WO2015107630A1 - Protective circuit and battery unit - Google Patents
Protective circuit and battery unit Download PDFInfo
- Publication number
- WO2015107630A1 WO2015107630A1 PCT/JP2014/050522 JP2014050522W WO2015107630A1 WO 2015107630 A1 WO2015107630 A1 WO 2015107630A1 JP 2014050522 W JP2014050522 W JP 2014050522W WO 2015107630 A1 WO2015107630 A1 WO 2015107630A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- protection
- protection element
- stacks
- heating
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/003—Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/02—Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
- B60L1/04—Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line
- B60L1/06—Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line using only one supply
- B60L1/08—Methods and devices for control or regulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0007—Measures or means for preventing or attenuating collisions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/04—Cutting off the power supply under fault conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/12—Recording operating variables ; Monitoring of operating variables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/14—Preventing excessive discharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/15—Preventing overcharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/21—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/25—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/27—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/581—Devices or arrangements for the interruption of current in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/583—Devices or arrangements for the interruption of current in response to current, e.g. fuses
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00304—Overcurrent protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00308—Overvoltage protection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/34—Cabin temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/10—Driver interactions by alarm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/16—Driver interactions by display
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2200/00—Safety devices for primary or secondary batteries
- H01M2200/10—Temperature sensitive devices
- H01M2200/103—Fuse
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00302—Overcharge protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00306—Overdischarge protection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a protection circuit for preventing overcurrent and overvoltage of a battery unit using a protection element having a heating resistor and a fuse element provided on a substrate.
- HEV Hybrid Electric Vehicle
- EV Electric Vehicle
- a lithium ion secondary battery has been used from the viewpoint of energy density and output characteristics.
- a high voltage and a large current are required.
- dedicated cells that can withstand high voltages and large currents have been developed, but in many cases due to manufacturing cost problems, it is necessary to connect multiple battery cells in series and in parallel to use general-purpose cells. Secures the correct voltage and current.
- Lithium ion secondary batteries have excellent characteristics, but it is essential to manage charge / discharge characteristics. If abnormal battery cells are treated normally, there is a risk of ignition and explosion. Absent. Therefore, when there are a plurality of battery cells, the voltage balance between the cells becomes important, and when abnormal cells are included, other normal cells are also affected and correct charging / discharging is not performed. .
- BMS Battery Management System
- the present invention provides a protection circuit and a battery unit that can prevent a situation in which the entire circuit is cut off and supply necessary electric power while ensuring safety of the entire circuit when an abnormality occurs in a battery cell or the like.
- the purpose is to provide.
- a protection circuit includes a protection circuit in which a plurality of battery stacks in which a plurality of battery cells are connected in series are connected in parallel, and each battery stack includes a heating resistor.
- a protective element comprising a body and a soluble conductor that constitutes a part of a current path for charging or discharging and is melted by heat or self-heating of the heating resistor is incorporated.
- the battery unit according to the present invention is a battery unit in which a plurality of battery stacks in which a plurality of battery cells are connected in series are connected in parallel, and each of the battery stacks includes a heating resistor and a charge or discharge.
- a protection element that includes a part of the current path and includes a fusible conductor that is melted by heat or self-heating of the heating resistor is incorporated, and the plurality of battery stacks are individually provided for each battery stack. By being controlled, only the battery stack having the battery cell in which an abnormality has occurred is removed from the circuit.
- the protection element of the battery stack in which the abnormal battery cell is incorporated is fused to remove the battery stack from the charge / discharge path and Power can be supplied by the battery stack.
- a protective element comprising a heating resistor and a soluble conductor that forms part of a current path for charging or discharging and is melted by heat or self-heating of the heating resistor as the protection element. Since it is used, the battery stack can be irreversibly cut off from the circuit by melting the fusible conductor.
- a trigger for generating heat from the heating resistor can be set in addition to the overvoltage, and the battery stack is cut off from the current path when necessary according to the device driven by the battery. be able to.
- FIG. 1 is a diagram showing a battery unit in which a protection circuit to which the present invention is applied is formed.
- 2A is a cross-sectional view illustrating the configuration of the protection element
- FIG. 2B is a plan view illustrating the configuration of the protection element.
- FIG. 3 is a circuit diagram of the protection element.
- FIG. 4 is a diagram illustrating a configuration example of the battery stack.
- FIG. 5 is a diagram illustrating another configuration example of the battery stack.
- FIG. 6 is a diagram illustrating another configuration example of the battery stack.
- FIG. 7 is a diagram illustrating another configuration example of the battery stack.
- FIG. 8 is a diagram illustrating another configuration example of the battery stack.
- the protection circuit 1 to which the present invention is applied has a plurality of battery stacks 3 in which a plurality of battery cells 2 are connected in series, and the battery stacks 3 are connected in parallel. Yes.
- Each battery stack 3 includes a protection element 5, a detection element 6 for detecting an abnormal voltage of each battery cell 2, and charging / discharging in the battery stack 3, and according to a detection result of the detection element 6.
- a BMS control element 7 for driving the protection element 5 is incorporated.
- Each battery stack 3 includes a switch 8 that switches between a charging mode and a discharging mode, a charging diode 9 that flows a charging current in the charging mode, and a discharging diode 10 that flows a discharging current in the discharging mode.
- the protective element 5 is composed of a fuse element having a function of interrupting a current path by a signal from the control element 7 in order to safely shut off the output of the battery stack 3, and a fuse element constituting a part of the current path is blown out. By doing so, the current path of the battery stack 3 is irreversibly cut off.
- the protective element 5 includes an insulating substrate 11, a heating resistor 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11.
- the rectangular insulating substrate 11 is formed of an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
- an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
- the material used for printed wiring boards such as a glass epoxy board
- the heating resistor 14 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
- the insulating member 15 is disposed so as to cover the heating resistor 14, and the heating element extraction electrode 16 is disposed so as to face the heating resistor 14 through the insulating member 15.
- an insulating member 15 may be laminated between the heating resistor 14 and the insulating substrate 11.
- One end of the heating element extraction electrode 16 is connected to the heating element electrode 18 (P1).
- the other end of the heating resistor 14 is connected to the other heating element electrode 18 (P2).
- the fusible conductor 13 is made of a low-melting-point metal that is quickly melted by the heat generated by the heating resistor 14 or the self-heating of the fusible conductor 13, and for example, Pb-free solder containing Sn as a main component can be suitably used.
- the soluble conductor 13 may be a laminate of a low melting point metal and a high melting point metal such as Ag, Cu, or an alloy containing these as a main component.
- the soluble conductor 13 does not lead to fusing.
- a soluble conductor 13 may be formed by depositing a low melting point metal on a high melting point metal by using a plating technique, or may be formed by using another known lamination technique or film forming technique.
- the fusible conductor 13 can be solder-connected to the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) using a low melting point metal constituting the outer layer.
- the protective element 5 may be coated with a flux 17 on almost the entire surface of the soluble conductor 13 in order to prevent oxidation of the outer low melting point metal layer 13b. Further, the protection element 5 may place the cover member 19 on the insulating substrate 11 in order to protect the inside.
- the protective element 5 to which the present invention as described above is applied has a circuit configuration as shown in FIG.
- the protective element 5 generates heat by melting the soluble conductor 13 by energizing the fusible conductor 13 connected in series via the heating element lead electrode 16 and the connecting point of the fusible conductor 13 to generate heat.
- This is a circuit configuration including the resistor 14.
- the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating resistor 14 is connected to the BMS control element 7.
- One of the two electrodes 12 of the protective element 5 is connected to A1, and the other is connected to A2.
- the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
- the sensing element 6 detects the voltage of each battery cell 2.
- the BMS control element 7 energizes the heating element electrode 18 according to the detection result of the detection element 6, and melts the soluble conductor 13 of the protection element 5.
- the protection element 5 can cut off the current path by melting the fusible conductor 13 by self-heating even when an overcurrent occurs due to an abnormality in the battery cell 2.
- the protection element 5 may detect an overcurrent with the detection element 6, cause the heating resistor 14 to generate heat with the BMS control element 7, and melt the soluble conductor 13.
- the protection element 5 since the soluble conductor 13 is blown by the heat of the heating resistor 14 or by self-heating, the protection element 5 can irreversibly cut off the current path and is not affected by abnormal circuit operation. . Therefore, the function as a protection element can be realized reliably.
- the protection element 5 does not operate only with an overcurrent like a so-called fuse-type protection element, and can be activated by an abnormal voltage or other factors described later, and can cope with any situation. Can do. Further, unlike the electrical switch type protection element, the protection element 5 does not require power to maintain the current path interruption state, and can reliably maintain the interruption state.
- the battery stack 3 is a series of battery cells 2 that need to be controlled to protect against overcharge and overdischarge states.
- the battery stack 3 is connected in parallel with other battery stacks 3 via a positive terminal 3a and a negative terminal 3b.
- a connected battery unit 20 is configured.
- the battery unit 20 is detachably connected to the charging device 25, and a charging voltage from the charging device 25 is applied thereto.
- the battery unit 20 charged by the charging device 25 can operate the electronic device, EV, and the like by supplying power to the electronic device, EV, and the like that operate on the battery.
- the battery unit 20 is provided with a protection element 5 in a part of a current path where the battery stacks 3 are connected in parallel.
- the protection element 5 is connected to a BMS control element (not shown) for uniformly controlling charging / discharging of the entire battery unit 20 and forcibly blocks the charging / discharging path of the entire battery unit 20.
- a conventional battery cell 2 can be used to constitute a HEV or EV battery that requires a large current and a high voltage.
- the protection element 5 of the battery stack 3 in which the abnormal battery cell is incorporated is melted to fill the battery stack 3. In addition to being removed from the discharge path, power can be supplied by the remaining battery stack 3.
- the battery unit 20 can supply driving force for moving to a repair shop or a safe place or driving force for a hazard lamp or an air conditioner even when an abnormality of the battery system occurs during traveling. .
- each battery stack 3 can be provided with one protective element 5 at the output end of the current path.
- the heating element electrode 18 of the protection element 5 is energized by the BMS control element 7.
- the heat generating resistor 14 of the protection element 5 generates heat and the soluble conductor 13 is melted and removed from the current path of the battery unit 20. Therefore, the battery unit 20 can prevent charging / discharging of the battery stack 3 and can prevent abnormal heat generation and the like.
- the battery unit 20 supplies driving force for moving to a repair shop or a safe place, or driving power for hazard lamps or air conditioners when an abnormality occurs in the battery system during EV or HEV traveling. it can.
- the protection element 5 may be connected between the battery cells 2 as shown in FIG. 5. According to the battery stack 3 shown in FIG. 5, the protective element 5 at a location close to the battery cell 2 in which an abnormality has occurred can be fused, and charging / discharging of the battery cell 2 in which an abnormality has occurred can be reliably prevented, The influence on the other battery cell 2 adjacent to the abnormal cell can be suppressed.
- each battery stack 3 may be provided with one protection element 5 corresponding to one battery cell 2, and the battery cells 2 and the protection elements 5 may be alternately connected. Even with this configuration, the protective element 5 close to the abnormal cell can be fused.
- the protection elements 5 may be connected to each battery stack 3 before and after each battery cell 2.
- the battery stack 3 shown in FIG. 6 can physically separate the abnormal cell from the current path of the battery stack 3 by fusing the protective elements 5 connected before and after the abnormal battery cell 2. . Therefore, according to the battery stack 3, charging / discharging of the battery cell 2 in which an abnormality has occurred can be prevented more reliably, and the influence on the other battery cells 2 adjacent to the abnormal cell can be reliably suppressed.
- each battery stack 3 may have a protective element 5 connected between the switch 8 and the charging diode 9.
- the battery stack 3 shown in FIG. 7 can be physically separated from the current path in the charging mode by fusing the protective element 5 connected between the switch 8 and the charging diode 9. Therefore, according to the battery stack 3, the battery cell 2 in which an abnormality has occurred is prevented from being charged, but can be discharged by the switch 8.
- each battery stack 3 may be configured such that the protection element 5 is connected to the current paths in the charge mode and the discharge mode.
- the battery stack 3 shown in FIG. 8 is removed from the current path of the battery unit 20 by fusing the protective element 5 in the same manner as the battery stack 3 shown in FIG. Therefore, the battery unit 20 can prevent charging / discharging of the battery stack 3 and can prevent abnormal heat generation and the like.
- the protection element 5 is blown by detecting an abnormal voltage of the battery cell 2 in the battery stack 3, and the battery stack 3 is separated from the current path. However, the protection element 5 is blown.
- Various triggers can be set according to the device side on which the battery unit 20 is mounted.
- BMS A command may be transmitted to the control element 7 so that the protection element 5 of each battery stack 3 is melted to interrupt the current path.
- the protection element 5 is melted and disconnected from the current path. It may be.
- the protection element 5 of each battery stack 3 is blown out in the event of a fire, collapse due to a large-scale earthquake, or submergence due to a tsunami. You may make it interrupt.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Protection Of Static Devices (AREA)
- Secondary Cells (AREA)
Abstract
When an abnormality occurs in a battery cell or the like, the present invention supplies the necessary power and prevents the entire circuit from being broken, while ensuring the safety of the entire circuit. A protective circuit (1) obtained by connecting in parallel a plurality of battery stacks (3) in which a plurality of battery cells (2) are connected in series, wherein each of the battery stacks (2) incorporates a protective element (5) provided with a heating resistor (14), and a soluble conductor (13) which constitutes part of the charging or discharging current path, and which fuses as a result of self-produced heat or heat from the heating resistor (14).
Description
本発明は、基板上に発熱抵抗体とヒューズエレメントを設けた保護素子を用いて、バッテリユニットの過電流や過電圧を防止する保護回路に関する。
The present invention relates to a protection circuit for preventing overcurrent and overvoltage of a battery unit using a protection element having a heating resistor and a fuse element provided on a substrate.
近年、バッテリとモーターを使用したHEV(Hybrid Electric Vehicle)やEV(Electric Vehicle)が急速に普及している。HEVやEVの動力源としては、エネルギー密度と出力特性からリチウムイオン二次電池が使用されるようになってきている。自動車用途では、高電圧、大電流が必要とされる。このため、高電圧、大電流に耐えられる専用セルが開発されているが、製造コスト上の問題から多くの場合、複数のバッテリセルを直列、並列に接続することで、汎用セルを用いて必要な電圧電流を確保している。
In recent years, HEV (Hybrid Electric Vehicle) and EV (Electric Vehicle) using a battery and a motor are rapidly spreading. As a power source for HEV and EV, a lithium ion secondary battery has been used from the viewpoint of energy density and output characteristics. In automobile applications, a high voltage and a large current are required. For this reason, dedicated cells that can withstand high voltages and large currents have been developed, but in many cases due to manufacturing cost problems, it is necessary to connect multiple battery cells in series and in parallel to use general-purpose cells. Secures the correct voltage and current.
リチウムイオン二次電池は優れた特性を持っているが、充放電特性の管理が不可欠で、異常なバッテリセルに対して通常通りの処理をしていると、発火や爆発といった危険を発生しかねない。したがって、バッテリセルが複数になると、セル間の電圧バランスが重要となり、異常なセルが含まれると、そのほかの正常なセルにも影響を与え、正しい充放電が行われなくなってしまうという問題がある。
Lithium ion secondary batteries have excellent characteristics, but it is essential to manage charge / discharge characteristics. If abnormal battery cells are treated normally, there is a risk of ignition and explosion. Absent. Therefore, when there are a plurality of battery cells, the voltage balance between the cells becomes important, and when abnormal cells are included, other normal cells are also affected and correct charging / discharging is not performed. .
このような事態を避けるために、多くのリチウムイオン二次電池を使用したバッテリーシステムでは、充放電経路上に接続されたヒューズ素子と、バッテリ全体を管理する電源管理システム(BMS:Battery Management System)とが組み込まれている。BMSではバッテリセルごとの充放電状態(電圧、容量など)を管理しており、異常が検知されると、FETスイッチなどを使ってヒューズ素子に外部から信号を与えて回路の出力部分を遮断し、異常発熱による出火等のトラブルを回避する。
In order to avoid such a situation, in a battery system using many lithium ion secondary batteries, a fuse element connected on the charge / discharge path and a power management system (BMS: Battery Management System) for managing the entire battery And are incorporated. BMS manages the charge / discharge status (voltage, capacity, etc.) for each battery cell. When an abnormality is detected, a signal is externally applied to the fuse element using an FET switch or the like to shut off the output part of the circuit. Avoid troubles such as fire due to abnormal heat generation.
近年では、これまで行われてきたような充放電の状態管理(SOC:State of Charge)だけではなく、バッテリーシステムの容量劣化(SOH:State of Health)、バッテリ寿命(SOL:State of Life)の考えに基づくバッテリーシステム管理が重要視されてきている。
In recent years, not only charge / discharge state management (SOC: State of Charge), which has been performed, but also battery system capacity degradation (SOH: State of Health) and battery life (SOL: State of Life) Battery system management based on ideas has been emphasized.
一方で、高速移動中の自動車等では、急激な駆動力の低下や急停止は却って危険な場合があり、非常時を想定したバッテリ管理が求められている。例えば、走行中にバッテリーシステムの異常が起きた際にも、修理工場もしくは安全な場所まで移動するための駆動力、あるいはハザードランプやエアコン用の駆動力を供給できることが、危険回避上、好ましい。
On the other hand, in automobiles and the like that are moving at high speed, sudden reduction in driving force or sudden stop may be dangerous, and battery management that assumes an emergency is required. For example, when a battery system abnormality occurs during traveling, it is preferable to supply driving force for moving to a repair shop or a safe place, or driving force for a hazard lamp or an air conditioner.
また、異常を起こしたバッテリーシステムにおいては、異常なバッテリセルが電気回路上に存在しており、何らかの電気的な異常、誤動作などで、ふたたび使用されるようになる可能性は完全には否定できない。自動車では定期点検があり、その際に不具合のある電池セルを交換すればよいが、それまでの間、異常なものを電気回路上に持っていなければならない。可能であれば、電気回路上から取り去ることができれば、より一層の安全性を手に入れることが出来る。
In addition, in an abnormal battery system, there is an abnormal battery cell on the electric circuit, and there is no denying the possibility that it will be used again due to some electrical abnormality or malfunction. . In automobiles, there is a periodical inspection, and it is sufficient to replace defective battery cells at that time, but in the meantime, abnormal things must be held on the electric circuit. If possible, even greater safety can be obtained if it can be removed from the electrical circuit.
さらに、HEVやEV用途では、バッテリーシステムそのものの異常以外にも、事故や水没等の緊急事態にも、バッテリーシステムに起因する2次被害を防ぐために、電気回路を遮断させる必要が生じうる。また、電動工具の用途では、一部のバッテリセルに異常が生じた場合に全く駆動しないよりも、出力が多少落ちても駆動することが好ましい。
Furthermore, in HEV and EV applications, it may be necessary to cut off the electric circuit in order to prevent secondary damage caused by the battery system, not only in the abnormality of the battery system itself but also in an emergency such as an accident or submergence. Moreover, in the use of a power tool, it is preferable to drive even if the output is somewhat reduced, rather than not driving at all when some battery cells are abnormal.
そこで、本発明は、バッテリセル等に異常が発生した場合に、回路全体の安全を図りつつ、回路全体が切れる事態を防止し、必要な電力を供給することができる保護回路、及びバッテリユニットを提供することを目的とする。
Therefore, the present invention provides a protection circuit and a battery unit that can prevent a situation in which the entire circuit is cut off and supply necessary electric power while ensuring safety of the entire circuit when an abnormality occurs in a battery cell or the like. The purpose is to provide.
上述した課題を解決するために、本発明に係る保護回路は、複数のバッテリセルが直列に接続された複数のバッテリスタックが並列に接続された保護回路において、上記各バッテリスタックには、発熱抵抗体と、充電又は放電の電流経路の一部を構成するとともに上記発熱抵抗体の熱又は自己発熱によって溶断する可溶導体とを備える保護素子が組み込まれているものである。
In order to solve the above-described problem, a protection circuit according to the present invention includes a protection circuit in which a plurality of battery stacks in which a plurality of battery cells are connected in series are connected in parallel, and each battery stack includes a heating resistor. A protective element comprising a body and a soluble conductor that constitutes a part of a current path for charging or discharging and is melted by heat or self-heating of the heating resistor is incorporated.
また、本発明に係るバッテリユニットは、複数のバッテリセルが直列に接続された複数のバッテリスタックが並列に接続されたバッテリユニットにおいて、上記各バッテリスタックには、発熱抵抗体と、充電又は放電の電流経路の一部を構成するとともに上記発熱抵抗体の熱又は自己発熱によって溶断する可溶導体とを備える保護素子が組み込まれ、上記複数のバッテリスタックは、上記保護素子がバッテリスタック毎に個別に制御されることにより、異常が起きたバッテリセルを有する上記バッテリスタックのみを回路上から除去するものである。
The battery unit according to the present invention is a battery unit in which a plurality of battery stacks in which a plurality of battery cells are connected in series are connected in parallel, and each of the battery stacks includes a heating resistor and a charge or discharge. A protection element that includes a part of the current path and includes a fusible conductor that is melted by heat or self-heating of the heating resistor is incorporated, and the plurality of battery stacks are individually provided for each battery stack. By being controlled, only the battery stack having the battery cell in which an abnormality has occurred is removed from the circuit.
本発明によれば、一部のバッテリセルに異常が生じた場合、当該異常バッテリセルが組み込まれたバッテリスタックの保護素子を溶断させることにより、当該バッテリスタックを充放電経路上から除くとともに、残りのバッテリスタックによって電力を供給させることができる。
According to the present invention, when an abnormality occurs in some of the battery cells, the protection element of the battery stack in which the abnormal battery cell is incorporated is fused to remove the battery stack from the charge / discharge path and Power can be supplied by the battery stack.
また、本発明によれば、保護素子として、発熱抵抗体と、充電又は放電の電流経路の一部を構成するとともに発熱抵抗体の熱又は自己発熱によって溶断する可溶導体とを備える保護素子を用いているため、可溶導体が溶断することにより、当該バッテリスタックを不可逆的に回路上から遮断することができる。
Further, according to the present invention, a protective element comprising a heating resistor and a soluble conductor that forms part of a current path for charging or discharging and is melted by heat or self-heating of the heating resistor as the protection element. Since it is used, the battery stack can be irreversibly cut off from the circuit by melting the fusible conductor.
さらに、本発明によれば、発熱抵抗体を発熱させるトリガーを過電圧以外にも設定することができ、バッテリによって駆動される機器側に応じて、必要な場面でバッテリスタックを電流経路上から遮断することができる。
Furthermore, according to the present invention, a trigger for generating heat from the heating resistor can be set in addition to the overvoltage, and the battery stack is cut off from the current path when necessary according to the device driven by the battery. be able to.
以下、本発明が適用された保護回路、及びバッテリユニットについて、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
Hereinafter, a protection circuit and a battery unit to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
[保護回路]
本発明が適用された保護回路1は、図1に示すように、複数のバッテリセル2が直列に接続された複数のバッテリスタック3を有し、各バッテリスタック3同士が、並列に接続されている。各バッテリスタック3には、それぞれ、保護素子5と、各バッテリセル2の異常電圧を検知する検知素子6と、バッテリスタック3内の充放電を制御するとともに、検知素子6の検出結果に応じて保護素子5を駆動するBMS制御素子7とが組み込まれている。 [Protection circuit]
As shown in FIG. 1, theprotection circuit 1 to which the present invention is applied has a plurality of battery stacks 3 in which a plurality of battery cells 2 are connected in series, and the battery stacks 3 are connected in parallel. Yes. Each battery stack 3 includes a protection element 5, a detection element 6 for detecting an abnormal voltage of each battery cell 2, and charging / discharging in the battery stack 3, and according to a detection result of the detection element 6. A BMS control element 7 for driving the protection element 5 is incorporated.
本発明が適用された保護回路1は、図1に示すように、複数のバッテリセル2が直列に接続された複数のバッテリスタック3を有し、各バッテリスタック3同士が、並列に接続されている。各バッテリスタック3には、それぞれ、保護素子5と、各バッテリセル2の異常電圧を検知する検知素子6と、バッテリスタック3内の充放電を制御するとともに、検知素子6の検出結果に応じて保護素子5を駆動するBMS制御素子7とが組み込まれている。 [Protection circuit]
As shown in FIG. 1, the
また、各バッテリスタック3は、充電モードと放電モードとを切り替えるスイッチ8と、充電モードの充電電流を流す充電用ダイオード9と、放電モードの放電電流を流す放電用ダイオード10とを備える。
Each battery stack 3 includes a switch 8 that switches between a charging mode and a discharging mode, a charging diode 9 that flows a charging current in the charging mode, and a discharging diode 10 that flows a discharging current in the discharging mode.
[保護素子の構成]
保護素子5は、バッテリスタック3の出力を安全に遮断するために、制御素子7からの信号によって電流経路を遮断する機能を有するヒューズ素子からなり、電流経路の一部を構成するヒューズエレメントが溶断することにより、不可逆的に当該バッテリスタック3の電流経路を遮断する。 [Configuration of protection element]
Theprotective element 5 is composed of a fuse element having a function of interrupting a current path by a signal from the control element 7 in order to safely shut off the output of the battery stack 3, and a fuse element constituting a part of the current path is blown out. By doing so, the current path of the battery stack 3 is irreversibly cut off.
保護素子5は、バッテリスタック3の出力を安全に遮断するために、制御素子7からの信号によって電流経路を遮断する機能を有するヒューズ素子からなり、電流経路の一部を構成するヒューズエレメントが溶断することにより、不可逆的に当該バッテリスタック3の電流経路を遮断する。 [Configuration of protection element]
The
具体的に、保護素子5は、図2A及び図2Bに示すように、絶縁基板11と、絶縁基板11に積層され、絶縁部材15に覆われた発熱抵抗体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁部材15上に発熱抵抗体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)にそれぞれ接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。
Specifically, as shown in FIGS. 2A and 2B, the protective element 5 includes an insulating substrate 11, a heating resistor 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11. The formed electrodes 12 (A 1) and 12 (A 2), the heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating resistor 14, and both ends of the electrodes 12 (A 1) and 12 (A 2 ), And a soluble conductor 13 having a central portion connected to the heating element extraction electrode 16.
方形状の絶縁基板11は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって形成される。その他、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。
The rectangular insulating substrate 11 is formed of an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like. In addition, although the material used for printed wiring boards, such as a glass epoxy board | substrate and a phenol board | substrate, may be used, it is necessary to pay attention to the temperature at the time of fuse blowing.
発熱抵抗体14は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板11上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。
The heating resistor 14 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
発熱抵抗体14を覆うように絶縁部材15が配置され、この絶縁部材15を介して発熱抵抗体14に対向するように発熱体引出電極16が配置される。発熱抵抗体14の熱を効率良く可溶導体に伝えるために、発熱抵抗体14と絶縁基板11の間に絶縁部材15を積層しても良い。
The insulating member 15 is disposed so as to cover the heating resistor 14, and the heating element extraction electrode 16 is disposed so as to face the heating resistor 14 through the insulating member 15. In order to efficiently transfer the heat of the heating resistor 14 to the soluble conductor, an insulating member 15 may be laminated between the heating resistor 14 and the insulating substrate 11.
発熱体引出電極16の一端は、発熱体電極18(P1)に接続される。また、発熱抵抗体14の他端は、他方の発熱体電極18(P2)に接続される。
One end of the heating element extraction electrode 16 is connected to the heating element electrode 18 (P1). The other end of the heating resistor 14 is connected to the other heating element electrode 18 (P2).
可溶導体13は、発熱抵抗体14の発熱、又は可溶導体13の自己発熱により速やかに溶断される低融点金属からなり、例えばSnを主成分とするPbフリーハンダを好適に用いることができる。また、可溶導体13は、低融点金属と、Ag、Cu又はこれらを主成分とする合金等の高融点金属との積層体であってもよい。
The fusible conductor 13 is made of a low-melting-point metal that is quickly melted by the heat generated by the heating resistor 14 or the self-heating of the fusible conductor 13, and for example, Pb-free solder containing Sn as a main component can be suitably used. . The soluble conductor 13 may be a laminate of a low melting point metal and a high melting point metal such as Ag, Cu, or an alloy containing these as a main component.
高融点金属と低融点金属とを積層することによって、保護素子5をリフロー実装する場合に、リフロー温度が低融点金属層の溶融温度を超えて、低融点金属が溶融しても、可溶導体13として溶断するに至らない。かかる可溶導体13は、高融点金属に低融点金属をメッキ技術を用いて成膜することによって形成してもよく、他の周知の積層技術、膜形成技術を用いることによって形成してもよい。なお、可溶導体13は、外層を構成する低融点金属を用いて、発熱体引出電極16及び電極12(A1),12(A2)へ、ハンダ接続することができる。
Even if the reflow temperature exceeds the melting temperature of the low melting point metal layer and the low melting point metal melts when the protective element 5 is reflow mounted by laminating the high melting point metal and the low melting point metal, the soluble conductor 13 does not lead to fusing. Such a soluble conductor 13 may be formed by depositing a low melting point metal on a high melting point metal by using a plating technique, or may be formed by using another known lamination technique or film forming technique. . The fusible conductor 13 can be solder-connected to the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) using a low melting point metal constituting the outer layer.
なお、保護素子5は、外層の低融点金属層13bの酸化防止のために、可溶導体13上のほぼ全面にフラックス17を塗布してもよい。また、保護素子5は、内部を保護するためにカバー部材19を絶縁基板11上に載置してもよい。
The protective element 5 may be coated with a flux 17 on almost the entire surface of the soluble conductor 13 in order to prevent oxidation of the outer low melting point metal layer 13b. Further, the protection element 5 may place the cover member 19 on the insulating substrate 11 in order to protect the inside.
以上のような本発明が適用された保護素子5は、図3に示すような回路構成を有する。すなわち、保護素子5は、発熱体引出電極16を介して直列接続された可溶導体13と、可溶導体13の接続点を介して通電して発熱させることによって可溶導体13を溶融する発熱抵抗体14とからなる回路構成である。また、保護素子5では、たとえば、可溶導体13が充放電電流経路上に直列接続され、発熱抵抗体14がBMS制御素子7と接続される。保護素子5の2個の電極12のうち、一方は、A1に接続され、他方は、A2に接続される。また、発熱体引出電極16とこれに接続された発熱体電極18は、P1に接続され、他方の発熱体電極18は、P2に接続される。
The protective element 5 to which the present invention as described above is applied has a circuit configuration as shown in FIG. In other words, the protective element 5 generates heat by melting the soluble conductor 13 by energizing the fusible conductor 13 connected in series via the heating element lead electrode 16 and the connecting point of the fusible conductor 13 to generate heat. This is a circuit configuration including the resistor 14. In the protection element 5, for example, the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating resistor 14 is connected to the BMS control element 7. One of the two electrodes 12 of the protective element 5 is connected to A1, and the other is connected to A2. Further, the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
[BMS制御素子7/検知素子6]
検知素子6は、各バッテリセル2の電圧を検出する。BMS制御素子7は、検知素子6の検出結果に応じて、発熱体電極18に通電し、保護素子5の可溶導体13を溶断する。 [BMS control element 7 / detection element 6]
The sensing element 6 detects the voltage of eachbattery cell 2. The BMS control element 7 energizes the heating element electrode 18 according to the detection result of the detection element 6, and melts the soluble conductor 13 of the protection element 5.
検知素子6は、各バッテリセル2の電圧を検出する。BMS制御素子7は、検知素子6の検出結果に応じて、発熱体電極18に通電し、保護素子5の可溶導体13を溶断する。 [
The sensing element 6 detects the voltage of each
なお、保護素子5は、バッテリセル2の異常による過電流によっても、可溶導体13が自己発熱によって溶断し、電流経路を遮断することができる。あるいは、保護素子5は、検知素子6によって過電流を検知しBMS制御素子7によって発熱抵抗体14を発熱させ、可溶導体13を溶断させてもよい。
Note that the protection element 5 can cut off the current path by melting the fusible conductor 13 by self-heating even when an overcurrent occurs due to an abnormality in the battery cell 2. Alternatively, the protection element 5 may detect an overcurrent with the detection element 6, cause the heating resistor 14 to generate heat with the BMS control element 7, and melt the soluble conductor 13.
このように、保護素子5は、可溶導体13が発熱抵抗体14の熱によって、あるいは自己発熱によって溶断するため、電流経路を不可逆的に遮断することができ、回路の異常動作による影響がない。したがって、保護素子としての機能を確実に実現することができる。また、保護素子5は、いわゆるヒューズ方式の保護素子のように、過電流でのみ動作するものではなく、異常電圧や、後述するその他の要因によっても作動させることができ、あらゆる事態に対応することができる。また、保護素子5は、電気スイッチ方式の保護素子のように、電流経路の遮断状態の維持に電力を必要とせず、遮断状態を確実に維持することができる。
Thus, since the soluble conductor 13 is blown by the heat of the heating resistor 14 or by self-heating, the protection element 5 can irreversibly cut off the current path and is not affected by abnormal circuit operation. . Therefore, the function as a protection element can be realized reliably. In addition, the protection element 5 does not operate only with an overcurrent like a so-called fuse-type protection element, and can be activated by an abnormal voltage or other factors described later, and can cope with any situation. Can do. Further, unlike the electrical switch type protection element, the protection element 5 does not require power to maintain the current path interruption state, and can reliably maintain the interruption state.
[バッテリユニット]
バッテリスタック3は、過充電及び過放電状態から保護するための制御を要するバッテリセル2が直列接続されたものであり、正極端子3a、負極端子3bを介して、他のバッテリスタック3と並列に接続されたバッテリユニット20を構成する。バッテリユニット20は、着脱可能に充電装置25に接続され、充電装置25からの充電電圧が印加される。充電装置25により充電されたバッテリユニット20は、バッテリで動作する電子機器やEV等に電力を供給することによって、この電子機器やEV等を動作させることができる。 [Battery unit]
Thebattery stack 3 is a series of battery cells 2 that need to be controlled to protect against overcharge and overdischarge states. The battery stack 3 is connected in parallel with other battery stacks 3 via a positive terminal 3a and a negative terminal 3b. A connected battery unit 20 is configured. The battery unit 20 is detachably connected to the charging device 25, and a charging voltage from the charging device 25 is applied thereto. The battery unit 20 charged by the charging device 25 can operate the electronic device, EV, and the like by supplying power to the electronic device, EV, and the like that operate on the battery.
バッテリスタック3は、過充電及び過放電状態から保護するための制御を要するバッテリセル2が直列接続されたものであり、正極端子3a、負極端子3bを介して、他のバッテリスタック3と並列に接続されたバッテリユニット20を構成する。バッテリユニット20は、着脱可能に充電装置25に接続され、充電装置25からの充電電圧が印加される。充電装置25により充電されたバッテリユニット20は、バッテリで動作する電子機器やEV等に電力を供給することによって、この電子機器やEV等を動作させることができる。 [Battery unit]
The
なお、バッテリユニット20は、図1に示すように、各バッテリスタック3が並列に接続されている電流経路の一部に、保護素子5が設けられている。保護素子5は、バッテリユニット20全体の充放電を統一的に制御する図示しないBMS制御素子と接続され、バッテリユニット20全体の充放電経路を強制的に遮断するものである。
As shown in FIG. 1, the battery unit 20 is provided with a protection element 5 in a part of a current path where the battery stacks 3 are connected in parallel. The protection element 5 is connected to a BMS control element (not shown) for uniformly controlling charging / discharging of the entire battery unit 20 and forcibly blocks the charging / discharging path of the entire battery unit 20.
このバッテリユニット20によれば、複数のバッテリスタック3が並列に接続されているため、従来のバッテリセル2を用いて、大電流、高電圧を要するHEVやEVのバッテリを構成することができる。このとき、バッテリユニット20によれば、一部のバッテリセル2に異常が生じた場合、当該異常バッテリセルが組み込まれたバッテリスタック3の保護素子5を溶断させることにより、当該バッテリスタック3を充放電経路上から除くとともに、残りのバッテリスタック3によって電力を供給させることができる。
According to the battery unit 20, since the plurality of battery stacks 3 are connected in parallel, a conventional battery cell 2 can be used to constitute a HEV or EV battery that requires a large current and a high voltage. At this time, according to the battery unit 20, when an abnormality occurs in some of the battery cells 2, the protection element 5 of the battery stack 3 in which the abnormal battery cell is incorporated is melted to fill the battery stack 3. In addition to being removed from the discharge path, power can be supplied by the remaining battery stack 3.
したがって、バッテリユニット20は、走行中にバッテリーシステムの異常が起きた際にも、修理工場もしくは安全な場所まで移動するための駆動力、あるいはハザードランプやエアコン用の駆動力を供給することができる。
Therefore, the battery unit 20 can supply driving force for moving to a repair shop or a safe place or driving force for a hazard lamp or an air conditioner even when an abnormality of the battery system occurs during traveling. .
[保護素子の配置例1]
次いで、各バッテリスタック3における、保護素子5の配置について説明する。各バッテリスタック3は、図4に示すように、電流経路の出力端に一つの保護素子5を設けることができる。図4に示すバッテリスタック3は、検知素子6によって、各バッテリセル2の異常電圧が検知されると、BMS制御素子7によって保護素子5の発熱体電極18が通電される。これにより、当該バッテリスタック3は、保護素子5の発熱抵抗体14が発熱して可溶導体13が溶断し、バッテリユニット20の電流経路上から除かれる。したがって、バッテリユニット20は、当該バッテリスタック3の充放電が防止され、異常発熱等を未然に防止することができる。また、バッテリユニット20は、EVやHEVの走行中にバッテリーシステムの異常が起きた際にも、修理工場もしくは安全な場所まで移動するための駆動力、あるいはハザードランプやエアコン用の駆動力を供給できる。 [Protective element arrangement example 1]
Next, the arrangement of theprotection element 5 in each battery stack 3 will be described. As shown in FIG. 4, each battery stack 3 can be provided with one protective element 5 at the output end of the current path. In the battery stack 3 shown in FIG. 4, when an abnormal voltage of each battery cell 2 is detected by the detection element 6, the heating element electrode 18 of the protection element 5 is energized by the BMS control element 7. As a result, in the battery stack 3, the heat generating resistor 14 of the protection element 5 generates heat and the soluble conductor 13 is melted and removed from the current path of the battery unit 20. Therefore, the battery unit 20 can prevent charging / discharging of the battery stack 3 and can prevent abnormal heat generation and the like. In addition, the battery unit 20 supplies driving force for moving to a repair shop or a safe place, or driving power for hazard lamps or air conditioners when an abnormality occurs in the battery system during EV or HEV traveling. it can.
次いで、各バッテリスタック3における、保護素子5の配置について説明する。各バッテリスタック3は、図4に示すように、電流経路の出力端に一つの保護素子5を設けることができる。図4に示すバッテリスタック3は、検知素子6によって、各バッテリセル2の異常電圧が検知されると、BMS制御素子7によって保護素子5の発熱体電極18が通電される。これにより、当該バッテリスタック3は、保護素子5の発熱抵抗体14が発熱して可溶導体13が溶断し、バッテリユニット20の電流経路上から除かれる。したがって、バッテリユニット20は、当該バッテリスタック3の充放電が防止され、異常発熱等を未然に防止することができる。また、バッテリユニット20は、EVやHEVの走行中にバッテリーシステムの異常が起きた際にも、修理工場もしくは安全な場所まで移動するための駆動力、あるいはハザードランプやエアコン用の駆動力を供給できる。 [Protective element arrangement example 1]
Next, the arrangement of the
[保護素子の配置例2]
また、各バッテリスタック3は、図5に示すように、保護素子5がバッテリセル2間に接続されてもよい。図5に示すバッテリスタック3によれば、異常が起きたバッテリセル2に近い箇所の保護素子5を溶断することができ、異常が起きたバッテリセル2の充放電を確実に防止するとともに、当該異常セルに隣接する他のバッテリセル2への影響を抑えることができる。 [Protection element arrangement example 2]
In eachbattery stack 3, the protection element 5 may be connected between the battery cells 2 as shown in FIG. 5. According to the battery stack 3 shown in FIG. 5, the protective element 5 at a location close to the battery cell 2 in which an abnormality has occurred can be fused, and charging / discharging of the battery cell 2 in which an abnormality has occurred can be reliably prevented, The influence on the other battery cell 2 adjacent to the abnormal cell can be suppressed.
また、各バッテリスタック3は、図5に示すように、保護素子5がバッテリセル2間に接続されてもよい。図5に示すバッテリスタック3によれば、異常が起きたバッテリセル2に近い箇所の保護素子5を溶断することができ、異常が起きたバッテリセル2の充放電を確実に防止するとともに、当該異常セルに隣接する他のバッテリセル2への影響を抑えることができる。 [Protection element arrangement example 2]
In each
なお、同図に示すように、各バッテリスタック3は、一つのバッテリセル2に対応して一つの保護素子5を設け、バッテリセル2と保護素子5とを交互に接続してもよい。かかる構成によっても、異常セルに近い保護素子5を溶断することができる。
In addition, as shown in the figure, each battery stack 3 may be provided with one protection element 5 corresponding to one battery cell 2, and the battery cells 2 and the protection elements 5 may be alternately connected. Even with this configuration, the protective element 5 close to the abnormal cell can be fused.
[保護素子の配置例3]
また、各バッテリスタック3は、図6に示すように、各バッテリセル2の前後に、保護素子5が接続されるようにしてもよい。図6に示すバッテリスタック3は、異常が起きたバッテリセル2の前後に接続された保護素子5を溶断することで、当該異常セルをバッテリスタック3の電流経路上から物理的に切り離すことができる。したがって、当該バッテリスタック3によれば、異常が起きたバッテリセル2の充放電をより確実に防止するとともに、当該異常セルに隣接する他のバッテリセル2への影響を確実に抑えることができる。 [Protection Element Arrangement Example 3]
Further, as shown in FIG. 6, theprotection elements 5 may be connected to each battery stack 3 before and after each battery cell 2. The battery stack 3 shown in FIG. 6 can physically separate the abnormal cell from the current path of the battery stack 3 by fusing the protective elements 5 connected before and after the abnormal battery cell 2. . Therefore, according to the battery stack 3, charging / discharging of the battery cell 2 in which an abnormality has occurred can be prevented more reliably, and the influence on the other battery cells 2 adjacent to the abnormal cell can be reliably suppressed.
また、各バッテリスタック3は、図6に示すように、各バッテリセル2の前後に、保護素子5が接続されるようにしてもよい。図6に示すバッテリスタック3は、異常が起きたバッテリセル2の前後に接続された保護素子5を溶断することで、当該異常セルをバッテリスタック3の電流経路上から物理的に切り離すことができる。したがって、当該バッテリスタック3によれば、異常が起きたバッテリセル2の充放電をより確実に防止するとともに、当該異常セルに隣接する他のバッテリセル2への影響を確実に抑えることができる。 [Protection Element Arrangement Example 3]
Further, as shown in FIG. 6, the
[保護素子の配置例4]
また、各バッテリスタック3は、図7に示すように、スイッチ8と充電用ダイオード9との間に保護素子5が接続されるようにしてもよい。図7に示すバッテリスタック3は、スイッチ8と充電用ダイオード9との間に接続された保護素子5を溶断することで、充電モードの電流経路上から物理的に切り離すことができる。したがって、当該バッテリスタック3によれば、異常が起きたバッテリセル2への充電を防止するものの、スイッチ8により放電は可能とすることができる。 [Protection Element Arrangement Example 4]
Further, as shown in FIG. 7, eachbattery stack 3 may have a protective element 5 connected between the switch 8 and the charging diode 9. The battery stack 3 shown in FIG. 7 can be physically separated from the current path in the charging mode by fusing the protective element 5 connected between the switch 8 and the charging diode 9. Therefore, according to the battery stack 3, the battery cell 2 in which an abnormality has occurred is prevented from being charged, but can be discharged by the switch 8.
また、各バッテリスタック3は、図7に示すように、スイッチ8と充電用ダイオード9との間に保護素子5が接続されるようにしてもよい。図7に示すバッテリスタック3は、スイッチ8と充電用ダイオード9との間に接続された保護素子5を溶断することで、充電モードの電流経路上から物理的に切り離すことができる。したがって、当該バッテリスタック3によれば、異常が起きたバッテリセル2への充電を防止するものの、スイッチ8により放電は可能とすることができる。 [Protection Element Arrangement Example 4]
Further, as shown in FIG. 7, each
[保護素子の配置例5]
また、各バッテリスタック3は、図8に示すように、充電モード及び放電モードの電流経路上に保護素子5が接続されるようにしてもよい。図8に示すバッテリスタック3は、図4に示すバッテリスタック3と同様、保護素子5を溶断することで、バッテリユニット20の電流経路上から除かれる。したがって、バッテリユニット20は、当該バッテリスタック3の充放電が防止され、異常発熱等を未然に防止することができる。 [Protection element arrangement example 5]
Moreover, as shown in FIG. 8, eachbattery stack 3 may be configured such that the protection element 5 is connected to the current paths in the charge mode and the discharge mode. The battery stack 3 shown in FIG. 8 is removed from the current path of the battery unit 20 by fusing the protective element 5 in the same manner as the battery stack 3 shown in FIG. Therefore, the battery unit 20 can prevent charging / discharging of the battery stack 3 and can prevent abnormal heat generation and the like.
また、各バッテリスタック3は、図8に示すように、充電モード及び放電モードの電流経路上に保護素子5が接続されるようにしてもよい。図8に示すバッテリスタック3は、図4に示すバッテリスタック3と同様、保護素子5を溶断することで、バッテリユニット20の電流経路上から除かれる。したがって、バッテリユニット20は、当該バッテリスタック3の充放電が防止され、異常発熱等を未然に防止することができる。 [Protection element arrangement example 5]
Moreover, as shown in FIG. 8, each
[BMS制御素子7の駆動トリガー]
なお、上記では、バッテリスタック3内におけるバッテリセル2の異常電圧を検知することにより保護素子5を溶断させて、当該バッテリスタック3を電流経路上から切り離すようにしたが、保護素子5を溶断させるトリガーとしては、バッテリユニット20が搭載される機器側に応じて種々設定することができる。 [Drive trigger for BMS control element 7]
In the above description, theprotection element 5 is blown by detecting an abnormal voltage of the battery cell 2 in the battery stack 3, and the battery stack 3 is separated from the current path. However, the protection element 5 is blown. Various triggers can be set according to the device side on which the battery unit 20 is mounted.
なお、上記では、バッテリスタック3内におけるバッテリセル2の異常電圧を検知することにより保護素子5を溶断させて、当該バッテリスタック3を電流経路上から切り離すようにしたが、保護素子5を溶断させるトリガーとしては、バッテリユニット20が搭載される機器側に応じて種々設定することができる。 [Drive trigger for BMS control element 7]
In the above description, the
例えばバッテリユニット20をEVやHEVに搭載する場合や電動工具に搭載する場合、バッテリセル2の異常の他にも、事故による衝撃や、水没、火災等による温度上昇といった事態が起きた場合にBMS制御素子7に指令が発信され、各バッテリスタック3の保護素子5を溶断し、電流経路を遮断するようにしてもよい。また、他のバッテリセル2に比して、特に劣化が進んだバッテリセル2が生じた場合にも、当該バッテリセル2の影響を抑えるために、保護素子5を溶断し、電流経路から切り離すようにしてもよい。また、バッテリユニット20を家庭用電源として用いる場合、火災や、大規模地震による倒壊、津波による水没等の事態が起きた場合にも、各バッテリスタック3の保護素子5を溶断し、電流経路を遮断するようにしてもよい。
For example, when the battery unit 20 is mounted on an EV or HEV, or mounted on a power tool, in addition to the abnormality of the battery cell 2, when a situation such as an impact due to an accident, a temperature increase due to submergence, fire, etc. occurs, BMS A command may be transmitted to the control element 7 so that the protection element 5 of each battery stack 3 is melted to interrupt the current path. In addition, even when a battery cell 2 that has deteriorated in particular occurs in comparison with other battery cells 2, in order to suppress the influence of the battery cell 2, the protection element 5 is melted and disconnected from the current path. It may be. In addition, when the battery unit 20 is used as a household power source, the protection element 5 of each battery stack 3 is blown out in the event of a fire, collapse due to a large-scale earthquake, or submergence due to a tsunami. You may make it interrupt.
1 保護回路、2 バッテリセル、3 バッテリスタック、5 保護素子、6 検知素子、7 BMS制御素子、11 絶縁基板、12 電極、13 可溶導体、14 発熱抵抗体、15 絶縁部材、16 発熱体引出電極、17 フラックス、18 発熱体電極、19 カバー部材、20 バッテリユニット、24 充電装置
1 protection circuit, 2 battery cell, 3 battery stack, 5 protection element, 6 sensing element, 7 BMS control element, 11 insulating substrate, 12 electrodes, 13 soluble conductor, 14 heating resistor, 15 insulating member, 16 heating element extraction Electrode, 17 flux, 18 heating element electrode, 19 cover member, 20 battery unit, 24 charging device
Claims (7)
- 複数のバッテリセルが直列に接続された複数のバッテリスタックが並列に接続された保護回路において、
上記各バッテリスタックには、発熱抵抗体と、充電又は放電の電流経路の一部を構成するとともに上記発熱抵抗体の熱又は自己発熱によって溶断する可溶導体とを備える保護素子が組み込まれている保護回路。 In a protection circuit in which a plurality of battery stacks in which a plurality of battery cells are connected in series are connected in parallel,
Each of the battery stacks incorporates a protection element that includes a heating resistor and a soluble conductor that forms part of the current path for charging or discharging and that is fused by heat or self-heating of the heating resistor. Protection circuit. - 上記各バッテリスタックは、上記保護素子が上記バッテリセル間に接続されている請求項1記載の保護回路。 The protection circuit according to claim 1, wherein each of the battery stacks has the protection element connected between the battery cells.
- 上記各バッテリスタックは、上記保護素子と上記バッテリセルとが、交互に接続されている請求項2記載の保護回路。 The protection circuit according to claim 2, wherein each of the battery stacks has the protection element and the battery cell connected alternately.
- 上記各バッテリスタックは、上記バッテリセルの前後に、上記保護素子が接続されている請求項3記載の保護回路。 The protection circuit according to claim 3, wherein each of the battery stacks is connected to the protection element before and after the battery cell.
- 上記各バッテリスタックは、充電又は放電を切り替えるスイッチを備え、上記スイッチの充電の分岐経路上に上記保護素子が接続されている請求項1乃至4のいずれか1項に記載の保護回路。 Each said battery stack is provided with the switch which switches charge or discharge, The protection circuit of any one of Claim 1 thru | or 4 with which the said protection element is connected on the branch path | route of the charge of the said switch.
- 上記各バッテリスタックには、それぞれ、保護素子と、上記保護素子を駆動する制御素子と、上記各バッテリセルの異常電圧を検知する検知素子とが組み込まれている請求項1乃至4のいずれか1項に記載の保護回路。 Each of the battery stacks includes a protection element, a control element that drives the protection element, and a detection element that detects an abnormal voltage of each of the battery cells. The protection circuit according to the item.
- 複数のバッテリセルが直列に接続された複数のバッテリスタックが並列に接続されたバッテリユニットにおいて、
上記各バッテリスタックには、発熱抵抗体と、充電又は放電の電流経路の一部を構成するとともに上記発熱抵抗体の熱又は自己発熱によって溶断する可溶導体とを備える保護素子が組み込まれ、
上記複数のバッテリスタックは、上記保護素子がバッテリスタック毎に個別に制御されることにより異常が起きたバッテリセルを有する上記バッテリスタックのみを回路上から除去するバッテリユニット。 In a battery unit in which a plurality of battery stacks in which a plurality of battery cells are connected in series are connected in parallel,
Each of the battery stacks includes a heating element and a protective element that includes a soluble conductor that forms part of the current path for charging or discharging and that is melted by heat or self-heating of the heating resistor.
The plurality of battery stacks is a battery unit that removes only the battery stack having a battery cell in which an abnormality has occurred by individually controlling the protection element for each battery stack from the circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/050522 WO2015107630A1 (en) | 2014-01-15 | 2014-01-15 | Protective circuit and battery unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/050522 WO2015107630A1 (en) | 2014-01-15 | 2014-01-15 | Protective circuit and battery unit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015107630A1 true WO2015107630A1 (en) | 2015-07-23 |
Family
ID=53542553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/050522 WO2015107630A1 (en) | 2014-01-15 | 2014-01-15 | Protective circuit and battery unit |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015107630A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3336925A1 (en) * | 2016-12-14 | 2018-06-20 | Lithium Energy and Power GmbH & Co. KG | Cell connecting element |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008193776A (en) * | 2007-02-01 | 2008-08-21 | Sanyo Electric Co Ltd | Power supply unit for vehicle |
JP2012050258A (en) * | 2010-08-27 | 2012-03-08 | Sanyo Electric Co Ltd | Power supply device |
JP2012157217A (en) * | 2011-01-28 | 2012-08-16 | Hitachi Maxell Energy Ltd | Battery unit |
JP2012231649A (en) * | 2011-04-27 | 2012-11-22 | Sony Chemical & Information Device Corp | Charge/discharge controller, battery pack, electric apparatus, and charge/discharge control method |
-
2014
- 2014-01-15 WO PCT/JP2014/050522 patent/WO2015107630A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008193776A (en) * | 2007-02-01 | 2008-08-21 | Sanyo Electric Co Ltd | Power supply unit for vehicle |
JP2012050258A (en) * | 2010-08-27 | 2012-03-08 | Sanyo Electric Co Ltd | Power supply device |
JP2012157217A (en) * | 2011-01-28 | 2012-08-16 | Hitachi Maxell Energy Ltd | Battery unit |
JP2012231649A (en) * | 2011-04-27 | 2012-11-22 | Sony Chemical & Information Device Corp | Charge/discharge controller, battery pack, electric apparatus, and charge/discharge control method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3336925A1 (en) * | 2016-12-14 | 2018-06-20 | Lithium Energy and Power GmbH & Co. KG | Cell connecting element |
WO2018108736A1 (en) * | 2016-12-14 | 2018-06-21 | Lithium Energy and Power GmbH & Co. KG | Cell connecting element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI594285B (en) | Short circuit components and circuits using this | |
JP6277057B2 (en) | Battery pack, battery system, and discharging method | |
TWI666840B (en) | Protection element, protection circuit and battery circuit | |
WO2014123139A1 (en) | Short-circuit element and circuit using same | |
WO2014178428A1 (en) | Protective element | |
JP6161967B2 (en) | Short circuit element and circuit using the same | |
WO2015045278A1 (en) | Short-circuiting element | |
KR102043051B1 (en) | Protective element | |
JP6292802B2 (en) | Battery circuit, protection circuit | |
JP6246503B2 (en) | Short circuit element and circuit using the same | |
WO2015107629A1 (en) | Protection circuit and protection circuit control method | |
WO2015020103A1 (en) | Bypass element and bypass circuit | |
TW201528635A (en) | Protection circuit and battery set | |
JP6254777B2 (en) | Short circuit element and circuit using the same | |
JP6110651B2 (en) | Protection circuit and control method of protection circuit | |
WO2015190543A1 (en) | Switching element and switching circuit | |
JP6116223B2 (en) | Protection circuit, battery unit | |
WO2015107630A1 (en) | Protective circuit and battery unit | |
WO2014199911A1 (en) | Protection element and package in which protection element is mounted | |
TWI621146B (en) | Protection circuit and control method of protection circuit | |
WO2015075928A1 (en) | Short-circuiting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14879116 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14879116 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |