[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015111761A1 - 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지 - Google Patents

리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지 Download PDF

Info

Publication number
WO2015111761A1
WO2015111761A1 PCT/KR2014/000576 KR2014000576W WO2015111761A1 WO 2015111761 A1 WO2015111761 A1 WO 2015111761A1 KR 2014000576 W KR2014000576 W KR 2014000576W WO 2015111761 A1 WO2015111761 A1 WO 2015111761A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion battery
precursor
raw material
waste cathode
Prior art date
Application number
PCT/KR2014/000576
Other languages
English (en)
French (fr)
Inventor
강동현
박재호
류승균
박지영
노환철
Original Assignee
(주)이엠티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이엠티 filed Critical (주)이엠티
Priority to PCT/KR2014/000576 priority Critical patent/WO2015111761A1/ko
Publication of WO2015111761A1 publication Critical patent/WO2015111761A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/08Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals with sodium carbonate, e.g. sinter processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/003Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for regenerating a precursor raw material using a waste cathode material of a lithium ion battery, to a precursor, a cathode material, and a lithium ion battery prepared using a raw material recycled by the method, and more particularly, to precipitation characteristics of a metal.
  • FIG. 1 shows a recycling process chart of a conventional waste lithium ion battery.
  • the recycling method of the waste lithium ion battery selectively concentrates only the waste cathode active material by crushing, magnetic screening, classification, and the like, and leaches cobalt by sulfuric acid leaching using hydrogen peroxide as a reducing agent.
  • a waste lithium ion battery is prepared by selectively separating and recovering cobalt using oxalic acid and adjusting cobalt to remove impurities by adjusting pH to prepare cobalt sulfate through solvent extraction. Is recycling.
  • the collected waste cathode material is removed by aluminum sorting through processes such as sorting, crushing, firing, pin milling, and the like. After leaching aluminum-deposited anode material powder into acid, it is recycled only in the form of a hydroxide mixed with nickel, cobalt, and manganese through alkali precipitation, or in the form of a single hydroxide.
  • the product has a high impurity content for use as a secondary battery precursor raw material having a high added value. This is a semi-finished product that lacks the value as an intact material and has a problem of lack of practical commerciality.
  • the present invention aims to solve the above technical problem, and is a regeneration of precursor raw materials using waste cathode materials of lithium ion batteries by a low cost and high efficiency process capable of simultaneously recycling nickel, cobelt and manganese.
  • An object thereof is to provide a method, a precursor using a raw material recycled by the method, a cathode material, and a lithium ion battery.
  • the unit "wt%" used in connection with sodium carbonate, sodium hydroxide, sulfuric acid, etc. is based on the weight of the total solution containing the material.
  • Regeneration method of the precursor raw material using the waste cathode material of a lithium ion battery according to an embodiment of the present invention, (a) using a selective hydrolysis method to purify the impurities in the complex sulfate solution state; And (b) recovering at least one of cobalt, nickel or manganese components in the leachate containing the impurities after the purification of step (a) using a solvent extraction method.
  • step (a) 10wt% to 20wt% sodium carbonate (Na 2 CO 3 ) liquid phase is added to the reaction tank over a predetermined time, the pH of the reaction tank is 4.7 to 5.3, the temperature inside the reaction tank is 45 degrees (° C.) to 60 degrees (° C.) and the stirring speed of the reactor is characterized in that it is made at 180 to 220 rpm.
  • the step (a) it is preferable to selectively hydrolyze at least one of aluminum or iron.
  • the leachate is made of D2EHPA (di-2-ethylhexyl-phophoric acid) which is a mixed solvent diluted with kerosene, the reaction temperature is 20 degrees (°C) to 30 degrees (°C) The mixing time is 1 minute to 2 minutes and the separation time is 30 minutes or less.
  • the step (b) while adjusting the pH using a sodium hydroxide (NaOH) solution of 15wt% to 25wt%, it is made by co-stage extraction.
  • D2EHPA di-2-ethylhexyl-phophoric acid
  • the method for regenerating the precursor raw material using the waste cathode material of a lithium ion battery after the step (b), (c) cobalt, nickel and recovered in the step (b) Preparing a complex sulfate solution using at least one component of manganese; And (d) mixing a solution prepared by adding at least one of nickel sulfate, cobalt sulfate, and manganese sulfate into pure water to the complex sulfate solution prepared in step (c) to prepare a new complex sulfate solution; It characterized in that it further comprises.
  • the precursor can be prepared using the raw material regenerated by the method of regenerating the precursor raw material using the waste cathode material of the lithium ion battery according to the preferred embodiment of the present invention described above, the positive electrode material and A lithium ion battery can be manufactured.
  • the precursor raw material can be regenerated by a low cost and high efficiency process capable of simultaneously recycling nickel, cobelt and manganese. .
  • 1 is a recycling process diagram of a conventional waste lithium ion battery.
  • FIG. 2 is a flowchart of a method for regenerating precursor raw materials using waste cathode materials of a lithium ion battery according to an embodiment of the present invention.
  • the unit "wt%" used in connection with sodium carbonate, sodium hydroxide, sulfuric acid, etc. is based on the weight of the total solution containing the material.
  • FIG. 2 shows a flowchart of a method for regenerating a precursor raw material using waste cathode materials of a lithium ion battery according to a preferred embodiment of the present invention.
  • the precursor raw material regeneration method of the present invention the step of producing an oxide powder from the waste cathode material (S10), leaching and filtering the oxide powder (S20), hydrolysis of the reaction filtrate And filtering (S30), leaching step using a cake (S40), purifying impurities in a complex sulfate solution state using a selective hydrolysis method (S50), and cobalt, nickel or manganese in a leaching solution containing impurities At least one of the components is solvent extraction and filtration to recover the step (S60).
  • the regeneration method of the precursor raw material of the present invention characterized in that it further comprises the step (S70) of preparing a primary complex sulfate solution, and the step of preparing a secondary complex sulfate solution by adjusting the concentration (S80). .
  • steps S10 to S80 of the regeneration method of the precursor raw material of the present invention will be described in more detail.
  • the waste cathode material is screened by cutting, crusher and mesh screening to obtain nickel, cobalt, manganese oxide powder and aluminum electrode plate. do.
  • the leaching and filtration step of the oxide powder which is the S20 step, is carried out by putting the oxide powder into a reactor filled with pure water and slowly introducing hydrochloric acid. At this time, the reaction vessel is stirred at a constant speed by a stirrer, and the temperature is also adjusted to a constant level, thereby leaching for a certain reaction time. In addition, hydrogen peroxide is preferably added to the reduction at regular time intervals during the reaction time. After leaching, filtration is carried out to obtain a filtrate.
  • the reaction filtrate obtained in step S20 is hydrolyzed with sodium hydroxide (NaOH), so that lithium is solubilized LiOH (l), and nickel, cobalt, and manganese are precipitated. Converted to nickel hydroxide (Ni (OH) 2 (s)), cobalt hydroxide (Co (OH) 2 (s)), and manganese hydroxide (Mn (OH) 2 (s)). Valuable metals, such as manganese, are separated by filtration with a cake. Finally, in step S30, a hydroside cake is obtained.
