[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015111530A1 - 近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法 - Google Patents

近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法 Download PDF

Info

Publication number
WO2015111530A1
WO2015111530A1 PCT/JP2015/051171 JP2015051171W WO2015111530A1 WO 2015111530 A1 WO2015111530 A1 WO 2015111530A1 JP 2015051171 W JP2015051171 W JP 2015051171W WO 2015111530 A1 WO2015111530 A1 WO 2015111530A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
copper
infrared
atom
Prior art date
Application number
PCT/JP2015/051171
Other languages
English (en)
French (fr)
Inventor
誠一 人見
敬史 川島
晃逸 佐々木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020167017337A priority Critical patent/KR101962664B1/ko
Publication of WO2015111530A1 publication Critical patent/WO2015111530A1/ja
Priority to US15/192,284 priority patent/US10184052B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to a near-infrared absorbing composition, a near-infrared cut filter and a manufacturing method thereof, and a camera module and a manufacturing method thereof.
  • a CCD or CMOS image sensor which is a solid-state image sensor for color images, is used in video cameras, digital still cameras, mobile phones with camera functions, and the like. Since these solid-state imaging devices use silicon photodiodes having sensitivity to near infrared rays in their light receiving portions, it is necessary to perform visibility correction and often use near-infrared cut filters.
  • a near-infrared cut filter for example, a near-infrared absorbing composition using a phosphoric acid ester copper complex is known (Patent Documents 1 to 3).
  • JP 2002-69305 A Japanese Patent Laid-Open No. 11-52127 JP 2011-63814 A
  • An object of the present invention is to provide a near-infrared absorbing composition having a high shielding property in the near-infrared region when it is used as a cured film. Moreover, it aims at providing the near-infrared cut filter using the near-infrared absorptive composition, its manufacturing method, a camera module, and its manufacturing method.
  • the present invention provides the following.
  • the near-infrared absorptive composition containing the copper complex formed by making the compound (A) which has two or more coordinate atoms coordinated with a lone pair with respect to a ⁇ 1> copper component react.
  • ⁇ 2> A near-infrared absorbing composition containing a copper complex having copper as a central metal and a compound (A) having two or more coordination atoms coordinated by a lone pair as a ligand.
  • the ⁇ 3> copper complex is the near-infrared absorbing composition according to ⁇ 1> or 2, wherein a 5-membered ring and / or a 6-membered ring is formed of copper and the compound (A).
  • ⁇ 4> The near infrared ray according to any one of ⁇ 1> to ⁇ 3>, wherein in the compound (A), the coordination atom coordinated by the shared electron pair is an oxygen atom, a nitrogen atom, a sulfur atom, or a phosphorus atom Absorbent composition.
  • ⁇ 5> The near-infrared absorbing composition according to any one of ⁇ 1> to ⁇ 4>, wherein the compound (A) has 2 to 5 coordinating atoms coordinated by an unshared electron pair.
  • ⁇ 6> The near-infrared absorbing composition according to any one of ⁇ 1> to ⁇ 5>, wherein the number of atoms connecting two coordinating atoms coordinated by an unshared electron pair is 1 to 3.
  • ⁇ 7> The near-infrared absorbing composition according to any one of ⁇ 1> to ⁇ 6>, wherein the molecular weight of the compound (A) is 50 to 1000.
  • Y 1 and Y 2 each independently represent a ring containing a coordination atom coordinated by a lone pair or a partial structure represented by group (UE).
  • L 1 represents a single bond or a divalent linking group.
  • Z 25 to Z 27 each independently represent a ring containing a coordination atom coordinated by a lone pair or a partial structure represented by group (UE);
  • Z 201 represents at least one selected from the following group (UE-2);
  • L 17 to L 19 each independently represent a single bond or a divalent linking group;
  • Each of R 2 independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthio group, an arylthio group, a hetero group
  • An arylthio group, an amino group or an acyl group is represented.
  • the compound (A) is a compound containing a 5-membered ring or a 6-membered ring, and the coordination atom coordinated by the shared electron pair is an atom constituting a 5-membered ring or a 6-membered ring.
  • ⁇ 10> The near-infrared absorbing composition according to any one of ⁇ 1> to ⁇ 9>, wherein the coordination atom coordinated by the lone pair is a nitrogen atom.
  • ⁇ 11> The near-infrared absorbing composition according to any one of ⁇ 1> to ⁇ 10>, further comprising a curable compound and a solvent.
  • a near-infrared cut filter comprising a step of forming a film by applying the near-infrared absorbing composition according to any one of ⁇ 1> to ⁇ 11> on the light-receiving side of the solid-state imaging device substrate Method.
  • a camera module having a solid-state image sensor substrate and a near-infrared cut filter disposed on the light-receiving side of the solid-state image sensor substrate, wherein the near-infrared cut filter is any one of ⁇ 1> to ⁇ 11>
  • ⁇ 14-1> A camera module, wherein the near-infrared cut filter is a near-infrared cut filter according to ⁇ 12> or a near-infrared cut filter obtained by the method for producing a near-infrared cut filter according to ⁇ 14>.
  • ⁇ 15> A method for manufacturing a camera module having a solid-state image pickup device substrate and a near-infrared cut filter disposed on the light-receiving side of the solid-state image pickup device substrate, wherein ⁇ 1> to ⁇ 11> The manufacturing method of a camera module which has the process of forming a film
  • the present invention it is possible to provide a near-infrared absorbing composition having a high shielding property in the near-infrared region when a cured film is formed.
  • a near-infrared cut filter using a near-infrared absorbing composition and a manufacturing method thereof, a camera module and a manufacturing method thereof.
  • the contents of the present invention will be described in detail.
  • “to” is used in the sense of including the numerical values described before and after it as lower and upper limits.
  • the notation which does not describe substitution and non-substitution includes a group (atomic group) having a substituent together with a group (atomic group) having no substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • (meth) acrylate represents acrylate and methacrylate
  • (meth) acryl represents acryl and methacryl
  • (meth) acryloyl represents acryloyl and methacryloyl.
  • “monomer” and “monomer” are synonymous.
  • the monomer in the present invention is distinguished from an oligomer and a polymer and refers to a compound having a weight average molecular weight of 2,000 or less.
  • the polymerizable compound means a compound having a polymerizable functional group, and may be a monomer or a polymer.
  • the polymerizable functional group refers to a group that participates in a polymerization reaction.
  • the description which is not describing substitution and non-substitution includes what does not have a substituent and what has a substituent.
  • the measuring method of the weight average molecular weight and the number average molecular weight of the compound used in the present invention can be measured by gel permeation chromatography (GPC), and is defined as a polystyrene conversion value by GPC measurement.
  • HLC-8220 manufactured by Tosoh Corporation
  • TSKgel Super AWM-H manufactured by Tosoh Corporation, 6.0 mm ID ⁇ 15.0 cm
  • 10 mmol / L lithium bromide NMP N— It can be determined by using a methylpyrrolidinone) solution.
  • Near-infrared light refers to light (electromagnetic wave) having a maximum absorption wavelength region of 700 to 2500 nm.
  • the total solid content refers to the total mass of the components excluding the solvent from the total composition of the composition.
  • the solid content in the present invention is a solid content at 25 ° C.
  • the near-infrared absorbing composition of the present invention reacts with a compound (A) having two or more coordinating atoms coordinated by a lone pair with respect to a copper component. Containing a copper complex.
  • the composition of the present invention comprises a compound (A) (hereinafter also referred to as compound (A)) having two or more coordination atoms coordinated by a lone pair with copper as a central metal as a ligand. It may contain a copper complex.
  • achieve high near-infrared shielding is obtained.
  • the film thickness of the near-infrared cut filter can be reduced, which can contribute to the reduction in the height of the camera module. The reason why such an effect of the present invention is obtained is not clear, but is estimated as follows.
  • the compound (A) having two or more coordination atoms coordinated by an unshared electron pair functions as a chelate ligand for the copper component.
  • the coordination atom coordinated by the unshared electron pair of the compound (A) is chelate coordinated with copper in the copper component, so that the structure of the copper complex is distorted and high transmittance in the visible light region is obtained. It is considered that the ability to absorb near infrared rays can be improved, and the color value can also be improved.
  • the composition of this invention should just contain the copper complex formed by making the compound (A) mentioned above react with respect to a copper component, for example, the copper compound (copper complex) as a copper component, and a compound (A ) And a copper compound other than the copper complex (for example, copper hydroxide), a ligand coordinated with an anion, and the compound (A) were reacted.
  • a copper complex may be contained.
  • the anion of the ligand is not particularly limited as long as it can coordinate to a copper atom, and examples thereof include an oxygen anion, a nitrogen anion, a sulfur anion, and a chlorine anion.
  • the copper complex used in the present invention is in the form of a copper complex (copper compound) in which coordination atoms coordinated by two unshared electron pairs of the compound (A) are coordinated.
  • Copper in the copper complex used in the present invention is usually divalent copper, and can be obtained, for example, by mixing and reacting the compound (A) with a copper component (copper or a compound containing copper).
  • the copper complex is exemplified by 4-coordinate, 5-coordinate and hexacoordinate, and 4-coordinate and pentacoordinate are more preferred.
  • the copper complex preferably has at least one ligand coordinated by an anion.
  • the structure of copper and compound (A) can be detected from the composition of the present invention, it can be said that a copper complex having compound (A) as a ligand is formed in the composition of the present invention.
  • Examples of the method for detecting copper and the compound (A) from the composition of the present invention include ICP emission analysis.
  • the copper complex used in the present invention preferably has a maximum absorption wavelength ( ⁇ max ) in the near-infrared wavelength region 700 to 2500 nm, more preferably has a maximum absorption wavelength in 720 to 890 nm, and has a maximum absorption in 730 to 880 nm. More preferably, it has a wavelength.
  • the maximum absorption wavelength can be measured using, for example, Cary 5000 UV-Vis-NIR (manufactured by Agilent Technologies, Inc.).
  • the compound (A) may have two or more coordinating atoms coordinated by a lone pair in one molecule, may have three or more, and has two to five. Preferably, it has four.
  • the maximum absorption wavelength ( ⁇ max) of the compound (A) is preferably 420 nm or less, more preferably 400 nm or less, and further preferably 350 nm or less. Further, the maximum absorption wavelength of the compound (A) is preferably 10 nm or more, and more preferably 50 nm or more. Moreover, it is preferable that the maximum absorption wavelength of a compound (A) does not exist in 430 nm or more.
  • the compound (A) may or may not have a coordination site coordinated by an anion in the molecule.
  • part coordinated with an anion contains the anion which can be coordinated to the copper atom in a copper component, for example, the thing containing an oxygen anion, a nitrogen anion, or a sulfur anion is mentioned.
  • a compound (A) can be used 1 type or in combination of 2 or more types.
  • the number of atoms connecting the coordinating atoms coordinated by the lone pair is preferably 1 to 6, more preferably 1 to 3, and still more preferably 2 to 3. .
  • 1 type (s) or 2 or more types may be sufficient as the atom which connects the coordination atoms coordinated by a lone pair.
  • the atom connecting the coordinating atoms coordinated by the lone pair is preferably a carbon atom.
  • the coordinating atom coordinated by the lone pair is a nitrogen atom
  • the atom linking the coordinating atoms coordinated by the lone pair is a carbon atom
  • the nitrogen atom is linked.
  • the number of carbon atoms is 2.
  • the number of unsaturated bonds that the compound (A) may have is preferably 9 or less, more preferably 1 to 9.
  • the molecular weight of the compound (A) is preferably from 50 to 1,000, more preferably from 50 to 600.
  • the coordination atom coordinated by the lone pair is preferably an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom, more preferably an oxygen atom, a nitrogen atom or a sulfur atom, and further preferably a nitrogen atom.
  • the coordination atom coordinated by the lone pair is a nitrogen atom
  • the atom adjacent to the nitrogen atom is preferably a carbon atom
  • the carbon atom preferably has a substituent.
  • the coordinating atom coordinated by the lone pair is contained in a ring or in at least one partial structure selected from the following group (UE).
  • Group (UE) UE
  • R 1 independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group
  • R 2 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl Represents a group, heteroaryl group, alkoxy group, aryloxy group, heteroaryloxy group, alkylthio group, arylthio group, heteroarylthio group, amino group or acyl group.
  • the ring that includes a coordination atom that coordinates with an unshared electron pair may be monocyclic or polycyclic, It may be aromatic or non-aromatic.
  • the ring containing a coordination atom coordinated by a lone pair is preferably a 5- to 12-membered ring, and more preferably a 5- to 7-membered ring.
  • the ring containing a coordinating atom coordinated by a lone pair may have a substituent, such as a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, carbon number Examples thereof include an aryl group having 6 to 12 atoms, a halogen atom, a silicon atom, an alkoxy group having 1 to 12 carbon atoms, an acyl group having 1 to 12 carbon atoms, an alkylthio group having 1 to 12 carbon atoms, and a carboxyl group.
  • a substituent such as a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, carbon number Examples thereof include an aryl group having 6 to 12 atoms, a halogen atom, a silicon atom, an alkoxy group having 1 to 12 carbon atoms, an acyl group having 1 to 12 carbon atoms, an alkylthio group having 1 to 12 carbon atoms, and a carboxyl group.
  • the ring may further have a substituent, and from the ring containing the coordination atom coordinated by the lone pair A group consisting of at least one partial structure selected from the above group (UE), an alkyl group having 1 to 12 carbon atoms, an acyl group having 1 to 12 carbon atoms, and a hydroxy group.
  • UE group consisting of at least one partial structure selected from the above group (UE), an alkyl group having 1 to 12 carbon atoms, an acyl group having 1 to 12 carbon atoms, and a hydroxy group.
  • each R 1 independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or It preferably represents a heteroaryl group.
  • the alkyl group may be linear, branched or cyclic, but is preferably linear.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Examples of the alkyl group include a methyl group.
  • the alkyl group may have a substituent, and examples of the substituent include a halogen atom, a carboxyl group, and a heterocyclic group.
  • the heterocyclic group as a substituent may be monocyclic or polycyclic, and may be aromatic or non-aromatic.
  • the number of heteroatoms constituting the heterocycle is preferably 1 to 3, and preferably 1 or 2.
  • the hetero atom constituting the hetero ring is preferably a nitrogen atom.
  • the alkyl group has a substituent, it may further have a substituent.
  • the alkenyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • the alkynyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • the aryl group may be monocyclic or polycyclic, but is preferably monocyclic.
  • the aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms.
  • the heteroaryl group may be monocyclic or polycyclic.
  • the number of heteroatoms constituting the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the heteroaryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms.
  • each R 2 independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, It preferably represents a heteroaryl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthio group, an arylthio group, a heteroarylthio group, an amino group or an acyl group.
  • An alkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heteroaryl group have the same meanings as described in the above group (UE), and preferred ranges are also the same.
  • the number of carbon atoms of the alkoxy group is preferably 1-12.
  • the aryloxy group preferably has 6 to 18 carbon atoms.
  • the heteroaryloxy group may be monocyclic or polycyclic.
  • the heteroaryl group which comprises heteroaryloxy group is synonymous with the heteroaryl group demonstrated by the said group (UE), and its preferable range is also the same.
  • the alkylthio group preferably has 1 to 12 carbon atoms.
  • the arylthio group preferably has 6 to 18 carbon atoms.
  • the heteroarylthio group may be monocyclic or polycyclic.
  • the heteroaryl group which comprises heteroarylthio group is synonymous with the heteroaryl group demonstrated by the said group (UE), and its preferable range is also the same.
  • the acyl group preferably has 2 to 12 carbon atoms.
  • the compound (A) is also preferably represented by the following general formula (IV).
  • Y 1 -L 1 -Y 2 general formula (IV) (In General Formula (IV), Y 1 and Y 2 each independently represent a ring containing a coordination atom coordinated by an unshared electron pair or a partial structure represented by the group (UE). 1 represents a single bond or a divalent linking group.)
  • Y 1 and Y 2 are a ring containing a coordination atom coordinated by the above-mentioned lone pair, or a moiety containing a coordination atom coordinated by the above-mentioned lone pair. It is synonymous with a structure and its preferable range is also the same.
  • an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 12 carbon atoms, —SO—, —O—, or a combination thereof are preferably an alkylene group having 1 to 3 carbon atoms, a phenylene group or —SO 2 —, and more preferably an alkylene group having 1 to 3 carbon atoms.
  • More detailed examples of the compound (A) include compounds represented by the following general formula (IV-1) or (IV-2).
  • Y 3 -L 2 -Y 4 -L 3 -Y 5 (IV-1) Y 6 -L 6 -Y 7 -L 7 -Y 8 -L 8 -Y 9 (IV-2)
  • Y 3 , Y 5 , Y 6 and Y 9 are each independently a ring or group containing a coordination atom coordinated by an unshared electron pair
  • the partial structure represented by (UE) is represented.
  • Y 4 , Y 7 , and Y 8 are each independently at least one selected from a ring containing a coordination atom coordinated by a lone pair, or the following group (UE-1): .
  • R in the group (UE-1) has the same meaning as R 1 in the case where the coordinating atom coordinated by the lone pair is included in the partial structure represented by the group (UE) described above.
  • Group (UE-1)
  • L 2 to L 8 each independently represents a single bond or a divalent linking group.
  • a bivalent coupling group is synonymous with the case where L ⁇ 1 > in general formula (IV) represents a bivalent coupling group, and its preferable range is also the same.
  • the compound (A) is also preferably a compound represented by the following general formulas (IV-11) to (IV-20). Among these, a compound represented by the following general formula (IV-18) is more preferable.
  • Z 1 to Z 34 , Z 101 to Z 108 , and Z 201 to Z 203 each independently represent a coordination site
  • L 11 to L 25 Each independently represents a single bond or a divalent linking group
  • L 26 to L 32 each independently represents a trivalent linking group
  • L 33 to L 34 each independently represents a tetravalent linking group.
  • Z 1 to Z 34 each independently represent at least one selected from the group consisting of a ring containing a coordinating atom coordinated by a lone pair, and the group (UE) described above.
  • Z 101 to Z 108 each independently represents a group consisting of a ring containing a coordinating atom coordinated by a lone pair or at least one selected from the group (UE-1) described above.
  • Z 201 to Z 203 each independently represent at least one selected from the following group (UE-2).
  • L 11 to L 25 each independently represents a single bond or a divalent linking group.
  • the divalent linking group an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 12 carbon atoms, —SO—, —O—, —SO 2 —, or a combination thereof is preferable.
  • a group consisting of an alkylene group of 1 to 3 groups, a phenylene group, —SO 2 — or a combination thereof is more preferable.
  • L 26 to L 32 each independently represents a trivalent linking group. Examples of the trivalent linking group include groups obtained by removing one hydrogen atom from the above-described divalent linking group.
  • L 33 to L 34 each independently represents a tetravalent linking group. Examples of the tetravalent linking group include groups obtained by removing two hydrogen atoms from the above-described divalent linking group.
  • the compound (A) is also preferably a compound containing a 5-membered ring or a 6-membered ring, and it is also preferable that the coordinating atom coordinated by the lone pair constitutes a 5-membered ring or a 6-membered ring. It is also preferred that the coordinating atom coordinated by the lone pair of compound (A) is a nitrogen atom. Moreover, it is also preferable that the atom adjacent to the nitrogen atom as a coordinating atom coordinated by the lone pair of the compound (A) is a carbon atom, and the carbon atom has a substituent. By setting it as such a structure, since the structure of a copper complex becomes easier to distort, color value can be improved more.
  • the substituent is synonymous with the substituent which the ring containing the coordinating atom coordinated by the lone pair described above may have, an alkyl group having 1 to 10 carbon atoms, an aryl having 6 to 12 carbon atoms Group, carboxyl group, alkoxy group having 1 to 12 carbon atoms, acyl group having 2 to 12 carbon atoms, alkylthio group having 1 to 12 carbon atoms, and halogen atom are preferable.
  • compound (A) examples include, but are not limited to, the following compounds.
  • the copper complex used in the present invention has a coordination site coordinated by an anion, a compound having one coordination atom coordinated by an unshared electron pair, and two coordination sites coordinated by an anion.
  • a compound having no coordination atom coordinated by a lone pair may be included as a ligand. Examples of such compounds include the following.
  • the copper complex used in the present invention may have a monodentate ligand coordinated by an anion or an unshared electron pair.
  • ligands coordinated with anions include halide anions, hydroxide anions, alkoxide anions, phenoxide anions, amide anions (including amides substituted with acyl groups and sulfonyl groups), and imide anions (acyl groups and sulfonyl groups).
  • Substituted imides anilide anions (including acylides and sulfonyl substituted anilides), thiolate anions, bicarbonate anions, carboxylate anions, thiocarboxylate anions, dithiocarboxylate anions, hydrogen sulfate anions, sulfones Acid anion, phosphate dihydrogen anion, phosphate diester anion, phosphonate monoester anion, hydrogen phosphonate anion, phosphinate anion, nitrogen-containing heterocyclic anion, nitrate anion, hypochlorite anion, cyanide anion Cyanate anion, isocyanate anion, thiocyanate anion, isothiocyanate anions, such as azide anions.
  • Monodentate ligands coordinated by lone pairs include water, alcohol, phenol, ether, amine, aniline, amide, imide, imine, nitrile, isonitrile, thiol, thioether, carbonyl compound, thiocarbonyl compound, sulfoxide, Examples include heterocycles, carbonic acid, carboxylic acid, sulfuric acid, sulfonic acid, phosphoric acid, phosphonic acid, phosphinic acid, nitric acid, and esters thereof.
  • the kind and number of monodentate ligands can be appropriately selected according to the compound (A) coordinated to the copper complex. Specific examples of the monodentate ligand include the following, but are not limited thereto.
  • the copper complex used in the present invention may become a cation complex or an anion complex in addition to a neutral complex having no charge, depending on the number of coordination sites coordinated by an anion.
  • counter ions are present as necessary to neutralize the charge of the copper complex.
  • the counter ion is a negative counter ion, for example, an inorganic anion or an organic anion may be used.
  • hydroxide ions examples include hydroxide ions, halogen anions (eg, fluoride ions, chloride ions, bromide ions, iodide ions, etc.), substituted or unsubstituted alkylcarboxylate ions (acetate ions, trifluoroacetic acid, etc.) ), Substituted or unsubstituted arylcarboxylate ions (such as benzoate ions), substituted or unsubstituted alkylsulfonate ions (such as methanesulfonate and trifluoromethanesulfonate ions), substituted or unsubstituted arylsulfonate ions ( For example, p-toluenesulfonic acid ion, p-chlorobenzenesulfonic acid ion, etc.), aryl disulfonic acid ion (for example, 1,3-benzenedisulfonic acid ion, 1,5-
  • the counter ion is a positive counter ion, for example, inorganic or organic ammonium ion (for example, tetraalkylammonium ion such as tetrabutylammonium ion, triethylbenzylammonium ion, pyridinium ion, etc.), phosphonium ion (for example, tetrabutylphosphonium) Tetraalkylphosphonium ions such as ions, alkyltriphenylphosphonium ions, triethylphenylphosphonium ions, etc.), alkali metal ions or protons.
  • the counter ion may be a metal complex ion, and in particular, the counter ion may be a copper complex, that is, a salt of a cationic copper complex and an anionic copper complex.
  • the copper component used in the present invention may be a copper complex or a copper compound other than a copper complex.
  • copper or a compound containing copper can be used.
  • the compound containing copper for example, copper oxide or a copper salt can be used.
  • the copper salt is preferably monovalent or divalent copper, and more preferably divalent copper.
  • Copper salts include copper acetate, copper chloride, copper formate, copper hydroxide, copper stearate, copper benzoate, copper ethyl acetoacetate, copper pyrophosphate, copper naphthenate, copper citrate, copper nitrate, copper sulfate, copper carbonate , Copper chlorate, copper (meth) acrylate, copper perchlorate, copper phosphinate, copper diphenylphosphinate, copper methanesulfonate, copper acetate, copper chloride, copper phosphinate, copper diphenylphosphinate, methane Copper sulfonate is more preferable, and copper acetate, copper phosphinate, copper diphenylphosphinate, and copper methanesulfonate are particularly preferable.
  • the amount of the copper component to be reacted with the compound (A) is preferably 1: 0.5 to 1: 8 in a molar ratio (compound (A): copper component), and is 1: 0.5 to 1: 4. More preferably, it is more preferably 1: 0.6 to 1: 1.
  • the reaction conditions for reacting the copper component with the compound (A) are preferably, for example, 20 to 50 ° C. and 0.5 hours or longer.
  • Specific examples of the copper complex include the examples shown in the following table, but are not limited thereto.
  • the compounds and monodentate ligands in the table represent the aforementioned compounds and monodentate ligands. In the following tables, Ph represents a phenyl group.
  • components (solvent, various additives, etc.) other than the copper complex of the composition of this invention may further coordinate, and a part of ligand of a copper complex May exist in a state where it is replaced with a component other than the copper complex. This is a property common to copper (II) complexes having substitution active d 9 electron configurations.
  • the content of the copper complex in the composition of the present invention (the same applies to the copper complex obtained by reacting the compound (A) with the copper component) is 1 to 60 masses relative to the composition of the present invention (including the solvent). %, More preferably 5 to 40% by mass, and still more preferably 5 to 20% by mass. 15 mass% or more is preferable with respect to the total solid of the composition of this invention, content of the copper complex in the composition of this invention has more preferable 20 mass% or more, and 25 mass% or more is further more preferable. Further, the content of the copper complex in the composition of the present invention is preferably 15 to 60% by mass, more preferably 20 to 50% by mass, and further preferably 25 to 45% by mass.
  • the content of the copper complex (near infrared absorbing substance) other than the copper complex in the composition of the present invention is preferably 0 to 20% by mass, and 0 to 10% by mass with respect to the composition of the present invention. More preferred is 0 to 5% by mass.
  • the proportion of the compound obtained by reacting the compound (A) with the copper component is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass. % Or more is more preferable.
  • 0.1 mass% or more is preferable with respect to the total solid of a composition, as for copper content in the composition of this invention, 1 mass% or more is more preferable, and 5 mass% or more is further more preferable.
  • the upper limit is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less. 1 mass% or more is preferable with respect to the composition, and, as for the total solid of the near-infrared absorptive composition of this invention, 10 mass% or more is more preferable.
  • the total solid content of the near-infrared absorbing composition of the present invention is preferably 1 to 50% by mass, more preferably 1 to 40% by mass, and more preferably 10 to 35% by mass with respect to the composition. More preferably.
  • the composition of this invention may use the copper complex used by this invention mentioned above individually by 1 type, and may use 2 or more types together. When using 2 or more types of copper complexes used by this invention mentioned above, it is preferable that the total amount is in the said range.
  • the near-infrared absorptive composition of this invention should just contain the copper complex mentioned above, as needed, another near-infrared absorptive compound, a solvent, a sclerosing
  • Other near-infrared absorbing compounds that can be used in the present invention include a copper compound obtained by a reaction between a compound containing a low molecular (for example, a molecular weight of 1000 or less) coordination site and a copper component, and a coordination site.
  • the copper compound obtained by reaction with the polymer and copper component to contain can be used.
  • the coordination site include a coordination site coordinated by an anion such as an acid group or a salt of an acid group, and a coordination atom coordinated by an unshared electron pair.
  • the content of the other near-infrared absorbing compound is 0.01% by mass or more based on the total solid content of the composition of the present invention. Is preferable, 1 mass% or more is more preferable, and 5 mass% or more is further more preferable.
  • the upper limit is preferably 60% by mass or less, more preferably 40% by mass or less, and further preferably 20% by mass or less.
  • this invention can also be set as the composition which does not contain another near-infrared absorptive compound.
  • a copper complex represented by the following formula (A) can be used as a compound obtained by the reaction of a compound containing a coordination site and a copper component, which can be used in the present invention.
  • Cu (L) n1 ⁇ (X) n2 Formula (A) L represents a ligand coordinated to copper, and X does not exist or is a halogen atom, H 2 O, NO 3 , ClO 4 , SO 4 , CN, SCN, or BF 4. , PF 6 , BPh 4 (Ph represents a phenyl group) or alcohol.
  • n1 and n2 each independently represents an integer of 1 to 4.
  • the ligand L has a substituent containing C, N, O, and S as atoms capable of coordinating to copper, and more preferably has a group having a lone pair such as N, O, and S It is.
  • the group capable of coordinating is not limited to one type in the molecule and may include two or more types, and may be dissociated or non-dissociated. In the case of non-dissociation, X is not present.
  • the copper complex is a copper compound in which a ligand is coordinated to copper as a central metal, and copper is usually divalent copper. For example, it can be obtained by mixing and reacting a compound serving as a ligand or a salt thereof with a copper component.
  • an organic acid compound (For example, a sulfonic acid compound, a carboxylic acid compound, a phosphoric acid compound) or its salt etc. are mentioned suitably.
  • Examples of the compound serving as the ligand or a salt thereof include those represented by the following general formula (i).
  • Formula (i) (In general formula (i), R 1 represents an n-valent organic group, X 1 represents an acid group, and n represents an integer of 1 to 6.)
  • the n-valent organic group is preferably a hydrocarbon group or an oxyalkylene group, more preferably an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • the hydrocarbon group may have a substituent, and examples of the substituent include a halogen atom (preferably a fluorine atom), a (meth) acryloyl group, and a group having an unsaturated double bond.
  • an alkyl group or an aryl group is preferable, and an aryl group is more preferable.
  • an alkylene group, an arylene group, and an oxyalkylene group are preferable, and an arylene group is more preferable.
  • the thing corresponding to the said hydrocarbon group is preferable.
  • the alkyl group and alkylene group preferably have 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • the aryl group and arylene group preferably have 6 to 18 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • X 1 includes, for example, an acid group containing a phosphorus atom (phosphoric acid diester group, phosphonic acid monoester group, phosphinic acid group, etc.), sulfo group, carboxyl group, hydroxyl group and the like. .
  • X 1 may be one kind or two or more kinds, but preferably two or more kinds.
  • the molecular weight of the compound serving as the ligand or a salt thereof (a compound containing an acid group or a salt thereof) is preferably 1000 or less, preferably 70 to 1000, more preferably 70 to 500.
  • a compound having two monoanionic coordination sites or a salt thereof with respect to the copper component As an example of a copper compound obtained by a reaction between a compound containing a low molecular acid group or a salt thereof and a copper component, a compound having two monoanionic coordination sites or a salt thereof with respect to the copper component Those obtained by reacting can also be used.
  • the monoanionic coordination site represents a site coordinated with a copper atom via a functional group having one negative charge in coordination with a copper atom. Examples of the structure having such a monoanionic coordination site include those described for X 1 in the general formula (i).
  • a structure having a monoanionic coordination site forms a copper complex by, for example, coordination with a copper atom as shown below.
  • a copper complex by, for example, coordination with a copper atom as shown below.
  • carboxyl group-copper complex, phosphoric acid diester group-copper complex, phosphonic acid monoester group-copper complex, phosphinic acid group-copper complex, sulfo group-copper complex, hydroxyl group-copper complex are formed.
  • the structure having a monoanionic coordination site may be at least one selected from the group (AN) described above.
  • Examples of the compound having two monoanionic coordination sites include those represented by the following general formula (10).
  • X 1 -L 1 -X 2 General formula (10) (In the general formula (10), X 1 and X 2 each independently represent the monoanionic coordination site, and L 1 represents an alkylene group, an alkenylene group, an arylene group, a heterocyclic group, —O—, Represents a divalent linking group consisting of —S—, —NR N1 —, —CO—, —CS— , —SO 2 —, or a combination thereof, where R N1 represents a hydrogen atom, an alkyl group, an aryl Represents a group or an aralkyl group.)
  • L 1 represents an alkylene group, an alkenylene group, an arylene group, a heterocyclic group, —O—, —S—, —NR N1 —, —CO—, —CS— , —SO 2 —.
  • NR N1 represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group.
  • alkylene group include a substituted or unsubstituted linear or branched alkylene group having 1 to 20 carbon atoms and a substituted or unsubstituted cyclic alkylene group having 3 to 20 carbon atoms.
  • the alkenylene group is preferably a substituted or unsubstituted alkenylene group having 2 to 10 carbon atoms, and more preferably a substituted or unsubstituted alkenylene group having 2 to 8 carbon atoms.
  • arylene group a substituted or unsubstituted arylene group having 6 to 18 carbon atoms is preferable, and a substituted or unsubstituted arylene group having 6 to 14 carbon atoms is more preferable.
  • the aryl group is a single ring or a condensed ring, preferably a single ring or a condensed ring having 2 to 8 condensations, and more preferably a single ring or a condensed ring having 2 to 4 condensations. Specific examples include a phenylene group and a naphthylene group.
  • the heterocyclic group includes an alicyclic group having a hetero atom or an aromatic heterocyclic group.
  • the heterocyclic group is preferably a 5-membered ring or a 6-membered ring.
  • the heterocyclic group is a single ring or a condensed ring, preferably a single ring or a condensed ring having 2 to 8 condensations, and more preferably a single ring or a condensed ring having 2 to 4 condensations.
