[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015104949A1 - 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素半導体装置および炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
WO2015104949A1
WO2015104949A1 PCT/JP2014/082929 JP2014082929W WO2015104949A1 WO 2015104949 A1 WO2015104949 A1 WO 2015104949A1 JP 2014082929 W JP2014082929 W JP 2014082929W WO 2015104949 A1 WO2015104949 A1 WO 2015104949A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
semiconductor device
layer
carbide semiconductor
trench
Prior art date
Application number
PCT/JP2014/082929
Other languages
English (en)
French (fr)
Inventor
梨菜 田中
泰宏 香川
三浦 成久
勇史 海老池
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015556745A priority Critical patent/JP6214680B2/ja
Priority to US15/109,962 priority patent/US9972676B2/en
Publication of WO2015104949A1 publication Critical patent/WO2015104949A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Definitions

  • the present invention relates to a trench gate type silicon carbide semiconductor device and a manufacturing method thereof.
  • Insulated gate semiconductor devices such as MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) and IGBTs (Insulated Gate Bipolar Transistors) are widely used as power switching elements.
  • MOSFETs Metal Oxide Semiconductor Field Effect Transistors
  • IGBTs Insulated Gate Bipolar Transistors
  • a channel can be formed in a well region by applying a voltage higher than or equal to a threshold voltage to a gate electrode, so that the gate electrode can be turned on.
  • a trench gate type semiconductor device in which a trench reaching the drift layer from the surface of the semiconductor layer is formed and the well region on the side surface of the trench is used as a channel has been put into practical use. Thereby, the channel width density can be improved, the cell pitch can be reduced, and the device performance can be improved.
  • silicon carbide semiconductor devices are attracting attention as next-generation semiconductor devices that can achieve high breakdown voltage and low loss. Development of silicon semiconductor devices is also underway.
  • the trench gate type semiconductor device has a problem that electric field concentration occurs at the bottom of the trench when a high voltage is applied in the off state of the semiconductor device.
  • SiC has a high dielectric breakdown strength
  • gate insulating film breakdown due to electric field concentration at the bottom of the trench is likely to occur prior to avalanche breakdown in the drift layer, Electric field concentration at the bottom of the trench tends to be a problem.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a silicon carbide semiconductor device capable of suppressing an increase in on-resistance.
  • a silicon carbide semiconductor device includes a first conductivity type drift layer made of silicon carbide, a second conductivity type well region formed on the drift layer, and a first conductivity type formed on the well region.
  • Source region a gate insulating film formed on the inner wall of the trench penetrating from the surface of the source region to the well region and formed in contact with at least a part of the side surface of the drift layer, and formed in the trench through the gate insulating film
  • Gate electrode a second conductivity type protective layer formed on the drift layer, a first conductivity type formed in the drift layer in contact with the side surface of the protective layer and having a higher impurity concentration of the first conductivity type than the drift layer And a depletion suppression layer.
  • the depletion suppression layer having a higher impurity concentration of the first conductivity type than the drift layer is formed on the side surface of the protective layer, the extension of the depletion layer from the protective layer in the on state is suppressed, Narrowing of the current path is suppressed. As a result, an increase in on-resistance of the silicon carbide semiconductor device can be suppressed.
  • FIG. 1 is a cross-sectional view showing a silicon carbide semiconductor device according to a first embodiment.
  • 3 is a cross-sectional view showing the method for manufacturing the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the method for manufacturing the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the method for manufacturing the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the method for manufacturing the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the method for manufacturing the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 3 is a plan view showing an example of cell arrangement according to the first exemplary embodiment; FIG.
  • FIG. 3 is a plan view showing an example of cell arrangement according to the first exemplary embodiment
  • FIG. 1 is a cross sectional view showing a silicon carbide semiconductor device according to a comparative example of the first embodiment.
  • 1 is a cross-sectional view showing a silicon carbide semiconductor device according to a first embodiment. It is a graph which shows the relationship between the depletion layer width
  • FIG. 6 is a distribution diagram showing an on-current density of a silicon carbide semiconductor device according to a comparative example of the first embodiment. It is a distribution map which shows the on-current density of the silicon carbide semiconductor device concerning Example 1 of Embodiment 1.
  • FIG. 1 is a cross sectional view showing a silicon carbide semiconductor device according to a comparative example of the first embodiment.
  • 1 is a cross-sectional view showing a silicon carbide semiconductor device according to a first embodiment. It is a graph
  • FIG. 6 is a distribution diagram showing an on-current density of a silicon carbide semiconductor device according to Example 2 of Embodiment 1.
  • FIG. 5 is a graph showing a relationship between a gate insulating film electric field strength and a drain voltage of the silicon carbide semiconductor device according to the first embodiment and a comparative example.
  • 3 is a graph showing off characteristics of the silicon carbide semiconductor device according to the first embodiment and a comparative example.
  • FIG. 6 is a cross sectional view showing a modification of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 6 is a cross sectional view showing a modification of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 6 is a cross sectional view showing a silicon carbide semiconductor device according to a second embodiment.
  • FIG. 6 is a cross sectional view showing a silicon carbide semiconductor device according to a third embodiment.
  • FIG. 9 is a cross sectional view showing a modification of the silicon carbide semiconductor device according to the third embodiment.
  • FIG. 1 is a cross-sectional view showing the silicon carbide semiconductor device according to the first embodiment.
  • impurity concentration means the peak value of impurities in each region, and when there is a concentration distribution in the impurity concentration of each region, “width” and “thickness” of each region means The width and thickness up to a region where the impurity concentration is half or more of the peak value of the impurity concentration in the region are used.
  • the silicon carbide semiconductor device includes a substrate 1, a semiconductor layer 20, a gate electrode 10, a source electrode 11, and a drain electrode 12.
  • the semiconductor layer 20 is formed on the surface of the substrate 1, and the drain electrode 12 is formed on the back surface of the substrate 1.
  • a trench 7 is formed on the surface of the semiconductor layer 20, and a gate insulating film 9 and a gate electrode 10 are formed in the trench 7.
  • an interlayer insulating film 16 is formed in a region on the trench 7 so as to cover the gate electrode 10, and a source electrode 11 is formed in the other region.
  • the substrate 1 is an n-type silicon carbide semiconductor substrate.
  • Semiconductor layer 20 is a semiconductor layer formed by epitaxially growing a silicon carbide semiconductor.
  • the semiconductor layer 20 has a source region 3, a well contact region 4, and a well region 5, and another region in the semiconductor layer 20 becomes the drift layer 2.
  • the drift layer 2 is an n-type semiconductor layer located on the substrate 1, and is a semiconductor layer having an n-type impurity concentration lower than that of the substrate 1.
  • a depletion suppression layer 6 and a protective layer 8 are formed in the drift layer 2.
  • the depletion suppression layer 6 is an n-type semiconductor layer, and is a semiconductor layer having an n-type impurity concentration higher than that of the drift layer 2.
  • the protective layer 8 is a p-type semiconductor layer and is formed to relax the electric field at the bottom surface of the trench 7.
  • the depletion suppression layer 6 is formed in contact with the side surface of the protective layer 8 and is formed to suppress the depletion layer extending from the protective layer 8.
  • a well region 5 is formed on the drift layer 2.
  • the well region 5 is a p-type semiconductor region.
  • a well contact region 4 and a source region 3 are formed on the well region 5.
  • the well contact region 4 is a p-type semiconductor region and has a higher p-type impurity concentration than the well region 5.
  • the source region 3 is an n-type semiconductor region.
  • the drift layer 2 below the well region 5 may be provided with a region having an n-type impurity concentration higher than that of the drift layer 2 for current diffusion and suppression of a depletion layer from the well region 5.
  • the trench 7 is formed so as to penetrate the well region 5 from the surface of the semiconductor layer 20, more specifically from the surface of the source region 3, and reach the drift layer 2.
  • a gate insulating film 9 is formed on the inner wall (bottom surface and side surface) in the trench 7, and a gate electrode 10 is embedded on the gate insulating film 9 in the trench 7.
  • a source electrode 11 is formed on the surface of the semiconductor layer 20 so as to be in contact with the source region 3 and the well contact region 4.
  • the source electrode 11 is a silicide of a metal such as Ni or Ti and the semiconductor layer 20 and forms an ohmic contact with the source region 3 and the well contact region 4.
  • a drain electrode 12 is formed on the back surface of the substrate 1, and the drain electrode 12 is a metal electrode such as Ni.
  • protective layer 8 and depletion suppression layer 6 are formed so as to be in contact with the bottom surface of gate insulating film 9. .
  • the depletion suppression layer 6 is formed so as to be in contact with the side surface of the protective layer 8.