  • step S40 the hydroside cake obtained in step S30 is washed with pure water and filtered, the sulfuric acid solution is put in pure water and reacted for a predetermined time at a constant stirring speed and a constant stirring speed. Let's do it. There was no residue upon filtration after the reaction and a filtrate was obtained.
  • step S50 step of purifying the impurities in the complex sulfate solution state using a selective hydrolysis method, characterized in that made by adding a 10wt% to 20wt% sodium carbonate (Na 2 CO 3 ) liquid to the reaction vessel over a predetermined time .
  • the pH inside the reaction vessel is 4.7 to 5.3
  • the temperature inside the reaction vessel is preferably 45 degrees (° C.) to 60 degrees (° C.)
  • the stirring speed of the reaction tank is 180 to 220 rpm.
  • step S50 at least one of aluminum or iron is selectively hydrolyzed. That is, as a result of step S50, aluminum and / or iron are removed by hydrolysis.
  • step S60 after the purification in step S50, the leachate containing impurities is added to D2EHPA (di-2-ethylhexyl-phophoric acid), which is a mixed solvent diluted with kerosene, and the reaction temperature is 20 ° C. to 30 ° C. °C), mixing time is 1 minute to 2 minutes, separation time is 20 minutes to 30 minutes, by cocurrent multi-stage extraction, adjusting the pH using 15wt% to 25wt% sodium hydroxide (NaOH) solution Will be done.
  • the reaction temperature of step S60 is more preferably 25 ° C (room temperature).
  • the step of preparing the first composite sulfate solution which is a step S70, means preparing a complex sulfate solution using at least one component of cobalt, nickel and manganese recovered in step S60.
  • step of preparing a secondary complex sulfate solution by adjusting the concentration of step S80 is the step of adjusting the concentration to re-inject the longitudinal degree of the complex sulfate solution prepared in step S70 to the precursor process, in step S70
  • the prepared complex sulfate solution is mixed with a solution prepared by adding at least one of nickel sulfate, cobalt sulfate, and manganese sulfate into pure water, thereby preparing a new complex sulfate solution.
  • the precursor is prepared by using the precursor raw material regenerated by the method of regenerating the precursor raw material using the waste cathode material of the lithium ion battery according to a preferred embodiment of the present invention, the prepared precursor may be used in the positive electrode material, Finally, the lithium ion battery is manufactured.
  • [Table 1] below is a pulverized oxide powder component analysis value expressed by converting the oxide powder selected by pulverizing the mixed waste cathode material into aqua regia and converting it through high frequency inductively coupled plasma (ICP) analysis.
  • ICP inductively coupled plasma
  • the reaction time was leached for 180 minutes, and a total of 20 ml of 2 ml of hydrogen peroxide, a reducing agent, was added at 10 minute intervals in the middle of the reaction. After the reaction was completed, the pH was measured to be 0.81 and the filtrate obtained 750 ml.
  • Table 3 below shows the ICP analysis of the leaching filtrate, which leaches the cake into sulfuric acid.
  • step S40 In order to use the sulfuric acid leaching solution obtained in step S40 as a raw material for the lithium ion battery NCM precursor, magnesium, calcium, aluminum and iron should be removed.
  • nickel, cobalt, and manganese which are target components, are selectively extracted and back-extracted separately by using a solvent extraction method to manufacture nickel sulfate, cobalt sulfate, and manganese sulfate, but in terms of cost, the production cost is high. In terms of investment cost, investment efficiency is low. Therefore, it is advantageous in terms of cost, profit, and investment efficiency to remove impurities as much as possible without separating the target components individually.
  • 15 wt% sodium carbonate (Na 2 CO 3 ) was 15 ml and the pH was changed to 4.95 to 5.10 depending on the temperature. That is, 15 wt% sodium carbonate (Na 2 CO 3 ) consumed for hydrolysis based on aluminum was added 1.3 times the equivalent ratio. Filtration after the reaction gave 30.4 g of a pale yellow residue cake and 1005 ml of the filtrate. 30.4 g of the residue cake was washed twice with 100 ml of pure water to make 200 ml of a washing solution. It was.
  • Table 4 below shows the ICP analysis of the selective hydrolysis filtrate, the residue washing liquid and the residue leaching liquid.
  • the sodium concentrations of the filtrate and the residue washing liquid were measured as 4765 ppm and 932 ppm, respectively, but sodium sulfate as an additive may be added to the precursor raw material, so the concentration of sodium below 1 wt% is not a problem.
  • Calcium is removed from the pre-hydrolysis, so traces are also not a problem.
  • Aluminum and iron were removed by hydrolysis at 99.8% and 100%, respectively. Therefore, the filtrate and the wash liquid are combined with the three-component sulphate solution in the future, nickel sulfate, cobalt sulfate, manganese sulphate are separately prepared and added to the concentration according to the concentration can be used as NCM precursor precursor raw materials.
  • the loss (LOSS) of nickel, cobalt, and manganese which is a precursor raw material target, was 13.4%, 6.2%, and 0.5%, respectively, by hydrolysis or coprecipitation with aluminum and iron. Since this causes difficulty in constructing a low cost and high efficiency process, it is preferable to perform a solvent extraction method to recover the nickel, cobalt, and manganese for the residue leachate.
  • the residue leaching solution that is, the extraction of heavy metals from the sulfuric acid leaching solution, the back extraction equation is as follows.
  • Equation (1) is the extraction and back extraction of aluminum ions
  • (2) is the extraction and back extraction of iron ions
  • (3) is the extraction and back extraction of heavy metal M ions.
  • Metals corresponding to M are nickel, cobalt and manganese. That is, M 2+ means Ni 2+ , Co 2+ , Mn 2+ .
  • 2RH is an abbreviation for shortening the mixed solvent D2EHPA (di-2-ethylhexyl-phosphoric acid).
  • org and aq are terms commonly used as initials of organic and aqueous, respectively.
  • the total amount of 20% sodium hydroxide (NaOH) added at this time was 35.2 mL, the pH was maintained between 2.0 and 2.6 and the final extraction residue was obtained 130 mL.
  • the extracted solvent was back-extracted once with 100 ml of 10 wt% sulfuric acid solution at a mixing time of 2 minutes or less and 30 minutes or less, and washed twice with 50 ml of pure water to restore the solvent.
  • 1 g of activated carbon was added to adsorb and remove the mixed solvent.
  • Table 5 below shows the ICP analysis of the extraction residue (raffinate-3) after three extractions.
  • the recoveries of nickel, cobalt and manganese in the refining process, ie, selective hydrolysis and solvent extraction, for NCM precursor precursors are 99.6%, 99.6% and 98.8%, respectively.
  • the calculation basis is as follows.
  • Table 6 below is an ICP analysis value of the three-component complex sulfate solution.
  • the complex sulphate solution of Table 6 is low in nickel, cobalt, and manganese to be used as a three-component sulphate raw material for NCM-based 523 precursors.
  • the specific gravity of the solution was measured from 1.771 to 1.773.
  • step S80 1000mL of the three-component composite sulfate solution was mixed with the synthesized sulfate solution, and when the NCM-based 523 precursor was synthesized, it was confirmed experimentally that there was no change in physical properties such as D50, Td, and particle size distribution.
  • the present invention is suitable for use as a precursor raw material by introducing a selective hydrolysis and solvent extraction method and adjusting the concentration. It is possible to greatly contribute to the cost reduction in the precursor synthesis by producing a three-component complex sulfate solution through a low cost, high efficiency process construction.
  • a method of regenerating precursor raw materials using waste cathode materials of lithium ion batteries includes waste cathode materials of lithium ion batteries by a low cost and high efficiency process capable of simultaneously recycling nickel, cobelt, and manganese. It can be seen that the method for regenerating the used precursor raw material, the precursor using the raw material recycled by the method, the positive electrode material and the lithium ion battery can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

니켈, 코벨트, 망간을 동시에 재활용할 수 있는 저비용 및 고효율 공정에 의해 전구체 원료를 재생할 수 있는 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법이 개시된다. 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법은, (a) 선택적 가수분해 공법을 이용하여 복합 황산염 용액 상태에서 불순물을 정제하는 단계; 및 (b) 상기 (a) 단계의 정제 후, 상기 불순물을 포함하는 침출액 중의 코발트, 니켈 또는 망간 성분 중 적어도 하나를 용매 추출법을 이용하여 재회수하는 단계;를 포함한다.

Description

리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지
본 발명은 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지에 관한 것으로, 더욱 상세하게는 금속의 침전 특성을 이용한 선택적 가수분해 공법과 추출 특성을 고려한 용매 추출 방법을 활용한 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지에 관한 것이다.
도 1은 종래의 폐 리튬 이온 전지의 재활용 공정도를 나타낸다. 도 1로부터 알 수 있는 바와 같이 폐 리튬 이온 전지의 재활용 방법은 파쇄, 자력 선별, 분급 등으로 폐 양극 활물질만을 선택적으로 농축시킨 뒤 환원제로 과산화수소를 사용하는 황산 침출법으로 코발트를 침출한다.
다음으로 침출 용액으로부터 코발트를 회수하기 위하여 옥살산을 이용하여 코발트를 선택적으로 분리 회수하는 공정과 pH를 조절하여 불순물을 제거하고 난 용액으로부터 용매 추출법을 통해 황산 코발트를 제조하는 공정에 의해 폐 리튬 이온 전지를 재활용하고 있다.
그런데 상기 종래 기술에서는 폐 양극재 중에 리튬코발트산화물(LCO)에 국한된 공법이며 사용 추세가 증가하는 리튬니켈코발트망간 복합산화물(NCM) 또는 전기 자동차용 리튬이온망간산화물(LMO) 타입에서는 침출제가 황산만으로 침출 회수율이 경제성있게 실현될지는 알 수가 없다. 또한, 상기의 종래 기술에서는 옥살산을 이용해서 코발트를 회수할 경우 반드시 소성을 하여 이산화탄소로 옥살산을 분해하고, 산화코발트를 황산에 재용해해서 황산코발트를 만들어야 하므로, 비용 측면에서 바람직한 공법이라고 할 수 없다. 뿐만 아니라 코발트를 선택적으로 분리하기 위해 들어가는 과량의 옥살산으로 인해 폐수 처리에도 상당한 어려움이 있다.
또 다른 종래 기술에서는, 수집된 폐 양극재를 선별, 파쇄, 소성, 핀밀 등의 공정을 통해 알루미늄 호일을 제거한다. 알루미늄이 제거된 양극재 분말을 산으로 침출한 이후에 알칼리 침전을 통한 니켈, 코발트, 망간이 혼합된 수산화물 형태, 또는 단일 수산화물 형태로만 재활용되고 있다. 다만, 상기 제품은 부가가치가 높은 이차 전지 전구체 원료로 사용하기에는 불순물 함량이 높다. 이는 온전한 소재로서의 가치가 결여된 반제품으로 실제적인 상품성이 부족하다는 문제점이 있다.
본 발명은 전술한 바와 같은 기술적 과제를 해결하는 데 목적이 있는 발명으로서, 니켈, 코벨트, 망간을 동시에 재활용할 수 있는 저비용 및 고효율 공정에 의한 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용한 전구체, 양극재 및 리튬 이온 전지를 제공하는 것에 그 목적이 있다.
본 명세서에서 탄산나트륨, 수산화나트륨, 황산 등과 관련하여 사용된 단위 "wt%"는 해당 물질을 포함하는 용액 전체의 중량을 기준으로 하는 것이다.
본 발명의 바람직한 일실시예에 따른 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법은, (a) 선택적 가수분해 공법을 이용하여 복합 황산염 용액 상태에서 불순물을 정제하는 단계; 및 (b) 상기 (a) 단계의 정제 후, 상기 불순물을 포함하는 침출액 중의 코발트, 니켈 또는 망간 성분 중 적어도 하나를 용매 추출법을 이용하여 재회수하는 단계;를 포함한다.
구체적으로, 상기 (a) 단계는, 10wt% 내지 20wt%의 탄산나트륨(Na2CO3) 액상을 반응조에 일정 시간에 걸쳐 투입하되, 상기 반응조 내부의 pH는 4.7 내지 5.3, 상기 반응조 내부의 온도는 45도(℃) 내지 60도(℃) 및 상기 반응조의 교반 속도는 180 내지 220rpm에서 이루어지는 것을 특징으로 한다. 또한, 상기 (a) 단계는, 알루미늄 또는 철 중 적어도 하나를 선택적으로 가수분해하는 것이 바람직하다.
아울러, 상기 (b) 단계는, 상기 침출액을 케로신으로 희석한 혼합 용매인 D2EHPA(di-2-ethylhexyl-phophoric acid)에 넣어 이루어지되, 반응 온도는 20도(℃) 내지 30도(℃)이고, 믹싱 시간을 1분 내지 2분, 분리 시간을 30분 이하로 하여 이루어지는 것을 특징으로 한다. 또한, 상기 (b) 단계는, 15wt% 내지 25wt%의 수산화나트륨(NaOH) 용액을 이용하여 pH를 조정하면서 이루어지되, 병류 다단 추출에 의해 이루어진다.
또한, 본 발명의 바람직한 일실시예에 따른 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법은, 상기 (b) 단계 이후에, (c) 상기 (b) 단계에서 회수된 코발트, 니켈 및 망간 중 적어도 하나의 성분을 이용하여 복합 황산염 용액을 제조하는 단계; 및, (d) 상기 (c) 단계에서 제조한 상기 복합 황산염 용액에, 황산니켈, 황산코발트 및 황산망간 중 적어도 하나를 순수에 넣어 제조한 용액을 혼합하여, 새로운 복합 황산염 용액을 제조하는 단계;를 더 포함하는 것을 특징으로 한다.
또한, 상술한 본 발명의 바람직한 일실시예에 따른 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법에 의해 재생된 원료를 이용하여 전구체를 제조할 수 있고, 상기 전구체를 이용하여 양극재 및 리튬 이온 전지를 제조할 수 있다.
본 발명의 바람직한 일실시예에 따른 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법에 따르면, 니켈, 코벨트, 망간을 동시에 재활용할 수 있는 저비용 및 고효율 공정에 의해 전구체 원료를 재생할 수 있다.
도 1은 종래의 폐 리튬 이온 전지의 재활용 공정도.
도 2는 본 발명의 실시예에 따른 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법의 흐름도.
이하, 첨부된 도면을 참조하면서 본 발명의 실시예에 따른 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지에 대해 상세히 설명하기로 한다.
본 발명의 하기의 실시예는 본 발명을 구체화하기 위한 것일 뿐 본 발명의 권리 범위를 제한하거나 한정하는 것이 아님은 물론이다. 본 발명의 상세한 설명 및 실시예로부터 본 발명이 속하는 기술 분야의 전문가가 용이하게 유추할 수 있는 것은 본 발명의 권리 범위에 속하는 것으로 해석된다.
본 명세서에서 탄산나트륨, 수산화나트륨, 황산 등과 관련하여 사용된 단위 "wt%"는 해당 물질을 포함하는 용액 전체의 중량을 기준으로 하는 것이다.
먼저, 도 2는 본 발명의 바람직한 일실시예에 따른 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법의 흐름도를 나타낸다.
도 2로부터 알 수 있는 바와 같이 본 발명의 전구체 원료의 재생 방법은, 폐 양극재로부터 산화물 파우더를 생성하는 단계(S10), 산화물 파우더를 침출 및 여과하는 단계(S20), 반응 여과액을 가수분해하고 여과하는 단계(S30), 케이크를 이용한 침출 단계(S40), 선택적 가수분해 공법을 이용하여 복합 황산염 용액 상태에서 불순물을 정제하는 단계(S50), 및 불순물을 포함하는 침출액 중의 코발트, 니켈 또는 망간 성분 중 적어도 하나를 용매 추출을 하고 여과하여 재회수하는 단계(S60)를 포함한다.
또한, 본 발명의 전구체 원료의 재생 방법은, 1차 복합 황산염 용액을 제조하는 단계(S70) 및, 농도 조정에 의한 2차 복합 황산염 용액을 제조하는 단계(S80)를 더 포함하는 것을 특징으로 한다.
하기에 본 발명의 전구체 원료의 재생 방법의 S10 단계 내지 S80 단계에 대해 좀 더 상세하게 설명하기로 한다.
먼저, S10 단계인 산화물 파우더 생성 단계에서는, 폐 양극재를 커팅(cutting), 분쇄(crusher) 및 메쉬 스크리밍(mesh screening)에 의해 선별하는 것에 의해 니켈, 코발트, 망간 산화물 파우더 및 알루미늄 극판을 수득하게 된다.
다음으로, S20 단계인 산화물 파우더의 침출 및 여과 단계는, 산화물 파우더를 순수를 충진한 반응조에 넣어, 염산을 서서히 투입하는 것에 의해 이루어진다. 이때 반응조는 교반기에 의해 일정 속도로 교반되며, 온도 또한 일정 레벨로 조정되어, 일정 반응 시간 동안 침출하게 된다. 또한, 반응 시간 동안 일정 시간 간격으로 환원에는 과산화수소를 투입하는 것이 바람직하다. 침출 후, 여과를 실시하여 여과액을 수득하게 된다.
S30 단계인 반응 여과액을 가수분해하고 여과하는 단계에서는, S20 단계에서 수득한 반응 여과액을 수산화나트륨(NaOH)으로 가수분해하여 리튬은 가용화된 LiOH(l)으로, 니켈, 코발트, 망간은 침전된 수산화니켈(Ni(OH)2(s)), 수산화코발트(Co(OH)2(s)), 수산화망간(Mn(OH)2(s))으로 전환시켜, 리튬은 용액으로 니켈, 코발트, 망간 등의 유가 금속은 케이크로 여과하여 분리한다. 최종적으로, S30 단계에서는, 하이드로사이드 케이크(Hydroxide Cake)를 수득하게 된다.
다음으로, S40 단계의 케이크를 이용한 침출 단계는, S30 단계에서 수득한 하이드로사이드 케이크를, 순수로 세척 및 여과를 실시하고, 황산 용액을 순수에 넣고 일정 교반 속도 및 일정 교반 속도에서 일정 시간 동안 반응시킨다. 반응 후 여과시 잔사는 없었으며 여과액을 수득하게 된다.
선택적 가수분해 공법을 이용하여 복합 황산염 용액 상태에서 불순물을 정제하는 S50 단계는, 10wt% 내지 20wt%의 탄산나트륨(Na2CO3) 액상을 반응조에 일정 시간에 걸쳐 투입하는 것에 의해 이루어지는 것을 특징으로 한다. 이때, 반응조 내부의 pH는 4.7 내지 5.3, 반응조 내부의 온도는 45도(℃) 내지 60도(℃), 반응조의 교반 속도는 180 내지 220rpm인 것이 바람직하다. 또한, S50 단계에서는, 알루미늄 또는 철 중 적어도 하나를 선택적으로 가수분해하게 된다. 즉, S50 단계의 결과, 알루미늄 및/또는 철은 가수분해에 의해 제거되게 된다.
S60 단계는, S50 단계의 정제 후, 불순물을 포함하는 침출액을 케로신으로 희석한 혼합 용매인 D2EHPA(di-2-ethylhexyl-phophoric acid)에 넣고, 반응 온도는 20도(℃) 내지 30도(℃)로 하고, 믹싱 시간을 1분 내지 2분, 분리 시간을 20분 내지 30분으로 하여, 15wt% 내지 25wt%의 수산화나트륨(NaOH) 용액을 이용하여 pH를 조정하면서, 병류 다단 추출에 의해 이루어지게 된다. S60 단계의 반응 온도는 상온인 25도(℃)인 것이 좀 더 바람직하다.
S70 단계인 1차 복합 황산염 용액을 제조하는 단계는, S60 단계에서 회수된 코발트, 니켈 및 망간 중 적어도 하나의 성분을 이용하여 복합 황산염 용액을 제조하는 것을 의미한다.
또한, S80 단계인 농도 조정에 의한 2차 복합 황산염 용액을 제조하는 단계는 단계는, S70 단계에서 제조한 복합 황산염 용액의 종도를 전구체 공정에 재투입하기 위하여 농도를 조정하는 단계로, S70 단계에서 제조한 상기 복합 황산염 용액에, 황산니켈, 황산코발트 및 황산망간 중 적어도 하나를 순수에 넣어 제조한 용액을 혼합하여, 새로운 복합 황산염 용액을 제조하게 된다.
또한, 본 발명의 바람직한 실시예에 따른 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법에 의해 재생된 전구체 원료를 이용하여, 전구체를 제조하고, 제조된 전구체는 양극재에 사용될 수 있으며, 최종적으로 리튬 이온 전지로 제조되게 된다.
하기에 보다 나은 이해를 위해, 본 발명의 구체적인 일실시예에 따른 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법에 대해 설명하기로 한다.
산화물 파우더 생성(S10)
니켈, 코발트, 망간이 함유된 리튬 이온 전지의 리튬니켈코발트망간 복합산화물(NCM), 리튬코발트산화물(LCO) 및/또는 리튬이온망간산화물(LMO) 혼합 폐 양극재 2㎏를 커팅(cutting) 1회, 분쇄(crasher) 3회를 한 다음, 120 메쉬 스크리닝(mesh screening)을 이용하여 선별한 결과, 니켈, 코발트, 망간 산화물 파우더를 1.65㎏ 및 분쇄된 알루미늄 극판 0.3㎏를 수득하였고 손실(loss)는 0.05㎏ 발생하였다. 수득한 산화물 파우더 1g을 왕수 10㎖에 넣고 순수로 용액을 100㎖로 제조한 후 90℃ 에서 한시간 침출하여 성분 분석을 실시하였다.