  • Specific examples include a heteroarylene group derived from a monocyclic or polycyclic aromatic ring containing at least one of nitrogen, oxygen and sulfur atoms.
  • heterocycle examples include, for example, oxolane ring, oxane ring, thiolane ring, oxazole ring, thiophene ring, thiathrene ring, furan ring, pyran ring, isobenzofuran ring, chromene ring, xanthene ring, phenoxazine ring, pyrrole ring, Pyrazole ring, isothiazole ring, isoxazole ring, pyrazine ring, pyrimidine ring, pyridazine ring, indolizine ring, isoindolizine ring, indole ring, indazole ring, purine ring, quinolidine ring, isoquinoline ring, phthalazine ring, naphthyridine ring, Examples thereof include a quinazoline ring, a sinoline ring, a pteridine ring, a qui
  • R N1 represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group.
  • the alkyl group in R N1 may be any of a chain, a branch, and a ring.
  • a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms is preferable, and a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms is more preferable.
  • the cyclic alkyl group may be monocyclic or polycyclic.
  • cyclic alkyl group a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms is preferable, and a substituted or unsubstituted cycloalkyl group having 4 to 14 carbon atoms is more preferable.
  • the aryl group in R N1 is preferably a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, more preferably a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, and an unsubstituted aryl group having 6 to 14 carbon atoms. More preferred is an aryl group. Specific examples include a phenyl group and a naphthyl group.
  • a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms is preferable, and an unsubstituted aralkyl group having 7 to 15 carbon atoms is more preferable.
  • Examples of the substituent that the above-described group may have include a polymerizable group (preferably a polymerizable group containing a carbon-carbon double bond), a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom).
  • the substituent that the above-described group may have is a combination of at least one of the above-described substituents and at least one of —O—, —CO—, —COO—, and —COOR ′. It may be.
  • R ′ is preferably a linear alkyl group having 1 to 10 carbon atoms, a branched chain having 3 to 10 carbon atoms, or a cyclic alkyl group having 3 to 10 carbon atoms.
  • the polymerizable group include a polymerizable group containing a carbon-carbon double bond (preferably a vinyl group, a (meth) acryloyloxy group), a (meth) acryloyl group, an epoxy group, and an aziridinyl group.
  • the alkyl group may be chain, branched, or cyclic.
  • an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • the cyclic alkyl group may be monocyclic or polycyclic.
  • a cycloalkyl group having 3 to 20 carbon atoms is preferable, and a cycloalkyl group having 4 to 10 carbon atoms is more preferable.
  • As the halogenated alkyl group an alkyl group substituted with a fluorine atom is preferred.
  • an alkyl group having 1 to 10 carbon atoms having two or more fluorine atoms is preferable, and may be any of linear, branched, and cyclic, but is preferably linear or branched. .
  • the number of carbon atoms in the alkyl group substituted with a fluorine atom is preferably 1 to 10, more preferably 1 to 5, and more preferably 1 to 3.
  • the alkyl group substituted with a fluorine atom preferably has a terminal structure of (—CF 3 ).
  • the alkyl group substituted with a fluorine atom preferably has a fluorine atom substitution rate of 50 to 100%, more preferably 80 to 100%.
  • the substitution rate of fluorine atoms refers to the ratio (%) in which hydrogen atoms are substituted with fluorine atoms in an alkyl group substituted with fluorine atoms.
  • the halogenated alkyl group is more preferably a perfluoroalkyl group, and more preferably a C 1-10 perfluoroalkyl group.
  • R N22 is an alkyl group having 1 to 3 carbon atoms or a phenyl group
  • n is an integer of 1 to 3.
  • L 1 is a group consisting of a combination of an arylene group and —O—
  • the substituent that the arylene group may have is preferably an alkyl group. .
  • X 1 and X 2 represent the monoanionic coordination site, and more specifically, carboxyl group, phosphoric diester group, phosphonic monoester group, phosphinic acid group, sulfo group. Group, hydroxyl group and the like.
  • X 1 and X 2 may have the same monoanionic coordination site, or may have different monoanionic coordination sites.
  • X 1 and X 2 are preferably structures represented by the following general formula (12), (13) or (13A).
  • R 1 represents an alkyl group, an alkenyl group, an aryl group or an aralkyl group.
  • a 1 and A 2 each independently represents an oxygen atom, a sulfur atom or a single bond.
  • 12), (13) and (13A), * represents the connecting part to L 1 above.
  • R 1 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group.
  • the alkyl group may be chain, branched, or cyclic.
  • the linear or branched alkyl group is preferably a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, more preferably a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, and a substituted or unsubstituted alkyl group.
  • An alkyl group having 1 to 6 carbon atoms is more preferable.
  • the cyclic alkyl group may be monocyclic or polycyclic.
  • the cyclic alkyl group is preferably a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, more preferably a substituted or unsubstituted cycloalkyl group having 4 to 10 carbon atoms, and an unsubstituted alkyl group having 4 to 8 carbon atoms.
  • the cycloalkyl group is particularly preferred.
  • the alkenyl group is preferably a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, and more preferably a substituted or unsubstituted alkenyl group having 2 to 8 carbon atoms.
  • aryl group a substituted or unsubstituted aryl group having 6 to 18 carbon atoms is preferable, and a substituted or unsubstituted aryl group having 6 to 14 carbon atoms is more preferable.
  • Specific examples include a phenyl group and a naphthyl group.
  • aralkyl group a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms is preferable, and a substituted or unsubstituted aralkyl group having 7 to 16 carbon atoms is more preferable.
  • R 1 in the general formula (12) may have is the same as the substituent that L 1 in the general formula (10) may have, an alkyl group, an aryl Group, ether group, —Si— (OR N22 ) 3 and the like are preferable.
  • a 1 and A 2 each independently represents an oxygen atom, a sulfur atom or a single bond.
  • a 1 and A 2 are preferably single bonds from the viewpoint of further improving the heat resistance of the composition of the present invention.
  • a copper compound obtained by the reaction of a polymer containing a coordination site and a copper component is coordinated by, for example, a coordination site coordinated by an anion such as an acid group or a salt of an acid group, and an unshared electron pair.
  • the polymer which has 1 or more types chosen from a coordination atom, and the polymer type copper compound containing a copper ion are mentioned.
  • it is a polymer containing an acid group ion site which is an acid group or a salt of an acid group and a copper compound of a polymer type containing a copper ion, and a more preferred embodiment is that the acid group ion site in the polymer is a ligand. It is a polymer type copper compound.
  • This polymer type copper compound usually has a coordination site such as an acid group ion site in the side chain of the polymer, and the coordination site such as an acid group ion site is bonded to copper (for example, coordinate bond).
  • a cross-linked structure is formed between the side chains starting from copper.
  • the polymer type copper complex includes a polymer copper complex having a carbon-carbon bond in the main chain, a polymer copper complex having a carbon-carbon bond in the main chain, and containing a fluorine atom, a main chain And a copper complex of a polymer having an aromatic hydrocarbon group and / or an aromatic heterocyclic group (hereinafter referred to as an aromatic group-containing polymer).
  • an aromatic group-containing polymer a compound containing divalent copper is preferable.
  • the copper content in the copper component is preferably 2 to 40% by mass, more preferably 5 to 40% by mass.
  • a copper component may use only 1 type and may use 2 or more types.
  • the compound containing copper for example, copper oxide or a copper salt can be used.
  • the copper salt is more preferably divalent copper.
  • copper salt copper hydroxide, copper acetate, and copper sulfate are particularly preferable. Although it will not specifically limit as an acid group if it can react with the copper component mentioned above, What has a coordinate bond with a copper component is preferable.
  • Specific examples include acid groups having an acid dissociation constant (pKa) of 12 or less, and sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, phosphinic acid groups, imidoic acid groups, and the like are preferable. Only one type of acid group may be used, or two or more types may be used.
  • Examples of the atom or atomic group constituting the salt of the acid group used in the present invention include a metal atom such as sodium (particularly an alkali metal atom), an atomic group such as tetrabutylammonium.
  • the acid group or a salt thereof may be contained in at least one of the main chain and the side chain, and is preferably contained in at least the side chain.
  • the polymer containing an acid group or a salt thereof is preferably a polymer containing a carboxylic acid group or a salt thereof and / or a sulfonic acid group or a salt thereof, and more preferably a polymer containing a sulfonic acid group or a salt thereof.
  • Examples of the coordination site coordinated with an anion include those described in the above-described compound (A).
  • a preferred example of the polymer containing an acid group or a salt thereof is a structure in which the main chain has a carbon-carbon bond, and preferably contains a structural unit represented by the following formula (A1-1).
  • R 1 represents a hydrogen atom or a methyl group
  • L 1 represents a single bond or a divalent linking group
  • M 1 forms a salt with a hydrogen atom or a sulfonic acid group. Represents an atom or atomic group.
  • R 1 is preferably a hydrogen atom.
  • L 1 represents a divalent linking group
  • the divalent linking group is not particularly limited.
  • a divalent hydrocarbon group for example, a divalent hydrocarbon group, a heteroarylene group, —O— , —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NX— (X represents a hydrogen atom or an alkyl group, preferably a hydrogen atom), or a group comprising a combination thereof Is mentioned.
  • the divalent hydrocarbon group include a linear, branched or cyclic alkylene group and an arylene group.
  • the hydrocarbon group may have a substituent, but is preferably unsubstituted.
  • the linear alkylene group preferably has 1 to 30 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 6 carbon atoms.
  • the number of carbon atoms of the branched alkylene group is preferably 3 to 30, more preferably 3 to 15, and still more preferably 3 to 6.
  • the cyclic alkylene group may be monocyclic or polycyclic.
  • the number of carbon atoms of the cyclic alkylene group is preferably 3 to 20, more preferably 4 to 10, and still more preferably 6 to 10.
  • the number of carbon atoms of the arylene group is preferably 6 to 18, more preferably 6 to 14, still more preferably 6 to 10, and particularly preferably a phenylene group. Although it does not specifically limit as a heteroarylene group, A 5-membered ring or a 6-membered ring is preferable.
  • the heteroarylene group may be a single ring or a condensed ring, and is preferably a single ring or a condensed ring having 2 to 8 condensations, and more preferably a single ring or a condensed ring having 2 to 4 condensations.
  • the atom or atomic group constituting the salt with the sulfonic acid group represented by M 1 has the same meaning as the atom or atomic group constituting the salt of the acid group described above, and a hydrogen atom or An alkali metal atom is preferred.
  • Y 2 is preferably —COO—, —CO—, —NH—, a linear or branched alkylene group, or a combination thereof, or a single bond.
  • X 2 represents —PO 3 H, —PO 3 H 2 , —OH or COOH, and preferably —COOH.
  • the polymer (A1-1) contains another structural unit (preferably a structural unit represented by the above formula (A1-2)), the structural unit represented by the above formula (A1-1) and the above
  • the molar ratio of the structural unit represented by the formula (A1-2) is preferably 95: 5 to 20:80, and more preferably 90:10 to 40:60.
  • ⁇ Polymer containing second acid group or salt thereof a polymer having an acid group or a salt thereof and having an aromatic hydrocarbon group and / or an aromatic heterocyclic group in the main chain (hereinafter, containing an aromatic group)
  • a polymer-type copper compound obtained by a reaction between a polymer and a copper component may be used.
  • the aromatic group-containing polymer only needs to have at least one of an aromatic hydrocarbon group and an aromatic heterocyclic group in the main chain, and may have two or more types.
  • an acid group or its salt, and a copper component it is synonymous with the copper compound obtained by reaction of the polymer containing the acid group or its salt mentioned above, and a copper component, and its preferable range is also the same.
  • the aromatic hydrocarbon group for example, an aryl group is preferable.
  • the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • a phenyl group, a naphthyl group, or a biphenyl group is preferable.
  • the aromatic hydrocarbon group may be monocyclic or polycyclic, but is preferably monocyclic.
  • an aromatic heterocyclic group having 2 to 30 carbon atoms can be used.
  • the aromatic heterocyclic group is preferably a 5-membered ring or a 6-membered ring.
  • the aromatic heterocyclic group is a single ring or a condensed ring, and examples thereof include a single ring or a condensed ring having 2 to 8 condensations.
  • Examples of heteroatoms contained in the heterocycle include nitrogen, oxygen, and sulfur atoms, with nitrogen or oxygen being preferred.
  • the aromatic hydrocarbon group and / or aromatic heterocyclic group has a substituent T
  • examples of the substituent T include an alkyl group and a polymerizable group (preferably a carbon-carbon double bond).
  • halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom
  • carboxylic acid ester group halogenated alkyl group, alkoxy group, methacryloyloxy group, acryloyloxy group, ether group, sulfonyl group, sulfide Groups, amide groups, acyl groups, hydroxy groups, carboxyl groups, aralkyl groups and the like, and alkyl groups (particularly alkyl groups having 1 to 3 carbon atoms) are preferred.
  • aromatic group-containing polymers are polyethersulfone polymers, polysulfone polymers, polyetherketone polymers, polyphenylene ether polymers, polyimide polymers, polybenzimidazole polymers, polyphenylene polymers. It is preferably at least one polymer selected from a polymer, a phenol resin polymer, a polycarbonate polymer, a polyamide polymer, and a polyester polymer. Examples of each polymer are shown below.
  • Polyethersulfone polymer a polymer having a main chain structure represented by (—O—Ph—SO 2 —Ph—) (Ph represents a phenylene group, the same shall apply hereinafter)
  • Polysulfone polymer (—O— Polymer having a main chain structure represented by Ph—Ph—O—Ph—SO 2 —Ph—)
  • Polyetherketone polymer (—O—Ph—O—Ph—C ( ⁇ O) —Ph— )
  • Polyphenylene polymer (-Ph Polymer having main chain structure represented by-)
  • Phenol resin polymer Polymer having main chain structure represented by (-Ph (OH) -CH 2- )
  • Polycarbonate polymer (-Ph- Having a main chain structure represented by O—C ( ⁇ O) —O
  • a preferred example of the aromatic group-containing polymer preferably includes a structural unit represented by the following formula (A1-3).
  • Ar 1 represents an aromatic hydrocarbon group and / or an aromatic heterocyclic group
  • Y 1 represents a single bond or a divalent linking group
  • X 1 represents an acid group or a salt thereof. Represents.
  • Ar 1 when Ar 1 represents an aromatic hydrocarbon group, it is synonymous with the aromatic hydrocarbon group described above, and the preferred range is also the same.
  • Ar 1 When Ar 1 represents an aromatic heterocyclic group, it is synonymous with the aromatic heterocyclic group described above, and the preferred range is also the same.
  • Ar 1 may have a substituent in addition to —Y 1 —X 1 in the above formula (A1-3).
  • the substituent When Ar 1 has a substituent, the substituent has the same meaning as the substituent T described above, and the preferred range is also the same.
  • Y 1 is preferably a single bond.
  • examples of the divalent linking group include a hydrocarbon group, an aromatic heterocyclic group, —O—, —S—, —SO 2 —, —CO—, — C ( ⁇ O) O—, —O—C ( ⁇ O) —, —SO 2 —, —NX— (X represents a hydrogen atom or an alkyl group, preferably a hydrogen atom), —C (R Y1 ) ( R Y2 ) —, or a group consisting of a combination thereof.
  • R Y1 and R Y2 each independently represent a hydrogen atom, a fluorine atom or an alkyl group.
  • the hydrocarbon group include a linear, branched or cyclic alkylene group and an arylene group.
  • the number of carbon atoms in the linear alkylene group is preferably 1-20, more preferably 1-10, and even more preferably 1-6.
  • the carbon number of the branched alkylene group is preferably 3 to 20, more preferably 3 to 10, and further preferably 3 to 6.
  • the cyclic alkylene group may be monocyclic or polycyclic.
  • the number of carbon atoms of the cyclic alkylene group is preferably 3 to 20, more preferably 4 to 10, and still more preferably 6 to 10.
  • a hydrogen atom in the alkylene group may be substituted with a fluorine atom.
  • the arylene group is synonymous with the case where the divalent linking group of the formula (A1-1) is an arylene group.
  • a 5-membered ring or a 6-membered ring is preferable.
  • the aromatic heterocyclic group may be a single ring or a condensed ring, and is preferably a single ring or a condensed ring having 2 to 8 condensations, more preferably a single ring or a condensed ring having 2 to 4 condensations. .
  • the acid group represented by X 1 or a salt thereof has the same meaning as the above-described acid group or a salt thereof, and the preferred range is also the same.
  • the polymer (A1) has a weight average molecular weight of preferably 1,000 or more, more preferably from 1,000 to 10,000,000, further preferably from 3,000 to 1,000,000, particularly preferably from 4,000 to 400,000.
  • polymer containing the structural units represented by the above formula (A1-1), formula (A1-2) and formula (A1-3) include the following compounds and salts of the following compounds. However, it is not limited to these.
  • the composition of the present invention may contain inorganic fine particles in order to obtain the desired near infrared shielding property. Only one type of inorganic fine particles may be used, or two or more types may be used.
  • the inorganic fine particles are particles that mainly play a role of shielding (absorbing) infrared rays.
  • the inorganic fine particles are preferably at least one selected from the group consisting of metal oxide particles and metal particles in terms of better infrared light shielding properties.
  • the inorganic fine particles include indium tin oxide (ITO) particles, antimony tin oxide (ATO) particles, zinc oxide that may be doped with aluminum (ZnO that may be doped with Al), and fluorine-doped tin dioxide (Met oxide particles such as F-doped SnO 2 ) particles or niobium-doped titanium dioxide (Nb-doped TiO 2 ) particles, silver (Ag) particles, gold (Au) particles, copper (Cu) particles, or nickel (Ni) particles And metal particles.
  • ITO indium tin oxide
  • ATO antimony tin oxide
  • ZnO zinc oxide that may be doped with aluminum
  • Metal oxide particles such as F-doped SnO 2 ) particles or niobium-doped titanium dioxide (Nb-doped TiO 2 ) particles, silver (Ag) particles, gold (Au) particles, copper (Cu) particles, or nickel (N
  • the transmittance at the exposure wavelength (365-405 nm) is high, and indium tin oxide (ITO) particles or antimony tin oxide (ATO) particles are preferable.
  • the shape of the inorganic fine particles is not particularly limited, and may be a sheet shape, a wire shape, or a tube shape regardless of spherical or non-spherical.
  • a tungsten oxide compound can be used as the inorganic fine particles. Specifically, a tungsten oxide compound represented by the following general formula (composition formula) (I) is more preferable.
  • M x W y O z (I)
  • M represents a metal
  • W represents tungsten
  • O oxygen.
  • the metal of M may be one type or two or more types.
  • x / y is 0.001 or more, infrared rays can be sufficiently shielded, and when 1.1 or less, the generation of an impurity phase in the tungsten oxide compound is more reliably avoided. Can do.
  • z / y is 2.2 or more, chemical stability as a material can be further improved, and when it is 3.0 or less, infrared rays can be sufficiently shielded.
  • the metal oxide is preferably cesium tungsten oxide.
  • the tungsten oxide compound represented by the general formula (I) include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Ba 0.33 WO 3 and the like, and Cs 0.33 WO 3 or it is preferably Rb 0.33 WO 3, and more preferably a Cs 0.33 WO 3.
  • the metal oxide is preferably fine particles.
  • the average particle diameter of the metal oxide is preferably 800 nm or less, more preferably 400 nm or less, and further preferably 200 nm or less. When the average particle diameter is in such a range, it becomes difficult for the metal oxide to block visible light by light scattering, and thus the translucency in the visible light region can be further ensured.
  • the average particle size is preferably as small as possible, but for reasons such as ease of handling during production, the average particle size of the metal oxide is usually 1 nm or more.
  • the tungsten oxide compound is available as a dispersion of tungsten fine particles such as YMF-02 manufactured by Sumitomo Metal Mining Co., Ltd., for example.
  • the content of the metal oxide is preferably 0.01 to 30% by mass and more preferably 0.1 to 20% by mass with respect to the total solid mass of the composition containing the metal oxide. Preferably, it is 1 to 10% by mass.
  • phthalocyanine compounds described in paragraphs 0013 to 0029 of JP2013-195480A can also be used as other near-infrared absorbing compounds, the contents of which are incorporated herein.
  • the composition of the present invention may contain a solvent.
  • the solvent used in the present invention is not particularly limited, and can be appropriately selected depending on the purpose as long as it can uniformly dissolve or disperse each component of the composition of the present invention.
  • a solvent can be used. Since the composition of the present invention uses the above-mentioned compound (A), even when an organic solvent is used as the solvent, the influence on the spectral characteristics can be reduced.
  • Preferable examples of the solvent include alcohols, ketones, esters, aromatic hydrocarbons, halogenated hydrocarbons, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane and the like. These may be used alone or in combination of two or more.
  • alcohols aromatic hydrocarbons, and halogenated hydrocarbons
  • esters, ketones, and ethers include those described in JP 2012-208494 A, paragraph 0497 (corresponding to US Patent Application Publication No. 2012/0235099, [0609]).
  • acetic acid-n-amyl, ethyl propionate, dimethyl phthalate, ethyl benzoate, methyl sulfate, acetone, methyl isobutyl ketone, diethyl ether, ethylene glycol monobutyl ether acetate and the like can be mentioned.
  • the solvent is preferably contained in a proportion of 10 to 90% by mass, more preferably 20 to 80% by mass, and particularly preferably 30 to 70% by mass with respect to the composition of the present invention. Only one type of solvent may be used, or two or more types may be used, and in the case of two or more types, the total amount falls within the above range.
  • the composition of the present invention may contain a curable compound.
  • the curable compound may be a polymerizable compound or a non-polymerizable compound such as a binder.
  • a thermosetting compound may be sufficient, a photocurable compound may be sufficient, since the reaction rate is higher, the thermosetting composition is preferable.
  • the composition of the present invention preferably contains a compound having a polymerizable group (hereinafter sometimes referred to as “polymerizable compound”).
  • a compound having a polymerizable group is widely known in the industrial field, and these can be used without particular limitation in the present invention. These may be any of chemical forms such as a monomer, an oligomer, a prepolymer, and a polymer.
  • the polymerizable compound may be monofunctional or polyfunctional, but is preferably polyfunctional. By including a polyfunctional compound, the near-infrared shielding property and heat resistance can be further improved.
  • the number of functional groups is not particularly defined, but 2 to 8 functions are preferable, and 3 to 6 functions are more preferable.
  • the preferred forms of the curable compound include the following.
  • the present invention is not limited to the following forms.
  • the curable compound include monofunctional (meth) acrylate, polyfunctional (meth) acrylate (preferably 3 to 6 functional (meth) acrylate), polybasic acid-modified acrylic oligomer, epoxy resin, or polyfunctional epoxy. Resin.
  • a polymerizable compound is a monomer having a polymerizable group (polymerizable monomer) or an oligomer having a polymerizable group (polymerizable oligomer) (hereinafter, polymerizable with a polymerizable monomer).
  • polymerizable monomers are sometimes referred to as “polymerizable monomers”.
  • polymerizable monomer examples include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, and amides. These are esters of saturated carboxylic acids and aliphatic polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and aliphatic polyvalent amine compounds. Also, addition reaction products of monofunctional or polyfunctional isocyanates or epoxies with unsaturated carboxylic acid esters or amides having a nucleophilic substituent such as hydroxyl group, amino group, mercapto group, monofunctional or polyfunctional.
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters thereof examples include esters thereof, and amides. These are esters of saturated carboxylic acids and aliphatic polyhydric
  • a dehydration condensation reaction product with a functional carboxylic acid is also preferably used.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having an electrophilic substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amine or thiol, and further a halogen group A substitution reaction product of an unsaturated carboxylic acid ester or amide having a detachable substituent such as a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable.
  • the polymerizable monomer or the like is preferably a compound having an ethylenically unsaturated group having at least one addition-polymerizable ethylene group and having a boiling point of 100 ° C. or higher under normal pressure, and a monofunctional (meth) acrylate, Bifunctional (meth) acrylates and trifunctional or higher functional (meth) acrylates (for example, 3 to 6 functional (meth) acrylates) are preferred.
  • Examples thereof include monofunctional acrylates and methacrylates such as polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, and phenoxyethyl (meth) acrylate; Polyethylene glycol di (meth) acrylate, trimethylolethane tri (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate , Ethylene with polyfunctional alcohols such as dipentaerythritol hexa (meth) acrylate, hexanediol (meth) acrylate, trimethylolpropane tri (acryloyloxypropyl) ether, tri (acryloyloxyethyl) isocyanurate,
  • ethyleneoxy-modified pentaerythritol tetraacrylate (commercially available NK ester ATM-35E; manufactured by Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol triacrylate (commercially available KAYARAD D-330; Nippon Kayaku) Yakuhin Co., Ltd.), dipentaerythritol tetraacrylate (as a commercial product, KAYARAD D-320; manufactured by Nippon Kayaku Co., Ltd.) dipentaerythritol penta (meth) acrylate (as a commercial product, KAYARAD D-310; Nippon Kayaku Co., Ltd.) Company-made), dipentaerythritol hexa (meth) acrylate (as a commercial product, KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd.), and these (meth) acryloyl groups
  • oligomer types can also be used.
  • a polyfunctional (meth) acrylate obtained by reacting a polyfunctional carboxylic acid with a compound having a cyclic ether group such as glycidyl (meth) acrylate and an ethylenically unsaturated group can also be used.
  • compounds having a fluorene ring and having two or more functional ethylenic groups described in JP 2010-160418 A, JP 2010-129825 A, JP 4364216 A, etc. Polymers can also be used. Further, compounds having a boiling point of 100 ° C.
  • JP-A-2008-292970 discloses paragraphs [0254] to [0257] of JP-A-2008-292970.
  • the compounds described are also suitable.
  • compounds described in JP-A-10-62986 as general formulas (1) and (2) together with specific examples thereof are compounds that are (meth) acrylated after addition of ethylene oxide or propylene oxide to the polyfunctional alcohol. Can be used as a polymerizable monomer.
  • the polymerizable monomer used in the present invention is preferably a polymerizable monomer represented by the following general formulas (MO-1) to (MO-6). (In the formula, each of n is 0 to 14, and m is 1 to 8. Each of R, T, and Z present in a molecule is the same or different. When T is an oxyalkylene group, the terminal on the carbon atom side is bonded to R. At least one of R is a polymerizable group.)
  • n is preferably 0 to 5, and more preferably 1 to 3.
  • m is preferably 1 to 5, and more preferably 1 to 3.
  • R preferably has the following four structures. R is preferably the following two structures among the above four structures.
  • Specific examples of the radically polymerizable monomer represented by the above general formulas (MO-1) to (MO-6) include compounds described in paragraph numbers 0248 to 0251 of JP-A No. 2007-26979. Can also be suitably used in the present invention.
  • examples of the polymerizable monomer include the polymerizable monomers described in paragraph 0477 of JP2012-208494A (corresponding to [0585] of US 2012/0235099 corresponding), and these The contents are incorporated herein.
  • diglycerin EO (ethylene oxide) modified (meth) acrylate commercially available product is M-460; manufactured by Toa Gosei).
  • Pentaerythritol tetraacrylate manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMMT
  • 1,6-hexanediol diacrylate manufactured by Nippon Kayaku Co., Ltd., KAYARAD HDDA
  • These oligomer types can also be used. Examples thereof include RP-1040 (manufactured by Nippon Kayaku Co., Ltd.).
  • the polymerizable monomer is a polyfunctional monomer and may have an acid group such as a carboxyl group, a sulfonic acid group, or a phosphoric acid group. Therefore, if the ethylenic compound has an unreacted carboxyl group as in the case of a mixture as described above, this can be used as it is.
  • the acid group may be introduced by reacting the group with a non-aromatic carboxylic acid anhydride.
  • non-aromatic carboxylic acid anhydride examples include tetrahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, hexahydrophthalic anhydride, alkylated hexahydrophthalic anhydride, succinic anhydride, anhydrous Maleic acid is mentioned.
  • the monomer having an acid group is an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and a non-aromatic carboxylic acid anhydride is reacted with an unreacted hydroxyl group of the aliphatic polyhydroxy compound.
  • a polyfunctional monomer having an acid group is preferable, and in this ester, the aliphatic polyhydroxy compound is pentaerythritol and / or dipentaerythritol.
  • Examples of commercially available products include Aronix series M-305, M-510, and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • a preferable acid value of the polyfunctional monomer having an acid group is 0.1 to 40 mg-KOH / g, and particularly preferably 5 to 30 mg-KOH / g.
  • the acid value as the entire polyfunctional monomer is adjusted to fall within the above range.
  • the polyfunctional monomer which has a caprolactone modified structure is not particularly limited as long as it has a caprolactone-modified structure in the molecule.
  • the polyfunctional monomer having a caprolactone-modified structure includes trimethylolethane, ditrimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, glycerin, diglycerol, trimethylol
  • ⁇ -caprolactone-modified polyfunctional (meth) acrylates obtained by esterifying polyhydric alcohols such as melamine with (meth) acrylic acid and ⁇ -caprolactone.
  • a polyfunctional monomer having a caprolactone-modified structure represented by the following formula (20) is preferable.
  • R 1 represents a hydrogen atom or a methyl group
  • m represents a number of 1 or 2
  • “*” represents a bond.
  • R 1 represents a hydrogen atom or a methyl group, and “*” represents a bond.
  • the polyfunctional monomer which has a caprolactone modified structure can be used individually or in mixture of 2 or more types.
  • examples of commercially available monomers such as polymerizable monomers include SR-494, which is a tetrafunctional acrylate having four ethyleneoxy chains manufactured by Sartomer, and a hexafunctional acrylate having six pentyleneoxy chains manufactured by Nippon Kayaku Co., Ltd. And DPCA-60, and TPA-330, which is a trifunctional acrylate having three isobutyleneoxy chains.
  • the 3rd preferable aspect of this invention is an aspect containing the compound which has an epoxy group or an oxetanyl group as a polymeric compound.
  • the compound having an epoxy group or oxetanyl group include a polymer having an epoxy group in the side chain, and a polymerizable monomer or oligomer having two or more epoxy groups in the molecule, and a bisphenol A type epoxy resin, Bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, aliphatic epoxy resin and the like can be mentioned.
  • a monofunctional or polyfunctional glycidyl ether compound is also mentioned, and a polyfunctional aliphatic glycidyl ether compound is preferable.
  • These compounds may be commercially available or can be obtained by introducing an epoxy group into the side chain of the polymer.
  • JP 2012-155288 A paragraph 0191 can be referred to, and the contents thereof are incorporated in the present specification.
  • commercially available products include polyfunctional aliphatic glycidyl ether compounds such as Denacol EX-212L, EX-214L, EX-216L, EX-321L, and EX-850L (manufactured by Nagase ChemteX Corporation). . These are low-chlorine products but are not low-chlorine products, and EX-212, EX-214, EX-216, EX-321, EX-850, and the like can be used as well.
  • ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Co., Ltd.), JER1031S, and the like are also included.
  • commercially available phenol novolac type epoxy resins include JER-157S65, JER-152, JER-154, JER-157S70 (manufactured by Mitsubishi Chemical Corporation) and the like.
  • polymer having an oxetanyl group in the side chain and the polymerizable monomer or oligomer having two or more oxetanyl groups in the molecule include Aronoxetane OXT-121, OXT-221, OX-SQ, PNOX ( As described above, Toagosei Co., Ltd.) can be used.
  • the molecular weight is preferably in the range of 500 to 5000000, more preferably 1000 to 500000 on a weight average.
  • epoxy unsaturated compound those having a glycidyl group as an epoxy group such as glycidyl (meth) acrylate and allyl glycidyl ether can be used, but preferred are unsaturated compounds having an alicyclic epoxy group.
  • description of Unexamined-Japanese-Patent No. 2009-265518 Paragraph 0045 etc. can be considered, and these content is integrated in this-application specification.
  • composition of the present invention may contain a polymer having a crosslinking group such as an unsaturated double bond, an epoxy group or an oxetanyl group.
  • a polymer having a crosslinking group such as an unsaturated double bond, an epoxy group or an oxetanyl group.
  • Specific examples include polymers (copolymers) having the following repeating units.
  • a polymer having an epoxy group is preferred.
  • the curable compound used in the present invention may have a partial structure represented by the following formula (30).
  • This curable compound may have a crosslinking group such as an unsaturated double bond, an epoxy group or an oxetanyl group.
  • R 1 represents a hydrogen atom or an organic group.
  • R 1 represents a hydrogen atom or an organic group.
  • the organic group include a hydrocarbon group, specifically, an alkyl group or an aryl group, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a divalent group with these groups. What consists of a combination with these coupling groups is preferable.
  • Specific examples of such an organic group include —OR ′, —SR ′, or these groups and — (CH 2 ) m — (m is an integer of 1 to 10), a cyclic alkylene having 5 to 10 carbon atoms.
  • R ′ is a hydrogen atom, a straight chain having 1 to 10 carbon atoms, a branched or cyclic alkyl group having 3 to 10 carbon atoms (preferably a straight chain having 1 to 7 carbon atoms, 3 to 7 carbon atoms).
  • R 1 and C may be bonded to form a ring structure (heterocyclic structure).
  • the hetero atom in the heterocyclic structure is a nitrogen atom in the above formula (30).
  • the heterocyclic structure is preferably a 5- or 6-membered ring structure, and more preferably a 5-membered ring structure.
  • the heterocyclic structure may be a condensed ring, but is preferably a single ring.
  • Specific examples of particularly preferable R 1 include a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, —OR ′ (R ′ is a linear alkyl group having 1 to 5 carbon atoms) and — (CH 2 ) m —.
  • M is an integer of 1 to 10, preferably m is an integer of 1 to 5
  • R 1 and C in the above formula (30) are bonded to form a heterocyclic structure (preferably a 5-membered Group which formed a ring structure).
  • the compound having the partial structure represented by the above formula (30) is represented by (polymer main chain structure—partial structure of (30) above—R 1 ) or (A—partial structure of (30) above -B) is preferred.
  • A is a linear alkyl group having 1 to 10 carbon atoms, a branched chain having 3 to 10 carbon atoms, or a cyclic alkyl group having 3 to 10 carbon atoms.
