[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015104939A1 - 照明装置および発光モジュール - Google Patents

照明装置および発光モジュール Download PDF

Info

Publication number
WO2015104939A1
WO2015104939A1 PCT/JP2014/082633 JP2014082633W WO2015104939A1 WO 2015104939 A1 WO2015104939 A1 WO 2015104939A1 JP 2014082633 W JP2014082633 W JP 2014082633W WO 2015104939 A1 WO2015104939 A1 WO 2015104939A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
terminal
emitting layer
planar electrode
power supply
Prior art date
Application number
PCT/JP2014/082633
Other languages
English (en)
French (fr)
Inventor
昌宏 今田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015556742A priority Critical patent/JPWO2015104939A1/ja
Publication of WO2015104939A1 publication Critical patent/WO2015104939A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present disclosure relates to a lighting device and a light emitting module including a planar light emitting layer arranged side by side in a stacking direction.
  • OLED Organic Light Emitting Diode
  • LED Light Emitting Diode
  • Patent Document 1 discloses an image display device composed of organic light emitting elements.
  • the image display device includes a plurality of stacked light emitting cells, and each light emitting cell emits light having a different wavelength.
  • the plurality of stacked light emitting cells are arranged in a matrix in the planar direction.
  • the image display device can display various colors by adjusting the luminance of light emitted from each light emitting cell.
  • Patent Document 2 discloses an organic EL display device having a high aperture ratio and capable of reducing the cost.
  • the organic EL display device has a plurality of organic EL elements stacked one above the other, and each organic EL element emits light having a different wavelength.
  • the plurality of stacked organic EL elements are arranged in a matrix in the plane direction.
  • the organic EL display device can display various colors by adjusting the luminance of light emitted from each organic EL element.
  • the present disclosure has been made in order to solve the above-described problems, and an object thereof is to provide a planar lighting device capable of realizing various light emission patterns with a relatively simple configuration. That is.
  • An object in another aspect is to provide a planar light emitting module capable of realizing various light emitting patterns with a relatively simple configuration.
  • the lighting device includes a power supply circuit and planar first light emitting layers and second light emitting layers arranged side by side in the stacking direction.
  • a planar electrode is provided on each surface of each light emitting layer.
  • a first terminal provided on a planar electrode on one side of the first light emitting layer and a power supply circuit, and a first terminal provided on a position different from the first terminal of the planar electrode on the one side.
  • Electrical paths are respectively formed between the two terminals and the power supply circuit.
  • the third terminal provided between the third terminal provided on the planar electrode on one side of the second light emitting layer and the power supply circuit and at a position different from the third terminal of the planar electrode on the one side. Electrical paths are respectively formed between the terminals 4 and the power supply circuit.
  • the power supply circuit adjusts at least one of the magnitude of the current flowing through the first light-emitting layer through the first terminal and the magnitude of the current flowing through the first light-emitting layer through the second terminal, for example, as required.
  • at least one of the magnitude of the current flowing through the second light-emitting layer through the third terminal and the magnitude of the current flowing through the fourth terminal into the second light-emitting layer is set as required, for example. It is configured to be adjustable accordingly.
  • a light emitting module to which a power supply circuit can be connected includes a planar first light emitting layer and a second light emitting layer arranged side by side in the stacking direction.
  • a planar electrode is provided on each surface of each light emitting layer.
  • a first terminal provided on a planar electrode on one side of the first light emitting layer and a power supply circuit, and a first terminal provided on a position different from the first terminal of the planar electrode on the one side.
  • An electrical path can be formed between each of the two terminals and the power supply circuit.
  • the third terminal provided between the third terminal provided on the planar electrode on one side of the second light emitting layer and the power supply circuit and at a position different from the third terminal of the planar electrode on the one side.
  • An electric path can be formed between each of the four terminals and the power supply circuit.
  • the light emitting mode of the lighting device according to the second embodiment in the case where a light emitting layer having a blue light emitting wavelength characteristic, a light emitting layer having a green light emitting wavelength characteristic, and a light emitting layer having a red light emitting wavelength characteristic are combined.
  • FIG. 1 is a diagram showing a schematic appearance of an example lighting device 1.
  • the lighting device 1 includes a light emitting unit 10_1 and a power source 50_1.
  • the light emitting unit 10_1 includes a planar electrode 11_1, a planar electrode 11_2, and a light emitting layer 12_1 that is an organic EL layer.
  • the light emitting layer 12_1 is provided with a planar electrode 11_1 on one surface and a planar electrode 11_2 on the other surface.
  • One end of the power source 50_1 is electrically connected to the planar electrode 11_1 via the terminal 13_1, and the other end of the power source 50_1 is electrically connected to the planar electrode 11_2 via the terminal 13_2.
  • the planar electrode 11_1 and the planar electrode 11_2 are also collectively referred to as the planar electrode 11.
  • the terminal 13_1 and the terminal 13_2 are collectively referred to as a terminal 13.
  • the light emitting layer 12_1 emits light. More specifically, holes supplied from one of the planar electrodes 11_1 and 11_2 and electrons supplied from the other planar electrode are included in the light emitting layer 12_1. Join with. Thereby, the organic substance in the light emitting layer 12_1 is in a high energy state called an excited state. The light-emitting layer 12_1 emits light when the organic substance in the excited state returns to the original stable state. From such a light emission principle, the luminance of the lighting device 1 changes according to the amount of holes and electrons per unit time supplied to the planar electrode 11, that is, the current.
  • the luminance distribution of the lighting device 1 is generated in the plane of the lighting device 1. Since the planar electrode 11 has an internal resistance in the plane, the current density decreases as the position becomes farther from the connection point (terminal 13_1) between the power source 50 and the planar electrode 11. On the planar electrode 11_1 in FIG. 2, a dotted line connecting positions where current densities are equal is shown. A dotted line closer to the terminal 13_1 indicates a higher current density. That is, a larger current flows between the planar electrodes 11 as it is closer to the terminal 13_1.
  • a current density distribution occurs in the planar electrode 11.
  • the brightness of the lighting device 1 increases as the position is closer to the terminal 13, and the brightness decreases as the position is farther from the terminal 13. That is, the current density distribution in the surface of the planar electrode 11 varies depending on where the power source 50 is connected to the planar electrode 11, and the light emission pattern (the light emitting surface of the lighting device 100 is changed) according to the current density distribution. Brightness distribution) changes.
  • the embodiment according to the present invention realizes various light emission patterns by applying such a change in current density distribution.
  • the light-emitting layer 12_1 is an organic EL layer.
  • the light-emitting layer 12_1 may be an inorganic EL layer or the like.
  • FIG. 2 and FIG. 3 are diagrams schematically showing a state in which the lighting device 100 emits light. 2 and 3 show a light emission mode (A) when the illumination device 100 is viewed from the side and a light emission mode (B) when the illumination device 100 is viewed from the front.
  • the lighting device 100 includes a light emitting unit 10_1 and a light emitting unit 10_2.
  • the light emitting unit 10_1 and the light emitting unit 10_2 are also collectively referred to as the light emitting unit 10.
  • Each of the light emitting units 10 is arranged side by side in the stacking direction. Moreover, the illuminating device 100 is comprised so that adjustment of the brightness
  • the lighting device 100 can generate light having various emission wavelength characteristics according to the combination of the light emitted from the light emitting unit 10_1 and the light emitted from the light emitting unit 10_2. That is, the lighting device 100 can emit light of various colors.
  • the light emission pattern of the illumination device 100 varies in various ways according to the current density distribution generated in the planar electrode of the light emitting unit 10 as described above.
  • the lighting device 100 intentionally creates various current density distributions in the planar electrode to realize various light emission patterns. More specifically, each of the light emitting units 10 has a plurality of terminals, and the lighting device 100 is configured to be able to adjust the magnitude of the current flowing through each of the plurality of terminals. Thereby, the illuminating device 100 can generate various current density distributions in the planar electrode of the light emitting unit 10.
  • the lighting device 100 can realize various light emission patterns by changing the current density distribution of the light emitting unit 10.
  • the lighting device 100 is configured to be capable of adjusting the light emission luminance of each light emitting unit 10, the combination of the light emission luminance is changed with respect to the combination of the light emission wavelength characteristics of the light emitting unit 10_1 and the light emitting unit 10_2. Can be changed to various emission colors. That is, the lighting device 100 can emit light of various colors.
  • the lighting device 100 can realize a wide variety of light emission by a combination of a light emission pattern and a light emission color. Thereby, it becomes possible to manufacture the illuminating device excellent in the design which has various light emission modes. Furthermore, since the illumination device 100 supplies power from different positions to the planar electrode provided in common for the entire light emitting layer, it does not require a component such as a transistor for each pixel unlike an EL display. For this reason, it is possible to realize a lighting device having high design with a relatively simple configuration.
  • the number of light emitting units to be stacked is not limited to two layers, but may be two or more layers.
  • FIG. 4 is a diagram illustrating a main configuration of the illumination device 100.
  • the lighting device 100 includes a light emitting module 60 and a power supply circuit 40 electrically connected to the light emitting module 60.
  • the light emitting module 60 includes a light emitting unit 10_1 and a light emitting unit 10_2.
  • the light emitting unit 10_1 includes a planar electrode 11_1, a planar electrode 11_2, and a planar light emitting layer 12_1.
  • the light emitting unit 10_2 includes a planar electrode 11_2, a planar electrode 11_3, and a planar light emitting layer 12_2.
  • the light emitting layer 12_1 and the light emitting layer 12_2 are arranged side by side in the stacking direction so that the lighting device 100 can emit light of various colors. More specifically, the lighting device 100 emits light of various wavelengths according to the combination of the wavelength characteristics of light emitted from the light emitting layer 12_1 and the wavelength characteristics of light emitted from the light emitting layer 12_2. That is, the lighting device 100 emits light of various colors depending on the combination of the light emission color of the light emitting layer 12_1 and the light emission color of the light emitting layer 12_2. Typically, the light emitted from each of the light emitting layers 12 has different wavelength characteristics. The light emitted from each of the light emitting layers 12 may have the same wavelength characteristics.
  • a planar electrode is provided on each surface of each light emitting layer. More specifically, the planar electrode 11_1 is provided on one surface of the light emitting layer 12_1, and the planar electrode 11_2 is provided on the other surface of the light emitting layer 12_2. A planar electrode 11_2 is provided on one surface of the light emitting layer 12_2, and a planar electrode 11_3 is provided on the other surface of the light emitting layer 12_2.
  • planar electrode 11_2 sandwiched between the light emitting layer 12_1 and the light emitting layer 12_2 is used as a planar electrode provided for both the light emitting layer 12_1 and the light emitting layer 12_2 in order to reduce the number of planar electrodes to be provided in the lighting device 100. Is done. That is, the planar electrode 11_2 is commonly used as a path for a current flowing through the light emitting layer 12_1 and a path for a current flowing through the light emitting layer 12_2.