하기 [표 1]은 혼합 폐 양극재를 분쇄하여 선별한 산화물 파우더를 왕수에 침출하여 고주파 유도 결합 플라스마(inductively coupled plasma, ICP) 분석을 통해 환산하여 나타낸 분쇄 산화물 파우더 성분 분석치이다.
표 1 폐 양극재 산화물 파우더 조성
성분 Li Ni Co Mn Mg Ca Al Na Fe
함량(wt%) 5.150 5.462 18.194 27.748 0.011 0.005 1.580 0.026 0.001
분쇄 산화물 파우더의 침출 및 여과(S20)
분쇄 산화물 파우더에서 81g을 발췌하여 순수 500㎖를 충진한 파이렉스 2ℓ 반응조에 넣고 1mol에 해당하는 염산 265㎖를 10분에 거쳐서 서서히 투입했다. 교반은 교반기로 300rpm으로 조정하고 반응조는 핫 플레이트(hot plate)위에 올려서 온도를 조정하도록 하였다. 이때 반응 온도는 염산 투입 직후 자체 발열 반응으로 50℃까지 자발적으로 승온되며, 그 이후에는 핫 플레이트 다이얼을 조정해서 반응 온도가 80±5℃가 유지되도록 했다. 반응 시간은 180분 동안 침출했으며 반응 중간에 환원제인 과산화수소를 10분 간격으로 2㎖씩 총 20㎖를 투입했다. 반응 완료 후 pH는 0.81로 측정되었고 여과액은 750㎖를 수득하였다.
하기 [표 2]는 반응 여과액의 ICP 분석치이다.
표 2 염산 침출 여과액 조성
성분 Li Ni Co Mn Mg Ca Al Na Fe
함량(ppm) 5648 5863 20390 30050 12 5 1734 23 4
1차 가수분해 및 여과(S30)
상기 [표 2]의 조성을 갖는 반응 여과액 750㎖를 25wt% 수산화나트륨(NaOH)으로 가수분해하여 리튬은 가용화된 LiOH(l)으로, 니켈, 코발트, 망간은 침전된 Ni(OH)2(s), Co(OH)2(s), Mn(OH)2(s)로 전환시켜, 리튬은 용액으로 니켈, 코발트, 망간 등의 유가금속은 케이크로 여과하여 분리하였다. 이때 pH는 9.6이었으며 소모된 25wt% 수산화나트륨(NaOH)은 214㎖였고 니켈, 코발트, 망간 등이 포함된 하이드로사이드 케이크(Hydroxide Cake)를 210g 수득하였다.
케이크를 이용한 침출(S40)
황산니켈, 황산코발트, 황산망간의 3성분계 복합 황산염 용액(complex sulfate solution)을 얻기 위해서 하이드로사이드 케이크 210g을 500㎖ 순수로 2번 세척, 여과하고, 210g을 침출 당량비인 98wt% 황산 35㎖를 순수 900㎖에 넣고 200rpm, 50 내지 60도(℃)로 한 시간 반응하였다. 반응 후 여과시 잔사는 없었으며 여과액의 pH는 1.8이었고 980㎖를 수득하였다.
하기 [표 3]은 케이크를 황산에 침출한 침출 여과액의 ICP 분석치이다.
표 3 황산 침출 여과액 조성
성분 Li Ni Co Mn Mg Ca Al Na Fe
함량(ppm) 5 4480 15490 22820 7 2 1322 18 3
[표 2]와 [표 3]으로부터 알 수 있는 바와 같이, 가수분해 여과액으로부터 리튬, 마그네슘, 칼슘이 각각 99.9%, 24%, 52% 제거되었고 니켈, 코발트, 망간, 알루미늄, 철은 99% 이상 회수되었다.
선택적 가수분해(S50)
S40 단계에서 수득한 황산 침출액을 리튬 이 온전지 NCM계 전구체 원료로 사용하기 위해서는 마그네슘, 칼슘, 알루미늄, 철을 원척적으로 제거하여야 한다. 이를 위해서는 목적 성분인 니켈, 코발트, 망간을 선택적으로 용매 추출 공법을 이용하여 개별로 추출 및 역추출하여 황산니켈, 황산코발트, 황산망간으로 제조하는 것이 가장 바람직하나, 비용 측면에서 제조 원가가 많이 들고 투자비 측면에서도 투자 효율성이 떨어지므로, 목적 성분을 개별로 분리하지 않고 불순물을 최대한 제거하는 것이 비용, 수익, 투자 효용성 측면에서 유리하다고 할 수 있다.
본 발명에서는 상기의 취지를 이루기 위해 황산 침출액에서 불순물을 제거하기 위한 선택적 가수분해 공법을 도입하여 3성분계 복합 황산염 용액을 제조하여 NCM계 전구체 원료로 사용함으로써 저비용·고효율 공정 구축을 도모하고자 한다.
따라서, [표 3]의 황산 침출 여과액의 불순물을 선택적으로 가수분해하기 위해 불순물 중에서 다수인 알루미늄을 대상으로 가수분해 당량비 15wt% 탄산나트륨(Na2CO3) 액상 46.3㎖를, 반응조 2ℓ에 온도를 50 내지 55(℃)로 유지하고 교반은 200rpm으로 고정하고 10분에 걸쳐 투입하였다. 이때 pH는 3.73으로 알루미늄이 충분히 가수분해되기 위한 pH 5.0에 이르지 못하여, 추가로 15wt% 탄산나트륨(Na2CO3) 액상을 1㎖씩 30분에 걸쳐 서서히 투입하여 pH를 5.07로 맞추었다. 이때 투입된 15wt% 탄산나트륨(Na2CO3)은 15㎖였으며 온도에 따라서 pH는 4.95∼5.10으로 변하였다. 즉 알루미늄을 기준으로 가수분해에 소모된 15wt% 탄산나트륨(Na2CO3)는 당량비의 1.3배가 투입되었다. 반응 후 여과하여 엷은 노란색의 잔사 케이크 30.4g과 여과액 1005㎖를 수득하였다. 잔사 케이크 30.4g은 순수 100㎖로 2회 수세 여과하여 수세액 200㎖를 만들고, 성분 분석을 위해 황산 10㎖를 순수 50㎖에 희석하여 침출하였고 최종적으로 순수를 투입하여 침출 용액을 100㎖로 맞추었다.
하기 [표 4]는 선택적 가수분해 여과액, 잔사 수세액, 잔사 침출액의 ICP 분석치이다.
표 4 선택적 가수분해 여과액 및 잔사 침출액 조성
성분 Li Ni Co Mn Mg Ca Al Na Fe
여과액(ppm) 5 3618 13532 21209 6 1 2 4765 0
수세액(ppm) 1 832 3198 4683 1 0 2 932 0
침출액(ppm) 0 5883 9412 1118 0 0 12390 185 37
[표 4]에서 여과액과 잔사 수세액의 나트륨 농도가 각각 4765ppm, 932ppm 으로 측정되었지만 전구체 원료에 첨가제로 황산나트륨을 넣는 경우도 있으므로 나트륨이 1wt% 이하의 농도는 문제될 것이 없으며, 리튬, 마그네슘, 칼슘은 사전 가수분해에서 제거되어 극미량이므로 또한 문제가 되지 않는다. 알루미늄과 철은 각각 99.8% 및 100%로 가수분해되어 제거되었다. 그러므로 여과액과 수세액은 합쳐서 3성분계 황산염 용액으로써 향후 황산니켈, 황산코발트, 황산망간을 별도로 구비하여 본 용액에 농도에 맞게 투입함으로써 NCM계 전구체 원료로 사용할 수 있다.
용매 추출(S60)
S50 단계에서의 잔사 침출액에서는, 전구체 원료 목적 성분인 니켈, 코발트, 망간의 손실(LOSS)이 각각 13.4%, 6.2%, 0.5%로, 알루미늄과 철과 함께 가수분해 또는 공침되어 발생하였다. 이는 저비용 고효율 공정 구축에 어려움을 초래하므로, 잔사 침출액을 대상으로 니켈, 코발트, 망간을 재회수하고자 용매 추출 공법을 실시하는 것이 바람직하다.