  • the depletion suppression layer 6 is not in contact with the side surface of the gate insulating film 9, and the source region 3, the well region 5, and the drift layer 2 are formed in contact with each other.
  • the depletion suppression layer 6 and the protective layer 8 are both in contact with the bottom surface of the gate insulating film 9, but in FIG. 1, the width where the protective layer 8 and the bottom surface of the gate insulating film 9 are in contact is the depletion suppression layer. 6 is larger than the width where the bottom surface of the gate insulating film 9 is in contact.
  • the n-type impurity concentration of drift layer 2 is 1.0 ⁇ 10 14 to 1.0 ⁇ 10 17 cm ⁇ 3 , and is set based on the breakdown voltage of the silicon carbide semiconductor device.
  • the p-type impurity concentration in the well region 5 is 1.0 ⁇ 10 14 to 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the n-type impurity concentration of the source region 3 is 1.0 ⁇ 10 18 to 1.0 ⁇ 10 21 cm ⁇ 3 .
  • the p-type impurity concentration of the well contact region 4 is 1.0 ⁇ 10 18 to 1.0 ⁇ 10 21 cm ⁇ 3. In order to reduce the contact resistance with the source electrode 11, the p-type impurity concentration is higher than that of the well region 5. Concentration.
  • the n-type impurity concentration of the depletion suppression layer 6 is higher than the n-type impurity concentration of the drift layer 2 and is 1.0 ⁇ 10 17 or more, 5.0 ⁇ 10 17 cm ⁇ 3 or less, more preferably 2.0 ⁇ 10 17 or more.
  • the n-type impurity concentration is within the range, and the depletion layer extending from the protective layer 8 is suppressed.
  • the p-type impurity concentration of the protective layer 8 is preferably 5.0 ⁇ 10 17 or more and 5.0 ⁇ 10 18 cm ⁇ 3 or less.
  • the operation of the silicon carbide semiconductor device will be briefly described.
  • the conductivity type is inverted in the well region 5, that is, an n-type channel is formed along the side surface of the trench 7.
  • a current path of the same conductivity type is formed between the source electrode 11 and the drain electrode 12, so that a current flows.
  • the state in which a voltage equal to or higher than the threshold voltage is applied to gate electrode 10 is the ON state of the silicon carbide semiconductor device.
  • the state in which the voltage of gate electrode 10 (gate-source voltage) is equal to or lower than the threshold voltage is the off state of the silicon carbide semiconductor device.
  • the silicon carbide semiconductor device operates by switching the on state and the off state by controlling the voltage applied to the gate electrode 10.
  • 2 to 6 are cross-sectional views showing steps of the method for manufacturing the silicon carbide semiconductor device according to the present embodiment.
  • a substrate 1 on which an n-type semiconductor layer 20 made of silicon carbide is formed is prepared. More specifically, the n-type semiconductor layer 20 may be formed by epitaxial growth on the substrate 1 which is an n-type silicon carbide substrate. The n-type impurity concentration of the semiconductor layer 20 is formed to correspond to the n-type impurity concentration of the drift layer 2 described above.
  • a source region 3, a well contact region 4, and a well region 5 are formed on the upper portion of the semiconductor layer 20 by ion implantation.
  • ion implantation for example, N ions are implanted as a donor when forming an n-type region, and Al ions are implanted as an acceptor when forming a p-type region.
  • the impurity concentration in each region is formed to have the above-described value.
  • the order of forming each region may be changed, and all or some of the regions may be formed by epitaxial growth instead of ion implantation.
  • a trench 7 that penetrates the well region 5 from the surface of the source region 3 and reaches the drift layer 2 is formed by reactive ion etching (RIE).
  • RIE reactive ion etching
  • the depletion suppression layer 6 is formed by performing n-type ion implantation on the bottom surface of the trench 7.
  • the depletion suppression layer 6 is formed using a mask 14 having an opening on the bottom surface of the trench 7 as shown in FIG.
  • the depletion suppression layer 6 may be formed by forming the trench 7 as deep as the thickness of the depletion suppression layer 6 and then epitaxially growing it in the trench, or in advance when forming the semiconductor layer 20. It is good also as forming by embedding by epitaxial growth.
  • a mask material such as a silicon oxide film is deposited on the side and bottom surfaces of the trench 7, and a sidewall mask 15 is formed by opening a region where the protective layer 8 is formed.
  • the sidewall mask 15 may be formed by thermal oxidation of the trench 7. Then, with the sidewall mask 15 formed, p-type ion implantation is performed on the bottom surface of the trench 7 to form the protective layer 8.
  • the protective layer 8 is preferably connected to the source electrode 11 through an adjacent cell or the like, and the potential is preferably fixed (grounded).
  • a gate insulating film 9 is formed on the bottom and side surfaces in the trench 7, and a gate electrode 10 is formed on the gate insulating film 9 so as to be embedded in the trench 7.
  • the source electrode 11 is formed so as to contact the surface of the source region 3 and the surface of the well contact region 4, and the drain electrode 12 is formed on the back surface of the substrate 1.
  • the planar arrangement of the cells can be, for example, a stripe shape as shown in the plan view of FIG. 7 or a lattice shape as shown in the plan view of FIG.
  • the cells are arranged in a lattice shape, the cells do not have to be aligned, and the cells may be polygons or the corners of the cells may have a curvature.
  • the source region 3 and the well contact region 4 are formed in a stripe shape or an island shape, and the well region 5 is formed below the source region 3 and the well contact region 4. Yes.
  • the trenches 7 are formed in a stripe shape or a lattice shape so as to be in contact with the side surface of the source region 3, and the depletion suppression layer 6 and the protective layer 8 are formed in the same pattern as the trench 7.
  • a termination region 13 is formed on the outer periphery of the cell arrangement region.
  • the termination region 13 may be formed by forming a p-type impurity layer on the element surface, or by forming a p-type impurity layer on the bottom surface obtained by etching the trench.
  • FIG. 9 is a schematic diagram of a current path in a silicon carbide semiconductor device according to a comparative example with the present embodiment
  • FIG. 10 is a schematic diagram of a current path in the silicon carbide semiconductor device according to the present embodiment.
  • the depletion suppression layer 6 having an n-type impurity concentration higher than that of the drift layer 2 is provided, there is a concern that the electric field in the drift layer 2, particularly the lower portion of the trench 7, increases. Therefore, it is important to provide the depletion suppression layer 6 at the minimum necessary position.
  • the depletion suppression layer 6 is provided only on the side surface of the protective layer 8, and the side surface of the gate insulating film 9 is in contact with the drift layer 2, so that the electric field applied to the gate insulating film 9 The increase is suppressed.
  • the depletion suppression layer 6 between adjacent cells is formed with the drift layer 2 interposed therebetween, for example, as compared with the case where the depletion suppression layer 6 of adjacent cells is integrated. Also, an increase in electric field in the drift layer 2 can be suppressed.
  • the depletion suppression layer 6 and the protective layer 8 are both in contact with the gate insulating film 9, but the depletion suppression layer 6 is provided with gate insulation in order to reduce the electric field applied to the gate insulating film.
  • the width in contact with the film 9 is preferably smaller than the width in which the protective layer 8 is in contact with the gate insulating film 9 as shown in FIG.
  • the concentration of the depletion suppression layer 6 is equal to or higher than the concentration necessary for accommodating the depletion layer extending from the protective layer 8 in the on state in the depletion suppression layer 6, and a high bias is applied to the drain electrode 12 in the off state. It is necessary to set the concentration so that the electric field in the drift layer does not become a high electric field when is applied.
  • FIG. 11 is a graph showing the relationship between the depletion layer width of the n-type region and the n-type impurity concentration in a simple pn junction.
  • the p-type impurity concentration is 1.0 ⁇ 10 18 cm ⁇ 3 and the voltage is applied perpendicularly to the pn junction.
  • the depletion layer width increases as the n-type impurity concentration decreases, and that the depletion layer width begins to increase abruptly when the impurity concentration is lower than about 1.0 ⁇ 10 17 cm ⁇ 3 .
  • the n-type impurity concentration of the depletion suppression layer 6 is in the range of 1.0 ⁇ 10 17 cm ⁇ 3 or more and 5 ⁇ 10 17 cm ⁇ 3 or less, more preferably 2.0 ⁇ 10 17 cm ⁇ 3 or more. It is said.
  • FIGS. 12 to 14 respectively show on-currents relating to the silicon carbide semiconductor device according to the comparative example, the silicon carbide semiconductor device according to Example 1 of the present embodiment, and the silicon carbide semiconductor device according to Example 2 of the present embodiment. It is a simulation result of density distribution.
  • the current density distribution from the lower end of the source region 3 to several ⁇ m below the protective layer 8 is shown in the vertical direction and from the center of the well contact region 4 to the center of the trench 7 in the horizontal direction.
  • the region indicated by black is a region where the current density is low.
  • the comparative example is the silicon carbide semiconductor device shown in FIG. 9, and the silicon carbide semiconductor device according to Example 1 has the same depth as that of the comparative example and the trench 7. In the semiconductor device, the depth of the trench 7 is shallower by 500 nm than in the comparative example.
  • the region indicated by “A” is a region where the protective layer 8 and the depletion layer extending from the protective layer 8 are combined, and it can be seen that no current flows in this region.
  • the on-resistance of the element was 2.4 m ⁇ cm 2 .
  • the region indicated by “B” in FIGS. 13 and 14 is a region corresponding to “A” in FIG. 12, and the depletion suppression layer 6 is formed, so that “B” is compared with “B”. "" Shows that the width in the horizontal direction is narrow.
  • Example 1 the on-resistance of the element is 2.2 m ⁇ cm 2 , and it can be seen that the on-resistance is reduced compared to the comparative example.
  • Example 2 although the trench 7 is formed shallower than the comparative example for the purpose of electric field relaxation in the lower part of the trench, the on-resistance of the element is 2.3 m ⁇ cm 2 , and the trench is formed shallowly. Note that the on-resistance is reduced as compared with the comparative example. That is, by comparing FIG. 12 to FIG. 14, it can be seen that the depletion suppression layer 6 can reduce the on-resistance.
  • FIG. 15 is a graph showing the relationship between the maximum electric field strength and the drain voltage of the gate insulating films of the comparative example, example 1 and example 2, and FIG. 16 shows the off characteristics of the comparative example, example 1 and example 2. It is a graph which shows (withstand pressure
  • Example 1 in which the trench depth is equal to that of the comparative example, as shown in FIG. 15, although the depletion suppression layer 6 is formed, the electric field strength of the gate insulating film is increased, but as shown in FIG.
  • the withstand voltage is about 1160 V, which is almost equivalent to the comparative example. That is, by providing the depletion suppression layer 6, it is possible to reduce the on-resistance with substantially the same breakdown voltage.
  • Example 2 in which the depth of the trench 7 is reduced, it can be seen that the electric field strength of the gate insulating film is reduced as compared with the comparative example, as shown in FIG. Further, the reduction rate of the electric field strength increases with the increase of the drain voltage, and it has been shown that the effect can be exhibited more when a high bias is applied.
  • the breakdown voltage can be improved to about 1240V. That is, in Example 2, the on-resistance is reduced by forming the depletion suppression layer 6, and the electric field under the trench is reduced by forming the trench 7 shallowly, and the on-characteristic (on-resistance) and off-characteristic (withstand voltage) are reduced. It can be seen that both can be improved.
  • the planar arrangement of the cells can be a stripe-like or lattice-like arrangement as described above.
  • the planar arrangement of the cells is a lattice shape as shown in FIG. 8, since the side surface of protective layer 8 is large, the depletion layer from protective layer 8 has a larger resistance against the on-resistance value of the entire silicon carbide semiconductor device. The ratio of the resistance component generated by elongation increases. Therefore, by applying the present invention to a planar planar arrangement, the effect of reducing on-resistance can be obtained more significantly.
  • the protective layer 8 is formed in the drift layer 2 below the trench 7 in order to relax the electric field applied to the gate insulating film 9, but as shown in FIGS.
  • the electric field of the gate insulating film 9 may be reduced by providing the protective layer 8 below the well region 5.
  • the on-current path may be reduced by the depletion layer from the protective layer 8 and the on-resistance may increase. Therefore, the on-resistance can be reduced by providing the depletion suppression layer 6 on the side surface of the protective layer 8. Can do.
  • the depletion suppression layer 6 and the protective layer 8 are formed separately from the well region 5, and in the modification shown in FIG.
  • the depletion suppression layer 6 and the protection layer 8 are formed in the well region 5. It extends from. 17 and FIG. 18, the depletion suppression layer 6 and the protective layer 8 are formed by ion implantation from the surface of the source region 3 or the well contact region 4 or when the semiconductor layer 20 is formed. It can be performed by buried formation by epitaxial growth.
  • ions are implanted into the bottom surface of the trench 7 to form the depletion suppression layer 6 and the protective layer 8 at the bottom of the trench 7, that is, at least immediately below the trench 7.
  • the depletion suppression layer 6 and the protective layer 8 may be formed by ion implantation from the surface of the semiconductor layer 20 before the trench 7 is formed. In this case, the depletion suppression layer 6 may be formed outside the side surface of the trench 7.
  • the depletion suppression layer 6 and the protective layer 8 can be formed by ion implantation into the bottom surface of the trench 7. Compared with the formation, the ion implantation depth becomes shallower.
  • the energy at the time of implantation is reduced, and defects caused by the implantation are reduced.
  • the quality of the interface between the gate insulating film 9 and the semiconductor layer 20 can be improved, and leakage current and the like can be suppressed.
  • FIG. FIG. 19 is a cross-sectional view showing the silicon carbide semiconductor device according to the second embodiment.
  • the configuration of the depletion suppression layer 6 is different from that in the first embodiment, only the difference will be described below.
  • the depletion suppression layer 6 is partially formed only on the upper part of the side surface of the protective layer 8. That is, the bottom surface of the depletion suppression layer 6 is formed shallower than the bottom surface of the protective layer 8.
  • the boundary portion between the bottom surface of the protective layer 8 and the drift layer 2 may be a breakdown point that determines the device breakdown voltage. is there.
  • the bottom surface of the depletion suppression layer 6 is formed shallower than the bottom surface of the protective layer 8, the impurity concentration at the boundary portion between the bottom surface of the protective layer 8 and the drift layer 2 that can be a breakdown point. However, it becomes lower than Embodiment 1, and the electric field of a boundary part can be relieved.
  • FIG. 20 is a cross-sectional view showing the silicon carbide semiconductor device according to the third embodiment.
  • the configuration of the depletion suppression layer 6 is different from those in the first and second embodiments, only the difference will be described below.
  • the protective layer 8 has the depletion suppression layer 6 partially formed only at the lower part of the side surface. That is, while the protective layer 8 is in contact with the gate insulating film 9, the depletion suppressing layer 6 is not in contact with the gate insulating film 9 and is separated from the gate insulating film 9 via the drift layer 2. ing.
  • the depletion suppression layer 6 increases when the depletion suppression layer 6 is provided, in the present embodiment, by providing the depletion suppression layer 6 apart from the gate insulating film 9, An increase in the electric field applied to the gate insulating film 9 is suppressed.
  • the depletion layer extending from the protective layer 8 is affected by the gate potential, so that the depletion layer extends less near the gate insulating film 9.
  • the width of the depletion layer decreases in the immediate vicinity of the gate insulating film 9.
  • the depletion suppression layer 6 is formed apart from the gate insulating film 9 as in the present embodiment, there is little possibility that the on-current path is reduced from the protective layer 8 by the depletion layer, and the depletion suppression is suppressed. If the gap between the layer 6 and the gate insulating film 9 has an appropriate value, the on-resistance does not increase.
  • the bottom surface of the depletion suppression layer 6 and the bottom surface of the protective layer 8 are formed to have the same depth, but a configuration as shown in FIG. 21 may be used. That is, similarly to the second embodiment, the bottom surface of the depletion suppression layer 6 may be formed shallower than the bottom surface of the protective layer 8.
  • the depletion suppression layer 6 is formed with a density gradation (profile) that decreases gradually or stepwise as it becomes shallower in the vertical direction.
  • profile density gradation
  • the depletion suppression layer 6 after forming the trench 7 as in the first embodiment, it has a profile that becomes lower as the impurity concentration becomes shallower by ion implantation.
  • the depletion suppression layer 6 is formed, or the depletion suppression layer 6 is formed by changing the impurity concentration depending on the depth during epitaxial growth.
  • the impurity concentration of the depletion suppression layer 6 becomes lower as it becomes shallower, an increase in electric field strength applied to the gate insulating film 9 on the bottom surface of the trench 7 can be reduced, and an on-current can be reduced.
  • the reduction of the path can be suppressed and the on-resistance can be reduced.
  • the protective layer 8 is formed with a density gradation in the horizontal direction.
  • the profile of the protective layer 8 is such that the concentration decreases from the center of the protective layer 8 toward the side surface, that is, the impurity concentration decreases as the depletion suppression layer 6 is approached.
  • ion implantation using the sidewall mask 15 similar to that in the first embodiment can be performed a plurality of times. For example, after performing the first ion implantation using the sidewall mask 15, the sidewall mask 15 having a width wider than the first ion is formed, and further ion implantation is performed in addition to the first ion implantation.
  • the impurity concentration at the center can be increased, and the protective layer 8 according to the present embodiment can be formed.
  • the width of the depletion layer spreading on the side surface of the protective layer 8 is reduced, and the depletion is performed.
  • the thickness of the suppression layer 6 can be reduced, or the impurity concentration of the depletion suppression layer 6 can be decreased. Therefore, the width of the depletion layer from the protective layer 8 can be suppressed while suppressing an increase in electric field strength due to the formation of the depletion suppression layer 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 オン抵抗の増大を抑制することができる炭化珪素半導体装置を提供することを目的とする。 炭化珪素からなる第一導電型のドリフト層2と、ドリフト層2上に形成された第二導電型のウェル領域5と、ウェル領域5上に形成された第一導電型のソース領域3と、ソース領域3の表面からウェル領域5を貫通するトレンチ7の内壁に形成されドリフト層2に少なくとも側面の一部が接して形成されたゲート絶縁膜9と、ゲート絶縁膜9を介してトレンチ7内に形成されたゲート電極10と、ドリフト層2に形成された第二導電型の保護層8と、保護層8の側面に接してドリフト層2に形成され第一導電型の不純物濃度がドリフト層2よりも高い第一導電型の空乏化抑制層6とを備えた炭化珪素半導体装置とする。

