室を設け、そのリザーバ室の下部と上記圧力室の下部をシリンダの底面部に形成された油通路で連通し、バルブスリーブの下端部内にはチェックバルブを組込み、ロッドに押込み力が負荷され、圧力室の圧力がリザーバ室の圧力より高くなった際、チェックバルブを閉鎖して油通路と圧力室の連通を遮断するようにしている。
 上記の構成からなる油圧式オートテンショナは、ばね座の上面に設けられた連結片を図11(a)に示すエンジンブロックEに回動自在に連結し、シリンダの下面に設けられた連結片をプーリアーム76に連結して、ベルト74からテンションプーリ75およびプーリアーム76を介してロッドに押込み力が負荷された際に、チェックバルブを閉じ、圧力室内に封入されたオイルをバルブスリーブとロッドの摺動面間に形成されたリーク隙間に流動させ、その流動時のオイルの粘性抵抗により圧力室内に油圧ダンパ力を発生させて上記押込み力を緩衝するようにしている。
特開2009-275757号公報 特開2012-241794号公報
 ところで、従来の油圧式オートテンショナにおいては、ロッドに押込み力が負荷された際、圧力室内のオイルをバルブスリーブとロッドの摺動面間に形成された単一のリーク隙間からリークさせる構成であるため、エンジンの通常運転時およびスタータ・ジェネレータ72でのエンジン始動時のそれぞれにおいてベルト74に適正な張力を付与することができない。
 すなわち、リーク隙間をエンジンの通常運転時におけるベルトの張力変動を吸収可能な大きさに設定すると、リーク隙間が大きいため、スタータ・ジェネレータ72の駆動によるエンジンの始動時にロッドが大きく押し込まれてベルト74に弛みが生じ、ベルト74とプーリP乃至Pの接触部で滑りが生じ、ベルト寿命の低下やスタータ・ジェネレータ72によるエンジン始動不良が生じる可能性がある。
 一方、リーク隙間をスタータ・ジェネレータ72の駆動によるエンジンの始動時におけるベルト74の張力変動を吸収可能な大きさに設定すると、リーク隙間が小さいために、エンジンの通常運転時におけるベルト74の張力が高くなり過ぎてベルト74が過張力となり、ベルト74やプーリP乃至Pを回転自在に支持する軸受が損傷し易くなり、燃料の消費が多くなるという問題が生じる。
 この発明の課題は、エンジンの通常運転時およびスタータ・ジェネレータでのエンジン始動時のそれぞれにおいてベルトに適正な張力を付与することができるようにした油圧式オートテンショナを提供することである。
 上記の課題を解決するために、この発明においては、オイルが入れられた底付きシリンダの底面上にバルブスリーブを突設し、そのバルブスリーブの内部にロッドの下端部を摺動自在に挿入してバルブスリーブ内に圧力室を設け、前記ロッドの上部に設けられたばね座とシリンダの底面間に、シリンダとロッドを伸張する方向に付勢するリターンスプリングを組込み、前記シリンダの内周とバルブスリーブの外周間に形成されたリザーバ室の下部と前記圧力室の下部を連通する油通路を形成し、前記バルブスリーブの下端部内に前記圧力室の圧力がリザーバ室内の圧力より高くなると閉鎖して圧力室と油通路の連通を遮断する第1チェックバルブを設け、前記ロッドに押込み力が負荷された際に第1チェックバルブを閉じ、圧力室内のオイルを、その圧力室の上側部位に設けられたリーク流路からリザーバ室にリークさせて圧力室内のオイルによる油圧ダンパ作用によりロッドに負荷される押込み力を緩衝するようにした油圧式オートテンショナにおいて、前記リーク流路が、前記ロッドの下端面で開口する軸方向孔およびその軸方向孔の上部に連通してロッドの外径面で開口する径方向孔を有する連通路を介して前記圧力室とリザーバ室を連通する第1リーク隙間と、前記第1リーク隙間よりも流路抵抗が大きく、前記圧力室と前記リザーバ室を常に連通する第2リーク隙間からなり、前記連通路の軸方向孔を前記第1チェックバルブより設定圧力が高くされた第2チェックバルブにより開閉自在とした構成を採用したのである。
 上記の構成からなる油圧式オートテンショナにおいて、ISGのアイドルストップ機構が搭載されたエンジンの補機駆動用ベルト伝動装置におけるベルトの張力調整に際しては、エンジンブロック等のテンショナ取付け対象にロッド先端のばね座を連結し、テンションプーリを支持するプーリアームにシリンダの閉塞端部を連結して、テンションプーリがクランクシャフトプーリとモータ・ジェネレータプーリ間のベルト部を押圧する方向にプーリアームを付勢し、ベルトを緊張させる。
 上記のようなベルト伝動装置への油圧式オートテンショナの組込み状態において、エンジンの通常運転状態でベルトの張力が強くなり、そのベルトからロッドに押込み力が負荷されると、圧力室内の圧力が高くなり、第1チェックバルブが閉鎖して、圧力室内のオイルは連通路から開放状態の第2チェックバルブ内を流通し、流路抵抗の小さな第1リーク隙間からリザーバ室にリークし、第1リーク隙間を流れるオイルの粘性抵抗により圧力室内に油圧ダンパ力が発生し、その油圧ダンパ力によって上記押込み力が緩衝され、ベルトは適正張力に保持される。
 一方、スタータ・ジェネレータの駆動によるエンジン始動時、ベルトの張力は急激に大きくなって圧力室の圧力が急激に上昇する。この時、第1チェックバルブは閉鎖すると共に、その第1チェックバルブの閉鎖後、第2チェックバルブが閉鎖して、圧力室と第1リーク隙間の連通路を遮断する。
 このため、圧力室のオイルは第2リーク隙間からリザーバ室にリークする。その第2リーク隙間の流路抵抗は大きいため、圧力室での圧力低下が少なく、圧力室での油圧ダンパ作用によりロッドの押し込みが抑制されてベルトはクランクシャフトを駆動するのに必要なベルト張力に保持され、ベルトとプーリ間のスリップが防止される。
 この発明に係る油圧式オートテンショナにおいて、第1リーク隙間の形成に際し、連通路における径方向孔内にピンを嵌合し、そのピンと径方向孔の嵌合面間に螺旋溝を設け、その螺旋溝を第1リーク隙間としてもよい。また、連通路における軸方向孔内にガイド筒を設け、そのガイド筒の上端面に径方向溝と、上部外周に前記径方向孔に連通する螺旋溝を設け、その螺旋溝を第1リーク隙間としてもよい。
 上記いずれの第1リーク隙間においても、ロッドとバルブスリーブの摺動面間に形成された円環状のリーク隙間を第2リーク隙間とする。