잔사 침출액 즉, 황산 침출액의 중금속 추출, 역추출 반응식은 아래와 같다.
[3(2RH)]org + [(Al3+)2(SO4 2-)3]aq ↔ 2[(2R)3Al]org + [3(H2SO4)]aq ----(1)식
[3(2RH)]org + [(Fe3+)2(SO4)3 2-]aq ↔ 2[(2R)3Fe]org + [3(H2SO4)]aq ----(2)식
[2RH]org + [M2+SO4 2-]aq ↔ [(2R)2M]org + [H2SO4]aq ----(3)식
상기 반응식에서 좌측에서 우측으로의 반응은 추출 반응식이고, 우측에서 좌측으로의 반응은 역추출 반응식이다. (1)식은 알루미늄 이온의 추출, 역추출 반응식이고, (2)식은 철 이온의 추출, 역추출 반응식이며 (3)식은 중금속 M 이온의 추출, 역추출 반응식이다. M에 해당하는 금속은 니켈, 코발트, 망간이다. 즉 M2+은 Ni2+, Co2+, Mn2+를 의미한다. 상기 (1), (2), (3)식에서 2RH는 혼합용매 D2EHPA(di-2-ethylhexyl-phosphoric acid)를 줄여서 쓴 약어이다. 그리고 org, aq는 각각 organic, aqueous의 이니셜(initial)로 통상적으로 사용되는 용어이다.
[표 4]의 잔사 침출액에서 알루미늄과 철을 분리, 회수해야 순도 및 회수율 측면에서 바람직한 결과를 가져올 수 있으므로 상기 침출액 100㎖와 케로신(kerosene)으로 희석(케로신 70 내지 80wt%, 용매 20 내지 30wt%)한 혼합 용매 D2EHPA(di-2-ethylhexyl-phophoric acid) 100㎖를 분액 깔대기에 넣고, 반응 온도는 상온(25℃)으로 하고 믹싱 시간 2분 이하, 분리 시간 30분 이하로 하고, pH 보정은 20% 수산화나트륨(NaOH)으로 조정하면서 추출을 병류 다단 추출로 3회 실시하였다. 이때 투입된 20% 수산화나트륨(NaOH) 총량은 35.2㎖였고 pH는 2.0 내지 2.6 사이를 유지하였고 최종 추출 잔류물은 130㎖를 수득하였다. 추출된 용매는 믹싱 시간 2분 이하 및 분리 시간 30분 이하로 하여 10wt% 황산용액 100㎖로 1회 역추출하고, 순수 50㎖로 각각 2회 세정하여 용매를 복원시켰다. 추출을 3회 실시한 추출 잔류물 용액(raffinate-3) 130㎖ 내의 용해된 혼합 용매를 제거하기 위해서 활성탄 1g을 넣어서 혼합 용매를 흡착 제거하였다.
하기 [표 5]는 추출 3회 실시 후 추출 잔류물(raffinate-3)의 ICP 분석치이다.
표 5 추출 잔류물(raffinate-3)의 조성
성분 Li Ni Co Mn Mg Ca Al Na Fe
함량(ppm) 0 4383 6693 336 0 0 31 37898 0
[표 4]의 잔사 침출액과 [표 5]의 추출 잔류물(raffinate-3)의 조성을 비교하면 용매추출 하여 니켈, 코발트, 망간은 각각 96.8%, 92.4%, 39.1%가 회수되었고, 알루미늄과 철은 각각 99.7%, 100%가 제거되었다. 나트륨은 37898ppm으로 높으나 [표 4]의 여과액과 수세액을 합한 용액에 혼합하면 1wt% 이하로 농도가 떨어지므로, 상기 추출 잔류물(raffinate-3)용액은 [표 4]의 여과액, 수세액과 혼합하여 3성분계 복합 황산염 용액을 형성함으로써 NCM계 전구체 원료로 사용할 수 있다.
NCM계 전구체 원료로 사용하기 위한 정제공정 즉 선택적 가수분해 및 용매추출 공정에서의 니켈, 코발트, 망간의 회수율은 각각 99.6%, 99.6%, 98.8%이다. 계산근거는 니켈만 살펴보면 다음과 같다.
87.5%[선택적 가수분해]+(1-87.5%)×96.8%[용매추출]=99.6%
1차 복합 황산염 용액의 제조(S70)
용매 추출에서 제조한 추출 잔류물(raffinate-3) 용액과 [표 4]의 여과액, 수세액을 혼합하고 pH=5.0으로 조정하기 위해 시약용 98wt% 황산 5㎖와 순수 160㎖ 첨가하여 3성분계 복합 황산염 용액 1500㎖를 제조하였다.
하기 [표 6]은 3성분계 복합 황산염 용액의 ICP 분석치이다.
표 6 3성분계 복합 황산염 용액의 조성
성분 Li Ni Co Mn Mg Ca Al Na Fe
함량(ppm) 3 2915 10073 14864 4 1 2 6601 0
2차 복합 황산염 용액의 제조(S80)
[표 6]의 복합 황산염 용액은 NCM계 523 전구체용 3성분계 황산염 원료로 사용하기에는 니켈, 코발트, 망간의 농도가 낮으므로, 추가로 황산니켈, 황산코발트, 황산망간 시약을 각각 154g, 45g, 39g을 순수 450㎖에 넣고 용해 후, 상기 황산염 용액 500㎖와 혼합하고 소량의 순수를 첨가하여 1000㎖의 복합 황산염 용액을 제조하였다. 이때 용액의 비중은 1.771 내지 1.773으로 측정되었다.
하기 [표 7]은 NCM계 523 전구체용 원료인 3성분계 황산염 용액의 사양(SPEC) 및 S80 단계에서 제조한 복합 3성분계 황산염 용액 ICP 분석치이다.
표 7 3성분계 복합 황산염 용액의 사양 및 제조용액의 조성
성분 Li Ni Co Mn Mg Ca Al Na Fe
사양(ppm) - 35800 14500 20100 - - - - -
제조 용액 (ppm) 2 35620 14380 20145 11 8 1 3243 1
상기 [표 7]에서 3성분계 니켈, 코발트, 망간의 경우 사양과 거의 같으며 나트륨도 3243ppm으로 1wt% 이하의 경우 전구체 합성시 물성에 영향을 주지 않으므로 문제 될 것이 없다. 마그네슘 및 칼슘의 경우는 오히려 시약에서 미량 추가된 것으로 보이나 전구체 합성시 100ppm 이하로 예상되므로 또한 문제되지 않는다.
S80 단계 완료 후의, 3성분계 복합 황산염 용액 1000㎖를, 합성한 황산염 용액과 혼합하여 NCM계 523 전구체 합성 시, D50, Td, 입도 분포 등의 물성에는 변화가 없음을 실험적으로 확인할 수 있었다.
따라서 본 발명에서는 선택적 가수분해 및 용매 추출 공법을 도입하고 농도를 조정하여 전구체 원료로 사용하는데 적합함을 알 수 있었다. 이는 저비용·고효율 공정 구축을 통한 3성분계 복합 황산염 용액을 제조함으로써, 이후 전구체 합성시 원가 절감에 크게 기여 가능하다.
본 발명의 바람직한 실시예에 따른 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법은, 니켈, 코벨트, 망간을 동시에 재활용할 수 있는 저비용 및 고효율 공정에 의한 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용한 전구체, 양극재 및 리튬 이온 전지를 제공할 수 있음을 알 수 있다.