Description

炭化珪素半導体装置および炭化珪素半導体装置の製造方法
 本発明は、トレンチゲート型の炭化珪素半導体装置およびその製造方法に関するものである。
 電力用スイッチング素子としてMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)といった絶縁ゲート型の半導体装置が広く使用されている。絶縁ゲート型の半導体装置では、ゲート電極に閾値電圧以上の電圧を印加することでウェル領域にチャネルを形成し、オン状態とすることができる。このような絶縁ゲート型の半導体装置では、半導体層表面からドリフト層に達するトレンチを形成しトレンチ側面のウェル領域をチャネルとして利用する、トレンチゲート型の半導体装置が実用化されている。これにより、チャネル幅密度を向上させることができ、セルピッチの縮小が可能となりデバイス性能を向上させることができる。
 一方、高耐圧及び低損失を実現できる次世代の半導体装置として、炭化珪素(SiC)を用いた半導体装置(以下、「炭化珪素半導体装置」という。)が注目されており、トレンチゲート型の炭化珪素半導体装置についても開発が進められている。
 トレンチゲート型の半導体装置では、半導体装置のオフ状態において高い電圧が印加された際に、トレンチ底部において電界集中が発生することが問題となっている。特に、トレンチゲート型の炭化珪素半導体装置では、SiCが高い絶縁破壊強度を有するため、ドリフト層内でのアバランシェ破壊よりも先に、トレンチ底部の電界集中に起因するゲート絶縁膜破壊が生じやすく、トレンチ底部での電界集中が問題となりやすい。
 そこで、トレンチ底部での電界集中を緩和するため、トレンチ内にドリフト層とは異なる導電型の保護層を設けることが提案されている。例えば、トレンチ下部におけるドリフト層に保護層を設けることで、オフ状態において保護層からの空乏層が伸びるため、トレンチ底部での電界集中を緩和することができる(例えば、特許文献1参照。)。
特開2013-69964号公報
 しかしながら、ドリフト層内に保護層を設けた場合、半導体装置のオン状態においても保護層からの空乏層がドリフト層内で横方向に伸びることとなり、半導体装置を流れる電流の経路を狭めてしまうため、オン抵抗が増大するという問題が発生してしまう。
 本発明は、上述のような問題を解決するためになされたもので、オン抵抗の増大を抑制することができる炭化珪素半導体装置を提供することを目的とする。
 本発明にかかる炭化珪素半導体装置は、炭化珪素からなる第一導電型のドリフト層と、ドリフト層上に形成された第二導電型のウェル領域と、ウェル領域上に形成された第一導電型のソース領域と、ソース領域の表面からウェル領域を貫通するトレンチの内壁に形成されドリフト層に少なくとも側面の一部が接して形成されたゲート絶縁膜と、ゲート絶縁膜を介してトレンチ内に形成されたゲート電極と、ドリフト層に形成された第二導電型の保護層と、保護層の側面に接してドリフト層に形成され第一導電型の不純物濃度がドリフト層よりも高い第一導電型の空乏化抑制層とを備えたものである。
 本発明によれば、ドリフト層よりも第一導電型の不純物濃度の高い空乏化抑制層が保護層の側面に形成されているため、オン状態において保護層からの空乏層の伸びが抑制され、電流経路が狭められることが抑制される。その結果、炭化珪素半導体装置のオン抵抗の増大を抑制することができる。
実施の形態1にかかる炭化珪素半導体装置を示す断面図である。 実施の形態1にかかる炭化珪素半導体装置の製造方法を示す断面図である。 実施の形態1にかかる炭化珪素半導体装置の製造方法を示す断面図である。 実施の形態1にかかる炭化珪素半導体装置の製造方法を示す断面図である。 実施の形態1にかかる炭化珪素半導体装置の製造方法を示す断面図である。 実施の形態1にかかる炭化珪素半導体装置の製造方法を示す断面図である。 実施の形態1にかかるセル配置の例を示す平面図である。 実施の形態1にかかるセル配置の例を示す平面図である。 実施の形態1の比較例にかかる炭化珪素半導体装置を示す断面図である。 実施の形態1にかかる炭化珪素半導体装置を示す断面図である。 pn接合部におけるn型領域内の空乏層幅とn型不純物濃度の関係を示すグラフである。 実施の形態1の比較例にかかる炭化珪素半導体装置のオン電流密度を示す分布図である。 実施の形態1の実施例1にかかる炭化珪素半導体装置のオン電流密度を示す分布図である。 実施の形態1の実施例2にかかる炭化珪素半導体装置のオン電流密度を示す分布図である。 実施の形態1と比較例とにかかる炭化珪素半導体装置のゲート絶縁膜電界強度とドレイン電圧の関係を示すグラフである。 実施の形態1と比較例とにかかる炭化珪素半導体装置のオフ特性を示すグラフである。 実施の形態1にかかる炭化珪素半導体装置の変形例を示す断面図である。 実施の形態1にかかる炭化珪素半導体装置の変形例を示す断面図である。 実施の形態2にかかる炭化珪素半導体装置を示す断面図である。 実施の形態3にかかる炭化珪素半導体装置を示す断面図である。 実施の形態3にかかる炭化珪素半導体装置の変形例を示す断面図である。
 実施の形態1.
 本実施の形態にかかる炭化珪素半導体装置の構成を説明する。図1は、実施の形態1にかかる炭化珪素半導体装置を示す断面図である。なお、以下の段落において、「不純物濃度」とは各領域における不純物のピーク値を示すものとし、各領域の不純物濃度に濃度分布がある場合において各領域の「幅」や「厚さ」とは不純物濃度が当該領域における不純物濃度のピーク値の半分以上となる領域までの幅や厚さとする。
 図1において、炭化珪素半導体装置は、基板1、半導体層20、ゲート電極10、ソース電極11、ドレイン電極12から構成される。半導体層20は基板1の表面に形成され、基板1の裏面にはドレイン電極12が形成されている。また、半導体層20の表面にはトレンチ7が形成されており、トレンチ7内にはゲート絶縁膜9とゲート電極10とが形成されている。そして、半導体層20上において、トレンチ7上の領域にはゲート電極10を覆うように層間絶縁膜16が形成され、他の領域にはソース電極11が形成されている。
 基板1はn型の炭化珪素半導体基板である。半導体層20は、炭化珪素半導体がエピタキシャル成長されて形成された半導体層である。半導体層20は、ソース領域3、ウェルコンタクト領域4、ウェル領域5を有し、半導体層20における他の領域がドリフト層2となる。
 ドリフト層2は、基板1上に位置するn型半導体層であり、n型の不純物濃度が基板1よりも低い半導体層である。ドリフト層2内には、空乏化抑制層6および保護層8が形成されている。空乏化抑制層6はn型の半導体層であり、n型の不純物濃度がドリフト層2よりも高い半導体層である。保護層8はp型の半導体層であり、トレンチ7の底面における電界を緩和するため形成されている。空乏化抑制層6は、保護層8の側面に接して形成されており、保護層8から伸びる空乏層を抑制するため形成されている。