 圧力室と第1リーク隙間の連通路を遮断する第2チェックバルブとして、連通路における軸方向孔の下端部内に嵌合されたバルブシートと、そのバルブシートに形成された弁孔をバルブシートの下方から開閉するチェックボールと、そのチェックボール押下げ用のプッシャと、そのプッシャを介してチェックボールを開放方向に付勢するコイルばねを有してなり、前記コイルばねの内径が前記チェックボールの直径より大径とされたものを採用することができる。
 ここで、第2チェックバルブがチェックボールをコイルばねにより直接押圧して開放方向に付勢する構成であると、内径がチェックボールの直径より小さな弾性力の弱いコイルばねを用いてチェックボールを開放方向に向けて付勢する必要が生じる。この場合、通常運転時に第2チェックバルブが閉鎖し易くなって不要なバルブ閉鎖を招き、第1リーク隙間による流量の規制を行うことができない恐れがある。その結果、油圧ダンパ力を小さく設定することができず、通常運転時のベルト張力が高くなり、燃料の消費が多くなる。
 上記第2チェックバルブのように、プッシャを介してチェックボールを開放方向に付勢することにより、内径がチェックボールの直径より大きい弾性力の大きなコイルばねを採用することができる。このため、通常運転時に第2チェックバルブが不要に閉鎖するという不都合の発生はなく、第1リーク隙間による流量の規制によって油圧ダンパ力を小さく設定することができる。結果として、通常運転時のベルト張力を低くすることができ、燃費の向上を図ることができる。
 上記第2チェックバルブの採用において、軸方向孔の下端部内に通油孔を有するバルブリテナを組み込んでチェックボールの開閉量を規制すると、第2チェックバルブが完全に閉じるまでのテンショナストロークを極めて小さい範囲に設定することができる。
 また、バルブシートに形成された弁孔の下端に連続してチェックボールの直径より大径のガイド孔を設け、そのガイド孔内において弁孔開閉用のチェックボールを移動自在とし、軸方向孔の下端部内に通油孔を有するバルブリテナを組み込んでチェックボールを抜止めすると、チェックボールの開閉ストロークを比較的大きい範囲に設定することができ、エンジン始動時の起動トルクが小さく、エンジン始動時の圧力室の圧力と通常運転時の圧力室の圧力の差が比較的小さなエンジンにも適用することができる。
 さらに、プッシャとして、弁孔内にスライド自在に挿入された弁体押圧用のプッシュロッドと、そのプッシュロッドの上部に設けられてコイルばねの端部を支持するスプリングシートを有し、上記スプリングシートが、連通路の内径面で摺動案内される外径とされ、そのスプリングシートの外径面に、そのスプリングシートがバルブシートの上端面に着座する状態で下端の開口が弁孔の上部開口に連通する軸方向溝を設けたものとすることにより、連通路の内径面によるスプリングシートの摺動案内によってプッシャに傾きが生じるのを防止し、プッシャを軸方向にスムーズに移動させることができる。また、軸方向溝の存在によってスプリングシートの周囲において十分なオイル流量を確保することができる。
 第1リーク隙間および第2リーク隙間は前述のものに限定されるものではない。例えば、下記の構成a乃至cからなるものであってもよい。
 構成a;ロッドとバルブスリーブの摺動面間にすきま量の異なる二つの円環状のリーク隙間を、すきま量の小さなリーク隙間が圧力室側に位置するよう軸方向に間隔をおいて設け、すきま量の大きなリーク隙間を第1リーク隙間とし、すきま量の小さなリーク隙間を第2リーク隙間としたもの。
 構成b;連通路における軸方向孔部内に円柱状のコアを組み込み、そのコアの外径面と軸方向孔部の内径面間に形成された円環状のリーク隙間を第1リーク隙間とし、前記バルブスリーブとロッドの摺動面間に形成された円環状のリーク隙間を前記第2リーク隙間としたもの。
 構成c;連通路における軸方向孔内に円柱状のコアを組み込み、そのコアの外径面に形成された螺旋溝を前記第1リーク隙間とし、前記ロッドとバルブスリーブの摺動面間に形成された円環状のリーク隙間を第2リーク隙間としたもの。
 また、第2チェックバルブは、下記の構成からなるものを採用することができる。
 すなわち、連通路の軸方向孔に形成されたシート面に対して接触、離反可能に設けられたチェックボールと、そのチェックボールを上記シート面から離反する方向に付勢するコイルばねとからなり、前記軸方向孔の下端部内に通油孔を有するバルブリテナを組み込んで前記チェックボールの抜止めとしたもの。
 上記のような第2チェックバルブの採用において、チェックボールを第1チェックバルブにおけるチェックボールより比重の小さい材料で形成しておくと、第2チェックバルブの応答性を高めることができ、スタータ・ジェネレータによるエンジン始動時に比較的大きな油圧ダンパ力を瞬時に発生させることができる。その結果、ベルトのスリップによる異音の発生を防止し、ベルトおよびプーリの摩耗による寿命の低下を抑制することができる。
 ここで、第1チェックバルブにおけるチェックボールが鋼製とされる場合、第2チェックバルブのチェックボールはセラミックとする。セラミックとして、炭化ケイ素、窒化ケイ素、アルミナ、窒化アルミニウムを採用することができる。
 この発明においては、上記のように、圧力室内の圧力上昇時に、その圧力室のオイルをリザーバ室にリークさせるリーク流路を、流路抵抗の異なる第1リーク隙間および第2リーク隙間の二つのリーク隙間で形成し、流路抵抗の小さな第1リーク隙間と圧力室と連通する連通路を、圧力室の圧力変動により開閉し、第1チェックバルブより設定圧力が高くされた第2チェックバルブで開閉可能としたことにより、エンジンの通常運転時およびスタータ・ジェネレータでのエンジン始動時のそれぞれにおいてベルトに適正な張力を付与することができる。
この発明に係る油圧式オートテンショナの第1の実施の形態を示す縦断面図 図1の第1リーク隙間および第2リーク隙間の形成部位を拡大して示す断面図 図2のIII-III線に沿った断面図 圧力室内のオイルが第2リーク隙間からリークしている状態を示す断面図 この発明に係る油圧式オートテンショナの第2の実施の形態を示す断面図 この発明に係る油圧式オートテンショナの第3の実施の形態を示す断面図 図6に示す油圧式オートテンショナの圧力室内のオイルが第1リーク隙間からリークしている状態を示す断面図 図6に示す油圧式オートテンショナの圧力室内のオイルが第2リーク隙間からリークしている状態を示す断面図 この発明に係る油圧式オートテンショナの第4の実施の形態を示す断面図 この発明に係る油圧式オートテンショナの第5の実施の形態を示す断面図 アイドルストップ機構が搭載されたエンジンのベルト伝動装置を示し、(a)はエンジンの通常運転状態を示す正面図、(b)はスタータ・ジェネレータによるエンジンの始動状態を示す正面図
 以下、この発明の実施の形態を図面に基づいて説明する。図1乃至図4は、この発明に係る油圧式オートテンショナの第1の実施の形態を示す。図1に示すように、シリンダ1は底部を有し、その底部の下面に図11(a)のプーリアーム76に連結される連結片2が設けられている。
 連結片2には、一側面から他側面に貫通する軸挿入孔2aが設けられ、その軸挿入孔2a内に筒状の支点軸2bと、その支点軸2bを回転自在に支持する滑り軸受2cとが組み込まれ、上記支点軸2b内に挿通されてプーリアーム76にねじ係合されるボルトの締め付けにより支点軸2bが固定され、その支点軸2bを中心にしてシリンダ1とプーリアーム76は相対的に回転自在の連結とされる。
 シリンダ1の底面には、スリーブ嵌合孔3が設けられ、そのスリーブ嵌合孔3内に鋼製のバルブスリーブ4の下端部が圧入されている。バルブスリーブ4内にはロッド5の下部が摺動自在に挿入され、そのロッド5の挿入によって、バルブスリーブ4内には上記ロッド5の下側に圧力室6が設けられている。
 ロッド5のシリンダ1の外部に位置する上端部にはばね座7が固定され、そのばね座7とシリンダ1の底面間に組込まれたリターンスプリング8は、シリンダ1とロッド5が相対的に伸張する方向に付勢している。
 ばね座7の上端には図11(a)(b)に示すエンジンブロックEに連結される連結片9が設けられている。連結片9には一側面から他側面に貫通するスリーブ挿入孔9aが形成され、そのスリーブ挿入孔9a内にスリーブ9bと、そのスリーブ9bを回転自在に支持する滑り軸受9cとが組み込まれ、上記スリーブ9b内に挿通されてエンジンブロックEにねじ係合されるボルトの締め付けにより連結片9がエンジンブロックEに回転自在に連結される。
 ばね座7は成形品からなり、その成形時にシリンダ1の上部外周を覆う筒状のダストカバー10と、リターンスプリング8の上部を覆う筒状のスプリングカバー11とが同時に成形されてばね座7に一体化されている。
 ここで、ばね座7は、アルミのダイキャスト成形品であってもよく、あるいは、熱硬化性樹脂等の樹脂の成形品であってもよい。
 スプリングカバー11は、ばね座7の成形時にインサート成形される筒体12によって外周の全体が覆われている。筒体12は、鋼板のプレス成形品からなる。
 シリンダ1の上側開口部内にはシール部材としてのオイルシール13が組込まれ、そのオイルシール13の内周が筒体12の外周面に弾性接触して、シリンダ1の上側開口を閉塞し、シリンダ1の内部に充填されたオイルの外部への漏洩を防止し、かつ、ダストの内部への侵入を防止している。
 上記オイルシール13の組み込みにより、シリンダ1とバルブスリーブ4との間に密閉されたリザーバ室14が形成される。リザーバ室14と圧力室6は、スリーブ嵌合孔3とバルブスリーブ4の嵌合面間に形成された油通路15およびスリーブ嵌合孔3の底面中央部に形成された円形凹部からなる油溜り16を介して連通している。
 バルブスリーブ4の下端部内には第1チェックバルブ17が組み込まれている。第1チェックバルブ17は、バルブスリーブ4の下端部内に圧入されたバルブシート17aの弁孔17bを圧力室6側から開閉するチェックボール17cと、そのチェックボール17cを弁孔17bに向けて付勢するスプリング17dと、上記チェックボール17cの開閉量を規制するリテナ17eとからなっている。
 第1チェックバルブ17は、圧力室6内の圧力がリザーバ室14内の圧力より高くなると、チェックボール17cが弁孔17bを閉じ、圧力室6と油通路15の連通が遮断して、圧力室6内のオイルが油通路15を通ってリザーバ室14に流れるのを防止する。
 図1および図2に示すように、ロッド5には圧力室6とリザーバ室14を連通する連通路18が設けられている。連通路18は、ロッド5の下端面で開口する軸方向孔18aと、その軸方向孔18aの上部に連通し、ロッド5の外径面で開口する径方向孔18eからなる。
 径方向孔18e内にはピン20が圧入され、そのピン20の外径面に連通路18とリザーバ室14とを連通する螺旋溝21が形成され、その螺旋溝21が第1リーク隙間とされている。なお、径方向孔18eの内径面に螺旋溝からなる第1リーク隙間21を設けるようにしてもよい。
 軸方向孔18aは、下部から順に、大径孔部18b、中径孔部18cおよび小径孔部18dを有する段付き孔からなり、その軸方向孔18aの大径孔部18b内に第2チェックバルブ22が組み込まれている。
 第2チェックバルブ22は、バルブシート23と、そのバルブシート23の軸心上に形成された弁孔24の開閉用チェックボール26と、そのチェックボール26の押圧用プッシャ27と、そのプッシャ27を介してチェックボール26を開放方向に付勢するコイルばね28と、上記チェックボール26の開閉量を規制するバルブリテナ29とからなる。
 バルブシート23は大径孔部18a内に圧入され、その大径孔部18aの上端壁に対する当接によって軸方向に位置決めされており、その軸心上に形成された弁孔24の下端にテーパ状のシート面25が設けられている。また、弁孔24の上部にはテーパ状の大径孔部24aが設けられている。チェックボール26はシート面25に対して接触離反可能とされ、接触によって弁孔24を閉鎖するようになっている。
 プッシャ27は、弁孔24内に挿入されるプッシュロッド27aを下部に有し、そのプッシュロッド27aの上部にスプリングシート27bを設け、そのスプリングシート27bの上面に突軸27cを設けた構成とされている。
 スプリングシート27bは中径孔部18bの内径面に沿って摺動自在とされ、その外径面には図2および図3に示すように、複数の軸方向溝30が周方向に間隔をおいて形成されている。
 複数の軸方向溝30のそれぞれの下端開口は弁孔24の大径孔部24aと上下で対向し、スプリングシート27bの下面がバルブシート23の上端面に着座するプッシャ27の下降状態で軸方向溝30の下端開口が弁孔24の大径孔部24aに連通する状態とされる。