Claims (15)

  1. (a) 선택적 가수분해 공법을 이용하여 복합 황산염 용액 상태에서 불순물을 정제하는 단계; 및
    (b) 상기 (a) 단계의 정제 후, 상기 불순물을 포함하는 침출액 중의 코발트, 니켈 또는 망간 성분 중 적어도 하나를 용매 추출법을 이용하여 재회수하는 단계;를 포함하고,
    여기서, 상기 (b) 단계는, 상기 침출액을 케로신으로 희석한 혼합 용매인 D2EHPA(di-2-ethylhexyl-phosphoric acid)에 넣어 이루어지는 것을 특징으로 하는 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법.
  2. 제 1 항에 있어서,
    상기 (a) 단계는,
    10wt% 내지 20wt%의 탄산나트륨(Na2CO3) 액상을 반응조에 일정 시간에 걸쳐 투입하는 것에 의해 이루어지는 것이고, 여기서, 상기 탄산나트륨 액상의 wt%는 상기 탄산나트륨 액상 전체의 중량을 기준으로 하는 것을 특징으로 하는 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법.
  3. 제 2 항에 있어서,
    상기 반응조 내부의 pH는 4.7 내지 5.3인 것을 특징으로 하는 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법.
  4. 제 2 항에 있어서,
    상기 반응조 내부의 온도는 45도(℃) 내지 60도(℃)인 것을 특징으로 하는 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법.
  5. 제 2 항에 있어서,
    상기 반응조의 교반 속도는 180 내지 220rpm인 것을 특징으로 하는 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법.
  6. 제 1 항에 있어서,
    상기 (a) 단계는,
    알루미늄 또는 철 중 적어도 하나를 선택적으로 가수분해하는 것을 특징으로 하는 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법.
  7. 제 1 항에 있어서,
    상기 (b) 단계의 반응 온도는,
    20도(℃) 내지 30도(℃)인 것인 특징으로 하는 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법.
  8. 제 1 항에 있어서,
    상기 (b) 단계는,
    믹싱 시간을 1분 내지 2분, 분리 시간을 20분 내지 30분으로 하여 이루어지는 것을 특징으로 하는 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법.
  9. 제 1 항에 있어서,
    상기 (b) 단계는,
    15wt% 내지 25wt%의 수산화나트륨(NaOH) 용액을 이용하여 pH를 조정하면서 이루어지고, 여기서, 상기 수산화나트륨 용액의 wt%는 상기 수산화나트륨 용액 전체의 중량을 기준으로 하는 것을 특징으로 하는 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법.
  10. 제 1 항에 있어서,
    상기 (b) 단계는,
    병류 다단 추출에 의해 이루어지는 것을 특징으로 하는 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법.
  11. 제 1 항에 있어서,
    상기 재생 방법은, 상기 (b) 단계 이후에,
    (c) 상기 (b) 단계에서 회수된 코발트, 니켈 및 망간 중 적어도 하나의 성분을 이용하여 복합 황산염 용액을 제조하는 단계;를 더 포함하는 것을 특징으로 하는 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법.
  12. 제 11 항에 있어서,
    상기 재생 방법은, 상기 (c) 단계 이후에,
    (d) 상기 (c) 단계에서 제조한 상기 복합 황산염 용액에, 황산니켈, 황산코발트 및 황산망간 중 적어도 하나를 순수에 넣어 제조한 용액을 혼합하여, 새로운 복합 황산염 용액을 제조하는 단계;를 더 포함하는 것을 특징으로 하는 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법.
  13. 제 1 항 내지 제 12 항 중 어느 한 항의 재생 방법에 의해 재생된 원료를 이용하여 제조된 전구체.
  14. 제 13 항의 상기 전구체를 이용하여 제조된 양극재.
  15. 제 13 항의 상기 전구체를 이용하여 제조된 리튬 이온 전지.
PCT/KR2014/000576 2014-01-21 2014-01-21 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지 WO2015111761A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/000576 WO2015111761A1 (ko) 2014-01-21 2014-01-21 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/000576 WO2015111761A1 (ko) 2014-01-21 2014-01-21 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지

Publications (1)

Publication Number Publication Date
WO2015111761A1 true WO2015111761A1 (ko) 2015-07-30

Family

ID=53681554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000576 WO2015111761A1 (ko) 2014-01-21 2014-01-21 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지

Country Status (1)