  • B is a combination of — (CH 2 ) m — (m is an integer of 1 to 10, preferably m is an integer of 1 to 5), the partial structure of the above (30), and a polymerizable group. It is a group.
  • Examples of the compound having a partial structure represented by the above formula (30) include structures represented by any of the following formulas (1-1) to (1-5).
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 and R 6 each independently represents a hydrogen atom or an organic group.
  • R 7 represents a hydrogen atom.
  • L 1 represents a divalent linking group
  • R 8 represents a hydrogen atom or an organic group
  • L 2 and L 3 represent an atom or a methyl group.
  • R 9 and R 10 each independently represents a hydrogen atom or an organic group
  • L 4 represents a divalent linking group
  • R 11 to R 14 each independently represents a hydrogen atom or an organic group.
  • R 5 and R 6 each independently represents a hydrogen atom or an organic group. As an organic group, it is synonymous with R ⁇ 1 > in the said Formula (30), and its preferable range is also the same.
  • L 1 to L 4 represent a divalent linking group. Examples of the divalent linking group include — (CH 2 ) m — (m is an integer of 1 to 10), a cyclic alkylene group having 5 to 10 carbon atoms, —O—, —CO—, —COO—, and —NH. A combination of at least one of-is preferable, and-(CH 2 ) m- (m is an integer of 1 to 8) is more preferable.
  • R 8 to R 14 each independently represents a hydrogen atom or an organic group.
  • the organic group is preferably a hydrocarbon group, specifically an alkyl group or an alkenyl group.
  • the alkyl group may be substituted. Further, the alkyl group may be any of a chain, a branch, and a ring, but a linear or cyclic group is preferable.
  • As the alkyl group an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • Alkenyl groups may be substituted.
  • alkenyl group an alkenyl group having 1 to 10 carbon atoms is preferable, an alkenyl group having 1 to 4 carbon atoms is more preferable, and a vinyl group is particularly preferable.
  • substituent include a polymerizable group, a halogen atom, an alkyl group, a carboxylic ester group, a halogenated alkyl group, an alkoxy group, a methacryloyloxy group, an acryloyloxy group, an ether group, a sulfonyl group, a sulfide group, an amide group, Examples include an acyl group, a hydroxy group, and a carboxyl group.
  • a polymerizable group for example, a vinyl group, a (meth) acryloyloxy group), a (meth) acryloyl group, an epoxy group, an aziridinyl group
  • a vinyl group is more preferable.
  • the compound having the partial structure represented by the above formula (30) may be a monomer or a polymer, but is preferably a polymer. That is, the compound having a partial structure represented by the above formula (30) is preferably a compound represented by the above formula (1-1) or the above formula (1-2). Moreover, when the compound which has the partial structure shown by the said Formula (30) is a polymer, it is preferable to contain the said partial structure in the side chain of a polymer.
  • the molecular weight of the compound having the partial structure represented by the above formula (30) is preferably 50 to 1,000,000, more preferably 500 to 500,000. By setting it as such molecular weight, the effect of this invention can be achieved more effectively.
  • the content of the compound having the partial structure represented by the above (1) is preferably 5 to 80% by mass, and more preferably 10 to 60% by mass in the composition of the present invention.
  • the compound having the partial structure represented by the above formula (30) include a compound having the following structure or the following exemplified compound, but are not limited thereto.
  • the compound having a partial structure represented by the above formula (30) is preferably polyacrylamide.
  • Specific examples of the compound having the partial structure represented by the above formula (30) include water-soluble polymers.
  • Preferred main chain structures include polyvinylpyrrolidone, poly (meth) acrylamide, polyamide, polyvinylpyrrolidone, and polyurethane. And polyurea.
  • the water-soluble polymer may be a copolymer, and the copolymer may be a random copolymer.
  • trade names K-30, K-85, K-90, K-30W, K-85W, K-90W manufactured by Nippon Shokubai Co., Ltd.
  • poly (meth) acrylamide examples include (meth) acrylamide polymers and copolymers.
  • Specific examples of acrylamide include acrylamide, N-methylacrylamide, N-ethylacrylamide, N-propylacrylamide, N-butylacrylamide, N-benzylacrylamide, N-hydroxyethylacrylamide, N-phenylacrylamide, N-tolylacrylamide, N- (hydroxyphenyl) acrylamide, N- (sulfamoylphenyl) acrylamide, N- (phenylsulfonyl) acrylamide, N- (tolylsulfonyl) acrylamide, N, N-dimethylacrylamide, N-methyl-N-phenylacrylamide, And N-hydroxyethyl-N-methylacrylamide.
  • Corresponding methacrylamides can also be used in the same manner.
  • water-soluble polyamide resin examples include a compound obtained by copolymerizing a polyamide resin and a hydrophilic compound.
  • a water-soluble polyamide resin derivative is, for example, a water-soluble polyamide resin as a raw material, such as a compound in which hydrogen of an amide bond (—CONH—) is substituted with a amide bond (—CONH—) with a methoxymethyl group CH 2 OCH 3 .
  • a compound in which an atom in a polyamide resin molecule is substituted or an amide bond structure is changed by an addition reaction.
  • polyamide resin examples include so-called “n-nylon” synthesized by polymerization of ⁇ amino acid and so-called “n, m-nylon” synthesized by copolymerization of diamine and dicarboxylic acid.
  • n-nylon synthesized by polymerization of ⁇ amino acid
  • n, m-nylon synthesized by copolymerization of diamine and dicarboxylic acid.
  • hydrophilic compounds include hydrophilic nitrogen-containing cyclic compounds and polyalkylene glycols.
  • the hydrophilic nitrogen-containing cyclic compound is a compound having a tertiary amine component in the side chain or main chain, and examples thereof include aminoethylpiperazine, bisaminopropylpiperazine, ⁇ -dimethylamino ⁇ caprolactam and the like.
  • the compound in which the polyamide resin and the hydrophilic compound are copolymerized at least one selected from the group consisting of, for example, a hydrophilic nitrogen-containing cyclic compound and a polyalkylene glycol is copolymerized in the main chain of the polyamide resin. Therefore, the hydrogen bond ability of the amide bond portion of the polyamide resin is larger than that of N-methoxymethylated nylon.
  • a reaction product of ⁇ -caprolactam, a hydrophilic nitrogen-containing cyclic compound and a dicarboxylic acid is available as AQ nylon A-90 manufactured by Toray Finetech Co., Ltd., and a reaction product of ⁇ -caprolactam, polyalkylene glycol and dicarboxylic acid
  • the reaction product is available as AQ nylon P-70 manufactured by Toray Finetech Co., Ltd.
  • AQ nylon A-90 P-70 P-95 T-70 manufactured by Toray Industries, Inc.
  • the molar ratio of the polymer containing the repeating unit having the partial structure represented by the formula (30) and the repeating unit having an epoxy group is preferably 10/90 to 90/10, and 30/70 to 70 / 30 is more preferable.
  • the weight average molecular weight of the copolymer is preferably 3,000 to 1,000,000, and more preferably 5,000 to 200,000.
  • the addition amount of the polymerizable compound in the composition of the present invention is in the range of 1 to 90% by mass, more preferably 15 to 80% by mass, particularly preferably 40 to 75% by mass with respect to the total solid content excluding the solvent. Is preferably added.
  • a polymer containing a repeating unit having a crosslinking group when used as the polymerizable compound, it is preferably 10 to 75% by mass, preferably 20 to 65% by mass, based on the total solid content of the composition of the present invention excluding the solvent. Is more preferable, and 20 to 60% by mass is even more preferable. Only one type of polymerizable compound or two or more types may be used, and in the case of two or more types, the total amount falls within the above range.
  • a binder polymer can be further contained in addition to the polymerizable compound as necessary for the purpose of improving the film properties.
  • an alkali-soluble resin is preferably used.
  • the content of the binder polymer in the present invention is preferably 1 to 80% by mass, more preferably 5 to 50% by mass, and more preferably 7 to 30% by mass with respect to the total solid content of the composition. More preferably it is.
  • the composition of the present invention may contain a surfactant. Only one type of surfactant may be used, or two or more types may be combined.
  • the addition amount of the surfactant is preferably 0.0001 to 2% by mass, more preferably 0.005 to 1.0% by mass, and still more preferably based on the solid content of the composition of the present invention. 0.01 to 0.1% by mass.
  • various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
  • the composition of the present invention contains at least one of a fluorine-based surfactant and a silicone-based surfactant, so that liquid properties (particularly fluidity) when prepared as a coating solution are further improved. .
  • the uniformity of coating thickness and the liquid-saving property are further improved. That is, when a film is formed using a coating liquid to which a composition containing at least one of a fluorosurfactant and a silicone surfactant is applied, the interfacial tension between the coated surface and the coating liquid is reduced. Thereby, the wettability to the coated surface is improved, and the coating property to the coated surface is improved. For this reason, even when a thin film of about several ⁇ m is formed with a small amount of liquid, it is effective in that it is possible to more suitably form a film having a uniform thickness with small thickness unevenness.
  • the fluorine content in the fluorosurfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 7 to 25% by mass.
  • a fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity of coating film thickness and liquid-saving properties, and has good solubility in the colored photosensitive composition.
  • fluorine-based surfactant examples include surfactants described in paragraph 0552 of JP2012-208494A (corresponding to US Patent Application Publication No. 2012/0235099 [0678]), and the like. These contents are incorporated herein.
  • Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, oxyethylene Examples thereof include oxypropylene block copolymers, acetylene glycol surfactants, and acetylene polyoxyethylene oxide.
  • Specific product names include Surfinol 61, 82, 104, 104E, 104H, 104A, 104BC, 104DPM, 104PA, 104PG-50, 104S, 420, 440, 465, 485, 504, CT-111, CT- 121, CT-131, CT-136, CT-141, CT-151, CT-171, CT-324, DF-37, DF-58, DF-75, DF-110D, DF-210, GA, OP- 340, PSA-204, PSA-216, PSA-336, SE, SE-F, TG, GA, Dinol 604 (above, Nissin Chemical Co., Ltd.
  • nonionic surfactants include nonionic surfactants described in JP 2012-208494 A, paragraph 0553 (corresponding US Patent Application Publication No. 2012/0235099 [0679]) and the like.
  • Specific examples of the cationic surfactant include a cationic surfactant described in paragraph 0554 of JP2012-208494A (corresponding to [0680] of the corresponding US Patent Application Publication No. 2012/0235099). The contents of which are incorporated herein by reference.
  • Specific examples of the anionic surfactant include W004, W005, W017 (manufactured by Yusho Co., Ltd.) and the like.
  • silicone surfactant examples include silicone surfactants described in paragraph 0556 of JP2012-208494A (corresponding to [0682] of the corresponding US Patent Application Publication No. 2012/0235099). The contents of which are incorporated herein by reference.
  • Toray Silicone SF8410 “Same SF8427”, “Shi8400”, “ST80PA”, “ST83PA”, “ST86PA” manufactured by Toray Dow Corning Co., Ltd.
  • TSF-400 manufactured by Momentive Performance Materials, Inc.
  • TEZ-401 Spin Spin-401
  • TF-410 TEZ-4446
  • KP321 Third
  • KP323 KP324
  • KP340 etc. manufactured by Shin-Etsu Silicone Co., Ltd.
  • Shin-Etsu Silicone Co., Ltd. are also exemplified.
  • the composition of the present invention may contain a polymerization initiator.
  • the polymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the polymerizable compound by light or heat, or both, and can be appropriately selected according to the purpose. It is preferable that When polymerization is initiated by light, those having photosensitivity to visible light from the ultraviolet region are preferred. In addition, when the polymerization is initiated by heat, a polymerization initiator that decomposes at 150 to 250 ° C. is preferable.
  • the polymerization initiator that can be used in the present invention is preferably a compound having at least an aromatic group.
  • Onium salt compounds organoboron salt compounds, disulfone compounds, thiol compounds, and the like.
  • Specific examples of acetophenone compounds, trihalomethyl compounds, hexaarylbiimidazole compounds, and oxime compounds include paragraphs 0506 to 0510 of JP2012-208494A (corresponding to US Patent Application Publication No. 2012/0235099). [0622-0628]) and the like can be referred to, and the contents thereof are incorporated in the present specification. Further, it can also be suitably used for the cyclic oxime compounds described in JP 2007-231000 A (corresponding US Patent Application Publication No. 2011/0123929) and JP 2007-322744 A.
  • Japanese Patent Application Laid-Open No. 2012-208494, paragraph 0513 (corresponding to US Patent Application Publication No. 2012/235099 [0632]) and the following formulas (OX-1), (OX-2) or (OX-3) The description of the compound can be referred to and the contents thereof are incorporated herein.
  • oxime compound examples include paragraphs 0090 to 0106 of JP2009-191061A (paragraph 0393 of the corresponding US Patent Application Publication No. 2009/023085), paragraph 0054 of JP2012-032556A, The description in paragraphs 0054 and the like of Kokai 2012-122045 can be referred to, and the contents thereof are incorporated in the present specification.
  • an oxime compound As the photopolymerization initiator, an oxime compound, an acetophenone compound, or an acylphosphine compound is preferable. More specifically, for example, an aminoacetophenone initiator described in JP-A-10-291969, an acylphosphine oxide initiator described in Japanese Patent No. 4225898, and the oxime initiator described above, As the oxime initiator, the compounds described in JP-A No. 2001-233842 can also be used. As the oxime compound, commercially available products IRGACURE-OXE01 (manufactured by BASF) and IRGACURE-OXE02 (manufactured by BASF) can be used.
  • the acetophenone-based initiator commercially available products IRGACURE-907, IRGACURE-369, and IRGACURE-379 (trade names: all manufactured by BASF Japan Ltd.) can be used.
  • the acylphosphine initiator commercially available products such as IRGACURE-819 and DAROCUR-TPO (trade names: both manufactured by BASF Japan Ltd.) can be used.
  • the content of the polymerization initiator is preferably 0.01 to 30% by mass, more preferably 0.1 to 20% by mass, and particularly preferably 0.1 to 15% by mass with respect to the solid content of the composition of the present invention. preferable. May be only one type or two or more types, and in the case of two or more types, the total amount is in the above range.
  • ⁇ Other ingredients examples include a dispersant, a sensitizer, a crosslinking agent, a curing accelerator, a filler, a thermosetting accelerator, a thermal polymerization inhibitor, and a plasticizer. Furthermore, adhesion promoters to the substrate surface and other auxiliaries (for example, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, perfumes, surface tension modifiers, A chain transfer agent or the like) may be used in combination. By appropriately containing these components, properties such as stability and film physical properties of the target near-infrared absorption filter can be adjusted.
  • auxiliaries for example, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, perfumes, surface tension modifiers, A chain transfer agent or the like.
  • paragraph number 0183 to JP2012-003225A paragraph number 0101 to 0102 of JP2008-250074, paragraph number 0103 to 0104 of JP2008-250074, The description of paragraph numbers 0107 to 0109 of 2008-250074 and paragraph numbers 0159 to 0184 of JP2013-195480A can be referred to, and the contents thereof are incorporated in the present specification.
  • the near-infrared absorbing composition of the present invention can be prepared by mixing the above components.
  • the components constituting the composition may be blended together, or may be blended sequentially after each component is dissolved and dispersed in an organic solvent.
  • fluorine resins such as polytetrafluoroethylene (PTFE), polyamide resins such as nylon-6 and nylon-6,6, polyolefin resins such as polyethylene and polypropylene (PP) (including high density and ultra high molecular weight), etc.
  • PTFE polytetrafluoroethylene
  • polyamide resins such as nylon-6 and nylon-6,6, polyolefin resins such as polyethylene and polypropylene (PP) (including high density and ultra high molecular weight), etc.
  • PP polypropylene
  • the pore size of the filter is preferably 0.1 to 7.0 ⁇ m, more preferably 0.2 to 2.5 ⁇ m, still more preferably 0.2 to 1.5 ⁇ m, and still more preferably 0.3 to 0.7 ⁇ m.
  • the filtering by the first filter may be performed only once or may be performed twice or more.
  • the second and subsequent hole diameters are the same or larger than the first filtering hole diameter.
  • the pore diameter here can refer to the nominal value of the filter manufacturer.
  • a commercially available filter for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. .
  • the second filter a filter formed of the same material as the first filter described above can be used.
  • the pore size of the second filter is preferably 0.2 to 10.0 ⁇ m, more preferably 0.2 to 7.0 ⁇ m, and still more preferably 0.3 to 6.0 ⁇ m. By setting it as this range, a foreign material can be removed with the component particles contained in the composition remaining.
  • the near-infrared cut filter (for example, near-infrared cut filter with respect to a wafer level lens) in the light-receiving side of a solid-state image sensor substrate, the back surface side of a solid-state image sensor substrate
  • a near-infrared cut filter on the side opposite to the light-receiving side can be used, and a near-infrared cut filter on the light-receiving side of the solid-state imaging device substrate is preferable.
  • the viscosity of the near-infrared absorbing composition of the present invention is preferably in the range of 1 mPa ⁇ s to 3000 mPa ⁇ s, more preferably 10 mPa ⁇ s to 2000 mPa ⁇ s when an infrared cut layer is formed by coating. It is the following ranges, More preferably, it is the range of 100 mPa * s or more and 1500 mPa * s or less.
  • the composition of this invention can be supplied in the state which can be apply
  • the near-infrared cut filter obtained using the composition of the present invention preferably has a light transmittance that satisfies at least one of the following conditions (1) to (9): It is more preferable to satisfy all the conditions (1), and it is even more preferable to satisfy all the conditions (1) to (9).
  • the transmittance at a wavelength of 400 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the transmittance at a wavelength of 450 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the transmittance at a wavelength of 500 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the transmittance at a wavelength of 550 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the transmittance at a wavelength of 700 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the transmittance at a wavelength of 750 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the transmittance at a wavelength of 800 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the transmittance at a wavelength of 850 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the transmittance at a wavelength of 900 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the film thickness is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 100 ⁇ m or less.
  • the lower limit of the film thickness is, for example, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the film thickness of a near-infrared cut filter can be made thin.
  • the near-infrared cut filter preferably has a film thickness of 300 ⁇ m or less and a visible light transmittance of 85% or more and more preferably 90% or more in the entire range of wavelengths from 400 to 550 nm. Further, the transmittance at at least one point in the wavelength range of 700 to 800 nm is preferably 20% or less, and the transmittance in the entire range of wavelengths 700 to 800 nm is more preferably 20% or less. According to the present invention, it is possible to provide a near-infrared cut filter that can secure a wide range of visible light with high transmittance and has high near-infrared shielding properties.
  • Near-infrared cut filters are used for lenses that absorb and cut near-infrared (camera lenses such as digital cameras, mobile phones, and in-vehicle cameras, optical lenses such as f- ⁇ lenses and pickup lenses) and semiconductor light-receiving elements.
  • the present invention includes a step of forming a film by applying (preferably a dropping method, coating, printing) the near-infrared absorbing composition of the present invention on the light-receiving side of a solid-state imaging device substrate, and a step of drying.
  • the present invention also relates to a method for manufacturing an infrared cut filter. About a film thickness, laminated structure, etc., it can select suitably according to the objective.
  • the support is a transparent substrate made of glass or the like, a solid-state image sensor substrate, or another substrate provided on the light-receiving side of the solid-state image sensor substrate, the light-receiving side of the solid-state image sensor substrate It may be a layer such as a planarization layer provided on the substrate.
  • the method for applying the near-infrared absorbing composition on the support include immersion, coating, and printing. Specifically, the dropping method (drop casting), dip coating, slit coating, screen printing, spray coating or spin coating is preferable.
  • a dropping region of the near-infrared absorbing composition having a photoresist as a partition on a glass substrate so as to obtain a uniform film with a predetermined film thickness.
  • a film thickness can adjust the dripping amount and solid content concentration of a composition, and the area of a dripping area
  • the drying conditions of the coating film vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 ° C. to 150 ° C. for 30 seconds to 15 minutes.
  • the method for forming a near-infrared cut filter using the near-infrared absorbing composition of the present invention may include other steps.
  • Other processes are not particularly limited and may be appropriately selected depending on the purpose.
  • a surface treatment process of a substrate a preheating process (prebaking process), a curing process, a postheating process (postbaking process) ) And the like.
  • prebaking process preheating process
  • postbaking process postbaking process
  • the heating temperature in the preheating step and the postheating step is usually 80 ° C. to 200 ° C., and preferably 90 ° C. to 150 ° C.
  • the heating time in the preheating step and the postheating step is usually 30 seconds to 240 seconds, and preferably 60 seconds to 180 seconds.
  • the curing process is a process of curing the formed film as necessary, and the mechanical strength of the near-infrared cut filter is improved by performing this process.
  • limiting in particular as said hardening process Although it can select suitably according to the objective, For example, a whole surface exposure process, a whole surface heat processing, etc. are mentioned suitably.
  • “exposure” is used to include not only light of various wavelengths but also irradiation of radiation such as electron beams and X-rays.
  • the exposure is preferably performed by irradiation of radiation, and as the radiation that can be used for the exposure, ultraviolet rays such as electron beams, KrF, ArF, g rays, h rays, i rays and visible light are particularly preferably used.
  • ultraviolet rays such as electron beams, KrF, ArF, g rays, h rays, i rays and visible light are particularly preferably used.
  • As an exposure method examples include stepper exposure and exposure with a high-pressure mercury lamp. Exposure is more preferably 5 ⁇ 3000mJ / cm 2 is preferably 10 ⁇ 2000mJ / cm 2, particularly preferably 50 ⁇ 1000mJ / cm 2.
  • Examples of the entire surface exposure processing method include a method of exposing the entire surface of the formed film.
  • the near-infrared absorbing composition contains a polymerizable compound
  • curing of the polymerization component in the film formed from the composition is promoted by overall exposure, the curing of the film further proceeds, mechanical strength, Durability is improved.
  • an apparatus which performs the said whole surface exposure For example, UV exposure machines, such as an ultrahigh pressure mercury lamp, are mentioned suitably.
  • a method of the whole surface heat treatment a method of heating the entire surface of the formed film can be given. By heating the entire surface, the film strength of the pattern is increased.
  • the heating temperature in the entire surface heating is preferably 120 ° C. to 250 ° C., more preferably 120 ° C.
  • the heating time in the entire surface heating is preferably 3 minutes to 180 minutes, more preferably 5 minutes to 120 minutes.
  • an apparatus which performs whole surface heating According to the objective, it can select suitably from well-known apparatuses, For example, a dry oven, a hot plate, IR heater etc. are mentioned.
  • the camera module of the present invention is a camera module having a solid-state image sensor substrate and a near-infrared cut filter disposed on the light receiving side of the solid-state image sensor substrate, and the near-infrared cut filter is the above-described near-infrared cut filter.
  • a method for manufacturing a camera module according to the present invention is a method for manufacturing a camera module having a solid-state image sensor substrate and a near-infrared cut filter disposed on the light-receiving side of the solid-state image sensor substrate. On the light receiving side, it has the process of forming a film
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a camera module having a solid-state image sensor substrate and a near-infrared cut filter arranged on the light receiving side of the solid-state image sensor substrate according to an embodiment of the present invention.
  • the camera module 10 includes, for example, a solid-state image sensor substrate 11, a planarization layer 12 provided on the main surface side (light-receiving side) of the solid-state image sensor substrate, a near-infrared cut filter 13, and a near-infrared cut filter. And a lens holder 15 having an imaging lens 14 in the internal space.
  • the solid-state image pickup device substrate 11 includes, for example, an image pickup device 16, an interlayer insulating film (not shown), a base layer (not shown), a color filter 17, and an overcoat (not shown) on the main surface of a silicon substrate as a base. ),
  • the micro lens 18 is provided in this order.
  • the color filter 17 red color filter, green color filter, blue color filter
  • the microlens 18 are respectively arranged so as to correspond to the image sensor 16.
  • the near-infrared cut filter 13 may be provided on the surface of the flattening layer 12, the surface of the microlens 18, between the base layer and the color filter 17, or between the color filter 17 and the overcoat.
  • the form in which the infrared cut filter 13 is provided may be sufficient.
  • the near-infrared cut filter 13 may be provided at a position within 2 mm (more preferably within 1 mm) from the surface of the microlens. If provided at this position, the process of forming the near-infrared cut filter can be simplified and unnecessary near-infrared rays can be sufficiently cut, so that the near-infrared blocking property can be further enhanced.
  • the infrared cut filter of the present invention can be subjected to a solder reflow process.
  • a solder reflow process By manufacturing the camera module through the solder reflow process, it is possible to automatically mount electronic component mounting boards, etc. that need to be soldered, making the productivity significantly higher than when not using the solder reflow process. Can be improved. Furthermore, since it can be performed automatically, the cost can be reduced.
  • the near-infrared cut filter is exposed to a temperature of about 250 to 270 ° C. Therefore, the near-infrared cut filter is also referred to as heat resistance that can withstand the solder reflow process (hereinafter also referred to as “solder reflow resistance”). ).
  • “having solder reflow resistance” means maintaining the characteristics as an infrared cut filter before and after heating at 200 ° C. for 10 minutes. More preferably, the characteristics are maintained before and after heating at 230 ° C. for 10 minutes. More preferably, the characteristics are maintained before and after heating at 250 ° C. for 3 minutes. If it does not have solder reflow resistance, when it is kept under the above conditions, the infrared absorption ability of the infrared cut filter may be reduced, or the function as a film may be insufficient.
  • the present invention also relates to a method for manufacturing a camera module, including a reflow process.
  • the infrared cut filter of the present invention maintains the near-infrared absorptivity even if there is a reflow process, and thus does not impair the characteristics of a compact, lightweight and high-performance camera module.
  • the camera module includes a solid-state imaging device substrate 11, a planarization layer 12, an ultraviolet / infrared light reflection film 19, a transparent base material 20, a near infrared absorption layer 21, and an antireflection layer. 22 may be included in this order.
  • the ultraviolet / infrared light reflection film 19 has an effect of imparting or enhancing the function of a near-infrared cut filter.
  • paragraphs 0033 to 0039 of Japanese Patent Laid-Open No. 2013-68688 can be referred to. Incorporated in the description.
  • the transparent substrate 20 transmits light having a wavelength in the visible region.
  • paragraphs 0026 to 0032 of JP2013-68688A can be referred to, and the contents thereof are incorporated in the present specification.
  • the near-infrared absorbing layer 21 can be formed by applying the above-described near-infrared absorbing composition of the present invention.
  • the antireflection layer 22 has a function of improving the transmittance by preventing reflection of light incident on the near-infrared cut filter and efficiently using incident light.
  • Japanese Patent Application Laid-Open No. 2013-68688 Paragraph 0040 which is incorporated herein by reference. As shown in FIG.
  • the camera module includes a solid-state imaging device substrate 11, a near infrared absorption layer 21, an antireflection layer 22, a planarization layer 12, an antireflection layer 22, a transparent substrate 20, and an ultraviolet light. -You may have the infrared light reflection film 19 in this order.
  • the camera module includes a solid-state imaging device substrate 11, a near-infrared absorbing layer 21, an ultraviolet / infrared light reflecting film 19, a planarizing layer 12, an antireflection layer 22, and a transparent base material. 20 and the antireflection layer 22 may be provided in this order.
  • the solid-state imaging device may have the configuration of the imaging device according to the first to fourteenth embodiments described in the 0049 column of the international publication WO14 / 061188 pamphlet.
  • Compound A-1 Tokyo Chemical Industry Co., Ltd., 2,2′-bipyridyl
  • Compound A-2 Tokyo Chemical Industry Co., Ltd., 6,6′-dimethyl-2,2′-bipyridyl Compound A-3, It was synthesized by the method described in Angelwandte Chemie-International Edition, 2008, 47, 8246-8250.
  • Compound A-4 HELVETICA CHMICA ACTA, 2000, 83, 1161-1167. It was synthesized by the method described in 1.
  • Compound A-5 Journal of Organometallic Chemistry, 2009, 694, 2636-2641. It was synthesized by the method described in 1.
  • Compound A-6 is produced by POLYHEDRON, 2008, 27, 1432-1446. It was synthesized by the method described in 1.
  • Compound A-7 was synthesized as follows. 10 g (58.1 mol) of 2-bromo-6-methylpyridine manufactured by Tokyo Chemical Industry Co., Ltd., 7.6 g (69.8 mmol) of 2-hydroxy-6-methylpyridine manufactured by Tokyo Chemical Industry Co., Ltd., Tokyo Chemical Industry ( Tetramethylethylenediamine 1.02 g (8.72 mmol), Wako Pure Chemical Industries, Ltd. potassium carbonate 16.0 g (116.3 mmol), Wako Pure Chemical Industries, Ltd.
  • Compound A-9 ⁇ , ⁇ ′, ⁇ ′′ -tripyridyl manufactured by Tokyo Chemical Industry Co., Ltd.
  • Compound A-10 was synthesized by the method described in European Journal of Inorganic Chemistry, 2004, 12, 2533-2541.
  • the copper diphenyl phosphate was synthesized by reacting diphenyl phosphate (0.5 g, 2.29 mmol) and copper acetate (0.21 g, 1.15 mmol) in ethanol at 70 ° C. for 0.5 hours.
  • Example 1 The following compound was mixed and the near-infrared absorptive composition of Example 1 was prepared. 20 parts by mass of the copper complex 1 KAYARAD DPHA 20 parts by mass JER157S65 20 parts by mass PGMEA 120 parts by mass Except that the copper complex 1 was changed to the copper complexes 2 to 17, each example was made to have the same composition as in Example 1. And the near-infrared absorptive composition of the comparative example was prepared.
  • ⁇ Production of near-infrared cut filter A photoresist was applied on a glass substrate, and was patterned by lithography to form a dripping region of the near infrared absorbing composition. 3 ml of each of the near infrared ray absorbing compositions prepared in Examples and Comparative Examples was dropped. The substrate with the coating film was dried at room temperature for 24 hours, and then the coating film thickness was evaluated. The film thickness was 192 ⁇ m.
  • ⁇ Near-infrared shielding evaluation >> The transmittance of the obtained near-infrared cut filter at a wavelength of 800 nm was measured using a spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corporation).
  • the near-infrared absorbing compositions of the examples can increase the shielding property in the near-infrared region even when a cured film is formed. Furthermore, it was found that the near-infrared cut filters of the examples all have a transmittance of 80% or more at a wavelength of 550 nm, and can improve the transparency in the visible light region and the shielding property in the near-infrared region. It was also found that the near-infrared cut filter of the example can secure a wide range of visible light with high transmittance and is excellent in spectral characteristics. On the other hand, when the near-infrared absorptive composition of the comparative example was used as the cured film, it was found that the shielding property in the near-infrared region was insufficient.
  • Example 1 the same as Example 1 except that the polymerizable compound (KAYARAD DPHA) was changed to KAYARAD D-320, M-510, M-520 or DPCA-60.
  • KAYARAD DPHA polymerizable compound
  • KAYARAD D-320, M-510, M-520 or DPCA-60 a near infrared cut filter was obtained. It was confirmed that even these near-infrared cut filters can improve the shielding property in the near-infrared region when a cured film is used.
  • the same effect can be obtained when the composition is prepared and then filtered using DFA4201NXEY (0.45 ⁇ m nylon filter) manufactured by Nippon Pole.
  • the crude product was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate) to obtain 10 g of Compound A3-135.
  • the obtained compound A3-135 was used to form a copper complex in the same manner as the copper complex Cu3-6a.
  • the synthesized compound AA2-26 was complexed in the same manner as the copper complex Cu4-36a.
  • Synthesis example of copper complex Cu4-63a Using compound AA2-28 commercially available from Tokyo Chemical Industry, synthesis was performed in the same manner as copper complex Cu4-36a.
  • Example 101 to 1405 The following compounds were mixed to prepare near-infrared absorbing compositions of Examples 101 to 145. 20 mass parts KAYARAD DPHA 20 mass parts JER157S65 20 mass parts PGMEA 120 mass parts described in Table 10
  • a near-infrared cut filter was produced using the near-infrared absorbing composition.
  • a photoresist was applied on a glass substrate and patterned by lithography to form a partition wall of the photoresist to form a dripping region of the near infrared absorbing composition.
  • 3 ml of each near-infrared absorbing composition was dropped on the dropping region on the glass substrate and dried by standing at room temperature for 24 hours. When the film thickness of the coating film after drying was evaluated, the film thickness was 100 ⁇ m.
  • ⁇ Near-infrared shielding evaluation> The transmittance at a wavelength of 800 nm in the near-infrared cut filter obtained as described above was measured using a spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corporation). Near-infrared shielding was evaluated according to the following criteria. The results are shown in the table below. A: Transmittance at 800 nm ⁇ 5% B: 5% ⁇ 800 nm transmittance ⁇ 25% C: Transmittance of 25% ⁇ 800 nm
  • ⁇ Visible light transmittance evaluation> The transmittance at a wavelength of 550 nm in the near-infrared cut filter obtained as described above was measured using a spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corporation). Visible light transmittance was evaluated according to the following criteria. The results are shown in the table below. A: 85% ⁇ transmittance at wavelength 550 nm B: 45 ⁇ transmittance at wavelength 550 nm ⁇ 85% C: Transmittance ⁇ 45% at a wavelength of 550 nm
  • the near-infrared absorbing compositions of Examples 101 to 145 can improve the shielding property in the near-infrared region even when they are cured films. Furthermore, the visible light transmittance was also good. In the near-infrared absorbing compositions of Examples 101 to 145, the same effect can be obtained when each composition is prepared and filtered using DFA4201NXEY (0.45 ⁇ m nylon filter) manufactured by Nippon Pole.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Optical Filters (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Paints Or Removers (AREA)

Abstract

本発明は、硬化膜としたときに近赤外線領域での遮蔽性が高い近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法を提供することを目的とする。銅成分に対して、非共有電子対で配位する配位原子を2つ以上有する化合物(A)を反応させてなる銅錯体を含有する、近赤外線吸収性組成物。

Description

近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法
 本発明は、近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法に関する。
 ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などにはカラー画像の固体撮像素子であるCCDやCMOSイメージセンサが用いられている。これら固体撮像素子は、その受光部において近赤外線に感度を有するシリコンフォトダイオードを使用しているために、視感度補正を行うことが必要であり、近赤外線カットフィルタを用いることが多い。
 このような近赤外線カットフィルタを形成するための材料として、例えば、リン酸エステル銅錯体を用いた近赤外線吸収性組成物が知られている(特許文献1~3)。
特開2002-69305号公報 特開平11-52127号公報 特開2011-63814号公報
 ここで、特許文献1~3に記載の銅錯体を用いた近赤外線カットフィルタでは、硬化膜としたときに近赤外線領域での遮蔽性が不十分であることが分かった。
 本発明は、かかる問題点を解決することを目的としたものであって、硬化膜としたときに近赤外線領域での遮蔽性が高い近赤外線吸収性組成物を提供することを目的とする。また、近赤外線吸収性組成物を用いた近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法を提供することを目的とする。
 かかる状況のもと、本発明者が鋭意検討を行った結果、特定の銅錯体により、上記課題を解決しうることを見出した。本発明は、以下を提供する。
<1>銅成分に対して、非共有電子対で配位する配位原子を2つ以上有する化合物(A)を反応させてなる銅錯体を含有する、近赤外線吸収性組成物。
<2>銅を中心金属とし、非共有電子対で配位する配位原子を2つ以上有する化合物(A)を配位子とする銅錯体を含有する、近赤外線吸収性組成物。
<3>銅錯体は、銅と化合物(A)によって5員環および/または6員環が形成されている、<1>または2に記載の近赤外線吸収性組成物。
<4>化合物(A)において、共有電子対で配位する配位原子が、酸素原子、窒素原子、硫黄原子またはリン原子である、<1>~<3>のいずれかに記載の近赤外線吸収性組成物。
<5>化合物(A)が、非共有電子対で配位する配位原子を2~5つ有する、<1>~<4>のいずれかに記載の近赤外線吸収性組成物。
<6>非共有電子対で配位する配位原子2つを連結する原子数が1~3である、<1>~<5>のいずれかに記載の近赤外線吸収性組成物。
<7>化合物(A)の分子量が50~1000である、<1>~<6>のいずれかに記載の近赤外線吸収性組成物。
<8>化合物(A)が下記一般式(IV)または(IV-18)で表される、<1>~<7>のいずれかに記載の近赤外線吸収性組成物;
1-L1-Y2 一般式(IV)
 一般式(IV)中、Y1およびY2はそれぞれ独立して、非共有電子対で配位する配位原子を含む環、または、群(UE)で表される部分構造を表す。L1は、単結合または2価の連結基を表す。
Figure JPOXMLDOC01-appb-C000004
 一般式(IV-18)中、Z25~Z27はそれぞれ独立して、非共有電子対で配位する配位原子を含む環、または、群(UE)で表される部分構造を表す;Z201は、下記群(UE-2)から選択される少なくとも1種を表す;L17~L19は、それぞれ独立して単結合または2価の連結基を表す;
群(UE)
Figure JPOXMLDOC01-appb-C000005
群(UE-2)
Figure JPOXMLDOC01-appb-C000006
 群(UE)中、波線は、化合物(A)を構成する原子団との結合位置であり、R1は、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、R2は、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アミノ基またはアシル基を表す。
<9>化合物(A)が5員環または6員環を含む化合物であり、共有電子対で配位する配位原子が5員環または6員環を構成する原子である、<1>~<7>のいずれかに記載の近赤外線吸収性組成物。
<10>非共有電子対で配位する配位原子が窒素原子である、<1>~<9>のいずれかに記載の近赤外線吸収性組成物。
<11>硬化性化合物および溶剤をさらに含有する、<1>~<10>のいずれかに記載の近赤外線吸収性組成物。
<12><1>~<11>のいずれかに記載の近赤外線吸収性組成物を硬化してなる近赤外線カットフィルタ。
<13>固体撮像素子基板の受光側において、<1>~<11>のいずれかに記載の近赤外線吸収性組成物を塗布することにより膜を形成する工程を有する、近赤外線カットフィルタの製造方法。
<14>固体撮像素子基板と、固体撮像素子基板の受光側に配置された近赤外線カットフィルタとを有するカメラモジュールであって、近赤外線カットフィルタが<1>~<11>のいずれかに記載の近赤外線吸収性組成物を硬化してなる近赤外線カットフィルタである、カメラモジュール。
<14-1>近赤外線カットフィルタが<12>に記載の近赤外線カットフィルタまたは<14>に記載の近赤外線カットフィルタの製造方法で得られた近赤外線カットフィルタである、カメラモジュール。
<15>固体撮像素子基板と、固体撮像素子基板の受光側に配置された近赤外線カットフィルタとを有するカメラモジュールの製造方法であって、固体撮像素子基板の受光側において、<1>~<11>のいずれかに記載の近赤外線吸収性組成物を塗布することにより膜を形成する工程を有する、カメラモジュールの製造方法。
 本発明によれば、硬化膜としたときに近赤外線領域での遮蔽性が高い近赤外線吸収性組成物を提供することが可能となった。また、近赤外線吸収性組成物を用いた近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法を提供することが可能となった。
本発明の実施形態に係る、近赤外線カットフィルタを有するカメラモジュールの構成を示す概略断面図である カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。 カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。 カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。
 以下において、本発明の内容について詳細に説明する。
 本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書における基(原子団)の表記に於いて、置換および無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
本明細書中において、“(メタ)アクリレート”はアクリレートおよびメタクリレートを表し、“(メタ)アクリル”はアクリルおよびメタクリルを表し、“(メタ)アクリロイル”はアクリロイルおよびメタクリロイルを表す。
 また、本明細書中において、“単量体”と“モノマー”とは同義である。本発明における単量体は、オリゴマーおよびポリマーと区別され、重量平均分子量が2,000以下の化合物をいう。
 本明細書中において、重合性化合物とは、重合性官能基を有する化合物のことをいい、単量体であっても、ポリマーであってもよい。重合性官能基とは、重合反応に関与する基をいう。尚、本明細書における基(原子団)の表記において、置換および無置換を記していない表記は置換基を有さないものと共に置換基を有するものをも包含するものである。
 本発明で用いられる化合物の重量平均分子量および数平均分子量の測定方法は、ゲル浸透クロマトグラフィー(GPC)により測定でき、GPCの測定によるポリスチレン換算値として定義される。例えば、HLC-8220(東ソー(株)製)を用い、カラムとしてTSKgel Super AWM―H(東ソー(株)製、6.0mmID×15.0cmを、溶離液として10mmol/L リチウムブロミドNMP(N-メチルピロリジノン)溶液を用いることによって求めることができる。
 近赤外線とは、極大吸収波長領域が700~2500nmの光(電磁波)をいう。
 本明細書において、全固形分とは、組成物の全組成から溶剤を除いた成分の総質量をいう。本発明における固形分は、25℃における固形分である。
<近赤外線吸収性組成物>
 本発明の近赤外線吸収性組成物(以下、本発明の組成物ともいう)は、銅成分に対して、非共有電子対で配位する配位原子を2つ以上有する化合物(A)を反応させてなる銅錯体を含有する。また、本発明の組成物は、銅を中心金属とし、非共有電子対で配位する配位原子を2つ以上有する化合物(A)(以下、化合物(A)ともいう)を配位子とする銅錯体を含有していてもよい。
 本発明の組成物を用いることにより、硬化膜としたときに近赤外線遮蔽性を高くすることができる。また、耐熱性も高くすることもできる。さらに、本発明の組成物によれば、高い近赤外線遮蔽性を実現できる近赤外線カットフィルタが得られる。また本発明によれば、近赤外線カットフィルタの膜厚を薄くでき、カメラモジュールの低背化に寄与できる。
 このような本願発明の効果が得られる理由は定かではないが、以下のように推定される。非共有電子対で配位する配位原子を2つ以上有する化合物(A)は、銅成分に対し、キレート配位子として働く。すなわち、化合物(A)が有する非共有電子対で配位する配位原子が、銅成分中の銅とキレート配位することにより、銅錯体の構造が歪んで、可視光領域の高い透過性が得られ、近赤外線の吸光能力を向上でき、色価も向上すると考えられる。
 本発明の組成物は、銅成分に対して上述した化合物(A)を反応させてなる銅錯体を含有していればよく、例えば、銅成分としての銅化合物(銅錯体)と、化合物(A)とを反応させた銅錯体を含有していてもよいし、銅錯体以外の銅化合物(例えば水酸化銅)と、アニオンで配位する配位子と、化合物(A)とを反応させた銅錯体を含有していてもよい。配位子のアニオンは、銅原子に配位可能なものであればよく、例えば、酸素アニオン、窒素アニオン、硫黄アニオン、塩素アニオン等が挙げられる。
 本発明に用いられる銅錯体は、化合物(A)が有する2つの非共有電子対で配位する配位原子が配位した銅錯体(銅化合物)の形態となっている。本発明に用いられる銅錯体における銅は、通常2価の銅であり、例えば銅成分(銅または銅を含む化合物)に対して、化合物(A)を混合・反応等させて得ることができる。
 また、銅錯体は、4配位、5配位および6配位が例示され、4配位および5配位がより好ましい。銅錯体は、アニオンで配位する配位子を少なくとも1つ有することが好ましい。
 ここで、本発明の組成物中から、銅と化合物(A)の構造を検出できれば、本発明の組成物中において化合物(A)を配位子とした銅錯体が形成されているといえる。本発明の組成物中から銅と化合物(A)を検出する方法としては、例えばICP発光分析が挙げられる。
 本発明に用いられる銅錯体は、近赤外線波長領域700~2500nmに極大吸収波長(λmax)を有することが好ましく、720~890nmに極大吸収波長を有することがより好ましく、730~880nmに極大吸収波長を有することがさらに好ましい。極大吸収波長は、例えば、Cary 5000 UV-Vis-NIR(分光光度計 アジレント・テクノロジー株式会社製)を用いて測定することができる。
<<非共有電子対で配位する配位原子を2つ以上有する化合物(A)>>
 化合物(A)は、1分子内に、非共有電子対で配位する配位原子を2つ以上有していればよく、3つ以上有していてもよく、2~5つ有していることが好ましく、4つ有していることがより好ましい。
 化合物(A)の極大吸収波長(λmax)は、420nm以下が好ましく、400nm以下がより好ましく、350nm以下がさらに好ましい。また、化合物(A)の極大吸収波長は、10nm以上が好ましく、50nm以上がより好ましい。また、化合物(A)の極大吸収波長は、430nm以上に存在しないことが好ましい。
 化合物(A)は、分子内に、アニオンで配位する配位部位を有していてもよいし、有していなくてもよい。ここで、アニオンで配位する配位部位とは、銅成分中の銅原子に配位可能なアニオンを含むものであり、例えば、酸素アニオン、窒素アニオンまたは硫黄アニオンを含むものが挙げられる。
 化合物(A)は、1種または2種以上を組み合わせて用いることができる。
 化合物(A)において、非共有電子対で配位する配位原子同士を連結する原子数は、1~6であることが好ましく、1~3であることがより好ましく、2~3が更に好ましい。このような構成とすることにより、銅錯体の構造がより歪みやすくなるため、色価をより向上させることができる。
 非共有電子対で配位する配位原子同士を連結する原子は、1種または2種以上であってもよい。非共有電子対で配位する配位原子同士を連結する原子は、炭素原子が好ましい。
 以下の例示化合物において、非共有電子対で配位する配位原子は窒素原子であり、非共有電子対で配位する配位原子同士を連結する原子は炭素原子であり、窒素原子を連結する炭素原子数が2である。
Figure JPOXMLDOC01-appb-C000007
 化合物(A)が有していてもよい不飽和結合の数は、9以下が好ましく、1~9が好ましい。
 化合物(A)の分子量は、50~1000が好ましく、50~600がより好ましい。
 化合物(A)において、非共有電子対で配位する配位原子は、酸素原子、窒素原子、硫黄原子またはリン原子が好ましく、酸素原子、窒素原子または硫黄原子がより好ましく、窒素原子がさらに好ましい。
 化合物(A)において、非共有電子対で配位する配位原子が窒素原子である場合、窒素原子に隣接する原子が炭素原子であり、上記炭素原子が置換基を有することが好ましい。
 非共有電子対で配位する配位原子は、環に含まれる、または、以下の群(UE)から選択される少なくとも1種の部分構造に含まれることが好ましい。
群(UE)
Figure JPOXMLDOC01-appb-C000008
(群(UE)中、波線は、化合物(A)を構成する原子団との結合位置であり、
 R1は、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、R2は、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アミノ基またはアシル基を表す。)
 非共有電子対で配位する配位原子が環に含まれる場合、非共有電子対で配位する配位原子を含む環は、単環であっても多環であってもよく、また、芳香族であっても非芳香族であってもよい。非共有電子対で配位する配位原子を含む環は、5~12員環が好ましく、5~7員環がより好ましい。
 非共有電子対で配位する配位原子を含む環は、置換基を有していてもよく、置換基としては炭素数1~10の直鎖状、分岐状または環状のアルキル基、炭素数6~12のアリール基、ハロゲン原子、ケイ素原子、炭素数1~12のアルコキシ基、炭素数1~12のアシル基、炭素数1~12のアルキルチオ基、カルボキシル基等が挙げられる。
 非共有電子対で配位する配位原子を含む環が置換基を有している場合、さらに置換基を有していてもよく、非共有電子対で配位する配位原子を含む環からなる基、上述した群(UE)から選択される少なくとも1種の部分構造からなる基、炭素数1~12のアルキル基、炭素数1~12のアシル基、ヒドロキシ基が挙げられる。
 非共有電子対で配位する配位原子が群(UE)で表される部分構造に含まれる場合、R1は、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表すことが好ましい。
 アルキル基は、直鎖状、分岐状または環状であってもよいが、直鎖状が好ましい。アルキル基の炭素数は、1~10が好ましく、1~6がより好ましく、1~4がさらに好ましい。アルキル基の例としては、メチル基が挙げられる。アルキル基は置換基を有していてもよく、置換基としてはハロゲン原子、カルボキシル基、ヘテロ環基が挙げられる。置換基としてのヘテロ環基は、単環であっても多環であってもよく、また、芳香族であっても非芳香族であってもよい。ヘテロ環を構成するヘテロ原子の数は1~3が好ましく1または2が好ましい。ヘテロ環を構成するヘテロ原子は、窒素原子が好ましい。アルキル基が置換基を有している場合、さらに置換基を有していてもよい。
 アルケニル基の炭素数は、1~10が好ましく、1~6がより好ましい。
 アルキニル基の炭素数は、1~10が好ましく、1~6がより好ましい。
 アリール基は、単環であっても多環であってもよいが単環が好ましい。アリール基の炭素数は6~18が好ましく、6~12がより好ましく、6がさらに好ましい。
 ヘテロアリール基は、単環であっても多環であってもよい。ヘテロアリール基を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基の炭素数は6~18が好ましく、6~12がより好ましい。
 非共有電子対で配位する配位原子が群(UE)で表される部分構造に含まれる場合、R2は、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アミノ基またはアシル基を表すことが好ましい。
 アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基は、上記群(UE)で説明したものと同義であり、好ましい範囲も同様である。
 アルコキシ基の炭素数は、1~12が好ましい。
 アリールオキシ基の炭素数は、6~18が好ましい。
 ヘテロアリールオキシ基は、単環であっても多環であってもよい。ヘテロアリールオキシ基を構成するヘテロアリール基は、上記群(UE)で説明したヘテロアリール基と同義であり、好ましい範囲も同様である。
 アルキルチオ基の炭素数は、1~12が好ましい。
 アリールチオ基の炭素数は、6~18が好ましい。
 ヘテロアリールチオ基は、単環であっても多環であってもよい。ヘテロアリールチオ基を構成するヘテロアリール基は、上記群(UE)で説明したヘテロアリール基と同義であり、好ましい範囲も同様である。
 アシル基の炭素数は、2~12が好ましい。
 化合物(A)は、下記一般式(IV)で表されることも好ましい。
1-L1-Y2 一般式(IV)
(一般式(IV)中、Y1およびY2はそれぞれ独立して、非共有電子対で配位する配位原子を含む環、または、群(UE)で表される部分構造を表す。L1は、単結合または2価の連結基を表す。)
 一般式(IV)中、Y1およびY2は、上述した非共有電子対で配位する配位原子を含む環、または、上述した非共有電子対で配位する配位原子が含まれる部分構造と同義であり、好ましい範囲も同様である。
 一般式(IV)中、L1が2価の連結基を表す場合、炭素数1~12のアルキレン基、炭素数6~12のアリーレン基、-SO-、-O-、または、これらの組み合わせからなる基が好ましく、炭素数1~3のアルキレン基、フェニレン基または-SO2-が好ましく、炭素数1~3のアルキレン基がより好ましい。
 化合物(A)のより詳細な例として、下記一般式(IV-1)または(IV-2)で表される化合物も挙げられる。
3-L2-Y4-L3-Y5                  (IV-1)
6-L6-Y7-L7-Y8-L8-Y9             (IV-2)
 一般式(IV-1)および(IV-2)中、Y3、Y5、Y6およびY9はそれぞれ独立して、非共有電子対で配位する配位原子を含む環、または、群(UE)で表される部分構造を表す。
 また、Y4、Y7、Y8はそれぞれ独立して、非共有電子対で配位する配位原子を含む環、または、以下の群(UE-1)から選択される少なくとも1種である。群(UE-1)中のRは、非共有電子対で配位する配位原子が上述した群(UE)で表される部分構造に含まれる場合のR1と同義である。
群(UE-1)
Figure JPOXMLDOC01-appb-C000009
 一般式(IV-1)および(IV-2)中、L2~L8はそれぞれ独立して単結合または2価の連結基を表す。2価の連結基は、一般式(IV)中のL1が2価の連結基を表す場合と同義であり、好ましい範囲も同様である。
 化合物(A)は、下記一般式(IV-11)~(IV-20)で表される化合物であることも好ましい。なかでも、下記一般式(IV-18)で表される化合物がより好ましい。
 一般式(IV-11)~(IV-20)中、Z1~Z34、Z101~Z108、Z201~Z203は、それぞれ独立して、配位部位を表し、L11~L25はそれぞれ独立して単結合または2価の連結基を表し、L26~L32はそれぞれ独立して3価の連結基を表し、L33~L34はそれぞれ独立して4価の連結基を表す。
 Z1~Z34はそれぞれ独立して、非共有電子対で配位する配位原子を含む環からなる基、上述した群(UE)から選択される少なくとも1種を表す。
 Z101~Z108はそれぞれ独立して、非共有電子対で配位する配位原子を含む環からなる基または、上述した群(UE-1)から選択される少なくとも1種を表す。
 Z201~Z203はそれぞれ独立して、下記群(UE-2)から選択される少なくとも1種を表す。
 L11~L25はそれぞれ独立して単結合または2価の連結基を表す。2価の連結基としては、炭素数1~12のアルキレン基、炭素数6~12のアリーレン基、-SO-、-O-、-SO2-または、これらの組み合わせからなる基が好ましく、炭素数1~3のアルキレン基、フェニレン基、-SO2-またはこれらの組み合わせからなる基がより好ましい。
 L26~L32はそれぞれ独立して3価の連結基を表す。3価の連結基としては、上述した2価の連結基から水素原子を1つ除いた基が挙げられる。
 L33~L34はそれぞれ独立して4価の連結基を表す。4価の連結基としては、上述した2価の連結基から水素原子を2つ除いた基が挙げられる。
群(UE-2)
Figure JPOXMLDOC01-appb-C000011
 化合物(A)は、5員環または6員環を含む化合物であることも好ましく、非共有電子対で配位する配位原子が5員環または6員環を構成することも好ましい。
 化合物(A)が有する非共有電子対で配位する配位原子が窒素原子であることも好ましい。また、化合物(A)が有する非共有電子対で配位する配位原子としての窒素原子に隣接する原子が炭素原子であり、上記炭素原子が置換基を有することも好ましい。このような構成とすることにより、銅錯体の構造がより歪みやすくなるため、色価をより向上させることができる。置換基は、上述した非共有電子対で配位する配位原子を含む環が有していてもよい置換基と同義であり、炭素数1~10のアルキル基、炭素数6~12のアリール基、カルボキシル基、炭素数1~12のアルコキシ基、炭素数2~12のアシル基、炭素数1~12のアルキルチオ基、ハロゲン原子が好ましい。
 化合物(A)の具体例としては、以下の化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
<<他の化合物>>
 本発明に用いられる銅錯体は、アニオンで配位する配位部位と非共有電子対で配位する配位原子をそれぞれ1つずつ有する化合物、アニオンで配位する配位部位を2つ有し、かつ、非共有電子対で配位する配位原子を有さない化合物を配位子として有していてもよい。このような化合物としては、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
<<単座配位子>>
 本発明に用いられる銅錯体は、アニオンまたは非共有電子対で配位する単座配位子を有してもよい。アニオンで配位する配位子としては、ハライドアニオン、ヒドロキシドアニオン、アルコキシドアニオン、フェノキシドアニオン、アミドアニオン(アシル基やスルホニル基で置換されたアミドを含む)、イミドアニオン(アシル基やスルホニル基で置換されたイミドを含む)、アニリドアニオン(アシル基やスルホニル基で置換されたアニリドを含む)、チオラートアニオン、炭酸水素アニオン、カルボン酸アニオン、チオカルボン酸アニオン、ジチオカルボン酸アニオン、硫酸水素アニオン、スルホン酸アニオン、リン酸二水素アニオン、リン酸ジエステルアニオン、ホスホン酸モノエステルアニオン、ホスホン酸水素アニオン、ホスフィン酸アニオン、含窒素へテロ環アニオン、硝酸アニオン、次亜塩素酸アニオン、シアニドアニオン、シアナートアニオン、イソシアナートアニオン、チオシアナートアニオン、イソチオシアナートアニオン、アジドアニオンなどが挙げられる。非共有電子対で配位する単座配位子としては、水、アルコール、フェノール、エーテル、アミン、アニリン、アミド、イミド、イミン、ニトリル、イソニトリル、チオール、チオエーテル、カルボニル化合物、チオカルボニル化合物、スルホキシド、へテロ環、あるいは、炭酸、カルボン酸、硫酸、スルホン酸、リン酸、ホスホン酸、ホスフィン酸、硝酸、または、そのエステルが挙げられる。単座配位子の種類および数は、銅錯体に配位する化合物(A)に応じて適宜選択することができる。単座配位子の具体例としては、以下のものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-T000021
 本発明に用いられる銅錯体は、アニオンで配位する配位部位の数に応じて、電荷を持たない中性錯体のほか、カチオン錯体、アニオン錯体になることもある。この場合、銅錯体の電荷を中和するよう、必要に応じて対イオンが存在する。
 対イオンが負の対イオンの場合、例えば、無機陰イオンでも有機陰イオンでもよい。具体例としては、水酸化物イオン、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換または無置換のアルキルカルボン酸イオン(酢酸イオン、トリフルオロ酢酸等)、置換または無置換のアリールカルボン酸イオン(安息香酸イオン等)、置換もしくは無置換のアルキルスルホン酸イオン(メタンスルホン酸、トリフルオロメタンスルホン酸イオン等)、置換もしくは無置換のアリールスルホン酸イオン(例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、硝酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン、ヘキサフルオロホスフェートイオン、ピクリン酸イオン、アミドイオン(アシル基やスルホニル基で置換されたアミドを含む)、メチドイオン(アシル基やスルホニル基で置換されたメチドを含む)が挙げられ、ハロゲン陰イオン、置換もしくは無置換のアルキルカルボン酸イオン、硫酸イオン、硝酸イオン、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン、ヘキサフルオロホスフェートイオン、アミドイオン(アシル基やスルホニル基で置換されたアミドを含む)、メチドイオン(アシル基やスルホニル基で置換されたメチドを含む)が好ましい。
 対イオンが正の対イオンの場合、例えば、無機もしくは有機のアンモニウムイオン(例えば、テトラブチルアンモニウムイオンなどのテトラアルキルアンモニウムイオン、トリエチルベンジルアンモニウムイオン、ピリジニウムイオン等)、ホスホニウムイオン(例えば、テトラブチルホスホニウムイオンなどのテトラアルキルホスホニウムイオン、アルキルトリフェニルホスホニウムイオン、トリエチルフェニルホスホニウムイオン等)、アルカリ金属イオンまたはプロトンが挙げられる。
 また、対イオンは金属錯体イオンであってもよく、特に対イオンが銅錯体、すなわち、カチオン性銅錯体とアニオン性銅錯体の塩であっても良い。
<<銅成分>>
 本発明に用いられる銅成分は、銅錯体であってもよいし、銅錯体以外の銅化合物であってもよい。例えば、銅または銅を含む化合物を用いることができる。銅を含む化合物としては、例えば、酸化銅や銅塩を用いることができる。銅塩は、1価または2価の銅が好ましく、2価の銅がより好ましい。銅塩としては、酢酸銅、塩化銅、ギ酸銅、水酸化銅、ステアリン酸銅、安息香酸銅、エチルアセト酢酸銅、ピロリン酸銅、ナフテン酸銅、クエン酸銅、硝酸銅、硫酸銅、炭酸銅、塩素酸銅、(メタ)アクリル酸銅、過塩素酸銅、ホスフィン酸銅、ジフェニルホスフィン酸銅、メタンスルホン酸銅がより好ましく、酢酸銅、塩化銅、ホスフィン酸銅、ジフェニルホスフィン酸銅、メタンスルホン酸銅がさらに好ましく、酢酸銅、ホスフィン酸銅、ジフェニルホスフィン酸銅、メタンスルホン酸銅が特に好ましい。
 化合物(A)と反応させる銅成分の量は、モル比率(化合物(A):銅成分)で1:0.5~1:8とすることが好ましく、1:0.5~1:4とすることがより好ましく、1:0.6~1:1とすることがさらに好ましい。
 また、銅成分と化合物(A)とを反応させる際の反応条件は、例えば、20~50℃で、0.5時間以上とすることが好ましい。
 銅錯体の具体例として、下記表に示した例が挙げられるが、これらに限定されるものではない。
 表中の化合物、単座配位子は、上述した化合物、単座配位子を表す。また、以下の表中、Phはフェニル基を表す。
 なお、本発明で用いる銅錯体は、本発明の組成物の銅錯体以外の成分(溶剤、各種添加剤など)が、さらに配位してもよく、また、銅錯体の配位子の一部が銅錯体以外の成分と置き換わった状態で存在しても良い。これは置換活性なd9電子配置を有する銅(II)錯体に一般的な性質である。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 本発明の組成物における銅錯体の含有量(化合物(A)と、銅成分を反応させてなる銅錯体も同様)は、本発明の組成物(溶剤も含む)に対して、1~60質量%が好ましく、5~40質量%がより好ましく、5~20質量%がさらに好ましい。
 本発明の組成物における銅錯体の含有量は、本発明の組成物の全固形分に対して、15質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上がさらに好ましい。また、本発明の組成物における銅錯体の含有量は、15~60質量%が好ましく、20~50質量%がより好ましく、25~45質量%がさらに好ましい。
 本発明の組成物における上記銅錯体以外の他の銅錯体(近赤外線吸収性物質)の含有量は、本発明の組成物に対して、0~20質量%が好ましく、0~10質量%がより好ましく、0~5質量%がさらに好ましい。
 本発明の組成物に含まれる近赤外線吸収性物質のうち、化合物(A)と銅成分を反応させてなる化合物の割合は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましい。
 本発明の組成物における銅の含有量は、組成物の全固形分に対して、0.1質量%以上が好ましく、1質量%以上がより好ましく、5質量%以上がさらに好ましい。上限は、30質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましい。
 本発明の近赤外線吸収性組成物の全固形分は、組成物に対して1質量%以上が好ましく、10質量%以上がより好ましい。また、本発明の近赤外線吸収性組成物の全固形分は、組成物に対して1~50質量%であることが好ましく、1~40質量%であることがより好ましく、10~35質量%であることがさらに好ましい。
 本発明の組成物は、上述した本発明で用いられる銅錯体を1種単独で用いてもよいし、2種以上を併用してもよい。上述した本発明で用いられる銅錯体を2種以上用いる場合、その合計量が上記範囲内であることが好ましい。
 本発明の近赤外線吸収性組成物は、上述した銅錯体を含有していれば良いが、必要に応じて、他の近赤外線吸収性化合物、溶剤、硬化性化合物、バインダーポリマー、界面活性剤、重合開始剤、その他の成分を配合してもよい。
<<他の近赤外線吸収性化合物>>
 本発明で用いることができる他の近赤外線吸収性化合物としては、低分子(例えば、分子量1000以下)の配位部位を含む化合物と銅成分との反応で得られる銅化合物や、配位部位を含む重合体と銅成分との反応で得られる銅化合物を用いることができる。配位部位としては、酸基や酸基の塩などのアニオンで配位する配位部位や、非共有電子対で配位する配位原子が挙げられる。
 本発明の組成物が、他の近赤外線吸収性化合物を含有する場合、他の近赤外線吸収性化合物の含有量は、本発明の組成物の全固形分に対して、0.01質量%以上が好ましく、1質量%以上がより好ましく、5質量%以上がさらに好ましい。上限値は、60質量%以下が好ましく、40質量%以下がより好ましく、20質量%以下がさらに好ましい。なお、本発明は、他の近赤外線吸収性化合物を含有しない組成とすることもできる。
(低分子タイプ)
 本発明で用いることができる、配位部位を含有する化合物と銅成分との反応で得られる化合物としては、下式(A)で表される銅錯体を用いることができる。
 Cu(L)n1・(X)n2   式(A)
 上記式(A)中、Lは、銅に配位する配位子を表し、Xは、存在しないか、ハロゲン原子、H2O、NO3、ClO4、SO4、CN、SCN、BF4、PF6、BPh4(Phはフェニル基を表す)またはアルコールを表す。n1、n2は、各々独立に1~4の整数を表す。
 配位子Lは、銅に配位可能な原子としてC、N、O、Sを含む置換基を有するものであり、さらに好ましくはNやO、Sなどの孤立電子対を持つ基を有するものである。配位可能な基は分子内に1種類に限定されず、2種以上を含んでも良く、解離しても非解離でも良い。非解離の場合、Xは存在しない。
 上記銅錯体は、中心金属の銅に配位子が配位した銅化合物であり、銅は、通常2価の銅である。例えば銅成分に対して、配位子となる化合物またはその塩を混合・反応等させて得ることができる。
 上記配位子となる化合物またはその塩としては、特に限定されないが、例えば、有機酸化合物(例えば、スルホン酸化合物、カルボン酸化合物、リン酸化合物)またはその塩などが好適に挙げられる。
 上記配位子となる化合物またはその塩は、下記一般式(i)で表されるものが挙げられる。
一般式(i)
Figure JPOXMLDOC01-appb-C000028
(一般式(i)中、R1はn価の有機基を表し、X1は酸基を表し、nは1~6の整数を表す。)
 一般式(i)中、n価の有機基は、炭化水素基またはオキシアルキレン基が好ましく、脂肪族炭化水素基または芳香族炭化水素基がより好ましい。炭化水素基は、置換基を有していてもよく、置換基としては、ハロゲン原子(好ましくはフッ素原子)、(メタ)アクリロイル基、不飽和二重結合を有する基が挙げられる。
 上記炭化水素基が1価の場合、アルキル基またはアリール基が好ましく、アリール基がより好ましい。2価の場合、アルキレン基、アリーレン基、オキシアルキレン基が好ましく、アリーレン基がより好ましい。また3価以上の場合には、上記炭化水素基に対応するものが好ましい。
 上記アルキル基およびアルキレン基の炭素数は、1~20が好ましく、1~10がより好ましい。
 上記アリール基およびアリーレン基の炭素数は、6~18が好ましく、6~12がより好ましい。
 一般式(i)中、X1は、例えば、リン原子を含有する酸基(リン酸ジエステル基、ホスホン酸モノエステル基、ホスフィン酸基等)、スルホ基、カルボキシル基、ヒドロキシル基等が挙げられる。X1は、1種単独でも2種以上であってもよいが、2種以上であることが好ましい。
 上記配位子となる化合物またはその塩(酸基またはその塩を含有する化合物)の分子量は、1000以下が好ましく、70~1000が好ましく、70~500がより好ましい。
 低分子の酸基またはその塩を含む化合物と銅成分との反応で得られる銅化合物の一例として、銅成分に対して、2箇所のモノアニオン性配位部位を有する化合物またはその塩を有する化合物を反応させてなるものを用いることもできる。ここで、モノアニオン性配位部位とは、銅原子との配位に際し、1つの負電荷を有する官能基を介して銅原子と配位する部位を表す。そのようなモノアニオン性配位部位を有する構造としては、例えば、上記一般式(i)中のX1で説明したものが挙げられる。
 モノアニオン性配位部位を有する構造は、例えば、以下に示すように銅原子と配位することによって、銅錯体を形成する。例えば、カルボキシル基-銅錯体、リン酸ジエステル基-銅錯体、ホスホン酸モノエステル基-銅錯体、ホスフィン酸基-銅錯体、スルホ基-銅錯体、ヒドロキシル基-銅錯体を形成する。また、モノアニオン性配位部位を有する構造は、上述した群(AN)から選択される少なくとも1種であってもよい。
Figure JPOXMLDOC01-appb-C000029
 2箇所のモノアニオン性配位部位を有する化合物としては、下記一般式(10)で表されるものが挙げられる。
1-L1-X2 一般式(10)
(一般式(10)中、X1およびX2は、各々独立に、上記モノアニオン性配位部位を表し、L1は、アルキレン基、アルケニレン基、アリーレン基、ヘテロ環基、-O-、-S-、-NRN1-、-CO-、-CS-、-SO2-、またはこれらの組み合わせからなる2価の連結基を表す。ここで、RN1は、水素原子、アルキル基、アリール基またはアラルキル基を表す。)
 上記一般式(10)中、L1は、アルキレン基、アルケニレン基、アリーレン基、ヘテロ環基、-O-、-S-、-NRN1-、-CO-、-CS-、-SO2-、またはこれらの組み合わせからなる2価の連結基を表す。ここで、NRN1は、水素原子、アルキル基、アリール基またはアラルキル基を表す。
 アルキレン基としては、置換または無置換の炭素数1~20の直鎖状または分岐状のアルキレン基、置換または無置換の炭素数3~20の環状のアルキレン基などが挙げられる。
 アルケニレン基としては、置換または無置換の炭素数2~10のアルケニレン基が好ましく、置換または無置換の炭素数2~8のアルケニレン基がより好ましい。
 アリーレン基としては、置換または無置換の炭素数6~18のアリーレン基が好ましく、置換または無置換の炭素数6~14のアリーレン基がより好ましい。また、アリール基は、単環または縮合環であり、単環または縮合数が2~8の縮合環が好ましく、単環または縮合数が2~4の縮合環がより好ましい。具体的には、フェニレン基、ナフチレン基などが例示される。
 ヘテロ環基は、脂環基の中にヘテロ原子があるものまたは芳香族ヘテロ環基が挙げられる。ヘテロ環基としては、5員環または6員環が好ましい。また、ヘテロ環基は、単環または縮合環であり、単環または縮合数が2~8の縮合環が好ましく、単環または縮合数が2~4の縮合環がより好ましい。具体的には、窒素、酸素、硫黄原子の少なくとも一つを含有する単環、または多環芳香族環から誘導されるヘテロアリーレン基等が挙げられる。ヘテロ環の例としては、例えば、オキソラン環、オキサン環、チオラン環、オキゾール環、チオフェン環、チアスレン環、フラン環、ピラン環、イソベンゾフラン環、クロメン環、キサンテン環、フェノキサジン環、ピロール環、ピラゾール環、イソチアゾール環、イソオキサゾール環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、イソインドリジン環、インドール環、インダゾール環、プリン環、キノリジン環、イソキノリン環、フタラジン環、ナフチリジン環、キナゾリン環、シノリン環、プテリジン環、カルバゾール環、カルボリン環、フェナンスリン環、アクリジン環、ペリミジン環、フェナンスロリン環、フタラジン環、フェナルザジン環、フェノキサジン環、フラザン環等が挙げられる。
 -NRN1-において、RN1は、水素原子、アルキル基、アリール基またはアラルキル基を表す。
 RN1におけるアルキル基としては、鎖状、分枝状、環状のいずれであってもよい。直鎖状または分岐状のアルキル基としては、置換または無置換の炭素数1~20のアルキル基が好ましく、置換または無置換の炭素数1~12のアルキル基がより好ましい。環状のアルキル基は、単環、多環のいずれであってもよい。環状のアルキル基としては、置換または無置換の炭素数3~20のシクロアルキル基が好ましく、置換または無置換の炭素数4~14のシクロアルキル基がより好ましい。
 RN1におけるアリール基としては、置換または無置換の炭素数6~18のアリール基が好ましく、置換または無置換の炭素数6~14のアリール基がより好ましく、無置換の炭素数6~14のアリール基がさらに好ましい。具体的には、フェニル基、ナフチル基などが例示される。
 RN1におけるアラルキル基としては、置換または無置換の炭素数7~20のアラルキル基が好ましく、無置換の炭素数7~15のアラルキル基がより好ましい。
 上述した基が有していてもよい置換基としては、重合性基(好ましくは、炭素-炭素二重結合を含む重合性基)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基、カルボン酸エステル基、ハロゲン化アルキル基、アルコキシ基、メタクリロイルオキシ基、アクリロイルオキシ基、エーテル基、スルホニル基、スルフィド基、アミド基、アシル基、ヒドロキシ基、カルボキシル基、アラルキル基、-Si-(ORN223などが例示される。
 また、上述した基が有していてもよい置換基としては、上記置換基の少なくともいずれか1種と、-O-、-CO-、-COO-および-COOR’の少なくとも1つとの組み合わせからなるものであってもよい。ここで、R’は、炭素数が1~10の直鎖、炭素数が3~10の分岐または、炭素数3~10の環状のアルキル基であることが好ましい。
 重合性基としては、例えば、炭素-炭素二重結合を含む重合性基(好ましくは、ビニル基、(メタ)アクリロイルオキシ基)、(メタ)アクリロイル基、エポキシ基、アジリジニル基などが挙げられる。
 アルキル基としては、鎖状、分枝状、環状のいずれであってもよい。直鎖状または分岐状のアルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましく、炭素数1~4アルキル基がより好ましい。環状のアルキル基は、単環、多環のいずれであってもよい。環状のアルキル基としては、炭素数3~20のシクロアルキル基が好ましく、炭素数4~10のシクロアルキル基がより好ましい。
 ハロゲン化アルキル基としては、フッ素原子で置換されたアルキル基が好ましい。特に、フッ素原子を2つ以上有する炭素数が1~10のアルキル基が好ましく、直鎖状、分岐鎖状および環状のいずれであってもよいが、直鎖状または分岐鎖状のものが好ましい。フッ素原子で置換されたアルキル基における炭素数は、1~10がより好ましく、1~5がさらに好ましく、1~3がより好ましい。フッ素原子で置換されたアルキル基は、末端の構造が(-CF3)であることが好ましい。フッ素原子で置換されたアルキル基は、フッ素原子の置換率が、50~100%であることが好ましく、80~100%であることがさらに好ましい。ここで、フッ素原子の置換率とは、フッ素原子で置換されたアルキル基において、水素原子がフッ素原子に置換されている比率(%)のことをいう。
 特に、ハロゲン化アルキル基としては、ペルフルオロアルキル基がより好ましく、炭素数1~10のペルフルオロアルキル基がさらに好ましい。
 -Si-(ORN223において、RN22は炭素数1~3のアルキル基またはフェニル基であり、nは1~3の整数である。
 具体的に、上記一般式(10)中、L1が、アリーレン基と-O-との組み合わせからなる基である場合、アリーレン基が有していてもよい置換基としては、アルキル基が好ましい。
 上記一般式(10)中のL1で表される構造の具体例の中でも、下記構造が好ましい。
Figure JPOXMLDOC01-appb-C000030
 上記一般式(10)中、X1およびX2は、上記モノアニオン性配位部位を表し、より具体的には、カルボキシル基、リン酸ジエステル基、ホスホン酸モノエステル基、ホスフィン酸基、スルホ基およびヒドロキシル基等が挙げられる。
 上記一般式(10)中、X1およびX2は、互いに同一モノアニオン性配位部位を有していてもよいし、互いに異なるモノアニオン性配位部位を有していてもよい。
 上記一般式(10)中、X1およびX2は、下記一般式(12)、(13)または(13A)で表される構造が好ましい。
Figure JPOXMLDOC01-appb-C000031
(一般式(12)中、R1はアルキル基、アルケニル基、アリール基、アラルキル基を表す。A1およびA2は、各々独立に、酸素原子、硫黄原子または単結合を表す。一般式(12)、(13)および(13A)中、*は上記L1への連結部を表す。)
 一般式(12)中、R1はアルキル基、アルケニル基、アリール基、アラルキル基を表す。
 アルキル基としては、鎖状、分枝状、環状のいずれであってもよい。直鎖状または分岐状のアルキル基としては、置換または無置換の炭素数1~20のアルキル基が好ましく、置換または無置換の炭素数1~15のアルキル基がより好ましく、置換または無置換の炭素数1~6のアルキル基がより好ましい。環状のアルキル基は、単環、多環のいずれであってもよい。環状のアルキル基としては、置換または無置換の炭素数3~20のシクロアルキル基が好ましく、置換または無置換の炭素数4~10のシクロアルキル基がより好ましく、無置換の炭素数4~8のシクロアルキル基が特に好ましい。
 アルケニル基としては、置換または無置換の炭素数2~10のアルケニル基が好ましく、置換または無置換の炭素数2~8のアルケニル基がより好ましい。
 アリール基としては、置換または無置換の炭素数6~18のアリール基が好ましく、置換または無置換の炭素数6~14のアリール基がより好ましい。具体的には、フェニル基、ナフチル基などが例示される。
 アラルキル基としては、置換または無置換の炭素数7~20のアラルキル基が好ましく、置換または無置換の炭素数7~16のアラルキル基がより好ましい。
 上記一般式(12)中のR1が有していてもよい置換基としては、上記一般式(10)中のL1が有していてもよい置換基と同義であり、アルキル基、アリール基、エーテル基、-Si-(ORN223などが好ましい。
 上記一般式(12)中、A1およびA2は、各々独立に、酸素原子、硫黄原子または単結合を表す。特に、A1およびA2は、本発明の組成物の耐熱性をより向上させる観点から、単結合であることが好ましい。
 上記一般式(12)中のR1で表される構造の具体例の中でも、下記構造が好ましい。
Figure JPOXMLDOC01-appb-C000032
(高分子タイプ)
 配位部位を含む重合体と銅成分との反応で得られる銅化合物は、例えば、酸基や酸基の塩などのアニオンで配位する配位部位、および、非共有電子対で配位する配位原子から選ばれる1種以上を有する重合体と、銅イオンを含むポリマータイプの銅化合物が挙げられる。好ましくは、酸基または酸基の塩である酸基イオン部位を含む重合体および銅イオンを含むポリマータイプの銅化合物であり、より好ましい態様は、重合体中の酸基イオン部位を配位子とするポリマータイプの銅化合物である。このポリマータイプの銅化合物は、通常、重合体の側鎖に酸基イオン部位等の配位部位を有し、酸基イオン部位等の配位部位が銅に結合(例えば、配位結合)し、銅を起点として、側鎖間に架橋構造を形成している。ポリマータイプの銅錯体としては、主鎖に炭素-炭素結合を有する重合体の銅錯体、主鎖に炭素-炭素結合を有する重合体の銅錯体であって、フッ素原子を含む銅錯体、主鎖に芳香族炭化水素基及び/又は芳香族ヘテロ環基を有する重合体(以下、芳香族基含有重合体という。)の銅錯体等が挙げられる。
 銅成分としては、2価の銅を含む化合物が好ましい。銅成分中の銅含有量は、好ましくは2~40質量%であり、より好ましくは5~40質量%である。銅成分は、1種のみを用いてもよいし、2種以上を用いてもよい。銅を含む化合物としては、例えば、酸化銅や銅塩を用いることができる。銅塩は、2価の銅がより好ましい。銅塩としては、水酸化銅、酢酸銅および硫酸銅が特に好ましい。
 酸基としては、上述した銅成分と反応可能なものであれば特に限定されないが、銅成分と配位結合するものが好ましい。具体的には、酸解離定数(pKa)が12以下の酸基が挙げられ、スルホン酸基、カルボン酸基、リン酸基、ホスホン酸基、ホスフィン酸基、イミド酸基等が好ましい。酸基は、1種のみでもよいし、2種以上でもよい。
 本発明で用いられる酸基の塩を構成する原子または原子団としては、ナトリウム等の金属原子(特にアルカリ金属原子)、テトラブチルアンモニウム等のような原子団が挙げられる。尚、酸基またはその塩を含む重合体において、酸基またはその塩は、その主鎖および側鎖の少なくとも一方に含まれていればよく、少なくとも側鎖に含まれていることが好ましい。
 酸基またはその塩を含む重合体は、カルボン酸基またはその塩、および/または、スルホン酸基またはその塩を含む重合体が好ましく、スルホン酸基またはその塩を含む重合体がより好ましい。
 アニオンで配位する配位部位としては、上述した化合物(A)で説明したものが挙げられる。
<<<第1の酸基またはその塩を含む重合体>>>
 酸基またはその塩を含む重合体の好ましい一例は、主鎖が炭素-炭素結合を有する構造であり、下記式(A1-1)で表される構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000033
(式(A1-1)中、R1は水素原子またはメチル基を表し、L1は単結合または2価の連結基を表し、M1は水素原子、または、スルホン酸基と塩を構成する原子もしくは原子団を表す。)
 上記式(A1-1)中、R1は水素原子であることが好ましい。
 上記式(A1-1)中、L1が2価の連結基を表す場合、2価の連結基としては、特に限定されないが、例えば、2価の炭化水素基、ヘテロアリーレン基、-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NX-(Xは水素原子あるいはアルキル基を表し、水素原子が好ましい)、または、これらの組み合わせからなる基が挙げられる。
 2価の炭化水素基としては、直鎖状、分岐状または環状のアルキレン基や、アリーレン基が挙げられる。炭化水素基は、置換基を有していてもよいが、無置換であることが好ましい。
 直鎖状のアルキレン基の炭素数としては、1~30が好ましく、1~15がより好ましく、1~6がさらに好ましい。また、分岐状のアルキレン基の炭素数としては、3~30が好ましく、3~15がより好ましく、3~6がさらに好ましい。
 環状のアルキレン基は、単環、多環のいずれであってもよい。環状のアルキレン基の炭素数としては、3~20が好ましく、4~10がより好ましく、6~10がさらに好ましい。
 アリーレン基の炭素数としては、6~18が好ましく、6~14がより好ましく、6~10がさらに好ましく、フェニレン基が特に好ましい。
 ヘテロアリーレン基としては、特に限定されないが、5員環または6員環が好ましい。また、ヘテロアリーレン基は、単環でも縮合環であってもよく、単環または縮合数が2~8の縮合環が好ましく、単環または縮合数が2~4の縮合環がより好ましい。
 上記式(A1-1)中、M1で表されるスルホン酸基と塩を構成する原子または原子団は、上述した酸基の塩を構成する原子または原子団と同義であり、水素原子またはアルカリ金属原子であることが好ましい。
 式(A1-1)で表される構成単位以外の他の構成単位としては、特開2010-106268号公報の段落番号0068~0075(対応する米国特許出願公開第2011/0124824号明細書の[0112]~[0118])に開示の共重合成分の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 好ましい他の構成単位としては、下記式(A1-2)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000034
 式(A1-2)中、R3は水素原子またはメチル基を表し、水素原子であることが好ましい。
 Y2は単結合または2価の連結基を表し、2価の連結基としては、上述した上記式(A1)の2価の連結基と同義である。特に、Y2としては、-COO-、-CO-、-NH-、直鎖状または分岐状のアルキレン基、またはこれらの組み合わせからなる基か、単結合であることが好ましい。
 式(A1-2)中、X2は、-PO3H、-PO32、-OHまたはCOOHを表し、-COOHであることが好ましい。
 上記重合体(A1-1)が、他の構成単位(好ましくは上記式(A1-2)で表される構成単位)を含む場合、上記式(A1-1)で表される構成単位と上記式(A1-2)で表される構成単位のモル比は、95:5~20:80であることが好ましく、90:10~40:60であることがより好ましい。
<<<第2の酸基またはその塩を含む重合体>>>
 本発明で用いることができる銅化合物としては、酸基またはその塩を有し、かつ、主鎖に芳香族炭化水素基および/または芳香族ヘテロ環基を有する重合体(以下、芳香族基含有重合体という。)と、銅成分との反応で得られるポリマータイプの銅化合物を用いてもよい。芳香族基含有重合体は、主鎖に、芳香族炭化水素基および芳香族ヘテロ環基のうち少なくとも1種を有していればよく、2種以上有していてもよい。酸基またはその塩および銅成分については、上述した酸基またはその塩を含む重合体と銅成分との反応で得られる銅化合物と同義であり、好ましい範囲も同様である。
 芳香族炭化水素基としては、例えば、アリール基が好ましい。アリール基の炭素数は、6~20が好ましく、6~15がより好ましく、6~12がさらに好ましい。特に、フェニル基、ナフチル基またはビフェニル基が好ましい。芳香族炭化水素基は単環または多環であってもよいが、単環が好ましい。
 芳香族ヘテロ環基としては、例えば、炭素数2~30の芳香族ヘテロ環基を用いることができる。芳香族ヘテロ環基は、5員環または6員環が好ましい。また、芳香族ヘテロ環基は、単環または縮合環であり、単環または縮合数が2~8の縮合環が例示される。ヘテロ環に含まれるヘテロ原子としては、窒素、酸素、硫黄原子が例示され、窒素または酸素が好ましい。
 芳香族炭化水素基および/または芳香族ヘテロ環基が置換基Tを有していている場合、置換基Tとしては、例えば、アルキル基、重合性基(好ましくは、炭素-炭素二重結合を含む重合性基)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、カルボン酸エステル基、ハロゲン化アルキル基、アルコキシ基、メタクリロイルオキシ基、アクリロイルオキシ基、エーテル基、スルホニル基、スルフィド基、アミド基、アシル基、ヒドロキシ基、カルボキシル基、アラルキル基などが例示され、アルキル基(特に炭素数1~3のアルキル基)が好ましい。
 特に、芳香族基含有重合体は、ポリエーテルスルホン系重合体、ポリスルホン系重合体、ポリエーテルケトン系重合体、ポリフェニレンエーテル系重合体、ポリイミド系重合体、ポリベンズイミダゾール系重合体、ポリフェニレン系重合体、フェノール樹脂系重合体、ポリカーボネート系重合体、ポリアミド系重合体およびポリエステル系重合体から選択される少なくとも1種の重合体であることが好ましい。以下に各重合体の例を示す。
 ポリエーテルスルホン系重合体:(-O-Ph-SO2-Ph-)で表される主鎖構造(Phはフェニレン基を示す、以下同じ)を有する重合体
 ポリスルホン系重合体:(-O-Ph-Ph-O-Ph-SO2-Ph-)で表される主鎖構造を有する重合体
 ポリエーテルケトン系重合体:(-O-Ph-O-Ph-C(=O)-Ph-)で表される主鎖構造を有する重合体
 ポリフェニレンエーテル系重合体:(-Ph-O-、-Ph-S-)で表される主鎖構造を有する重合体
 ポリフェニレン系重合体:(-Ph-)で表される主鎖構造を有する重合体
 フェノール樹脂系重合体:(-Ph(OH)-CH2-)で表される主鎖構造を有する重合体
 ポリカーボネート系重合体:(-Ph-O-C(=O)-O-)で表される主鎖構造を有する重合体
 ポリアミド系重合体としては、例えば、(-Ph-C(=O)-NH-)で表される主鎖構造を有する重合体
 ポリエステル系重合体としては、例えば、(-Ph-C(=O)O-)で表される主鎖構造を有する重合体
 ポリエーテルスルホン系重合体、ポリスルホン系重合体およびポリエーテルケトン系重合体としては、例えば、特開2006-310068号公報の段落0022および特開2008-27890号公報の段落0028に記載の主鎖構造を参酌でき、これらの内容は本願明細書に組み込まれる。
 ポリイミド系重合体としては、特開2002-367627号公報の段落0047~0058の記載および特開2004-35891号公報の0018~0019に記載の主鎖構造を参酌でき、これらの内容は本願明細書に組み込まれる。
 芳香族基含有重合体の好ましい一例は、下記式(A1-3)で表される構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000035
(式(A1-3)中、Ar1は芳香族炭化水素基および/または芳香族ヘテロ環基を表し、Y1は単結合または2価の連結基を表し、X1は酸基またはその塩を表す。)
 式(A1-3)中、Ar1が芳香族炭化水素基を表す場合、上述した芳香族炭化水素基と同義であり、好ましい範囲も同様である。Ar1が芳香族ヘテロ環基を表す場合、上述した芳香族ヘテロ環基と同義であり、好ましい範囲も同様である。
 Ar1は、上記式(A1-3)中の-Y1-X1の他に置換基を有していてもよい。Ar1が置換基を有する場合、置換基としては上述した置換基Tと同義であり、好ましい範囲も同様である。
 式(A1-3)中、Y1は、単結合であることが好ましい。Y1が2価の連結基を表す場合、2価の連結基としては、例えば、炭化水素基、芳香族ヘテロ環基、-O-、-S-、-SO2-、-CO-、-C(=O)O-、-O-C(=O)-、-SO2-、-NX-(Xは水素原子またはアルキル基を表し、水素原子が好ましい)、-C(RY1)(RY2)-、または、これらの組み合わせからなる基が挙げられる。ここで、RY1およびRY2は、それぞれ独立して水素原子、フッ素原子またはアルキル基を表す。
 炭化水素基としては、例えば、直鎖状、分岐状または環状のアルキレン基や、アリーレン基が挙げられる。直鎖状のアルキレン基の炭素数としては、1~20が好ましく、1~10がより好ましく、1~6がさらに好ましい。分岐状のアルキレン基の炭素数としては、3~20が好ましく、3~10がより好ましく、3~6がさらに好ましい。環状のアルキレン基は、単環、多環のいずれであってもよい。環状のアルキレン基の炭素数としては、3~20が好ましく、4~10がより好ましく、6~10がさらに好ましい。これら直鎖状、分岐状または環状のアルキレン基は、アルキレン基中の水素原子がフッ素原子で置換されていてもよい。
 アリーレン基は、上述した式(A1-1)の2価の連結基がアリーレン基である場合と同義である。
 芳香族ヘテロ環基としては、特に限定されないが、5員環または6員環が好ましい。また、芳香族ヘテロ環基は、単環でも縮合環であってもよく、単環または縮合数が2~8の縮合環が好ましく、単環または縮合数が2~4の縮合環がより好ましい。
 式(A1-3)中、X1で表される酸基またはその塩としては、上述した酸基またはその塩と同義であり、好ましい範囲も同様である。
 上記重合体(A1)の重量平均分子量は、1000以上が好ましく、1000~1000万がより好ましく、3000~100万がさらに好ましく、4000~400,000が特に好ましい。
 上記式(A1-1)、式(A1-2)及び式(A1-3)で表される構成単位を含む重合体の具体例としては、下記に記載の化合物および下記化合物の塩が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000036
(無機微粒子)
 本発明の組成物は、目的の近赤外線遮蔽性を得るために、無機微粒子を含んでいてもよい。無機微粒子は、1種のみを用いてもよいし、2種以上を用いてもよい。
 無機微粒子は、主に、赤外線を遮光(吸収)する役割を果たす粒子である。無機微粒子としては、赤外線遮光性がより優れる点で、金属酸化物粒子および金属粒子からなる群から選択される少なくとも1つであることが好ましい。
 無機微粒子としては、例えば、酸化インジウムスズ(ITO)粒子、酸化アンチモンスズ(ATO)粒子、アルミニウムによりドープされていてもよい酸化亜鉛(AlによりドープされてもよいZnO)粒子、フッ素ドープ二酸化スズ(FドープSnO2)粒子、またはニオブドープ二酸化チタン(NbドープTiO2)粒子などの金属酸化物粒子や、銀(Ag)粒子、金(Au)粒子、銅(Cu)粒子、またはニッケル(Ni)粒子などの金属粒子が挙げられる。なお、赤外線遮光性とフォトリソ性とを両立するためには、露光波長(365-405nm)の透過率が高い方が望ましく、酸化インジウムスズ(ITO)粒子または酸化アンチモンスズ(ATO)粒子が好ましい。
 無機微粒子の形状は特に制限されず、球状、非球状を問わず、シート状、ワイヤー状、チューブ状であってもよい。
 また無機微粒子としては酸化タングステン系化合物が使用でき、具体的には、下記一般式(組成式)(I)で表される酸化タングステン系化合物であることがより好ましい。
 Mxyz・・・(I)
 Mは金属、Wはタングステン、Oは酸素を表す。
 0.001≦x/y≦1.1
 2.2≦z/y≦3.0
 Mの金属としては、アルカリ金属、アルカリ土類金属、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Sn、Pb、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Biが挙げられるが、アルカリ金属であることが好ましく、RbまたはCsであることが好ましく、Csであることがより好ましい。Mの金属は1種でも2種以上でも良い。
 x/yが0.001以上であることにより、赤外線を十分に遮蔽することができ、1.1以下であることにより、酸化タングステン系化合物中に不純物相が生成されることをより確実に回避することできる。
 z/yが2.2以上であることにより、材料としての化学的安定性をより向上させることができ、3.0以下であることにより赤外線を十分に遮蔽することができる。
 金属酸化物は、セシウム酸化タングステンであることが好ましい。
 上記一般式(I)で表される酸化タングステン系化合物の具体例としては、Cs0.33WO3、Rb0.33WO3、K0.33WO3、Ba0.33WO3などを挙げることができ、Cs0.33WO3またはRb0.33WO3であることが好ましく、Cs0.33WO3であることが更に好ましい。
 金属酸化物は微粒子であることが好ましい。金属酸化物の平均粒子径は、800nm以下であることが好ましく、400nm以下であることがより好ましく、200nm以下であることが更に好ましい。平均粒子径がこのような範囲であることによって、金属酸化物が光散乱によって可視光を遮断しにくくなることから、可視光領域における透光性をより確実にすることができる。光酸乱を回避する観点からは、平均粒子径は小さいほど好ましいが、製造時における取り扱い容易性などの理由から、金属酸化物の平均粒子径は、通常、1nm以上である。
 酸化タングステン系化合物は、例えば、住友金属鉱山株式会社製のYMF-02などのタングステン微粒子の分散物として入手可能である。
 金属酸化物の含有量は、金属酸化物を含有する組成物の全固形分質量に対して、0.01~30質量%であることが好ましく、0.1~20質量%であることがより好ましく、1~10質量%であることがさらに好ましい。
 本発明の組成物は、他の近赤外線吸収性化合物として、特開2013-195480号公報の段落0013~0029に記載のフタロシアニン化合物を用いることもでき、この内容は本願明細書に組み込まれる。
<溶剤>
 本発明の組成物は、溶剤を含んでいてもよい。
 本発明で用いられる溶剤は、特に制限はなく、本発明の組成物の各成分を均一に溶解或いは分散しうるものであれば、目的に応じて適宜選択することができ、例えば、水、有機溶剤を用いることができる。本発明の組成物は、上述した化合物(A)を用いているため、溶剤として有機溶剤を用いた場合であっても、分光特性への影響を少なくすることができる。
 溶剤としては、例えば、アルコール類、ケトン類、エステル類、芳香族炭化水素類、ハロゲン化炭化水素類、およびジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホラン等が好適に挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。この場合、特に好ましくは、上記の3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテル、およびプロピレングリコールモノメチルエーテルアセテートから選択される2種以上で構成される混合溶液である。
 アルコール類、芳香族炭化水素類、ハロゲン化炭化水素類の具体例としては、特開2012-194534号公報段落0136等に記載のものが挙げられ、この内容は本願明細書に組み込まれる。また、エステル類、ケトン類、エーテル類の具体例としては、特開2012-208494号公報段落0497(対応する米国特許出願公開第2012/0235099号明細書の[0609])に記載のものが挙げられ、さらに、酢酸-n-アミル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、硫酸メチル、アセトン、メチルイソブチルケトン、ジエチルエーテル、エチレングリコールモノブチルエーテルアセテートなどが挙げられる。
 溶剤は、本発明の組成物に対し10~90質量%の割合で含まれることが好ましく、20~80質量%含まれることがより好ましく、30~70質量%含まれることが特に好ましい。溶剤は1種類のみでも、2種類以上でもよく、2種類以上の場合は、合計量が上記範囲となる。
<硬化性化合物>
 本発明の組成物は、硬化性化合物を含んでいてもよい。硬化性化合物は、重合性化合物であってもよいし、バインダー等の非重合性化合物であってもよい。また、熱硬化性化合物であってもよいし、光硬化性化合物であってもよいが、熱硬化性組成物の方が反応率が高いため好ましい。
<重合性基を有する化合物>
 本発明の組成物は、重合性基を有する化合物(以下、「重合性化合物」ということがある)を含むことが好ましい。このような化合物群は当該産業分野において広く知られているものであり、本発明においてはこれらを特に限定なく用いることができる。これらは、例えば、モノマー、オリゴマー、プレポリマー、ポリマーなどの化学的形態のいずれであってもよい。
 重合性化合物は、単官能であっても多官能であってもよいが、好ましくは、多官能である。多官能化合物を含むことにより、近赤外線遮蔽性および耐熱性をより向上させることができる。官能基の数は特に定めるものではないが、2~8官能が好ましく、3~6官能がさらに好ましい。
 本発明の組成物に上記銅錯体とともに硬化性化合物が含有される場合、硬化性化合物の好ましい形態としては下記のものが挙げられる。本発明は、以下の形態に限定されるものではない。硬化性化合物としては、単官能の(メタ)アクリレート、多官能の(メタ)アクリレート(好ましくは3~6官能の(メタ)アクリレート)、多塩基酸変性アクリルオリゴマー、エポキシ樹脂、または多官能のエポキシ樹脂が挙げられる。
<<重合性モノマーおよび重合性オリゴマー>>
 本発明の組成物の第一の好ましい実施態様は、重合性化合物として、重合性基を有するモノマー(重合性モノマー)または重合性基を有するオリゴマー(重合性オリゴマー)(以下、重合性モノマーと重合性オリゴマーを合わせて「重合性モノマー等」ということがある。)を含む。
 重合性モノマー等の例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)やそのエステル類、アミド類が挙げられ、好ましくは、不飽和カルボン酸と脂肪族多価アルコール化合物とのエステル、および不飽和カルボン酸と脂肪族多価アミン化合物とのアミド類である。また、ヒドロキシル基やアミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能イソシアネート類或いはエポキシ類との付加反応物や、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物、更に、ハロゲン基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。
 これらの具体的な化合物としては、特開2009-288705号公報の段落番号0095~段落番号0108に記載されている化合物を本発明においても好適に用いることができる。
 また、上記重合性モノマー等は、少なくとも1個の付加重合可能なエチレン基を有する、常圧下で100℃以上の沸点を持つエチレン性不飽和基を持つ化合物も好ましく、単官能(メタ)アクリレート、2官能(メタ)アクリレート、3官能以上の(メタ)アクリレート(例えば、3~6官能の(メタ)アクリレート)が好ましい。
 その例としては、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、等の単官能のアクリレートやメタアクリレート;
 ポリエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイロキシエチル)イソシアヌレート、グリセリンやトリメチロールエタン等の多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後(メタ)アクリレート化したもの、
 特公昭48-41708号、特公昭50-6034号、特開昭51-37193号各公報に記載されているようなウレタン(メタ)アクリレート類、特開昭48-64183号、特公昭49-43191号、特公昭52-30490号各公報に記載されているポリエステルアクリレート類、エポキシポリマーと(メタ)アクリル酸との反応生成物であるエポキシアクリレート類等の多官能のアクリレートやメタアクリレートおよびこれらの混合物を挙げることができる。
 中でも、重合性化合物としては、エチレンオキシ変性ペンタエリスリトールテトラアクリレート(市販品としてはNKエステルATM-35E;新中村化学社製)、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬株式会社製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬株式会社製)ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬株式会社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA ;日本化薬株式会社製)、およびこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介している構造が好ましい。またこれらのオリゴマータイプも使用できる。
 多官能カルボン酸にグリシジル(メタ)アクリレート等の環状エーテル基とエチレン性不飽和基を有する化合物を反応させ得られる多官能(メタ)アクリレートなども挙げることができる。
 また、その他の好ましい重合性モノマー等として、特開2010-160418、特開2010-129825、特許4364216等に記載される、フルオレン環を有し、エチレン性重合性基を2官能以上有する化合物、カルドポリマーも使用することが可能である。
 また、常圧下で100℃以上の沸点を有し、少なくとも一つの付加重合可能なエチレン性不飽和基を持つ化合物としては、特開2008-292970号公報の段落番号[0254]~[0257]に記載の化合物も好適である。
 また、特開平10-62986号公報において一般式(1)および(2)としてその具体例と共に記載の、上記多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後に(メタ)アクリレート化した化合物も、重合性モノマーとして用いることができる。
 本発明で用いる重合性モノマーは、さらに、下記一般式(MO-1)~(MO-6)で表される重合性モノマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000037
(式中、nは、それぞれ、0~14であり、mは、それぞれ、1~8である。一分子内に複数存在するR、TおよびZは、それぞれ、同一であっても、異なっていてもよい。Tがオキシアルキレン基の場合には、炭素原子側の末端がRに結合する。Rのうち少なくとも1つは、重合性基である。)
 nは0~5が好ましく、1~3がより好ましい。
 mは1~5が好ましく、1~3がより好ましい。
 Rは、以下の4つの構造が好ましい。
Figure JPOXMLDOC01-appb-C000038
 Rは、上記4つの構造のうち以下の2つの構造が好ましい。
Figure JPOXMLDOC01-appb-C000039
 上記一般式(MO-1)~(MO-6)で表される、ラジカル重合性モノマーの具体例としては、特開2007-269779号公報の段落番号0248~段落番号0251に記載されている化合物を本発明においても好適に用いることができる。
 中でも、重合性モノマー等としては、特開2012-208494号公報段落0477(対応する米国特許出願公開第2012/0235099号明細書の[0585])に記載の重合性モノマー等が挙げられ、これらの内容は本願明細書に組み込まれる。また、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としては M-460;東亜合成製)が好ましい。ペンタエリスリトールテトラアクリレート(新中村化学製、A-TMMT)、1,6-ヘキサンジオールジアクリレート(日本化薬社製、KAYARAD HDDA)も好ましい。これらのオリゴマータイプも使用できる。
 例えば、RP-1040(日本化薬株式会社製)などが挙げられる。
 重合性モノマー等としては、多官能モノマーであって、カルボキシル基、スルホン酸基、リン酸基等の酸基を有していてもよい。従って、エチレン性化合物が、上記のように混合物である場合のように未反応のカルボキシル基を有するものであれば、これをそのまま利用することができるが、必要において、上述のエチレン性化合物のヒドロキシル基に非芳香族カルボン酸無水物を反応させて酸基を導入しても良い。この場合、使用される非芳香族カルボン酸無水物の具体例としては、無水テトラヒドロフタル酸、アルキル化無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、アルキル化無水ヘキサヒドロフタル酸、無水コハク酸、無水マレイン酸が挙げられる。
 本発明において、酸基を有するモノマーとしては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルであり、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に非芳香族カルボン酸無水物を反応させて酸基を持たせた多官能モノマーが好ましく、特に好ましくは、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトールおよび/またはジペンタエリスリトールであるものである。市販品としては、例えば、東亞合成株式会社製の多塩基酸変性アクリルオリゴマーとして、アロニックスシリーズのM-305、M-510、M-520などが挙げられる。
 酸基を有する多官能モノマーの好ましい酸価としては、0.1~40mg-KOH/gであり、特に好ましくは5~30mg-KOH/gである。異なる酸基の多官能モノマーを2種以上併用する場合、或いは酸基を有しない多官能モノマーを併用する場合、全体の多官能モノマーとしての酸価が上記範囲に入るように調製する。
 また、重合性モノマー等として、カプロラクトン変性構造を有する多官能性単量体を含有することが好ましい。
 カプロラクトン変性構造を有する多官能性単量体としては、その分子内にカプロラクトン変性構造を有する限り特に限定されるものではない。例えば、カプロラクトン変性構造を有する多官能性単量体としては、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、トリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸およびε-カプロラクトンをエステル化することにより得られる、ε-カプロラクトン変性多官能(メタ)アクリレートを挙げることができる。なかでも下記式(20)で表されるカプロラクトン変性構造を有する多官能性単量体が好ましい。
式(20)
Figure JPOXMLDOC01-appb-C000040
(式中、6個のRは全てが下記式(21)で表される基であるか、または6個のRのうち1~5個が下記式(21)で表される基であり、残余が下記式(22)で表される基である。)
式(21)
Figure JPOXMLDOC01-appb-C000041
(式中、R1は水素原子またはメチル基を示し、mは1または2の数を示し、「*」は結合手であることを示す。)
式(22)
Figure JPOXMLDOC01-appb-C000042
(式中、R1は水素原子またはメチル基を示し、「*」は結合手であることを示す。)
 このようなカプロラクトン変性構造を有する多官能性単量体は、例えば、日本化薬(株)からKAYARAD DPCAシリーズとして市販されており、DPCA-20(上記式(20)~(22)においてm=1、式(21)で表される基の数=2、R1が全て水素原子である化合物)、DPCA-30(同式、m=1、式(21)で表される基の数=3、R1が全て水素原子である化合物)、DPCA-60(同式、m=1、式(21)で表される基の数=6、R1が全て水素原子である化合物)、DPCA-120(同式においてm=2、式(21)で表される基の数=6、R1が全て水素原子である化合物)等を挙げることができる。
 本発明において、カプロラクトン変性構造を有する多官能性単量体は、単独でまたは2種以上を混合して使用することができる。
重合性モノマー等の市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、日本化薬株式会社製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330などが挙げられる。
<<エポキシ基またはオキセタニル基を有する化合物>>
 本発明の第三の好ましい態様は、重合性化合物として、エポキシ基またはオキセタニル基を有する化合物を含む態様である。エポキシ基またはオキセタニル基を有する化合物としては、具体的には側鎖にエポキシ基を有するポリマー、および分子内に2個以上のエポキシ基を有する重合性モノマーまたはオリゴマーがあり、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂肪族エポキシ樹脂等を挙げることができる。また単官能または多官能グリシジルエーテル化合物も挙げられ、多官能脂肪族グリシジルエーテル化合物が好ましい。
 これらの化合物は、市販品を用いてもよいし、ポリマーの側鎖へエポキシ基を導入することによっても得られる。
 市販品としては、例えば、特開2012-155288号公報段落0191等の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 また、市販品としては、デナコール EX-212L、EX-214L、EX-216L、EX-321L、EX-850L(以上、ナガセケムテックス(株)製)等の多官能脂肪族グリシジルエーテル化合物が挙げられる。これらは、低塩素品であるが、低塩素品ではない、EX-212、EX-214、EX-216、EX-321、EX-850なども同様に使用できる。
 その他にも、ADEKA RESIN EP-4000S、同EP-4003S、同EP-4010S、同EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)、JER1031S等も挙げられる。
 さらに、フェノールノボラック型エポキシ樹脂の市販品として、JER-157S65、JER-152、JER-154、JER-157S70、(以上、三菱化学(株)製)等が挙げられる。
 側鎖にオキセタニル基を有するポリマー、および上述の分子内に2個以上のオキセタニル基を有する重合性モノマーまたはオリゴマーの具体例としては、アロンオキセタンOXT-121、OXT-221、OX-SQ、PNOX(以上、東亞合成(株)製)を用いることができる。
分子量は重量平均で500~5000000、更には1000~500000の範囲が好ましい。
 エポキシ不飽和化合物としてはグリシジル(メタ)アクリレートやアリルグリシジルエーテル等のエポキシ基としてグリシジル基を有するものも使用可能であるが、好ましいものは脂環式エポキシ基を有する不飽和化合物である。このようなものとしては例えば特開2009-265518号公報段落0045等の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 本発明の組成物は、不飽和二重結合、エポキシ基またはオキセタニル基などの架橋基を有する重合体を含んでいてもよい。具体的には、下記の繰り返し単位を有する重合体(共重合体)が挙げられる。下記繰り返し単位を有する重合体としては、エポキシ基を有する重合体が好ましい。
Figure JPOXMLDOC01-appb-C000043
<<式(30)で示される部分構造を有する化合物>>
 本発明で用いる硬化性化合物は、下記式(30)で示される部分構造を有していてもよい。この硬化性化合物が不飽和二重結合、エポキシ基またはオキセタニル基などの架橋基を有していてもよい。
Figure JPOXMLDOC01-appb-C000044
(式(30)中、R1は水素原子または有機基を表す。)
 式(30)中、R1は水素原子または有機基を表す。有機基としては、炭化水素基、具体的には、アルキル基またはアリール基が挙げられ、炭素数が1~20のアルキル基、炭素数が6~20のアリール基、またはこれらの基と二価の連結基との組み合わせからなるものが好ましい。
 このような有機基の具体例としては、-OR’、-SR’、またはこれらの基と-(CH2m-(mは1~10の整数)、炭素数5~10の環状のアルキレン基、-O-、-CO-、-COO-および-NH-の少なくとも1つとの組み合わせからなるものが好ましい。ここで、R’は、水素原子、炭素数が1~10の直鎖、炭素数が3~10の分岐または環状のアルキル基(好ましくは炭素数1~7の直鎖、炭素数3~7の分岐または環状のアルキル基)、炭素数が6~10のアリール基、または、炭素数が6~10のアリール基と炭素数が1~10のアルキレン基との組み合わせからなる基が好ましい。
 また、上記式(30)中、R1とCとが結合して環構造(ヘテロ環構造)を形成していてもよい。ヘテロ環構造中におけるヘテロ原子は、上記式(30)中の窒素原子である。ヘテロ環構造は、5または6員環構造が好ましく、5員環構造がより好ましい。ヘテロ環構造は、縮合環であってもよいが、単環が好ましい。
 特に好ましいR1の具体例としては、水素原子、炭素数1~3のアルキル基、-OR’(R’は炭素数が1~5の直鎖のアルキル基)と-(CH2m-(mは1~10の整数、好ましくはmは1~5の整数)との組み合わせからなる基、上記式(30)中のR1とCとが結合してヘテロ環構造(好ましくは5員環構造)を形成した基が挙げられる。
 上記式(30)で示される部分構造を有する化合物は、(重合体の主鎖構造-上記(30)の部分構造-R1)で表されるか、(A-上記(30)の部分構造-B)で表されることが好ましい。ここで、Aは、炭素数が1~10の直鎖、炭素数が3~10の分岐、または、炭素数3~10の環状のアルキル基である。また、Bは、-(CH2m-(mは1~10の整数、好ましくはmは1~5の整数)と、上記(30)の部分構造と、重合性基との組み合わせからなる基である。
 また、上記式(30)で示される部分構造を有する化合物は、下記式(1-1)~(1-5)のいずれかで表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000045
(式(1-1)中、R4は水素原子またはメチル基を表し、R5およびR6はそれぞれ独立して水素原子または有機基を表す。式(1-2)中、R7は水素原子またはメチル基を表す。式(1-3)中、L1は二価の連結基を表し、R8は水素原子または有機基を表す。式(1-4)中、L2およびL3はそれぞれ独立して二価の連結基を表し、R9およびR10はそれぞれ独立して水素原子または有機基を表す。式(1-5)中、L4は二価の連結基を表し、R11~R14はそれぞれ独立して水素原子または有機基を表す。)
 上記式(1-1)中、R5およびR6はそれぞれ独立して水素原子または有機基を表す。有機基としては、上記式(30)中のR1と同義であり、好ましい範囲も同様である。
 上記式(1-3)~(1-5)中、L1~L4は二価の連結基を表す。二価の連結基としては、-(CH2m-(mは1~10の整数)、炭素数5~10の環状のアルキレン基、-O-、-CO-、-COO-および-NH-の少なくとも1つとの組み合わせからなるものが好ましく、-(CH2m-(mは1~8の整数)であることがより好ましい。
 上記式(1-3)~(1-5)中、R8~R14はそれぞれ独立して水素原子または有機基を表す。有機基としては、炭化水素基、具体的にはアルキル基またはアルケニル基であることが好ましい。
 アルキル基は、置換されていてもよい。また、アルキル基は、鎖状、分枝状、環状のいずれであってもよいが、直鎖状または環状のものが好ましい。アルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましく、炭素数1~6のアルキル基がより好ましい。
 アルケニル基は、置換されていてもよい。アルケニル基としては、炭素数1~10のアルケニル基が好ましく、炭素数1~4のアルケニル基がより好ましく、ビニル基が特に好ましい。
 置換基としては、例えば、重合性基、ハロゲン原子、アルキル基、カルボン酸エステル基、ハロゲン化アルキル基、アルコキシ基、メタクリロイルオキシ基、アクリロイルオキシ基、エーテル基、スルホニル基、スルフィド基、アミド基、アシル基、ヒドロキシ基、カルボキシル基などが例示される。これらの置換基の中でも、重合性基(例えば、ビニル基、(メタ)アクリロイルオキシ基)、(メタ)アクリロイル基、エポキシ基、アジリジニル基など)が好ましく、ビニル基がより好ましい。)
 また、上記式(30)で示される部分構造を有する化合物は、モノマーであってもポリマーであってもよいが、ポリマーであることが好ましい。すなわち、上記式(30)で示される部分構造を有する化合物は、上記式(1-1)または上記式(1-2)で表される化合物であることが好ましい。
 また、上記式(30)で示される部分構造を有する化合物がポリマーである場合、ポリマーの側鎖に上記部分構造を含有することが好ましい。
 上記式(30)で示される部分構造を有する化合物の分子量は、好ましくは50~1000000であり、より好ましくは500~500000である。このような分子量とすることにより、本発明の効果をより効果的に達成できる。
 上記(1)で示される部分構造を有する化合物の含有量は、本発明の組成物中5~80質量%であることが好ましく、10~60質量%であることがより好ましい。
 上記式(30)で示される部分構造を有する化合物の具体例としては、下記構造を有する化合物または下記例示化合物が挙げられるが、これらに限定されるものではない。本発明では、特に、上記式(30)で示される部分構造を有する化合物がポリアクリルアミドであることが好ましい。
Figure JPOXMLDOC01-appb-C000046
 また、上記式(30)で示される部分構造を有する化合物の具体例としては、水溶性ポリマーが挙げられ、好ましい主鎖構造としては、ポリビニルピロリドン、ポリ(メタ)アクリルアミド、ポリアミド、ポリビニルピロリドン、ポリウレタン、ポリウレアが挙げられる。水溶性ポリマーは共重合体であってもよく、該共重合体はランダム共重合体であってもよい。
 ポリビニルピロリドンとしては、商品名K-30、K-85、K-90、K-30W、K-85W、K-90W(日本触媒社製)が使用できる。
 ポリ(メタ)アクリルアミドとしては、(メタ)アクリルアミドの重合体、共重合体が挙げられる。アクリルアミドの具体例としては、アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N-プロピルアクリルアミド、N-ブチルアクリルアミド、N-ベンジルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-フェニルアクリルアミド、N-トリルアクリルアミド、N-(ヒドロキシフェニル)アクリルアミド、N-(スルファモイルフェニル)アクリルアミド、N-(フェニルスルホニル)アクリルアミド、N-(トリルスルホニル)アクリルアミド、N,N-ジメチルアクリルアミド、N-メチル-N-フェニルアクリルアミド、N-ヒドロキシエチル-N-メチルアクリルアミド等が挙げられる。またこれらに対応するメタクリルアミドも同様に使用できる。
 水溶性ポリアミド樹脂は、特に、ポリアミド樹脂と親水性化合物とが共重合した化合物が挙げられる。水溶性ポリアミド樹脂の誘導体とは、例えば、水溶性ポリアミド樹脂を原料として、アミド結合(-CONH-)の水素(-原子をメトキシメチル基CH2OCH3)で置換した化合物のように、水溶性ポリアミド樹脂分子中の原子が置換されまたは付加反応により、アミド結合の構造が変化した化合物をいう。
 ポリアミド樹脂としては、例えば、ωアミノ酸の重合で合成される所謂「n-ナイロン」やジアミンとジカルボン酸の共重合で合成される所謂「n,m-ナイロン」が挙げられる。中でも、親水性付与の観点から、ジアミンとジカルボン酸の共重合体が好ましく、ε-カプロラクタムとジカルボン酸との反応生成物がより好ましい。
 親水性化合物としては、親水性含窒素環状化合物、ポリアルキレングリコール等が挙げられる。
 ここで、親水性含窒素環状化合物とは、側鎖または主鎖に第3級アミン成分を有する化合物であって、例えばアミノエチルピペラジン、ビスアミノプロピルピペラジン、α-ジメチルアミノεカプロラクタム等が挙げられる。
 一方、ポリアミド樹脂と親水性化合物とが共重合した化合物には、ポリアミド樹脂の主鎖に、例えば、親水性含窒素環状化合物およびポリアルキレングリコールからなる群より選択される少なくとも一つが共重合されているため、ポリアミド樹脂のアミド結合部の水素結合能力は、N-メトキシメチル化ナイロンに対して大きい。
 ポリアミド樹脂と親水性化合物とが共重合した化合物の中でも、1)ε-カプロラクタムと親水性含窒素環状化合物とジカルボン酸との反応生成物、および、2)ε-カプロラクタムとポリアルキレングリコールとジカルボン酸との反応生成物が好ましい。
 これらは、例えば東レファインテック(株)より「AQナイロン」という商標で市販されている。ε-カプロラクタムと親水性含窒素環状化合物とジカルボン酸との反応生成物は、東レファインテック(株)製AQナイロンA-90として入手可能であり、ε-カプロラクタムとポリアルキレングリコールとジカルボン酸との反応生成物は、東レファインテック(株)製AQナイロンP-70として入手可能である。 AQナイロンA-90 P-70 P-95 T-70(東レ社製)が使用できる。
 上述した式(30)で示される部分構造を有する繰り返し単位とエポキシ基を有する繰り返し単位を含む重合体のモル比は、10/90~90/10であることが好ましく、30/70~70/30であることがより好ましい。上記共重合体の重量平均分子量は、3,000~1,000,000であることが好ましく、5,000~200,000であることがより好ましい。
 本発明の組成物中における重合性化合物の添加量は、溶剤を除いた全固形分に対して1~90質量%、より好ましくは15~80質量%、特に好ましくは40~75質量%の範囲で添加するのが好ましい。
 また、重合性化合物として、架橋基を有する繰り返し単位を含む重合体を用いる場合、溶剤を除いた本発明の組成物の全固形分に対して10~75質量%が好ましく、20~65質量%がより好ましく、20~60質量%がさらに好ましい。
 重合性化合物は、1種類のみでも、2種類以上でもよく、2種類以上の場合は、合計量が上記範囲となる。
<バインダーポリマー>
 本発明においては、皮膜特性向上などの目的で、必要に応じて、上記重合性化合物に加えて、さらにバインダーポリマーを含むことができる。バインダーポリマーとしては、アルカリ可溶樹脂が好ましく用いられる。アルカリ可溶性樹脂を含有することにより、耐熱性などの向上や、塗布適正の微調整に効果がある。
 アルカリ可溶性樹脂としては、特開2012-208494号公報段落0558~0571(対応する米国特許出願公開第2012/0235099号明細書の[0685]~[0700])以降の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 本発明におけるバインダーポリマーの含有量は、組成物の全固形分中に対して、1~80質量%であることが好ましく、5~50質量%であることがより好ましく、7~30質量%であることがさらに好ましい。
<界面活性剤>
 本発明の組成物は、界面活性剤を含んでいてもよい。界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。界面活性剤の添加量は、本発明の組成物の固形分に対して、好ましくは0.0001~2質量%であり、より好ましくは0.005~1.0質量%であり、さらに好ましくは、0.01~0.1質量%である。
 界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。
 特に、本発明の組成物は、フッ素系界面活性剤、およびシリコーン系界面活性剤の少なくともいずれかを含有することで、塗布液として調製したときの液特性(特に、流動性)がより向上する。これによって、塗布厚の均一性や省液性がより改善する。
 即ち、フッ素系界面活性剤およびシリコーン系界面活性剤の少なくともいずれかを含有する組成物を適用した塗布液を用いて膜形成する場合においては、被塗布面と塗布液との界面張力を低下させることにより、被塗布面への濡れ性が改善され、被塗布面への塗布性が向上する。このため、少量の液量で数μm程度の薄膜を形成した場合であっても、厚みムラの小さい均一厚の膜形成をより好適に行える点で有効である。
 フッ素系界面活性剤中のフッ素含有率は、3~40質量%が好適であり、より好ましくは5~30質量%であり、特に好ましくは7~25質量%である。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性や省液性の点で効果的であり、着色感光性組成物中における溶解性も良好である。
 フッ素系界面活性剤として具体的には、特開2012-208494号公報段落0552(対応する米国特許出願公開第2012/0235099号明細書の[0678])等に記載の界面活性剤が挙げられ、これらの内容は本願明細書に組み込まれる。
 ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマー、アセチレングリコール系界面活性剤、アセチレン系ポリオキシエチレンオキシド等が挙げられる。これらは単独あるいは2種以上を用いることができる。
 具体的な商品名としては、サーフィノール61,82,104,104E、104H、104A、104BC、104DPM、104PA、104PG-50、104S、420,440,465,485,504、CT-111,CT-121,CT-131,CT-136,CT-141,CT-151,CT-171,CT-324,DF-37,DF-58,DF-75,DF-110D,DF-210,GA,OP-340,PSA-204,PSA-216,PSA-336,SE,SE-F,TG、GA、ダイノール604(以上、日信化学(株)およびAirProducts&Chemicals社)、オルフィンA,B,AK-02,CT-151W,E1004,E1010,P,SPC,STG,Y,32W、PD-001、PD-002W、PD-003、PD-004、EXP.4001、EXP.4036、EXP.4051、AF-103、AF-104、SK-14、AE-3(以上、日信化学(株))アセチレノールE00、E13T、E40、E60、E81、E100、E200(以上全て商品名、川研ファインケミカル(株)社製)等を挙げることができる。なかでも、オルフィンE1010が好適である。
 その他、ノニオン系界面活性剤として具体的には、特開2012-208494号公報段落0553(対応する米国特許出願公開第2012/0235099号明細書の[0679])等に記載のノニオン系界面活性剤が挙げられ、これらの内容は本願明細書に組み込まれる。
 カチオン系界面活性剤として具体的には、特開2012-208494号公報段落0554(対応する米国特許出願公開第2012/0235099号明細書の[0680])に記載のカチオン系界面活性剤が挙げられ、これらの内容は本願明細書に組み込まれる。
 アニオン系界面活性剤として具体的には、W004、W005、W017(裕商(株)社製)等が挙げられる。
 シリコーン系界面活性剤としては、例えば、特開2012-208494号公報段落0556(対応する米国特許出願公開第2012/0235099号明細書の[0682])等に記載のシリコーン系界面活性剤が挙げられ、これらの内容は本願明細書に組み込まれる。また、東レ・ダウコーニング(株)製「トーレシリコーンSF8410」、「同SF8427」、「同SH8400」、「ST80PA」、「ST83PA」、「ST86PA」、モメンティブ・パフォーマンス・マテリアルズ社製「TSF-400」、「TSF-401」、「TSF-410」、「TSF-4446」信越シリコーン株式会社製「KP321」、「KP323」、「KP324」、「KP340」等も例示される。
<重合開始剤>
 本発明の組成物は、重合開始剤を含んでいてもよい。重合開始剤としては、光、熱のいずれか或いはその双方により重合性化合物の重合を開始する能力を有する限り、特に制限はなく、目的に応じて適宜選択することができるが、光重合性化合物であることが好ましい。光で重合を開始させる場合、紫外線領域から可視の光線に対して感光性を有するものが好ましい。
 また、熱で重合を開始させる場合には、150~250℃で分解する重合開始剤が好ましい。
 本発明に用いうる重合開始剤としては、少なくとも芳香族基を有する化合物であることが好ましく、例えば、アシルホスフィン化合物、アセトフェノン系化合物、α-アミノケトン化合物、ベンゾフェノン系化合物、ベンゾインエーテル系化合物、ケタール誘導体化合物、チオキサントン化合物、オキシム化合物、ヘキサアリールビイミダゾール化合物、トリハロメチル化合物、アゾ化合物、有機過酸化物、ジアゾニウム化合物、ヨードニウム化合物、スルホニウム化合物、アジニウム化合物、ベンゾインエーテル系化合物、ケタール誘導体化合物、メタロセン化合物等のオニウム塩化合物、有機硼素塩化合物、ジスルホン化合物、チオール化合物などが挙げられる。
 アセトフェノン系化合物、トリハロメチル化合物、ヘキサアリールビイミダゾール化合物、オキシム化合物としては、具体的には、特開2012-208494号公報段落0506~0510(対応する米国特許出願公開第2012/0235099号明細書の[0622~0628])等の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 また、特開2007-231000公報(対応する米国特許出願公開第2011/0123929号明細書)、および、特開2007-322744公報に記載される環状オキシム化合物に対しても好適に用いることができる。
 他にも、特開2007-269779公報(対応する米国特許出願公開第2010/0104976号明細書)に示される特定置換基を有するオキシム化合物や、特開2009-191061公報(対応する米国特許出願公開第2009/023085号明細書)に示されるチオアリール基を有するオキシム化合物が挙げられる。
 特開2012-208494号公報段落0513(対応する米国特許出願公開第2012/235099号明細書の[0632])以降の式(OX-1)、(OX-2)または(OX-3)で表される化合物の説明を参酌でき、これらの内容は本願明細書に組み込まれる。
 またオキシム化合物の具体例としては、特開2009-191061公報の段落0090~0106(対応する米国特許出願公開第2009/023085号明細書の段落0393)、特開2012-032556号公報段落0054、特開2012-122045号公報段落0054等の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 光重合開始剤としては、オキシム化合物、アセトフェノン系化合物、または、アシルホスフィン化合物が好ましい。より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号公報に記載のアシルホスフィンオキシド系開始剤、および、既述のオキシム系開始剤、更にオキシム系開始剤として、特開2001-233842号公報に記載の化合物も用いることができる。
 オキシム化合物としては、市販品であるIRGACURE-OXE01(BASF社製)、IRGACURE-OXE02(BASF社製)を用いることができる。アセトフェノン系開始剤としては、市販品であるIRGACURE-907、IRGACURE-369、および、IRGACURE-379(商品名:いずれもBASFジャパン社製)を用いることができる。またアシルホスフィン系開始剤としては市販品であるIRGACURE-819やDAROCUR-TPO(商品名:いずれもBASFジャパン社製)を用いることができる。
 重合開始剤の含有量は、本発明の組成物の固形分に対して、0.01~30質量%が好ましく、0.1~20質量%がより好ましく、0.1~15質量%が特に好ましい。は1種類のみでも、2種類以上でもよく、2種類以上の場合は、合計量が上記範囲となる。
 <その他の成分>
 本発明の組成物で併用可能なその他の成分としては、例えば、分散剤、増感剤、架橋剤、硬化促進剤、フィラー、熱硬化促進剤、熱重合禁止剤、可塑剤などが挙げられ、更に基材表面への密着促進剤およびその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。
 これらの成分を適宜含有させることにより、目的とする近赤外線吸収フィルタの安定性、膜物性などの性質を調整することができる。
 これらの成分は、例えば、特開2012-003225号公報の段落番号0183~、特開2008-250074号公報の段落番号0101~0102、特開2008-250074号公報の段落番号0103~0104、特開2008-250074号公報の段落番号0107~0109、特開2013-195480号公報の段落番号0159~0184等の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
<近赤外線吸収性組成物の調製、用途>
 本発明の近赤外線吸収性組成物は、上記各成分を混合して調製できる。
 組成物の調製に際しては、組成物を構成する各成分を一括配合してもよいし、各成分を有機溶剤に溶解・分散した後に逐次配合してもよい。また、配合する際の投入順序や作業条件は特に制約を受けない。
 本発明においては、異物の除去や欠陥の低減などの目的で、フィルタでろ過することが好ましい。フィルタとしては、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ナイロン-6、ナイロン-6,6等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含む)等によるフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)およびナイロンが好ましい。
 フィルタの孔径は、0.1~7.0μmが好ましく、0.2~2.5μmがより好ましく、0.2~1.5μmが更に好ましく、0.3~0.7μmが一層好ましい。この範囲とすることにより、ろ過詰まりを抑えつつ、組成物に含まれる不純物や凝集物など、微細な異物を確実に除去することが可能となる。
 フィルタを使用する際、異なるフィルタを組み合わせても良い。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合は1回目のフィルタリングの孔径より2回目以降の孔径が同じ、もしくは大きい方が好ましい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
 第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたものを使用することができる。第2のフィルタの孔径は、0.2~10.0μmが好ましく、0.2~7.0μmがより好ましく、0.3~6.0μmが更に好ましい。この範囲とすることにより、組成物に含有されている成分粒子を残存させたまま、異物を除去することができる。
 本発明の近赤外線吸収性組成物の用途は、特に限定されないが、固体撮像素子基板の受光側における近赤外線カットフィルタ(例えば、ウエハーレベルレンズに対する近赤外線カットフィルタ)、固体撮像素子基板の裏面側(受光側とは反対側)における近赤外線カットフィルタなどを挙げることができ、固体撮像素子基板の受光側における近赤外線カットフィルタであることが好ましい。また、本発明の近赤外線吸収性組成物を、固体撮像素子用イメージセンサ上に直接塗布し塗膜形成することが好ましい。
 本発明の近赤外線吸収性組成物の粘度は、塗布により赤外線カット層を形成する場合、1mPa・s以上3000mPa・s以下の範囲にあることが好ましく、より好ましくは、10mPa・s以上2000mPa・s以下の範囲であり、さらに好ましくは、100mPa・s以上1500mPa・s以下の範囲である。
 本発明の組成物は、塗布可能な状態で供給できることから、固体撮像素子の所望の部材や位置に近赤外線カットフィルタを容易に形成できる。
 本発明の組成物の用いて得られる近赤外線カットフィルタは、光透過率が以下の(1)~(9)のうちの少なくとも1つの条件を満たすことが好ましく、以下の(1)~(8)のすべての条件を満たすことがより好ましく、(1)~(9)のすべての条件を満たすことがさらに好ましい。
(1)波長400nmでの透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(2)波長450nmでの透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(3)波長500nmでの透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(4)波長550nmでの透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(5)波長700nmでの透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(6)波長750nmでの透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(7)波長800nmでの透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(8)波長850nmでの透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(9)波長900nmでの透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
 近赤外線カットフィルタは、目的に応じて適宜選択することができるが、膜厚300μm以下とすることが好ましく、200μm以下とすることがより好ましく、100μm以下とすることがさらに好ましい。膜厚の下限は、例えば、1μm以上が好ましく、5μm以上がより好ましく、20μm以上がより好ましい。本発明の組成物によれば、高い近赤外線遮蔽性を有することから、近赤外線カットフィルタの膜厚を薄くすることができる。
 近赤外線カットフィルタは、膜厚300μm以下で、波長400~550nmの全ての範囲での可視光透過率が85%以上であることが好ましく、90%以上であることがより好ましい。また、波長700~800nmの範囲の少なくとも1点での透過率が20%以下であることが好ましく、波長700~800nmの全ての範囲での透過率が20%以下であることがさらに好ましい。本発明によれば、高透過率の可視光領域を広く確保でき、高い近赤外線遮蔽性を有する近赤外線カットフィルタを提供できる。
 近赤外線カットフィルタは、近赤外線を吸収・カットする機能を有するレンズ(デジタルカメラや携帯電話や車載カメラ等のカメラ用レンズ、f-θレンズ、ピックアップレンズ等の光学レンズ)および半導体受光素子用の光学フィルター、省エネルギー用に熱線を遮断する近赤外線吸収フィルムや近赤外線吸収板、太陽光の選択的な利用を目的とする農業用コーティング剤、近赤外線の吸収熱を利用する記録媒体、電子機器用や写真用近赤外線フィルター、保護めがね、サングラス、熱線遮断フィルム、光学文字読み取り記録、機密文書複写防止用、電子写真感光体、レーザー溶着、などに用いられる。またCCDカメラ用ノイズカットフィルター、CMOSイメージセンサ用フィルターとしても有用である。
 本発明は、固体撮像素子基板の受光側において、本発明の近赤外線吸収性組成物を適用(好ましくは滴下法、塗布、印刷)することにより膜を形成する工程、乾燥する工程を有する、近赤外線カットフィルタの製造方法にも関する。膜厚、積層構造などについては、目的に応じて適宜選択することができる。
 支持体は、ガラスなどからなる透明基板であっても、固体撮像素子基板であっても、固体撮像素子基板の受光側に設けられた別の基板であっても、固体撮像素子基板の受光側に設けられた平坦化層等の層であっても良い。
 近赤外線吸収性組成物を支持体上に適用する方法としては、浸漬、塗布や印刷が挙げられる。具体的には、滴下法(ドロップキャスト)、ディップコート、スリットコート、スクリーン印刷、スプレーコートまたはスピンコートが好ましい。滴下法(ドロップキャスト)の場合、所定の膜厚で、均一な膜が得られるように、ガラス基板上にフォトレジストを隔壁とする近赤外線吸収性組成物の滴下領域を形成することが好ましい。なお、膜厚は、組成物の滴下量および固形分濃度、滴下領域の面積を調整できる。
 また、塗膜の乾燥条件としては、各成分、溶剤の種類、使用割合等によっても異なるが、通常60℃~150℃の温度で30秒間~15分間程度である。
 本発明の近赤外線吸収性組成物を用いて近赤外線カットフィルタを形成する方法は、その他の工程を含んでいても良い。その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、基材の表面処理工程、前加熱工程(プリベーク工程)、硬化処理工程、後加熱工程(ポストベーク工程)などが挙げられる。
<前加熱工程・後加熱工程>
 前加熱工程および後加熱工程における加熱温度は、通常、80℃~200℃であり、90℃~150℃であることが好ましい。前加熱工程および後加熱工程における加熱時間は、通常、30秒~240秒であり、60秒~180秒であることが好ましい。
<硬化処理工程>
 硬化処理工程は、必要に応じ、形成された上記膜に対して硬化処理を行う工程であり、この処理を行うことにより、近赤外線カットフィルタの機械的強度が向上する。
 上記硬化処理工程としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。ここで、本発明において「露光」とは、各種波長の光のみならず、電子線、X線などの放射線照射をも包含する意味で用いられる。
 露光は放射線の照射により行うことが好ましく、露光に際して用いることができる放射線としては、特に、電子線、KrF、ArF、g線、h線、i線等の紫外線や可視光が好ましく用いられる。
 露光方式としては。ステッパー露光や、高圧水銀灯による露光などが挙げられる。
 露光量は5~3000mJ/cm2が好ましく10~2000mJ/cm2がより好ましく、50~1000mJ/cm2が特に好ましい。
 全面露光処理の方法としては、例えば、形成された上記膜の全面を露光する方法が挙げられる。近赤外線吸収性組成物が重合性化合物を含有する場合、全面露光により、上記組成物より形成される膜中の重合成分の硬化が促進され、上記膜の硬化が更に進行し、機械的強度、耐久性が改良される。
 上記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
 また、全面加熱処理の方法としては、形成された上記膜の全面を加熱する方法が挙げられる。全面加熱により、パターンの膜強度が高められる。
 全面加熱における加熱温度は、120℃~250℃が好ましく、120℃~250℃がより好ましい。該加熱温度が120℃以上であれば、加熱処理によって膜強度が向上し、250℃以下であれば、上記膜中の成分の分解が生じ、膜質が弱く脆くなることを防止できる。
 全面加熱における加熱時間は、3分~180分が好ましく、5分~120分がより好ましい。
 全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
 本発明のカメラモジュールは、固体撮像素子基板と、固体撮像素子基板の受光側に配置された近赤外線カットフィルタとを有するカメラモジュールであって、近赤外線カットフィルタは上述した近赤外線カットフィルタである。
 また、本発明のカメラモジュールの製造方法は、固体撮像素子基板と、固体撮像素子基板の受光側に配置された近赤外線カットフィルタとを有するカメラモジュールの製造方法であって、固体撮像素子基板の受光側において、上述した本発明の近赤外線吸収性組成物を塗布することにより膜を形成する工程を有する。
 図1は、本発明の実施形態に係る、固体撮像素子基板と、固体撮像素子基板の受光側に配置された近赤外線カットフィルタとを有するカメラモジュールの構成を示す概略断面図である。
 カメラモジュール10は、例えば、固体撮像素子基板11と、固体撮像素子基板の主面側(受光側)に設けられた平坦化層12と、近赤外線カットフィルタ13と、近赤外線カットフィルタの上方に配置され内部空間に撮像レンズ14を有するレンズホルダー15と、を備える。
 カメラモジュール10では、外部からの入射光hνが、撮像レンズ14、近赤外線カットフィルタ13、平坦化層12を順次透過した後、固体撮像素子基板11の撮像素子部に到達するようになっている。
 固体撮像素子基板11は、例えば、基体であるシリコン基板の主面に、撮像素子16、層間絶縁膜(図示せず)、ベース層(図示せず)、カラーフィルタ17、オーバーコート(図示せず)、マイクロレンズ18をこの順に備えている。カラーフィルタ17(赤色のカラーフィルタ、緑色のカラーフィルタ、青色のカラーフィルタ)やマイクロレンズ18は、撮像素子16に対応するように、それぞれ配置されている。
 また、平坦化層12の表面に近赤外線カットフィルタ13が設けられる代わりに、マイクロレンズ18の表面、ベース層とカラーフィルタ17との間、または、カラーフィルタ17とオーバーコートとの間に、近赤外線カットフィルタ13が設けられる形態であってもよい。例えば、近赤外線カットフィルタ13は、マイクロレンズ表面から2mm以内(より好ましくは1mm以内)の位置に設けられていてもよい。この位置に設けると、近赤外線カットフィルタを形成する工程が簡略化でき、不要な近赤外線を十分にカットすることができるので、近赤外線遮断性をより高めることができる。
 本発明の赤外線カットフィルタは、半田リフロー工程に供することができる。半田リフロー工程によりカメラモジュールを製造することによって、半田付けを行うことが必要な電子部品実装基板等の自動実装化が可能となり、半田リフロー工程を用いない場合と比較して、生産性を格段に向上することができる。更に、自動で行うことができるため、低コスト化を図ることもできる。半田リフロー工程に供される場合、250~270℃程度の温度にさらされることとなるため、近赤外線カットフィルタは、半田リフロー工程に耐え得る耐熱性(以下、「耐半田リフロー性」ともいう。)を有することが好ましい。
 本明細書中で、「耐半田リフロー性を有する」とは、200℃で10分間の加熱を行う前後で赤外線カットフィルタとしての特性を保持することをいう。より好ましくは、230℃で10分間の加熱を行う前後で特性を保持することである。更に好ましくは、250℃で3分間の加熱を行う前後で特性を保持することである。耐半田リフロー性を有しない場合には、上記条件で保持した場合に、赤外線カットフィルタの赤外線吸収能が低下したり、膜としての機能が不十分となる場合がある。
 また本発明は、リフロー処理する工程を含む、カメラモジュールの製造方法にも関する。本発明の赤外線カットフィルタは、リフロー工程があっても、近赤外線吸収能が維持されるので、小型軽量・高性能化されたカメラモジュールの特性を損なうことがない。
 図2~4は、カメラモジュールにおける固体撮像素子基板および近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。
 図2に示すように、カメラモジュールは、固体撮像素子基板11と、平坦化層12と、紫外・赤外光反射膜19と、透明基材20と、近赤外線吸収層21と、反射防止層22とをこの順に有していてもよい。
 紫外・赤外光反射膜19は、近赤外線カットフィルタの機能を付与または高める効果を有し、例えば、特開2013-68688号公報の段落0033~0039を参酌することができ、この内容は本願明細書に組み込まれる。
 透明基材20は、可視領域の波長の光を透過するものであり、例えば、特開2013-68688号公報の段落0026~0032を参酌することができ、この内容は本願明細書に組み込まれる。
 近赤外線吸収層21は、上述した本発明の近赤外線吸収性組成物を塗布することにより形成することができる。
 反射防止層22は、近赤外線カットフィルタに入射する光の反射を防止することにより透過率を向上させ、効率よく入射光を利用する機能を有するものであり、例えば、特開2013-68688号公報の段落0040を参酌することができ、この内容は本願明細書に組み込まれる。
 図3に示すように、カメラモジュールは、固体撮像素子基板11と、近赤外線吸収層21と、反射防止層22と、平坦化層12と、反射防止層22と、透明基材20と、紫外・赤外光反射膜19とをこの順に有していてもよい。
 図4に示すように、カメラモジュールは、固体撮像素子基板11と、近赤外線吸収層21と、紫外・赤外光反射膜19と、平坦化層12と、反射防止層22と、透明基材20と、反射防止層22とをこの順に有していてもよい。
 また、固体撮像素子としては、国際公開WO14/061188号パンフレットの0049欄以降に記載された第1~第14の実施形態にかかる撮像素子の構成とすることもできる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「%」および「部」は質量基準である。
 本実施例において、以下の略号を採用した。
<化合物(A)>
化合物A-1~A-10
Figure JPOXMLDOC01-appb-C000047
<硬化性化合物>
 KAYARAD DPHA:(日本化薬社製、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートとの混合物)
 JER157S65:(三菱化学社製、特殊ノボラック型エポキシ樹脂)
 KAYARAD D-320:(日本化薬社製、ジペンタエリスリトールテトラアクリレート)
 M-510:(東亞合成社製、多塩基酸変性アクリルオリゴマー)
 M-520:(東亞合成社製、多塩基酸変性アクリルオリゴマー)
 DPCA-60:(日本化薬社製、ペンチレンオキシ鎖を6個有する6官能アクリレート)
<溶剤>
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
<化合物A-1~A-10>
 化合物A-1:東京化成工業(株)製、2,2’-ビピリジル
 化合物A-2:東京化成工業(株)製、6,6’-ジメチル-2,2’-ビピリジル
 化合物A-3、Angewandte Chemie - International Edition,2008,47, 8246-8250に記載の方法で合成した。
 化合物A-4、HELVETICA CHMICA ACTA, 2000, 83, 1161-1167.に記載の方法で合成した。
 化合物A-5、Journal of Organometallic Chemistry,2009, 694,2636-2641.に記載の方法で合成した。
 化合物A-6は、POLYHEDRON, 2008, 27, 1432-1446.に記載の方法で合成した。
 化合物A-7は以下のように合成した。
 東京化成工業(株)製2-ブロモ-6-メチルピリジン10g(58.1mol)と東京化成工業(株)製2-ヒドロキシ-6-メチルピリジン7.6g(69.8mmol)、東京化成工業(株)製 テトラメチルエチレンジアミン1.02g(8.72mmol)、和光純薬(株)炭酸カリウム16.0g(116.3mmol)、和光純薬(株)ヨウ化銅0.56g(2.91mmol)をDMF(200mL)中、加熱還流を12時間行った。水を加え、酢酸エチルによる抽出、水洗浄、硫酸マグネシウムの脱水を行った。濃縮後、カラム精製を行い目的物が4.0g得られた。
 400MHz(CDCl3, 7.60(2H,t), 6.94(2H,d), 6.83(2H,d), 1.59(6H,s).
 化合物A-8は、European Journal of Organic Chemistry,2007,30, 5112-5116.に記載の方法で合成した。
 化合物A-9:東京化成工業(株)製α,α’,α”-トリピリジル
 化合物A-10は、European Journal of Inorganic Chemistry,2004,12, 2533-2541.に記載の方法で合成した。
<銅成分の合成例>
 メタンスルホン酸銅は、メタンスルホン酸(0.1g、2.05mmol)と水酸化銅(0.197g、1.03mmol)をエタノール中、70℃にて0.5時間反応させることにより合成した。
 ジフェニルリン酸銅は、ジフェニルリン酸(0.5g、2.29mmol)と酢酸銅(0.21g、1.15mmol)をエタノール中、70℃にて0.5時間反応させることにより合成した。
<銅錯体の合成>
(銅錯体1の合成)
 化合物A-1(0.2g,1.1mmol)をエタノール5mlに溶解した。この溶液を70℃に昇温した後、酢酸銅(0.2g、1.1mmol)のエタノール溶液(5ml)を滴下し、70℃にて2時間反応させた。反応終了後、エバポレータにて発生した水および溶剤を留去することで銅錯体1(0.6g)を得た。
 銅錯体2~17についても、下記表2に記載のように化合物(A)または銅成分を変更したこと以外は、銅錯体1と同様にして得た。
<近赤外線吸収性組成物の評価>
<<近赤外線吸収性組成物の調製>>
(実施例1)
 下記の化合物を混合して、実施例1の近赤外線吸収性組成物を調製した。
 上記銅錯体1                  20質量部
 KAYARAD DPHA            20質量部
 JER157S65               20質量部
 PGMEA                  120質量部
 銅錯体1を銅錯体2~17に変更したこと以外は、実施例1と同様の組成とすることで各実施例および比較例の近赤外線吸収性組成物を調製した。
<<近赤外線カットフィルタの作製>>
 ガラス基板上に、フォトレジストを塗布し、リソグラフィーによりパターニングして近赤外線吸収性組成物の滴下領域を形成した。実施例および比較例で調製した近赤外線吸収性組成物の各々を、3ml滴下した。この塗布膜付き基板を24時間室温放置により乾燥させた後、塗布膜厚を評価したところ、膜厚は192μmであった。
<<近赤外線遮蔽性評価>>
 得られた近赤外線カットフィルタにおける波長800nmの透過率を分光光度計U-4100(日立ハイテクノロジーズ社製)を用いて測定した。近赤外線遮蔽性を以下の基準で評価した。
 A:800nmの透過率≦5%
 B:5%<800nmの透過率≦7%
 C:7%<800nmの透過率≦10%
 D:10%<800nmの透過率
<<耐熱性評価>>
 得られた近赤外線カットフィルタを200℃で5分間放置した。耐熱性試験前と耐熱性試験後とのそれぞれにおいて、近赤外線カットフィルタの波長700~1400nmにおける最大吸光度(Absλmax)と、波長400~700nmにおける最小吸光度(Absλmin)とを、分光光度計U-4100(日立ハイテクノロジーズ社製)を用いて測定し、「Absλmax/Absλmin」で表される吸光度比を求めた。
 |((試験前における吸光度比-試験後における吸光度比)/試験前における吸光度比)×100|(%)で表される吸光度比変化率を以下の基準で評価した。結果を以下の表に示す。
A:吸光度比変化率≦2%
B:2%<吸光度比変化率≦4%
C:4%<吸光度比変化率≦7%
D:7%<吸光度比変化率
Figure JPOXMLDOC01-appb-T000048
 上記表から明らかなとおり、実施例の近赤外線吸収性組成物は、硬化膜としたときにも近赤外線領域での遮蔽性を高くできることがわかった。さらに、実施例の近赤外線カットフィルタは、いずれも波長550nmの透過率が80%以上であり、可視光領域での透過性および近赤外線領域での遮蔽性を高くすることができることがわかった。また実施例の近赤外線カットフィルタは、高透過率の可視光領域を広く確保でき、分光特性に優れることもわかった。
 一方、比較例の近赤外線吸収性組成物は、硬化膜としたときに近赤外線領域での遮蔽性が不十分であることがわかった。
 また実施例1の近赤外線吸収性組成物において、重合性化合物(KAYARAD DPHA)を、KAYARAD D-320、M-510、M-520またはDPCA-60に変更したこと以外は、実施例1と同様にして近赤外線カットフィルタを得た。これらの近赤外線カットフィルタでも、硬化膜としたときに近赤外線領域での遮蔽性を高くできることが確認できた。
 実施例1~15の近赤外線吸収性組成物において、組成物の調製後、日本ポール製DFA4201NXEY(0.45μmナイロンフィルター)を用いてろ過を行った場合も、同様の効果が得られる。
<銅錯体の合成>
(銅錯体Cu3-6aの合成例)
Figure JPOXMLDOC01-appb-C000049
 200mLフラスコに、2,6-ビス(ブロモメチル)ピリジン(東京化成製)4.0g、ジメチルアミンの33%エタノール溶液(アルドリッチ製)30mLを導入し、室温で3時間撹拌した後、室温で2日間静置した。析出する白色固体(ジメチルアミン臭化水素塩)を濾過により除去し、濾液を減圧し濃縮して得られた粗生成物を、飽和炭酸水素ナトリウム水溶液と酢酸エチルを用いて分液し、得られた有機相を無水硫酸ナトリウムにより予備乾燥した後に減圧濃縮することにより、化合物A3-23を1.0g得た。
Figure JPOXMLDOC01-appb-C000050
 10mLフラスコに、化合物A3-23を38mg、メタノールを1mL加え、室温で撹拌しながら、塩化銅(II)二水和物(和光純薬製)34mgを導入し、10分間撹拌した。得られた青色溶液を減圧乾固することにより、銅錯体Cu3-6aを緑色固体として得た。
(銅錯体Cu3-7aの合成例)
Figure JPOXMLDOC01-appb-C000051
 上記スキームに従い、銅錯体Cu3-6aと同様の方法で合成した。
(銅錯体Cu3-10aの合成例)
 文献(J.Organomet.Chem.2009,694,2636)記載の方法で化合物A3-43を合成し、銅錯体Cu3-6aと同様の方法で銅錯体化した。
(銅錯体Cu3-15aの合成例)
 文献(Tetrahedron 1998,54,2365)記載の方法で化合物A3-52を合成し、銅錯体Cu3-6aと同様の方法で銅錯体化した。
(銅錯体Cu3-16aの合成例)
 化合物A3-54は東京化成より市販されており、銅錯体Cu3-6aと同様の方法で銅錯体化した。
(銅錯体Cu3-35aの合成例)
Figure JPOXMLDOC01-appb-C000052
 300mLフラスコに、ビス(2-ピリジルメチル)アミン19.9g、トリエチルアミン13.3g、テトラヒドロフラン150mLを導入し、室温で撹拌した。水冷しながら2-エチルヘキサノイルクロリド16.5gを滴下し、室温で3時間撹拌した。水と酢酸エチルを用いて分液し、得られた有機相を無水硫酸マグネシウムにより予備乾燥した後に減圧濃縮した。この粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル)により精製することで化合物A3-135を10g得た。得られた化合物A3-135を用い、銅錯体Cu3-6aと同様の方法で銅錯体化した。
(銅錯体Cu3-56aの合成例)
Figure JPOXMLDOC01-appb-C000053
 安息香酸銅(関東化学製)1モルに対して2モルのリン酸ジフェニル(東京化成製)を加え、アセトン中室温で3時間撹拌した後、ヘキサンを加えることで、ビス(リン酸ジフェニル)銅(II)が得られる。これをメタノールに溶解させ、1モルの化合物A3-2(東京化成製)を加え、10分間撹拌した。得られた青色溶液を減圧乾固することにより、銅錯体Cu3-56aを得た。
(銅錯体Cu3-63aの合成例)
 塩化銅(II)二水和物の代わりに酢酸銅(II)一水和物(和光純薬製)を用いて、銅錯体Cu3-35aと同様の方法で合成した。
(銅錯体Cu4-36aの合成例)
Figure JPOXMLDOC01-appb-C000054
 100mLフラスコに、酢酸銅(II)一水和物(和光純薬製)1.99g、化合物A3-59(和光純薬製)1.67g、メタノール20mLを導入し、10分間加熱還流した。ここに化合物AA2-15(東京化成製)1.84gを加え、更に10分間加熱還流した。溶媒を5mL程度まで減圧濃縮し、水を20mL加えることで析出した固体を濾過により改修し、銅錯体Cu4-36aを青色固体として得た。
(銅錯体Cu4-39aの合成例)
Figure JPOXMLDOC01-appb-C000055
 200mLフラスコに、4-メチルチアゾール(東京化成製)5.0g、酢酸銅(無水)(和光純薬製)1.83g、トルエン100mLを加え、12時間加熱還流した。室温に冷却後、水を加えて析出物を濾別した後、濾液に酢酸エチルを加えて分液・抽出した。得られた有機相を無水硫酸マグネシウムで予備乾燥し、減圧濃縮して得られた褐色の粗生成物(微量の原料を含有)を、メタノールで再結晶することにより、化合物AA2-22を淡黄色固体として得た。この化合物を用いて、銅錯体Cu4-36aと同様の方法で錯体化した。
(銅錯体Cu4-45aの合成例)
Figure JPOXMLDOC01-appb-C000056
 500mL三ツ口フラスコに、窒素雰囲気下、3,5-ジメチルピラゾール(東京化成製)10g、ジメチルスルホキシド60mLを加え、撹拌する。ここに水酸化カリウム(和光純薬製)23.3gを少しずつ加え、60度で1時間撹拌した。ここに、ジメチルスルホキシド40mLに溶解させたジブロモメタン(和光純薬製)9gを滴下し、60度で4時間撹拌した。室温に冷却後、水200mLを滴下し、クロロホルムで抽出後、水、飽和食塩水で洗浄して得られた有機相を減圧濃縮することにより、化合物AA2-32を白色固体として得た。この化合物を用いて、銅錯体Cu4-36aと同様の方法で錯体化した。
(銅錯体Cu4-49aの合成例)
Figure JPOXMLDOC01-appb-C000057
 100mLフラスコに、化合物A2-32を0.20g、酢酸銅(II)一水和物(和光純薬製)0.19g、メタノール10mLを加え、撹拌しながら室温から40度に昇温して30分間撹拌した。徐々に溶解して青色溶液となったら、化合物A3-96(東京化成製)0.15gと50重量%水酸化ナトリウム水溶液0.16gを溶解させたメタノール溶液10mLを滴下した。ゆっくりと析出した青白色固体を濾過により回収し、銅錯体Cu4-49aを0.16g得た。
(銅錯体Cu4-50aの合成例)
 和光純薬から市販されている化合物A3-97を用いて、銅錯体Cu4-49aと同様の方法で合成した。
(銅錯体Cu4-52aの合成例)
 東京化成からケリダム酸一水和物として市販されている化合物A3-103を用いて、銅錯体Cu4-49aと同様の方法で合成した。
(銅錯体Cu4-55aの合成例)
 3,5-ジメチルピラゾールの代わりに3,5-ジイソプロピルピラゾール(東京化成製)を用いて化合物AA2-32と同様の方法で合成した化合物AA2-36を用いて、銅錯体Cu4-36aと同様の方法で錯体化した。
(銅錯体Cu4-62aの合成例)
 3,5-ジメチルピラゾールの代わりに3,5-ジイソプロピルピラゾール(東京化成製)、ジブロモメタンの代わりに2-クロロメチルピリジン塩酸塩(東京化成製)を用いて化合物AA2-32と同様の方法で合成した化合物AA2-26を用いて、銅錯体Cu4-36aと同様の方法で錯体化した。
(銅錯体Cu4-63aの合成例)
 東京化成から市販されている化合物AA2-28を用いて、銅錯体Cu4-36aと同様の方法で合成した。
(銅錯体Cu5-1aの合成例)
 メタノール中で化合物A4-1(東京化成製)と塩化銅(II)二水和物(和光純薬製)を1:1のモル比で混合し、10分間撹拌した反応液を減圧乾固させることで銅錯体Cu5-1aを得た。
(銅錯体Cu5-18の合成例)
 化合物A4-61(東京化成製)を用い、銅錯体Cu5-1aと同様の方法で合成した。
(銅錯体Cu5-20aの合成例)
 化合物A4-63(東京化成製)を用い、銅錯体Cu5-1aと同様の方法で合成した。
(銅錯体Cu5-22aの合成例)
Figure JPOXMLDOC01-appb-C000058
 100mL三ツ口フラスコに、窒素雰囲気下、化合物4-62を0.93g、テトラヒドロフラン30mL、ベンズアルデヒド2.34g、酢酸0.90gを加え、0度で撹拌した。ここにナトリウムトリアセトキシボロヒドリド(東京化成製)3.78gを加えて、室温で2時間撹拌した。水を50mL滴下した後、濃塩酸を少しずつ加えてpH~1にし、酢酸エチル50mLで3回分液・抽出し、水相を回収した。この水相に50重量%水酸化ナトリウム水溶液を少しずつ加えてpH~10にし、酢酸エチル50mLで3回分液・抽出し、有機相を回収した。無水硫酸マグネシウムで予備乾燥後、減圧濃縮することで、化合物4-65を淡黄色オイルとして1.90g得た。この化合物A4-65を用いて、Cu5-1aと同様の方法で、銅錯体Cu5-22aを合成した。
(銅錯体Cu5-37aの合成例)
Figure JPOXMLDOC01-appb-C000059
 100mLフラスコに、ビス(2-ピリジルメチル)アミン(東京化成製)1.99g、エタノール20mL、トリエチルアミン1.01gを加え、室温で撹拌しながらブロモ酢酸(関東化学製)1.49gを滴下した後、5時間加熱還流した。室温に冷却後、反応液を減圧濃縮して得られた粗生成物に酢酸エチルを加えて析出した固体をメタノールで分散洗浄し、濾過により化合物A4-121を0.5g得た。この化合物を用い、銅錯体Cu5-1aと同様の方法で錯体化した。
(銅錯体Cu5-46aの合成例)
 メタノール中で化合物A4-1(東京化成製)と硫酸銅(II)五水和物(和光純薬製)を1:1のモル比で混合し、30分間撹拌した。この反応液に酢酸エチルを加え、析出した固体を濾過により回収し、銅錯体Cu5-46aを得た。
(銅錯体Cu5-50aの合成例)
 化合物A4-61(東京化成製)を用いて、銅錯体Cu5-46aと同様の方法で合成した。
(銅錯体Cu5-51aの合成例)
 化合物A4-62(アルドリッチ製)を用いて、銅錯体Cu5-46aと同様の方法で合成した。
(銅錯体Cu5-52aの合成例)
 化合物A4-63(東京化成製)を用いて、銅錯体Cu5-46aと同様の方法で合成した。
(銅錯体Cu5-72aの合成例)
 銅錯体Cu5-1aを水に溶解させ、撹拌しながら過剰量の飽和テトラフルオロホウ酸ナトリウム(和光純薬製)水溶液を加えた。析出固体を濾過により回収し、銅錯体Cu5-72aを得た。
(銅錯体Cu5-82aの合成例)
 銅錯体Cu5-1aの代わりに化合物A4-62(アルドリッチ製)、テトラフルオロホウ酸ナトリウムの代わりテトラキス(ペンタフルオロフェニル)ホウ酸リチウム(東京化成製)を用いて、Cu5-72aと同様の方法で合成した。
(銅錯体Cu5-83aの合成例)
 化合物A4-63(東京化成製)を用いて、銅錯体Cu5-82aと同様の方法で合成した。
(銅錯体Cu5-92aの合成例)
 テトラフルオロホウ酸ナトリウムの代わりビス(トリフルオロメタンスルホン)イミドリチウムを用いてCu5-72aと同様の方法で、銅錯体Cu5-92aを合成した。
(銅錯体Cu5-95aの合成例)
 化合物A4-63(東京化成製)を用いて、銅錯体Cu5-92aと同様の方法で合成した。
(銅錯体Cu5-96aの合成例)
 塩化銅(II)二水和物の代わりに臭化銅(II)(関東化学製)を用いて、銅錯体Cu5-18aと同様の方法で合成した。
(銅錯体Cu5-97aの合成例)
 化合物A4-188(アルドリッチ製)を用いて、銅錯体Cu5-82aと同様の方法で合成した。
(銅錯体Cu5-98aの合成例)
 テトラキス(ペンタフルオロフェニル)ホウ酸リチウムの代わりトリス(トリフルオロメタンスルホニル)メチドカリウムを用いてCu5-83aと同様の方法で、銅錯体Cu5-98aを合成した。
(銅錯体Cu5-99aの合成例)
 塩化銅(II)二水和物の代わりに酢酸銅(II)一水和物を用いてCu5-83aと同様の方法で、銅錯体Cu5-99aを合成した。
(銅錯体Cu5-100aの合成例)
 塩化銅(II)二水和物の代わりに臭化銅(II)を用いてCu5-83aと同様の方法で、銅錯体Cu5-100aを合成した。
(銅錯体Cu5-101aの合成例)
 Cu5-46aに対してトリフルオロメタンスルホンアミド(和光純薬製)1当量を反応させ、Cu5-80aと同様の方法で錯体を析出させることで、銅錯体Cu5-101aを合成した。
(銅錯体Cu5-102aの合成例)
 塩化銅(II)二水和物の代わりに酢酸銅(II)一水和物を用いてCu5-82aと同様の方法で、銅錯体Cu5-102aを合成した。
(銅錯体Cu5-103aの合成例)
 塩化銅(II)二水和物の代わりに安息香酸銅(II)を用いてCu5-82aと同様の方法で、銅錯体Cu5-103aを合成した。
(銅錯体Cu5-104aの合成例)
 Cu5-46aの水溶液に対してビス(トリフルオロメタンスルホン)イミドリチウムを加えて錯体を析出させることで、銅錯体Cu5-104aを合成した。
(銅錯体Cu5-105aの合成例)
 化合物A4-65を用いて、Cu5-72aと同様の方法で、銅錯体Cu5-105aを合成した。
(銅錯体Cu5-106aの合成例)
Figure JPOXMLDOC01-appb-C000060
 300mL三ツ口フラスコに、窒素雰囲気下、6-メチル-2-ピリジンメタノール(東京化成製)12g、テトラヒドロフラン100mLを加え、室温で撹拌した。氷冷しながら三臭化リン(東京化成製)25gを滴下した後、室温で終夜撹拌した。飽和塩化アンモニウム水溶液と酢酸エチルを加えて分液・抽出して得られた有機相を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル)で生成することで、6-メチル-2-(ブロモメチル)ピリジンを淡赤色オイルとして得た。
 100mLフラスコに、合成した6-メチル-2-(ブロモメチル)ピリジン1.86g、水10mLを加えて、0度で撹拌した。ここに2-ピリジルメチルアミン1.08gを加え、0度で撹拌した。ここに1M水酸化ナトリウム水溶液2mLを加え、室温で終夜撹拌した。水、クロロホルムを加えて分液・抽出して得られた有機相を水で3回洗浄し、無水硫酸ナトリウムで予備乾燥した後、減圧濃縮することにより化合物A4-90を淡黄色固体として得た。
 この化合物A4-90を用いて、銅錯体Cu5-1aと同様の方法で、銅錯体Cu5-106aを合成した。
(銅錯体Cu5-117aの合成例)
 文献(Eur.J.Inorg.Chem.2009,3921)記載の方法で合成した化合物A4-29を用いて、銅錯体Cu5-72aと同様の方法で、銅錯体Cu5-117aを合成した。
(銅錯体Cu5-118aの合成例)
 化合物A4-65を用いて、Cu5-82aと同様の方法で、銅錯体Cu5-118aを合成した。
(銅錯体Cu5-119aの合成例)
 化合物A4-65を用いて、Cu5-46aと同様の方法で、銅錯体Cu5-119aを合成した。
<銅錯体の極大吸収波長、モル吸光係数およびグラム吸光係数の測定>
 各種銅錯体を、下記表に記載の溶媒に溶解させて、1g/Lの濃度の溶液を調製した。次に、銅錯体を溶解させた溶液の吸収スペクトルを、島津製作所製UV-1800を用いて測定し、極大吸収波長、極大吸収波長におけるモル吸光係数およびグラム吸光係数、800nmにおけるモル吸光係数およびグラム吸光係数を測定した。なお、表中、DMFは、N,N-ジメチルホルムアミドを表し、MFGは、プロピレングリコールモノメチルエーテルを表す。
-極大吸収波長の評価基準-
A:700nm以上1200nm以下の波長領域に極大吸収波長を有する。
B:700nm未満、または、1200nmを超える波長領域に極大吸収波長を有する。
Figure JPOXMLDOC01-appb-T000061
(実施例101~145)
 下記の化合物を混合して、実施例101~145の近赤外線吸収性組成物を調製した。
 表10に記載の銅錯体               20質量部
 KAYARAD DPHA             20質量部
 JER157S65                20質量部
 PGMEA                   120質量部
<近赤外線カットフィルタの作製>
 上記近赤外線吸収性組成物を用いて、近赤外線カットフィルタを作製した。
 ガラス基板上に、フォトレジストを塗布し、リソグラフィーによりパターニングしてフォトレジストの隔壁を形成して近赤外線吸収性組成物の滴下領域を形成した。ガラス基板上の滴下領域に、各近赤外線吸収性組成物を3ml滴下し、24時間室温放置により乾燥させた。乾燥後の塗布膜の膜厚を評価したところ、膜厚は100μmであった。
<近赤外線遮蔽性評価>
 上記のようにして得た近赤外線カットフィルタにおける波長800nmの透過率を分光光度計U-4100(日立ハイテクノロジーズ社製)を用いて測定した。近赤外線遮蔽性を以下の基準で評価した。結果を以下の表に示す。
A:800nmの透過率≦5%
B:5%<800nmの透過率≦25%
C:25%<800nmの透過率
<可視光透過性評価>
 上記のようにして得た近赤外線カットフィルタにおける波長550nmの透過率を分光光度計U-4100(日立ハイテクノロジーズ社製)を用いて測定した。可視光透過性を以下の基準で評価した。結果を以下の表に示す。
A:85%≦波長550nmの透過率
B:45≦波長550nmの透過率<85%
C:波長550nmの透過率<45%
Figure JPOXMLDOC01-appb-T000062
 上記表に示すように、上記表から明らかなとおり、実施例101~145の近赤外線吸収性組成物は、硬化膜としたときにも近赤外線領域での遮蔽性を高くできることがわかった。更には、可視光透過性も良好であった。
 実施例101~145の近赤外線吸収性組成物において、各組成物の調製後、日本ポール製DFA4201NXEY(0.45μmナイロンフィルター)を用いてろ過を行った場合も、同様の効果が得られる。
10 カメラモジュール、11 固体撮像素子基板、12 平坦化層、13 近赤外線カットフィルタ、14 撮像レンズ、15 レンズホルダー、16 撮像素子、17 カラーフィルタ、18 マイクロレンズ、19 紫外・赤外光反射膜、20 透明基材、21 近赤外線吸収層、22 反射防止層

Claims (15)

  1. 銅成分に対して、非共有電子対で配位する配位原子を2つ以上有する化合物(A)を反応させてなる銅錯体を含有する、近赤外線吸収性組成物。
  2. 銅を中心金属とし、非共有電子対で配位する配位原子を2つ以上有する化合物(A)を配位子とする銅錯体を含有する、近赤外線吸収性組成物。
  3.  前記銅錯体は、銅と前記化合物(A)によって5員環および/または6員環が形成されている、請求項1または2に記載の近赤外線吸収性組成物。
  4. 前記化合物(A)において、前記共有電子対で配位する配位原子が、酸素原子、窒素原子、硫黄原子またはリン原子である、請求項1~3のいずれか1項に記載の近赤外線吸収性組成物。
  5. 前記化合物(A)が、非共有電子対で配位する配位原子を2~5つ有する、請求項1~4のいずれか1項に記載の近赤外線吸収性組成物。
  6. 非共有電子対で配位する配位原子2つを連結する原子数が1~3である、請求項1~5のいずれか1項に記載の近赤外線吸収性組成物。
  7. 前記化合物(A)の分子量が50~1000である、請求項1~6のいずれか1項に記載の近赤外線吸収性組成物。
  8. 前記化合物(A)が下記一般式(IV)または(IV-18)で表される、請求項1~7のいずれか1項に記載の近赤外線吸収性組成物;
    1-L1-Y2 一般式(IV)
     一般式(IV)中、Y1およびY2はそれぞれ独立して、非共有電子対で配位する配位原子を含む環、または、群(UE)で表される部分構造を表す;L1は、単結合または2価の連結基を表す;
    Figure JPOXMLDOC01-appb-C000001
     一般式(IV-18)中、Z25~Z27はそれぞれ独立して、非共有電子対で配位する配位原子を含む環、または、群(UE)で表される部分構造を表す;Z201は、下記群(UE-2)から選択される少なくとも1種を表す;L17~L19は、それぞれ独立して単結合または2価の連結基を表す;
    群(UE)
    Figure JPOXMLDOC01-appb-C000002
    群(UE-2)
    Figure JPOXMLDOC01-appb-C000003
     群(UE)中、波線は、化合物(A)を構成する原子団との結合位置であり、R1は、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、R2は、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アミノ基またはアシル基を表す。
  9. 前記化合物(A)が5員環または6員環を含む化合物であり、前記共有電子対で配位する配位原子が5員環または6員環を構成する原子である、請求項1~7のいずれか1項に記載の近赤外線吸収性組成物。
  10. 前記非共有電子対で配位する配位原子が窒素原子である、請求項1~9のいずれか1項に記載の近赤外線吸収性組成物。
  11. 硬化性化合物および溶剤をさらに含有する、請求項1~10のいずれか1項に記載の近赤外線吸収性組成物。
  12. 請求項1~11のいずれか1項に記載の近赤外線吸収性組成物を硬化してなる近赤外線カットフィルタ。
  13. 固体撮像素子基板の受光側において、請求項1~11のいずれか1項に記載の近赤外線吸収性組成物を塗布することにより膜を形成する工程を有する、近赤外線カットフィルタの製造方法。
  14. 固体撮像素子基板と、前記固体撮像素子基板の受光側に配置された近赤外線カットフィルタとを有するカメラモジュールであって、前記近赤外線カットフィルタが請求項1~11のいずれか1項に記載の近赤外線吸収性組成物を硬化してなる近赤外線カットフィルタである、カメラモジュール。
  15. 固体撮像素子基板と、前記固体撮像素子基板の受光側に配置された近赤外線カットフィルタとを有するカメラモジュールの製造方法であって、固体撮像素子基板の受光側において、請求項1~11のいずれか1項に記載の近赤外線吸収性組成物を塗布することにより膜を形成する工程を有する、カメラモジュールの製造方法。
PCT/JP2015/051171 2014-01-21 2015-01-19 近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法 WO2015111530A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167017337A KR101962664B1 (ko) 2014-01-21 2015-01-19 근적외선 흡수성 조성물, 근적외선 차단 필터 및 그 제조 방법, 그리고 카메라 모듈 및 그 제조 방법
US15/192,284 US10184052B2 (en) 2014-01-21 2016-06-24 Near infrared radiation-absorbing composition, near infrared radiation cut-off filter and production method therefor, and camera module and production method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014008919 2014-01-21
JP2014-008919 2014-01-21
JP2014-219260 2014-10-28
JP2014219260A JP6242782B2 (ja) 2014-01-21 2014-10-28 近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/192,284 Continuation US10184052B2 (en) 2014-01-21 2016-06-24 Near infrared radiation-absorbing composition, near infrared radiation cut-off filter and production method therefor, and camera module and production method therefor

Publications (1)

Publication Number Publication Date
WO2015111530A1 true WO2015111530A1 (ja) 2015-07-30

Family

ID=53681334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051171 WO2015111530A1 (ja) 2014-01-21 2015-01-19 近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法

Country Status (5)

Country Link
US (1) US10184052B2 (ja)
JP (1) JP6242782B2 (ja)
KR (1) KR101962664B1 (ja)
TW (1) TWI652273B (ja)
WO (1) WO2015111530A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002701A1 (ja) * 2014-06-30 2016-01-07 富士フイルム株式会社 近赤外線吸収性組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュール
WO2018055966A1 (ja) * 2016-09-21 2018-03-29 富士フイルム株式会社 組成物、形成体、積層体、遠赤外線透過フィルタ、固体撮像素子、赤外線カメラおよび赤外線センサ
US11111216B2 (en) * 2016-10-26 2021-09-07 Temple University-Of The Commonwealth System Of Higher Education Polycationic amphiphiles as antimicrobial agents and methods using same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201731684A (zh) * 2016-01-20 2017-09-16 Fujifilm Corp 近紅外線吸收組成物、近紅外線截止濾波器的製造方法、近紅外線截止濾波器、固體攝像元件、照相機模組、紅外線感測器及紅外線吸收劑
JP2018060921A (ja) * 2016-10-05 2018-04-12 キヤノン株式会社 光電変換装置及びシステム
KR102301117B1 (ko) * 2017-03-08 2021-09-10 삼성전자 주식회사 광 센서 모듈을 포함하는 전자 장치
US11069729B2 (en) * 2018-05-01 2021-07-20 Canon Kabushiki Kaisha Photoelectric conversion device, and equipment
KR102009974B1 (ko) 2018-10-31 2019-08-12 (주)케미그라스 근적외선 차단렌즈
KR20200131932A (ko) * 2019-05-14 2020-11-25 삼성디스플레이 주식회사 표시 장치
CN115574485A (zh) * 2019-10-31 2023-01-06 高丽大学校产学协力团 辐射冷却元件及其制作方法
KR102460593B1 (ko) * 2019-12-27 2022-10-28 주식회사 센소허브 내방사선 특성을 갖는 이미지 센서 패키지
JP7011098B1 (ja) 2021-06-14 2022-01-26 富士フイルムエレクトロニクスマテリアルズ株式会社 洗浄組成物、半導体基板の洗浄方法、および、半導体素子の製造方法
JP7145351B1 (ja) 2022-03-25 2022-09-30 富士フイルム株式会社 組成物、半導体素子の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11208118A (ja) * 1997-11-20 1999-08-03 Taiyo Yuden Co Ltd 光情報記録媒体
JP2000007870A (ja) * 1998-06-23 2000-01-11 Kureha Chem Ind Co Ltd 樹脂組成物およびその製造方法、光学フィルターおよびこれを備えた装置、熱線吸収フィルター、光ファイバーおよび眼鏡レンズ
JP2001089560A (ja) * 1999-09-22 2001-04-03 Japan Science & Technology Corp フルオロフェノール酸化重合用銅錯体触媒と酸化重合方法
WO2010024203A1 (ja) * 2008-08-29 2010-03-04 株式会社日本触媒 フタロシアニン化合物
JP2013253224A (ja) * 2012-05-08 2013-12-19 Fujifilm Corp 近赤外線吸収性液状組成物、これを用いた近赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126686A (ja) * 1984-07-16 1986-02-05 Fuji Photo Film Co Ltd 赤外線吸収性組成物
JPH0733981A (ja) * 1993-07-19 1995-02-03 Toyobo Co Ltd 耐光性に優れたポリアミド組成物
JPH08109365A (ja) * 1994-10-13 1996-04-30 Nippon Paper Ind Co Ltd ビスチオウレア化合物を含有する近赤外線吸収剤用組成物
RU2119533C1 (ru) * 1997-05-13 1998-09-27 Научно-промышленное и коммерческое товарищество с ограниченной ответственностью "Инвек РД Лимитед" Пластичная смазка "силкон"
JP3939822B2 (ja) 1997-08-07 2007-07-04 協立化学産業株式会社 近赤外線吸収材料、その合成方法、および近赤外線吸収性樹脂組成物
JP4395947B2 (ja) * 1999-12-14 2010-01-13 株式会社ブリヂストン 近赤外線吸収フィルム
JP4500417B2 (ja) 2000-08-25 2010-07-14 株式会社クレハ 光学材料及びその製造方法
TWI278991B (en) * 2002-07-09 2007-04-11 Toppan Printing Co Ltd Solid image-pickup device and method of manufacturing the same
JP4816096B2 (ja) * 2006-01-20 2011-11-16 セイコーエプソン株式会社 重合性組成物、光学材料、光学用フィルター、及び、プラスチックレンズ
JP2011063814A (ja) 2010-12-02 2011-03-31 Kureha Corp 光学材料
WO2012144530A1 (ja) * 2011-04-22 2012-10-26 住友化学株式会社 銅錯体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11208118A (ja) * 1997-11-20 1999-08-03 Taiyo Yuden Co Ltd 光情報記録媒体
JP2000007870A (ja) * 1998-06-23 2000-01-11 Kureha Chem Ind Co Ltd 樹脂組成物およびその製造方法、光学フィルターおよびこれを備えた装置、熱線吸収フィルター、光ファイバーおよび眼鏡レンズ
JP2001089560A (ja) * 1999-09-22 2001-04-03 Japan Science & Technology Corp フルオロフェノール酸化重合用銅錯体触媒と酸化重合方法
WO2010024203A1 (ja) * 2008-08-29 2010-03-04 株式会社日本触媒 フタロシアニン化合物
JP2013253224A (ja) * 2012-05-08 2013-12-19 Fujifilm Corp 近赤外線吸収性液状組成物、これを用いた近赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002701A1 (ja) * 2014-06-30 2016-01-07 富士フイルム株式会社 近赤外線吸収性組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュール
JPWO2016002701A1 (ja) * 2014-06-30 2017-06-01 富士フイルム株式会社 近赤外線吸収性組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュール
WO2018055966A1 (ja) * 2016-09-21 2018-03-29 富士フイルム株式会社 組成物、形成体、積層体、遠赤外線透過フィルタ、固体撮像素子、赤外線カメラおよび赤外線センサ
JPWO2018055966A1 (ja) * 2016-09-21 2019-08-08 富士フイルム株式会社 組成物、形成体、積層体、遠赤外線透過フィルタ、固体撮像素子、赤外線カメラおよび赤外線センサ
US11043528B2 (en) 2016-09-21 2021-06-22 Fujifilm Corporation Composition, formed body, laminate, far infrared ray transmitting filter, solid-state imaging element, infrared camera, and infrared sensor
US11111216B2 (en) * 2016-10-26 2021-09-07 Temple University-Of The Commonwealth System Of Higher Education Polycationic amphiphiles as antimicrobial agents and methods using same

Also Published As

Publication number Publication date
US20160304730A1 (en) 2016-10-20
US10184052B2 (en) 2019-01-22
JP6242782B2 (ja) 2017-12-06
KR20160091996A (ko) 2016-08-03
KR101962664B1 (ko) 2019-03-27
TWI652273B (zh) 2019-03-01
JP2015158662A (ja) 2015-09-03
TW201529587A (zh) 2015-08-01

Similar Documents

Publication Publication Date Title
JP6242782B2 (ja) 近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法
JP6442539B2 (ja) 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法
WO2015111531A1 (ja) 近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法
WO2015012322A1 (ja) 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタおよびその製造方法、カメラモジュールおよびその製造方法、ならびに固体撮像素子
JPWO2016002702A1 (ja) 近赤外線吸収性組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュール
JP6340078B2 (ja) 近赤外線吸収性組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュール
WO2014189098A1 (ja) 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタおよびその製造方法、並びに、カメラモジュールおよびその製造方法
WO2015111529A1 (ja) 近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法
TWI660036B (zh) 近紅外線截止濾波器、近紅外線吸收組成物、感光性樹脂組成物、硬化膜、化合物、照相機模組及照相機模組的製造方法
JP6159291B2 (ja) 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタおよびその製造方法、並びに、カメラモジュール
WO2015016142A1 (ja) 銅化合物含有膜の製造方法、膜形成用組成物の増粘を抑制する方法、膜形成用組成物を製造するためのキットおよび固体撮像素子
JP6277056B2 (ja) 近赤外線吸収性物質の分光調整方法、近赤外線吸収性組成物およびその製造方法、近赤外線カットフィルタおよびその製造方法、カメラモジュール、ならびに、銅化合物の分光調整剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15741024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167017337

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15741024

Country of ref document: EP

Kind code of ref document: A1