 コイルばね28は、内径がチェックボール26の直径より大径とされており、その下端部がプッシャ27のスプリングシート27bで支持されてプッシャ27を下向きに付勢している。その付勢によりスプリングシート27bがバルブシート23の上面で支持され、チェックボール26はプッシュロッド27aで押されて弁孔24を開放する状態に保持されている。
 バルブリテナ29は、円形端板29aの外周に円筒部29bを設けたカップ状をなし、上記円筒部29bに通油孔31が形成されている。バルブリテナ29は大径孔部18aに円筒部29bを圧入する取り付けとされてチェックボール26の開閉ストロークを小さい範囲に制限している。
 第2チェックバルブ22の設定圧は第1チェックバルブ17の設定圧より高く、第1チェックバルブ17の閉鎖後、圧力室6内の圧力がさらに上昇すると作動して連通路18を閉鎖する。
 図2に示すように、バルブスリーブ4の内周上部には小径孔部4aが設けられ、その小径孔部4aの内径面に沿ってロッド5が摺動自在とされ、その摺動面間に円環状のリーク隙間32が設けられている。リーク隙間32は第2リーク隙間とされ、その第2リーク隙間32の流路抵抗は前述の螺旋溝からなる第1リーク隙間21より大きくされている。
 第1リーク隙間21および第2リーク隙間32のそれぞれは、圧力室6内のオイルがそれぞれのリーク隙間21、32に沿ってリークする際の粘性抵抗により圧力室6内に油圧ダンパ作用を生じさせるようになっている。
 第1リーク隙間21は、オイルのリークによって生じる油圧ダンパ作用によって図11(a)に示すエンジンの通常運転時におけるベルト74の張力変動を吸収可能とする大きさに設定されている。一方、第2リーク隙間32は、図11(b)に示すスタータ・ジェネレータ72の駆動によるエンジン始動時にロッド5が急激に押し込まれることのない大きさに設定されている。
 ロッド5の下端部外周には上部を小径とする環状のテーパ溝33が形成され、そのテーパ溝33に止め輪34が組み込まれている。止め輪34の外周部はテーパ溝33から外部に露出してバルブスリーブ4の内周上部に形成された段部35と上下で対向し、その段部35に対する当接によってロッド5を抜止めする。
  第1の実施の形態で示す油圧式オートテンショナは上記の構成からなり、図11(a)に示すアイドルストップ機構が搭載されたエンジンの補機駆動用ベルト伝動装置への組込みに際しては、ばね座7の連結片9をエンジンブロックに連結し、かつ、シリンダ1の閉塞端に設けられた連結片2をプーリアーム76に連結して、そのプーリアーム76に調整力を付与する。
 上記のようなベルト74の張力調整状態において、エンジンの通常運転状態において、補機73の負荷変動等によってベルト74の張力が変化し、ベルト74の張力が弱くなると、リターンスプリング8の押圧によりシリンダ1とロッド5が伸張する方向に相対移動してベルト74の弛みが吸収される。
 ここで、シリンダ1とロッド5が伸張する方向に相対移動するとき、圧力室6内の圧力はリザーバ室14内の圧力より低くなるため、第1チェックバルブ17が開放する。このため、リザーバ室14内のオイルは油通路15から油溜り16を通って圧力室6内にスムーズに流れ、シリンダ1とロッド5は伸張する方向にスムーズに相対移動してベルト74の弛みを直ちに吸収する。
 一方、ベルト74の張力が強くなると、ベルト74から油圧式オートテンショナにシリンダ1とロッド5を収縮させる方向の押込み力が負荷される。その押込み力の負荷により圧力室6内の圧力はリザーバ室14内の圧力より高くなるため、第1チェックバルブ17が閉鎖する。
 このとき、第2チェックバルブ22のチェックボール26は、図2に示すように、開放状態にあるため、圧力室6内のオイルは、同図の矢印で示すように、弁孔24から軸方向溝30内に流れ、連通路18の中径孔部18cおよび小径孔部18dから第1リーク隙間21に流入してリザーバ室14内にリークし、上記第1リーク隙間21を流動するオイルによって圧力室6内に油圧ダンパ力が発生する。その油圧ダンパ力により、油圧式オートテンショナに負荷される上記押込み力が緩衝される。
 ここで、第1リーク隙間21は、エンジンの通常運転時におけるベルト74の張力変動を吸収可能な大きさに設定されているため、エンジンの通常運転時におけるベルト74の張力が高くなり過ぎることはなく、適正張力に保持される。
 一方、スタータ・ジェネレータ72の駆動によるエンジン始動時、ベルト74の張力は急激に大きくなってロッド5に対する押込み力が強くなり、圧力室6の圧力が急激に上昇する。このとき、第1チェックバルブ17は閉鎖すると共に、第2チェックバルブ22のチェックボール26がコイルばね28の弾性に抗して上昇して、図4に示すように、シート面25と接触し、閉鎖状態となる。
 第2チェックバルブ22の閉鎖により、連通路18は圧力室6と第1リーク隙間21の連通を遮断する状態となるため、圧力室6内のオイルは、図4の矢印で示すように、第2リーク隙間32に流れてリザーバ室14内にリークする。
 このとき、第2リーク隙間32の流路抵抗は第1リーク隙間21より大きいため、圧力室6内のオイルは第2リーク隙間32内をゆっくりと流動する。このため、圧力室6での急激な圧力低下がなく、その圧力室6内の油圧ダンパ作用によってロッド5の押し込みが抑制され、ベルト74はクランクシャフト71を駆動するのに必要なベルト張力に保持され、ベルト74とプーリP乃至P間のスリップが防止される。
 以上のように、エンジンの通常運転時、ベルト74の張力が増大した際、圧力室6内のオイルを流路抵抗の小さな第1リーク隙間21からリザーバ室14内にリークし、また、スタータ・ジェネレータでのエンジン始動時にベルト74の張力が増大した際に、圧力室6内のオイルを流路抵抗の大きな第2リーク隙間32からリザーバ室14内にリークするため、エンジンの通常運転時およびスタータ・ジェネレータでのエンジン始動時のそれぞれにおいてベルトに適正な張力を付与することができる。
 図2に示すように、第2チェックバルブ22におけるチェックボール26をコイルばね28により開放方向に付勢するに際し、スプリングシート27bを有するプッシャ27を介して開放方向に付勢にすることにより、コイルばね28として内径がチェックボール26の直径より大きい弾性力の大きなものを採用することができる。
 このため、通常運転時、圧力室6の圧力変動によって第2チェックバルブ22が不要に閉鎖するという不都合の発生はなく、第2チェックバルブ22を確実に機能させることができ、第1リーク隙間21による流量規制によって油圧ダンパ力を小さく設定することが可能となり、通常運転時のベルト張力を低くすることができる。
 また、プッシャ27に中径孔部18cの内径面で摺動案内されるスプリングシート27bを設け、そのスプリングシート27bの外径面に軸方向溝30を設けることにより、プッシャ27の傾きを抑制する状態で十分なオイル流量を確保することができる。
 図5は、この発明に係る油圧式オートテンショナの第2の実施の形態を示す。この実施の形態においては、ロッド5に形成された連通路18の軸方向孔18aを大径孔部18bの上部に小径孔部18dが形成された段付き孔とし、その小径孔部18d内にプッシャ27のスプリングシート27bを摺動案内するガイド筒40を設け、上記ロッド5にはバルブスリーブ4内に最も侵入する収縮状態でそのバルブスリーブ4の上端より上位に位置する部分に内径面から外径面に貫通する径方向孔18eを設け、上記ガイド筒40には、上端面に径方向溝42と、上部外周に径方向溝42と径方向孔18eとを連通する螺旋溝43を設け、その螺旋溝43を第1リーク隙間としている。
 また、バルブシート23に形成された弁孔24の下部にチェックボール26を一定ストローク移動自在に案内するガイド孔44を設けている。
 他の構成は図1に示す油圧式オートテンショナと同一であるため、同一の部分には同一の符号を付して説明を省略する。
 図5に示す油圧式オートテンショナにおいて、エンジンの通常運転状態では、ベルト74から負荷される押圧力により圧力室6の圧力が上昇すると、チェックボール26は開放状態にあるため、圧力室6のオイルはチェックボール26とガイド孔44間の隙間から弁孔24を通ってバルブシート27bの外径面に形成された軸方向溝30に流れ、ガイド筒40内から径方向溝42に流れ、螺旋溝からなる第1リーク隙間43に流入し、径方向孔18eからリザーバ室14にリークし、第1リーク隙間43を流動するオイルによって圧力室6内に油圧ダンパ力が発生する。その油圧ダンパ力により、油圧式オートテンショナに負荷される上記押込み力が緩衝される。
 一方、スタータ・ジェネレータ72の駆動によるエンジン始動時、ベルト74からロッド5に負荷される押込み力により圧力室6の圧力が急激に上昇し、第2チェックバルブ22のチェックボール26がコイルばね28の弾性に抗して上昇して、図5の鎖線で示すように、シート面25と接触し、閉鎖状態となる。
 第2チェックバルブ22の閉鎖により、連通路18は圧力室6と第1リーク隙間43の連通を遮断する状態となるため、圧力室6内のオイルは、バルブスリーブ4とロッド5の摺動面間に形成された第2リーク隙間32に流れてリザーバ室14内にリークする。
 したがって、この実施の形態で示す油圧式オートテンショナにおいても、エンジンの通常運転時およびスタータ・ジェネレータでのエンジン始動時のそれぞれにおいてベルト74に適正な張力を付与することができる。
 また、バルブシート23にチェックボール26を一定ストローク移動自在に案内するガイド孔44を設けることにより、チェックバルブ26が完全に閉まるまでにある程度のテンショナの収縮が必要であるが、エンジン始動時の起動トルクが小さく、エンジン始動時の圧力室6の圧力と通常運転時の圧力室6の圧力の差が比較的小さいエンジンにも適用することができる。
 図6は、この発明に係る油圧式オートテンショナの第3の実施の形態を示す。この実施の形態においては、バルブスリーブ4の円筒状内径面内に挿入されたロッド5の下端部に二つの大径部5a、5bを軸方向に間隔をおいて上下に設け、その上部大径部5aを下部大径部5bの外径より小径とし、上部大径部5aの外径面とバルブスリーブ4の内径面間に形成された円環状のリーク隙間45を第1リーク隙間としている。
 また、下部大径部5bとバルブスリーブ4の摺動面間に形成された円環状のリーク隙間46を第2リーク隙間としている。
 さらに、ロッド5の下端部に圧力室6と第1リーク隙間45を連通する連通路47を設けている。連通路47は、ロッド5の下端面から軸方向に延びる軸方向孔47aと、その軸方向孔47aに交差して上部大径部5aの下部外径面で開口する径方向孔47bとからなり、上記軸方向孔47a内に第2チェックバルブ48を組み込んでいる。
 第2チェックバルブ48は、軸方向孔47aに形成されたテーパ状のシート面49に対して接触離反自在とされたチェックボール50と、そのチェックボール50をシート面49から離反する方向に向けて付勢するコイルばね51とからなり、軸方向孔47aの下端部内にはチェックボール50を開放状態に保持するリング状のバルブリテナ52を圧入している。
 第2チェックバルブ48の設定圧はバルブスリーブ4の下端部内に組み込まれた第1チェックバルブ17の設定圧より高く、第1チェックバルブ17の閉鎖後、圧力室6内の圧力がさらに上昇すると軸方向孔47aを閉鎖して連通路47と第1リーク隙間45の連通を遮断するようになっている。
 また、第2チェックバルブ48のチェックボール50は、バルブスリーブ4の下端部内に組み込まれた第1チェックバルブ17の鋼製からなるチェックボール17cより比重の小さいセラミックで形成している。セラミックとして、炭化ケイ素(SiC)、窒化ケイ素(Si)、アルミナ(Al)、窒化アルミニウム(AlN)等を挙げることができ、いずれのセラミックを採用してもよい。
 さらに、バルブスリーブ4の内径面における上端部に環状溝53を形成し、その環状溝53内に止め輪54を組み込んで、その止め輪54の内周部に対する上部大径部5aの上端面の当接によってロッド5がバルブスリーブ4から抜け出るのを防止している。他の構成は、図1に示す油圧式オートテンショナと同一であるため、図示省略している。
 上記の構成から油圧式オートテンショナを図11(a)(b)に示すベルト伝動装置に組込むベルトの張力調整状態において、エンジンの通常運転状態でベルト74の張力が強くなると、図6に示すように、第1チェックバルブ17のチェックボール17cが弁孔17bを閉鎖する。
 また、第2チェックバルブ48のチェックボール50は、第1チェックバルブ17が完全に閉鎖した後において、圧力室6内の圧力上昇により上昇動してバルブリテナ52から離反するが、図7に示すように、シート面24に接触する位置まで上昇動することはなく、開放状態に保持される。
 このため、圧力室6内のオイルは図7の矢印で示すように、連通路47に流れ、第1リーク隙間45を流通してリザーバ室14にリークし、第1リーク隙間45を流れるオイルの粘性抵抗により圧力室6内に油圧ダンパ力が発生する。その油圧ダンパ力により、油圧式オートテンショナに負荷される上記押込み力が緩衝され、ベルト74は適正な張力に保持される。
 一方、スタータ・ジェネレータ72の駆動によるエンジン始動時、ベルト74の張力は急激に大きくなってロッド5に対する押込み力が強くなり、圧力室6の圧力が急激に上昇する。このとき、第1チェックバルブ17は閉鎖し、その閉鎖後、第2チェックバルブ48のチェックボール50が上昇して、図7に示すように、シート面49と接触し、閉鎖状態となる。
 第2チェックバルブ48の閉鎖により、連通路47は圧力室6と第1リーク隙間45の連通を遮断する状態となるため、圧力室6内のオイルは図4の矢印で示すように、第2リーク隙間46から第1リーク隙間45内に流れてリザーバ室14内にリークする。
 このとき、第2リーク隙間46の流路抵抗は第1リーク隙間45より大きいため、圧力室6内のオイルは第2リーク隙間46内をゆっくりと流動する。このため、圧力室6での急激な圧力低下がなく、その圧力室6内の油圧ダンパ作用によってロッド5の押し込みが抑制され、ベルト74はクランクシャフト71を駆動するのに必要なベルト張力に保持され、ベルト74とプーリP乃至P間のスリップが防止される。
 上記のように、スタータ・ジェネレータ72の駆動によるエンジン始動時、ベルト74の張力が急激に上昇するため、圧力室6に大きな圧力を瞬時に発生させる必要がある。
 ここで、圧力発生までに要する時間はエンジン性能によって相違する。そのため、第2チェックバルブ48におけるチェックボール50が一般的に採用される比重の大きい鋼製のものであると、第2チェックバルブ48の閉鎖に時間を要し、ベルトに適正な張力を付与することができなくなって、ベルト74がスリップし、異音が発生したり、あるいは、エンジンを再始動することができなくなる可能性がある。
 しかし、第2チェックバルブ48におけるチェックボール50は比重の小さなセラミックにより形成されているため、圧力室6の圧力変動に対する第2チェックバルブ50の応答性がよく、ベルト張力が急激に大きくなると、第2チェックバルブ48のチェックボール50はシート面49に瞬時に着座して連通路47を直ちに閉鎖する。このため、上記のような不具合が発生することはない。
 図9は、この発明に係る油圧式オートテンショナの第4の実施の形態を示す。この実施の形態においては、ロッド5に形成された連通路18を図2に示す連通路18と同一の構成とし、その中径孔部18c内に円柱状のコア55を組み込み、そのコア55の外径面と中径孔部18cの内径面間に形成された円環状のリーク隙間56を第1リーク隙間とし、その第1リーク隙間56を上記コア55の上端面に形成された径方向溝55aにより小径孔部18dに連通している。
 また、軸方向孔18aの大径孔部18b内に、その大径孔部18bを開閉する第2チェックバルブ57を組込んでいる。第2チェックバルブ57は、軸心上に弁孔59が形成され、上端面の径方向溝60が設けられたバルブシート58と、上記弁孔59の下端に形成されたテーパ状のシート面61に対して接触離反自在に設けられたチェックボール62と、そのチェックボール62をシート面61から離反する方向に付勢するコイルばね63とで形成し、上記チェックボール62をロッド5の下側大径孔部18b内に圧入した通油孔31を有するキャップ状のリテナ29によって開放状態に保持するようにしている。
 ここで、第2チェックバルブ25におけるチェックボール38は、図2に示すチェックボール26と同様に、セラミックから形成されている。
 他の構成は図2に示す油圧式オートテンショナと同一であるため、ここでは、バルブスリーブ4とロッド5の関係のみを示している。
 図9に示す油圧式オートテンショナにおいては、図11(a)に示すエンジンの通常運転状態において、ベルト74からロッド5に押込み力が負荷された際、圧力室6内のオイルを流路抵抗の小さな第1リーク隙間56からリザーバ室14にリークさせ、第1リーク隙間56を流れるオイルの粘性抵抗により圧力室6内に油圧ダンパ力を発生させて、その油圧ダンパ力により上記押込み力を緩衝し、ベルト74を適正張力に保持するようにしている。
 また、図11(b)に示すスタータ・ジェネレータ72の駆動によるエンジン始動時、ベルト74からロッド5に負荷される大きな押込み力により、第2チェックバルブ57を閉鎖させて、圧力室6内のオイルを流路抵抗の大きな第2リーク隙間32からリザーバ室14にリークさせ、第2リーク隙間32を流れるオイルの粘性抵抗により圧力室6内の急激な圧力の低下を抑制し、ロッド5が大きく押し込まれるのを防止して、ベルト74をクランクシャフト71を駆動するのに必要なベルト張力に保持している。
 図9に示す例においても、第2チェックバルブ57におけるチェックボール62をセラミックとしているため、圧力室6の圧力変動に対する第2チェックバルブ57の応答性がよく、ベルト張力が急激に大きくなると、第2チェックバルブ57のチェックボール62はシート面61に瞬時に着座して連通路18の下側大径孔部18bを直ちに閉鎖し、ベルト74を確実に適正張力に保持する。
 図9では、コア55の外径面と中径孔部18cの内径面間に形成された円環状のリーク隙間を第1リーク隙間56としたが、図10に示す第5の実施の形態のように、コア64の外径面に螺旋溝65を形成し、その螺旋溝65を第1リーク隙間としてもよい。
1  シリンダ
4  バルブスリーブ
5  ロッド
6  圧力室
7  ばね座
8  リターンスプリング
14 リザーバ室
15 油通路
17 第1チェックバルブ
18 連通路
18a 軸方向孔
18e 径方向孔
20 ピン
21 螺旋溝(第1リーク隙間)
22 第2チェックバルブ
23 バルブシート
24 弁孔
26 チェックボール
27 プッシャ
27a プッシュロッド
27b スプリングシート
27c 突軸
28 コイルばね
29 バルブリテナ
30 軸方向溝
31 通油孔
32 第2リーク隙間
40 ガイド筒
42 径方向溝
43 螺旋溝(第1リーク隙間)
44 ガイド孔
45 円環状のリーク隙間(第1リーク隙間)
46 円環状のリーク隙間(第2リーク隙間)
47 連通路
47a 軸方向孔
47b 径方向孔
48 第2チェックバルブ
49 シート面
50 チェックボール
51 コイルばね
52 バルブリテナ
55 コア
56 円環状のリーク隙間(第1リーク隙間)
57 第2チェックバルブ
58 バルブシート
59 弁孔
60 径方向溝
62 チェックボール
63 コイルばね
64 コア
65 螺旋溝

Claims (13)

  1.  オイルが入れられた底付きシリンダの底面上にバルブスリーブを突設し、そのバルブスリーブの内部にロッドの下端部を摺動自在に挿入してバルブスリーブ内に圧力室を設け、前記ロッドの上部に設けられたばね座とシリンダの底面間に、シリンダとロッドを伸張する方向に付勢するリターンスプリングを組込み、前記シリンダの内周とバルブスリーブの外周間に形成されたリザーバ室の下部と前記圧力室の下部を連通する油通路を形成し、前記バルブスリーブの下端部内に前記圧力室の圧力がリザーバ室内の圧力より高くなると閉鎖して圧力室と油通路の連通を遮断する第1チェックバルブを設け、前記ロッドに押込み力が負荷された際に第1チェックバルブを閉じ、圧力室内のオイルを、その圧力室の上側部位に設けられたリーク流路からリザーバ室にリークさせて圧力室内のオイルによる油圧ダンパ作用によりロッドに負荷される押込み力を緩衝するようにした油圧式オートテンショナにおいて、
     前記リーク流路が、前記ロッドの下端面で開口する軸方向孔およびその軸方向孔の上部に連通してロッドの外径面で開口する径方向孔を有する連通路を介して前記圧力室とリザーバ室を連通する第1リーク隙間と、前記第1リーク隙間よりも流路抵抗が大きく、前記圧力室と前記リザーバ室を常に連通する第2リーク隙間からなり、前記連通路の軸方向孔を前記第1チェックバルブより設定圧力が高くされた第2チェックバルブにより開閉自在としたことを特徴とする油圧式オートテンショナ。
  2.  前記連通路における径方向孔内にピンを嵌合し、そのピンと径方向孔の嵌合面間に螺旋溝を設け、その螺旋溝を第1リーク隙間とし、前記ロッドとバルブスリーブの摺動面間に形成された円環状のリーク隙間を第2リーク隙間とした請求項1に記載の油圧式オートテンショナ。
  3.  前記連通路における軸方向孔内にガイド筒を設け、そのガイド筒の上端面に径方向溝と、上部外周に前記径方向孔に連通する螺旋溝を設け、その螺旋溝を第1リーク隙間とし、前記ロッドとバルブスリーブの摺動面間に形成された円環状のリーク隙間を第2リーク隙間とした請求項1に記載の油圧式オートテンショナ。
  4.  前記第2チェックバルブが、前記軸方向孔の下端部内に嵌合されたバルブシートと、そのバルブシートに形成された弁孔をバルブシートの下方から開閉するチェックボールと、そのチェックボール押下げ用のプッシャと、そのプッシャを介してチェックボールを開放方向に付勢するコイルばねを有してなり、前記コイルばねの内径が前記チェックボールの直径より大径とされた請求項1乃至3のいずれか1項に記載の油圧式オートテンショナ。
  5.  前記軸方向孔の下端部内に通油孔を有するバルブリテナを組み込んでチェックボールの開閉量を規制した請求項1乃至4のいずれか1項に記載の油圧式オートテンショナ。
  6.  前記バルブシートに形成された前記弁孔の下端に連続して前記チェックボールの直径より大径のガイド孔を設け、そのガイド孔内において弁孔開閉用のチェックボールを移動自在とした請求項4に記載の油圧式オートテンショナ。
  7.  前記プッシャが、前記弁孔内にスライド自在に挿入された弁体押圧用のプッシュロッドと、そのプッシュロッドの上部に設けられて前記コイルばねの端部を支持するスプリングシートを有し、前記スプリングシートが、前記連通路の内径面で摺動案内される外径とされ、そのスプリングシートの外径面に、そのスプリングシートがバルブシートの上端面に着座する状態で下端の開口が前記弁孔の上部開口に連通する軸方向溝を設けた請求項4乃至6のいずれか1項に記載の油圧式オートテンショナ。
  8.  前記ロッドとバルブスリーブの摺動面間にすきま量の異なる二つの円環状のリーク隙間を、すきま量の小さなリーク隙間が圧力室側に位置するよう軸方向に間隔をおいて設け、すきま量の大きなリーク隙間を第1リーク隙間とし、すきま量の小さなリーク隙間を第2リーク隙間とした請求項1に記載の油圧式オートテンショナ。
  9.  前記連通路における軸方向孔部内に円柱状のコアを組み込み、そのコアの外径面と軸方向孔部の内径面間に形成された円環状のリーク隙間を第1リーク隙間とし、前記バルブスリーブとロッドの摺動面間に形成された円環状のリーク隙間を前記第2リーク隙間とした請求項1に記載の油圧式オートテンショナ。
  10.  前記連通路における軸方向孔内に円柱状のコアを組み込み、そのコアの外径面に形成された螺旋溝を前記第1リーク隙間とし、前記ロッドとバルブスリーブの摺動面間に形成された円環状のリーク隙間を第2リーク隙間とした請求項1に記載の油圧式オートテンショナ。
  11.  前記第2チェックバルブが、前記連通路の軸方向孔に形成されたシート面に対して接触、離反可能に設けられたチェックボールと、そのチェックボールを前記シート面から離反する方向に付勢するコイルばねとからなり、前記軸方向孔の下端部内に通油孔を有するバルブリテナを組み込んで前記チェックボールの抜止めとし、前記チェックボールを前記第1チェックバルブにおけるチェックボールより比重の小さい材料で形成した請求項した請求項8乃至10のいずれか1項に記載の油圧式オートテンショナ。
  12.  前記第1チェックバルブのチェックボールを鋼製とし、前記第2チェックバルブのチェックボールをセラミックとした請求項11に記載の油圧式オートテンショナ。
  13.  前記セラミックが、炭化ケイ素、窒化ケイ素、アルミナ、窒化アルミニウムのいずれか1種からなる請求項12に記載の油圧式オートテンショナ。
PCT/JP2015/052546 2014-01-31 2015-01-29 油圧式オートテンショナ WO2015115555A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014016457A JP6234252B2 (ja) 2014-01-31 2014-01-31 油圧式オートテンショナ
JP2014-016457 2014-01-31
JP2014-030558 2014-02-20
JP2014030558A JP6263409B2 (ja) 2014-02-20 2014-02-20 油圧式オートテンショナ

Publications (1)

Publication Number Publication Date
WO2015115555A1 true WO2015115555A1 (ja) 2015-08-06

Family

ID=53757125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052546 WO2015115555A1 (ja) 2014-01-31 2015-01-29 油圧式オートテンショナ

Country Status (1)

Country Link
WO (1) WO2015115555A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107013638A (zh) * 2015-11-10 2017-08-04 株式会社椿本链条 链条张紧装置
WO2017195867A1 (ja) * 2016-05-13 2017-11-16 Ntn株式会社 オートテンショナ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227603A (ja) * 2000-02-14 2001-08-24 Ntn Corp 油圧式オートテンショナ
JP2001289290A (ja) * 2000-04-05 2001-10-19 Ntn Corp 油圧式オートテンショナ
JP2009222081A (ja) * 2008-03-13 2009-10-01 Ntn Corp 油圧式オートテンショナ
JP2010249273A (ja) * 2009-04-17 2010-11-04 Ntn Corp オートテンショナ
JP2012506976A (ja) * 2008-10-27 2012-03-22 ハッチンソン 2つの動作モードを有する動力伝達部材用液圧テンショナ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227603A (ja) * 2000-02-14 2001-08-24 Ntn Corp 油圧式オートテンショナ
JP2001289290A (ja) * 2000-04-05 2001-10-19 Ntn Corp 油圧式オートテンショナ
JP2009222081A (ja) * 2008-03-13 2009-10-01 Ntn Corp 油圧式オートテンショナ
JP2012506976A (ja) * 2008-10-27 2012-03-22 ハッチンソン 2つの動作モードを有する動力伝達部材用液圧テンショナ
JP2010249273A (ja) * 2009-04-17 2010-11-04 Ntn Corp オートテンショナ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107013638A (zh) * 2015-11-10 2017-08-04 株式会社椿本链条 链条张紧装置
US10260603B2 (en) 2015-11-10 2019-04-16 Tsubakimoto Chain Co. Chain tensioner
CN107013638B (zh) * 2015-11-10 2019-06-07 株式会社椿本链条 链条张紧装置
WO2017195867A1 (ja) * 2016-05-13 2017-11-16 Ntn株式会社 オートテンショナ
US11078994B2 (en) 2016-05-13 2021-08-03 Ntn Corporation Auto-tensioner

Similar Documents

Publication Publication Date Title
JP6182411B2 (ja) 油圧式オートテンショナ
JP6463998B2 (ja) 油圧式オートテンショナ
JP6257950B2 (ja) 油圧式オートテンショナ
JP6263409B2 (ja) 油圧式オートテンショナ
WO2015115555A1 (ja) 油圧式オートテンショナ
JP2011058589A (ja) オートテンショナ
JP2018040399A (ja) 油圧式オートテンショナ
JP6560939B2 (ja) 油圧式オートテンショナ
WO2017030051A1 (ja) 油圧式オートテンショナ
JP6234252B2 (ja) 油圧式オートテンショナ
JP6250343B2 (ja) 油圧式オートテンショナ
JP5311226B2 (ja) オートテンショナ
JP6505794B2 (ja) 油圧式オートテンショナ
JP6153554B2 (ja) 油圧式オートテンショナおよびベルト伝動装置
JP6599165B2 (ja) 油圧式オートテンショナ
JP2008051218A (ja) 油圧式オートテンショナ
JP6581451B2 (ja) 油圧式オートテンショナ
WO2018174069A1 (ja) 油圧式オートテンショナ
JP2017026126A (ja) 油圧式オートテンショナ
JP2009162378A (ja) オートテンショナ
JP2007303646A (ja) 油圧式オートテンショナ
WO2017043412A1 (ja) 油圧式オートテンショナ
JP2008180269A (ja) 油圧式オートテンショナ
JP2008014340A (ja) 油圧式オートテンショナ
JP2008175272A (ja) 油圧式オートテンショナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15742720

Country of ref document: EP

Kind code of ref document: A1