Country Link
WO (1) WO2015111761A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117411A1 (ko) * 2017-12-15 2019-06-20 주식회사 포스코 이차 전지용 양극 활물질 전구체 제조 방법 및 이를 이용한 제조 장치
CN110563046A (zh) * 2019-09-10 2019-12-13 广州大学 一种回收废旧锂离子电池正极材料的方法
CN110615486A (zh) * 2019-09-18 2019-12-27 陕西科技大学 一种废旧动力锂电池中有价金属选择性提取及三元正极材料再制备的工艺
CN112725621A (zh) * 2020-09-17 2021-04-30 湖北金泉新材料有限公司 基于碳酸根固相转换法从废旧锂电池分离镍钴锰的方法
CN113912135A (zh) * 2021-09-28 2022-01-11 南通金通储能动力新材料有限公司 一种镍钴锰氢氧化物的水洗方法
CN114671424A (zh) * 2022-03-28 2022-06-28 东莞理工学院 锂离子电池正极材料再生方法、正极材料和锂离子电池
CN114867690A (zh) * 2019-12-26 2022-08-05 Sk新技术株式会社 回收正极活性物质前体的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644902B1 (ko) * 2004-05-25 2006-11-10 (주)지케이엠 폐리튬 이차전지로부터 유가금속을 회수하는 방법
KR20120094619A (ko) * 2011-02-17 2012-08-27 한국지질자원연구원 폐배터리로부터 유가금속 황산용액의 제조방법 및 양극활물질의 제조방법
KR101210983B1 (ko) * 2012-05-25 2012-12-11 한국지질자원연구원 혼합 추출제의 스크린 효과를 이용한 코발트 및 니켈로부터 망간의 선택적인 분리 및 회수 방법
WO2013061848A1 (ja) * 2011-10-24 2013-05-02 住友金属鉱山株式会社 高純度硫酸コバルト水溶液の製造方法
KR101392616B1 (ko) * 2012-10-30 2014-05-07 (주)이엠티 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644902B1 (ko) * 2004-05-25 2006-11-10 (주)지케이엠 폐리튬 이차전지로부터 유가금속을 회수하는 방법
KR20120094619A (ko) * 2011-02-17 2012-08-27 한국지질자원연구원 폐배터리로부터 유가금속 황산용액의 제조방법 및 양극활물질의 제조방법
WO2013061848A1 (ja) * 2011-10-24 2013-05-02 住友金属鉱山株式会社 高純度硫酸コバルト水溶液の製造方法
KR101210983B1 (ko) * 2012-05-25 2012-12-11 한국지질자원연구원 혼합 추출제의 스크린 효과를 이용한 코발트 및 니켈로부터 망간의 선택적인 분리 및 회수 방법
KR101392616B1 (ko) * 2012-10-30 2014-05-07 (주)이엠티 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117411A1 (ko) * 2017-12-15 2019-06-20 주식회사 포스코 이차 전지용 양극 활물질 전구체 제조 방법 및 이를 이용한 제조 장치
US11827524B2 (en) 2017-12-15 2023-11-28 Posco Holdings Inc. Method for preparing cathode active material precursor for secondary battery, and preparation apparatus using same
CN110563046A (zh) * 2019-09-10 2019-12-13 广州大学 一种回收废旧锂离子电池正极材料的方法
CN110615486A (zh) * 2019-09-18 2019-12-27 陕西科技大学 一种废旧动力锂电池中有价金属选择性提取及三元正极材料再制备的工艺
CN114867690A (zh) * 2019-12-26 2022-08-05 Sk新技术株式会社 回收正极活性物质前体的方法
EP4082973A4 (en) * 2019-12-26 2023-07-19 SK Innovation Co., Ltd. METHOD FOR RECOVERING A POSITIVE ELECTRODE ACTIVE MATERIAL PRECURSOR
CN112725621A (zh) * 2020-09-17 2021-04-30 湖北金泉新材料有限公司 基于碳酸根固相转换法从废旧锂电池分离镍钴锰的方法
CN112725621B (zh) * 2020-09-17 2022-10-14 湖北金泉新材料有限公司 基于碳酸根固相转换法从废旧锂电池分离镍钴锰的方法
CN113912135A (zh) * 2021-09-28 2022-01-11 南通金通储能动力新材料有限公司 一种镍钴锰氢氧化物的水洗方法
CN113912135B (zh) * 2021-09-28 2023-04-07 南通金通储能动力新材料有限公司 一种镍钴锰氢氧化物的水洗方法
CN114671424A (zh) * 2022-03-28 2022-06-28 东莞理工学院 锂离子电池正极材料再生方法、正极材料和锂离子电池

Similar Documents

Publication Publication Date Title
WO2015111761A1 (ko) 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지
KR101392616B1 (ko) 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지
CN112142077B (zh) 磷酸铁锂正极废料回收制备电池级碳酸锂和磷酸铁的方法
WO2021047352A1 (zh) 三元电池废料综合回收中的锰锂分离和萃前液制备工艺以及从三元电池废料中综合回收钴镍锰锂元素的方法
CN108002408B (zh) 电池废料制备硫酸镍、锰、锂、钴及四氧化三钴的方法
CN105567978B (zh) 从各种含有色金属的废料中回收铜锌钴镍的方法
EP2597164B1 (en) Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery
KR102154599B1 (ko) 양극활물질의 유가금속 분리회수방법
KR102008582B1 (ko) 용매추출 공정을 적용하여 리튬이차전지 폐 양극재를 니켈-코발트-망간 복합 황산염 용액으로 재생하는 방법
CN111092273B (zh) 从三元电池废料中综合回收钴镍锰锂元素的新方法
KR101823952B1 (ko) 리튬이온 2차전지의 폐 양극재로부터 리튬을 회수하여 탄산리튬을 제조하는 방법
KR101441421B1 (ko) 폐 리튬 이온 전지를 이용한 전구체 원료의 회수 방법
KR102603244B1 (ko) 폐전지를 이용한 유가 금속의 회수 방법
EP4140558A1 (en) Method for producing metal mixture solution and method for producing mixed metal salt
WO2016129732A1 (ko) 볼밀을 이용한 리튬이차전지 양극 활물질용 폐전구체 재생 방법
CN112375910A (zh) 废动力电池粉的回收处理方法
CA3213841A1 (en) Extraction of metals from lithium-ion battery material
WO2014000404A1 (zh) 一种电子废弃物永磁废料中回收稀土的工艺
KR20190065882A (ko) 리튬이온 전지 양극재 스크랩으로부터 유가금속 회수 방법
CN102304620A (zh) 一种废旧镍氢电池综合回收处理方法
CN111180819A (zh) 一种电池级Ni-Co-Mn混合液和电池级Mn溶液的制备方法
CN105274352B (zh) 一种从碳酸铜锰钴钙锌混合物中分离铜钴锰的方法
CN115087622A (zh) 混合金属盐的制造方法
CN114317977B (zh) 从废旧钴酸锂电池中回收金属的方法
KR102324910B1 (ko) 리튬 이차 전지 폐양극재로부터 전구체 원료의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880231

Country of ref document: EP

Kind code of ref document: A1