 ドリフト層2上にはウェル領域5が形成されている。ウェル領域5はp型の半導体領域である。ウェル領域5上には、ウェルコンタクト領域4とソース領域3とが形成されている。ウェルコンタクト領域4はp型の半導体領域であり、p型の不純物濃度がウェル領域5よりも高い領域である。ソース領域3は、n型の半導体領域である。なお、ウェル領域5の下部におけるドリフト層2には、電流拡散やウェル領域5からの空乏層抑制のために、ドリフト層2よりもn型不純物濃度が高い領域を設けることとしてもよい。
 トレンチ7は、半導体層20の表面、より詳細にはソース領域3の表面からウェル領域5を貫通し、ドリフト層2に達するように形成されている。トレンチ7内の内壁(底面及び側面)にはゲート絶縁膜9が形成されており、トレンチ7内のゲート絶縁膜9上にゲート電極10が埋め込まれて形成されている。
 半導体層20の表面上においては、ソース領域3とウェルコンタクト領域4とに接するようにソース電極11が形成されている。ソース電極11は、NiやTi等の金属と半導体層20とのシリサイドであり、ソース領域3及びウェルコンタクト領域4とオーミックコンタクトを形成する。基板1の裏面にはドレイン電極12が形成されており、ドレイン電極12はNi等の金属電極である。
 本実施の形態では、トレンチ7の下部におけるドリフト層2において(少なくともトレンチ7直下のドリフト層2)、ゲート絶縁膜9の底面に接するように保護層8および空乏化抑制層6が形成されている。そして、空乏化抑制層6は保護層8の側面に接するように形成されている。一方、ゲート絶縁膜9の側面には空乏化抑制層6は接しておらず、ソース領域3、ウェル領域5、及びドリフト層2が接して形成されている。また、空乏化抑制層6および保護層8はともにゲート絶縁膜9の底面に接しているが、図1において、保護層8とゲート絶縁膜9の底面とが接している幅は空乏化抑制層6とゲート絶縁膜9の底面とが接している幅よりも大きい。
 続いて、各半導体層及び領域の不純物濃度について説明する。ドリフト層2のn型の不純物濃度は1.0x1014~1.0x1017cm-3であり、炭化珪素半導体装置の耐圧等に基づいて設定する。ウェル領域5のp型の不純物濃度は、1.0x1014~1.0x1018cm-3とする。ソース領域3のn型の不純物濃度は1.0x1018~1.0x1021cm-3である。ウェルコンタクト領域4のp型の不純物濃度は、1.0x1018~1.0x1021cm-3であり、ソース電極11とのコンタクト抵抗を低減するため、ウェル領域5よりも高濃度のp型不純物濃度とする。
 空乏化抑制層6のn型の不純物濃度は、ドリフト層2のn型の不純物濃度よりも高く、1.0x1017以上、5.0x1017cm-3以下、より好ましくは2.0x1017以上の範囲にあるn型不純物濃度であり、保護層8から伸びる空乏層を抑制する。保護層8のp型の不純物濃度は、5.0x1017以上、5.0x1018cm-3以下とすることが好ましい。
 次に、炭化珪素半導体装置の動作について簡単に説明する。図1において、ゲート電極10に閾値電圧以上の電圧が印加されている場合、ウェル領域5において、導電型が反転した、すなわち、n型のチャネルがトレンチ7の側面に沿って形成される。そうすると、ソース電極11からドレイン電極12までの間に同一導電型の電流経路が形成されるため、電流が流れることとなる。このようにゲート電極10に閾値電圧以上の電圧が印加された状態が、炭化珪素半導体装置のオン状態となる。
 一方、ゲート電極10に閾値電圧以下の電圧が印加されている場合、ウェル領域5にはチャネルが形成されないため、オン状態の場合のような電流経路が形成されない。そのため、ドレイン電極12とソース電極11との間に電圧を印加したとしても、ドレイン電極12からソース電極11へと電流が流れることはない。このようにゲート電極10の電圧(ゲート-ソース間電圧)が閾値電圧以下の状態が、炭化珪素半導体装置のオフ状態となる。そして、炭化珪素半導体装置はゲート電極10に印加する電圧を制御することで、オン状態とオフ状態とが切り換わり動作する。
 続いて、炭化珪素半導体装置の製造方法について説明する。図2ないし図6は、本実施の形態にかかる炭化珪素半導体装置の製造方法の各工程を示す断面図である。
 図2において、炭化珪素からなるn型の半導体層20が形成された基板1を用意する。より具体的には、n型の炭化珪素基板である基板1上にn型の半導体層20をエピタキシャル成長法によって形成すればよい。また、半導体層20のn型不純物濃度は、上述したドリフト層2のn型不純物濃度に対応するよう形成する。
 図3において、半導体層20内の上部に、ソース領域3、ウェルコンタクト領域4、およびウェル領域5をそれぞれイオン注入によって形成する。イオン注入は、n型領域を形成する場合にはドナーとして例えばNイオンを注入し、p型領域を形成する場合にはアクセプタとして例えばAlイオンを注入する。各領域における不純物濃度は、上述した値となるように形成する。また、各領域を形成する順序は前後してもよく、全て又は一部の領域についてイオン注入に代えてエピタキシャル成長によって形成することとしてもよい。
 図4において、反応性イオンエッチング(RIE)によってソース領域3の表面からウェル領域5を貫通しドリフト層2に達するトレンチ7を形成する。
 図5において、トレンチ7の底面にn型のイオン注入を行うことで、空乏化抑制層6を形成する。空乏化抑制層6の形成は、図5に示すように、トレンチ7の底面に開口を有するマスク14を用いて行う。なお、空乏化抑制層6の形成は、トレンチ7を空乏化抑制層6の厚み分だけ分深く形成した後、トレンチ内にエピタキシャル成長により形成してもよいし、半導体層20を形成する際にあらかじめエピタキシャル成長によって埋め込み形成することとしてもよい。
 図6において、トレンチ7の側面および底面にシリコン酸化膜等のマスク材料を堆積し、保護層8を形成する領域を開口して側壁マスク15を形成する。なお、側壁マスク15はトレンチ7の熱酸化によって形成することとしてもよい。そして、側壁マスク15が形成された状態で、トレンチ7の底面にp型のイオン注入を行うことで、保護層8を形成する。なお、保護層8は隣接するセルなどを通じてソース電極11と接続され、電位が固定(接地)されていることが望ましい。
 側壁マスク15を除去した後、トレンチ7内に底面及び側面にゲート絶縁膜9を形成し、トレンチ7に埋め込まれるようにゲート絶縁膜9上にゲート電極10を形成する。そして、ゲート電極10を覆うように層間絶縁膜16を形成した後、ソース領域3の表面とウェルコンタクト領域4の表面とに接するようにソース電極11を形成し、基板1の裏面にドレイン電極12を形成する。以上の工程によりで、図1に示す炭化珪素半導体装置を作製できる。
 本実施の形態において、セルの平面配置は、例えば、図7の平面図に示すようなストライプ状、又は図8の平面図に示すように格子状とすることができる。格子状に配置する場合には、それぞれのセルは整列されていなくてもよく、セルが多角形、又はセルの角が曲率を持った形状としてもよい。
 図7および図8の各図において、ソース領域3とウェルコンタクト領域4は、ストライプ状、又はアイランド状に形成されており、ソース領域3およびウェルコンタクト領域4の下部にウェル領域5が形成されている。そして、ソース領域3の側面に接するようにトレンチ7がストライプ状、又は格子状に形成されており、トレンチ7と同じパターンで空乏化抑制層6および保護層8が形成されている。セル配置領域外周には終端領域13が形成されている。終端領域13は、素子表面にp型の不純物層を形成したもの、又はトレンチをエッチングした底面にp型の不純物層を形成したものでもよい。
 本実施の形態にかかる炭化珪素半導体装置は、以下のような効果を奏する。図9は本実施の形態との比較例にかかる炭化珪素半導体装置における電流経路の模式図であり、図10は本実施の形態にかかる炭化珪素半導体装置における電流経路の模式図である。
 比較例にかかる炭化珪素半導体装置では、トレンチ下部のドリフト層2において保護層8が形成されているものの、保護層8の側面には空乏化抑制層6を有していない。かかる場合、図9に示すように、ウェル領域5とトレンチ底面保護層8から伸びる空乏層によりオン電流経路が縮小されるため、オン抵抗が増大する恐れがある。一方、本実施の形態では、ドリフト層2よりもn型の不純物濃度が高い空乏化抑制層6が保護層8の側面に形成されているため、図10に示すように、オン状態おいて保護層8から伸びる空乏層の幅が縮小され、オン電流経路が比較例に対して拡大する。その結果、オン抵抗の増大を抑制することができる。
 一方、ドリフト層2よりもn型の不純物濃度が高い空乏化抑制層6を設けるとドリフト層2内、特にトレンチ7下部の電界が増大することが懸念される。そのため、空乏化抑制層6は必要最小限の位置に設けることが重要となる。本実施の形態では、空乏化抑制層6を、保護層8の側面にのみ設けており、ゲート絶縁膜9の側面はドリフト層2に接しているため、ゲート絶縁膜9に印加される電界の増大を抑制している。さらに、隣り合うセル同士の空乏化抑制層6は、ドリフト層2を挟み離間して形成されているため、例えば、隣り合うセルの空乏化抑制層6が一体となっている場合と比較して、ドリフト層2内における電界の増大も抑制することができる。
 また、本実施の形態では、空乏化抑制層6および保護層8がともにゲート絶縁膜9に接しているが、ゲート絶縁膜に印加される電界を緩和するため、空乏化抑制層6がゲート絶縁膜9と接している幅は、図1に示すように、保護層8がゲート絶縁膜9に接している幅よりも小さくなるようにすることが望ましい。
 このように、本実施の形態では、オン状態において保護層8からの空乏層を確実に抑制することと、不純物濃度の高い空乏化抑制層6を設けることによる電界の増大とを考慮することが重要となる。従って、空乏化抑制層6の濃度は、オン状態に保護層8より伸びる空乏層を空乏化抑制層6内に収めるのに必要な濃度以上であり、かつ、オフ状態においてドレイン電極12に高バイアスが印加された時にドリフト層内の電界が高電界とならない程度の濃度とする必要がある。
 図11は、単純なpn接合におけるn型領域の空乏層幅とn型不純物濃度との関係を示すグラフである。なお、図11において、p型不純物濃度は1.0x1018cm-3とし、電圧がpn接合に垂直に印加されていることを想定している。図11に示すように、空乏層幅はn型不純物濃度が低いほど拡大し、不純物濃度1.0x1017cm-3辺りより低くなると空乏層幅が急激に拡大し始めることが分かる。一方、5.0x1017cm-3辺以上となると、空乏層幅の縮小量が減少しており、不純物濃度を高くしても空乏層縮小幅を増大する効果はあまり得られない。よって、本実施の形態では、空乏化抑制層6のn型の不純物濃度を、1.0x1017cm-3以上、5x1017cm-3以下、より好ましくは2.0x1017cm-3以上の範囲としている。
 図12ないし図14はそれぞれ、比較例にかかる炭化珪素半導体装置、本実施の形態の実施例1にかかる炭化珪素半導体装置、および本実施の形態の実施例2にかかる炭化珪素半導体装置に関するオン電流密度分布のシミュレーション結果である。各図において、縦方向にソース領域3下端から保護層8下数μmまで、横方向にウェルコンタクト領域4中央からトレンチ7中央までの電流密度分布を示しており、白く示された領域は電流密度が高い領域であり、黒く示された領域は電流密度が低い領域となっている。また、比較例は図9に示した炭化珪素半導体装置であり、実施例1にかかる炭化珪素半導体装置は比較例とトレンチ7の深さが同一としたものであり、実施例2にかかる炭化珪素半導体装置は比較例に対してトレンチ7の深さを500nm浅くしたものである。
 図12において「A」で記された領域は、保護層8と保護層8から伸びる空乏層とを合わせた領域であり、この領域において電流が流れていないことがわかる。その結果、比較例では、素子のオン抵抗は2.4mΩcmとなった。一方、図13、及び図14において「B」で記された領域は図12における「A」に対応した領域であり、空乏化抑制層6を形成したことで、「A」に比べて「B」は横方向の幅が狭くなっていることが分かる。その結果、実施例1では、素子のオン抵抗が2.2mΩcmとなり、比較例に対してオン抵抗が低減されていることが分かる。また、実施例2では、トレンチ下部における電界緩和を目的に比較例よりもトレンチ7を浅く形成しているものの、素子のオン抵抗は2.3mΩcmとなっており、トレンチを浅く形成してもなお、比較例よりもオン抵抗が低減されている。すなわち、図12ないし図14を比較することで、空乏化抑制層6によって、オン抵抗の低減が可能であることがわかる。
 図15は比較例、実施例1、および実施例2のゲート絶縁膜の最大電界強度とドレイン電圧の関係を示すグラフであり、図16は比較例、実施例1、および実施例2のオフ特性(耐圧)を示すグラフである。図15および図16において、破線は比較例における値を示しており、実線は実施例1における値を示しており、太線は実施例2における値を示している。
 トレンチ深さが比較例と等しい実施例1では、図15に示すように、空乏化抑制層6を形成したことで、ゲート絶縁膜電界強度が増大してしまっているものの、図16に示すように耐圧は比較例とほぼ同等の約1160Vとなっている。すなわち、空乏化抑制層6を設けることで、耐圧をほぼ同等の状態でオン抵抗の低減が可能となる。
 一方、トレンチ7の深さを浅くした実施例2では、図15に示すように、ゲート絶縁膜電界強度が、比較例よりも低減されていることが分かる。さらに、電界強度の低減率はドレイン電圧の上昇とともに増大しており、高バイアス印加時において、より効果を発揮できることが示されている。そして、実施例2では、図16に示すように、耐圧を約1240Vまで向上することができている。すなわち、実施例2では、空乏化抑制層6の形成によりオン抵抗を低減しつつ、トレンチ7を浅く形成することでトレンチ下部の電界を緩和し、オン特性(オン抵抗)とオフ特性(耐圧)の双方を改善できることが分かる。
 また、本実施の形態において、セルの平面配置は、上述のように、ストライプ状や格子状の配置とすることができる。ただし、セルの平面配置が図8に示すような格子状の場合には、保護層8の側面が大きいため、炭化珪素半導体装置全体のオン抵抗値に対して、保護層8からの空乏層の伸びによって生じる抵抗成分の割合が大きくなる。そこで、セル状の平面配置において、本発明を適用することで、オン抵抗低減の効果がより顕著に得られることができる。
 なお、本実施の形態では、ゲート絶縁膜9に印加される電界を緩和するため、保護層8をトレンチ7下部のドリフト層2内に形成することとしたが、図17や図18に示すように、ウェル領域5の下部に保護層8を設けることでゲート絶縁膜9の電界を緩和することとしてもよい。かかる場合においても、保護層8からの空乏層によってオン電流経路が縮小されオン抵抗が増大する恐れがあるため、保護層8の側面に空乏化抑制層6を設けることでオン抵抗低減を図ることができる。図17に示す変形例では空乏化抑制層6および保護層8がウェル領域5に離間して形成することとしており、図18に示す変形例では空乏化抑制層6および保護層8がウェル領域5から延在して形成している。また、図17および図18の変形例において、空乏化抑制層6および保護層8の形成は、ソース領域3又はウェルコンタクト領域4の表面からのイオン注入、または、半導体層20を形成する際のエピタキシャル成長による埋め込み形成によって行うことができる。
 また、本実施の形態ではトレンチ7の底面にイオン注入することで、トレンチ7の下部におけるドリフト層2、すなわち、少なくともトレンチ7の直下に空乏化抑制層6および保護層8を形成することとしたが、トレンチ7の形成前に半導体層20の表面からイオン注入することで空乏化抑制層6および保護層8を形成することとしてもよい。かかる場合、空乏化抑制層6は、トレンチ7の側面よりも外側に形成されていても良い。ただし、本実施の形態のように、トレンチ7下部に空乏化抑制層6および保護層8を設ける場合、トレンチ7の底面にイオン注入することで形成することができるため、半導体層20の表面から形成する場合と比較して、イオン注入の注入深さが浅くなる。そのため、注入時のエネルギーも少なくなり、注入によって生じる欠陥が少なくなる。その結果、ゲート絶縁膜9と半導体層20との界面の品質を向上させることができ、リーク電流等を抑制することができる。
実施の形態2.
 図19は、実施の形態2にかかる炭化珪素半導体装置を示す断面図である。本実施の形態では、実施の形態1と比較して、空乏化抑制層6の構成が相違するため、当該相違点についてのみ、以下説明する。
 本実施の形態では、図19に示すように、保護層8側面の上部にのみ、空乏化抑制層6が部分的に形成されている。すなわち、空乏化抑制層6の底面が保護層8の底面よりも浅く形成されている。
 上述したように、空乏化抑制層6を設けた場合、ドリフト層2内における電界の増大が懸念される。特に、保護層8を設けることでゲート絶縁膜9に印加される電界を緩和している場合、保護層8の底面とドリフト層2との境界部分が素子耐圧を決定する降伏ポイントとなることがある。
 そこで、本実施の形態では、空乏化抑制層6の底面が保護層8の底面よりも浅く形成されているため、降伏ポイントとなりうる保護層8の底面とドリフト層2との境界部分における不純物濃度が、実施の形態1よりも低くなり、境界部分の電界を緩和することができる。
実施の形態3.
 図20は、実施の形態3にかかる炭化珪素半導体装置を示す断面図である。本実施の形態では、実施の形態1および2と比較して、空乏化抑制層6の構成が相違するため、当該相違点についてのみ、以下説明する。
 本実施の形態では、図20に示すように、保護層8は側面の下部にのみ、空乏化抑制層6が部分的に形成されている。すなわち、保護層8はゲート絶縁膜9に接しているのに対して、空乏化抑制層6はゲート絶縁膜9に接しておらずドリフト層2を介してゲート絶縁膜9と離間して形成されている。
 上述したように、空乏化抑制層6を設けると空乏化抑制層6周辺の電界が増大するため、本実施の形態では、ゲート絶縁膜9と離間して空乏化抑制層6を設けることで、ゲート絶縁膜9に印加される電界の増大を抑制している。一方、保護層8から伸びる空乏層はゲート電位の影響を受けてゲート絶縁膜9直近では空乏層の伸びが小さくなる。例えば、実施の形態1において参照した比較例に関する図9に示すように、ゲート絶縁膜9直近では空乏層の幅が小さくなる。そのため、本実施の形態のように、空乏化抑制層6をゲート絶縁膜9と離間して形成したとしても、保護層8から空乏層によってオン電流経路が縮小される恐れは少なく、空乏化抑制層6とゲート絶縁膜9とのギャップが適切な値となっていれば、オン抵抗が増大することもない。
 なお、本実施の形態では、空乏化抑制層6の底面と保護層8の底面とは、同じ深さとなるように形成することとしているが、図21に示すような構成としても構わない。すなわち、実施の形態2と同様に、空乏化抑制層6の底面を保護層8の底面よりも浅く形成することとしてもよい。
実施の形態4.
 本実施の形態では、空乏化抑制層6が縦方向に浅くなるに連れて徐々に、又は段階的に低くなる濃度階調(プロファイル)を持って形成されている。本実施の形態にかかる空乏化抑制層6の形成方法としては、実施の形態1と同様に、トレンチ7を形成した後、イオン注入により不純物濃度が浅くなるに連れて低くなるプロファイルを持つように空乏化抑制層6を形成するか、又はエピタキシャル成長時に深さによって不純物濃度を変化させて空乏化抑制層6を形成する。
 本実施の形態では、空乏化抑制層6の不純物濃度が浅くなるに連れて低くなるため、トレンチ7底面のゲート絶縁膜9に印加される電界強度の増大を低減することができるとともに、オン電流経路の縮小を抑制しオン抵抗を低減することができる。
実施の形態5.
 本実施の形態では、保護層8が横方向に濃度階調を持って形成されている。そして、保護層8のプロファイルは、保護層8の中央部から側面側に向かって濃度が低くなる、すなわち、空乏化抑制層6に近くなるに連れて不純物濃度低くなるようなプロファイルとする。本実施の形態にかかる保護層8の形成方法としては、実施の形態1と同様の側壁マスク15を用いたイオン注入を複数回行うことで可能となる。例えば、側壁マスク15を用いた第一回目のイオン注入を行った後、第一回目よりも幅の大きい側壁マスク15を形成し、第一回目イオン注入に加えてさらにイオン注入を行うことで、中央部の不純物濃度を高くすることが可能となり、本実施の形態にかかる保護層8を形成することができる。
 本実施の形態では、保護層8の不純物濃度が、空乏化抑制層6に近くなるに連れて低くなるよう形成されているため、保護層8の側面に広がる空乏層幅が小さくなり、空乏化抑制層6の厚みを小さくする、又は、空乏化抑制層6の不純物濃度を低くすることができる。よって、空乏化抑制層6の形成による電界強度の増大を抑制しつつ、保護層8からの空乏層幅を抑制することができる。
 1 基板、2 ドリフト層、3 ソース領域、4 ウェルコンタクト領域、5 ウェル領域、6 空乏化抑制層、7 トレンチ、8 保護層、9 ゲート絶縁膜、10 ゲート電極、11 ソース電極、12 ドレイン電極、13 終端領域、14 マスク、15 側壁マスク、16 層間絶縁膜、20 半導体層。

Claims (12)

  1.  炭化珪素からなる第一導電型のドリフト層と、
     前記ドリフト層上に形成された第二導電型のウェル領域と、
     前記ウェル領域上に形成された第一導電型のソース領域と、
     前記ソース領域の表面から前記ウェル領域を貫通するトレンチの内壁に形成され、前記ドリフト層に少なくとも側面の一部が接して形成されたゲート絶縁膜と、
     前記ゲート絶縁膜を介して、前記トレンチ内に形成されたゲート電極と、
     前記ドリフト層に形成された第二導電型の保護層と、
     前記保護層の側面に接して前記ドリフト層に形成され、第一導電型の不純物濃度が前記ドリフト層よりも高い第一導電型の空乏化抑制層と、
     を備えた炭化珪素半導体装置。
  2.  前記保護層は、前記トレンチ下部における前記ドリフト層に形成された、
     ことを特徴とする請求項1記載の炭化珪素半導体装置。
  3.  前記空乏化抑制層は、前記トレンチ下部における前記ドリフト層に形成された、
     ことを特徴とする請求項1または2記載の炭化珪素半導体装置。
  4.  前記保護層の第二導電型の不純物濃度は5.0x1017cm-3以上であり、かつ、5.0x1018cm-3以下であり、
     前記空乏化抑制層の第一導電型の不純物濃度は1.0x1017cm-3以上であり、かつ、5.0x1017cm-3以下である、
     ことを特徴とする請求項1ないし3のいずれか1項に記載の炭化珪素半導体装置。
  5.  前記保護層は前記ドリフト層において複数形成され、
     前記空乏化抑制層は複数の前記保護層ごとに前記保護層の側面に形成され、
     隣接する前記保護層の側面に形成された前記空乏化抑制層は前記ドリフト層を挟み離間している、
     ことを特徴とする請求項1ないし4のいずれか1項に記載の炭化珪素半導体装置。
  6.  前記空乏化抑制層の底面は、前記保護層の底面よりも浅い、
     ことを特徴とする請求項1ないし5のいずれか1項に記載の炭化珪素半導体装置。
  7.  前記保護層は前記ゲート絶縁膜の底面に接して形成されている、
     ことを特徴とする請求項1ないし6のいずれか1項に記載の炭化珪素半導体装置。
  8.  前記空乏化抑制層は前記ゲート絶縁膜の底面に接して形成され、
     前記保護層と前記トレンチの底面とが接している幅は、前記空乏化抑制層と前記トレンチの底面とが接している幅よりも大きい、
     ことを特徴とする請求項7に記載の炭化珪素半導体装置。
  9.  前記空乏化抑制層と前記ゲート絶縁膜の底面との間には、前記ドリフト層が介在する、
     ことを特徴とする請求項1ないし8のいずれか1項に記載の炭化珪素半導体装置。
  10.  前記空乏化抑制層の第一導電型の不純物濃度は、浅くなるに連れて前記空乏化抑制層の底面から表面に向かって低くなる、
     ことを特徴とする請求項1ないし9のいずれか1項に記載の炭化珪素半導体装置。
  11.  前記保護層の第一導電型の不純物濃度は、前記保護層の中央部から側面に向かうに連れて低くなる、
     ことを特徴とする請求項1ないし10のいずれか1項に記載の炭化珪素半導体装置。
  12.  第一導電型の炭化珪素半導体層が形成された半導体基板を用意する工程と、
     前記炭化珪素半導体層の上部に第二導電型のウェル領域を形成する工程と、
     前記ウェル領域の表面に第一導電型のソース領域を形成する工程と、
     前記ソース領域の表面から前記ウェル領域を貫通するトレンチを形成する工程と、
     前記トレンチ底面に、第一導電型の不純物を注入する工程と、
     前記トレンチ内の側面にマスクを形成する工程と、
     前記トレンチ内の側面に前記マスクが形成された状態で、前記トレンチの底面に第二導電型の不純物を注入する工程と、
     を備えた炭化珪素半導体装置の製造方法。
PCT/JP2014/082929 2014-01-10 2014-12-12 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 WO2015104949A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015556745A JP6214680B2 (ja) 2014-01-10 2014-12-12 炭化珪素半導体装置
US15/109,962 US9972676B2 (en) 2014-01-10 2014-12-12 Silicon carbide semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-003014 2014-01-10
JP2014003014 2014-01-10

Publications (1)

Publication Number Publication Date
WO2015104949A1 true WO2015104949A1 (ja) 2015-07-16

Family

ID=53523787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082929 WO2015104949A1 (ja) 2014-01-10 2014-12-12 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Country Status (3)

Country Link
US (1) US9972676B2 (ja)
JP (1) JP6214680B2 (ja)
WO (1) WO2015104949A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049928A (ja) * 2016-09-21 2018-03-29 株式会社デンソー 半導体装置およびその製造方法
JP2018049908A (ja) * 2016-09-21 2018-03-29 株式会社東芝 半導体装置及びその製造方法
JP2019087556A (ja) * 2017-11-01 2019-06-06 トヨタ自動車株式会社 半導体装置の製造方法
JP2019165166A (ja) * 2018-03-20 2019-09-26 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP2020150180A (ja) * 2019-03-14 2020-09-17 富士電機株式会社 炭化珪素半導体装置の製造方法
WO2024209919A1 (ja) * 2023-04-05 2024-10-10 三菱電機株式会社 半導体装置、電力変換装置および半導体装置の製造方法
JP7571903B2 (ja) 2017-06-07 2024-10-23 富士電機株式会社 半導体装置の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110366782B (zh) * 2017-03-06 2023-04-28 三菱电机株式会社 碳化硅半导体装置及其制造方法、电力变换装置及其制造方法
CN107658340B (zh) * 2017-09-02 2019-05-21 西安交通大学 一种双沟槽的低导通电阻、小栅电荷的碳化硅mosfet器件与制备方法
CN107658341B (zh) * 2017-09-27 2020-09-15 上海朕芯微电子科技有限公司 一种沟槽型功率mosfet及其制备方法
JP7076222B2 (ja) * 2018-02-21 2022-05-27 三菱電機株式会社 半導体装置およびその製造方法、電力変換装置
US11251299B2 (en) * 2018-03-28 2022-02-15 Mitsubishi Electric Corporation Silicon carbide semiconductor device and manufacturing method of same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236267A (ja) * 2004-01-23 2005-09-02 Toshiba Corp 半導体装置
JP2012004458A (ja) * 2010-06-18 2012-01-05 Toshiba Corp 半導体装置およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5531787B2 (ja) * 2010-05-31 2014-06-25 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP5710644B2 (ja) * 2010-12-10 2015-04-30 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JP5554417B2 (ja) * 2011-05-27 2014-07-23 新電元工業株式会社 トレンチゲートパワー半導体装置及びその製造方法
JP2013069964A (ja) 2011-09-26 2013-04-18 Sumitomo Electric Ind Ltd 炭化珪素半導体装置
JP5745997B2 (ja) * 2011-10-31 2015-07-08 トヨタ自動車株式会社 スイッチング素子とその製造方法
WO2014207793A1 (ja) * 2013-06-24 2014-12-31 株式会社日立製作所 半導体装置およびその製造方法
JP2015072999A (ja) * 2013-10-02 2015-04-16 株式会社デンソー 炭化珪素半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236267A (ja) * 2004-01-23 2005-09-02 Toshiba Corp 半導体装置
JP2012004458A (ja) * 2010-06-18 2012-01-05 Toshiba Corp 半導体装置およびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049928A (ja) * 2016-09-21 2018-03-29 株式会社デンソー 半導体装置およびその製造方法
WO2018056357A1 (ja) * 2016-09-21 2018-03-29 株式会社デンソー 半導体装置およびその製造方法
JP2018049908A (ja) * 2016-09-21 2018-03-29 株式会社東芝 半導体装置及びその製造方法
JP7571903B2 (ja) 2017-06-07 2024-10-23 富士電機株式会社 半導体装置の製造方法
JP2019087556A (ja) * 2017-11-01 2019-06-06 トヨタ自動車株式会社 半導体装置の製造方法
JP7047331B2 (ja) 2017-11-01 2022-04-05 株式会社デンソー 半導体装置の製造方法
JP2019165166A (ja) * 2018-03-20 2019-09-26 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP7127315B2 (ja) 2018-03-20 2022-08-30 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP2020150180A (ja) * 2019-03-14 2020-09-17 富士電機株式会社 炭化珪素半導体装置の製造方法
JP7331393B2 (ja) 2019-03-14 2023-08-23 富士電機株式会社 炭化珪素半導体装置の製造方法
WO2024209919A1 (ja) * 2023-04-05 2024-10-10 三菱電機株式会社 半導体装置、電力変換装置および半導体装置の製造方法

Also Published As

Publication number Publication date
US9972676B2 (en) 2018-05-15
US20160336391A1 (en) 2016-11-17
JP6214680B2 (ja) 2017-10-18
JPWO2015104949A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6214680B2 (ja) 炭化珪素半導体装置
JP6266166B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2015049815A1 (ja) 炭化珪素半導体装置およびその製造方法
KR101792449B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
TWI605596B (zh) 絕緣閘切換裝置及其製造方法
JP6099749B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2009142233A1 (ja) 半導体装置
JP6715567B2 (ja) 半導体装置
US9698217B1 (en) Semiconductor device
KR101840961B1 (ko) 반도체 장치
WO2013161116A1 (ja) 半導体装置及びその製造方法
JP2016025177A (ja) スイッチング素子
CN111886680B (zh) 碳化硅半导体装置及其制造方法
WO2020121371A1 (ja) 炭化珪素半導体装置およびその製造方法
JP6207627B2 (ja) 半導体装置
JP2017174961A (ja) スイッチング素子の製造方法
JP2019517151A (ja) 半導体デバイスおよびその製作方法
JP6539026B2 (ja) 半導体装置及びその製造方法
KR20130017054A (ko) 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556745

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15109962

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878094

Country of ref document: EP

Kind code of ref document: A1