WO2015111383A1 - 半導体ウェーハの洗浄槽及び貼り合わせウェーハの製造方法 - Google Patents
半導体ウェーハの洗浄槽及び貼り合わせウェーハの製造方法 Download PDFInfo
- Publication number
- WO2015111383A1 WO2015111383A1 PCT/JP2015/000102 JP2015000102W WO2015111383A1 WO 2015111383 A1 WO2015111383 A1 WO 2015111383A1 JP 2015000102 W JP2015000102 W JP 2015000102W WO 2015111383 A1 WO2015111383 A1 WO 2015111383A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wafer
- cleaning
- tank
- insulating wall
- semiconductor wafer
- Prior art date
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims description 48
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 235000012431 wafers Nutrition 0.000 claims abstract description 181
- 238000005530 etching Methods 0.000 claims abstract description 58
- 239000004065 semiconductor Substances 0.000 claims abstract description 40
- 239000010453 quartz Substances 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000010408 film Substances 0.000 claims description 59
- 239000000126 substance Substances 0.000 claims description 36
- 239000000243 solution Substances 0.000 claims description 35
- 238000005468 ion implantation Methods 0.000 claims description 24
- 239000010409 thin film Substances 0.000 claims description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- 239000010703 silicon Substances 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 17
- 150000002500 ions Chemical class 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- -1 hydrogen ions Chemical class 0.000 claims description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 239000008155 medical solution Substances 0.000 claims 1
- 238000003754 machining Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 11
- 238000009413 insulation Methods 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 239000002585 base Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000032798 delamination Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/6704—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
- H01L21/67057—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
- H01L21/02052—Wet cleaning only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
- H01L21/26513—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67075—Apparatus for fluid treatment for etching for wet etching
- H01L21/67086—Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
Definitions
- the present invention relates to a semiconductor wafer cleaning tank and a method for manufacturing a bonded wafer by an ion implantation separation method using this cleaning tank, and is particularly called ETSOI (Extremely Thin SOI (Silicon On Insulator), extremely thin SOI). More particularly, the present invention relates to a method for manufacturing an SOI wafer that requires a SOI layer thickness of 30 nm or less and a thickness uniformity of ⁇ 0.5 nm within the wafer surface.
- a method for manufacturing an SOI wafer is a method of manufacturing an SOI wafer by peeling an ion-implanted wafer after bonding (ion implantation separation method: smart).
- ion implantation separation method smart
- a method called a cut method has attracted attention.
- an oxide film is formed on at least one of two silicon wafers, and gas ions such as hydrogen ions or rare gas ions are implanted from the upper surface of one silicon wafer (bond wafer),
- An ion implantation layer (also referred to as a microbubble layer or an encapsulation layer) is formed inside the wafer.
- the surface into which the ions are implanted is brought into close contact with the other silicon wafer (base wafer) through an oxide film, and then a heat treatment (peeling heat treatment) is applied to form a microbubble layer as a cleaved surface on one wafer (bond wafer). )
- a heat treatment peeling heat treatment
- Patent Documents 2, 3, and 4 As a method for solving such a problem, a flattening process for improving the surface roughness by performing a high-temperature heat treatment instead of the touch polish has been performed (Patent Documents 2, 3, and 4). Due to the fact that the planarization process is performed, the film thickness range of the SOI layer (the value obtained by subtracting the minimum value from the maximum value of the in-plane film thickness) is within 3 nm (ie, within the wafer surface). SOI wafers having excellent film thickness uniformity of ⁇ 1.5 nm are obtained at the mass production level by the ion implantation delamination method.
- the present invention has been made in order to solve the above problems, and a method for manufacturing a bonded wafer having a high film thickness uniformity after etching for film thickness adjustment with a high yield, and the etching thereof. It aims at providing the washing tank to be used.
- the present invention is a semiconductor wafer cleaning tank for immersing and cleaning a semiconductor wafer in a cleaning liquid, comprising quartz, storing the cleaning liquid, and a plurality of the semiconductor wafers in the cleaning liquid.
- a tank main body immersed in the tank, made of quartz, provided around the opening of the tank main body, an overflow receiving part for receiving the cleaning liquid overflowed from the upper end of the opening of the tank main body, and the tank main body With a heat insulating wall provided around, Cleaning of a semiconductor wafer, wherein the heat insulating wall portion seamlessly surrounds the tank main body portion, and a hollow layer is formed between the heat insulating wall portion and a side wall of the tank main body portion. Provide a bath.
- the hollow layer formed between the heat insulating wall and the side wall of the tank body can reduce heat dissipation from the wall surface of the tank body, As a result of air convection, the temperature uniformity within the wall surface of the tank body can be improved. For this reason, it is possible to improve the temperature uniformity of the cleaning liquid in the tank body, and if used in the etching process for adjusting the film thickness, the film thickness uniformity is maintained even after etching for adjusting the film thickness. Wafers can be manufactured with a high yield.
- the said heat insulation wall part can be set as the structure extended below from the said overflow receiving part. Since heat is easily radiated from the wall surface of the tank main body portion below the overflow receiving portion, a heat insulating wall portion can be suitably provided at this location.
- a bottom surface of the overflow receiving portion is positioned above the upper end of the immersed semiconductor wafer, and a lower end of the heat insulating wall portion is positioned below the lower end of the immersed semiconductor wafer. Is preferred. With the above configuration, the temperature uniformity of the cleaning liquid around the entire immersed semiconductor wafer can be further improved.