  • the planar electrode 11_1 has a terminal 13_1A and a terminal 13_1B.
  • the terminal 13_1A and the terminal 13_1B are provided at different positions depending on the current density distribution desired to be generated on the surface of the planar electrode 11_1.
  • electrical paths are formed between the terminal 13_1A and the power supply circuit 40 and between the terminal 13_1B and the power supply circuit 40.
  • the planar electrode 11_2 has a terminal 13_2A and a terminal 13_2B.
  • the terminal 13_2A and the terminal 13_2B are provided at different positions depending on the current density distribution desired to be generated on the surface of the planar electrode 11_2.
  • electrical paths are formed between the terminal 13_2A and the power supply circuit 40 and between the terminal 13_2B and the power supply circuit 40, respectively.
  • the illumination device 100 is configured to be able to individually adjust the magnitude of the current flowing through each of the terminals 13 so that the brightness and the light emission pattern of each light emitting layer 12 can be adjusted. More specifically, the lighting device 100 is configured to be able to adjust at least one of the magnitude of the current flowing through the light emitting layer 12_1 through the terminal 13_1A and the magnitude of the current flowing through the terminal 13_1B into the light emitting layer 12_1 as required. Is done. The lighting device 100 is configured to be able to adjust the amount of current flowing through at least one of the terminal 13_1A and the terminal 13_1B, whereby the light emission pattern of the light emitting layer 12_1 can be changed.
  • the lighting device 100 is configured to be able to adjust at least one of the magnitude of the current flowing through the light emitting layer 12_2 through the terminal 13_2A and the magnitude of the current flowing through the light emitting layer 12_2 through the terminal 13_2B as required. That is, the lighting device 100 can change the light emission pattern of the light emitting layer 12_2 as long as the amount of current flowing through at least one of the terminal 13_2A and the terminal 13_2B can be adjusted.
  • the lighting device 100 has a magnitude of a current flowing from the power supply circuit 40 to the light emitting layer 12_1 through the terminal 13_1A and the terminal 13_1B, and a current flowing from the power supply circuit 40 to the light emitting layer 12_2 through the terminal 13_2A and the terminal 13_2B, respectively.
  • a control circuit 70 for controlling at least one of the sizes.
  • the control circuit 70 outputs a control command for controlling the light emission pattern of the lighting device 100 to the power supply circuit 40 according to the operation of the lighting device 100 by the user.
  • the power supply circuit 40 supplies a current to each terminal of the planar electrode according to the received control command.
  • the lighting device 100 is configured to be able to select one light emission pattern from among a plurality of predetermined light emission patterns of the light emitting unit 10_1, and among the plurality of predetermined light emission patterns of the light emitting unit 10_2. From this, one light emission pattern can be selected.
  • the user arbitrarily selects a light emission pattern of each light emitting unit 10 by operating an operation unit (not shown) such as a button.
  • the control circuit 70 outputs a control command to the power supply circuit 40 according to the selected light emission pattern. Thereby, the user can adjust the light emission mode by the number of combinations of the light emission pattern of the light emission unit 10_1 and the light emission pattern of the light emission unit 10_2.
  • the illumination device 100 includes the control circuit 70 for adjusting the output of the power supply circuit, so that the user can select the intended light emission mode.
  • planar electrode 11 (Details of planar electrode) Hereinafter, the planar electrode 11 will be described in more detail.
  • the planar electrode provided on the light emitting side from the light emitting layer 12_1 and the light emitting layer 12_2, and the planar electrode provided between the light emitting layer 12_1 and the light emitting layer 12_2 are semi-transparent electrodes and transparent electrodes. Consists of either.
  • the planar electrodes 11_1 to 11_3 are made of a transparent or translucent member in order to transmit light emitted from the light emitting layer.
  • transparent or translucent planar electrodes include metal oxides such as ITO (mixture of indium oxide and tin oxide), IZO (mixture of indium oxide and zinc oxide), and light transmission.
  • metal oxides such as ITO (mixture of indium oxide and tin oxide), IZO (mixture of indium oxide and zinc oxide), and light transmission.
  • Examples thereof include a thin metal layer (Al, Ag, Ca, etc.), or a transparent conductive film (TCF: Transparent Conductive Film) in which nanowires and nanoparticles thereof are dispersed.
  • either one of the planar electrode 11_1 and the planar electrode 11_3 may be comprised with the member which does not permeate
  • the opaque planar electrode include various conductive metals such as Al, Ag, Mg, and Cu, and alloys such as AlMg.
  • FIG. 5 is an exploded view of the light emitting layer and the planar electrode included in the light emitting module 60.
  • the power supply circuit 40 includes a plurality of power supplies.
  • power supply circuit 40 includes a power supply 50_1A, a power supply 50_1B, a power supply 50_2A, and a power supply 50_2B.
  • a power source is provided for each light emitting layer in order to adjust each light emission pattern of the light emitting layer 12.
  • a plurality of power supplies are electrically connected to each light emitting layer in order to realize various light emission patterns in the light emitting layer.
  • one end of the power supply 50_1A is electrically connected to the terminal 13_1A, and the other end of the power supply 50_1A is electrically connected to the terminal 13_2A.
  • One end of the power supply 50_1B is electrically connected to the terminal 13_1B, and the other end of the power supply 50_1B is electrically connected to the terminal 13_2B.
  • One end of the power supply 50_2A is electrically connected to the terminal 13_2A, and the other end of the power supply 50_2A is electrically connected to the terminal 13_3A.
  • One end of the power supply 50_2B is electrically connected to the terminal 13_2B, and the other end of the power supply 50_2B is electrically connected to the terminal 13_3B.
  • Each terminal of the planar electrode sandwiched between the light emitting layers is configured to be usable with a plurality of power supplies in order to reduce the number of terminals provided on the planar electrode.
  • Each terminal of the planar electrode sandwiched between the light emitting layers may be used by a power source 50_1A and a power source 50_2A, for example, as a terminal 13_2A.
  • the number of power supplies electrically connected to one terminal is not limited to two. For example, three or more power supplies may be connected to one terminal.
  • Lighting device 100A according to the present embodiment is different from lighting device 100 according to the first embodiment in that it has three light emitting layers. Other points are the same as those of lighting device 100 according to the first embodiment, and therefore description thereof will not be repeated.
  • FIG. 6 is a side view of the lighting device 100A.
  • the lighting device 100 ⁇ / b> A includes a power supply circuit 40 and a light emitting module 60.
  • the light emitting module 60 includes light emitting units 10_1 to 10_3 arranged side by side in the stacking direction.
  • the light emitting unit 10_3 includes a planar electrode 11_3, a planar electrode 11_4, and a light emitting layer 12_3 provided between the planar electrodes.
  • a power supply is connected to the planar electrode, and the lighting device 100A can individually supply current to each of the light emitting layers 12_1 to 12_3.
  • the light emitting layers 12_1 to 12_3 have different light emission wavelength characteristics. Since each emission wavelength characteristic of the light emitting layer 12 can be changed variously according to the magnitude of the current flowing through the light emitting layer, the emission wavelength characteristic of the light emitted from the illumination device 100A is arbitrarily changed. It becomes possible.
  • the light emitting layer 12_1 has a blue light emitting wavelength characteristic
  • the light emitting layer 12_2 has a green light emitting wavelength characteristic
  • the light emitting layer 12_3 has a red light emitting wavelength characteristic. Since the light emitting layer 12 has the light emission wavelength characteristics of the three primary colors of light (that is, blue, green, and red), the lighting device 100A can realize light emission of almost all colors perceivable by humans.
  • Each of the light-emitting layers 12 may be configured to have emission wavelength characteristics of yellow, yellow-purple (Magenta), and blue-green (Cyan), depending on a desired emission color. May be appropriately configured.
  • the number of light emitting layers is three has been described, but the number of light emitting layers may be two or more.
  • the light emitting layer 12 includes, for example, a hole injection layer (HIL), a hole transport layer (HTL), a photon generation layer (EML), and an electron transport layer (ETL). It is composed of an electron transport layer (EIL) and an electron injection layer (EIL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EML photon generation layer
  • ETL electron transport layer
  • EIL electron injection layer
  • the structure of the light emitting layer 12 is not limited to the above.
  • it may be composed of a photon generation layer / electron transport layer.
  • the light emitting layer 12 may be composed of a hole transport layer / photon generation layer / electron transport layer.
  • the light emitting layer 12 may be composed of a hole transport layer / photon generation layer / hole blocking layer / electron transport layer.
  • the light emitting layer 12 may be composed of a hole transport layer / photon generation layer / hole blocking layer / electron transport layer / cathode buffer layer.
  • FIG. 7 is a plan view of the planar electrode.
  • terminals 13_1A to 13_1N are provided around the planar electrode 11_1.
  • Each of the power supplies 50_1A to 50_1N (arranged in the order of ABCDE, MN, JIHGF, and LK in the clockwise direction from the upper left of the figure) is electrically connected to each of the terminals 13_1A to 13_1N.
  • Each terminal 13 is individually supplied with current from a power source connected to the terminal. As a result, the magnitude of the current flowing through each of the terminals 13 can be individually changed. That is, as the number of power supplies connected increases, the balance of the current flowing through each terminal can be changed.
  • the current density distribution in the surface of the planar electrode can be changed variously, and the number of light emission patterns can be increased.
  • planar electrodes 11_2 to 11_4 also have a plurality of terminals like the planar electrode 11_1, and are configured to allow different currents to flow through the terminals.
  • the number of terminals provided in each of the planar electrodes 11_1 to 11_4 is not necessarily the same.
  • the arrangement of the terminals in the planar electrode provided in each of the planar electrodes 11_1 to 11_4 is not necessarily the same.
  • the number and arrangement of terminals provided in the planar electrode may be determined according to the characteristics (conductivity, resistivity, etc.) of the planar electrode.
  • FIG. 8 is a diagram illustrating an example of a light emission mode of the light emitting layer 12_1 having a blue light emission wavelength characteristic.
  • FIG. 9 is a diagram illustrating an example of a light emission mode of the light emitting layer 12_2 having a green light emission wavelength characteristic.
  • FIG. 10 is a diagram illustrating an example of a light emission mode of the light emitting layer 12_3 having a red light emission wavelength characteristic.
  • the light emitting layer 12_1 shown in FIG. 8 has a blue emission wavelength characteristic, and is provided between the planar electrode 11_1 and the planar electrode 11_2.
  • terminals 13_1A to 13_1N are provided as in FIG.
  • the light emitting layer 12_1 It emits light with a light emission pattern in which the blue color gradually becomes brighter toward.
  • the magnitude of the current flowing through each of the terminals 13_1A to 13_1N satisfies the following expression (1).
  • the light emitting layer 12_2 shown in FIG. 9 has a green emission wavelength characteristic, and is provided between the planar electrode 11_2 and the planar electrode 11_3. Terminals 13_2A to 13_2N (arranged in the order of ABCDE, MN, JIHGF, and LK in the clockwise direction from the upper left in the figure) are provided around the planar electrode 11_2.
  • the light-emitting layer 12_2 is formed from the left side of the paper. It emits light with a light emission pattern in which the green color gradually becomes darker toward the right side.
  • the magnitude of the current flowing through each of the terminals 13_2A to 13_2K satisfies the following expression (2).
  • the light emitting layer 12_3 illustrated in FIG. 10 has a red light emission wavelength characteristic, and is provided between the planar electrode 11_3 and the planar electrode 11_4.
  • terminals 13_3A to 13_3N are provided.
  • the light emitting layer 12_3 Light is emitted in a light emission pattern in which red gradually becomes brighter toward the right side.
  • the magnitude of the current flowing through each of the terminals 13_3A to _3K satisfies the following expression (3).
  • FIG. 11 shows an example of a light emission mode of the lighting device 100A when the light emitting layer 12_2 having the green light emission wavelength characteristic shown in FIG. 9 and the light emission layer 12_3 having the red light emission wavelength characteristic shown in FIG. 10 are combined.
  • the light emitting layer 12_2 having a light emitting pattern in which the green gradually becomes brighter from the right side to the left side of the paper and the light emitting layer 12_3 having a light emitting pattern in which the red color gradually becomes brighter from the left side to the right side of the paper are combined. Emits light with a light emission pattern of green ⁇ red green ⁇ red (or yellow) from the left side to the right side of the drawing.
  • the lighting device 100A has the light emitting layer 12_1 having the blue light emission wavelength characteristic shown in FIG. 8, the light emitting layer 12_2 having the green light emission wavelength characteristic shown in FIG. 9, and the red light emission wavelength characteristic shown in FIG.
  • An example of a light emission mode of the lighting device 100A when combined with the light emitting layer 12_3 is shown.
  • the lighting device 100A emits light with a complex color light emission pattern (rainbow color) in the plane.
  • the first-layer planar electrode 11_1 and the fourth-layer planar electrode 11_4 are provided with one or more terminals, and are adjusted so that the same current flows through each terminal.
  • the terminals of the second-layer planar electrode 11_2 and the third-layer planar electrode 11_3 are adjusted so that different currents flow through the terminals.
  • the wiring to the planar electrodes 11_1 and 11_4 can be further simplified.
  • the manufacturing process of the lighting device 100A can be simplified, and the manufacturing cost can be reduced.
  • first-layer planar electrode 11_1 and the third-layer planar electrode 11_3 may be provided with one or more terminals, and may be adjusted so that the same current flows in each terminal. In this case, adjustment is made so that different currents flow through the terminals of the second-layer planar electrode 11_2 and the fourth-layer planar electrode 11_4.
  • the second-layer planar electrode 11_2 and the fourth-layer planar electrode 11_4 may be provided with one or more terminals, and may be adjusted so that the same current flows in each terminal. In this case, adjustment is made so that different currents flow through the terminals of the first-layer planar electrode 11_1 and the third-layer planar electrode 11_3.
  • FIG. 13 is a plan view of a planar electrode included in the lighting apparatus 100B.
  • Lighting device 100B according to the present embodiment is different from lighting device 100A according to the second embodiment in the arrangement of terminals in the planar electrodes and the method of connecting a power source to each terminal. Since other points are similar to those of lighting device 100A according to the second embodiment, description thereof will not be repeated.
  • the planar electrode 11_1 included in the lighting device 100B has a plurality of terminals 13_1A to 13_1N (arranged in the order of ACE, MN, JIGF, and LK in the clockwise direction from the upper left in the figure). As shown in FIG. 13, the arrangement of the terminals on the planar electrode 11_1 does not necessarily have to be vertically and horizontally symmetrical. For example, the intervals between the terminals may be uneven.
  • the lighting device 100B may be configured such that one end of one power source is electrically connected to two or more terminals among a plurality of terminals provided on the planar electrode.
  • the power supply 50_1A is electrically connected to three terminals 13_1A, 13_1C, and 13_1E.
  • the current density distribution (balance of currents flowing through the terminals) can be changed in the plane of the planar electrode 11_1.
  • FIG. 14 is a side view of the illumination device 100C.
  • Lighting device 100C according to the present embodiment is different from lighting device 100A according to the second embodiment in having an insulating layer. Since other points are similar to those of lighting device 100A according to the second embodiment, description thereof will not be repeated.
  • the lighting device 100C includes light emitting units 10_1 to 10_3, transparent insulating layers 14_1 and 14_2, and a power supply circuit 40.
  • the insulating layers 14_1 and 14_2 are also collectively referred to as the insulating layer 14.
  • the insulating layer 14 is provided so that the light emitting units 10_1 to 10_3 do not interfere with each other. That is, by providing an insulating layer between two light emitting units, a reference potential (ground potential) can be set for each light emitting unit.
  • the insulating layer 14_1 is provided between the light emitting unit 10_1 and the light emitting unit 10_2.
  • the insulating layer 14_2 is provided between the light emitting unit 10_2 and the light emitting unit 10_3.
  • the light emitting unit 10_1 can set either the planar electrode 11_1 or the planar electrode 11_2 to a reference potential.
  • the light emitting unit 10_2 can set either the planar electrode 11_3 or the planar electrode 11_4 to a reference potential.
  • the light emitting unit 10_3 can set either the planar electrode 11_5 or the planar electrode 11_6 to a reference potential. That is, since the light emitting units do not interfere with each other, the luminance of the light emitting units can be individually adjusted. Thereby, the light emission pattern of the light emitting unit 10 can be adjusted more easily.
  • Lighting device 100D according to the present embodiment is different from lighting device 100A according to the second embodiment in that it has a planar electrode provided with only one terminal. Since other points are similar to those of lighting device 100A according to the second embodiment, description thereof will not be repeated.
  • FIG. 15 is an exploded view of the light emitting layer and the planar electrode of the light emitting module 60.
  • FIG. 15 shows an exploded view of one light-emitting unit 10_1 among the three-layer light-emitting units 10_1 to 10_3 of the illumination device 100A shown in FIG.
  • one planar electrode is provided with a plurality of terminals, and the other planar electrode is provided with one terminal. Is provided.
  • the planar electrode 11_1 is provided with a plurality of terminals 13_1A and 13_1B.
  • the planar electrode 11_2 is provided with a single terminal 13_2A.
  • the power supply 50_1A is electrically connected between the terminal 13_1A and the terminal 13_2A.
  • the power supply 50_1B is electrically connected between the terminal 13_1B and the terminal 13_2A. In this manner, the terminal 13_2A is used for the power supply 50_1A and the power supply 50_1B.
  • FIG. 16 is a diagram illustrating a main configuration of the light emitting module 60.
  • the light emitting module 60 according to the present embodiment is the same as that obtained by removing the power supply circuit 40 from the illumination device 100A according to the second embodiment. Thereby, since it becomes possible for a user to connect a power supply arbitrarily after sale of the light emitting module 60, the freedom degree of design increases.
  • FIG. 17 is a side view of the illumination device 100E.
  • Lighting device 100E according to the present embodiment is different from lighting device 100A according to the second embodiment in that substrate 15 is provided. Since other points are similar to those of lighting device 100A according to the second embodiment, description thereof will not be repeated.
  • the substrate 15 is provided on the surface of the planar electrode 11_4 opposite to the contact surface between the planar electrode 11_4 and the light emitting layer 12_3.
  • the planar electrode 11 and the light emitting layer 12 are sealed between the substrate 15 and a sealing member (not shown). Thereby, the penetration
  • the illumination device 100E is configured as a bottom emission type that emits light from the substrate 15 as an example.
  • the substrate 15 and the planar electrodes 11_2 to 11_4 are made of a transparent or translucent member.
  • the planar electrode 11_1 may be either transparent or opaque.
  • Examples of the transparent or translucent substrate 15 include glass, resin (PET, PEN, polycarbonate, etc.), sapphire, and the like.
  • the lighting device 100E may be configured as a top emission type that emits light from the planar electrode 11_1 side.
  • the planar electrodes 11_1 to 11_3 are made of a transparent or translucent member.
  • the substrate 15 and the planar electrode 11_4 may be either transparent or opaque. Examples of the opaque substrate 15 include a semiconductor (such as Si), a metal (such as Al and stainless steel), and a metal foil.
  • the lighting device 100E may be configured to emit light from both sides of the substrate 15 and the planar electrode 11_1.
  • the substrate 15 and the planar electrodes 11_1 to 11_4 are made of transparent or translucent members.
  • the illumination device 100 ⁇ / b> E can improve durability by providing the substrate 15.
  • the lighting device described above includes a power supply circuit and planar first light emitting layers and second light emitting layers arranged in the stacking direction.
  • a planar electrode is provided on each surface of each light emitting layer.
  • a first terminal provided on a planar electrode on one side of the first light emitting layer and a power supply circuit, and a first terminal provided on a position different from the first terminal of the planar electrode on the one side. Electrical paths are respectively formed between the two terminals and the power supply circuit.
  • the third terminal provided between the third terminal provided on the planar electrode on one side of the second light emitting layer and the power supply circuit and at a position different from the third terminal of the planar electrode on the one side. Electrical paths are respectively formed between the terminals 4 and the power supply circuit.
  • the power supply circuit adjusts at least one of the magnitude of the current flowing through the first light emitting layer through the first terminal and the magnitude of the current flowing through the first light emitting layer through the second terminal, for example, according to demand.
  • at least one of the magnitude of the current flowing through the second light-emitting layer through the third terminal and the magnitude of the current flowing through the fourth terminal into the second light-emitting layer is set as required, for example. It is configured to be adjustable accordingly.
  • the lighting device has a magnitude of a current flowing from the power supply circuit to the first light emitting layer through the first terminal and the second terminal, respectively, and a second current from the power supply circuit through the third terminal and the fourth terminal.
  • a control circuit for controlling at least one of the magnitudes of currents flowing to the light emitting layers.
  • a planar electrode shared between the first light emitting layer and the second light emitting layer is used as a current path flowing through the first light emitting layer and a current path flowing through the second light emitting layer. It is done.
  • the power supply circuit has a relative relationship between the magnitude of the current flowing through the first light emitting layer through the first terminal and the magnitude of the current flowing through the first light emitting layer through the second terminal, and through the third terminal.
  • the relative relationship between the magnitude of the current flowing in the second light emitting layer and the magnitude of the current flowing in the second light emitting layer through the fourth terminal is configured to be adjustable.
  • the first light emitting layer and the second light emitting layer are made of an organic light emitting layer.
  • the first light emitting layer and the second light emitting layer have different emission wavelength characteristics.
  • a light emitting module capable of connecting a power supply circuit.
  • the light emitting module includes a planar first light emitting layer and a second light emitting layer arranged side by side in the stacking direction.
  • a planar electrode is provided on each surface of each light emitting layer.
  • a first terminal provided on a planar electrode on one side of the first light emitting layer and a power supply circuit, and a first terminal provided on a position different from the first terminal of the planar electrode on the one side.
  • An electrical path can be formed between each of the two terminals and the power supply circuit.
  • the third terminal provided between the third terminal provided on the planar electrode on one side of the second light emitting layer and the power supply circuit and at a position different from the third terminal of the planar electrode on the one side.
  • An electric path can be formed between each of the four terminals and the power supply circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

 比較的簡単な構成で様々な発光パターンを実現することが可能な面状の照明装置を提供する。照明装置(100)は、端子(13_1A)と電源回路(40)との間、および、端子(13_2B)と電源回路(40)との間で、それぞれ電気的な経路が形成されている。端子(13_2A)と電源回路(40)との間、および、端子(13_2B)と電源回路(40)との間で、それぞれ電気的な経路が形成されている。電源回路(40)は、端子(13_1A)を通じて発光層(12_1)に流れる電流の大きさ、および端子(13_1B)を通じて発光層(12_1)に流れる電流の大きさ、の少なくとも一方を要求に応じて調整可能に構成されるとともに、端子(13_2A)を通じて発光層(12_2)に流れる電流の大きさ、および端子(13_2B)を通じて発光層(12_2)に流れる電流の大きさ、の少なくとも一方を要求に応じて調整可能に構成される。

Description

照明装置および発光モジュール
 本開示は、積層方向に並べて配置された、面状の発光層を含む照明装置および発光モジュールに関する。
 従来、OLED(Organic Light Emitting Diode)やLED(Light Emitting Diode)といった発光素子を利用した様々なデバイスが開発されている。
 たとえば、特開平7-057873号公報(特許文献1)は、有機発光素子で構成される画像表示装置を開示している。当該画像表示装置は、複数の積層された発光セルを有し、各発光セルは、それぞれ異なる波長の光を射出する。複数の積層された発光セルは、平面方向に行列状に並べて配置される。当該画像表示装置は、各発光セルから射出される光の輝度を調整することで様々な色の表示を可能にする。
 特開2010-277949号公報(特許文献2)は、高開口率で、低コスト化が可能な有機EL表示装置を開示している。当該有機EL表示装置は、上下に積層された複数の有機EL素子を有し、各有機EL素子は、それぞれ異なる波長の光を射出する。複数の積層された有機EL素子は、平面方向に行列状に並べて配置される。当該有機EL表示装置は、各有機EL素子から射出される光の輝度を調整することで様々な色の表示を可能にする。
特開平7-057873号公報 特開2010-277949号公報
 ところで、近年、特開平7-057873号公報および特開2010-277949号公報に開示されるようなOLEDなどの発光素子を利用した画像装置の他に、当該発光素子を利用した面状の照明装置もまた開発されている。このような照明装置においては、デザイン性を高めるために、その面内で様々な色の発光を実現することが求められている。
 ここで、特開平7-057873号公報に開示される画像表示装置をたとえば面状の照明装置に応用した場合には、画像表示装置の各画素の発光を制御することで様々な色の発光を実現することができる。しかしながら、この場合には、画像処理表示装置の各画素にトランジスタ等の付加的な部品を設ける必要がある。すなわち、特開平7-057873号公報に開示される画像表示装置を照明装置として実現した場合には、価格が高くなる、構成が複雑となるなどの問題が生じる。特許文献2が開示する有機EL表示装置についても同様のことがいえる。
 この開示は上述のような問題点を解決するためになされたものであって、その目的は、比較的簡単な構成で様々な発光パターンを実現することが可能な面状の照明装置を提供することである。他の局面における目的は、比較的簡単な構成で様々な発光パターンを実現することが可能な面状の発光モジュールを提供することである。
 一実施の形態に従うと、照明装置は、電源回路と、積層方向に並べて配置された面状の第1の発光層および第2の発光層とを備える。各発光層のそれぞれの面には面状電極がそれぞれ設けられている。第1の発光層の一方側の面状電極に設けられた第1の端子と電源回路との間、および、当該一方側の面状電極の第1の端子とは異なる位置に設けられた第2の端子と電源回路との間で、それぞれ電気的な経路が形成されている。第2の発光層の一方側の面状電極に設けられた第3の端子と電源回路との間、および、当該一方側の面状電極の第3の端子とは異なる位置に設けられた第4の端子と電源回路との間で、それぞれ電気的な経路が形成されている。電源回路は、第1の端子を通じて第1の発光層に流れる電流の大きさ、および第2の端子を通じて第1の発光層に流れる電流の大きさ、の少なくとも一方を、たとえば要求に応じて調整可能に構成されるとともに、第3の端子を通じて第2の発光層に流れる電流の大きさ、および第4の端子を通じて第2の発光層に流れる電流の大きさ、の少なくとも一方を、例えば要求に応じて調整可能に構成される。
 他の実施形態に従うと、電源回路を接続可能な発光モジュールが提供される。発光モジュールは、積層方向に並べて配置された面状の第1の発光層および第2の発光層を備える。各発光層のそれぞれの面には面状電極がそれぞれ設けられている。第1の発光層の一方側の面状電極に設けられた第1の端子と電源回路との間、および、当該一方側の面状電極の第1の端子とは異なる位置に設けられた第2の端子と電源回路との間で、それぞれ電気的な経路が形成可能に構成される。第2の発光層の一方側の面状電極に設けられた第3の端子と電源回路との間、および、当該一方側の面状電極の第3の端子とは異なる位置に設けられた第4の端子と電源回路との間で、それぞれ電気的な経路が形成可能に構成される。
 本発明によれば、比較的簡単な構成で様々な発光パターンを実現することができる。
 本発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解される本発明に関する次の詳細な説明から明らかとなるであろう。
照明装置の概略的な外観を示す図である。 第1の実施の形態に従う照明装置が発光している様子を概略的に表した図である。 第1の実施の形態に従う照明装置が発光している様子を概略的に表した図である。 第1の実施の形態に従う照明装置の主要な構成を示した図である。 第1の実施の形態に従う発光モジュールが有する発光層および面状電極を分解した図である。 第2の実施の形態に従う照明装置の側面図である。 第2の実施の形態に従う面状電極の平面図である。 第2の実施の形態に従う、青色の発光波長特性を有する発光層の発光態様の一例を示す図である。 第2の実施の形態に従う、緑色の発光波長特性を有する発光層の発光態様の一例を示す図である。 第2の実施の形態に従う、赤色の発光波長特性を有する発光層の発光態様の一例を示す図である。 緑色の発光波長特性を有する発光層と、赤色の発光波長特性を有する発光層とを組み合わせた場合の第2の実施の形態に従う照明装置の発光態様の一例を示す図である。 青色の発光波長特性を有する発光層と、緑色の発光波長特性を有する発光層と、赤色の発光波長特性を有する発光層とを組み合わせた場合の第2の実施の形態に従う照明装置の発光態様の一例を示す図である。 第3の実施の形態に従う照明装置が有する面状電極の平面図である。 第4の実施の形態に従う照明装置の側面図である。 第5の実施の形態に従う発光モジュールが有する発光層および面状電極を分解した図である。 第6の実施の形態に従う発光モジュールの主要な構成を示した図である。 第7の実施の形態に従う照明装置の側面図である。
 以下、図面を参照しつつ、本実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明は繰り返さない。なお、以下で説明される各実施の形態および/または各変形例は、選択的に組み合わされてもよい。
 [原理説明]
 まず、本発明に従う実施の形態についての理解を深めるために、図1を参照して、当該実施の形態を実現するための原理について説明する。図1は、一例の照明装置1の概略的な外観を示す図である。
 図1に示されるように、照明装置1は、発光ユニット10_1と、電源50_1とを含む。発光ユニット10_1は、面状電極11_1と、面状電極11_2と、有機EL層である発光層12_1とを含む。発光層12_1は、その一方面に面状電極11_1が設けられ、他方の面に面状電極11_2が設けられる。電源50_1の一端は端子13_1を介して面状電極11_1と電気的に接続され、電源50_1の他端は端子13_2を介して面状電極11_2と電気的に接続される。なお、以下では、面状電極11_1および面状電極11_2を総称して面状電極11ともいう。また、端子13_1および端子13_2を総称して端子13ともいう。
 面状電極11_1と面状電極11_2との間に電源50_1が電圧を印加すると、発光層12_1は発光する。より具体的には、面状電極11_1と面状電極11_2とのうちのいずれか一方の面状電極から供給された正孔と、他方の面状電極から供給された電子とが発光層12_1内で結合する。これにより、発光層12_1内の有機物は、励起状態と呼ばれる高エネルギ状態となる。発光層12_1は、励起状態の有機物が元の安定状態に戻る際に発光する。このような発光原理から、照明装置1の輝度は、面状電極11に供給される単位時間当たりの正孔および電子の量、つまり電流に応じて変化する。
 照明装置1の輝度分布が、当該照明装置1の面内において生じる。面状電極11はその面内で内部抵抗を有するため、電源50と面状電極11との接続点(端子13_1)から離れた位置になるほど電流密度が低くなる。図2の面状電極11_1上には、電流密度が等しい位置を結んだ点線が示される。端子13_1に近い点線ほど電流密度が高い事を示す。すなわち、端子13_1に近いほど面状電極11間に大きな電流が流れる。
 このように、面状電極11内で電流密度の分布が生じる。これにより、照明装置1は、端子13に近い位置ほど輝度が高くなり、端子13に遠い位置ほど輝度が低くなる。すなわち、電源50を面状電極11のいずれの場所に接続するかによって、面状電極11の面内の電流密度分布が変化し、この電流密度分布に応じて発光パターン(照明装置100の発光面内の輝度分布)が変化する。本発明に従う実施の形態は、このような電流密度分布の変化を応用して様々な発光パターンを実現する。
 なお、上記では、発光層12_1が有機EL層である前提で説明を行なったが、発光層12_1は、無機EL層などであってもよい。
 [第1の実施の形態]
 <照明装置100の概要>
 図2および図3を参照して、上述の発光ユニットを2つ積層させた、第1の実施の形態に従う照明装置100について説明する。図2および図3は、照明装置100が発光している様子を概略的に表した図である。図2および図3には、照明装置100を側面から見た場合の発光態様(A)と、照明装置100を正面から見た場合の発光態様(B)とが示されている。
 図2に示されるように、照明装置100は、発光ユニット10_1と発光ユニット10_2とを含む。なお、以下では、発光ユニット10_1および発光ユニット10_2を総称して発光ユニット10ともいう。
 発光ユニット10の各々は、積層方向に並べて配置される。また、照明装置100は、発光ユニット10の各々の輝度を調整可能に構成される。発光ユニット10の具体的な構成については後述する。発光ユニット10が積層方向に並べて配置されることで、発光ユニット10によって積層方向に射出されたそれぞれの光は合成される。このように、照明装置100は、発光ユニット10_1から射出される光と、発光ユニット10_2から射出される光との組み合わせに応じて様々な発光波長特性を有する光を生成することができる。すなわち、照明装置100は、様々な色の光を放射することが可能になる。
 また、照明装置100の発光パターンは、上述したように発光ユニット10の面状電極に生じる電流密度分布に応じて様々に変化する。照明装置100は、面状電極内に様々な電流密度分布を意図的に作り出して多様な発光パターンを実現する。より具体的には、発光ユニット10の各々は、複数の端子を有し、照明装置100は、複数の端子の各々に流れる電流の大きさを調整可能に構成される。これにより、照明装置100は、発光ユニット10の面状電極に様々な電流密度分布を生じさせることが可能になる。
 たとえば、図2の発光態様(A),(B)に示されるように、発光ユニット10の両端ほど大きな電流を流し、発光ユニット10の中央部ほど小さな電流を流すと、発光ユニット10の中央部に向かうほど暗くなるような発光パターンを実現できる。
 また、図3の発光態様(A),(B)に示されるように、発光ユニット10の中央部ほど大きな電流を流し、発光ユニット10の両端ほど小さな電流を流すと、発光ユニット10_1の中央部に向かうほど明るくなるような発光パターンを実現できる。このように、照明装置100は、発光ユニット10の電流密度分布を変化させることで様々な発光パターンを実現できる。
 また、照明装置100は、発光ユニット10の各々の発光輝度を調整可能に構成されるため、発光ユニット10_1と発光ユニット10_2との各々の発光波長特性の組み合わせに対して発光輝度の組み合わせを変えることで様々な発光色に変化させることができる。すなわち、照明装置100は、様々な色の光を放射することが可能になる。
 照明装置100は、発光パターンと発光色との組み合わせにより多種多様な発光を実現できる。これにより、様々な発光態様を有するデザイン性に優れた照明装置を製造することが可能になる。さらに、照明装置100は、発光層全体に共通で設けられた面状電極に対して異なる位置から給電するため、ELディスプレイのように画素毎にトランジスタなどの部品を必要としない。このため、比較的簡単な構成でデザイン性の高い照明装置を実現できる。
 なお、積層する発光ユニットの数は、2層に限定されるわけではなく、2層以上であればよい。
 <照明装置100の主要構成>
 図4を参照して、第1の実施の形態に従う照明装置100についてより詳細に説明する。図4は、照明装置100の主要な構成を示した図である。
 図4に示されるように、照明装置100は、発光モジュール60と、発光モジュール60に電気的に接続された電源回路40とを備える。発光モジュール60は、発光ユニット10_1および発光ユニット10_2を含む。発光ユニット10_1は、面状電極11_1と、面状電極11_2と、面状の発光層12_1を含む。発光ユニット10_2は、面状電極11_2と、面状電極11_3と、面状の発光層12_2とを含む。
 発光層12_1および発光層12_2は、照明装置100が様々な色での発光を実現できるように積層方向に並べて配置される。より具体的には、発光層12_1が発する光の波長特性と発光層12_2が発する光の波長特性との組み合わせに応じて、照明装置100は、様々な波長の光を射出する。すなわち、発光層12_1の発光色と発光層12_2の発光色との組み合わせに応じて、照明装置100は、様々な色の光を射出する。典型的には、発光層12の各々から射出される光は、異なる波長特性を有する。なお、発光層12の各々から射出される光は、同一の波長特性を有してもよい。
 各発光層のそれぞれの面には面状電極がそれぞれ設けられる。より具体的には、発光層12_1の一方面には、面状電極11_1が設けられ、発光層12_2の他方面には、面状電極11_2が設けられる。発光層12_2の一方面には、面状電極11_2が設けられ、発光層12_2の他方面には、面状電極11_3が設けられる。
 発光層12_1および発光層12_2に挟まれる面状電極11_2は、照明装置100に設けるべき面状電極の数を少なくするために、発光層12_1および発光層12_2の両方について設けられる面状電極として供用される。すなわち、面状電極11_2は、発光層12_1に流れる電流の経路および発光層12_2に流れる電流の経路として共用される。
 また、面状電極11_1は、端子13_1Aと端子13_1Bとを有する。端子13_1Aと端子13_1Bとは、面状電極11_1の面上で生じさせたい電流密度分布に応じて異なる位置に設けられる。端子13の各々に個別に異なる電流を流すために、端子13_1Aと電源回路40との間、および、端子13_1Bと電源回路40との間で電気的な経路が形成される。
 面状電極11_2は、端子13_2Aと端子13_2Bとを有する。端子13_2Aと端子13_2Bとは、面状電極11_2の面上で生じさせたい電流密度分布に応じて異なる位置に設けられる。端子13の各々に個別に異なる電流を流すために、端子13_2Aと電源回路40との間、および、端子13_2Bと電源回路40との間で、それぞれ電気的な経路が形成される。
 照明装置100は、発光層12の各々の輝度および発光パターンを調整できるように、端子13の各々に流れる電流の大きさを個別に調整可能に構成される。より具体的には、照明装置100は、端子13_1Aを通じて発光層12_1に流れる電流の大きさ、および端子13_1Bを通じて発光層12_1に流れる電流の大きさ、の少なくとも一方を要求に応じて調整可能に構成される。照明装置100は、端子13_1Aおよび端子13_1Bの少なくとも一方に流れる電流量を調整可能に構成されることで、発光層12_1の発光パターンを変化させることができる。
 また、照明装置100は、端子13_2Aを通じて発光層12_2に流れる電流の大きさ、および端子13_2Bを通じて発光層12_2に流れる電流の大きさ、の少なくとも一方を要求に応じて調整可能に構成される。すなわち、照明装置100は、端子13_2Aおよび端子13_2Bの少なくとも一方に流れる電流量を調整可能に構成されれば、発光層12_2の発光パターンを変化させることができる。
 典型的には、照明装置100は、端子13_1Aおよび端子13_1Bを通じて電源回路40から発光層12_1へそれぞれ流れる電流の大きさ、および、端子13_2Aおよび端子13_2Bを通じて電源回路40から発光層12_2へそれぞれ流れる電流の大きさ、の少なくとも一方を制御するための制御回路70をさらに備える。制御回路70は、ユーザの照明装置100の操作に応じて、照明装置100の発光パターンを制御するための制御命令を電源回路40に出力する。電源回路40は、受け付けた制御命令に応じて面状電極の各端子に電流を供給する。
 一例として、照明装置100は、発光ユニット10_1の予め定められた複数の発光パターンのうちから1つの発光パターンを選択可能に構成されるとともに、発光ユニット10_2の予め定められた複数の発光パターンのうちから1つの発光パターンを選択可能に構成される。たとえば、ユーザは、ボタン等の操作部(図示しない)を操作することで各発光ユニット10の発光パターンを任意に選択する。制御回路70は、選択された発光パターンに応じて電源回路40に制御命令を出力する。これにより、ユーザは、発光ユニット10_1の発光パターンと発光ユニット10_2の発光パターンとの組み合わせの数だけ発光態様を調整できる。このように、照明装置100が電源回路の出力を調整可能するための制御回路70を有することで、ユーザは、意図した発光態様を選択できるようになる。
 (面状電極の詳細)
 以下、面状電極11についてさらに詳細に説明する。発光層12_1および発光層12_2が生じる光を射出する側に設けられた面状電極、および、発光層12_1と発光層12_2との間に設けられた面状電極は、半透明電極および透明電極のいずれかで構成される。
 たとえば、面状電極11_1~11_3は、発光層から射出された光を透過するために、透明または半透明の部材で構成される。透明または半透明の面状電極の例としては、ITO(インジウム酸化物と錫酸化物の混合体)、IZO(インジウム酸化物と亜鉛酸化物の混合体)などの金属酸化物、光が透過するぐらい薄い金属層(Al、Ag、Caなど)、あるいはそれらのナノワイヤーやナノ粒子を分散させた透明導電性フィルム(TCF:Transparent Conductive Film)などが挙げられる。
 なお、照明装置100の一方面のみから光を射出すればよい場合には、面状電極11_1および面状電極11_3のいずれか一方は、光を透過しない部材で構成されてもよい。不透明の面状電極の例としては、Al、Ag、Mg、Cuなどの各種導電性金属、さらにはAlMgなどの合金などが挙げられる。
 <電源の接続例>
 図5を参照して、発光モジュール60への電源の接続例を説明する。図5は、発光モジュール60が有する発光層および面状電極を分解した図である。
 電源回路40は、複数の電源を含む。たとえば、電源回路40は、電源50_1Aと、電源50_1Bと、電源50_2Aと、電源50_2Bとを含む。典型的には、電源は、発光層12の各々の発光パターンを調整するために発光層ごとに設けられる。また、各発光層には、その発光層内において様々な発光パターンを実現させるために複数の電源が電気的に接続される。
 より具体的には、電源50_1Aの一端は端子13_1Aに電気的に接続され、電源50_1Aの他端は端子13_2Aに電気的に接続される。電源50_1Bの一端は端子13_1Bに電気的に接続され、電源50_1Bの他端は端子13_2Bに電気的に接続される。電源50_2Aの一端は端子13_2Aに電気的に接続され、電源50_2Aの他端は端子13_3Aに電気的に接続される。電源50_2Bの一端は端子13_2Bに電気的に接続され、電源50_2Bの他端は端子13_3Bに電気的に接続される。
 発光層に挟まれた面状電極の各端子は、面状電極に設けられる端子の数をより少なくするために、複数の電源で供用可能に構成される。発光層に挟まれた面状電極の各端子は、たとえば、端子13_2Aのように電源50_1Aと電源50_2Aとで供用されもよい。また、1つの端子に電気的に接続される電源の数は、2つに限定されない。たとえば、1つの端子に3つ以上の電源が接続されてもよい。
 [第2の実施の形態]
 <照明装置100Aの概要>
 図6~図12を参照して、第2の実施の形態に従う照明装置100Aについて説明する。本実施の形態に従う照明装置100Aは、3層の発光層を有する点で第1の実施の形態に従う照明装置100とは異なる。その他の点については、第1の実施の形態に従う照明装置100と同様であるので説明を繰り返さない。
 図6を参照して、第2の実施の形態に従う照明装置100Aの概要について説明する。図6は、照明装置100Aの側面図である。
 図6に示されるように、照明装置100Aは、電源回路40と、発光モジュール60とを含む。発光モジュール60は、積層方向に並べて配置された発光ユニット10_1~10_3とを含む。発光ユニット10_3は、面状電極11_3と、面状電極11_4と、それらの面状電極の間に設けられた発光層12_3とを有する。
 面状電極には電源が接続されており、照明装置100Aは、発光層12_1~12_3のそれぞれに個別に電流を供給することができる。また、発光層12_1~12_3は、互いに異なる発光波長特性を有する。発光層12の各々の発光波長特性は、当該発光層に流れる電流の大きさに応じて様々に変化させることができるので、照明装置100Aから射出される光の発光波長特性は、任意に変化させることが可能になる。
 たとえば、発光層12_1は青色の発光波長特性を有し、発光層12_2は緑色の発光波長特性を有し、発光層12_3は赤色の発光波長特性を有する。発光層12が光の3原色(すなわち、青、緑、赤)の発光波長特性を有することで、照明装置100Aは、人が知覚可能な色のほぼ全ての色の発光を実現できる。
 なお、発光層12のそれぞれは、黄色(Yellow)、赤紫色(Magenta)、および青緑色(Cyan)のそれぞれの色の発光波長特性を有するように構成されてもよく、所望の発光色に応じて適宜構成されればよい。
 また、上述の例では発光層の数は3つの場合について説明したが、発光層の数は2つ以上であればよい。
 (発光層12の詳細)
 以下、発光層12の詳細について説明する。発光層12は、たとえば、正孔注入層(HIL:Hole Injection Layer)と、正孔輸送層(HTL:Hole Transport Layer)と、光子発生層(EML:EMissive Layer)と、電子輸送層(ETL:Electron Transport Layer)と、電子注入層(EIL:Electron Injection Layer)とにより構成される。
 なお、発光層12の構成は、上記に限定されない。たとえば、光子発生層/電子輸送層とで構成されてもよい。他にも、発光層12は、正孔輸送層/光子発生層/電子輸送層で構成されてもよい。他にも、発光層12は、正孔輸送層/光子発生層/正孔阻止層/電子輸送層で構成されてもよい。他にも、発光層12は、正孔輸送層/光子発生層/正孔阻止層/電子輸送層/陰極バッファー層で構成されてもよい。
 <照明装置100Aの詳細>
 図7~図12を参照して、照明装置100Aの詳細について説明する。まず、図7を参照して、面状電極に設けられた複数の端子について説明する。図7は、面状電極の平面図である。
 図7に示されるように、面状電極11_1の周辺には、端子13_1A~13_1N(同図左上から時計回り方向に、ABCDE、MN、JIHGF、LKの順に配列されている)が設けられる。端子13_1A~13_1Nのそれぞれには、電源50_1A~50_1N(同図左上から時計回り方向に、ABCDE、MN、JIHGF、LKの順に配列されている)のそれぞれが電気的に接続される。端子13の各々には、当該端子に接続されている電源から電流が個別に供給される。これにより、端子13の各々に流す電流の大きさを個別に変化させることが可能になる。すなわち、接続される電源の数が増えるほど各端子に流す電流のバランスを変化させることができる。面状電極の面内の電流密度分布を多様に変化させることができ、発光パターンの数を増やすことができる。
 また、面状電極11_2~11_4も、面状電極11_1と同様に複数の端子を有し、各端子に互いに異なる大きさの電流を流せるように構成される。なお、面状電極11_1~11_4の各々に設けられる端子の数は同じである必要は無い。また、面状電極11_1~11_4の各々に設けられる面状電極内の端子の配置は同じである必要はない。たとえば、面状電極に設けられる端子の数および配置は、面状電極の特性(導電率や、抵抗率など)に応じて決定されてもよい。
 次に、図8~図10を参照して、面状電極の各端子に異なる大きさの電流を流した場合の発光層の発光態様の一例について説明する。図8は、青色の発光波長特性を有する発光層12_1の発光態様の一例を示す図である。図9は、緑色の発光波長特性を有する発光層12_2の発光態様の一例を示す図である。図10は、赤色の発光波長特性を有する発光層12_3の発光態様の一例を示す図である。
 図8に示される発光層12_1は、青色の発光波長特性を有し、面状電極11_1と面状電極11_2との間に設けられる。面状電極11_1の周辺には、図7と同様に端子13_1A~13_1Nが設けられる。たとえば、紙面上側の端子(端子13_1A~13_1E)に流す電流を小さくし、紙面下側の端子(端子13_1J~13_1F)に流す電流を大きくした場合には、発光層12_1は、紙面上側から下側に向かうほど青色が徐々に明るくなる発光パターンで発光する。この場合、端子13_1A~13_1Nの各端子に流れる電流の大きさは下記の式(1)を満たす。
 I1A=I1B=I1C=I1D=I1E≦I1M=I1K≦I1N=I1L≦I1J=I1I=I1H=I1G=I1F・・・式(1)
 図9に示される発光層12_2は、緑色の発光波長特性を有し、面状電極11_2と面状電極11_3との間に設けられる。面状電極11_2の周辺には、端子13_2A~13_2N(同図左上から時計回り方向に、ABCDE、MN、JIHGF、LKの順に配列されている)が設けられる。たとえば、紙面左側の端子(端子13_2L,端子13_2K)に流す電流を大きくし、紙面右側の端子(端子13_2M,端子13_2N)に流す電流を小さくした場合には、発光層12_2は、紙面左側から紙面右側に向かうほど緑色が徐々に暗くなる発光パターンで発光する。この場合、端子13_2A~端子13_2Kの各端子に流れる電流の大きさは下記の式(2)を満たす。
 I2M=I2N≦I2E=I2J≦I2D=I2I≦I2C=I2H≦I2B=I2G≦I2A=I2F≦I2L=I2K・・・式(2)
 図10に示される発光層12_3は、赤色の発光波長特性を有し、面状電極11_3と面状電極11_4との間に設けられる。面状電極11_3の周辺には、端子13_3A~13_3N(同図左上から時計回り方向に、ABCDE、MN、JIHGF、LKの順に配列されている)が設けられる。たとえば、紙面左側の端子(端子13_3L,端子13_3K)に流す電流を小さくし、紙面右側の端子(端子13_3M,端子13_3N)に流す電流を大きくした場合には、発光層12_3は、紙面左側から紙面右側に向かうほど赤色が徐々に明るくなる発光パターンで発光する。この場合、端子13_3A~_3Kの各端子に流れる電流の大きさは下記の式(3)を満たす。
 I3L=I3K≦I3A=I3F≦I3B=I3G≦I3C=I3H≦I3D=I3I≦I3E=I3J≦I3M=I3N・・・式(3)
 最後に、図11,図12を参照して、図8~図10に示される各発光層を組み合わせた場合の発光態様について説明する。
 図11は、図9に示される緑色の発光波長特性を有する発光層12_2と、図10に示される赤色の発光波長特性を有する発光層12_3とを組み合わせた場合の照明装置100Aの発光態様の一例を示す。紙面右側から左側に向かうほど緑色が徐々に明るくなる発光パターンの発光層12_2と、紙面左側から右側に向かうほど赤色が徐々に明るくなる発光パターンを有する発光層12_3とが組み合わせられると、照明装置100Aは、紙面左側から右側に向かって緑色→赤緑色→赤色(あるいは黄色)の発光パターンで発光する。
 図12は、図8に示される青色の発光波長特性を有する発光層12_1と、図9に示される緑色の発光波長特性を有する発光層12_2と、図10に示される赤色の発光波長特性を有する発光層12_3とを組み合わせた場合の照明装置100Aの発光態様の一例を示す。紙面上側から下側に向かうほど青色が徐々に明るくなる発光パターンを有する発光層12_1がさらに組み合わせられると、照明装置100Aは、その面内で複雑な色の発光パターン(虹色)で発光する。
 なお、図7~図12の例では、面状電極の各端子には異なる大きさの電流が流れる例について説明したが、発光層の両面に設けられる2つの面状電極のうち1つの面状電極の各端子には、同じ大きさの電流が流れるように調整されてもよい。
 たとえば、一層目の面状電極11_1および四層目の面状電極11_4には1つ以上の端子が設けられ、各端子には同じ大きさの電流が流れるように調整される。二層目の面状電極11_2および三層目の面状電極11_3の各端子には異なる大きさの電流が流れるように調整される。これにより、面状電極11_1および11_4への配線をより簡素化することができる。また、照明装置100Aの製造工程を簡素化でき、製造コストも削減することが可能になる。
 同様に、一層目の面状電極11_1および三層目の面状電極11_3には1つ以上の端子が設けられ、各端子には同じ大きさの電流が流れるように調整されてもよい。この場合、二層目の面状電極11_2および四層目の面状電極11_4の各端子には異なる大きさの電流が流れるように調整される。
 同様に、二層目の面状電極11_2および四層目の面状電極11_4には1つ以上の端子が設けられ、各端子には同じ大きさの電流が流れるように調整されてもよい。この場合、一層目の面状電極11_1および三層目の面状電極11_3の各端子には異なる大きさの電流が流れるように調整される。
 [第3の実施の形態]
 図13を参照して、第3の実施の形態に従う照明装置100Bについて説明する。図13は、照明装置100Bが有する面状電極の平面図である。本実施の形態に従う照明装置100Bは、面状電極内の端子の配置、および各端子への電源の接続の仕方について、第2の実施の形態に従う照明装置100Aとは異なる。その他の点については、第2の実施の形態に従う照明装置100Aと同様であるので説明を繰り返さない。
 照明装置100Bに含まれる面状電極11_1は、複数の端子13_1A~13_1N(同図左上から時計回り方向に、ACE、MN、JIGF、LKの順に配列されている)を有する。図13に示されるように、面状電極11_1への各端子の配置は、必ずしも上下左右対称である必要はない。たとえば、各端子の間隔は、不均等でもよい。
 また、照明装置100Bは、面状電極に設けられる複数の端子のうちの2つ以上の端子に1つの電源の一端が電気的に接続されるように構成されてもよい。たとえば、電源50_1Aは、端子13_1A,13_1C,および13_1Eの3つの端子に電気的に接続される。このように、1つの電源から複数の端子に電流を供給しても面状電極11_1の面内で電流密度分布(各端子に流す電流のバランス)を変化させることができる。照明装置100Bがこのように構成されることで、電源の数を減らすことができる。すなわち、照明装置100Bの構成をより簡素化でき、また、コストを削減することができる。
 [第4の実施の形態]
 図14を参照して、第4の実施の形態に従う照明装置100Cについて説明する。図14は、照明装置100Cの側面図である。本実施の形態に従う照明装置100Cは、絶縁層を有する点で第2の実施の形態に従う照明装置100Aとは異なる。その他の点については、第2の実施の形態に従う照明装置100Aと同様であるので説明を繰り返さない。
 照明装置100Cは、発光ユニット10_1~10_3と、透過性を有する絶縁層14_1,14_2と、電源回路40とを含む。なお、以下では、絶縁層14_1,14_2を総称して絶縁層14ともいう。絶縁層14は、発光ユニット10_1~10_3が互いに干渉し合わないようにするために設けられる。すなわち、2つの発光ユニットの間に絶縁層を設けることで、発光ユニットごとに基準電位(グランド電位)を設定することができる。
 より具体的には、絶縁層14_1は、発光ユニット10_1と、発光ユニット10_2との間に設けられる。絶縁層14_2は、発光ユニット10_2と、発光ユニット10_3との間に設けられる。発光ユニット10_1は、面状電極11_1または面状電極11_2のいずれかを基準電位に設定することができる。発光ユニット10_2は、面状電極11_3または面状電極11_4のいずれかを基準電位に設定することができる。発光ユニット10_3は、面状電極11_5または面状電極11_6のいずれかを基準電位に設定することができる。すなわち、各発光ユニットは互いに干渉し合わないので、発光ユニットの輝度を個別に調整することができる。これにより、発光ユニット10の発光パターンをより簡単に調整することが可能になる。
 [第5の実施の形態]
 図15を参照して、第5の実施の形態に従う照明装置100Dについて説明する。本実施の形態に従う照明装置100Dは、端子が1つだけ設けられる面状電極を有する点で第2の実施の形態に従う照明装置100Aとは異なる。その他の点については、第2の実施の形態に従う照明装置100Aと同様であるので説明を繰り返さない。
 図15は、発光モジュール60が有する発光層および面状電極を分解した図である。図15においては、図6に示される照明装置100Aの3層の発光ユニット10_1~10_3のうちの1つの発光ユニット10_1の分解図が示される。
 本実施の形態に従う照明装置100Dにおいては、発光層の両面に設けられる2つの面状電極のうち、一方の面状電極には複数の端子が設けられ、他方の面状電極には1つの端子が設けられる。
 たとえば、図15に示されるように、面状電極11_1には、複数の端子13_1A、13_1Bが設けられる。面状電極11_2には、単一の端子13_2Aが設けられる。電源50_1Aは、端子13_1Aと端子13_2Aとの間に電気的に接続される。電源50_1Bは、端子13_1Bと端子13_2Aとの間に電気的に接続される。このように端子13_2Aが電源50_1Aおよび電源50_1Bに供用される。
 これにより、面状電極に設けるべき端子の数を減らすことができるので、製造工程をより簡素化でき、また製造コストも削減できる。
 [第6の実施の形態]
 図16を参照して、第6の実施の形態に従う発光モジュール60について説明する。図16は、発光モジュール60の主要な構成を示した図である。本実施の形態に従う発光モジュール60は、第2の実施の形態に従う照明装置100Aから電源回路40を取り除いたものと同等である。これにより、発光モジュール60の販売後にユーザが任意に電源を接続することが可能になるため、設計の自由度が増す。
 [第7の実施の形態]
 図17を参照して、第7の実施の形態に従う照明装置100Eについて説明する。図17は、照明装置100Eの側面図である。本実施の形態に従う照明装置100Eは、基板15を有する点で第2の実施の形態に従う照明装置100Aとは異なる。その他の点については、第2の実施の形態に従う照明装置100Aと同様であるので説明を繰り返さない。
 基板15は、面状電極11および発光層12を保護するために、面状電極11_4と発光層12_3との接触面とは反対の面状電極11_4の面に設けられる。典型的には、面状電極11および発光層12は、基板15と封止部材(図示しない)との間で封止される。これにより、照明装置100Eの内部に、水分や紫外線の侵入を防ぐことができ、照明装置100Eの耐久性を上げることができる。
 照明装置100Eは、一例として、基板15から光を射出するボトムエミッション型で構成される。この場合、基板15および面状電極11_2~11_4は、透明若しくは半透明の部材から構成される。面状電極11_1は、透明でも不透明でもどちらでもよい。透明または半透明の基板15の例としては、ガラス、樹脂(PET、PEN、ポリカーボネートなど)、サファイアなどが挙げられる。
 なお、照明装置100Eは、面状電極11_1側から光を射出するトップエミッション型で構成されてもよい。この場合、面状電極11_1~11_3は、透明若しくは半透明の部材から構成される。基板15および面状電極11_4は、透明でも不透明でもどちらでもよい。不透明な基板15の例としては、半導体(Siなど)、金属(Al、ステンレスなど)や金属箔などが挙げられる。
 また、照明装置100Eは、基板15および面状電極11_1の両方の側から光を射出するように構成されてもよい。この場合、基板15および面状電極11_1~11_4は、透明若しくは半透明の部材から構成される。
 以上のようにして、照明装置100Eは,基板15を設けることにより、耐久性を上げることができる。
 以上説明した照明装置は、電源回路と、積層方向に並べて配置された面状の第1の発光層および第2の発光層とを備える。各発光層のそれぞれの面には面状電極がそれぞれ設けられている。第1の発光層の一方側の面状電極に設けられた第1の端子と電源回路との間、および、当該一方側の面状電極の第1の端子とは異なる位置に設けられた第2の端子と電源回路との間で、それぞれ電気的な経路が形成されている。第2の発光層の一方側の面状電極に設けられた第3の端子と電源回路との間、および、当該一方側の面状電極の第3の端子とは異なる位置に設けられた第4の端子と電源回路との間で、それぞれ電気的な経路が形成されている。電源回路は、第1の端子を通じて第1の発光層に流れる電流の大きさ、および第2の端子を通じて第1の発光層に流れる電流の大きさ、の少なくとも一方を、例えば要求に応じて調整可能に構成されるとともに、第3の端子を通じて第2の発光層に流れる電流の大きさ、および第4の端子を通じて第2の発光層に流れる電流の大きさ、の少なくとも一方を、例えば要求に応じて調整可能に構成される。
 好ましくは、照明装置は、第1の端子および第2の端子を通じて電源回路から第1の発光層へそれぞれ流れる電流の大きさ、および、第3の端子および第4の端子を通じて電源回路から第2の発光層へそれぞれ流れる電流の大きさ、の少なくとも一方を制御するための制御回路をさらに備える。
 好ましくは、第1の発光層と第2の発光層との間には、第1の発光層に流れる電流の経路および第2の発光層に流れる電流の経路として共用される面状電極が設けられる。
 好ましくは、電源回路は、第1の端子を通じて第1の発光層に流れる電流の大きさと第2の端子を通じて第1の発光層に流れる電流の大きさとの相対関係、および、第3の端子を通じて第2の発光層に流れる電流の大きさと第4の端子を通じて第2の発光層に流れる電流の大きさとの相対関係が互いに異なるように調整可能に構成される。
 好ましくは、第1の発光層および第2の発光層は、有機発光層からなる。
 好ましくは、第1の発光層および第2の発光層は、互いに異なる発光波長特性を有している。
 また、以上説明したように、電源回路を接続可能な発光モジュールが提供される。発光モジュールは、積層方向に並べて配置された面状の第1の発光層および第2の発光層を備える。各発光層のそれぞれの面には面状電極がそれぞれ設けられている。第1の発光層の一方側の面状電極に設けられた第1の端子と電源回路との間、および、当該一方側の面状電極の第1の端子とは異なる位置に設けられた第2の端子と電源回路との間で、それぞれ電気的な経路が形成可能に構成される。第2の発光層の一方側の面状電極に設けられた第3の端子と電源回路との間、および、当該一方側の面状電極の第3の端子とは異なる位置に設けられた第4の端子と電源回路との間で、それぞれ電気的な経路が形成可能に構成される。
 以上説明した各構成によれば、比較的簡単な構成で様々な発光パターンを実現することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10,10_1~10_3 発光ユニット、11,11_1~11_6 面状電極、12,12_1~12_3 発光層、13,13_1A~13_1N,13_2A~13_2N,13_3A~13_3N 端子、14 絶縁層、15 基板、40 電源回路、50_1~50_3,50_1A~50_1N,50_2A~50_2N,50_3A~50_3N 電源、70 制御回路、100,100A~100E 照明装置。

Claims (7)

  1.  電源回路と、
     積層方向に並べて配置された面状の第1の発光層および第2の発光層とを備え、各発光層のそれぞれの面には面状電極がそれぞれ設けられており、
     前記第1の発光層の一方側の面状電極に設けられた第1の端子と前記電源回路との間、および、当該一方側の面状電極の前記第1の端子とは異なる位置に設けられた第2の端子と前記電源回路との間で、それぞれ電気的な経路が形成されており、
     前記第2の発光層の一方側の面状電極に設けられた第3の端子と前記電源回路との間、および、当該一方側の面状電極の前記第3の端子とは異なる位置に設けられた第4の端子と前記電源回路との間で、それぞれ電気的な経路が形成されており、
     前記電源回路は、
      前記第1の端子を通じて前記第1の発光層に流れる電流の大きさ、および前記第2の端子を通じて前記第1の発光層に流れる電流の大きさ、の少なくとも一方を調整可能に構成されるとともに、
      前記第3の端子を通じて前記第2の発光層に流れる電流の大きさ、および前記第4の端子を通じて前記第2の発光層に流れる電流の大きさ、の少なくとも一方を調整可能に構成される、照明装置。
  2.  前記第1の端子および前記第2の端子を通じて前記電源回路から前記第1の発光層へそれぞれ流れる電流の大きさ、および、前記第3の端子および前記第4の端子を通じて前記電源回路から前記第2の発光層へそれぞれ流れる電流の大きさ、の少なくとも一方を制御するための制御回路をさらに備える、請求項1に記載の照明装置。
  3.  前記第1の発光層と前記第2の発光層との間には、前記第1の発光層に流れる電流の経路および前記第2の発光層に流れる電流の経路として共用される面状電極が設けられる、請求項1または2に記載の照明装置。
  4.  前記電源回路は、前記第1の端子を通じて前記第1の発光層に流れる電流の大きさと前記第2の端子を通じて前記第1の発光層に流れる電流の大きさとの相対関係、および、前記第3の端子を通じて前記第2の発光層に流れる電流の大きさと前記第4の端子を通じて前記第2の発光層に流れる電流の大きさとの相対関係が互いに異なるように調整可能に構成される、請求項1~3のいずれか1項に記載の照明装置。
  5.  前記第1の発光層および前記第2の発光層は、有機発光層からなる、請求項1~4のいずれか1項に記載の照明装置。
  6.  前記第1の発光層および前記第2の発光層は、互いに異なる発光波長特性を有している、請求項1~5のいずれか1項に記載の照明装置。
  7.  電源回路を接続可能な発光モジュールであって、
     積層方向に並べて配置された面状の第1の発光層および第2の発光層とを備え、各発光層のそれぞれの面には面状電極がそれぞれ設けられており、
     前記第1の発光層の一方側の面状電極に設けられた第1の端子と前記電源回路との間、および、当該一方側の面状電極の前記第1の端子とは異なる位置に設けられた第2の端子と前記電源回路との間で、それぞれ電気的な経路が形成可能に構成され、
     前記第2の発光層の一方側の面状電極に設けられた第3の端子と前記電源回路との間、および、当該一方側の面状電極の前記第3の端子とは異なる位置に設けられた第4の端子と前記電源回路との間で、それぞれ電気的な経路が形成可能に構成される、発光モジュール。
PCT/JP2014/082633 2014-01-08 2014-12-10 照明装置および発光モジュール WO2015104939A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015556742A JPWO2015104939A1 (ja) 2014-01-08 2014-12-10 照明装置および発光モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014001749 2014-01-08
JP2014-001749 2014-01-08

Publications (1)

Publication Number Publication Date
WO2015104939A1 true WO2015104939A1 (ja) 2015-07-16

Family

ID=53523777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082633 WO2015104939A1 (ja) 2014-01-08 2014-12-10 照明装置および発光モジュール

Country Status (2)

Country Link
JP (1) JPWO2015104939A1 (ja)
WO (1) WO2015104939A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006181A1 (ja) * 2014-07-11 2017-04-27 パナソニックIpマネジメント株式会社 光スイッチングデバイス及び建材

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354274A (ja) * 1998-06-10 1999-12-24 Olympus Optical Co Ltd エレクトロルミネッセンス素子及びエレクトロルミネッセンス照明装置
JP2000516273A (ja) * 1996-08-06 2000-12-05 ザ トラスティーズ オブ プリンストン ユニバーシティ エレクトロルミネッセンス素子用の混合蒸着膜
JP2006324089A (ja) * 2005-05-18 2006-11-30 Pentax Corp 有機エレクトロルミネセンス素子
JP2007123865A (ja) * 2005-09-30 2007-05-17 Fujifilm Corp 有機電界発光素子
JP2009076450A (ja) * 2007-08-31 2009-04-09 Semiconductor Energy Lab Co Ltd 発光素子、発光装置および電子機器
JP2010232286A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 面状発光素子に対する給電方法
JP2011204664A (ja) * 2010-03-04 2011-10-13 Rohm Co Ltd 有機el装置
JP2012514327A (ja) * 2008-12-30 2012-06-21 ゼネラル・エレクトリック・カンパニイ 色質の向上した固体照明システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000516273A (ja) * 1996-08-06 2000-12-05 ザ トラスティーズ オブ プリンストン ユニバーシティ エレクトロルミネッセンス素子用の混合蒸着膜
JPH11354274A (ja) * 1998-06-10 1999-12-24 Olympus Optical Co Ltd エレクトロルミネッセンス素子及びエレクトロルミネッセンス照明装置
JP2006324089A (ja) * 2005-05-18 2006-11-30 Pentax Corp 有機エレクトロルミネセンス素子
JP2007123865A (ja) * 2005-09-30 2007-05-17 Fujifilm Corp 有機電界発光素子
JP2009076450A (ja) * 2007-08-31 2009-04-09 Semiconductor Energy Lab Co Ltd 発光素子、発光装置および電子機器
JP2012514327A (ja) * 2008-12-30 2012-06-21 ゼネラル・エレクトリック・カンパニイ 色質の向上した固体照明システム
JP2010232286A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 面状発光素子に対する給電方法
JP2011204664A (ja) * 2010-03-04 2011-10-13 Rohm Co Ltd 有機el装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006181A1 (ja) * 2014-07-11 2017-04-27 パナソニックIpマネジメント株式会社 光スイッチングデバイス及び建材

Also Published As

Publication number Publication date
JPWO2015104939A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
US7710022B2 (en) EL device having improved power distribution
US8829785B2 (en) Organic EL device
US7633218B2 (en) OLED device having improved lifetime and resolution
US7781957B2 (en) Electro-luminescent device with improved efficiency
US20110095702A1 (en) Stacked organic light-emitting device
KR101512265B1 (ko) 유기발광장치
WO2021114969A1 (zh) 一种发光结构、显示装置及照明装置
US20080203899A1 (en) Electro-luminescent display with improved efficiency
CN105185917A (zh) 一种有机电致发光显示器件及显示装置
KR101513443B1 (ko) 인쇄 회로 기판 상의 광원 디바이스 그리고 복수 개의 광원 디바이스들을 포함하는 광원 어레인지먼트
CN107180847B (zh) 像素结构、有机发光显示面板及其制作方法、显示装置
KR20130006937A (ko) 유기 발광 소자
US20140346480A1 (en) Light emitting element, display apparatus, and lighting apparatus
JP2009252458A (ja) 有機エレクトロルミネセンス素子
US9331302B2 (en) Blue light emitting device and light emitting device
US20150340643A1 (en) Organic electroluminescent device, illumination apparatus, and illumination system
US20100252841A1 (en) Oled device having improved lifetime and resolution
CN108389978B (zh) 一种有机发光显示面板及其有机发光显示装置
JP5717373B2 (ja) 有機発光装置
US20120007496A1 (en) Organic electroluminescence lighting apparatus
CN107104128B (zh) 一种像素单元及驱动方法、显示面板、显示装置
WO2015104939A1 (ja) 照明装置および発光モジュール
CN105355644A (zh) 一种像素单元及其制作方法、显示装置
US20140061611A1 (en) Light source module
US11289012B2 (en) Micro light emitting diode display panel and driving method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556742

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14877819

Country of ref document: EP

Kind code of ref document: A1