- the lower portion of the heat insulating wall can be open. With the above configuration, the low-temperature air accumulated in the lower portion of the heat insulating wall can be released.
- the lower part of the said heat insulation wall part is sealed at this time, and it can also be set as the structure by which the air vent hole is provided in the said heat insulation wall part.
- the baffle plate can also be set as the structure by which the baffle plate is provided in the lower part of the said heat insulation wall part at this time.
- the baffle plate By providing a rectifying plate for forming a flow path at the lower part of the heat insulating wall, the surface area of the flow path can be increased and the heat retaining property can be improved.
- the current plate is provided below the lower end of the immersed semiconductor wafer.
- the present invention provides an ion implantation layer formed inside the bond wafer by implanting one or more kinds of gas ions selected from hydrogen ions and rare gas ions into the surface of the bond wafer, and ion implantation of the bond wafer.
- a bonded wafer having a thin film on the base wafer is manufactured by peeling the bond wafer using the ion implantation layer as a peeling surface.
- the step of performing the thinning process includes immersing the bonded wafer in a chemical bath filled with a temperature-controlled etching solution.
- the temperature uniformity of the chemical solution in the chemical solution tank can be improved by using the semiconductor wafer cleaning tank as the chemical solution tank.
- a bonded wafer in which the film thickness uniformity is maintained can be manufactured with a high yield.
- a silicon wafer can be used as the bond wafer, and a mixed aqueous solution of ammonia water and hydrogen peroxide solution can be used as the etchant.
- a silicon wafer can be suitably used as the bond wafer.
- a mixed aqueous solution of ammonia water and hydrogen peroxide solution can be suitably used as an etching solution because of its high ability to remove particles and organic contaminants.
- the temperature is preferably adjusted to a temperature of 50 ° C. or higher and 80 ° C. or lower. If the temperature of etching liquid is 50 degreeC or more, an etching rate is moderate and it will not take too much time for film thickness adjustment. Moreover, if the temperature of the etching solution is 80 ° C. or lower, the etching rate is not too high, which is suitable for adjusting the film thickness.
- the film thickness of the thin film can be adjusted extremely uniformly. Bonded wafers that require thickness uniformity can be manufactured with high yield.
- the uniformity of the film thickness within 1 nm (that is, ⁇ 0.5 nm in the wafer surface) is required as the in-plane film thickness distribution of the SOI, and a thin film (SOI) is obtained by the ion implantation delamination method.
- SOI thin film
- Due to the influence of in-plane variation of the ion implantation depth there is a certain film thickness range ( ⁇ 1 nm) even immediately after peeling.
- JP 2013-125909 A a manufacturing method for obtaining an SOI layer having a film thickness uniformity of ⁇ 0.5 nm in the wafer surface as a final product by devising ion implantation conditions and sacrificial oxidation conditions Is disclosed.
- the chemical solution such as SC1 is generally temperature-adjusted with an accuracy of about ⁇ 1 ° C. in the chemical solution tank, but the ambient temperature of the wall surface of the chemical solution tank is the chemical solution temperature. Therefore, the temperature of the wall surface of the chemical solution tank is exchanged, and the temperature of the wall surface of the chemical solution tank is deprived of heat for each surface, and the temperature decreases. As a result, the SOI film thickness of the wafer disposed in the chemical bath varies slightly in the wafer surface and in the slot position.
- an SOI wafer manufactured using a silicon wafer is described as an example of a bonded wafer, but the “bonded wafer” of the present invention is not limited to an SOI wafer or a silicon wafer.
- any method can be used as long as it is a thickness reduction process by etching when a bonded wafer is manufactured by an ion implantation separation method.
- a SiGe wafer, a compound semiconductor, or another wafer may be bonded to silicon, quartz, Al 2 O 3 or the like.
- the bond wafer to be bonded may or may not have an insulating film.
- the etching solution may be any one that can etch the formed thin film, and may be appropriately selected according to the bond wafer to be used.
- a bonded wafer having a thin film on a base wafer is produced.
- the bonded wafer may be produced by a known method using an ion implantation separation method (also called a smart cut method (registered trademark)). That is, one surface selected from hydrogen ions and rare gas ions is used on the surface of the bond wafer.
- the ion implantation layer A bonded wafer having a thin film on the base wafer is manufactured by peeling the bond wafer using as a peeling surface.
- the bond wafer is not particularly limited, but a silicon wafer is preferably used.
- Bonded wafers used for thickness reduction processing are bonded within a film thickness range of 3 nm (ie, ⁇ 1.5 nm within the wafer surface) of a thin film (SOI layer) fabricated by ion implantation delamination. It is preferably a wafer, more preferably within 1 nm (that is, ⁇ 0.5 nm within the wafer surface).
- sacrificial oxidation treatment or planarization heat treatment may be performed after peeling.
- This sacrificial oxidation treatment or planarization heat treatment may be performed by a known method.
- the thin film is thinned.
- the thickness reduction processing is performed by immersing the peeled bonded wafer in the cleaning tank (chemical solution tank) of the present invention filled with the temperature-controlled etching solution and etching the thin film. Etching is performed in a state where the periphery of the substrate is surrounded by a heat insulating wall portion having a hollow layer.
- FIG. 1 A schematic cross-sectional view of a chemical bath (cleaning bath) 1 of the first embodiment used in the etching process is shown in FIG.
- the peeled bonded wafer 3 is disposed in the chemical tank 1, and the etching liquid (cleaning liquid) 16 such as SC1 is shown by a solid line arrow a in FIG. 1 by the action of the pump 8 in the drive area on the right side of FIG. In this way, etching is performed.
- the temperature of the etching solution is controlled to a desired temperature (for example, 70 ⁇ 1 ° C.) by PID (Proportional Integral Differential) by a thermometer 6 and a heater 7 disposed in the overflow receiving unit 5.
- PID Proportional Integral Differential
- the etching solution returned from the overflow receiving unit 5 to the pump 8 passes through the filter 4 and is again controlled to a desired temperature by the heater 7 and enters the chemical solution tank 1.
- a clean air downflow as shown by the white arrow b is formed, and the exhaust on the side wall side and the lower part passes through the periphery of the chemical tank 1. It is structured to be discharged to the main exhaust through the duct 10.
- the heat insulation wall part 2 is provided around the tank main-body part 15, and the hollow layer 13 is formed between the heat insulation wall part 2 and the side wall of the tank main-body part 15 by this.
- the hollow layer 13 can reduce heat radiation from the side wall surface of the tank body 15 and improve temperature uniformity in the side wall of the tank body 15 by causing air convection in the hollow layer. Can do.
- Etching using such a chemical bath 1 reduces the temperature deviation of the etching solution 16 in the chemical bath 1 and thereby etching (cleaning) with extremely high removal allowance both within the wafer surface and between wafers. )It can be performed. That is, it is possible to maintain film thickness uniformity after etching.
- the heat retention of the hollow layer 13 can also be improved by making the surface of the heat insulating wall 2 a sandblast surface.
- the heat insulating wall portion 2 can be configured to extend downward from the overflow receiving portion 5. Since it is easy to radiate heat from the side wall surface of the tank main body 15 below the overflow receiving portion 5, the heat insulating wall portion 2 can be suitably provided at this location.
- the bottom surface of the overflow receiving part 5 is preferably located above the upper end of the immersed semiconductor wafer 3, and the lower end of the heat insulating wall part 2 is preferably located below the lower end of the immersed semiconductor wafer 3.
- the lower portion of the heat insulating wall 2 is open. With the above configuration, low-temperature air accumulated in the lower part of the heat insulating wall 2 can be released.
- the heat insulating wall portion 2 is provided without breaks around the tank body portion 15, and thereby the temperature of the side wall surface of the tank body portion 15 regardless of the environment around the tank body portion 15. It has a configuration that can maintain good uniformity.
- FIG. 4 shows a schematic sectional view of a chemical bath (cleaning bath) 21 of the second embodiment used in the etching process.
- the chemical solution tank (cleaning tank) 21 of the second embodiment is provided with a rectifying plate 14 that forms an air flow path in the lower part of the heat insulating wall 2, and therefore the chemical solution tank (cleaning) of the first embodiment. Tank) is different from 1.
- the rectifying plate 14 is preferably provided below the lower end of the immersed semiconductor wafer 3. With the above configuration, the temperature uniformity of the etching solution (cleaning solution) 16 around the entire immersed semiconductor wafer 3 can be further improved.
- the heat insulating wall portion 2 and the rectifying plate 14 are provided without breaks around the tank body 15, so that regardless of the environment around the tank body 15, The temperature uniformity of the side wall surface can be kept good.
- FIG. 1 By sealing the lower part of the heat insulating wall part, heat radiation from the lower part of the heat insulating wall part can be suppressed, and by providing the air vent hole, damage to the heat insulating wall part due to the expansion of air can be prevented.
- SC1 which is a mixed aqueous solution of ammonia water and hydrogen peroxide water and has a silicon etching action as the etchant.
- SC1 is highly effective because it is frequently used in the manufacturing process of SOI wafers using the ion implantation separation method in order to remove particles and organic contamination.
- the temperature is preferably adjusted to a predetermined temperature (for example, 70 ° C.) within the range of 50 ° C. or higher and 80 ° C. or lower. If the temperature of etching liquid is 50 degreeC or more, an etching rate is moderate and it will not take too much time for film thickness adjustment. Moreover, if the temperature of the etching solution is 80 ° C. or lower, the etching rate is not too high, which is suitable for adjusting the film thickness.
- a predetermined temperature for example, 70 ° C.
- the whole etching process (cleaning process) in the manufacturing method of the bonded wafer of this invention is performed by the cleaning line like FIG. 2, for example.
- A is a load area
- B is a first wash area (alkali)
- C is a second wash area (acid)
- D is a dry area
- E is an unload area.
- the chemical solution tank 1 in FIG. 1 is etched using an alkaline etching solution such as SC1 and then rinsed in the rinse tank 11 and the rinse tank 12.
- the etching solution is an acidic etching solution such as SC2 (a mixed aqueous solution of hydrochloric acid and hydrogen peroxide solution that does not etch silicon).
- SC2 a mixed aqueous solution of hydrochloric acid and hydrogen peroxide solution that does not etch silicon.
- the etching process in the method for manufacturing a bonded wafer of the present invention can be applied to an etching process (cleaning process) of a general mirror polished wafer (PW wafer). Since it is managed in the order of ⁇ m, even if the etching process in the method for manufacturing a bonded wafer of the present invention intended to strictly adjust the machining allowance of less than nm is obtained, there are few effects.
- the film thickness of the thin film can be adjusted extremely uniformly. Bonded wafers that require thickness uniformity can be manufactured with high yield.
- Wafers (structures in which a buried oxide film layer made of SiO 2 and an SOI layer made of a silicon single crystal layer are sequentially laminated on a base wafer made of a silicon single crystal wafer having a diameter of 300 mm) are repeatedly washed between wafers or between wafers. An experiment was conducted to investigate the allowance in the plane.
- FIG. 6 is a graph comparing the machining allowance between one batch of wafers.
- the average machining allowance at each slot position of the wafer carrier on which 25 SOI wafers are arranged obtained by measuring the entire SOI layer thickness before and after cleaning).
- the average value of the machining allowance From the graph of FIG. 6, it was found that the allowance for the wafer arranged on the drive area side (main exhaust side) in the wafer carrier is small. That is, it is estimated that the liquid temperature on the driving area side (main exhaust side) of the chemical tank is relatively low.
- FIG. 7 shows a graph in which measurement is performed at the R / 2 position (R: radius) to the left and right (see FIG. 8) and the average machining allowance at both measurement positions is calculated and plotted. From the graph of FIG. 7, it was found that the average allowance on the half surface on the rinse tank side was less than that on the load area side. That is, it is estimated that the liquid temperature on the rinsing tank side is relatively low.
- [Used wafer] Fabricated by ion implantation delamination method (using silicon single crystal wafer as bond wafer and base wafer), sacrificial oxidation treatment and planarization heat treatment are performed after delamination, SOI layer average film thickness is 90 nm, film thickness range (in wafer plane) ) 25 SOI wafers (diameter 300 mm, crystal orientation ⁇ 100>) adjusted to 1.0 nm ( ⁇ 0.5 nm) were used. Note that the film thickness range (maximum-minimum) between the wafers in the batch of these 25 SOI wafers is also adjusted to 1.0 nm.
- the tolerance in the batch and the average machining allowance range after the cleaning with SC1 was repeated 6 times were as small as 0.06 nm and 0.03 nm, respectively.
- the film thickness uniformity within the film thickness range of 1.0 nm ( ⁇ 0.5 nm) was maintained substantially between the wafers and within the wafer surface.
- the batch allowance tolerance and the average allowance range were as large as 0.39 nm and 0.40 nm, respectively, and the film thickness range deteriorated to about 1.4 nm between the wafers and within the wafer surface. .
- the film thickness of the thin film As described above, if the film thickness of the thin film (SOI layer) is adjusted using the cleaning tank of the present invention, the film thickness can be adjusted extremely uniformly. It became clear that bonded wafers with uniformity maintained can be manufactured with high yield.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Weting (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
前記断熱壁部は切れ目なく前記槽本体部を囲っていて、前記断熱壁部と前記槽本体部の側壁との間に中空層が形成されているものであることを特徴とする半導体ウェーハの洗浄槽を提供する。
オーバーフロー受部から下方では、槽本体部の壁面から放熱しやすいので、この箇所に断熱壁部を好適に設けることができる。
上記の構成により、浸漬された半導体ウェーハ全体の周囲の洗浄液の温度均一性をより向上させることができる。
上記の構成により、断熱壁部の下部に溜まった低温の空気を逃がすことができる。
断熱壁部の下部を封鎖することで、断熱壁部の下部からの放熱を抑制することができ、空気抜き孔を設けることで、空気の膨張による断熱壁部の破損を防止することができる。
断熱壁部の下部に流路を形成する整流板を設けることで、流路の表面積を増加させて保温性を高めることができる。
上記の構成により、浸漬された半導体ウェーハ全体の周囲の洗浄液の温度均一性をより向上させることができる。
ボンドウェーハとしてシリコンウェーハを好適に用いることができる。
また、アンモニア水と過酸化水素水の混合水溶液は、パーティクルや有機物汚染の除去能力が高いため、エッチング液として好適に用いることができる。
エッチング液の温度が50℃以上であれば、エッチング速度が適度であり、膜厚調整に時間がかかりすぎない。また、エッチング液の温度が80℃以下であれば、エッチング速度が大きすぎないため、膜厚調整を行うのに適している。
なお、本明細書では貼り合わせウェーハとして、シリコンウェーハを用いて作製するSOIウェーハを例に挙げて説明するが、本発明の「貼り合わせウェーハ」はSOIウェーハにも、シリコンウェーハにも限定されない。
例えば、SiGeウェーハや化合物半導体、その他のウェーハを、シリコン、石英、Al2O3等と貼り合わせる場合が挙げられる。この場合、貼り合わせるボンドウェーハには絶縁膜はあってもなくてもよい。また、エッチング液は、形成された薄膜をエッチングできるものであればよく、用いるボンドウェーハに合せて適宜選択すればよい。
減厚加工は、温度調節されたエッチング液を満たした本発明の洗浄槽(薬液槽)に剥離後の貼り合わせウェーハを浸漬して薄膜をエッチングすることによって行うが、本発明ではこのとき薬液槽の周囲を中空層を有する断熱壁部で囲った状態でエッチングを行う。
エッチング工程に用いられる第1の実施形態の薬液槽(洗浄槽)1の概略断面図を図1に示す。
薬液槽1内には剥離後の貼り合わせウェーハ3が配置されており、SC1等のエッチング液(洗浄液)16は図1右側の駆動エリアのポンプ8の作用により図1中の実線矢印aのように循環され、エッチングが行われる。
一方、本発明では槽本体部15の周囲に断熱壁部2を設けており、これにより、断熱壁部2と槽本体部15の側壁との間に中空層13が形成される。この中空層13によって槽本体部15の側壁面からの放熱を低減させることができるとともに、中空層内で空気の対流が起こることで槽本体部15の側壁面内の温度均一性を向上させることができる。
このような薬液槽1を用いてエッチングを行うことで、薬液槽1内のエッチング液16の温度の偏りを低減し、これによりウェーハ面内、ウェーハ間ともに取り代均一性が極めて高いエッチング(洗浄)を行うことができる。すなわち、エッチング後も膜厚均一性を維持することが可能となる。
オーバーフロー受部5から下方では、槽本体部15の側壁面から放熱しやすいので、この箇所に断熱壁部2を好適に設けることができる。
上記の構成により、浸漬された半導体ウェーハ3の全体の周囲のエッチング液(洗浄液)16の温度均一性をより向上させることができる。
上記の構成により、断熱壁部2の下部に溜まった低温の空気を逃がすことができる。
エッチング工程に用いられる第2の実施形態の薬液槽(洗浄槽)21の概略断面図を図4に示す。
第2の実施形態の薬液槽(洗浄槽)21は、断熱壁部2の下部に空気の流路を形成する整流板14が設けられている点で、第1の実施形態の薬液槽(洗浄槽)1と異なっている。
上記の構成により、浸漬された半導体ウェーハ3の全体の周囲のエッチング液(洗浄液)16の温度均一性をより向上させることができる。
断熱壁部の下部を封鎖することで、断熱壁部の下部からの放熱を抑制することができ、空気抜き孔を設けることで、空気の膨張による断熱壁部の破損を防止することができる。
SC1はパーティクルや有機物汚染を除去するため、イオン注入剥離法を用いたSOIウェーハの製造工程において頻繁に用いられるため効果が高い。
エッチング液の温度が50℃以上であれば、エッチング速度が適度であり、膜厚調整に時間がかかりすぎない。また、エッチング液の温度が80℃以下であれば、エッチング速度が大きすぎないため、膜厚調整を行うのに適している。
図2中のAはロードエリア、Bは第一洗浄エリア(アルカリ)、Cは第二洗浄エリア(酸)、Dは乾燥エリア、Eはアンロードエリアである。Bの第一洗浄エリア(アルカリ)では、上述の図1の薬液槽1にSC1等のアルカリ性のエッチング液を用いてエッチング後、リンス槽11、リンス槽12でリンスする。Cの第二洗浄エリア(酸)では、エッチング液をSC2(塩酸と過酸化水素水の混合水溶液でシリコンのエッチング作用なし)等の酸性のエッチング液として第一洗浄エリアと同様にエッチング及びリンスを行う。
なお、上述の図1は、図2中の矢印方向から見た薬液槽1の概略断面図である。
上述のように、図1中のクリーンエアーと薬液槽1や図2中のリンス槽11などの間で熱交換が行われるため、薬液槽の周囲や薬液中に微量の温度分布が生じ、ウェーハ面内やウェーハ間の取り代に微小な差異が生ずるものと推定される。
洗浄(エッチング)中の薬液中の微小な温度差(ウェーハ間、ウェーハ面内)の測定は困難であるため、図2のBで示される第一洗浄エリアにおいて、1バッチ(25枚)のSOIウェーハ(直径300mmのシリコン単結晶ウェーハからなるベースウェーハ上にSiO2からなる埋め込み酸化膜層とシリコン単結晶層からなるSOI層が順次積層された構造)の繰り返し洗浄を行って、ウェーハ間やウェーハ面内の取り代を調査する実験を行った。
図6のグラフから、ウェーハキャリア内において、駆動エリア側(メイン排気側)に配置されたウェーハの取り代が少ないことがわかった。すなわち、薬液槽の駆動エリア側(メイン排気側)の液温が相対的に低いことが推定される。
図7のグラフから、ロードエリア側の半面に比べ、リンス槽側の半面の平均取り代が少ないことがわかった。すなわち、リンス槽側の液温が相対的に低いことが推定される。
図2の洗浄ラインの第一洗浄エリアB(図1の洗浄ラインの洗浄エリア)を用い、断熱壁部2を有する本発明の第1の実施形態の洗浄槽1を用いた場合(実施例)と、断熱壁部のない従来の洗浄槽を用いた場合(比較例)で1バッチ(25枚)のSOIウェーハを繰り返し洗浄(エッチング)し、取り代を比較した。
(洗浄フロー)
SC1(75±1℃)→リンス(25℃)→リンス(25℃)を6回繰り返した。
(洗浄槽)
材質:透明石英、厚さ3mm(槽本体部、オーバーフロー受部、断熱壁部共通)
構造:
(オーバーフロー受部)
洗浄用ウェーハの上端より30mm上の位置に底部を配置した。
(断熱壁)
洗浄用ウェーハの下端より30mm下の位置まで設けた。
イオン注入剥離法(ボンドウェーハ及びベースウェーハとしてシリコン単結晶ウェーハを使用)により作製され、剥離後に犠牲酸化処理及び平坦化熱処理を行い、SOI層の平均膜厚が90nm、膜厚レンジ(ウェーハ面内)が1.0nm(±0.5nm)に調整されたSOIウェーハ25枚(直径300mm、結晶方位<100>)を使用した。なお、この25枚のSOIウェーハは、バッチ内のウェーハ間の膜厚レンジ(最大-最小)も1.0nmに調整されている。
ADE社製Acumapにより周辺3mmを除外した全面(4237点)を測定した。
Claims (10)
- 半導体ウェーハを洗浄液に浸漬して洗浄する半導体ウェーハの洗浄槽であって、
石英からなり、前記洗浄液を貯留し、複数の前記半導体ウェーハを前記洗浄液中に浸漬する槽本体部と、
石英からなり、前記槽本体部の開口部の周囲に設けられ、前記槽本体部の開口部上端からオーバーフローした前記洗浄液を受けるオーバーフロー受部と、
前記槽本体部の周囲に設けられている断熱壁部と
を備え、
前記断熱壁部は切れ目なく前記槽本体部を囲っていて、前記断熱壁部と前記槽本体部の側壁との間に中空層が形成されているものであることを特徴とする半導体ウェーハの洗浄槽。 - 前記断熱壁部は、前記オーバーフロー受部から下方に延在しているものであることを特徴とする請求項1に記載の半導体ウェーハの洗浄槽。
- 前記オーバーフロー受部の底面は、前記浸漬された半導体ウェーハの上端よりも上方に位置し、
前記断熱壁部の下端は、前記浸漬された半導体ウェーハの下端よりも下方に位置することを特徴とする請求項1又は請求項2に記載の半導体ウェーハの洗浄槽。 - 前記断熱壁部の下部は開放されていることを特徴とする請求項1から請求項3のいずれか一項に記載の半導体ウェーハの洗浄槽。
- 前記断熱壁部の下部は封鎖され、前記断熱壁部には空気抜き孔が設けられていることを特徴とする請求項1から請求項3のいずれか一項に記載の半導体ウェーハの洗浄槽。
- 前記断熱壁部の下部に、整流板が設けられていることを特徴とする請求項1から請求項3のいずれか一項に記載の半導体ウェーハの洗浄槽。
- 前記整流板は、前記浸漬された半導体ウェーハの下端より下方に設けられていることを特徴とする請求項6に記載の半導体ウェーハの洗浄槽。
- ボンドウェーハの表面に、水素イオン及び希ガスイオンから選ばれる一種類以上のガスイオンをイオン注入して前記ボンドウェーハ内部にイオン注入層を形成し、前記ボンドウェーハのイオン注入した表面とベースウェーハの表面とを直接又は絶縁膜を介して貼り合わせた後、前記イオン注入層を剥離面としてボンドウェーハを剥離することにより、前記ベースウェーハ上に薄膜を有する貼り合わせウェーハを作製した後、前記薄膜の減厚加工を行う貼り合わせウェーハの製造方法であって、
前記減厚加工を行う工程は、温度調節されたエッチング液を満たした薬液槽に前記貼り合わせウェーハを浸漬して前記薄膜をエッチングすることによって前記薄膜の膜厚調整を行うエッチング段階を含み、
前記エッチング段階において、前記薬液槽として請求項1から請求項7のいずれか一項の半導体ウェーハの洗浄槽を用いて、前記薄膜をエッチングすることを特徴とする貼り合わせウェーハの製造方法。 - 前記ボンドウェーハとしてシリコンウェーハを用い、前記エッチング液としてアンモニア水と過酸化水素水の混合水溶液を用いることを特徴とする請求項8に記載の貼り合わせウェーハの製造方法。
- 前記温度調節は、50℃以上、80℃以下の温度に調節することを特徴とする請求項8又は請求項9に記載の貼り合わせウェーハの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167019905A KR102299150B1 (ko) | 2014-01-27 | 2015-01-13 | 반도체 웨이퍼의 세정조 및 접합 웨이퍼의 제조방법 |
US15/111,356 US20160336188A1 (en) | 2014-01-27 | 2015-01-13 | Semiconductor-wafer cleaning tank and method of manufacturing bonded wafer |
CN201580005338.9A CN105934814B (zh) | 2014-01-27 | 2015-01-13 | 半导体晶圆的清洗槽及贴合晶圆的制造方法 |
EP15740594.5A EP3101683B1 (en) | 2014-01-27 | 2015-01-13 | Semiconductor-wafer cleaning tank and method for manufacturing bonded wafer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014012267A JP6090184B2 (ja) | 2014-01-27 | 2014-01-27 | 半導体ウェーハの洗浄槽及び貼り合わせウェーハの製造方法 |
JP2014-012267 | 2014-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015111383A1 true WO2015111383A1 (ja) | 2015-07-30 |
Family
ID=53681198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/000102 WO2015111383A1 (ja) | 2014-01-27 | 2015-01-13 | 半導体ウェーハの洗浄槽及び貼り合わせウェーハの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20160336188A1 (ja) |
EP (1) | EP3101683B1 (ja) |
JP (1) | JP6090184B2 (ja) |
KR (1) | KR102299150B1 (ja) |
CN (1) | CN105934814B (ja) |
TW (1) | TWI601185B (ja) |
WO (1) | WO2015111383A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6735718B2 (ja) * | 2017-09-28 | 2020-08-05 | 東京エレクトロン株式会社 | 基板処理装置、基板処理方法およびプログラム |
CN110756513A (zh) * | 2019-09-19 | 2020-02-07 | 上海提牛机电设备有限公司 | 一种以声波作为动能的晶圆清洗装置 |
KR20210079446A (ko) * | 2019-12-19 | 2021-06-30 | 삼성디스플레이 주식회사 | 박리 장치 및 그를 이용한 표시 장치의 제조 방법 |
CN111659665B (zh) * | 2020-05-29 | 2022-02-01 | 徐州鑫晶半导体科技有限公司 | 硅片的清洗方法及硅片的清洗设备 |
CN114361062A (zh) * | 2020-10-14 | 2022-04-15 | 张家港市超声电气有限公司 | 气泡处理装置 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62284140A (ja) * | 1986-05-30 | 1987-12-10 | Tsugio Morozumi | 浴槽 |
JPH05211128A (ja) | 1991-09-18 | 1993-08-20 | Commiss Energ Atom | 薄い半導体材料フィルムの製造方法 |
JPH10311653A (ja) * | 1997-05-14 | 1998-11-24 | Satake Eng Co Ltd | 低温貯蔵倉庫 |
JPH11307472A (ja) | 1998-04-23 | 1999-11-05 | Shin Etsu Handotai Co Ltd | 水素イオン剥離法によってsoiウエーハを製造する方法およびこの方法で製造されたsoiウエーハ |
JP2000124092A (ja) | 1998-10-16 | 2000-04-28 | Shin Etsu Handotai Co Ltd | 水素イオン注入剥離法によってsoiウエーハを製造する方法およびこの方法で製造されたsoiウエーハ |
JP2000173976A (ja) | 1998-12-02 | 2000-06-23 | Mitsubishi Electric Corp | 半導体装置の製造方法 |
JP2001023952A (ja) * | 1999-03-30 | 2001-01-26 | Tokyo Electron Ltd | エッチング方法及びエッチング装置 |
JP2002331430A (ja) * | 2001-05-07 | 2002-11-19 | Takamatsu Machinery Co Ltd | 工作機械 |
WO2003009386A1 (fr) | 2001-07-17 | 2003-01-30 | Shin-Etsu Handotai Co.,Ltd. | Procede de production de plaquettes de liaison |
JP2004311526A (ja) | 2003-04-02 | 2004-11-04 | Sumitomo Mitsubishi Silicon Corp | 半導体基板およびその製造方法 |
JP2004343013A (ja) * | 2003-05-19 | 2004-12-02 | Shin Etsu Handotai Co Ltd | シリコン材料のエッチング方法 |
JP2012015490A (ja) * | 2010-05-31 | 2012-01-19 | Tokyo Electron Ltd | 基板処理装置、基板処理方法、およびこの基板処理方法を実行するためのコンピュータプログラムが記録された記録媒体 |
JP2013125909A (ja) | 2011-12-15 | 2013-06-24 | Shin Etsu Handotai Co Ltd | Soiウェーハの製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0286877A (ja) * | 1988-06-27 | 1990-03-27 | Nippon Denso Co Ltd | 洗浄装置 |
JPH0449619A (ja) * | 1990-06-18 | 1992-02-19 | Shimada Phys & Chem Ind Co Ltd | 超音波洗浄槽 |
JP2902757B2 (ja) * | 1990-09-14 | 1999-06-07 | 株式会社東芝 | 半導体ウェハの洗浄方法 |
JP2001217219A (ja) * | 2000-01-31 | 2001-08-10 | Tokyo Electron Ltd | 液処理方法及び液処理装置 |
WO2004038776A1 (ja) * | 2002-10-25 | 2004-05-06 | Tokyo Electron Limited | 熱処理装置及び熱処理方法 |
US7415985B2 (en) * | 2003-09-24 | 2008-08-26 | Dainippon Screen Mfg. Co., Ltd. | Substrate cleaning and drying apparatus |
CN100380607C (zh) * | 2004-09-09 | 2008-04-09 | 旺宏电子股份有限公司 | 蚀刻氮化硅薄膜的设备及方法 |
JP4705517B2 (ja) * | 2006-05-19 | 2011-06-22 | 東京エレクトロン株式会社 | 基板洗浄方法、基板洗浄装置、プログラム、および記録媒体 |
TWI483350B (zh) * | 2008-03-21 | 2015-05-01 | Shinetsu Chemical Co | SOI wafer manufacturing method and glass cleaning method |
TW201005076A (en) * | 2008-07-31 | 2010-02-01 | Nihon Valqua Kogyo Kk | Process for regenerating a phosphoric acid-containing treatment liquid |
JP5522028B2 (ja) * | 2010-03-09 | 2014-06-18 | 東京エレクトロン株式会社 | 基板処理装置、基板処理方法及び記憶媒体 |
JP5724499B2 (ja) * | 2011-03-22 | 2015-05-27 | 凸版印刷株式会社 | ビルドアップ基板絶縁層の表面粗化装置 |
JP5799740B2 (ja) * | 2011-10-17 | 2015-10-28 | 信越半導体株式会社 | 剥離ウェーハの再生加工方法 |
-
2014
- 2014-01-27 JP JP2014012267A patent/JP6090184B2/ja active Active
-
2015
- 2015-01-13 EP EP15740594.5A patent/EP3101683B1/en active Active
- 2015-01-13 CN CN201580005338.9A patent/CN105934814B/zh active Active
- 2015-01-13 KR KR1020167019905A patent/KR102299150B1/ko active IP Right Grant
- 2015-01-13 US US15/111,356 patent/US20160336188A1/en not_active Abandoned
- 2015-01-13 WO PCT/JP2015/000102 patent/WO2015111383A1/ja active Application Filing
- 2015-01-22 TW TW104102129A patent/TWI601185B/zh active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62284140A (ja) * | 1986-05-30 | 1987-12-10 | Tsugio Morozumi | 浴槽 |
JPH05211128A (ja) | 1991-09-18 | 1993-08-20 | Commiss Energ Atom | 薄い半導体材料フィルムの製造方法 |
JPH10311653A (ja) * | 1997-05-14 | 1998-11-24 | Satake Eng Co Ltd | 低温貯蔵倉庫 |
JPH11307472A (ja) | 1998-04-23 | 1999-11-05 | Shin Etsu Handotai Co Ltd | 水素イオン剥離法によってsoiウエーハを製造する方法およびこの方法で製造されたsoiウエーハ |
JP2000124092A (ja) | 1998-10-16 | 2000-04-28 | Shin Etsu Handotai Co Ltd | 水素イオン注入剥離法によってsoiウエーハを製造する方法およびこの方法で製造されたsoiウエーハ |
JP2000173976A (ja) | 1998-12-02 | 2000-06-23 | Mitsubishi Electric Corp | 半導体装置の製造方法 |
JP2001023952A (ja) * | 1999-03-30 | 2001-01-26 | Tokyo Electron Ltd | エッチング方法及びエッチング装置 |
JP2002331430A (ja) * | 2001-05-07 | 2002-11-19 | Takamatsu Machinery Co Ltd | 工作機械 |
WO2003009386A1 (fr) | 2001-07-17 | 2003-01-30 | Shin-Etsu Handotai Co.,Ltd. | Procede de production de plaquettes de liaison |
JP2004311526A (ja) | 2003-04-02 | 2004-11-04 | Sumitomo Mitsubishi Silicon Corp | 半導体基板およびその製造方法 |
JP2004343013A (ja) * | 2003-05-19 | 2004-12-02 | Shin Etsu Handotai Co Ltd | シリコン材料のエッチング方法 |
JP2012015490A (ja) * | 2010-05-31 | 2012-01-19 | Tokyo Electron Ltd | 基板処理装置、基板処理方法、およびこの基板処理方法を実行するためのコンピュータプログラムが記録された記録媒体 |
JP2013125909A (ja) | 2011-12-15 | 2013-06-24 | Shin Etsu Handotai Co Ltd | Soiウェーハの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201539531A (zh) | 2015-10-16 |
CN105934814B (zh) | 2018-12-07 |
KR102299150B1 (ko) | 2021-09-07 |
JP2015141923A (ja) | 2015-08-03 |
EP3101683B1 (en) | 2021-06-16 |
CN105934814A (zh) | 2016-09-07 |
KR20160110397A (ko) | 2016-09-21 |
EP3101683A1 (en) | 2016-12-07 |
JP6090184B2 (ja) | 2017-03-08 |
TWI601185B (zh) | 2017-10-01 |
US20160336188A1 (en) | 2016-11-17 |
EP3101683A4 (en) | 2017-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4509488B2 (ja) | 貼り合わせ基板の製造方法 | |
US7790565B2 (en) | Semiconductor on glass insulator made using improved thinning process | |
WO2012153461A1 (ja) | 基板の一部に絶縁層を有する貼り合わせ基板の製造方法 | |
JP4828230B2 (ja) | Soiウェーハの製造方法 | |
US8383489B2 (en) | SOI wafer and method for forming the same | |
JP6090184B2 (ja) | 半導体ウェーハの洗浄槽及び貼り合わせウェーハの製造方法 | |
US9887095B2 (en) | System and method for an etch process with silicon concentration control | |
CN107615445B (zh) | 绝缘体上硅晶圆的制造方法 | |
JP6287920B2 (ja) | 貼り合わせウェーハの製造方法 | |
JPH11298009A (ja) | 半導体圧力センサの製造方法 | |
US20180033680A1 (en) | Substrate bonding method | |
WO2019087517A1 (ja) | 薄膜soi層を有するsoiウェーハの製造方法 | |
JP5443833B2 (ja) | 貼り合わせsoi基板の製造方法 | |
JP2015103661A (ja) | 貼り合わせウェーハの製造方法 | |
EP3029730B1 (en) | Bonded wafer manufacturing method | |
KR100738460B1 (ko) | 나노 에스오아이 웨이퍼의 제조방법 | |
JP2012234911A (ja) | 複合基板の製造方法 | |
US20230011691A1 (en) | Method for etching substrates comprising a thin surface layer, for improving the uniformity of thickness of said layer | |
KR100722523B1 (ko) | 웨이퍼 표면 식각 방법 | |
JP2000196048A (ja) | Soiウェ―ハの製造方法 | |
KR100713343B1 (ko) | 소자 분리막 형성 공정에서의 미세 파티클 검출 및 제거방법 | |
KR20090124571A (ko) | 반도체 소자의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15740594 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15111356 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167019905 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015740594 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015740594 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |