WO2015102399A1 - Flexible device having graphene composite layer for solution process - Google Patents
Flexible device having graphene composite layer for solution process Download PDFInfo
- Publication number
- WO2015102399A1 WO2015102399A1 PCT/KR2014/013086 KR2014013086W WO2015102399A1 WO 2015102399 A1 WO2015102399 A1 WO 2015102399A1 KR 2014013086 W KR2014013086 W KR 2014013086W WO 2015102399 A1 WO2015102399 A1 WO 2015102399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene
- hybrid
- platelets
- layer
- graphene oxide
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 360
- 229910021389 graphene Inorganic materials 0.000 title claims description 468
- 238000000034 method Methods 0.000 title claims description 107
- 239000002131 composite material Substances 0.000 title claims description 80
- 230000008569 process Effects 0.000 title claims description 41
- 230000004888 barrier function Effects 0.000 claims abstract description 37
- 239000000945 filler Substances 0.000 claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 239000000243 solution Substances 0.000 claims description 89
- 239000011852 carbon nanoparticle Substances 0.000 claims description 52
- 229920000642 polymer Polymers 0.000 claims description 51
- 239000002243 precursor Substances 0.000 claims description 33
- 239000007864 aqueous solution Substances 0.000 claims description 31
- 229910002804 graphite Inorganic materials 0.000 claims description 29
- 239000010439 graphite Substances 0.000 claims description 29
- 239000004094 surface-active agent Substances 0.000 claims description 27
- 239000006185 dispersion Substances 0.000 claims description 26
- 239000011159 matrix material Substances 0.000 claims description 24
- 239000000443 aerosol Substances 0.000 claims description 19
- 238000000197 pyrolysis Methods 0.000 claims description 16
- 230000006870 function Effects 0.000 claims description 15
- 239000012298 atmosphere Substances 0.000 claims description 12
- 238000005119 centrifugation Methods 0.000 claims description 10
- 239000003960 organic solvent Substances 0.000 claims description 9
- 230000035515 penetration Effects 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 238000000527 sonication Methods 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 abstract description 2
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 247
- 239000007789 gas Substances 0.000 description 49
- 239000002082 metal nanoparticle Substances 0.000 description 40
- 239000010409 thin film Substances 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 239000010408 film Substances 0.000 description 13
- 239000007791 liquid phase Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 238000005192 partition Methods 0.000 description 11
- 238000006722 reduction reaction Methods 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 230000007547 defect Effects 0.000 description 9
- 238000005538 encapsulation Methods 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 238000010129 solution processing Methods 0.000 description 9
- 239000004020 conductor Substances 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- 238000005054 agglomeration Methods 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000002194 synthesizing effect Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 4
- 238000000498 ball milling Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000006184 cosolvent Substances 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- 230000007306 turnover Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000010306 acid treatment Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229920002359 Tetronic® Polymers 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- MHABMANUFPZXEB-UHFFFAOYSA-N O-demethyl-aloesaponarin I Natural products O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C MHABMANUFPZXEB-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1637—Details related to the display arrangement, including those related to the mounting of the display in the housing
- G06F1/1652—Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04102—Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04111—Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0443—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/80—Constructional details
- H10K10/82—Electrodes
- H10K10/84—Ohmic electrodes, e.g. source or drain electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/331—Nanoparticles used in non-emissive layers, e.g. in packaging layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/122—Pixel-defining structures or layers, e.g. banks
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8052—Cathodes
- H10K59/80522—Cathodes combined with auxiliary electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8052—Cathodes
- H10K59/80523—Multilayers, e.g. opaque multilayers
Definitions
- the present disclosure relates to a flexible device and a method of manufacturing the same, and more particularly, to a flexible device and a hybrid-graphene composite layer including a hybrid-graphene composite layer that can be formed by various solution processing methods.
- Graphene a single layer composed of sp 2 bonded carbon atoms, has been considered technically very important in recent years because of its excellent properties. Graphene exhibits better electrical conductivity than any other conventional material, has greater thermal conductivity than diamond, and has a physical strength of at least 200 times greater than steel at a weight of one sixth. Graphene not only provides transparency, electrical properties, gas / moisture barrier properties, but also the flexibility and mechanical strength required for flexible devices. Since it can be used, it can also be usefully used in an organic light emitting diode (OLED) display or a flexible display device which is recently attracting attention.
- OLED organic light emitting diode
- the graphene synthesis method is divided into a bottom-up method and a top-down method.
- Bottom-up methods such as epitaxial growth and chemical vapor deposition (CVD) have the advantage of precisely controlling the size and thickness of graphene.
- CVD chemical vapor deposition
- graphene growth technology using chemical vapor deposition can grow in the presence of metal catalysts such as nickel (Ni), copper (Cu), and platinum (Pt) on wafers of 4 inches or larger, and have a relatively large area with relatively high quality.
- metal catalysts such as nickel (Ni), copper (Cu), and platinum (Pt)
- graphite becomes a graphite oxide by a strong acid and an oxidant
- the graphene oxide plate is composed of a single layer and / or a multilayer (2-20 layer) sheet by exfoliating the graphite oxide in a liquid phase. Get the letts.
- the oxygen functionalities of graphene oxide platelets make graphene oxide platelets easily soluble in water.
- the colloidal solution of the graphene oxide platelet is subjected to several chemical treatments, filtration, dehydration process, and re-dispersion, and reduced graphene oxide platelets in which the graphene oxide platelets are partially restored. A dispersion is obtained.
- This liquid phase reduction method has several advantages but also several disadvantages.
- Graphene oxide platelets reduced by chemical methods in the liquid phase cannot be completely restored in structure.
- the chemical structure or functional group is modified to improve the dispersion of the graphene oxide platelet or reduced graphene oxide platelet in the solution, it is inevitable to generate defects in the graphene structure, so the chemical reduction method in the liquid phase
- the reduced graphene oxide platelet obtained as a problem is difficult to use in the field requiring high electrical properties or moisture permeation prevention functions.
- the electrical properties of chemically reduced reduced graphene oxide in the liquid phase may be two orders of magnitude lower (eg, 100 times) than raw graphene.
- the chemical treatment, filtration, drying and re-dispersion steps repeated several times until reduction in the liquid phase by chemical methods to obtain a reduced graphene oxide platelet solution may be achieved by re-agglomeration of the reduced graphene oxide platelets and Re-stacking can be caused to significantly reduce the effectiveness of graphene for solution processing.
- the problem to be solved by the present invention is to provide a new method for synthesizing the graphene usable in a solution process method with fewer defects without re-aggregation / re-stacking problems.
- Another problem to be solved by the present invention is a new method to synthesize a solution-processable hybrid-graphene composite that provides better optical, physical, thermal, electrical and gas / moisture barrier properties than existing graphene composites. To provide.
- the flexible display device includes a flexible substrate on which the organic light emitting diode is formed, and a barrier layer that suppresses penetration of gas / moisture of the organic light emitting diode.
- the barrier layer is formed by stacking at least two layers of carbon-based fillers having a two-dimensional planar shape.
- a hybrid-graphene layer comprising a substrate or polymer matrix and a plurality of reduced graphene oxide platelets in accordance with one embodiment of the present invention.
- the reduced graphene oxide platelets included in the hybrid graphene layer are oriented horizontally.
- a dispersion solution containing graphene oxide platelets is produced.
- the carbon nanoparticles are dispersed in a dispersion solution to produce a precursor solution.
- the precursor solution is aerosolized to convert it into aerosol droplets with graphene oxide platelets and carbon nanoparticles. Pyrolysis is also performed on the aerosol droplets to reduce the graphene oxide platelets.
- the reduced graphene oxide platelets of graphene for solution processing prepared by the above method have hydrophobic properties, but are compatible with various kinds of organic solvents and polymers.
- FIG. 1 is a flow chart illustrating an exemplary method for synthesizing graphene that can be used in a solution process.
- FIG. 2 is a flow chart illustrating an exemplary method for synthesizing a hybrid-graphene composite that can be used in a solution process.
- FIG. 3 is a table showing a comparison of sheet resistance values of samples obtained by the exemplary methods disclosed in the present invention.
- 5A is a plan view illustrating an exemplary touch screen panel using a hybrid-graphene layer in accordance with one embodiment of the present invention.
- FIG. 5B is a cross-sectional view taken along Vb-Vb of FIG. 5A.
- FIG. 6 is a cross-sectional view illustrating an exemplary thin film transistor using a hybrid-graphene layer in accordance with an embodiment of the present invention.
- FIG. 7 is a cross-sectional view illustrating an exemplary organic light emitting display device using a hybrid graphene layer according to an exemplary embodiment of the present invention.
- first, second, etc. are used to describe various components, it is only used to distinguish a particular component among a plurality of components corresponding to the first and second components. Therefore, of course, the first component mentioned below may be a second component within the technical spirit of the present invention.
- each of the features of the various embodiments of the present invention may be combined or combined with each other in part or in whole, various technically interlocking and driving as can be understood by those skilled in the art, each of the embodiments may be implemented independently of each other It may be possible to carry out together in an association.
- graphene may collectively refer to both graphene oxide (GO) and reduced graphene oxide (rGO) as well as pristine graphene.
- Theoretically graphene consists of a single layer structure, but the graphene platelets used in the examples herein include not only graphene of a single layer structure but also multilayer structures (for example, 2-20 layers). Therefore, in this specification, the graphene oxide platelet or the reduced graphene oxide platelet used in the embodiments using the expression “platelet” is not only a single layer structure but also a plurality of layers stacked. Emphasis was placed on including structure.
- FIG. 1 is a flow diagram illustrating an exemplary method 100 for obtaining a colloidal dispersion in which reduced graphene oxide platelets are dispersed, suitable for depositing on a desired surface in various solution based processes.
- the method 100 for obtaining a reduced graphene oxide platelets dispersion solution may include preparing a solution in which graphene oxide platelets having a single layer structure and / or a multilayer structure are dispersed in a liquid phase (S110). ).
- the dispersion solution of graphene oxide can be obtained through various conventional methods known in the art. For example, Brodie, Stademaier and Hummers methods and their various variations can be prepared.
- the inherent 0.34 nm interlayer spacing can be extended to about 0.7 nm and includes hydroxyl, epoxide, carbonyl and carboxylic functional groups.
- Graphite oxides with oxyfunctionals can be produced.
- the functional groups also make the graphene sheets hydrophillic and facilitate the retention of water molecules between layers in the graphite oxide. Accordingly, it is much easier to obtain graphene platelets by exfoliating graphite oxide than to exfoliate graphite directly to obtain graphene platelets.
- graphite oxide In order to produce a dispersion solution of graphene oxide platelets, graphite oxide can be stripped in the solution by sonication and centrifugation. Unexfoliated graphite oxide can be removed from the solution through filtration.
- Graphene for solution processing can be used to produce a large amount of graphene to form a graphene composite, a layer (Layer) or a film (Film).
- the size of the graphene platelets has a decisive influence on the properties of the final structure formed from them, so it may be important to obtain platelets of sufficient size.
- the Lateral Length of graphene platelets may be greater than or equal to a particular micron (eg, greater than or equal to 0.5 ⁇ m) to obtain the desired physical properties from the graphene composite.
- the sheet resistance of the graphene film formed using platelets of longer length has a lower value than that of the graphene film formed using platelets of relatively short size. This results in more junctions between the plates when forming films using smaller platelets, so that the electrical conductivity throughout the network of these platelets is dependent on the contact resistance between the platelets. It is bound to be limited.
- the step of controlling the size of the graphene oxide platelets may be performed. Size selection of graphene oxide platelets may be accomplished by chromatography, but such methods are typically limited in the amount obtainable. Thus, in some embodiments of the present invention, the size of the graphene platelets is controlled by adjusting the centrifugation rate.
- the maximum size of the graphene oxide platelets is limited by the size of the source from which the graphene is first peeled off, but the average lateral length of the graphene oxide platelets dispersed in the solution is in the preparation of the graphene oxide platelet dispersion.
- Increasing centrifugal turnover can even control nanoscale units.
- the average transverse length of the scattered platelets decreases with increasing centrifugal turnover. In other words, higher centrifugation turns can be separated into relatively short length platelets left dispersed in the colloidal solution in the form of precipitates and longer platelets remaining in the form of precipitates. This precipitate can be redispersed, which leads to dispersions in which platelets of different average lengths are dispersed.
- the process of obtaining a graphene oxide plate dispersion by peeling from the sonicated graphite oxide includes a portion of unpeeled graphite crystals (Crystallite) to be removed from the aqueous solution through a centrifugation step.
- a centrifugal turnover of 500 rpm may be suitable for removing graphite crystals while keeping the graphene oxide platelets dispersed.
- the average length of graphene oxide platelets can be controlled by adjusting the centrifugation turnover.
- the solvent for preparing the graphene oxide platelets dispersion is not particularly limited.
- Preferred solvents are water, but additives that can improve the wetting of co-solvents or hydrophobic graphene platelets can be used together.
- Solvents and / or additives may be used alone or in combination.
- Preferred additives include surfactants such as alcohols, such as methanol, ethanol, butanol, propanol, glycols, water soluble esters and ethers, nonionic ethylene oxide, propylene oxide and their copolymers, tergitol ( tergitol) surfactants, or alkyl surfactants such as Triton-based surfactants, or surfactants having ethylene oxide and propylene oxide or butylene oxide units.
- surfactants such as alcohols, such as methanol, ethanol, butanol, propanol, glycols, water soluble esters and ethers, nonionic ethylene oxide, propylene oxide and their cop
- Cosolvents and surfactants may be included in the solution at 0.0001 to 10% by weight.
- Cosolvents and surfactants are in solution, in particular 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7 , 7.5, 8, 8.5, 9 and 9.5 weight percent, and may be included as a sub-value between these values.
- the method 100 for obtaining the reduced graphene oxide platelets dispersion solution includes converting the graphene oxide platelets dispersion solution into an aerosol droplet (S120).
- an ultrasonic nebulizer may be used to spray by transforming the precursor solution into an aerosol droplet having a diameter of several tens of microns.
- the method 100 for obtaining the reduced graphene oxide platelets dispersion solution includes passing the airgel droplets through a furnace to evaporate water molecules and reduce the graphene oxide platelets (S130).
- a furnace a tubular furnace may be used.
- the sprayed airgel droplets can be transferred to the furnace using gas.
- one or other various reducing gases such as argon gas and nitrogen (N 2 ) gas may be mixed and used. You can also use an additional fan for faster movement.
- the temperature of the furnace may range from 300 ° C to 2000 ° C.
- the temperature of the furnace may be a temperature capable of simply reducing the graphene oxide platelets in the aerosol droplets, but the temperature of the furnace may be determined in consideration of various factors in order to facilitate the reduction of the graphene oxide platelets.
- the temperature of a furnace may vary within the furnace structure of the furnace, the volume and rate of aerosol droplets passing through the furnace in a particular section, and the aerosol droplets determined by these. It can be determined according to the residence time of. The higher the temperature of the furnace, the shorter the time that the aerosol droplets must remain in the furnace.
- the residence time in the furnace of the aerosol droplets may be from about 0.1 seconds to about 10 minutes, preferably from 1 second to 5 minutes.
- Retention time may include, in particular, 5, 10, 20, 30, 40, 50 seconds, 1 minute, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 minutes, including sub-values between these values.
- the furnace may be heated to a temperature between 300 ° C. and 600 ° C. to sufficiently reduce graphene oxide platelets with a residence time of 0.1 seconds to 10 minutes.
- the ratio of the active gas and the inert gas in the reducing atmosphere in the furnace may be 50%, respectively.
- the ratio of H 2 and N 2 in the reducing atmosphere in the entire furnace may be 50:50, respectively.
- the ratio of H 2 in the reducing atmosphere in the heating furnace can be used at 50% or less, more preferably at 25% or less.
- nitrogen in the reducing atmosphere in the furnace The proportion of argon or the same inert reducing gas may be 50% or more, and more preferably 75% or more.
- an exfoliating gas such as carbon monoxide, methane or mixtures thereof may be further added to the furnace.
- an exfoliating gas such as carbon monoxide, methane or mixtures thereof may be further added to the furnace.
- stripping gas e.g, CO 2
- the release of gas e.g, CO 2
- the solvents e.g, water and / or water soluble solvents
- These processes may evaporate water molecules, reduce graphene oxide platelets to reduced graphene oxide platelets, and may further exfoliate graphene oxide plates having a multilayer structure.
- the method 100 for obtaining the reduced graphene oxide platelets dispersion solution is to re-aggregate the vapor in which the reduced graphene oxide platelets are dispersed through the heating furnace between the reduced graphene oxide platelets. Passing directly through an aqueous solution (eg, an organic solvent) mixed with a surfactant having an inhibitory function, and directly collecting the solution (S140) using the solution. Collecting the reduced graphene oxide platelets in the gas directly using an aqueous solution containing a surfactant causes re-agglomeration and re-lamination of the reduced graphene oxide platelets such as filtration, drying process and re-dispersion.
- an aqueous solution eg, an organic solvent
- S140 directly collecting the solution
- the aqueous solution may be DI mixed with 1% to 5% of a surfactant having the ability to inhibit aggregation of reduced graphene oxide platelets, and the temperature of the aqueous solution may be between 20 ° C and 100 ° C. .
- the aqueous solution may comprise alcohols such as methanol, ethanol, butanol, propanol, glycols, water soluble esters and ethers.
- the surfactants mixed in the aqueous solution are alkyl surfactants such as nonionic ethylene oxide, propylene oxide and their copolymers, tergitol group surfactants, or triton based surfactants, or ethylene oxide and propylene oxide or butylene oxide It may also comprise surfactants with units. Examples of these include the Pluron or Tetronic series of surfactants. Cosolvents and surfactants may be included in the solution at 0.0001 to 10% by weight.
- Cosolvents and surfactants are in solution, in particular 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7 , 7.5, 8, 8.5, 9 and 9.5% by weight, and may be included as a sub-value between these values.
- the method described with reference to FIG. 1 is also very suitable for producing hybrid-graphene composites, which is another aspect of the present invention.
- the novel hybrid-graphene composites described herein have improved optical properties as the reduced graphene platelets, which are fillers in two-dimensional planes, and the fillers in particle form, which have three-dimensional shapes, are dispersed in the polymer matrix. , Physical properties (strength, ductility, Modulus, crack-resistant, abrasion and scratch resistance) and electrical / thermal conductivity and gas / moisture barrier properties.
- hybrid-graphene composites Some of these properties are highly dependent on the uniform distribution of platelets in the composite, the interconnections between the platelets, and the formation of gas / moisture penetration inhibition pathways within the hybrid-graphene composite. In embodiments of hybrid-graphene composites, some or all of these properties may be improved by methods of synthesis and composition of specific configurations.
- Graphene oxide is hydrophilic in the various oxygen functional groups on the surface thereof, as compared with the reduced graphene oxide from which most of the oxygen functional groups are removed, the water particles can move better through the path in the polymer matrix, and thus, Most or all of the graphene platelets included in the hybrid-graphene composite and hybrid-graphene layer are preferably reduced graphene oxide platelets.
- the hybrid-graphene composite and hybrid-graphene layer of the embodiments herein may include a small number of unreduced graphene oxide platelets due to process variations.
- gas / moisture molecules can migrate along the relatively permeable polymer channels around the incapable reducing graphene oxide platelets and penetrate through the hybrid-graphene layer. Therefore, it may be the most important point to improve the gas / moisture barrier property of the hybrid-graphene layer formed of the hybrid-graphene composite to establish the longest path so that gas / water particles are difficult to penetrate.
- the factors that greatly influence the gas / moisture intrusion properties of the hybrid-graphene composite are the aspect ratio, defined as the ratio of the longest dimension to the shortest dimension of the reduced graphene oxide platelet.
- the dispersion rate of the reduced graphene oxide platelets in the composite and the alignment of the platelets, the interface bond between the reduced graphene oxide platelets and the polymer matrix, and the crystallinities of the polymer matrix are also considered as important factors affecting the gas / moisture penetration properties of the hybrid-graphene composite. Should be.
- the very large aspect ratio and two-dimensional planar shape of the reduced graphene oxide platelets are very suitable materials to combine with the polymer matrix and build a long path therein.
- Reducing graphene oxide platelets of hybrid-graphene composites not only provide good gas / moisture barrier properties, but also combine with the polymer matrix to provide physical properties such as tensile and compression stresses required in flexible devices. It also provides a strong tolerance to withstand phosphorus stresses.
- the interface bonding force between the filler and the surrounding polymer matrix plays an important role in the transfer of stress from the polymer matrix to the filler through shear-activated mechanisms. The higher the shear force of the interface, the greater the load it can withstand before interfacing failures occur. If the bond / shear force between the polymer matrix and the fillers is weak, the strength of the interfacing between them decreases and eventually defects may occur. Therefore, the strong bonding / shearing force between the polymer matrix and the filler is important for improving the physical properties of the hybrid-graphene layer formed of the hybrid-graphene composite.
- Reduced graphene oxide platelets are very suitable fillers for improving the tensile modulus and strength of hybrid-graphene composites.
- reduced graphene oxide platelets In contrast to many other types of fillers that have smooth surfaces that do not aid in mechanical interlocking, reduced graphene oxide platelets have a rough, corrugated surface that can make the bonds with the polymer chains stronger. It has a topology.
- the reduced graphene oxide platelets have a larger interfacing contact area in the polymer matrix as compared to other one-dimensional fillers such as carbon nanotubes (CNTs).
- CNTs carbon nanotubes
- polymer chains with large molecules cannot penetrate the inside of the tube through the inner holes of the carbon nanotubes, and only the outer surface of the carbon nanotubes contacts the polymer matrix.
- planar reduced graphene oxide platelets are well suited to improve tensile modulus and strength because both sides can interface with the polymer and have a larger interface contact area.
- the reduced graphene oxide platelets support the physical loads in both the longitudinal and transverse bidirectional directions, so the reduced graphene oxide platelets serve as a conventional gas / moisture barrier even in flexible devices. Can be done.
- the improved elastic modulus of these hybrid-graphene composites also leads to improved buckling stability at compression loads.
- Buckling is a very difficult structural instability in the structural design of flexible devices.
- the improved buckling stability of the hybrid-graphene composites described herein is a two-dimensional planar form of the reduced graphene oxide platelets used in each example and the majority of the reduced graphene oxide platelets consist of a plurality of sheets. It is related to all structural features.
- the reduced graphene oxide platelet which consists of a plurality of sheets, combines the polymer matrix with only the outer ones of the multiple sheets it contains so as to transfer the stress of tensile stress that the hybrid-graphene layer receives. Contribute.
- the load of compressive stress is equally distributed not only to the outer sheets but also between the outer sheets, contributing to the load transfer.
- Each sheet in the reduced graphene oxide platelet can be buckled and bent when subjected to compressive stress due to their atomic scale thickness.
- the buckling or bending of the sheet in the reduced graphene oxide platelet then increases the friction between the adjacent sheets, resulting in better load transfer between the sheets in the reduced graphene oxide platelet.
- hybrid-graphene composites made using reduced graphene oxide platelets consisting of one or more sheets improve both tensile and compressive load transfer properties, which are important considerations in implementing flexible electronic devices.
- hybrid-graphene composites are prepared by directly trapping high-quality reduced graphene platelets obtained by reducing graphene oxide platelets in an aerosolized droplet state with an aqueous solution so that there is no reaggregation / re-stacking. can do.
- the hybrid-graphene composite can be used to form a hybrid-graphene layer with uniformly dispersed reduced graphene platelets, thereby exhibiting excellent electrical, physical and / or gas / moisture barrier properties suitable for a variety of applications. .
- the three-dimensional particle-shaped filler included in some embodiments of the hybrid-graphene composite is carbon nanoparticles (Carbon Nanoparticles).
- Hybrid-graphene composites formed of mixed-reduced graphene platelets and carbon nanoparticles in a polymer matrix exhibit significantly lower sheet resistance compared to hybrid-graphene layers without carbon nanoparticles.
- the method 200 for forming the hybrid-graphene composite may include preparing a precursor solution (S210).
- the carbon nano particle powder is mixed with graphene oxide solution to prepare a precursor solution.
- the graphene oxide solution may be formed with DI water mixed with DI water and / or organic solvents.
- Graphene oxide platelets in the precursor solution may be included in the precursor solution at about 0.05%.
- carbon nano particle powder may be included in the precursor solution at about 0.05%.
- 40 ml of the precursor solution may include 0.20 g of graphene oxide platelets and 0.20 g of carbon nano particle powder mixed inside the precursor solution.
- Carbon nano particles are graphite particles that are essentially nano-sized with horizontal / lateral length of less than 50 nm.
- the precursor solution may comprise an acid such as HNO 3 and / or HCl.
- Carbon nanoparticles can be formed by commonly used methods such as grinding or ball-milling to make graphite into particles of nano size. It should be noted that the carbon nanoparticles used in the precursor solution are graphite, not graphite oxide. As described above, the maximum size of the graphene oxide platelets and the maximum size of the reduced graphene oxide obtained by reducing the same may be determined according to the size of the base material, ie, graphite, to which the graphene oxide platelets are initially peeled off.
- the graphene oxide platelets dispersed in the precursor solution and Carbon nanoparticles may be obtained from different graphites.
- reduced graphene oxide platelets having a two-dimensional planar shape have an average transverse length of 0.5 ⁇ m to 5 ⁇ m, more preferably at least 1 ⁇ m, more preferably at least 2.5 ⁇ m, more preferably about Have an average transverse length of at least 3 ⁇ m.
- reduced graphene oxide platelets having a two-dimensional planar shape have an average thickness of about 0.5 nm to about 7 nm, more preferably about 0.5 nm to about 3.5 nm, even more preferably about 0.5 nm to It has an average thickness of about 1.7 nm or less.
- the carbon nanoparticles have an average diameter of about 1 nm to about 50 nm.
- Carbon nanoparticles, which are graphite, have a much larger thickness than graphene oxide platelets. As the difference between the reduced graphene platelet and the size increases, the gap between the reduced graphene platelets is more closely filled, and the Van Der Walls bonds with the reduced graphene platelets and carbon nanoparticles. It is possible to form a hybrid-graphene layer in a complementary form. When the average diameter of the carbon nanoparticles used in the precursor solution exceeds 50 nm, the sheet resistance value of the hybrid-graphene layer formed of the hybrid-graphene composite of this embodiment cannot be obtained.
- a ball mill process can be used to disperse the graphene oxide platelets and carbon nano particle powder.
- a ball mill process may be performed on the precursor solution for about 12 hours to about 24 hours.
- the ball mill process may use zirconia beads having a size of 1.0 ⁇ . Smaller size beads (eg, 0.5 ⁇ ) can be used to control the average size of the carbon nanoparticles.
- each of the graphene oxide platelets included in the precursor solution can be formed in a different number of layers.
- the reduced graphene oxide platelets included in the hybrid-graphene composite do not have to have only a certain number of reduced graphene oxide layers, for example reduced graphene in a single layer, double layer, or triple layer. And may include fin oxide platelets.
- reduced graphene platelets consisting of 1 to 20 layers may be included in the hybrid-graphene composite, thus the average number of layers of reduced graphene platelets included in the hybrid-graphene composite is 2 to 20. 10 layers, more preferably between 2 and 5 layers.
- the sheet having two or more layers is suitable for improving the physical properties of the hybrid-graphene layer, but if the average number of layers included in each reduced graphene platelet is too large, transparency may be reduced.
- carbon nanoparticles have a shorter length in the transverse direction than two-dimensional reduced graphene oxide platelets, since the carbon nanoparticles are graphite particles, graphite is peeled off and thus two-dimensional. It may have more layers than reduced graphene oxide platelets. However, because carbon nanoparticles have a small surface area, they are not sufficient for physical interfacing or interlocking with the surrounding polymer in the hybrid-graphene layer. It may not contribute significantly to improving the relevant characteristics.
- the precursor solution may include other fillers and / or other additives, and other additives may include a dispersant comprising an ionic surfactant and / or a non-ionic surfactant and a binder such as a silane binder, an emulsifier, a stabilizer, or the like. You may.
- the method 200 of forming the hybrid-graphene composite includes converting the precursor solution into aerosol droplets (S220). As illustrated in FIG. 1 above, the aerosolized precursor droplets are conveyed to the furnace with an inert gas such as argon and / or N 2 .
- an inert gas such as argon and / or N 2 .
- the method 200 of forming a hybrid-graphene composite includes thermally decomposing aerosolized precursor droplets in a furnace (S230).
- the furnace may be heated to about 300 ° C to 1900 ° C. However, the heating furnace is preferably heated to 900 °C.
- the rate at which the aerosolized precursor flows through the furnace may be from about 0.1 m / sec to about 5 m / sec. As mentioned above, the time for which the precursor droplets remain in the furnace can be determined by various factors.
- the pyrolysis process evaporates water molecules and reduces graphene oxide platelets to reducing graphene oxide platelets.
- the carbon nanoparticles are incorporated into the reducing graphene platelets or otherwise synthesized with the reducing graphene platelets, thus reducing graphene platelets without mixing of the carbon nanoparticles. It shows a significantly smaller defect rate compared to reduced graphene platelets subjected to the same pyrolysis process.
- the method 200 of forming a hybrid-graphene composite includes a step (S240) of directly passing an aqueous solution mixed with a surfactant and gases from a steam and a furnace including reducing graphene platelets.
- the surfactant here serves to inhibit re-aggregation and re-stacking of the reduced graphene platelets in aqueous solution.
- the vapor leaves the aqueous solution, but carbon nanoparticles that are not synthesized with the reduced graphene platelets and even reduced graphene platelets are collected by the aqueous solution.
- this process can form a hybrid-graphene composite for solution processing with less re-agglomeration / re-stacking between the reduced graphene platelets.
- a solvent and a surfactant described above with reference to S140 of FIG. 1 may be used as the aqueous solution for capturing the reduced graphene platelets and carbon nanoparticles.
- various types of polymers may be included in the aqueous solution which permeates the vapor from the furnace in liquid form.
- an electrically conductive polymer such as PETDOT may be mixed in the aqueous solution.
- polymers exhibiting gas / moisture barrier properties such as PVA-co-ethylene may be mixed into the aqueous solution if better gas / moisture barrier properties are prioritized in the layer formed of the hybrid-graphene composite. .
- the polymer in the hybrid-graphene composite is not limited to the examples described above, and that various other forms of polymer may be mixed in the aqueous solution to achieve the desired function.
- the amount and shape of the polymer may affect the viscosity of the final hybrid-graphene composite and further limit the solution based processing method to be used for depositing / coating onto the desired surface with the desired hybrid-graphene composite.
- the polymer may be mixed into the aqueous solution prior to permeation of the vapor from the furnace, or the polymer may be mixed into the aqueous solution after permeating the vapor from the furnace to collect the reduced graphene platelets and the remaining carbon nanoparticles. have.
- the aqueous solution for permeating vapor from the heating furnace may include an organic solvent capable of dissolving the polymer mixed in the aqueous solution. It is also preferred that the organic solvent has a low BP in order to reduce bubbles in the hybrid-graphene layer formed of the hybrid-graphene composite.
- the aqueous solution may be mixed with an organic solvent, which may be propanol, DMAC, tetra butyl alcohol, or pyridine.
- an organic solvent which may be propanol, DMAC, tetra butyl alcohol, or pyridine.
- formic acid but are not necessarily limited thereto.
- the sheet resistance of the layer formed from the hybrid-graphene composite can be improved by adding nanoparticles into the hybrid-graphene composite.
- the three-dimensional particle shaped filler included in the hybrid-graphene composite is an oxidizable metal nanoparticle.
- Hybrid-graphene composites comprising oxidizable metal nanoparticles can be formed using processes similar to those described above with reference to FIG. 2.
- a precursor solution comprising graphene oxide platelets and metal nanoparticles can be used to form the hybrid-graphene composite.
- the precursor solution may be formed from DI water mixed with DI water and / or organic solvent.
- Graphene oxide platelets in the precursor solution may be included in the precursor solution at about 0.05%.
- the metal nanoparticle powder in the precursor solution may be included at about 0.05% in the precursor solution.
- 40 ml of the precursor solution may include 0.20 g of graphene oxide platelets and 0.20 g of metal nano particle powder mixed therein.
- the metal used as the metal nanoparticles may include platinum (Pt), nickel (Ni), copper (Cu), silver (Ag), gold (Au), or mixtures thereof.
- the precursor solution is aerosolized and subjected to a pyrolysis process of the aerosolized aerosol droplets in a manner similar to that described above.
- the pyrolysis process evaporates water molecules and reduces the graphene oxide platelets to reduced graphene oxide platelets.
- the reducing atmosphere in the furnace can reduce graphene oxide platelets, but the metal nanoparticles are not oxidized in this reducing atmosphere. Thus, during the reduction of graphene oxide platelets, some of the metal nanoparticles will simply flow in the vapor and some of the metal nanoparticles are attached to the surface of the reduced graphene platelet.
- Metal nanoparticles adhering to the surface of the reduced graphene platelets not only allow more tight coupling of the interface between the reduced graphene platelets and the surrounding polymer matrix in the hybrid-graphene layer, but furthermore between the reduced graphene platelets. Serves to make it easier to form electrical networks.
- metal nanoparticles may be formed in a form surrounding the reduced graphene platelets. In this case, the phenomenon of losing the characteristics of the reduced graphene platelet may be caused.
- the temperature and residence time at which the above-described phenomena occur may vary depending on the type of the metal nanoparticles, in some embodiments in which the metal nanoparticles are included in the aerosol droplets, the temperature and the aerosol of the heating furnace depend on the type of the metal nanoparticles included.
- the residence time of the droplets can be adjusted. For example, when including one of the metal nanoparticles mentioned above, it is preferable that the temperature of a heating furnace is 1500 degreeC or less.
- FIG. 3 shows 1) a layer formed with a reduced graphene solution, 2) a layer formed with a hybrid-graphene composite with carbon nanoparticles, and 3) a hybrid with metal nanoparticles, obtained by the disclosed embodiments of the present invention.
- Tables compare the surface resistance values of the layers formed of graphene composites. The table also shows the differences in the sheet resistance of the layer with the temperature of the furnace during the pyrolysis step.
- the surface resistance of the reference layer formed of the colloidal solution of the reduced graphene platelets according to the examples discussed herein was measured to be about 700 ⁇ / square, which was formed by conventional chemical reduction or thermal expansion methods. It is much lower than the sheet resistance of the layer formed of the colloidal solution of the reduced graphene platelets.
- the layer formed of the hybrid-graphene composite mixed with the copper nanoparticles exhibited a sheet resistance as low as about 600 ⁇ / ⁇ .
- the sheet resistance of the layer formed of the hybrid-graphene composite mixed with carbon nanoparticles was only about 15 ⁇ / square, which was particularly low.
- pyrolysis temperature plays an important role in synthesizing hybrid-graphene composites with carbon nanoparticles.
- a layer formed of a hybrid-graphene composite subjected to a pyrolysis process at a relatively low temperature (eg, 80 ° C.) is a hybrid-graphene composite subjected to a pyrolysis process at a higher temperature (eg 300 ° C.). It showed a larger sheet resistance than the layer formed by. It was observed that when the pyrolysis process was carried out at 500 ° C., a layer with a sheet resistance value as low as 15 ⁇ / ⁇ could be formed.
- FIG. 4 shows 1) a layer formed with a reduced graphene solution, 2) a layer formed with a hybrid-graphene composite with carbon nanoparticles, and 3) a hybrid with metal nanoparticles, obtained by the disclosed embodiments of the present invention. Show the plate and cross-sectional structures of layers formed of graphene composites. As shown in FIG. 4, carbon nanoparticles cannot be observed on a plate of a hybrid graphene layer formed of a hybrid-graphene composite including carbon nanoparticles. On the other hand, the metal nanoparticles are observed on the plate of the hybrid graphene layer formed of the hybrid-graphene composite including the metal nanoparticles.
- the cross-sectional structure of the hybrid graphene layer formed of the hybrid-graphene composite including carbon nanoparticles can be observed that the sheets of the reduced graphene platelets included are deformed evenly and evenly oriented. This is because the carbon nanoparticles contained in the furnace together with the graphene oxide platelet were combined with the graphene oxide platelet while the graphene oxide platelet was reduced in the furnace. Is converted into a.
- the sheet resistance of the hybrid-graphene layer formed of the hybrid-graphene composite including the reduced graphene platelets obtained by synthesizing with the carbon nanoparticles is 45 times higher than the sheet resistance of the film formed only with the reduced graphene platelets. Shows low values.
- the hybrid-graphene composite including carbon nanoparticles as shown in the table in FIG. 3 exhibited lower sheet resistance compared to the hybrid-graphene layers including metal nanoparticles
- the hybrid-graphene composite with metal nanoparticles was also present. It has been observed to have lower surface resistance than simple reduced graphene platelet-polymer composites.
- the use of oxidizable metal nanoparticles provides a special function in that an optional portion of the layer formed of the hybrid-graphene composite may exhibit a different sheet resistance than the other portions of the layer. It can be used as.
- regions of the layer formed of hybrid-graphene may be treated with an acid or laser so that metal nanoparticles within the treated region may be oxidized. Regions of the layer with oxidized metal nanoparticles will exhibit higher surface resistance than regions with non-oxidized metal nanoparticles.
- layers formed of the same hybrid-graphene composite can be patterned into two different regions exhibiting different surface resistance while substantially maintaining gas / moisture barrier properties.
- the electrically conductive polymer is not included in the hybrid-graphene composite, which type of polymer has a plane between the region with oxidized metal nanoparticles and the region with non-oxidized metal nanoparticles. This is because the amount of difference in resistance is reduced.
- a gas such as PVA-co-ethylene to achieve better gas / moisture barrier properties
- Polymers exhibiting moisture barrier properties can be mixed in an aqueous solution.
- metal nanoparticles adhering to the surface of the reduced graphene platelets provide a rough and corrugated surface topology that provides stronger physical bonding with the polymer chain.
- This topology contrasts with reduced graphene platelets synthesized with carbon nanoparticles having flat surfaces that may have relatively lower interfacial bonds with the polymer chain. Stronger interfacial bonding of the reduced graphene platelets with the surrounding polymer matrix provides strong resistance to physical stress, which can make the hybrid-graphene layer very useful for applying to flexible devices.
- the reduced graphene solution and hybrid-graphene composites are various solution-based methods including, but not limited to, spin coating, slot coating, spray coating, screen printing, dip coating, and the like. It is very suitable for forming layers or films using. With good sheet resistance and gas / moisture barrier properties, the reduced graphene solutions and hybrid-graphene composites disclosed herein can be used to make multi-functional hybrid-graphene layers for a variety of applications.
- 5A is a plan view illustrating an exemplary touch screen panel using a hybrid-graphene layer in accordance with one embodiment of the present invention.
- 5B is a cross-sectional view taken along line Vb-Vb 'of FIG. 5A.
- 5A and 5B illustrate a touch screen panel 500 as an electronic device of the present invention.
- the hybrid-graphene layer 510, the first touch detector 520, the second touch detector 530, and the insulating layer 540 are formed of a substrate ( 550).
- the insulation layer 550 is not illustrated for convenience of description, and hatching of the hybrid graphene layer 510 is illustrated.
- a hybrid graphene layer 510 is formed on the substrate 550.
- the hybrid-graphene layer 510 was formed of a hybrid-graphene composite composed of reduced graphene oxide platelets and metal nanoparticles dispersed in a polymer matrix.
- the hybrid-graphene layer 510 is composed of one or more first regions 512, which are conductive regions, and one or more second regions 514, which are non-conductive regions.
- the conductive region and the non-conductive region are expressed by relative sheet resistance values between the two regions.
- the non-conductive region has a relatively high sheet resistance value compared to the conductive region, and thus refers to a region having a relatively low electrical conductivity compared to the conductive region.
- the hybrid graphene layer 510 may implement the touch screen panel 500 by using the difference between the sheet resistance values of the first region 512 and the second region 514.
- the difference in the sheet resistance value between the first region 512 and the second region 514 is sufficiently different so that the first region 512 and the second region 514 can be distinguished by the device, respectively.
- An insulating layer 540 is formed on the hybrid graphene layer 510.
- the insulating layer 540 has an opening that opens a portion of each first region 512 of the hybrid-graphene layer 510.
- the insulating layer 540 is configured to insulate the first region 512 of the hybrid graphene layer 510 from the first touch sensing unit 520.
- the insulating layer 540 is formed of an insulating material and may be formed of a flexible transparent insulating material. Can be.
- the first touch sensing unit 520 is formed on the insulating layer 540.
- the first touch sensing unit 520 is formed of a conductive material.
- the first touch sensing unit 520 may be formed of a transparent conductive material such as ITO or may be formed of a metal material having a mesh structure.
- the first touch sensing unit 520 has a plurality of sensing electrodes, and the plurality of sensing electrodes of the first touch sensing unit 520 are connected to each other in a first direction.
- the plurality of sensing electrodes of the first touch sensing unit 520 are formed to be connected to each other in a vertical direction on a plane, and the first touch sensing unit 520 also extends in the vertical direction. .
- the second touch sensing unit 530 is formed on the hybrid graphene layer 510 and the insulating layer 540.
- the second touch sensing unit 530 may be formed of a conductive material and may be formed of the same material as the first touch sensing unit 520.
- the second touch sensing unit 530 has a plurality of sensing electrodes, and the plurality of sensing electrodes of the second touch sensing unit 530 are formed to be separated from each other in a second direction. Although the plurality of sensing electrodes of the second touch sensing unit 530 are formed to be separated from each other, as illustrated in FIG. 5B, the sensing electrodes of the second touch sensing unit 530 adjacent to each other are the openings of the insulating layer 540.
- the touch screen panel 500 detects a touch input from a user by using the first touch detector 520 and the second touch detector 530.
- one of the first touch sensing unit 520 and the second touch sensing unit 530 may be a first direction sensing electrode pattern, and the other may be a second direction sensing electrode pattern.
- the first direction sensing electrode pattern is a sensing electrode pattern for sensing a first direction (eg, Y-axis direction) coordinates of the user's touch input
- the second direction sensing electrode pattern is a second for the user's touch input.
- the touch screen panel 500 detects the first direction coordinates and the second direction sensing electrode pattern detected by the first direction sensing electrode pattern.
- the touched position of the user may be sensed by combining the second direction coordinates.
- the first touch detector 520 and the second touch detector 530 are described as including sensing electrodes, the first touch detector 520 and the second touch detector 530 are described.
- One may be a sensing electrode pattern for sensing a change in capacitance
- the other may be a driving electrode pattern for supplying a sensing signal for detecting a touch position.
- the touch screen panel 500 may detect the touch position of the user based on the sensing signal supplied by the driving electrode pattern and the amount of change in capacitance sensed in the sensing electrode pattern.
- first touch detector 520 and the second touch detector 530 are separated from each other and formed of a conductive material, the first touch detector 520 and the second touch detector are illustrated.
- 530 may also be formed using a hybrid-graphene layer.
- the areas corresponding to the first touch sensor 520 and the second touch sensor 530 as shown in FIGS. 5A and 5B are conductive areas, and the first touch sensor 520 and the first touch sensor 520 are formed.
- the hybrid-graphene layer which is a non-conductive region, may be formed on the insulating layer 560 having an opening.
- the hybrid graphene layer 510 is used as a sensing electrode for sensing a user's touch input.
- a process such as vacuum deposition for forming a conventional conductive material may not be performed, thereby processing costs. This has the effect of being reduced.
- the hybrid graphene layer 510 used as the sensing electrode in the touch screen panel 500 may function as an excellent gas / moisture barrier layer as described above.
- the touch screen panel 500 performs not only a user's touch input sensing function but also a barrier function, thus eliminating the use of a separate barrier film to prevent the penetration of gas or moisture, thereby simplifying the manufacturing process and the final product. There is an effect of reducing the thickness of.
- the flexible electronic device may be implemented by replacing the ITO material of the touch screen panel 500 with the hybrid graphene layer 510.
- the touch screen panel 500 may further include another hybrid graphene layer that does not require patterning, such as the hybrid graphene layer 510, and the hybrid graphene layer that does not require patterning may use carbon nanoparticles. It may be a layer formed of a hybrid-graphene composite. In another embodiment, the hybrid-graphene layer formed of the hybrid-graphene composite using the carbon nanoparticles without the hybrid-graphene layer including the metal nanoparticles may be formed.
- FIG. 6 is a cross-sectional view illustrating an exemplary thin film transistor using a hybrid-graphene layer according to an embodiment of the present invention.
- 6 illustrates a thin film transistor 600 as an electronic device of the present invention.
- the thin film transistor 600 includes a gate electrode 630, an active layer 620, and a hybrid graphene layer 610.
- the thin film transistor 600 is a thin film transistor having an inverted staggered structure.
- the gate electrode 630 is formed on the substrate 690.
- the gate electrode 630 is formed of a conductive material, for example, molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium (Nd) And copper (Cu), or an alloy thereof.
- a gate insulating layer 691 is formed on the gate electrode 630 to insulate the gate electrode 630 and the active layer 620.
- the gate insulating layer 691 may be formed of a silicon oxide film, a silicon nitride film, or a multilayer thereof.
- the active layer 630 is formed on the gate insulating layer 691 so as to overlap the gate electrode 620.
- the active layer 630 is a layer in which a channel is formed when the thin film transistor 600 is driven and may be formed of an oxide semiconductor.
- the hybrid graphene layer 610 is formed on the gate insulating layer 691 in which the active layer 630 is formed.
- Hybrid-graphene layer 610 has a first region 640, 650 and a second region 660.
- the second region 660 of the hybrid graphene layer 610 has a higher sheet resistance value than the first regions 640 and 650 of the hybrid graphene layer 610.
- the first regions 640 and 650 and the second region 660 are used as electrodes and the second regions 660 as the insulating portions of the hybrid-graphene layer 610. The difference in electrical characteristics between them is large enough.
- the hybrid-graphene composite constituting the first region 640, 650 and the second region 660 of the hybrid-graphene layer 610 is the first of the hybrid-graphene layer 510 described in FIGS. 5A and 5B. It is identical to the hybrid-graphene composite that makes up region 512 and second region 514, respectively.
- the second region 660 of the hybrid-graphene layer 610 In order for the second region 660 of the hybrid-graphene layer 610 to have a higher sheet resistance value than the first regions 640 and 650, the second region 660 of the hybrid-graphene layer 610 as described above. Acid treatment methods can be used for the present invention. In this case, the acid treatment of the second region 660 of the hybrid graphene layer 610 may be performed after the hybrid graphene layer 610 is coated on the active layer 620 and the gate insulating layer 691. After the acid treatment is first performed, the hybrid graphene layer 610 may be coated. In addition, as described above, the second region 660 of the hybrid-graphene layer 610 may be oxidized using the laser treatment method to oxidize the metal nanoparticles embedded in the second region 660.
- Each of the first regions 640 and 650 of the hybrid-graphene layer 610 is in contact with the active layer 620, and the second region 660 of the hybrid-graphene layer 600 is the first region 640 and the first region. Insulate region 660.
- One of the first regions 640 and 650 of the hybrid graphene layer 610 serves as a source electrode of the thin film transistor 600, and the other serves as a drain electrode of the thin film transistor 600.
- a crystallization process through high temperature heat treatment of 200 ° C. or more is required to improve oxide characteristics.
- the source layer and the drain electrode, which are generally formed of metal, and the active layer formed of the oxide semiconductor may be oxidized, thereby causing difficulty in high temperature heat treatment.
- the hybrid-graphene layer 610 is used instead of the metal electrode as the source electrode and the drain electrode, and thus may occur during high temperature heat treatment to improve the oxide characteristics. Electrode oxidation may be prevented, and thus stable electrical characteristics of the thin film transistor 600 may be secured, and stable ohmic contact between the active layer 620 and the source electrode and the drain electrode may also be secured.
- a deposition method such as sputtering a metal material used as the source electrode and the drain electrode is used.
- the active layer may be damaged. Therefore, in order to prevent damage to the active layer, a method of forming a source electrode and a drain electrode after forming an etch stopper on the active layer is generally used.
- a hybrid-graphene layer 610 coated using a solution process is used instead of using a metal electrode as a source electrode and a drain electrode formed through deposition. Therefore, it is not necessary to form an etch stopper, thereby reducing manufacturing cost and manufacturing process time.
- a passivation layer formed on the thin film transistor is generally used to protect each of the electrodes and the active layer of the thin film transistor from gas and moisture from the outside.
- the hybrid-graphene layer 610 used as the source electrode and the drain electrode has the excellent gas / moisture barrier characteristics as described above, the hybrid-graphene layer 610 may perform the same function as the passivation layer. Therefore, since a separate passivation layer does not need to be formed, it is possible to reduce additional costs required for forming the passivation layer.
- the source electrode and the drain electrode are illustrated as being formed of the hybrid graphene layer 610, but the gate electrode may also be formed of the hybrid graphene layer.
- the thin film transistor 600 is illustrated as an inverted staggered thin film transistor in FIG. 6, the hybrid-graphene layer 610 may be used when forming the electrode in the thin film transistor having the coplanar structure.
- the active layer 620 may be formed of a material such as amorphous silicon, polycrystalline silicon, and the like instead of an oxide semiconductor.
- the device using the hybrid-graphene layer according to the embodiment of the present invention replaces the conventional semiconductor process of fabricating an electric device by doping silicon impurities at a high temperature through a diffusion process.
- a graphene electric device can be embedded in a hybrid-graphene layer without a high temperature process, it can be applied to various fields such as a transparent and flexible display field.
- the manufacturing method of such a transparent polymer structure is also applicable to the field of polymer MEMS.
- the thin film transistor 600 may further include another hybrid graphene layer that does not require patterning, such as the hybrid graphene layer 610, and the hybrid graphene layer that does not require patterning may use carbon nanoparticles. It may be a layer formed of a hybrid-graphene composite. In another embodiment, the hybrid-graphene layer formed of the hybrid-graphene composite using the carbon nanoparticles without the hybrid-graphene layer including the metal nanoparticles may be formed. Hybrid-graphene layers made of hybrid-graphene composites formed using carbon nanoparticles can be used as layers to protect the active layer while helping to shorten the channel between the source and the drain.
- the organic light emitting diode display 700 includes an organic light emitting diode 750 including an anode 751, an organic emission layer 752, and a cathode 753, an auxiliary electrode 740, and a partition 760. Include. In FIG. 7, only the organic light emitting diode 750, the auxiliary electrode 740, and the partition wall 760 formed on the planarization layer 711 are illustrated for convenience of description, and may be a thin film transistor required to drive the organic light emitting display 700. The illustration is omitted. In the present specification, the organic light emitting diode display 700 is a top emission type organic light emitting diode display.
- An organic light emitting device 750 including an anode 751, an organic light emitting layer 752, and a cathode 753 is formed on the planarization layer 711.
- the anode 751 formed on the planarization layer 711 is formed on the reflective layer 755, which is a conductive layer having excellent reflectance, and the reflective layer 755, and has a work function for supplying holes to the organic light emitting layer 752.
- a transparent conductive layer 754 made of a highly conductive material.
- An organic light emitting layer 752 is formed on the anode 751.
- the cathode 753 formed on the organic light emitting layer 752 is formed on the metal layer 756 and the metal layer 756 made of a conductive material having a low work function to supply electrons to the organic light emitting layer 752.
- the hybrid-graphene composite constituting the hybrid-graphene layer 710 may use a hybrid-graphene composite including metal nanoparticles or carbon nanoparticles, or both nanoparticles.
- a hybrid-graphene composite including metal nanoparticles or carbon nanoparticles, or both nanoparticles.
- two organic light emitting diodes 750 are illustrated in FIG. 7, for convenience of description, reference numerals are shown only to the organic light emitting diodes 750 positioned on the right side of FIG. However, when the patterning of the electrode is not required as shown in FIG. 7, it may be more preferable to use only carbon nanoparticles for the convenience of the process.
- the auxiliary electrode 740 is formed between the two organic light emitting diodes 750 on the planarization layer 711.
- the auxiliary electrode 740 is an electrode to compensate for voltage drop that may occur in the top emission type organic light emitting diode display and is formed of the same material as the anode 751.
- the auxiliary electrode 740 is formed of the transparent conductive layer 741 and the reflective layer 742.
- the bank 720 is formed on the planarization layer 711. As shown in FIG. 7, the bank 720 is formed to cover one side of the auxiliary electrode 740 and one side of the anode 751 of the organic light emitting element 750.
- the partition wall 760 is formed on the auxiliary electrode 740.
- the partition wall 760 is formed in an inverse taper shape, and the organic light emitting layer 751 of the organic light emitting element 750 shown on the right side and the organic light emitting layer of the organic light emitting element shown on the left side of the partition wall 760 are formed.
- Disconnect 752 Specifically, a method of depositing an organic light emitting material on the entire surface of the planarization layer 711 is used to form the organic light emitting layer 752. Since the organic light emitting material has poor step coverage, the organic light emitting device 750 may be formed.
- the organic light emitting layer 752 is disconnected by the inverse tapered partition wall 760, and the organic light emitting layer 762 is formed on the partition wall 760.
- the step coverage is generally poor, so that the metal layer 756 of the cathode 753 is also formed by the inverse tapered partition wall 760. Disconnected.
- the cathode 753 includes a hybrid graphene layer 710, and the hybrid graphene layer 710 is formed by a solution process.
- Step coverage of the hybrid-graphene layer 710 may be determined according to the viscosity of the hybrid-graphene composite forming the hybrid-graphene layer 710.
- a polymer added in the manufacture of the hybrid-graphene composite, a filler with three-dimensional particle enhancement, and reduced graphene with a two-dimensional planar structure The viscosity can be controlled by adjusting the composition ratio of the platelets. It is also possible to further add a binder to obtain viscosity.
- the hybrid-graphene layer 710 is not disconnected by the partition wall 760, but the auxiliary electrode 740 exposed between the partition wall 760 and the bank 720 under the partition wall 760. ) And provide an electrical connection between the metal layer 756 of the cathode 750 and the auxiliary electrode 740.
- a separate encapsulation unit such as a thin film encapsulation (TFE) may be used in the organic light emitting display device 700, but in order to additionally form such an encapsulation unit, additional equipments are required and additional equipment costs are generated and manufacturing time is also increased. Since there is a problem in using a separate encapsulation. In addition, currently used encapsulation such as TFE, glass encapsulation, metal encapsulation does not have enough flexibility required for the flexible device.
- TFE thin film encapsulation
- the hybrid-graphene layer 710 included in the cathode 753 has excellent gas / moisture barrier characteristics as described above. 710 may perform the same function as the encapsulation unit. Therefore, there is no advantage in terms of manufacturing process, since the separate sealing portion does not have to be formed.
- the hybrid graphene layer may be used on the upper and lower portions of the organic light emitting layer, respectively, to further strengthen the role of protecting the organic light emitting layer.
- the cathode 753 is described as including a metal layer 756 and a hybrid-graphene layer 700. However, the cathode 753 is formed of only the metal layer 756 that provides electrons to the organic emission layer 752.
- the hybrid-graphene layer 700 may be defined as not included in the cathode 753.
- the carbon-based fillers having a two-dimensional planar shape included in the barrier layer may include a plurality of reduced graphene oxide platelets.
- the average transverse length of the plurality of reduced graphene platelets may be from about 0.5 ⁇ m to about 10 ⁇ m.
- the average number of reduced graphene oxide platelets included in the barrier layer may be 2 to 10 layers.
- the flexible display device further includes at least one or more conductive layers, and the conductive layer may be formed by stacking at least two layers of carbon-based fillers having a two-dimensional planar shape.
- the carbon-based filler having a two-dimensional planar shape included in the conductive layer may include a plurality of reduced graphene oxide platelets.
- the average transverse length of the plurality of reduced graphene platelets may be 0.5 ⁇ m to 10 ⁇ m.
- the average number of reduced graphene oxide platelets included in the conductive layer may be 2 to 10 layers.
- the sheet resistance value of the conductive layer may be 15 kW / square or less.
- the average number of reduced graphene platelets included in the hybrid-graphene layer may be 2 to 10 layers.
- the hybrid-graphene layer can function as a barrier layer of an electronic device.
- the hybrid-graphene layer can function as an electrode layer of an electronic device.
- the pyrolysis of the droplets can be carried out at a temperature of 300 °C to 2000 °C.
- the average diameter of the carbon nanoparticles may be 50 nm or less and the average lateral length of the graphene oxide platelets may be 0.5 ⁇ m to 10 ⁇ m.
- the step of performing pyrolysis on the aerosol droplets may be carried out in a furnace with a reducing atmosphere.
- the reducing atmosphere may further include a gas for stripping.
- the step of preparing a dispersion solution the step of exfoliating graphite oxide by sonication and centrifugation, to obtain a graphene oxide platelet; And adjusting the rotation rate of the centrifugation to control the transverse length of the graphene oxide platelet.
- the aqueous solution may comprise a polymer, and an organic solvent capable of maintaining the polymer in a liquid state.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
The present invention relates to a flexible device and a manufacturing method therefor. A flexible display device according to the present invention comprises: a flexible substrate having an organic light-emitting device formed thereon; and a barrier layer for inhibiting gas/moisture from penetrating into the organic light-emitting device. The barrier layer has at least two layers of carbon-based fillers, having a two-dimensional flat shape, laminated thereon.
Description
본 내용은 플랙서블 디바이스 및 그 제조방법으로써, 더 상세하게는 다양한 용액 공정용 공정 방법으로 형성 가능한 하이브리드-그래핀 복합층을 포함하는 플렉서블 디바이스 및 하이브리드-그래핀 복합층의 제조 방법에 관한 것이다. The present disclosure relates to a flexible device and a method of manufacturing the same, and more particularly, to a flexible device and a hybrid-graphene composite layer including a hybrid-graphene composite layer that can be formed by various solution processing methods.
sp2 결합된 탄소 원자들로 구성된 단일 층인, 그래핀은 여러 우수한 특성들을 가지기 때문에 근래에 들어 기술적으로 매우 중요하게 고려되고 있다. 그래핀은 종래의 다른 어떤 물질들보다도 우수한 전기 전도성을 나타내고, 다이아몬드보다 더 큰 열 전도성을 가지며, 6분의 1의 무게로도 강철 보다 200배 이상 더 큰 물리적 강도를 가진다. 그래핀은 투명도(Transparency), 전기적 특성(Electrical property), 기체/수분 베리어 특성(Gas/Moisture barrier property) 뿐만 아니라 플렉서블(Flexible) 디바이스에서 요구되는 연성(flexibility)과 물리적 강도(Mechanical strength)도 제공할 수 있기 때문에, 최근 각광받는 유기 발광 다이오드(OLED) 디스플레이나 플렉서블 디스플레이 디바이스에서도 유용하게 사용될 수 있다.Graphene, a single layer composed of sp 2 bonded carbon atoms, has been considered technically very important in recent years because of its excellent properties. Graphene exhibits better electrical conductivity than any other conventional material, has greater thermal conductivity than diamond, and has a physical strength of at least 200 times greater than steel at a weight of one sixth. Graphene not only provides transparency, electrical properties, gas / moisture barrier properties, but also the flexibility and mechanical strength required for flexible devices. Since it can be used, it can also be usefully used in an organic light emitting diode (OLED) display or a flexible display device which is recently attracting attention.
초기에 그래핀은 "스카치 테이프(Scotch Tape)" 방법이라 불리는 그래핀의 미소 물리적 박리(micro-mechanical cleavage)을 통해 박리(exfoliate)되었다. 그래핀의 구조적 안정성 측면에서 볼 때, 흑연을 물리적으로 박리하는 방법을 통해 최고의 품질을 갖는 그래핀을 얻을 수 있다. 이러한 이유로 인해, 새로운 그래핀 합성 방법의 효율성은 물리적으로 박리된 그래핀의 특성과 비교하여 평가되는 것이 일반적이다. 물리적으로 박리된 그래핀은 구조적 결함을 거의 가지지 않기 때문에 그래핀의 연구에는 흥미로운 분야일 수도 있으나, 박리된 그래핀 플레이트렛의 두께, 플레이트렛의 평면 방향으로의 길이(Lateral Length) 및 박리가 되는 위치를 제어할 수 없기 때문에 물리적 그래핀 박리 방법을 산업에 적용하기는 어렵다. 이와 같은 이유로, 보다 효율적이고 일정한 수율이 보장되는 그래핀 합성 방법이 필요하다.Initially, graphene was exfoliated through micro-mechanical cleavage of graphene called the "Scotch Tape" method. In view of the structural stability of the graphene, the graphene having the best quality can be obtained by physically peeling the graphite. For this reason, the effectiveness of the new graphene synthesis method is generally evaluated in comparison with the properties of physically exfoliated graphene. Physically exfoliated graphene has few structural defects, so it may be of interest to study graphene, but the thickness of the exfoliated graphene platelets, the length of the platelets in the plane direction, and the exfoliation Because of the inability to control the position, it is difficult to apply physical graphene stripping methods to industry. For this reason, there is a need for a graphene synthesis method that is more efficient and ensures a consistent yield.
[관련기술문헌] [Related Technical Documents]
1. 그래핀막의 제조방법, 이를 이용한 터치소자의 제조방법(특허출원번호 제 10- 2011-0120656 호)1. Manufacturing method of graphene film, manufacturing method of touch device using same (Patent Application No. 10-2011-0120656)
2. 유기 발광장치 및 그 제조방법(특허출원번호 제 10-2011- 0051871 호)2. Organic light emitting device and manufacturing method thereof (Patent Application No. 10-2011- 0051871)
일반적으로 그래핀을 합성하는 방법은 바텀-업(Bottom-up) 방식 또는 탑-다운(Top-down) 방식으로 나뉘어 진다. 에픽텍시 성장(Epitaxial growth) 및 화학증착법(Chemical vapor deposition: CVD) 같은 바텀-업 방식은 그래핀의 크기와 두께를 정교하게 제어할 수 있는 장점이 있다. 예를 들어, 화학증착법을 이용한 그래핀 성장 기술은 4인치 이상의 웨이퍼에서 니켈(Ni), 구리(Cu), 플라티넘(Pt) 등의 금속촉매 존재 하에 성장 가능하며, 비교적 우수한 품질을 가지는 대면적의 그래핀을 제조할 수 있으나, 사용된 금속촉매와 그래핀의 열팽창 계수 차이 때문에 주름들(Wrinkles)이나 결정 입계들(Grain boundaries) 같은 결함은 존재한다. 또한, 낮은 산출량과 높은 제조 비용뿐만 아니라 그래핀이 성장된 기판으로부터 실재로 그래핀이 증착되어야 하는 기판으로 이동시키는 과정이 매우 복잡하고 추가적인 결함의 요인이 되기 때문에, 화학증착법도 산업적 응용 측면에서 한계점이 있다. In general, the graphene synthesis method is divided into a bottom-up method and a top-down method. Bottom-up methods such as epitaxial growth and chemical vapor deposition (CVD) have the advantage of precisely controlling the size and thickness of graphene. For example, graphene growth technology using chemical vapor deposition can grow in the presence of metal catalysts such as nickel (Ni), copper (Cu), and platinum (Pt) on wafers of 4 inches or larger, and have a relatively large area with relatively high quality. Although graphene can be produced, defects such as wrinkles and grain boundaries exist due to the difference in thermal expansion coefficient between the metal catalyst and graphene used. In addition, chemical vapor deposition is a limitation in terms of industrial applications, as well as low yield and high manufacturing costs, as the process of moving graphene from a grown substrate to a substrate to which graphene is actually deposited is a very complex and additional source of defects. There is this.
이러한 한계점들을 극복하기 위해 그래핀 산화법 및 층간화합물 박리법과 같은 탑-다운 방식을 이용한 그래핀 합성 기술 개발이 활발히 진행되고 있다. 특히 흑연을 액상에서 박리하여 바로 그래핀이 분산된 액상 형태로 얻어지는 액상(Liquid-phase) 박리 및 산화 방식은, 낮은 비용으로 대량의 그래핀을 제조할 수 있을 뿐만 아니라 큰 비용이 소모되는 진공 기술을 이용하지 않고도 다양한 방식의 용액 공정을 통해 대상 기판 상에 도포하여 코팅할 수 있어, 산업용으로 사용 가능성이 매우 높은 그래핀 합성방법이다. 보편적인 액상 환원 방법에서, 흑연은 강한 산 및 산화제에 의해 흑연 옥사이드(Graphite Oxide)가 되고, 흑연 옥사이드를 액상에서 박리하여 단층 및/또는 다층(2-20층)의 시트로 구성된 그래핀 옥사이드 플레이트렛들을 얻는다. 그래핀 옥사이드 플레이트렛이 가지고 있는 산소작용기는 그래핀 옥사이드 플레이트렛들이 물에 쉽게 용해될 수 있도록 한다. 이러한 그래핀 옥사이드 플레이트렛의 콜로이드(colloidal) 용액은 여러 번의 화학적 처리, 여과, 탈수 공정 및 재-분산을 거쳐, 그래핀의 구조가 일부 복원된 환원 그래핀 옥사이드 플레이트렛이 분산된 환원 그래핀 옥사이드 분산액을 얻게 된다. In order to overcome these limitations, development of graphene synthesis technology using a top-down method such as graphene oxidation and interlayer compound exfoliation has been actively conducted. In particular, the liquid-phase separation and oxidation method in which the graphite is peeled off from the liquid phase and obtained in a liquid form in which graphene is dispersed is not only able to manufacture a large amount of graphene at a low cost but also a costly vacuum technology. It can be coated on the target substrate through a variety of solution process without using a coating method, it is a graphene synthesis method is very likely to use in industrial. In a common liquid phase reduction method, graphite becomes a graphite oxide by a strong acid and an oxidant, and the graphene oxide plate is composed of a single layer and / or a multilayer (2-20 layer) sheet by exfoliating the graphite oxide in a liquid phase. Get the letts. The oxygen functionalities of graphene oxide platelets make graphene oxide platelets easily soluble in water. The colloidal solution of the graphene oxide platelet is subjected to several chemical treatments, filtration, dehydration process, and re-dispersion, and reduced graphene oxide platelets in which the graphene oxide platelets are partially restored. A dispersion is obtained.
이러한 액상 환원방법은, 여러 장점들을 가지고 있지만 여러 단점들 또한 갖고 있다. 액상에서 화학적인 방법으로 환원된 그래핀 옥사이드 플레이트렛은 그 구조가 완전히 복원될 수 없다. 또한, 용액에서 그래핀 옥사이드 플레이트렛 혹은 환원 그래핀 옥사이드 플레이트렛의 분산을 개선하기 위해 화학적 구조 혹은 작용기를 변형할 경우에도, 그래핀 구조 내에 결함을 생성이 불가피하기 때문에, 액상에서 화학적인 환원방법으로 얻어진 환원 그래핀 옥사이드 플레이트렛은 높은 전기적 특성이나 투습방지 기능들을 필요로 하는 분야에서는 사용하기 어려운 문제점이 있다. 예를 들어, 액상에서 화학적으로 환원된 환원 그래핀 옥사이드의 전기적 특성은 원시 그래핀보다 두 자릿 수(예: 100 배) 더 낮을 수 있다. 더욱이, 액상에서 화학적인 방법으로 환원하여 환원 그래핀 옥사이드 플레이트렛 용액을 얻기까지 여러 번 반복되는 화학적 처리단계, 여과단계, 건조단계 및 재-분산단계는 환원 그래핀 옥사이드 플레이트렛들의 재-응집 및 재-스태킹(re-stacking)을 유발하여 용액 공정용 그래핀의 실효성을 크게 감소시킬 수 있다.This liquid phase reduction method has several advantages but also several disadvantages. Graphene oxide platelets reduced by chemical methods in the liquid phase cannot be completely restored in structure. In addition, even if the chemical structure or functional group is modified to improve the dispersion of the graphene oxide platelet or reduced graphene oxide platelet in the solution, it is inevitable to generate defects in the graphene structure, so the chemical reduction method in the liquid phase The reduced graphene oxide platelet obtained as a problem is difficult to use in the field requiring high electrical properties or moisture permeation prevention functions. For example, the electrical properties of chemically reduced reduced graphene oxide in the liquid phase may be two orders of magnitude lower (eg, 100 times) than raw graphene. Furthermore, the chemical treatment, filtration, drying and re-dispersion steps repeated several times until reduction in the liquid phase by chemical methods to obtain a reduced graphene oxide platelet solution may be achieved by re-agglomeration of the reduced graphene oxide platelets and Re-stacking can be caused to significantly reduce the effectiveness of graphene for solution processing.
그래핀을 용매에 분산시켜 스핀 코팅(spin-coating), 잉크젯(inkjet), 딥(dipping) 등과 같은 다양한 용액 공정을 통해 단순하고도 비교적 낮은 비용으로도 더 효율적으로 더 넓은 분야에 그래핀을 사용할 수 있게 하기 때문에 충분한 이점이 있다고 말할 수 있다. 그렇기 때문에 상술한 문제점들이 개선된 용액 공정용 그래핀을 얻기 위한 다양한 노력들이 시도 되어왔다. 하지만 지금까지 제안된 개선안들은 주로 그래핀 플레이트렛들을 환원하거나 용매 내에서 분산성을 개선하기 위한 화학 작용제 혹은 분산을 돕는 계면 활성제의 사용여부나 그 종류에 초점이 맞추어져 있었고, 이러한 시도들을 통해서 아직 만족스러운 결과가 도출되지는 않았다.By dispersing the graphene in a solvent, various solution processes such as spin-coating, inkjet, dipping, etc. can be used for a wider range of applications in a simpler, less expensive and more efficient manner. It can be said that there is a sufficient advantage because it allows. For this reason, various efforts have been made to obtain graphene for the solution process with the above-mentioned problems improved. However, the improvements proposed so far have focused mainly on the use or types of chemical agents or surfactants to reduce the graphene platelets or to improve dispersibility in solvents. Satisfactory results have not been obtained.
본 명세서에 개시된 실시예들의 발명자들은, 용액 공정용 그래핀을 만드는 공정에서: 1) 환원 그래핀 옥사이드 플레이트렛의 구조에 결함을 생성하는 액상에서의 그래핀 옥사이드의 화학적 환원 방식은 불필요하고; 2) 환원 그래핀 옥사이드 플레이트렛들의 재-응집/재-스태킹은 환원제의 종류, 용매의 종류나 용매 내의 계면 활성제의 사용 여부 같은 요소들 보다는 그래핀 옥사이드 플레이트렛을 환원하는 방법, 용액으로 분산되는 환원 그래핀 옥사이드 플레이트렛의 상태 및 분산 시기에 더 기인한다는 점을 인식하였다.The inventors of the embodiments disclosed herein, in the process of making the graphene for the solution process: 1) it is unnecessary to chemically reduce the graphene oxide in the liquid phase to create a defect in the structure of the reduced graphene oxide platelet; 2) Re-agglomeration / re-stacking of the reduced graphene oxide platelets is a method of reducing graphene oxide platelets rather than factors such as the type of reducing agent, the type of solvent or the use of a surfactant in the solvent, It was recognized that it is further due to the state of the reduced graphene oxide platelets and the timing of dispersion.
이에, 본 발명이 해결하고자 하는 과제는 재-응집/재-스태킹 문제들이 발생하지 않으면서 결함이 더 적은 용액 공정 방식으로 사용 가능한 그래핀을 합성할 수 있는 새로운 방법을 제공하는 것이다. 본 발명이 해결하고자 다른 과제는 기존의 그래핀 복합물보다 더 뛰어난 광학적, 물리적, 열적, 전기적 그리고 기체/수분 배리어 특성들을 제공하는, 용액 공정이 가능한 하이브리드-그래핀 복합물을 합성할 수 있는 새로운 방법을 제공하는 것이다.Accordingly, the problem to be solved by the present invention is to provide a new method for synthesizing the graphene usable in a solution process method with fewer defects without re-aggregation / re-stacking problems. Another problem to be solved by the present invention is a new method to synthesize a solution-processable hybrid-graphene composite that provides better optical, physical, thermal, electrical and gas / moisture barrier properties than existing graphene composites. To provide.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 실시예에 따른 플렉서블 디스플레이 디바이스는, 유기발광소자가 형성된 플렉서블 기판 및 유기발광소자의 기체/수분의 침투를 억제하는 베리어층을 포함한다. 베리어층은 2차원적 평면 형상을 가진 탄소기반의 필러들이 최소 2층이상 적층되어 형성된다.The flexible display device according to the exemplary embodiment of the present invention includes a flexible substrate on which the organic light emitting diode is formed, and a barrier layer that suppresses penetration of gas / moisture of the organic light emitting diode. The barrier layer is formed by stacking at least two layers of carbon-based fillers having a two-dimensional planar shape.
본 발명의 일 실시예에 따른 기판 또는 폴리머 매트릭스 및 복수의 환원 그래핀 옥사이드 플레이트렛들을 포함하는 하이브리드-그래핀층을 포함한다. 하이브리드-그래핀층에 포함된 환원 그래핀 옥사이드 플레이트렛들은 수평으로 배향되어 있다.A hybrid-graphene layer comprising a substrate or polymer matrix and a plurality of reduced graphene oxide platelets in accordance with one embodiment of the present invention. The reduced graphene oxide platelets included in the hybrid graphene layer are oriented horizontally.
본 발명의 일 실시예에 따른 용액 공정용 하이브리드-그래핀 복합물의 제조 방법에서는, 그래핀 옥사이드 플레이트렛을 포함하는 분산용액을 생성한다. 또한, 분산용액에 탄소 나노 파티클들을 분산하여 전구체 용액을 생성한다. 또한, 전구체 용액을 에어로졸화 하여 그래핀 옥사이드 플레이트렛들과 탄소 나노 파티클들을 가진 에어로졸 액적으로 변환한다. 또한, 에어로졸 액적들에 열분해를 수행하여 그래핀 옥사이드 플레이트렛을 환원한다.In the method for producing a hybrid-graphene composite for solution processing according to an embodiment of the present invention, a dispersion solution containing graphene oxide platelets is produced. In addition, the carbon nanoparticles are dispersed in a dispersion solution to produce a precursor solution. In addition, the precursor solution is aerosolized to convert it into aerosol droplets with graphene oxide platelets and carbon nanoparticles. Pyrolysis is also performed on the aerosol droplets to reduce the graphene oxide platelets.
상기 방법에 의해 제조되는 용액 공정용 그래핀의 환원 그래핀 옥사이드 플레이트렛은 소수성(hydrophobic)특성을 갖지만, 여러 종류의 유기 용매 및 폴리머에 호환될 수 있다. 본 발명의 제조방법으로부터 제조되는 양질의 환원 그래핀 옥사이드 플레이트렛과 여러 종류의 용매에서의 우수한 분산성은 새로운 그래핀 기반 복합물의 개발뿐 아니라 전자 디바이스 내에서 멀티-기능 제공할 수 있는 부재 및 생의학 관련 분야에까지도 적용될 수 있는 하이브리드-그래핀 복합물의 제조를 가능하게 한다.The reduced graphene oxide platelets of graphene for solution processing prepared by the above method have hydrophobic properties, but are compatible with various kinds of organic solvents and polymers. High-quality reduced graphene oxide platelets made from the manufacturing method of the present invention and excellent dispersibility in various kinds of solvents, as well as the development of new graphene-based composites, as well as the ability to provide multi-functions in electronic devices, and biomedical It enables the production of hybrid-graphene composites that can be applied even to the field.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Specific details of other embodiments are included in the detailed description and drawings.
도 1은 용액 공정으로 사용 가능한 그래핀을 합성하기 위한 예시적인 방법을 나타내는 순서도이다. 1 is a flow chart illustrating an exemplary method for synthesizing graphene that can be used in a solution process.
도 2는 용액 공정으로 사용 가능한 하이브리드-그래핀 복합물을 합성하기 위한 예시적인 방법을 나타내는 순서도이다.2 is a flow chart illustrating an exemplary method for synthesizing a hybrid-graphene composite that can be used in a solution process.
도 3은 본 발명에 개시된 예시적인 방법들에 의해 획득되는 샘플들의 면 저항(sheet resistance) 값들을 비교하여 나타내는 표이다.3 is a table showing a comparison of sheet resistance values of samples obtained by the exemplary methods disclosed in the present invention.
도 4는 본 발명에 개시된 예시적인 방법들에 의해 획득되는 샘플들의 판상구조 및 단상구조를 보여주는 고 배율의 SEM 이미지들이다.4 is a high magnification SEM image showing the plate and single phase structure of the samples obtained by the exemplary methods disclosed herein.
도 5a는 본 발명의 일 실시예에 따른 하이브리드-그래핀층을 이용하는 예시적인 터치 스크린 패널을 도시하는 평면도이다. 5A is a plan view illustrating an exemplary touch screen panel using a hybrid-graphene layer in accordance with one embodiment of the present invention.
도 5b는 도 5a의 Vb-Vb에 따른 단면도이다.FIG. 5B is a cross-sectional view taken along Vb-Vb of FIG. 5A.
도 6은 본 발명의 일 실시예에 따른 하이브리드-그래핀층을 이용하는 예시적인 박막 트랜지스터를 도시하는 단면도이다. 6 is a cross-sectional view illustrating an exemplary thin film transistor using a hybrid-graphene layer in accordance with an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 하이브리드-그래핀층을 이용하는 예시적인 유기 발광 표시 장치를 도시하는 단면도이다.7 is a cross-sectional view illustrating an exemplary organic light emitting display device using a hybrid graphene layer according to an exemplary embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims.
소자 또는 층이 다른 소자 또는 층 "위 (on)"로 지칭되는 것은 다른 소자 바로 위에 또는 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다. When an element or layer is referred to as “on” another element or layer, it encompasses both the case where another layer or other element is interposed over or in the middle of another element.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이는 단지 제1 및 제2 구성요소와 상응하는 복수의 구성요소들 중 특정 구성요소를 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.Although the first, second, etc. are used to describe various components, it is only used to distinguish a particular component among a plurality of components corresponding to the first and second components. Therefore, of course, the first component mentioned below may be a second component within the technical spirit of the present invention.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Like reference numerals refer to like elements throughout.
도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 도시된 것이며, 본 발명이 도시된 구성의 크기 및 두께에 반드시 한정되는 것은 아니다.The size and thickness of each component shown in the drawings are shown for convenience of description, and the present invention is not necessarily limited to the size and thickness of the illustrated configuration.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하며, 당업자가 충분히 이해할 수 있듯이 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시 가능할 수도 있다.Each of the features of the various embodiments of the present invention may be combined or combined with each other in part or in whole, various technically interlocking and driving as can be understood by those skilled in the art, each of the embodiments may be implemented independently of each other It may be possible to carry out together in an association.
본 명세서에서, “그래핀”은 그래핀 옥사이드(Graphene Oxide: GO), 환원 그래핀 옥사이드 (Reduced Graphene Oxide: rGO) 뿐만 아니라 원시 그래핀(Pristine Graphene) 모두를 통합적으로 지칭할 수 있다. 이론적으로 그래핀은 단일층 구조로 이루어져있으나, 본 명세서에서 실시예에 사용되는 그래핀 플레이트렛은 단일층 구조의 그래핀 뿐만 아니라 다층 구조 (예를 들면 2-20층)도 포함한다. 그러므로 본 명세서에서는 “플레이트렛(platelet)”라는 표현을 사용하여 실시예들에서 사용되는 그래핀 옥사이드 플레이트렛 또는 환원 그래핀 옥사이드 플레이트렛이 단일층 구조뿐만 아니라 다수의 층이 적층(stack)되어있는 구조까지도 포함하는 것을 강조하였다.As used herein, “graphene” may collectively refer to both graphene oxide (GO) and reduced graphene oxide (rGO) as well as pristine graphene. Theoretically graphene consists of a single layer structure, but the graphene platelets used in the examples herein include not only graphene of a single layer structure but also multilayer structures (for example, 2-20 layers). Therefore, in this specification, the graphene oxide platelet or the reduced graphene oxide platelet used in the embodiments using the expression “platelet” is not only a single layer structure but also a plurality of layers stacked. Emphasis was placed on including structure.
이하, 첨부된 도면을 참조하여 본 발명의 다양한 실시예들을 상세히 설명한다.Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 다양한 용액 기반의 공정으로 원하는 표면 위에 증착하기 적합한, 환원 그래핀 옥사이드 플레이트렛들이 분산된 콜로이드 분산용액을 얻기 위한 예시적인 방법(100)을 나타내는 순서도이다.1 is a flow diagram illustrating an exemplary method 100 for obtaining a colloidal dispersion in which reduced graphene oxide platelets are dispersed, suitable for depositing on a desired surface in various solution based processes.
도 1에서 나타낸 것과 같이, 환원 그래핀 옥사이드 플레이트렛들 분산용액을 얻기 위한 방법(100)은 액상에 단일층 구조 및/또는 다층 구조의 그래핀 옥사이드 플레이트렛들이 분산된 용액을 준비하는 단계(S110)를 포함한다. 그래핀 옥사이드의 분산용액은 당업계에 알려진 종래의 다양한 방법들을 통해서 얻을 수 있다. 예를 들어 브로디(Brodie), 스타더마이어(Staudenmaier) 및 허머(Hummers) 방법 및 이들의 다양한 변형된 방법들로 준비될 수 있다. As shown in FIG. 1, the method 100 for obtaining a reduced graphene oxide platelets dispersion solution may include preparing a solution in which graphene oxide platelets having a single layer structure and / or a multilayer structure are dispersed in a liquid phase (S110). ). The dispersion solution of graphene oxide can be obtained through various conventional methods known in the art. For example, Brodie, Stademaier and Hummers methods and their various variations can be prepared.
흑연을 산화시키는 경우, 흑연 고유의 0.34nm 층간 간격이 약 0.7nm로 확장될 수 있고, 히드록실(hydroxyl), 에폭시드(epoxide), 카르보닐(carbonyl) 및 카르복실(carboxylic) 작용기들을 포함하는 산소작용기들이 가진 흑연 옥사이드가 생성될 수 있다. 또한, 작용기들은 그래핀 시트들이 친수성(hydrophillic)이 되도록 하고, 흑연 옥사이드 내의 층들 사이에 물 분자들을 보유하기 용이하도록 한다. 이에 따라, 흑연을 바로 박리하여 그래핀 플레이트렛으로 얻는 것보다 흑연 옥사이드를 박리하여 그래핀 플레이트렛을 얻는 것이 훨씬 더 쉽다. In the case of oxidizing graphite, the inherent 0.34 nm interlayer spacing can be extended to about 0.7 nm and includes hydroxyl, epoxide, carbonyl and carboxylic functional groups. Graphite oxides with oxyfunctionals can be produced. The functional groups also make the graphene sheets hydrophillic and facilitate the retention of water molecules between layers in the graphite oxide. Accordingly, it is much easier to obtain graphene platelets by exfoliating graphite oxide than to exfoliate graphite directly to obtain graphene platelets.
그래핀 옥사이드 플레이트렛들의 분산용액을 생성하기 위하여, 흑연 옥사이드는 초음파처리(Sonication) 및 원심분리(Centrifugation)에 의해 용액 안에서 박리가 가능하다. 박리되지 않은 흑연 옥사이드는 여과를 통해 용액으로부터 제거될 수 있다.In order to produce a dispersion solution of graphene oxide platelets, graphite oxide can be stripped in the solution by sonication and centrifugation. Unexfoliated graphite oxide can be removed from the solution through filtration.
용액 공정용 그래핀은 대량의 그래핀을 생성하여 그래핀 복합물, 막(Layer) 혹은 필름(Film)을 형성하는데 사용할 수 있다. 이 경우 그래핀 플레이트렛들의 크기는 그들로 형성되는 최종 구조의 특성들에 결정적인 영향을 미치므로, 충분한 크기를 갖는 플레이트렛들을 얻는 것이 중요할 수 있다. 예를 들어, 그래핀 복합물로부터 원하는 만큼의 물리적 특성을 얻기 위해서 그래핀 플레이트렛들의 횡방향측 길이(Lateral Length)는 특정 미크론 이상 (예를 들어, 0.5μm 이상) 이어야 될 수 있다. 일반적으로, 더 긴 길이의 플레이트렛들을 이용하여 형성된 그래핀 막의 면저항값은 상대적으로 짧은 크기의 플레이트렛들을 이용하여 형성된 그래핀 막의 면저항값보다 더 낮은 수치를 가진다. 이는 더 작은 플레이트렛들을 사용하여 막을 형성할 경우 플레이트들 간에 연결부(Junctions)가 더 많이 존재하게 되어, 이러한 플레이트렛들로 구성된 네트워크 전반에 걸친 전기적 전도성은 플레이트렛들 간의 접촉저항(Contact resistance)에 의해 제한될 수밖에 없다.Graphene for solution processing can be used to produce a large amount of graphene to form a graphene composite, a layer (Layer) or a film (Film). In this case the size of the graphene platelets has a decisive influence on the properties of the final structure formed from them, so it may be important to obtain platelets of sufficient size. For example, the Lateral Length of graphene platelets may be greater than or equal to a particular micron (eg, greater than or equal to 0.5 μm) to obtain the desired physical properties from the graphene composite. In general, the sheet resistance of the graphene film formed using platelets of longer length has a lower value than that of the graphene film formed using platelets of relatively short size. This results in more junctions between the plates when forming films using smaller platelets, so that the electrical conductivity throughout the network of these platelets is dependent on the contact resistance between the platelets. It is bound to be limited.
또한 일반적으로 업계에서는 더 큰 종횡비(aspect ratio)를 갖는 플레이트렛들을 사용하여 형성된 막이 더 긴 수분 침투 억제 경로(Tortuous Path)를 가지게 되어 더 우수한 기체/수분 배리어 특성을 갖는다고 생각되어 왔다. 그러나, 본 명세서에 기재된 실시예들의 발명자들은, 더 큰 종횡비(aspect ratio)를 갖는 플레이트렛들을 사용하는 것이 더 우수한 기체/수분 배리어 특성을 갖는 막으로 이어지지는 않는다는 것을 발견하였다. 다시 말하자면, 그래핀 플레이트렛들의 횡방향 길이와 그들로 형성된 막의 기체/수분 배리어 특성이 꼭 비례한다고 할 수는 없다. 때로는 플레이트렛들의 평균 크기가 특정한 크기를 초과하는 경우, 최종 그래핀 막의 기체/수분 배리어 특성은 오히려 저하될 수도 있다.It has also been generally considered in the industry that membranes formed using platelets with larger aspect ratios have longer torsional paths and therefore better gas / moisture barrier properties. However, the inventors of the embodiments described herein have found that using platelets with larger aspect ratios does not lead to membranes with better gas / moisture barrier properties. In other words, the lateral length of graphene platelets and the gas / moisture barrier properties of the films formed therefrom are not necessarily proportional. Sometimes when the average size of platelets exceeds a certain size, the gas / moisture barrier properties of the final graphene film may be rather deteriorated.
이에 따라, 환원 그래핀 옥사이드 플레이트렛들 분산용액을 얻기 위한 실시예들에서, 그래핀 옥사이드 플레이트렛의 크기를 제어하는 단계를 수행할 수도 있다. 그래핀 옥사이드 플레이트렛들의 크기 선택은 크로마토그래피(chromatography)에 의해 달성될 수도 있지만, 그러한 방법은 통상적으로, 얻을 수 있는 양이 제한된다. 따라서, 본 발명의 몇몇 실시예들에서, 그래핀 플레이트렛들의 크기는 원심분리 회전율(Centrifugation rate)를 조정하여 제어한다.Accordingly, in embodiments for obtaining the reduced graphene oxide platelets dispersion solution, the step of controlling the size of the graphene oxide platelets may be performed. Size selection of graphene oxide platelets may be accomplished by chromatography, but such methods are typically limited in the amount obtainable. Thus, in some embodiments of the present invention, the size of the graphene platelets is controlled by adjusting the centrifugation rate.
그래핀 옥사이드 플레이트렛들의 최대 크기는 처음 그래핀을 박리시키는 근원의 크기에 따라 제한되지만 용액에 분산된 그래핀 옥사이드 플레이트렛들의 평균적인 횡방향측 길이는 그래핀 옥사이드 플레이트렛 분산용액을 제조 시에 원심분리 회전율를 증가시킴으로써 나노 단위까지도 제어할 수 있다. 분산된 플레이트렛들의 평균 횡방향 길이는 원심분리 회전율이 증가됨에 따라 감소한다. 즉, 더 높은 원심분리 회전율은 침전물 형태로 콜로이드 용액에서 분산되어 남겨진 상대적으로 짧은 길이의 플레이트렛들과 침전물 형태로 남는 더 긴 플레이트렛들로 분리할 수 있게 된다. 이 침전물은 재분산될 수 있으며, 이는 각각 다른 평균 길이의 플레이트렛들이 분산된 분산용액들을 얻게 한다. The maximum size of the graphene oxide platelets is limited by the size of the source from which the graphene is first peeled off, but the average lateral length of the graphene oxide platelets dispersed in the solution is in the preparation of the graphene oxide platelet dispersion. Increasing centrifugal turnover can even control nanoscale units. The average transverse length of the scattered platelets decreases with increasing centrifugal turnover. In other words, higher centrifugation turns can be separated into relatively short length platelets left dispersed in the colloidal solution in the form of precipitates and longer platelets remaining in the form of precipitates. This precipitate can be redispersed, which leads to dispersions in which platelets of different average lengths are dispersed.
일반적으로 초음파 처리하여(Sonicated) 흑연 옥사이드로부터 박리하여 그래핀 옥사이드 플레이트 분산용액을 얻는 과정에서는 원심분리 단계를 거쳐 수용액에서 제거되어야 하는 박리되지 않은 흑연 결정(Crystallite)들을 일부 포함한다. 예를 들어 500rpm의 원심분리 회전율은 그래핀 옥사이드 플레이트렛들은 분산되게 유지하면서 흑연 결정들을 제거하기에 적합할 수 있다. 침전물을 재분산하는 경우, 원심분리 회전율을 조정함으로써 그래핀 옥사이드 플레이트렛들의 평균 길이를 제어할 수 있다. 예를 들어 흑연 결정들만을 제거하기 위해 500rpm으로 원심분리를 한다면, 작은 플레이크(flake)를 갖는 초기 상청액(supernatant), 모든 다른 길이를 갖는 침전물들이 재분산된 용액 및 흑연 결정들을 포함하는 침전물을 얻게 된다. 여기서, 침전물이 분산된 용액을 더 높은 회전율로 원심분리 한다면 흑연결정들 및 상대적으로 더 긴 플레이트렛들이 제거되고, 중간 길이의 플레이트렛들만이 분산된 분산용액을 얻게 된다. 이러한 경우, 가장 처음의 상청액은 작은 길이의 플레이트렛들만이 분산되어 있고, 침전물이 재분산되어 원심분리된 용액에는 중간 길이의 플레이트렛들이 분산되게 된다. 그리고 큰 플레이트렛들과 흑연 결정들은 침전물로서 남게 된다. 이러한 메커니즘을 통해 그래핀 옥사이드 플레이트렛, 더 나아가서는 환원 그래핀 옥사이드 플레이트렛들의 길이를 조절할 수 있다. 각 단계에서 동일한 회전율로 원심분리를 한다면 모두 같은 길이의 침전물들만 얻게 된다는 점에 유의해야 한다. 그러므로 다양한 평균 길이의 그래핀 옥사이드 플레이트렛들이 분리된 샘플들을 획득하기 위해서는 순차적으로 더 낮은 회전율로 원심분리를 수행하여야 한다. In general, the process of obtaining a graphene oxide plate dispersion by peeling from the sonicated graphite oxide includes a portion of unpeeled graphite crystals (Crystallite) to be removed from the aqueous solution through a centrifugation step. For example, a centrifugal turnover of 500 rpm may be suitable for removing graphite crystals while keeping the graphene oxide platelets dispersed. When redispersing the precipitate, the average length of graphene oxide platelets can be controlled by adjusting the centrifugation turnover. For example, if centrifuged at 500 rpm to remove only graphite crystals, an initial supernatant with small flakes, a precipitate with all different lengths of redispersed solution and a precipitate containing graphite crystals are obtained. do. Here, if the precipitated solution is centrifuged at a higher rotation rate, the graphite crystals and the relatively longer platelets are removed, and only the medium length platelets are dispersed to obtain a dispersion solution. In this case, the first supernatant contains only small platelets of small length, and the precipitate is redispersed so that medium length platelets are dispersed in the centrifuged solution. And large platelets and graphite crystals remain as precipitates. Through this mechanism it is possible to control the length of the graphene oxide platelets, and further reduced graphene oxide platelets. Note that if you centrifuge at the same turn rate in each step, you will only get sediments of the same length. Therefore, in order to obtain samples in which graphene oxide platelets of various average lengths are separated, centrifugation should be performed sequentially at a lower rotation rate.
그래핀 옥사이드 플레이트렛들 분산용액을 제조하기 위한 용매는 특별하게 제한되지 않는다. 바람직한 용매는 물이지만, 공용매(co-solvent)들 또는 소수성 그래핀 플레이트렛들의 웨팅(wetting)을 향상시킬 수 있는 첨가제들이 같이 사용될 수 있다. 용매들 및/또는 첨가제들은 단독으로 또는 결합하여 사용될 수도 있다. 바람직한 첨가제들은, 메탄올, 에탄올, 부탄올, 프로판올, 글리콜들, 수용성 에스테르들 및 에테르들과 같은 알콜들, 비이온성 에틸렌 옥사이드, 프로필렌 옥사이드 및 그들의 공중합체(copolymer)들과 같은 계면 활성제들, 테르지톨(tergitol) 군 계면 활성제들, 또는 트리톤(Triton)계 계면 활성제들과 같은 알킬 계면 활성제들, 또는 에틸렌 옥사이드 및 프로필렌 옥사이드 또는 부틸렌 옥사이드 유닛들을 갖는 계면 활성제들을 포함한다. 이러한 예들은 계면 활성제들의 플루론(Pluronic) 또는 테트로닉(Tetronic) 시리즈를 포함한다. 공용매들 및 계면 활성제들은 용액에 0.0001 내지 10 중량%로 포함될 수 있다. 공용매들 및 계면 활성제들은 용액에, 특히 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9 및 9.5 중량%로 포함될 수 있고, 이러한 값들 사이의 서브 값으로 포함될 수도 있다.The solvent for preparing the graphene oxide platelets dispersion is not particularly limited. Preferred solvents are water, but additives that can improve the wetting of co-solvents or hydrophobic graphene platelets can be used together. Solvents and / or additives may be used alone or in combination. Preferred additives include surfactants such as alcohols, such as methanol, ethanol, butanol, propanol, glycols, water soluble esters and ethers, nonionic ethylene oxide, propylene oxide and their copolymers, tergitol ( tergitol) surfactants, or alkyl surfactants such as Triton-based surfactants, or surfactants having ethylene oxide and propylene oxide or butylene oxide units. Such examples include the Pluronic or Tetronic series of surfactants. Cosolvents and surfactants may be included in the solution at 0.0001 to 10% by weight. Cosolvents and surfactants are in solution, in particular 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7 , 7.5, 8, 8.5, 9 and 9.5 weight percent, and may be included as a sub-value between these values.
환원 그래핀 옥사이드 플레이트렛들 분산용액을 얻기 위한 방법(100)은, 그래핀 옥사이드 플레이트렛들 분산용액을 에어로졸 액적(dropplet)으로 변환하는 단계(S120)를 포함한다. 에어로젤 액적(dropplets)형태로 변형하는 단계로서, 예를 들어, 초음파 분무기(ultrasonic nebulizer)를 사용하여 전구체 용액을 수 내지 수십 마이크론의 지름을 갖는 에어로졸 액적형태로 변형시켜 분무시킬 수 있다.The method 100 for obtaining the reduced graphene oxide platelets dispersion solution includes converting the graphene oxide platelets dispersion solution into an aerosol droplet (S120). As a step of transforming into an aerogel dropplets, for example, an ultrasonic nebulizer may be used to spray by transforming the precursor solution into an aerosol droplet having a diameter of several tens of microns.
환원 그래핀 옥사이드 플레이트렛들 분산용액을 얻기 위한 방법(100)은, 에어로젤 액적을 가열로(furnace)로 통과시켜 물 분자들을 증발시키고 그래핀 옥사이드 플레이트렛들을 환원시키는 단계(S130)를 포함한다. 가열로의 한 예로, 관상형 가열로 (tubular furnace)가 사용될 수 있다. 분무된 에어로젤 액적은 가스를 사용하여 가열로로 이동 될 수 있다. 이 때 사용되는 가스로는 아르곤(argon)가스, 질소(N2)가스 등 하나 혹은 그 외의 여러 가지 환원 가스를 혼합하여 이용할 수 있다. 더 빠른 이동을 위해서 팬(fan)을 추가로 사용할 수도 있다.The method 100 for obtaining the reduced graphene oxide platelets dispersion solution includes passing the airgel droplets through a furnace to evaporate water molecules and reduce the graphene oxide platelets (S130). As an example of a furnace, a tubular furnace may be used. The sprayed airgel droplets can be transferred to the furnace using gas. In this case, as the gas used, one or other various reducing gases such as argon gas and nitrogen (N 2 ) gas may be mixed and used. You can also use an additional fan for faster movement.
가열로의 온도는 300℃ 내지 2000℃의 범위일 수 있다. 가열로의 온도는 단순히 에어로졸 액적 내의 그래핀 옥사이드 플레이트렛을 환원 가능한 온도 일 수 있으나, 그래핀 옥사이드 플레이트렛의 환원을 용이하기 위해서 여러 가지 요소들을 고려하여 가열로의 온도가 정해질 수 있다. 예를 들어, 가열로의 온도는 가열로의 구조, 특정 구간에서 가열로를 통과하는 에어로졸 액적의 양(Volume)과 속도(Flow Rate), 그리고 이런 것들에 따라서 결정되는 에어로졸 액적의 가열로 내에서의 체류시간(Residence Time)에 따라서 결정 될 수 있다. 가열로의 온도가 높을수록, 에어로졸 액적이 가열로 안에 잔류하여야 하는 시간이 짧아질 수 있다. 에어로졸 액적의 가열로 내에서의 체류시간은 시간은 약 0.1초 내지 약 10분, 바람직하게는 1초 내지 5분일 수 있다. 잔류 시간은, 특히 5, 10, 20, 30, 40, 50초, 1분, 1.5, 2, 2.5, 3, 3.5, 4, 4.5분을 포함할 수 있고, 이러한 값들 사이의 서브 값도 포함할 수 있다. 한 예로, 300℃ 내지 600℃ 사이의 온도로 가열로를 가열하여 0.1초 내지 10분의 체류 시간으로 충분히 그래핀 옥사이드 플레이트렛들을 환원시킬 수 있다. The temperature of the furnace may range from 300 ° C to 2000 ° C. The temperature of the furnace may be a temperature capable of simply reducing the graphene oxide platelets in the aerosol droplets, but the temperature of the furnace may be determined in consideration of various factors in order to facilitate the reduction of the graphene oxide platelets. For example, the temperature of a furnace may vary within the furnace structure of the furnace, the volume and rate of aerosol droplets passing through the furnace in a particular section, and the aerosol droplets determined by these. It can be determined according to the residence time of. The higher the temperature of the furnace, the shorter the time that the aerosol droplets must remain in the furnace. The residence time in the furnace of the aerosol droplets may be from about 0.1 seconds to about 10 minutes, preferably from 1 second to 5 minutes. Retention time may include, in particular, 5, 10, 20, 30, 40, 50 seconds, 1 minute, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 minutes, including sub-values between these values. Can be. As an example, the furnace may be heated to a temperature between 300 ° C. and 600 ° C. to sufficiently reduce graphene oxide platelets with a residence time of 0.1 seconds to 10 minutes.
더 효율적인 환원 분위기를 만들기 위해 가열로 안에 수소(H2) 혹은 그 외의 활성 혹은 휘발성 특징을 가진 환원가스를 더 추가하는 단계(S125)을 더 포함할 수도 있다. 이 경우, 가열로내의 환원 분위기에서의 활성가스와 비활성가스의 비율은 각각 50%일 수 있다. 예를 들어, 전체 가열로 내의 환원 분위기 중 H2 와 N2의 비율은 각각 50:50일 수 있다. 하지만, H2와 같은 휘발성 특성이 큰 환원가스를 높은 비율로 사용하는 것에는 여러 가지 제약이 있을 수 있다. H2와 같은 휘발성 환원가스 사용하더라도 가열로 내의 환원 분위기에서 H2의 비율을 50% 이하로, 보다 바람직하게는 25% 이하로만 사용할 수 있다. 이에 같이, 가열로 내의 환원 분위기중 질소나 아르곤 혹은 같은 비활성 환원가스가 차지하는 비율은 50% 이상일 수 있고, 보다 바람직하게는 75% 이상일 수 있다. It may further include the step (S125) of further adding a reducing gas having hydrogen (H 2 ) or other active or volatile characteristics in the furnace to create a more efficient reducing atmosphere. In this case, the ratio of the active gas and the inert gas in the reducing atmosphere in the furnace may be 50%, respectively. For example, the ratio of H 2 and N 2 in the reducing atmosphere in the entire furnace may be 50:50, respectively. However, there may be various limitations in using a high proportion of reducing gas such as H 2 having high volatile characteristics. Even when a volatile reducing gas such as H 2 is used, the ratio of H 2 in the reducing atmosphere in the heating furnace can be used at 50% or less, more preferably at 25% or less. As such, nitrogen in the reducing atmosphere in the furnace The proportion of argon or the same inert reducing gas may be 50% or more, and more preferably 75% or more.
또한 일산화탄소, 메탄 또는 이들의 혼합물들과 같은 박리용(exfoliating) 가스가 가열로 내에 더 추가될 수 도 있다. 이러한 박리용 가스가 추가된 경우, 그래핀 옥사이드 플레이트렛들이 매우 빠른 속도로 가열될 때, 그래핀 옥사이드 내의 산소-함유 종(group)들의 화학적 분해에 의한 기체(예를 들어, CO2)의 방출, 그래핀 옥사이드 플레이트렛들에 흡수되었던 용매(예를 들어, 물 및/또는 수용성 용매들), 그리고 층간 삽입믈(intercalants) 들의 과열 및 휘발이 생길 수 있다.In addition, an exfoliating gas such as carbon monoxide, methane or mixtures thereof may be further added to the furnace. When such stripping gas is added, when the graphene oxide platelets are heated at a very high rate, the release of gas (eg, CO 2 ) by chemical decomposition of oxygen-containing groups in the graphene oxide Overheating and volatilization of the solvents (eg, water and / or water soluble solvents) that have been absorbed into the graphene oxide platelets, and intercalants can occur.
이러한 과정들은, 물 분자들을 증발시키고 그래핀 옥사이드 플레이트렛들을 환원 그래핀 옥사이드 플레이트렛들로 환원하며, 다층구조를 가진 그래핀 옥사이드 플레이트들을 더 박리시킬 수도 있다. These processes may evaporate water molecules, reduce graphene oxide platelets to reduced graphene oxide platelets, and may further exfoliate graphene oxide plates having a multilayer structure.
상술한 방식으로 그래핀 옥사이드 플레이트렛들을 환원시킴으로써 액상에서 화학적으로 환원된 그래핀 옥사이드 플레이트렛들보다 월등히 적은 결함을 갖는 환원 그래핀 옥사이드 플레이트렛들을 얻을 수 있다. 특히, 가열로 내의 환원분위기는 그래핀 옥사이드 플레이트렛들의 산소작용기들과 반응하여, 잔여 작용기들이 실질적으로 모두 제거된 양질의 환원 그래핀 옥사이드 플레이트렛들을 얻을 수 있도록 한다.By reducing the graphene oxide platelets in the manner described above, it is possible to obtain reduced graphene oxide platelets having significantly fewer defects than the graphene oxide platelets chemically reduced in the liquid phase. In particular, the reducing atmosphere in the furnace reacts with the oxygen functionalities of the graphene oxide platelets to obtain high quality reduced graphene oxide platelets with substantially all remaining functional groups removed.
하지만 상술한 에어로졸 열분해 환원 방법을 사용하더라도, 환원 그래핀 옥사이드 플레이트렛을 테플론 여과막과 같은 보편적인 여과막을 사용해서 포집하고 용액 공정용 그래핀으로 만들기 위해 다시 용액으로 분산하는 과정을 거치면, 그런 과정들에서 반데르발스 결합력에 의해 환원 그래핀 옥사이드 플레이트렛들간의 재응집/재적층을 일으킬 수 있다. 이는 환원 그래핀 옥사이드 플레이트렛들이 하이브리드-그래핀 복합물 내에서 균일하게 분산되지 않는 현상을 초래하게 되어 결과적으로 하이브리드-그래핀층의 기체/수분 배리어 특성 및 전기적 특성의 감소로 이어진다. However, even when using the above-mentioned aerosol pyrolysis reduction method, the process of collecting the reduced graphene oxide platelets using a common filtration membrane such as a Teflon filtration membrane and dispersing it into a solution again to make the graphene for solution process, such processes Van der Waals binding forces at can cause reaggregation / relamination between the reduced graphene oxide platelets. This results in the phenomenon that the reduced graphene oxide platelets are not uniformly dispersed in the hybrid-graphene composite, resulting in a reduction of the gas / moisture barrier and electrical properties of the hybrid-graphene layer.
따라서, 환원 그래핀 옥사이드 플레이트렛들 분산용액을 얻기 위한 방법(100)은, 가열로를 통과하여 환원된 그래핀 옥사이드 플레이트렛들이 분산되어있는 증기를 환원 그래핀 옥사이드 플레이트렛들간에 재-응집을 억제하는 기능을 가진 계면 활성제가 섞여있는 수용성 용액(예를 들어, 유기 용매)에 곧바로 통과시켜서 용액을 사용하여 그 안으로 직접 포집하는 단계(S140)를 포함한다. 기체중의 환원 그래핀 옥사이드 플레이트렛을 곧바로 계면 활성제가 포함된 수용성 용액을 사용해서 포집할 경우 여과, 건조 공정 및 재-분산과 같은 환원 그래핀 옥사이드 플레이트렛들의 재-응집 및 재-적층을 야기하는 과정들을 거치지 않고도 바로 원하는 표면에 각종 용액공정을 통해 도포 시킬 수 있고 재응집/재적층의 빈도 또한 훨씬 낮은 환원 그래핀 옥사이드 플레이트렛 용액을 얻을 수 있다. 한 예로, 수용성 용액은 환원 그래핀 옥사이드 플레이트렛들의 응집의 억제하는 성능을 가진 계면 활성제가 1% 내지 5%와 혼합된 DI일 수도 있고, 수용성 용액의 온도는 20℃ 내지 100℃ 사이일 수 있다. Accordingly, the method 100 for obtaining the reduced graphene oxide platelets dispersion solution is to re-aggregate the vapor in which the reduced graphene oxide platelets are dispersed through the heating furnace between the reduced graphene oxide platelets. Passing directly through an aqueous solution (eg, an organic solvent) mixed with a surfactant having an inhibitory function, and directly collecting the solution (S140) using the solution. Collecting the reduced graphene oxide platelets in the gas directly using an aqueous solution containing a surfactant causes re-agglomeration and re-lamination of the reduced graphene oxide platelets such as filtration, drying process and re-dispersion. Reduction of graphene oxide platelets can be obtained with a much lower frequency of reaggregation / relamination. As an example, the aqueous solution may be DI mixed with 1% to 5% of a surfactant having the ability to inhibit aggregation of reduced graphene oxide platelets, and the temperature of the aqueous solution may be between 20 ° C and 100 ° C. .
수용액은 메탄올, 에탄올, 부탄올, 프로판올, 글리콜들, 수용성 에스테르들 및 에테르들과 같은 알콜들을 포함할 수도 있다. 수용액에서 혼합된 계면 활성제들은, 비이온성 에틸렌 옥사이드, 프로필렌 옥사이드 및 그들의 공중합체, 테르지톨 군 계면 활성제들, 또는 트리톤 계 계면 활성제들과 같은 알킬 계면 활성제들, 또는 에틸렌 옥사이드 및 프로필렌 옥사이드 또는 부틸렌 옥사이드 유닛들을 갖는 계면 활성제들을 포함할 수도 있다. 이들의 예들은 계면 활성제들의 플루론 또는 테트로닉 시리즈를 포함한다. 공용매들 및 계면 활성제들은 용액에 0.0001 내지 10 중량%로 포함될 수 있다. 공용매들 및 계면 활성제들은 용액에, 특히 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9 및 9.5중량%로 포함될 수 있으며, 이러한 값들 사이의 서브-값으로 포함될 수 있다.The aqueous solution may comprise alcohols such as methanol, ethanol, butanol, propanol, glycols, water soluble esters and ethers. The surfactants mixed in the aqueous solution are alkyl surfactants such as nonionic ethylene oxide, propylene oxide and their copolymers, tergitol group surfactants, or triton based surfactants, or ethylene oxide and propylene oxide or butylene oxide It may also comprise surfactants with units. Examples of these include the Pluron or Tetronic series of surfactants. Cosolvents and surfactants may be included in the solution at 0.0001 to 10% by weight. Cosolvents and surfactants are in solution, in particular 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7 , 7.5, 8, 8.5, 9 and 9.5% by weight, and may be included as a sub-value between these values.
환원 그래핀 옥사이드 플레이트렛들이 증기에서 유동하는(floating) 동안에는 환원 그래핀 옥사이드 플레이트렛들간에 재-응집 및/또는 재-스태킹이 발생할 확률이 적다. 또한, 증기를 직접 계면 활성제와 혼합된 수용액으로 투과시켜 포집함으로써, 환원 그래핀 플레이트렛들의 재-응집 및 재-스태킹을 유발하는 종래의 액상 공정용 환원 그래핀의 제조에 사용되었던 방법들에서 수반되는, 플레이트렛들의 여과, 건조 및 재분산과 같은 공정단계들을 거치지 않고 용액 공정용 그래핀을 얻을 수 있다. While the reduced graphene oxide platelets are floating in the vapor, there is less chance of re-agglomeration and / or re-stacking between the reduced graphene oxide platelets. It is also involved in the methods used in the preparation of reduced graphene for conventional liquid processes by permeating vapor directly into an aqueous solution mixed with a surfactant to cause re-aggregation and re-stacking of the reduced graphene platelets. It is possible to obtain graphene for solution processing without going through process steps such as filtration, drying and redispersion of the platelets.
하이브리드-그래핀 복합물Hybrid-Graphene Complex
도 1을 참조하여 설명된 방법은, 본 발명의 다른 양태인 하이브리드-그래핀 복합물을 제작하는 것에도 매우 적합한 방법이다. 본 명세서에 설명된 신규한 하이브리드-그래핀 복합물들은 2차원적 평면형태를 가진 필러인 환원 그래핀 플레이트렛과 3차원적 형태를 가진 파티클 형태의 필러가 고분자 폴리머 매트릭스에 분산되어, 개선된 광학적 특성, 물리적 특성 (강도, 연성, 모듈러스(Modulus), 크랙(crack)-내성, 마모 및 스크래치 내성) 및 전기적/열적 전도성 및 기체/수분 배리어 특성을 제공한다. The method described with reference to FIG. 1 is also very suitable for producing hybrid-graphene composites, which is another aspect of the present invention. The novel hybrid-graphene composites described herein have improved optical properties as the reduced graphene platelets, which are fillers in two-dimensional planes, and the fillers in particle form, which have three-dimensional shapes, are dispersed in the polymer matrix. , Physical properties (strength, ductility, Modulus, crack-resistant, abrasion and scratch resistance) and electrical / thermal conductivity and gas / moisture barrier properties.
이러한 특성들 중 일부는, 복합물 내에 플레이트렛들의 균일한 분포, 플레이트렛 간의 상호 연결성 및 하이브리드-그래핀 복합물 내의 기체/수분 침투 억제경로의 형성에 크게 좌우된다. 하이브리드-그래핀 복합물들의 실시예들에서는, 특정한 구성의 합성 및 조성 방법에 의해, 이러한 특성들 중 일부 또는 전부가 개선될 수 있다.Some of these properties are highly dependent on the uniform distribution of platelets in the composite, the interconnections between the platelets, and the formation of gas / moisture penetration inhibition pathways within the hybrid-graphene composite. In embodiments of hybrid-graphene composites, some or all of these properties may be improved by methods of synthesis and composition of specific configurations.
대부분의 기체 및 수분입자는 환원 그래핀 옥사이드 플레이트렛를 통해 침투할 수 없다고 알려져 있다. 그렇기 때문에, 폴리머 매트릭스 내에 환원 그래핀 옥사이드 플레이트렛들이 연결되어 만들어진 네트워크 또한 기체 및 수분 침투를 막을 수 있는 우수한 배리어로서 사용될 수 있다. 기체 및 수분입자가 하이브리드-그래핀 복합물로 형성된 하이브리드-그래핀층을 통해 침투하기 위해서는, 먼저 입자들은 하이브리드-그래핀층의 상면의 결함부분(defect site)를 통해 진입하여야 한다. 진입 후에는, 폴리머 매트릭스 내부의 퍼져있는 그래핀 플레이트렛들의 표면을 따라 폴리머 매트릭스 사이의 경로(Tortuous Path)를 통해서 진입하여야 한다. 그래핀 옥사이드는 그 표면에 다양한 산소작용기가 친수성을 띄어 대부분의 산소작용기가 제거된 환원 그래핀 옥사이드에 비해 상대적으로 수분입자가 폴리머 매트릭스내의 경로를 통해 더 잘 이동할 수 있기 때문에 본 명세서의 실시예들의 하이브리드-그래핀 복합물 및 하이브리드-그래핀층에 포함된 대부분의 혹은 모든 그래핀 플레이트렛은 환원 그래핀 옥사이드 플레이트렛인 것이 바람직하다. 하지만 본 명세서의 실시예들의 하이브리드-그래핀 복합물 및 하이브리드-그래핀층은 공정상의 편차로 인하여 소수의 환원되지 않은 그래핀 옥사이드 플레이트렛을 포함할 수도 있다. It is known that most gas and water particles cannot penetrate through reduced graphene oxide platelets. As such, a network made by connecting reduced graphene oxide platelets in a polymer matrix can also be used as an excellent barrier to prevent gas and moisture ingress. In order for gas and moisture particles to penetrate through the hybrid-graphene layer formed of the hybrid-graphene composite, the particles must first enter through a defect site on the upper surface of the hybrid-graphene layer. After entry, it must enter through the path between the polymer matrices along the surface of the graphene platelets spread inside the polymer matrix. Graphene oxide is hydrophilic in the various oxygen functional groups on the surface thereof, as compared with the reduced graphene oxide from which most of the oxygen functional groups are removed, the water particles can move better through the path in the polymer matrix, and thus, Most or all of the graphene platelets included in the hybrid-graphene composite and hybrid-graphene layer are preferably reduced graphene oxide platelets. However, the hybrid-graphene composite and hybrid-graphene layer of the embodiments herein may include a small number of unreduced graphene oxide platelets due to process variations.
상술한 바와 같이, 기체/수분 분자들은 침투가 불가능한 환원 그래핀 옥사이드 플레이트렛들 주위의 상대적으로 침투하기 쉬운 폴리머 채널들을 따라 이동하여 하이브리드-그래핀층을 통해 침투할 수 있다. 그렇기 때문에 하이브리드-그래핀 복합물로 형성된 하이브리드-그래핀층의 기체/수분 배리어 특성을 향상시키는 것이 있어서 기체/수분입자가 침투하기 어렵도록 최대한 길이가 긴 경로를 구축하는 것이 가장 중요한 포인트일 수 있다. 이 점을 볼 때 하이브리드-그래핀 복합물의 기체/수분 침투방지 특성에 큰 영향을 주는 요소들은 환원 그래핀 옥사이드 플레이트렛의 최장 치수 대 최단 치수의 비율로서 정의되는 종횡비(aspect ratio, 약 1.5:5000), 복합물 내 환원 그래핀 옥사이드 플레이트렛들의 분산율 및 플레이트렛들의 정렬형태, 환원 그래핀 옥사이드 플레이트렛과 폴리머 매트릭스간의 인터페이스 결합 및 폴리머 매트릭스의 결정도(crystallinity)들을 포함한다. 폴리머 매트릭스안에서 환원 그래핀 옥사이드 플레이트렛들의 적층 방향 및 환원 그래핀 옥사이드 플레이트렛들간에 자기-응집(self-aggregation) 또한 하이브리드-그래핀 복합물의 기체/수분 침투방지 특성에 영향을 미치는 중요한 요소들로서 고려되어야 한다. As noted above, gas / moisture molecules can migrate along the relatively permeable polymer channels around the incapable reducing graphene oxide platelets and penetrate through the hybrid-graphene layer. Therefore, it may be the most important point to improve the gas / moisture barrier property of the hybrid-graphene layer formed of the hybrid-graphene composite to establish the longest path so that gas / water particles are difficult to penetrate. In this regard, the factors that greatly influence the gas / moisture intrusion properties of the hybrid-graphene composite are the aspect ratio, defined as the ratio of the longest dimension to the shortest dimension of the reduced graphene oxide platelet. ), The dispersion rate of the reduced graphene oxide platelets in the composite and the alignment of the platelets, the interface bond between the reduced graphene oxide platelets and the polymer matrix, and the crystallinities of the polymer matrix. The stacking direction of the reduced graphene oxide platelets and the self-aggregation between the reduced graphene oxide platelets in the polymer matrix are also considered as important factors affecting the gas / moisture penetration properties of the hybrid-graphene composite. Should be.
위의 모든 요소들을 고려할 때 환원 그래핀 옥사이드 플레이트렛들의 매우 큰 종횡비 및 2차원적 평면적인 형태는 폴리머 매트릭스와 결합하여 그 안에서 긴 경로(Tortuous path)를 구축하기에 매우 적합한 물질이다. Considering all of the above factors, the very large aspect ratio and two-dimensional planar shape of the reduced graphene oxide platelets are very suitable materials to combine with the polymer matrix and build a long path therein.
하이브리드-그래핀 복합물의 환원 그래핀 옥사이드 플레이트렛들은 우수한 기체/수분 배리어 특성을 제공할 뿐만 아니라, 폴리머 매트릭스와 결합하여 플렉서블 디바이스들에서 요구되는 인장(Tensile) 스트레스 및 압축(Compression) 스트레스와 같은 물리적인 스트레스들을 견딜 수 있는 강한 내성도 제공한다. 보통 복합물에서, 필러(filler) 및 그 주위의 폴리머 매트릭스 사이의 인터페이스 결합력은 전단-활성화된(shear-activated) 메커니즘들을 통해 폴리머 매트릭스로부터 필러로의 스트레스의 전달하는데 중요한 역할을 한다. 인터페이스의 전단력이 높을수록, 인터페이싱 결함이 발생하기 전까지 더 큰 부하를 견딜 수 있다. 폴리머 매트릭스와 필러들 사이의 결합력/전단력이 약한 경우, 그들 간에 인터페이싱의 강도가 감소하고 결국 결함이 생길 수 있다. 그러므로, 폴리머 매트릭스와 필러 사이의 강한 결합력/전단력은 하이브리드-그래핀 복합물로 형성된 하이브리드-그래핀층의 물리적 특성을 개선하기 위해 중요하다.Reducing graphene oxide platelets of hybrid-graphene composites not only provide good gas / moisture barrier properties, but also combine with the polymer matrix to provide physical properties such as tensile and compression stresses required in flexible devices. It also provides a strong tolerance to withstand phosphorus stresses. In ordinary composites, the interface bonding force between the filler and the surrounding polymer matrix plays an important role in the transfer of stress from the polymer matrix to the filler through shear-activated mechanisms. The higher the shear force of the interface, the greater the load it can withstand before interfacing failures occur. If the bond / shear force between the polymer matrix and the fillers is weak, the strength of the interfacing between them decreases and eventually defects may occur. Therefore, the strong bonding / shearing force between the polymer matrix and the filler is important for improving the physical properties of the hybrid-graphene layer formed of the hybrid-graphene composite.
환원 그래핀 옥사이드 플레이트렛들은 하이브리드-그래핀 복합물의 인장 탄성율 및 강도를 개선하기에 매우 적합한 필러이다. 폴리머 체인과의 결합(mechanical interlocking)에 도움이 되지 않는 smooth한 표면들을 가지고 있는 다른 여러 종류의 필러들과는 대조적으로 환원 그래핀 옥사이드 플레이트렛들은 폴리머 체인들과의 결합을 더욱 강하게 할 수 있는 거칠고 주름진 표면 토폴로지(topology)를 가지고 있다. 환원 그래핀 옥사이드 플레이트렛은 탄소 나노 튜브(CNT)와 같은 다른 1차원적 형태를 가진 필러들에 비해 폴리머 매트릭스내에서 더 큰 인터페이싱 접촉 영역을 갖는다. 또한 큰 분자를 가진 폴리머 체인들은 탄소 나노 튜브의 내부 구멍들을 통해 튜브의 안쪽까지 침투할수 없고 탄소 나노 튜브들의 외부면만이 폴리머 매트릭스와 접촉한다. 하지만 평면형태의 환원 그래핀 옥사이드 플레이트렛은 양면 모두 폴리머와 인터페이싱할 수 있고 더 큰 인터페이싱 접촉 영역을 가지기 때문에인장 탄성율 및 강도를 개선하기에 매우 적합하다. 게다가, 2차원 평면 형상을 가지고 있기 때문에 환원 그래핀 옥사이드 플레이트렛은 세로측 및 가로측 양방향 모두에 대한 물리적인 부하를 지지하므로, 환원 그래핀 옥사이드 플레이트렛들은 플렉서블 디바이스에서도 기존의 기체/수분 배리어 역할을 수행할 수 있다.Reduced graphene oxide platelets are very suitable fillers for improving the tensile modulus and strength of hybrid-graphene composites. In contrast to many other types of fillers that have smooth surfaces that do not aid in mechanical interlocking, reduced graphene oxide platelets have a rough, corrugated surface that can make the bonds with the polymer chains stronger. It has a topology. The reduced graphene oxide platelets have a larger interfacing contact area in the polymer matrix as compared to other one-dimensional fillers such as carbon nanotubes (CNTs). In addition, polymer chains with large molecules cannot penetrate the inside of the tube through the inner holes of the carbon nanotubes, and only the outer surface of the carbon nanotubes contacts the polymer matrix. However, planar reduced graphene oxide platelets are well suited to improve tensile modulus and strength because both sides can interface with the polymer and have a larger interface contact area. In addition, because it has a two-dimensional planar shape, the reduced graphene oxide platelets support the physical loads in both the longitudinal and transverse bidirectional directions, so the reduced graphene oxide platelets serve as a conventional gas / moisture barrier even in flexible devices. Can be done.
이러한 하이브리드-그래핀 복합물의 향상된 탄성계수(elastic modulus)는 압축 부하에서의 개선된 버클링(buckling) 안정성으로 까지도 이어진다. 버클링은 플렉서블 디바이스들의 구조적 설계에 있어서 매우 까다로운 구조적 불안정성이다. 본 명세서에서 기재된 하이브리드-그래핀 복합물의 개선된 버클링 안정성은 각 실시예에서 사용된 환원 그래핀 옥사이드 플레이트렛들의 2차원적 평면형태와 환원 그래핀 옥사이드 플레이트렛들 대부분이 복수의 시트로 구성되어있다는 구조적 특징 모두와 관련이 있다. 이와 같이, 복수의 시트들로 구성되어있는 환원 그래핀 옥사이드 플레이트렛은, 그것이 포함하는 여러 개의 시트들 중 오직 외측의 시트들만이 폴리머 매트릭스와 결합하여 하이브리드-그래핀층이 받는 인장 스트레스의 부하 전달에 기여한다. 반면, 압축 스트레스의 부하는 외측의 시트들뿐 아니라 외측의 시트들 사이에 있는 시트들까지도 동등하게 분산되어 부하 전달에 기여한다.The improved elastic modulus of these hybrid-graphene composites also leads to improved buckling stability at compression loads. Buckling is a very difficult structural instability in the structural design of flexible devices. The improved buckling stability of the hybrid-graphene composites described herein is a two-dimensional planar form of the reduced graphene oxide platelets used in each example and the majority of the reduced graphene oxide platelets consist of a plurality of sheets. It is related to all structural features. As such, the reduced graphene oxide platelet, which consists of a plurality of sheets, combines the polymer matrix with only the outer ones of the multiple sheets it contains so as to transfer the stress of tensile stress that the hybrid-graphene layer receives. Contribute. On the other hand, the load of compressive stress is equally distributed not only to the outer sheets but also between the outer sheets, contributing to the load transfer.
환원 그래핀 옥사이드 플레이트렛 내에 각각의 시트는 그들의 원자 스케일 두께에 기인하여 압축 스트레스를 받을 시에 버클링 및 벤딩이 될 수 있다. 이때 환원 그래핀 옥사이드 플레이트렛 내에 시트의 버클링 또는 벤딩은 그와 인접한 시트들간의 마찰을 증가시켜 환원 그래핀 옥사이드 플레이트렛 내에서 시트 간의 더 좋은 부하 전달이 이루어지게 한다. 이와 같이, 하나이상의 시트로 구성된 환원 그래핀 옥사이드 플레이트렛들을 사용하여 만들어진 하이브리드-그래핀 복합물은 플렉서블 전자 디바이스를 구현하는데 있어서 중요한 고려 사항인 인장 및 압축 부하 전달성 모두를 향상시킨다. Each sheet in the reduced graphene oxide platelet can be buckled and bent when subjected to compressive stress due to their atomic scale thickness. The buckling or bending of the sheet in the reduced graphene oxide platelet then increases the friction between the adjacent sheets, resulting in better load transfer between the sheets in the reduced graphene oxide platelet. As such, hybrid-graphene composites made using reduced graphene oxide platelets consisting of one or more sheets improve both tensile and compressive load transfer properties, which are important considerations in implementing flexible electronic devices.
환원 그래핀 플레이트렛들에 의해 제공되는 상술한 특성들은, 환원 그래핀 플레이트렛들이 환원 공정 동안 또는 하이브리드-그래핀 복합물의 형성 동안 재-응집 및/또는 재-스태킹되는 경우, 하이브리드-그래핀 복합물에서 발현되지 못할 수 있다. 그러나, 본 발명에서는, 에어로졸화된 액적 상태에서 그래핀 옥사이드 플레이트렛들을 환원시켜 얻은 양질의 환원 그래핀 플레이트렛들을 재응집/재-스택킹이 없도록 직접 수용액으로 포획하여 하이브리드-그래핀 복합물을 제조할 수 있다. 이 하이브리드-그래핀 복합물을 사용하여 균일하게 분산된 환원 그래핀 플레이트렛들을 갖는 하이브리드-그래핀층을 형성이 가능함으로 다양한 애플리케이션들에 적합한 우수한 전기적, 물리적 및/또는 기체/수분 배리어 특성들을 나타낼 수 있다.The above-described properties provided by the reduced graphene platelets are the hybrid-graphene composite when the reduced graphene platelets are re-aggregated and / or re-stacked during the reduction process or during the formation of the hybrid-graphene composite. May not be expressed in. In the present invention, however, hybrid-graphene composites are prepared by directly trapping high-quality reduced graphene platelets obtained by reducing graphene oxide platelets in an aerosolized droplet state with an aqueous solution so that there is no reaggregation / re-stacking. can do. The hybrid-graphene composite can be used to form a hybrid-graphene layer with uniformly dispersed reduced graphene platelets, thereby exhibiting excellent electrical, physical and / or gas / moisture barrier properties suitable for a variety of applications. .
예시적인 하이브리드-그래핀 복합물들 및 방법들Exemplary Hybrid-Graphene Composites and Methods
실시예 1Example 1
하이브리드-그래핀 복합물의 일부 실시예들에 포함되는 3차원적 파티클 형태의 필러는 탄소 기반의 나노 파티클들(Carbon Nanoparticle)이다. 폴리머 매트릭스에서 혼합환원 그래핀 플레이트렛들 및 탄소 나노 파티클들로 형성된 하이브리드-그래핀 복합물은, 탄소 나노 파티클들이 포함되지 않은 하이브리드-그래핀층에 비해 상당히 더 낮은 면 저항을 나타낸다.The three-dimensional particle-shaped filler included in some embodiments of the hybrid-graphene composite is carbon nanoparticles (Carbon Nanoparticles). Hybrid-graphene composites formed of mixed-reduced graphene platelets and carbon nanoparticles in a polymer matrix exhibit significantly lower sheet resistance compared to hybrid-graphene layers without carbon nanoparticles.
도 2는 하이브리드-그래핀 복합물을 형성하기 위한 예시적인 방법(200)을 나타내는 순서도이다. 도 2에서와 같이 하이브리드-그래핀 복합물을 형성하는 방법(200)은 전구체 용액을 제조하는 단계(S210)를 포함할 수 있다. 일 실시예에서, 탄소 나노 파티클 파우더는 전구체 용액을 준비하기 위해 그래핀 옥사이드 용액과 혼합된다. 그래핀 옥사이드 용액은, DI 물 및/또는 유기 용매들과 혼합된 DI 물로 형성될 수 있다. 전구체 용액 내의 그래핀 옥사이드 플레이트렛들은 전구체 용액에 약 0.05%로 포함될 수 있다. 유사하게, 탄소 나노 파티클파우더는 전구체 용액에 약 0.05%로 포함될 수 있다. 한 예로서, 40ml의 전구체 용액은, 전구체 용액 내부에 혼합된 0.20g의 그래핀 옥사이드 플레이트렛들과 0.20g의 탄소 나노 파티클 파우더를 포함할 수 있다. 탄소 나노 파티클은 50nm 미만의 수평/측(horizontal/lateral)방향 길이를 가지며 본질적으로 나노 크기인 흑연 파티클들이다. 또한, 전구체 용액은 HNO3 및/또는 HCl과 같은 산을 포함할 수 있다.2 is a flow chart illustrating an exemplary method 200 for forming a hybrid-graphene composite. As shown in FIG. 2, the method 200 for forming the hybrid-graphene composite may include preparing a precursor solution (S210). In one embodiment, the carbon nano particle powder is mixed with graphene oxide solution to prepare a precursor solution. The graphene oxide solution may be formed with DI water mixed with DI water and / or organic solvents. Graphene oxide platelets in the precursor solution may be included in the precursor solution at about 0.05%. Similarly, carbon nano particle powder may be included in the precursor solution at about 0.05%. As one example, 40 ml of the precursor solution may include 0.20 g of graphene oxide platelets and 0.20 g of carbon nano particle powder mixed inside the precursor solution. Carbon nano particles are graphite particles that are essentially nano-sized with horizontal / lateral length of less than 50 nm. In addition, the precursor solution may comprise an acid such as HNO 3 and / or HCl.
탄소 나노 파티클들은, 흑연을 나노 단위의 크기의 파티클들로 만들기 위한 분쇄(Grinding) 또는 밀링(Ball-Milling)등 통상적으로 쓰이는 방법에 의해 형성될 수 있다. 전구체 용액에 사용되는 탄소 나노 파티클은 흑연 옥사이드가 아닌 흑연이라는 점에 유의하여야 한다. 상술 하였듯이 그래핀 옥사이드 플레이트렛들의 최대 크기 및 이를 환원하여 얻어지는 환원그래핀 옥사이드의 최대 크기는 처음에 그래핀 옥사이드 플레이트렛들이 박리되는 기초 물질, 즉 흑연의 크기에 따라 결정 될 수 있다. 또한 상술 하였듯이 환원 그래핀 옥사이드 플레이트렛들과 탄소 나노 파티클들 사이의 횡방향 길이 및 두께와 같은 두 종료의 필러들 간의 크기의 차이가 중요하기 때문에, 전구체 용액에 분산된 그래핀 옥사이드 플레이트렛들과 탄소 나노 파티클들을 서로 다른 흑연으로부터 얻어질 수도 있다. Carbon nanoparticles can be formed by commonly used methods such as grinding or ball-milling to make graphite into particles of nano size. It should be noted that the carbon nanoparticles used in the precursor solution are graphite, not graphite oxide. As described above, the maximum size of the graphene oxide platelets and the maximum size of the reduced graphene oxide obtained by reducing the same may be determined according to the size of the base material, ie, graphite, to which the graphene oxide platelets are initially peeled off. Also, as described above, since the difference in size between the two end fillers such as the transverse length and thickness between the reduced graphene oxide platelets and the carbon nanoparticles is important, the graphene oxide platelets dispersed in the precursor solution and Carbon nanoparticles may be obtained from different graphites.
하이브리드-그래핀 층의 전기적 특성과 기체/수분 배리어 특성을 개선하기 위해서는 2차원적 평면 형상을 갖는 필러, 즉 환원 그래핀 옥사이드 플레이트렛과 3차원 형상을 갖는 탄소 나노 파티클 사이의 충분한 크기 및 구조적 차이가 있어야 한다. 따라서, 2차원적 평면 형상을 갖는 환원 그래핀 옥사이드 플레이트렛들은 0.5㎛ 내지 5㎛의 평균 횡방향 길이를 갖고, 보다 바람직하게는 1㎛ 이상, 보다 바람직하게는 2.5㎛ 이상, 보다 바람직하게는 약 3㎛ 이상의 평균 횡방향 길이를 갖는다. 또한 2차원적 평면 형상을 갖는 환원 그래핀 옥사이드 플레이트렛들은 약 0.5㎚ 내지 약 7㎚의 평균적인 두께를 갖고, 보다 바람직하게는 약 0.5㎚ 내지 약 3.5㎚, 보다 더 바람직하게는 약 0.5㎚ 내지 약 1.7㎚ 이하의 평균 두께를 갖는다. In order to improve the electrical and gas / moisture barrier properties of the hybrid-graphene layer, sufficient size and structural differences between the filler having a two-dimensional planar shape, that is, the reduced graphene oxide platelet and the carbon nanoparticle having a three-dimensional shape Should be. Thus, reduced graphene oxide platelets having a two-dimensional planar shape have an average transverse length of 0.5 μm to 5 μm, more preferably at least 1 μm, more preferably at least 2.5 μm, more preferably about Have an average transverse length of at least 3 μm. Also, reduced graphene oxide platelets having a two-dimensional planar shape have an average thickness of about 0.5 nm to about 7 nm, more preferably about 0.5 nm to about 3.5 nm, even more preferably about 0.5 nm to It has an average thickness of about 1.7 nm or less.
탄소 나노 파티클은 약 1㎚ 내지 약 50㎚의 평균 지름을 갖는다. 흑연인 탄소 나노 파티클들은 그래핀 옥사이드 플레이트렛들보다 훨씬 더 큰 두께를 갖는다. 이와 같이 환원 그래핀 플레이트렛과 크기의 차가 클수록 환원 그래핀 플레이트렛들간 생길수 있는 빈 틈을 더욱 촘촘히 채워고 환원 그래핀 플레이트렛과 탄소 나노 파티클과의 반데르발스(Van Der Walls) 결합에 의해 더욱 보완된 형태의 하이브리드-그래핀층을 형성할 수 있게 한다. 전구체 용액에 사용되는 탄소 나노 파티클의 평균 지름이 50㎚을 초과한 경우에는 본 실시예의 하이브리드-그래핀 복합물로 형성된 하이브리드-그래핀층의 낮의 면저항값을 얻을수 없다.The carbon nanoparticles have an average diameter of about 1 nm to about 50 nm. Carbon nanoparticles, which are graphite, have a much larger thickness than graphene oxide platelets. As the difference between the reduced graphene platelet and the size increases, the gap between the reduced graphene platelets is more closely filled, and the Van Der Walls bonds with the reduced graphene platelets and carbon nanoparticles. It is possible to form a hybrid-graphene layer in a complementary form. When the average diameter of the carbon nanoparticles used in the precursor solution exceeds 50 nm, the sheet resistance value of the hybrid-graphene layer formed of the hybrid-graphene composite of this embodiment cannot be obtained.
전구체 용액을 준비할 때, 그래핀 옥사이드 플레이트렛들 및 탄소 나노 파티클 파우더를 분산시키는데 볼 밀(ball mill) 공정이 이용될 수 있다. 예를 들어, 약 12시간 내지 약 24시간 동안 전구체 용액에 대해 볼 밀 공정을 수행할 수 있다. 볼 밀 공정은 1.0Φ의 크기를 갖는 지르코니아 비드(bead)들을 사용할 수도 있다. 더 작은 크기의 비드들(예를 들어, 0.5Φ)이 탄소 나노 파티클들의 평균 크기를 제어하는데 사용될 수 있다.When preparing the precursor solution, a ball mill process can be used to disperse the graphene oxide platelets and carbon nano particle powder. For example, a ball mill process may be performed on the precursor solution for about 12 hours to about 24 hours. The ball mill process may use zirconia beads having a size of 1.0Φ. Smaller size beads (eg, 0.5Φ) can be used to control the average size of the carbon nanoparticles.
전구체 용액의 포함되는 그래핀 옥사이드 플레이트렛 각각은 상이한 개수의 층들로 형성될 수 있다는 점을 유의하여야 한다. 이로 인하여, 하이브리드-그래핀 복합물에 포함되는 환원그래핀 옥사이드 플레이트렛들은 오직 특정 개수의 환원그래핀 옥사이드 층으로 되어있지 않아도 되고, 예를 들어, 단일 층, 이중 층 또는 삼중 층 등으로 된 환원그래핀 옥사이드 플레이트렛들을 포함할 수 있다. 예를 들어, 1 내지 20층으로 구성된 환원그래핀 플레이트렛들이 하이브리드-그래핀 복합물에 포함될 수 있고, 이에 따라 하이브리드-그래핀 복합물에 포함된 환원그래핀 플레이트렛들의 평균적인 층의 개수는 2 내지 10층, 더 바람직하게는 2 내지 5층 사이이다. 상술 하였듯이 2층이상의 시트로 구성되는 것은 하이브리드-그래핀층의 물리적인 특성을 개선하기에 적합하지만, 각 환원그래핀 플레이트렛이 포함하는 평균적인 층의 개수가 너무 많으면 투명도를 감소시킬 수 있다.It should be noted that each of the graphene oxide platelets included in the precursor solution can be formed in a different number of layers. Because of this, the reduced graphene oxide platelets included in the hybrid-graphene composite do not have to have only a certain number of reduced graphene oxide layers, for example reduced graphene in a single layer, double layer, or triple layer. And may include fin oxide platelets. For example, reduced graphene platelets consisting of 1 to 20 layers may be included in the hybrid-graphene composite, thus the average number of layers of reduced graphene platelets included in the hybrid-graphene composite is 2 to 20. 10 layers, more preferably between 2 and 5 layers. As described above, the sheet having two or more layers is suitable for improving the physical properties of the hybrid-graphene layer, but if the average number of layers included in each reduced graphene platelet is too large, transparency may be reduced.
나아가, 비록 3차원적 형태의 탄소 나노 파티클은 2차원적 형상의 환원그래핀 옥사이드 플레이트렛과 비교하여 횡방향으로는 더 짧은 길이를 갖지만, 탄소 나노 파티클을 흑연입자이기 때문에 흑연이 박리되어 2차원 형태를 가지게 된 환원그래핀 옥사이드 플레이트렛 보다 더 많은 층을 가질 수 있다. 그러나, 탄소 나노 파티클은 표면적이 작기 때문에 하이브리드-그래핀층 안에서 주변의 폴리머와 물리적인 인터페이싱 또는 결합(interlocking)을 하기에는 충분하지 않기 때문에 하이브리드-그래핀 층의 물리적 스트레스를 견뎌내는 연성, 탄성, 강도와 관련된 특성을 향상시키는데 크게 기여하지 않을 수도 있다.Furthermore, although three-dimensional carbon nanoparticles have a shorter length in the transverse direction than two-dimensional reduced graphene oxide platelets, since the carbon nanoparticles are graphite particles, graphite is peeled off and thus two-dimensional. It may have more layers than reduced graphene oxide platelets. However, because carbon nanoparticles have a small surface area, they are not sufficient for physical interfacing or interlocking with the surrounding polymer in the hybrid-graphene layer. It may not contribute significantly to improving the relevant characteristics.
또한, 전구체 용액은 이외의 필러들 및/또는 다른 첨가제들을 포함할 수도 있고, 다른 첨가제들은 이온 계면 활성제 및/또는 비-이온 계면 활성제를 포함하는 분산제와 실란 결합제, 유화제, 안정제 등과 같은 결합제를 포함할 수도 있다.In addition, the precursor solution may include other fillers and / or other additives, and other additives may include a dispersant comprising an ionic surfactant and / or a non-ionic surfactant and a binder such as a silane binder, an emulsifier, a stabilizer, or the like. You may.
하이브리드-그래핀 복합물을 형성하는 방법(200)은, 전구체 용액을 에어로졸 액적으로 변환하는 단계(S220)를 포함한다. 상기 도1에서 설명 하였듯이 에어로졸화된 전구체 액적은 아르곤 및/또는 N2와 같은 불활성 가스와 함께 가열로로 운반된다. The method 200 of forming the hybrid-graphene composite includes converting the precursor solution into aerosol droplets (S220). As illustrated in FIG. 1 above, the aerosolized precursor droplets are conveyed to the furnace with an inert gas such as argon and / or N 2 .
하이브리드-그래핀 복합물을 형성하는 방법(200)은, 가열로 내의 에어로졸화된 전구체 액적에 열분해를 가하는 단계(S230)를 포함한다. 가열로는 약 300℃ 내지 1900℃로 가열될 수 있다. 하지만 가열로는 900℃로 가열되는 것이 바람직하다. 가열로를 통과하여 에어로졸화된 전구체가 유동하는 속도는 약 0.1m/sec 내지 약 5m/sec일 수 있다. 상술하였듯이 전구체 액적이 가열로 안에 체류하는 시간은 다양한 요소들에 의해 결정될 수 있다.The method 200 of forming a hybrid-graphene composite includes thermally decomposing aerosolized precursor droplets in a furnace (S230). The furnace may be heated to about 300 ° C to 1900 ° C. However, the heating furnace is preferably heated to 900 ℃. The rate at which the aerosolized precursor flows through the furnace may be from about 0.1 m / sec to about 5 m / sec. As mentioned above, the time for which the precursor droplets remain in the furnace can be determined by various factors.
열분해 프로세스는 물 분자들을 증발시키고, 그래핀 옥사이드 플레이트렛들을 환원 그래핀 옥사이드 플레이트렛들로 환원시킨다. 그래핀 옥사이드 플레이트렛들의 환원 동안, 탄소 나노 파티클들은 환원 그래핀 플레이트렛들 내에 혼입되거나, 그렇지 않으면 환원 그래핀 플레이트렛들과 함께 합성되며, 이에 따라 환원 그래핀 플레이트렛들은 탄소 나노 파티클의 혼합 없이 동일한 열분해 공정이 가해진 환원 그래핀 플레이트렛들과 비교하여 상당히 더 작은 결함 비율을 나타낸다.The pyrolysis process evaporates water molecules and reduces graphene oxide platelets to reducing graphene oxide platelets. During the reduction of graphene oxide platelets, the carbon nanoparticles are incorporated into the reducing graphene platelets or otherwise synthesized with the reducing graphene platelets, thus reducing graphene platelets without mixing of the carbon nanoparticles. It shows a significantly smaller defect rate compared to reduced graphene platelets subjected to the same pyrolysis process.
하이브리드-그래핀 복합물을 형성하는 방법(200)은, 환원 그래핀 플레이트렛들을 포함하는 증기 및 가열로로부터의 가스들은 계면 활성제와 혼합된 수용액을 직접 통과하는 단계(S240)를 포함한다. 여기서 계면 활성제는 수용액 내의 환원 그래핀 플레이트렛들의 재-응집 및 재-스태킹을 억제하는 기능을 한다. 증기는 수용액으로부터 빠져나가게 되지만, 환원 그래핀 플레이트렛들 및 미처 환원 그래핀 플레이트렛들과 합성되지 못한 탄소 나노 파티클들은 수용액에 의해 포집된다. 상술하였듯이, 이러한 과정을 통해 환원 그래핀 플레이트렛들 사이의 재-응집/재-스태킹이 더 적은 용액 공정용 하이브리드-그래핀 복합물이 형성될 수 있다. 환원 그래핀 플레이트렛들 및 탄소 나노 파티클들을 포획하기 위한 수용액은, 도 1의 S140을 참조하여 상술된 용매 와 계면 활성제를 사용할 수 있다.The method 200 of forming a hybrid-graphene composite includes a step (S240) of directly passing an aqueous solution mixed with a surfactant and gases from a steam and a furnace including reducing graphene platelets. The surfactant here serves to inhibit re-aggregation and re-stacking of the reduced graphene platelets in aqueous solution. The vapor leaves the aqueous solution, but carbon nanoparticles that are not synthesized with the reduced graphene platelets and even reduced graphene platelets are collected by the aqueous solution. As described above, this process can form a hybrid-graphene composite for solution processing with less re-agglomeration / re-stacking between the reduced graphene platelets. As the aqueous solution for capturing the reduced graphene platelets and carbon nanoparticles, a solvent and a surfactant described above with reference to S140 of FIG. 1 may be used.
하이브리드-그래핀 복합물의 사용 용도 및 사용하는데 이용될 특정 용액 기반의 공정 방법에 따라, 다양한 종류의 폴리머가 액상 형태로 가열로로부터 증기를 투과시키는 수용액에 포함될 수 있다. 예를 들어, 하이브리드-그래핀 복합물로 형성된 층에서 면 저항을 낮추는 것이 우선시된다면, PETDOT 같은 전기 전도성 폴리머가 수용액 내에 혼합될 수 있다. 또한, 하이브리드-그래핀 복합물로 형성된 층에서 더 우수한 기체/수분 배리어 특성이 우선시된다면, PVA-코-에틸렌(PVA-co-ethylene) 같은 기체/수분 배리어성을 나타내는 폴리머가 수용액 내에 혼합될 수 있다.Depending on the use of the hybrid-graphene composite and the particular solution-based processing method to be used for its use, various types of polymers may be included in the aqueous solution which permeates the vapor from the furnace in liquid form. For example, if lowering the sheet resistance in a layer formed of a hybrid-graphene composite is prioritized, an electrically conductive polymer such as PETDOT may be mixed in the aqueous solution. In addition, polymers exhibiting gas / moisture barrier properties such as PVA-co-ethylene may be mixed into the aqueous solution if better gas / moisture barrier properties are prioritized in the layer formed of the hybrid-graphene composite. .
하이브리드-그래핀 복합물 내의 폴리머가 상술된 예들로 제한되지는 않으며, 원하는 기능을 달성하기 위해 다양한 다른 형태의 폴리머가 수용액 내에 혼합될 수 있음을 유의해야 한다. 폴리머의 양 및 형태가 최종 하이브리드-그래핀 복합물의 점성에 영향을 줄 수도 있고, 나아가 원하는 하이브리드-그래핀 복합물로 원하는 표면 상에 증착/코팅하기 위해 사용될 용액 기반의 공정 방법을 제한할 수도 있다. 또한, 가열로로부터 증기를 투과시키기 이전에 폴리머가 수용액 내에 혼합될 수 있으며, 또는 가열로로부터 증기를 투과시켜 환원 그래핀 플레이트렛과 잔여 탄소 나노 파티클들을 포집한 이후에 폴리머가 수용액 내에 혼합될 수도 있다. 이에 따라, 가열로로부터 증기를 투과시키기 위한 수용액은, 수용액 내부에 혼합되는 폴리머를 용해할 수 있는 유기 용매를 포함할 수 있다. 또한, 하이브리드-그래핀 복합물로 형성되는 하이브리드-그래핀층에서 버블을 감소시키기 위해 유기 용매는 낮은 BP를 가지는 것이 바람직하다. 일 예로, PVA-코-에틸렌 폴리머가 수용액 내에 혼합될 때에 수용액은 유기 용매와 함께 혼합될 수도 있으며, 이러한 유기 용매는 프로파놀(propanol), DMAC, 테트라 부틸 알콜(tetra Butyl alcohol), 피리딘(Pyridine) 및 포름산(Formic acid)을 포함할 수 있으나, 반드시 이에 제한되지는 않는다.It should be noted that the polymer in the hybrid-graphene composite is not limited to the examples described above, and that various other forms of polymer may be mixed in the aqueous solution to achieve the desired function. The amount and shape of the polymer may affect the viscosity of the final hybrid-graphene composite and further limit the solution based processing method to be used for depositing / coating onto the desired surface with the desired hybrid-graphene composite. In addition, the polymer may be mixed into the aqueous solution prior to permeation of the vapor from the furnace, or the polymer may be mixed into the aqueous solution after permeating the vapor from the furnace to collect the reduced graphene platelets and the remaining carbon nanoparticles. have. Accordingly, the aqueous solution for permeating vapor from the heating furnace may include an organic solvent capable of dissolving the polymer mixed in the aqueous solution. It is also preferred that the organic solvent has a low BP in order to reduce bubbles in the hybrid-graphene layer formed of the hybrid-graphene composite. For example, when the PVA-co-ethylene polymer is mixed in an aqueous solution, the aqueous solution may be mixed with an organic solvent, which may be propanol, DMAC, tetra butyl alcohol, or pyridine. ) And formic acid, but are not necessarily limited thereto.
실시예 2Example 2
상술한 바와 같이, 하이브리드-그래핀 복합물로 형성되는 층의 면 저항은 하이브리드-그래핀 복합물 내에 나노 파티클들을 첨가함으로써 개선될 수 있다. 일부 실시예에서, 하이브리드-그래핀 복합물에 포함되는 3차원적 파티클 형상의 필러는 산화 가능한 금속 나노 파티클이다. 산화 가능한 금속 나노 파티클들을 포함하는 하이브리드-그래핀 복합물은, 도 2를 참고하여 상술된 공정들과 유사한 공정들을 이용하여 형성될 수 있다.As mentioned above, the sheet resistance of the layer formed from the hybrid-graphene composite can be improved by adding nanoparticles into the hybrid-graphene composite. In some embodiments, the three-dimensional particle shaped filler included in the hybrid-graphene composite is an oxidizable metal nanoparticle. Hybrid-graphene composites comprising oxidizable metal nanoparticles can be formed using processes similar to those described above with reference to FIG. 2.
간단하게 말해서, 그래핀 옥사이드 플레이트렛과 금속 나노 파티클들을 포함하는 전구체 용액이 하이브리드-그래핀 복합물을 형성하는데 이용될 수 있다. 전구체 용액은 DI 물 및/또는 유기 용매가 혼합된 DI 물로 형성될 수 있다. 전구체 용액 내의 그래핀 옥사이드 플레이트렛은 전구체 용액에 약 0.05%로 포함될 수 있다. 유사하게, 전구체 용액 내의 금속 나노 파티클 파우더는 전구체 용액에 약 0.05%로 포함될 수 있다. 예시적으로, 40ml의 전구체 용액은 내부에 혼합된 0.20g의 그래핀 옥사이드 플레이트렛 및 0.20g의 금속 나노 파티클 파우더를 포함할 수 있다. 금속 나노 파티클로 이용되는 금속의 예들은 백금(Pt), 니켈(Ni), 구리(Cu), 은(Ag), 금(Au) 또는 이들의 혼합물을 포함할 수 있다.In short, a precursor solution comprising graphene oxide platelets and metal nanoparticles can be used to form the hybrid-graphene composite. The precursor solution may be formed from DI water mixed with DI water and / or organic solvent. Graphene oxide platelets in the precursor solution may be included in the precursor solution at about 0.05%. Similarly, the metal nanoparticle powder in the precursor solution may be included at about 0.05% in the precursor solution. For example, 40 ml of the precursor solution may include 0.20 g of graphene oxide platelets and 0.20 g of metal nano particle powder mixed therein. Examples of the metal used as the metal nanoparticles may include platinum (Pt), nickel (Ni), copper (Cu), silver (Ag), gold (Au), or mixtures thereof.
전구체 용액은 에어로졸화되고, 상술된 방식과 유사한 방식으로 에어로졸화된 에어로졸 액적의 열분해 공정이 가해진다. 열분해 프로세스는 물 분자를 증발시키고, 그래핀 옥사이드 플레이트렛을 환원 그래핀 옥사이드 플레이트렛으로 환원시킨다. 가열로 내의 환원분위기는 그래핀 옥사이드 플레이트렛을 환원시킬 수 있지만, 이러한 환원분위기에서는 금속 나노 파티클들이 산화가 되지는 않는다. 따라서, 그래핀 옥사이드 플레이트렛의 환원 동안, 금속 나노 파티클들의 일부는 단순히 증기 내에서 유동할 것이고, 금속 나노 파티클들의 일부는 환원 그래핀 플레이트렛의 표면에 부착된다. The precursor solution is aerosolized and subjected to a pyrolysis process of the aerosolized aerosol droplets in a manner similar to that described above. The pyrolysis process evaporates water molecules and reduces the graphene oxide platelets to reduced graphene oxide platelets. The reducing atmosphere in the furnace can reduce graphene oxide platelets, but the metal nanoparticles are not oxidized in this reducing atmosphere. Thus, during the reduction of graphene oxide platelets, some of the metal nanoparticles will simply flow in the vapor and some of the metal nanoparticles are attached to the surface of the reduced graphene platelet.
환원 그래핀 플레이트렛들의 표면에 붙은 금속 나노 파티클들은 하이브리드-그래핀층 내에서 환원 그래핀 플레이트렛들과 주변의 폴리머 매트릭스간의 인터페이싱을 더 단단히 결합하도록 할 뿐만 아니라, 더 나아가서 환원 그래핀 플레이트렛들간에 전기적 네트워크를 형성하기에 더 용이하게 하는 역할을 한다. 하지만 가열로의 온도 및 에어로졸 액적의 체류시간이 과할 경우, 금속 나노 파티클들이 환원된 그래핀 플레이트렛을 둘러싼 형태로 만들어질 수 있다. 이런 경우에는 오히려 환원 그래핀 플레이트렛의 특성을 잃어버리게 되는 현상이 초래할 수 있다. 금속 나노 파티클의 종류에 따라 상술한 현상들이 생기는 온도와 체류시간이 다를 수 있기 때문에, 금속 나노 파티클이 에어로졸 액적에 포함된 실시예들에서는 포함된 금속 나노 파티클들의 종류에 따라서 가열로의 온도 및 에어로졸 액적의 체류시간이 조정 될 수 있다. 예를 들어, 상기 서술된 금속 나노 파티클 중 하나를 포함하는 경우에 가열로의 온도는 1500℃ 또는 그 이하인 것이 바람직하다.Metal nanoparticles adhering to the surface of the reduced graphene platelets not only allow more tight coupling of the interface between the reduced graphene platelets and the surrounding polymer matrix in the hybrid-graphene layer, but furthermore between the reduced graphene platelets. Serves to make it easier to form electrical networks. However, when the temperature of the furnace and the residence time of the aerosol droplets are excessive, metal nanoparticles may be formed in a form surrounding the reduced graphene platelets. In this case, the phenomenon of losing the characteristics of the reduced graphene platelet may be caused. Since the temperature and residence time at which the above-described phenomena occur may vary depending on the type of the metal nanoparticles, in some embodiments in which the metal nanoparticles are included in the aerosol droplets, the temperature and the aerosol of the heating furnace depend on the type of the metal nanoparticles included. The residence time of the droplets can be adjusted. For example, when including one of the metal nanoparticles mentioned above, it is preferable that the temperature of a heating furnace is 1500 degreeC or less.
환원 그래핀 플레이트렛을 갖는 증기와 증기 내부에서 유동하는 금속 나노 파티클들은, 환원 그래핀 플레이트렛들의 재-응집 및 재-스태킹을 방지하는 계면 활성제와 함께 혼합된 수용액을 직접 통과한다. 비록 증기는 수용액으로부터 빠져나갈 것이지만, 환원 그래핀 플레이트렛들 및 금속 나노 파티클들은 수용액에 의해 포집될 것이므로, 환원 그래핀 플레이트렛들 사이의 재-응집/재-스태킹이 상당히 덜 유발되는 용액 공정용 하이브리드-그래핀 복합물이 형성된다.Steam with reduced graphene platelets and metal nanoparticles flowing inside the vapor pass directly through the mixed aqueous solution with a surfactant that prevents re-aggregation and re-stacking of the reduced graphene platelets. Although the vapor will escape from the aqueous solution, the reduced graphene platelets and metal nanoparticles will be collected by the aqueous solution, so for solution processing where re-agglomeration / re-stacking between the reduced graphene platelets is significantly less likely to occur. Hybrid-graphene complexes are formed.
도 3은 본 발명의 개시된 실시예들에 의해 획득되는, 1) 환원 그래핀 용액으로 형성된 층, 2) 탄소 나노 파티클들을 갖는 하이브리드-그래핀 복합물로 형성된 층, 및 3) 금속 나노 파티클들을 갖는 하이브리드-그래핀 복합물로 형성된 층들이 나타내는 면 저항값들을 비교하여 나타낸 표이다. 또한, 상기 표는 열분해 단계 동안 노의 온도에 따른 층의 면 저항의 차이들을 나타낸다.FIG. 3 shows 1) a layer formed with a reduced graphene solution, 2) a layer formed with a hybrid-graphene composite with carbon nanoparticles, and 3) a hybrid with metal nanoparticles, obtained by the disclosed embodiments of the present invention. Tables compare the surface resistance values of the layers formed of graphene composites. The table also shows the differences in the sheet resistance of the layer with the temperature of the furnace during the pyrolysis step.
실험 결과 중에서, 본 명세서에 논의되는 실시예에 의한 환원 그래핀 플레이트렛의 콜로이드 용액으로 형성된 기준 층의 면 저항은 약 700 Ω/□으로 측정되었으며, 이는 기존의 화학적 환원 또는 열 팽창 방법에 의해 형성된 환원 그래핀 플레이트렛의 콜로이드 용액으로 형성된 층의 면 저항보다 훨씬 낮다. 또한, 구리 나노 파티클들과 혼합된 하이브리드-그래핀 복합물로 형성된 층은 약 600 Ω/□만큼의 낮은 면 저항을 나타내었다. 또한, 탄소 나노 파티클들로 혼합된 하이브리드-그래핀 복합물로 형성된 층의 면 저항은 겨우 약 15 Ω/□로 측정되어, 특히 낮았다.Among the experimental results, the surface resistance of the reference layer formed of the colloidal solution of the reduced graphene platelets according to the examples discussed herein was measured to be about 700 Ω / square, which was formed by conventional chemical reduction or thermal expansion methods. It is much lower than the sheet resistance of the layer formed of the colloidal solution of the reduced graphene platelets. In addition, the layer formed of the hybrid-graphene composite mixed with the copper nanoparticles exhibited a sheet resistance as low as about 600 Ω / □. In addition, the sheet resistance of the layer formed of the hybrid-graphene composite mixed with carbon nanoparticles was only about 15 Ω / square, which was particularly low.
도 3의 표에 도시된 바와 같이, 열분해 온도는 탄소 나노 파티클들을 갖는 하이브리드- 그래핀 복합물을 합성하는데 중요한 역할을 수행한다. 상대적으로 낮은 온도(예를 들어, 80℃)로 열분해 프로세스가 수행된 하이브리드-그래핀 복합물로 형성된 층이, 더 높은 온도(예를 들어, 300℃)로 열분해 프로세스가 수행된 하이브리드-그래핀 복합물로 형성된 층보다 더 큰 면 저항을 나타내었다. 열분해 프로세스가 500℃에서 수행되었을 때에 15 Ω/□ 만큼 낮은 면 저항값을 갖는 층이 형성될 수 있다는 점이 관찰되었다.As shown in the table of FIG. 3, pyrolysis temperature plays an important role in synthesizing hybrid-graphene composites with carbon nanoparticles. A layer formed of a hybrid-graphene composite subjected to a pyrolysis process at a relatively low temperature (eg, 80 ° C.) is a hybrid-graphene composite subjected to a pyrolysis process at a higher temperature (eg 300 ° C.). It showed a larger sheet resistance than the layer formed by. It was observed that when the pyrolysis process was carried out at 500 ° C., a layer with a sheet resistance value as low as 15 Ω / □ could be formed.
도 4는 본 발명의 개시된 실시예들에 의해 획득되는, 1) 환원 그래핀 용액으로 형성된 층, 2) 탄소 나노 파티클들을 갖는 하이브리드-그래핀 복합물로 형성된 층, 및 3) 금속 나노 파티클들을 갖는 하이브리드-그래핀 복합물로 형성된 층들의 판상구조과 단면구조를 보여준다. 도 4에서 보여지듯이 탄소 나노 파티클을 포함한 하이브리드-그래핀 복합물로 형성된 하이브리드 그래핀층의 판상에는 탄소 나노 파티클들을 관찰할 수 없다. 반면 금속 나노 파티클을 포함한 하이브리드-그래핀 복합물로 형성된 하이브리드 그래핀층의 판상에는 금속 나노 파티클들이 붙어있는 모습이 관찰된다. 또한 탄소 나노 파티클을 포함한 하이브리드-그래핀 복합물로 형성된 하이브리드 그래핀층의 단면구조를 보면 포함하고있는 환원 그래핀 플레이트렛의 시트들이 매우 고르게 수평배향이 된 상태로 변형되어있다는 것을 관찰할 수 있다. 이는 그래핀 옥사이드 플레이트렛이 가열로에서 환원되는 동안 함께 가열로 안에 포함되어 있었던 탄소 나노 파티클들이 그래핀 옥사이드 플레이트렛과 함께 함성되어 기존의 환원 그래핀 옥사이드 플레이트렛보다 더 양질의 환원 그래핀 옥사이드 플레이트렛으로 변환된 것이다. 이와 같이 탄소 나노 파티클들과 합성되어 얻어진 환원 그래핀 플레이트렛이 포함된 하이브리드-그래핀 복합물로 형성된 하이브리드-그래핀층의 면저항값은 기존 환원 그래핀 플레이트렛만으로 형성된 막의 면저항값보다 무려 45배가량 더 낮은 수치를 보여준다.FIG. 4 shows 1) a layer formed with a reduced graphene solution, 2) a layer formed with a hybrid-graphene composite with carbon nanoparticles, and 3) a hybrid with metal nanoparticles, obtained by the disclosed embodiments of the present invention. Show the plate and cross-sectional structures of layers formed of graphene composites. As shown in FIG. 4, carbon nanoparticles cannot be observed on a plate of a hybrid graphene layer formed of a hybrid-graphene composite including carbon nanoparticles. On the other hand, the metal nanoparticles are observed on the plate of the hybrid graphene layer formed of the hybrid-graphene composite including the metal nanoparticles. In addition, the cross-sectional structure of the hybrid graphene layer formed of the hybrid-graphene composite including carbon nanoparticles can be observed that the sheets of the reduced graphene platelets included are deformed evenly and evenly oriented. This is because the carbon nanoparticles contained in the furnace together with the graphene oxide platelet were combined with the graphene oxide platelet while the graphene oxide platelet was reduced in the furnace. Is converted into a. The sheet resistance of the hybrid-graphene layer formed of the hybrid-graphene composite including the reduced graphene platelets obtained by synthesizing with the carbon nanoparticles is 45 times higher than the sheet resistance of the film formed only with the reduced graphene platelets. Shows low values.
도 3에서 표에서 보여진 것과 같이 탄소 나노 파티클들을 포함하는 하이브리드-그래핀 복합물이 금속 나노 파티클을 포함한 하이브리드-그래핀층들에 비해 낮은 면 저항을 나타내었지만, 금속 나노 파티클을 갖는 하이브리드-그래핀 복합물 역시 단순한 환원 그래핀 플레이트렛-폴리머 복합물보다는 더 낮은 면 저항을 가지는 것이 관찰되었다. 하지만, 하이브리드-그래핀 복합물로 형성된 층의 선택적인 일부가 상기 층의 다른 일부와 상이한 면 저항을 나타낼 수 있다는 점에서, 산화 가능한 금속 나노 파티클들을 사용하는 것은 특별한 기능을 제공하는 하이브리드-그래핀 복합물로 활용될 수 있다.Although the hybrid-graphene composite including carbon nanoparticles as shown in the table in FIG. 3 exhibited lower sheet resistance compared to the hybrid-graphene layers including metal nanoparticles, the hybrid-graphene composite with metal nanoparticles was also present. It has been observed to have lower surface resistance than simple reduced graphene platelet-polymer composites. However, the use of oxidizable metal nanoparticles provides a special function in that an optional portion of the layer formed of the hybrid-graphene composite may exhibit a different sheet resistance than the other portions of the layer. It can be used as.
보다 구체적으로, 하이브리드-그래핀으로 형성되는 층의 선택적인 영역이 산 또는 레이저로 처리되어서, 처리된 영역 내의 금속 나노 파티클들이 산화될 수 있다. 산화된 금속 나노 파티클들을 갖는 층의 영역은 비-산화된 금속 나노 파티클들을 갖는 영역보다 더 높은 면 저항을 나타낼 것이다. 다시 말해서, 동일한 하이브리드-그래핀 복합물로 형성된 층이 기체/수분 배리어성을 실질적으로 유지하면서 상이한 면 저항을 나타내는 두 개의 상이한 영역으로 패터닝 될 수 있다. 이러한 본 발명의 하이브리드-그래핀 복합물 고유의 특징은 다양한 전기 디바이스에서 봉지 층과 전기적 경로 모두로서 기능할 수 있는 진정한 멀티-기능 층의 제조를 가능하게 한다.More specifically, optional regions of the layer formed of hybrid-graphene may be treated with an acid or laser so that metal nanoparticles within the treated region may be oxidized. Regions of the layer with oxidized metal nanoparticles will exhibit higher surface resistance than regions with non-oxidized metal nanoparticles. In other words, layers formed of the same hybrid-graphene composite can be patterned into two different regions exhibiting different surface resistance while substantially maintaining gas / moisture barrier properties. This unique feature of the hybrid-graphene composite of the present invention allows the fabrication of a true multi-functional layer that can function as both an encapsulation layer and an electrical pathway in a variety of electrical devices.
이를 위하여, 바람직하게는 하이브리드-그래핀 복합물 내에 전기 전도성 폴리머가 포함되지 않는 것이 바람직한데, 이러한 형태의 폴리머는 산화된 금속 나노 파티클들을 갖는 영역과 비-산화된 금속 나노 파티클들을 갖는 영역 사이의 면 저항값의 차이 양을 감소시키기 때문이다. 하이브리드-그래핀층의 선택적인 영역들 사이의 상이한 면 저항을 달성하기 위해 금속 나노 파티클들이 하이브리드-그래핀 복합물에서 이용되는 경우, 더 우수한 기체/수분 배리어성을 달성하기 위해 PVA-코-에틸렌 같은 기체/수분 배리어성을 나타내는 폴리머가 수용액 내에 혼합될 수 있다.To this end, it is preferable that the electrically conductive polymer is not included in the hybrid-graphene composite, which type of polymer has a plane between the region with oxidized metal nanoparticles and the region with non-oxidized metal nanoparticles. This is because the amount of difference in resistance is reduced. When metal nanoparticles are used in hybrid-graphene composites to achieve different surface resistance between selective regions of the hybrid-graphene layer, a gas such as PVA-co-ethylene to achieve better gas / moisture barrier properties Polymers exhibiting moisture barrier properties can be mixed in an aqueous solution.
탄소 나노 파티클에 비해 금속 나노 파티클들을 이용하는 다른 장점은, 환원 그래핀 플레이트렛의 표면에 붙은 금속 나노 파티클들이 폴리머 체인과의 더 강한 물리적 결합을 제공하는 거칠고 주름진 표면 토폴로지(topology)를 제공한다는 것이다. 이러한 토폴로지는, 상대적으로 폴리머 체인과의 더 낮은 인터페이싱 결합을 가질 수도 있는 평탄한 표면을 가지는 탄소 나노 파티클들과 함께 합성된 환원 그래핀 플레이트렛과 대조를 이룬다. 환원 그래핀 플레이트렛과 주위의 폴리머 매트릭스와의 더 강한 계면 결합은 물리적 응력에의 강한 저항성을 제공하며, 이는 하이브리드-그래핀층을 플렉서블 디바이스에 적용하기에 매우 유용하게 할 수 있다.Another advantage of using metal nanoparticles over carbon nanoparticles is that metal nanoparticles adhering to the surface of the reduced graphene platelets provide a rough and corrugated surface topology that provides stronger physical bonding with the polymer chain. This topology contrasts with reduced graphene platelets synthesized with carbon nanoparticles having flat surfaces that may have relatively lower interfacial bonds with the polymer chain. Stronger interfacial bonding of the reduced graphene platelets with the surrounding polymer matrix provides strong resistance to physical stress, which can make the hybrid-graphene layer very useful for applying to flexible devices.
상술한 바와 같이, 환원 그래핀 용액 및 하이브리드-그래핀 복합물은, 반드시 이들로 제한되지는 않는 스핀 코팅, 슬롯(slot) 코팅, 스프레이 코팅, 스크린 프린팅, 딥 코팅 등을 포함하는 다양한 용액 기반의 방법을 이용하여 층들 또는 막들을 형성하기에 매우 적합하다. 우수한 면 저항값 및 기체/수분 배리어성과 함께, 본 명세서에 개시된 환원 그래핀 용액 및 하이브리드-그래핀 복합물은 다양한 애플리케이션을 위한 멀티-기능 하이브리드-그래핀 층을 제조하는데 이용될 수 있다.As noted above, the reduced graphene solution and hybrid-graphene composites are various solution-based methods including, but not limited to, spin coating, slot coating, spray coating, screen printing, dip coating, and the like. It is very suitable for forming layers or films using. With good sheet resistance and gas / moisture barrier properties, the reduced graphene solutions and hybrid-graphene composites disclosed herein can be used to make multi-functional hybrid-graphene layers for a variety of applications.
도 5a는 본 발명의 일 실시예에 따른 하이브리드-그래핀층을 이용하는 예시적인 터치 스크린 패널을 도시하는 평면도이다. 도 5b는 도 5a의 Vb-Vb'에 따른 단면도이다. 도 5a 및 도 5b에서는 본 발명의 전자 디바이스로서 터치 스크린 패널(500)을 도시하였다. 도 5a 및 도 5b를 참조하면, 터치 스크린 패널(500)에서 하이브리드-그래핀층(510), 제1 터치 감지부(520), 제2 터치 감지부(530) 및 절연층(540)이 기판(550)상에 형성되어있다. 도 5a에서는 설명의 편의를 위해 절연층(550)을 도시하지 않았으며, 하이브리드-그래핀층(510)에 대한 해칭을 도시하였다.5A is a plan view illustrating an exemplary touch screen panel using a hybrid-graphene layer in accordance with one embodiment of the present invention. 5B is a cross-sectional view taken along line Vb-Vb 'of FIG. 5A. 5A and 5B illustrate a touch screen panel 500 as an electronic device of the present invention. 5A and 5B, in the touch screen panel 500, the hybrid-graphene layer 510, the first touch detector 520, the second touch detector 530, and the insulating layer 540 are formed of a substrate ( 550). In FIG. 5A, the insulation layer 550 is not illustrated for convenience of description, and hatching of the hybrid graphene layer 510 is illustrated.
도 5a 및 도 5b를 참조하면, 기판(550) 상에 하이브리드-그래핀층(510)이 형성된다. 하이브리드-그래핀층(510)은 폴리머 매트릭스에 분산된 환원 그래핀 옥사이드 플레이트렛 및 금속 나노 파티클들로 이루어진 하이브리드-그래핀 복합물로 형성되었다. 하이브리드-그래핀층(510)은 도전 영역인 하나 이상의 제1 영역(512)과 비도전 영역인 하나 이상의 제2 영역(514)으로 구성된다. 본 명세서에서 도전 영역 및 비도전 영역은 상기 두 영역간에 상대적인 면저항 값에 의해 표현되었다. 다시 말해서 비도전 영역은 도전 영역에 비해 상대적으로 높은 면저항 값을 가지며, 이에 따라 도전 영역에 비해 상대적으로 낮은 전기적 전도성를 가지는 영역을 지칭한다. 제1 영역(512)과 제2 영역(514)의 면저항값의 차이를 이용하여 하이브리드-그래핀층(510)은 터치 스크린 패널(500)을 구현할 수 있다. 제1 영역(512)과 제2 영역(514) 사이의 면저항 값의 차이는 제 1 영역(512)과 제2 영역(514)이 디바이스에 의해서 각각 구별이 될 수 있을 만큼 충분한 차이를 가진다.5A and 5B, a hybrid graphene layer 510 is formed on the substrate 550. The hybrid-graphene layer 510 was formed of a hybrid-graphene composite composed of reduced graphene oxide platelets and metal nanoparticles dispersed in a polymer matrix. The hybrid-graphene layer 510 is composed of one or more first regions 512, which are conductive regions, and one or more second regions 514, which are non-conductive regions. In the present specification, the conductive region and the non-conductive region are expressed by relative sheet resistance values between the two regions. In other words, the non-conductive region has a relatively high sheet resistance value compared to the conductive region, and thus refers to a region having a relatively low electrical conductivity compared to the conductive region. The hybrid graphene layer 510 may implement the touch screen panel 500 by using the difference between the sheet resistance values of the first region 512 and the second region 514. The difference in the sheet resistance value between the first region 512 and the second region 514 is sufficiently different so that the first region 512 and the second region 514 can be distinguished by the device, respectively.
하이브리드-그래핀층(510)의 특정 부분이 그 외의 부분과 상이한 면저항 값을 갖게 되는 것은 하이브리드-그래핀층(510) 특정 부위에 위치한 하이브리드-그래핀 복합물 내의 금속 나노 파티클들의 산화 상태에 따라서 결정된다. 하이브리드-그래핀층(510)의 제1 영역(512)에서는 환원 그래핀 옥사이드 플레이트렛들과 산화되지 않은 금속 나노 파티클들이 폴리머 매트릭스에 분산되어 형성되어 있다. 반면 하이브리드-그래핀층(510)의 제2 영역(514)에서는 환원 그래핀 옥사이드 플레이트렛들과 산화된 금속 나노 파티클들이 폴리머 매트릭스에 분산되어 형성되어 있다.It is determined by the oxidation state of the metal nanoparticles in the hybrid-graphene composite located at the specific portion of the hybrid-graphene layer 510 to have a specific sheet resistance value different from the other portions of the hybrid-graphene layer 510. In the first region 512 of the hybrid graphene layer 510, reduced graphene oxide platelets and non-oxidized metal nanoparticles are dispersed in a polymer matrix. On the other hand, in the second region 514 of the hybrid-graphene layer 510, reduced graphene oxide platelets and oxidized metal nanoparticles are dispersed in a polymer matrix.
하이브리드-그래핀층(510) 상에는 절연층(540)이 형성된다. 절연층(540)은 하이브리드-그래핀층(510)의 각각의 제1 영역(512)의 일부 영역을 오픈시키는 개구부를 갖는다. 절연층(540)은 하이브리드-그래핀층(510)의 제1 영역(512)과 제1 터치 감지부(520)를 절연시키기 위한 구성으로서, 절연 물질로 형성되고, 연성의 투명 절연 물질로 형성될 수 있다.An insulating layer 540 is formed on the hybrid graphene layer 510. The insulating layer 540 has an opening that opens a portion of each first region 512 of the hybrid-graphene layer 510. The insulating layer 540 is configured to insulate the first region 512 of the hybrid graphene layer 510 from the first touch sensing unit 520. The insulating layer 540 is formed of an insulating material and may be formed of a flexible transparent insulating material. Can be.
절연층(540) 상에 제1 터치 감지부(520)가 형성된다. 제1 터치 감지부(520)는 도전성 물질로 형성된다. 예를 들어, 제1 터치 감지부(520)는 ITO와 같은 투명 도전성 물질로 형성될 수도 있고, 메쉬(mesh) 구조의 금속 물질로 형성될 수도 있다. 제1 터치 감지부(520)는 복수의 감지 전극을 갖고, 제1 터치 감지부(520)의 복수의 감지 전극은 제1 방향으로 서로 연결되도록 형성된다. 예를 들어, 도 5a에 도시된 바와 같이 제1 터치 감지부(520)의 복수의 감지 전극은 평면 상에서 세로 방향으로 서로 연결되도록 형성되어, 제1 터치 감지부(520)도 세로 방향으로 연장된다. The first touch sensing unit 520 is formed on the insulating layer 540. The first touch sensing unit 520 is formed of a conductive material. For example, the first touch sensing unit 520 may be formed of a transparent conductive material such as ITO or may be formed of a metal material having a mesh structure. The first touch sensing unit 520 has a plurality of sensing electrodes, and the plurality of sensing electrodes of the first touch sensing unit 520 are connected to each other in a first direction. For example, as illustrated in FIG. 5A, the plurality of sensing electrodes of the first touch sensing unit 520 are formed to be connected to each other in a vertical direction on a plane, and the first touch sensing unit 520 also extends in the vertical direction. .
하이브리드-그래핀층(510) 및 절연층(540) 상에 제2 터치 감지부(530)가 형성된다. 제2 터치 감지부(530)는 도전성 물질로 형성되고, 제1 터치 감지부(520)와 동일한 물질로 형성될 수 있다. 제2 터치 감지부(530)는 복수의 감지 전극을 갖고, 제2 터치 감지부(530)의 복수의 감지 전극은 제2 방향으로 서로 분리되도록 형성된다. 제2 터치 감지부(530)의 복수의 감지 전극은 서로 분리되도록 형성되나, 도 5b에 도시된 바와 같이, 서로 인접하는 제2 터치 감지부(530)의 감지 전극은 절연층(540)의 개구부를 통해 하이브리드-그래핀층(510)의 동일한 제1 영역(512)과 접하고, 하이브리드-그래핀층(510)의 제1 영역(512)을 통해 전기적으로 연결된다. 따라서, 동일한 행에 위치한 제2 터치 감지부(530)의 감지 전극은 모두 전기적으로 연결된다.The second touch sensing unit 530 is formed on the hybrid graphene layer 510 and the insulating layer 540. The second touch sensing unit 530 may be formed of a conductive material and may be formed of the same material as the first touch sensing unit 520. The second touch sensing unit 530 has a plurality of sensing electrodes, and the plurality of sensing electrodes of the second touch sensing unit 530 are formed to be separated from each other in a second direction. Although the plurality of sensing electrodes of the second touch sensing unit 530 are formed to be separated from each other, as illustrated in FIG. 5B, the sensing electrodes of the second touch sensing unit 530 adjacent to each other are the openings of the insulating layer 540. Contact the same first region 512 of the hybrid-graphene layer 510, and are electrically connected to each other through the first region 512 of the hybrid-graphene layer 510. Therefore, all of the sensing electrodes of the second touch sensing unit 530 positioned in the same row are electrically connected.
터치 스크린 패널(500)은 제1 터치 감지부(520) 및 제2 터치 감지부(530)를 사용하여 사용자로부터의 터치 입력을 감지한다. 예를 들어, 제1 터치 감지부(520) 및 제2 터치 감지부(530) 중 하나는 제1 방향 감지 전극 패턴이고, 다른 하나는 제2 방향 감지 전극 패턴일 수 있다. 제1 방향 감지 전극 패턴은 사용자의 터치 입력에 대한 제1 방향(예를 들어, Y축 방향) 좌표를 감지하기 위한 감지 전극 패턴이고, 제2 방향 감지 전극 패턴은 사용자의 터치 입력에 대한 제2 방향(예를 들어, X축 방향) 좌표를 감지하기 위한 감지 전극 패턴이다. 따라서, 터치 스크린 패널(500)의 소정의 위치에 사용자의 터치가 발생하는 경우, 터치 스크린 패널(500)은 제1 방향 감지 전극 패턴에서 감지된 제1 방향 좌표 및 제2 방향 감지 전극 패턴에서 감지된 제2 방향 좌표를 조합하여 사용자의 터치 위치를 감지할 수 있다.The touch screen panel 500 detects a touch input from a user by using the first touch detector 520 and the second touch detector 530. For example, one of the first touch sensing unit 520 and the second touch sensing unit 530 may be a first direction sensing electrode pattern, and the other may be a second direction sensing electrode pattern. The first direction sensing electrode pattern is a sensing electrode pattern for sensing a first direction (eg, Y-axis direction) coordinates of the user's touch input, and the second direction sensing electrode pattern is a second for the user's touch input. A sensing electrode pattern for sensing a direction (eg, X-axis direction) coordinate. Therefore, when a user's touch occurs at a predetermined position of the touch screen panel 500, the touch screen panel 500 detects the first direction coordinates and the second direction sensing electrode pattern detected by the first direction sensing electrode pattern. The touched position of the user may be sensed by combining the second direction coordinates.
한편, 본 명세서에서는 제1 터치 감지부(520) 및 제2 터치 감지부(530)가 모두 감지 전극을 포함하는 것으로 설명되었으나, 제1 터치 감지부(520) 및 제2 터치 감지부(530) 중 하나는 정전 용량의 변화를 감지하기 위한 감지 전극 패턴이고, 다른 하나는 터치 위치를 검출하기 위한 감지 신호를 공급하는 구동 전극 패턴일 수 있다. 이 경우, 사용자의 터치가 실제로 발생한 위치 부근의 구동 전극 패턴에 터치 위치를 검출하기 위한 감지 신호가 인가된 경우, 사용자의 터치가 실제로 발생한 위치 부근의 감지 전극 패턴에서 발생하는 정전 용량의 변화량이 가장 크게 측정될 수 있다. 따라서, 터치 스크린 패널(500)은 구동 전극 패턴에 의해 공급된 감지 신호 및 감지 전극 패턴에서 감지된 정전 용량의 변화량에 기초하여 사용자의 터치 위치를 감지할 수 있다.Meanwhile, in the present specification, although both the first touch detector 520 and the second touch detector 530 are described as including sensing electrodes, the first touch detector 520 and the second touch detector 530 are described. One may be a sensing electrode pattern for sensing a change in capacitance, and the other may be a driving electrode pattern for supplying a sensing signal for detecting a touch position. In this case, when the detection signal for detecting the touch position is applied to the driving electrode pattern near the position where the user's touch actually occurred, the amount of change in capacitance generated in the sensing electrode pattern near the position where the user's touch actually occurred is the most. It can be measured largely. Therefore, the touch screen panel 500 may detect the touch position of the user based on the sensing signal supplied by the driving electrode pattern and the amount of change in capacitance sensed in the sensing electrode pattern.
도 5a 및 도 5b에서는 제1 터치 감지부(520)와 제2 터치 감지부(530)가 각각 분리되어 도전성 물질로 형성되는 것으로 도시하였으나, 제1 터치 감지부(520)와 제2 터치 감지부(530)도 하이브리드-그래핀층을 사용하여 형성될 수 있다. 예를 들어, 도 5a및 도 5b에 도시된 바와 같은 제1 터치 감지부(520)와 제2 터치 감지부(530)에 대응하는 영역은 도전 영역이고, 제1 터치 감지부(520)와 제2 터치 감지부(530) 사이의 공간이 비도전 영역은 비도전 영역인 하이브리드-그래핀층이, 개구부를 갖는 절연층(560) 상에 형성될 수 있다. In FIGS. 5A and 5B, although the first touch detector 520 and the second touch detector 530 are separated from each other and formed of a conductive material, the first touch detector 520 and the second touch detector are illustrated. 530 may also be formed using a hybrid-graphene layer. For example, the areas corresponding to the first touch sensor 520 and the second touch sensor 530 as shown in FIGS. 5A and 5B are conductive areas, and the first touch sensor 520 and the first touch sensor 520 are formed. In the space between the two touch sensing units 530, the hybrid-graphene layer, which is a non-conductive region, may be formed on the insulating layer 560 having an opening.
본 발명의 일 실시예에 따른 터치 스크린 패널(500)에서는 사용자의 터치 입력을 감지하기 위한 감지 전극으로 하이브리드-그래핀층(510)을 사용한다. 상술한 바와 같이 하이브리드-그래핀층(510)을 기판(550)에 형성하기 위해 용액 공정을 사용하므로, 기존의 도전성 물질을 형성하기 위한 진공 증착 등과 같은 공정을 수행하지 않을 수 있고, 이에 의해 공정 비용이 감소되는 효과가 있다. 또한, 터치 스크린 패널(500)에서 감지 전극으로 사용되는 하이브리드-그래핀층(510)은 상술한 바와 같이 우수한 기체/수분 배리어층으로 기능할 수 있다. 따라서, 터치 스크린 패널(500)이 사용자 터치 입력 감지 기능뿐만 아니라 배리어 기능 또한 수행하게 되어, 기체나 수분의 침투를 막기 위한 별도의 배리어 필름의 사용이 불필요하고, 이에 따라 제조 공정이 단순화되고 최종 제품의 두께가 감소하는 효과가 있다. 또한, 터치 스크린 패널(500)의 ITO 물질을 하이브리드-그래핀층(510)으로 대체하여 플렉서블 전자 디바이스 구현이 가능하다. 터치스크린 패널(500)은 하이브리드-그래핀층(510)과 같이 패터닝이 필요하지 않은 또 다른 하이브리드-그래핀층을 추가로 포함할 수 있으며, 패터닝이 필요하지 않은 하이브리드-그래핀층은 탄소 나노 파티클을 이용한 하이브리드-그래핀 복합물로 형성된 층일 수 있다. 또한 다른 실시예에서는 금속 나노 파티클을 포함하는 하이브리드-그래핀층 없이 탄소 나노 파티클을 사용한 하이브리드-그래핀 복합물로 형성된 하이브리드-그래핀층만으로 구성될 수도 있다. In the touch screen panel 500 according to the exemplary embodiment of the present invention, the hybrid graphene layer 510 is used as a sensing electrode for sensing a user's touch input. As described above, since the solution process is used to form the hybrid-graphene layer 510 on the substrate 550, a process such as vacuum deposition for forming a conventional conductive material may not be performed, thereby processing costs. This has the effect of being reduced. In addition, the hybrid graphene layer 510 used as the sensing electrode in the touch screen panel 500 may function as an excellent gas / moisture barrier layer as described above. Accordingly, the touch screen panel 500 performs not only a user's touch input sensing function but also a barrier function, thus eliminating the use of a separate barrier film to prevent the penetration of gas or moisture, thereby simplifying the manufacturing process and the final product. There is an effect of reducing the thickness of. In addition, the flexible electronic device may be implemented by replacing the ITO material of the touch screen panel 500 with the hybrid graphene layer 510. The touch screen panel 500 may further include another hybrid graphene layer that does not require patterning, such as the hybrid graphene layer 510, and the hybrid graphene layer that does not require patterning may use carbon nanoparticles. It may be a layer formed of a hybrid-graphene composite. In another embodiment, the hybrid-graphene layer formed of the hybrid-graphene composite using the carbon nanoparticles without the hybrid-graphene layer including the metal nanoparticles may be formed.
도 6는 본 발명의 일 실시예에 따른 하이브리드-그래핀층을 이용하는 예시적인 박막 트랜지스터를 도시하는 단면도이다. 도 6에서는 본 발명의 전자 디바이스로서 박막 트랜지스터(600)를 도시하였다. 도 6를 참조하면, 박막 트랜지스터(600)는 게이트 전극(630), 액티브층(620) 및 하이브리드-그래핀층(610)을 포함한다. 도 6에서는 박막 트랜지스터(600)가 인버티드 스태거드(inverted staggered) 구조의 박막 트랜지스터인 것으로 도시하였다.6 is a cross-sectional view illustrating an exemplary thin film transistor using a hybrid-graphene layer according to an embodiment of the present invention. 6 illustrates a thin film transistor 600 as an electronic device of the present invention. Referring to FIG. 6, the thin film transistor 600 includes a gate electrode 630, an active layer 620, and a hybrid graphene layer 610. In FIG. 6, the thin film transistor 600 is a thin film transistor having an inverted staggered structure.
기판(690) 상에 게이트 전극(630)이 형성된다. 게이트 전극(630)은 도전성 물질로 형성되며, 예를 들어, 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오디뮴(Nd) 및 구리(Cu) 중 하나, 또는, 이들의 합금으로 형성될 수 있다. 게이트 전극(630) 상에 게이트 전극(630)과 엑티브층(620)을 절연시키기 위한 게이트 절연층(691)이 형성된다. 게이트 절연층(691)은 실리콘 산화막, 실리콘 질화막 또는 이들의 복층으로 이루어질 수 있다. 게이트 절연층(691) 상에 게이트 전극(620)과 중첩하도록 액티브층(630)이 형성된다. 액티브층(630)은 박막 트랜지스터(600) 구동 시 채널이 형성되는 층으로서, 옥사이드 반도체로 형성될 수 있다. The gate electrode 630 is formed on the substrate 690. The gate electrode 630 is formed of a conductive material, for example, molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium (Nd) And copper (Cu), or an alloy thereof. A gate insulating layer 691 is formed on the gate electrode 630 to insulate the gate electrode 630 and the active layer 620. The gate insulating layer 691 may be formed of a silicon oxide film, a silicon nitride film, or a multilayer thereof. The active layer 630 is formed on the gate insulating layer 691 so as to overlap the gate electrode 620. The active layer 630 is a layer in which a channel is formed when the thin film transistor 600 is driven and may be formed of an oxide semiconductor.
액티브층(630)이 형성된 게이트 절연층(691) 상에 하이브리드-그래핀층(610)이 형성된다. 하이브리드-그래핀층(610)은 제1 영역(640, 650) 및 제2 영역(660)을 갖는다. 하이브리드-그래핀층(610)의 제2 영역(660)은 하이브리드-그래핀층(610)의 제1 영역(640, 650)보다 높은 면저항값을 갖는다. 하이브리드-그래핀층(610)의 제1 영역(640, 650)은 전극으로서 사용되고, 제2 영역(660)은 절연 부분으로 사용될 수 있도록, 제1 영역(640, 650)과 제2 영역(660) 사이의 전기적 특성의 차이는 충분히 크다. 하이브리드-그래핀층(610)의 제1 영역(640, 650) 및 제2 영역(660)을 구성하는 하이브리드-그래핀 복합물은 도 5a 및 도 5b에서 설명된 하이브리드-그래핀층(510)의 제1 영역(512) 및 제2 영역(514)을 각각 구성하는 하이브리드-그래핀 복합물과 동일하다.The hybrid graphene layer 610 is formed on the gate insulating layer 691 in which the active layer 630 is formed. Hybrid-graphene layer 610 has a first region 640, 650 and a second region 660. The second region 660 of the hybrid graphene layer 610 has a higher sheet resistance value than the first regions 640 and 650 of the hybrid graphene layer 610. The first regions 640 and 650 and the second region 660 are used as electrodes and the second regions 660 as the insulating portions of the hybrid-graphene layer 610. The difference in electrical characteristics between them is large enough. The hybrid-graphene composite constituting the first region 640, 650 and the second region 660 of the hybrid-graphene layer 610 is the first of the hybrid-graphene layer 510 described in FIGS. 5A and 5B. It is identical to the hybrid-graphene composite that makes up region 512 and second region 514, respectively.
하이브리드-그래핀층(610)의 제2 영역(660)이 제1 영역(640, 650) 보다 높은 면저항값을 갖게 하기 위해, 상술한 바와 같이 하이브리드-그래핀층(610)의 제2 영역(660)에 대해 산 처리 방법이 사용될 수 있다. 이 경우, 하이브리드-그래핀층(610)의 제2 영역(660)에 대한 산 처리는 하이브리드-그래핀층(610)이 액티브층(620) 및 게이트 절연층(691) 상에 코팅된 후 이루어질 수도 있고, 산 처리가 먼저 수행된 후 하이브리드-그래핀층(610)이 코팅될 수도 있다. 또한 상술한 바와 같이 하이브리드-그래핀층(610)의 제2 영역(660)에 대해 레이저 처리 방법을 사용하여 제2 영역(660)에 표면 및 매립되어 있는 금속 나노 파티클들을 산화시킬 수 있다.In order for the second region 660 of the hybrid-graphene layer 610 to have a higher sheet resistance value than the first regions 640 and 650, the second region 660 of the hybrid-graphene layer 610 as described above. Acid treatment methods can be used for the present invention. In this case, the acid treatment of the second region 660 of the hybrid graphene layer 610 may be performed after the hybrid graphene layer 610 is coated on the active layer 620 and the gate insulating layer 691. After the acid treatment is first performed, the hybrid graphene layer 610 may be coated. In addition, as described above, the second region 660 of the hybrid-graphene layer 610 may be oxidized using the laser treatment method to oxidize the metal nanoparticles embedded in the second region 660.
하이브리드-그래핀층(610)의 제1 영역(640, 650) 각각은 액티브층(620)과 접하고, 하이브리드-그래핀층(600)의 제2 영역(660)은 제1 영역(640)과 제1 영역(660)을 절연시킨다. 하이브리드-그래핀층(610)의 제1 영역(640, 650) 중 하나는 박막 트랜지스터(600)의 소스 전극으로 기능하고, 다른 하나는 박막 트랜지스터(600)의 드레인 전극으로 기능한다. Each of the first regions 640 and 650 of the hybrid-graphene layer 610 is in contact with the active layer 620, and the second region 660 of the hybrid-graphene layer 600 is the first region 640 and the first region. Insulate region 660. One of the first regions 640 and 650 of the hybrid graphene layer 610 serves as a source electrode of the thin film transistor 600, and the other serves as a drain electrode of the thin film transistor 600.
옥사이드 반도체로 형성된 액티브층을 포함하는 박막 트랜지스터의 경우, 옥사이드의 특성 향상을 위하여 200℃ 이상의 고온 열처리를 통한 결정화 공정이 필요하다. 다만, 고온 열처리가 수행되는 과정에서 일반적으로 금속으로 형성되는 소스 전극 및 드레인 전극과 옥사이드 반도체로 형성된 액티브층의 산화가 발생될 수 있어, 고온 열처리에 어려움이 있다. 그러나, 본 발명의 일 실시예에 따른 박막 트랜지스터(600)에서는 소스 전극 및 드레인 전극으로 금속 전극을 사용하는 대신 하이브리드-그래핀층(610)을 사용하므로, 옥사이드의 특성 향상을 위한 고온 열처리 시에 발생할 수 있는 전극 산화 현상을 방지할 수 있어, 박막 트랜지스터(600)의 안정적인 전기적 특성이 확보되고, 액티브층(620)과 소스 전극 및 드레인 전극 사이의 안정적인 오믹 컨택(Ohmic contact) 또한 확보될 수 있다.In the case of a thin film transistor including an active layer formed of an oxide semiconductor, a crystallization process through high temperature heat treatment of 200 ° C. or more is required to improve oxide characteristics. However, in the process of performing the high temperature heat treatment, the source layer and the drain electrode, which are generally formed of metal, and the active layer formed of the oxide semiconductor may be oxidized, thereby causing difficulty in high temperature heat treatment. However, in the thin film transistor 600 according to the exemplary embodiment of the present invention, the hybrid-graphene layer 610 is used instead of the metal electrode as the source electrode and the drain electrode, and thus may occur during high temperature heat treatment to improve the oxide characteristics. Electrode oxidation may be prevented, and thus stable electrical characteristics of the thin film transistor 600 may be secured, and stable ohmic contact between the active layer 620 and the source electrode and the drain electrode may also be secured.
또한, 옥사이드 반도체로 형성된 액티브층을 포함하는 박막 트랜지스터의 소스 전극 및 드레인 전극을 형성하는 경우, 소스 전극 및 드레인 전극으로 사용되는 금속 물질을 스퍼터링(sputtering)과 같은 증착 방식이 사용되는데, 스퍼터링에 의해 액티브층이 손상될 수 있다. 따라서, 액티브층의 손상을 방지하기 위해, 액티브층 상에 에치 스타퍼(etch stopper)를 형성한 후 소스 전극 및 드레인 전극을 형성하는 방식이 일반적으로 사용되고 있다. 그러나, 본 발명의 일 실시예에 따른 박막 트랜지스터(600)에서는 증착을 통해 형성되는 소스 전극 및 드레인 전극으로 금속 전극을 사용하는 대신, 용액 공정을 사용하여 코팅되는 하이브리드-그래핀층(610)을 사용하므로, 에치 스타퍼를 형성하지 않아도 되고, 이에 따라 제조 비용 및 제조 공정 시간을 감소시킬 수 있다.In addition, when forming a source electrode and a drain electrode of a thin film transistor including an active layer formed of an oxide semiconductor, a deposition method such as sputtering a metal material used as the source electrode and the drain electrode is used. The active layer may be damaged. Therefore, in order to prevent damage to the active layer, a method of forming a source electrode and a drain electrode after forming an etch stopper on the active layer is generally used. However, in the thin film transistor 600 according to an embodiment of the present invention, instead of using a metal electrode as a source electrode and a drain electrode formed through deposition, a hybrid-graphene layer 610 coated using a solution process is used. Therefore, it is not necessary to form an etch stopper, thereby reducing manufacturing cost and manufacturing process time.
또한, 박막 트랜지스터의 각각의 전극들 및 액티브층을 외부로부터의 기체 및 수분으로부터 보호하기 위해 박막 트랜지스터 상에 형성되는 패시베이션층이 일반적으로 사용된다. 그러나, 본 발명의 일 실시예에 따른 박막 트랜지스터(600)에서는 소스 전극 및 드레인 전극으로 사용되는 하이브리드-그래핀층(610)이 상술한 바와 같은 우수한 기체/수분 배리어 특성을 가지므로, 하이브리드-그래핀층(610)이 패시베이션층과 같은 기능을 수행할 수 있다. 따라서, 별도의 패시베이션층이 형성되지 않아도 되므로, 패시베이션층 형성에 필요한 추가적인 비용을 감소시킬 수 있다.In addition, a passivation layer formed on the thin film transistor is generally used to protect each of the electrodes and the active layer of the thin film transistor from gas and moisture from the outside. However, in the thin film transistor 600 according to the exemplary embodiment of the present invention, since the hybrid-graphene layer 610 used as the source electrode and the drain electrode has the excellent gas / moisture barrier characteristics as described above, the hybrid-graphene layer 610 may perform the same function as the passivation layer. Therefore, since a separate passivation layer does not need to be formed, it is possible to reduce additional costs required for forming the passivation layer.
도 6에서는 소스 전극 및 드레인 전극만이 하이브리드-그래핀층(610)으로 형성된 것으로 도시하였으나, 게이트 전극 또한 하이브리드-그래핀층으로 형성될 수 있다. 또한, 도 6에서는 박막 트랜지스터(600)가 인버티드 스태거드 구조의 박막 트랜지스터인 것으로 도시하였으나, 코플래너 구조의 박막 트랜지스터에도 전극 형성 시 하이브리드-그래핀층(610)이 사용될 수 있다. 또한, 옥사이드 반도체가 아닌 비정질 실리콘, 다결정 실리콘 등과 같은 물질로도 액티브층(620)이 형성될 수 있다.In FIG. 6, only the source electrode and the drain electrode are illustrated as being formed of the hybrid graphene layer 610, but the gate electrode may also be formed of the hybrid graphene layer. In addition, although the thin film transistor 600 is illustrated as an inverted staggered thin film transistor in FIG. 6, the hybrid-graphene layer 610 may be used when forming the electrode in the thin film transistor having the coplanar structure. In addition, the active layer 620 may be formed of a material such as amorphous silicon, polycrystalline silicon, and the like instead of an oxide semiconductor.
이와 같은 본 발명의 일 실시예에 의한 하이브리드-그래핀층을 이용한 소자는, 실리콘 불순물을 고온에서 확산 공정을 통해 도핑하여 전기 소자로 제작하는 종래의 반도체 공정을 대체한다. 그리고 고온 공정 없이 그래핀로 이루어진 전기 소자를 하이브리드-그래핀층안에 내장시킬 수 있으므로, 투명하고 휘어지기 쉬운 디스플레이 분야 등 다양한 분야에 응용될 수 있다. 이러한 투명 폴리머 구조물의 제조방법은 폴리머 MEMS 분야에 또한 적용이 가능하다.The device using the hybrid-graphene layer according to the embodiment of the present invention replaces the conventional semiconductor process of fabricating an electric device by doping silicon impurities at a high temperature through a diffusion process. In addition, since a graphene electric device can be embedded in a hybrid-graphene layer without a high temperature process, it can be applied to various fields such as a transparent and flexible display field. The manufacturing method of such a transparent polymer structure is also applicable to the field of polymer MEMS.
*박막 트랜지스터(600)은 하이브리드-그래핀층(610)과 같이 패터닝이 필요하지 않은 또 다른 하이브리드-그래핀층을 추가로 포함할 수 있으며, 패터닝이 필요하지 않은 하이브리드-그래핀층은 탄소 나노 파티클을 이용한 하이브리드-그래핀 복합물로 형성된 층일 수 있다. 또한 다른 실시예에서는 금속 나노 파티클을 포함하는 하이브리드-그래핀층 없이 탄소 나노 파티클을 사용한 하이브리드-그래핀 복합물로 형성된 하이브리드-그래핀층만으로 구성될 수도 있다. 탄소 나노 파티클을 사용하여 형성된 하이브리드-그래핀 복합물로 만들어진 하이브리드-그래핀층은 액티브층을 보호하는 동시에 소스/드레인 간의 체널 단축을 돕는 층으로 사용될 수 있다. The thin film transistor 600 may further include another hybrid graphene layer that does not require patterning, such as the hybrid graphene layer 610, and the hybrid graphene layer that does not require patterning may use carbon nanoparticles. It may be a layer formed of a hybrid-graphene composite. In another embodiment, the hybrid-graphene layer formed of the hybrid-graphene composite using the carbon nanoparticles without the hybrid-graphene layer including the metal nanoparticles may be formed. Hybrid-graphene layers made of hybrid-graphene composites formed using carbon nanoparticles can be used as layers to protect the active layer while helping to shorten the channel between the source and the drain.
도 7은 본 발명의 일 실시예에 따른 하이브리드-그래핀층을 이용하는 예시적인 유기 발광 표시 장치를 도시하는 단면도이다. 도 7에서는 본 발명의 전자 디바이스로서 유기 발광 표시 장치(700)를 도시하였다. 도 7을 참조하면, 유기 발광 표시 장치(700)는 애노드(751), 유기 발광층(752) 및 캐소드(753)를 포함하는 유기 발광 소자(750), 보조 전극(740) 및 격벽(760)을 포함한다. 도 7에서는 설명의 편의를 위해 평탄화층(711) 상에 형성된 유기 발광 소자(750), 보조 전극(740) 및 격벽(760)만을 도시하였으며, 유기 발광 표시 장치(700) 구동에 필요한 박막 트랜지스터 등에 대한 도시는 생략하였다. 본 명세서에서 유기 발광 표시 장치(700)는 탑 에미션(top emission) 방식의 유기 발광 표시 장치이다.7 is a cross-sectional view illustrating an exemplary organic light emitting display device using a hybrid graphene layer according to an exemplary embodiment of the present invention. 7 illustrates an organic light emitting display 700 as an electronic device of the present invention. Referring to FIG. 7, the organic light emitting diode display 700 includes an organic light emitting diode 750 including an anode 751, an organic emission layer 752, and a cathode 753, an auxiliary electrode 740, and a partition 760. Include. In FIG. 7, only the organic light emitting diode 750, the auxiliary electrode 740, and the partition wall 760 formed on the planarization layer 711 are illustrated for convenience of description, and may be a thin film transistor required to drive the organic light emitting display 700. The illustration is omitted. In the present specification, the organic light emitting diode display 700 is a top emission type organic light emitting diode display.
평탄화층(711) 상에 애노드(751), 유기 발광층(752) 및 캐소드(753)를 포함하는 유기 발광 소자(750)가 형성된다. 평탄화층(711) 상에 형성되는 애노드(751)는 반사율이 우수한 도전층인 반사층(755) 및 반사층(755) 상에 형성되고 유기 발광층(752)에 정공(hole)을 공급하기 위해 일함수가 높은 도전성 물질로 이루어진 투명 도전층(754)을 포함한다. 애노드(751) 상에 유기 발광층(752)이 형성된다. 유기 발광층(752) 상에 형성되는 캐소드(753)는 유기 발광층(752)에 전자(electron)을 공급하기 위해 일함수가 낮은 도전성 물질로 이루어진 메탈층(756) 및 메탈층(756) 상에 형성되는 하이브리드-그래핀층(710)을 포함한다. An organic light emitting device 750 including an anode 751, an organic light emitting layer 752, and a cathode 753 is formed on the planarization layer 711. The anode 751 formed on the planarization layer 711 is formed on the reflective layer 755, which is a conductive layer having excellent reflectance, and the reflective layer 755, and has a work function for supplying holes to the organic light emitting layer 752. And a transparent conductive layer 754 made of a highly conductive material. An organic light emitting layer 752 is formed on the anode 751. The cathode 753 formed on the organic light emitting layer 752 is formed on the metal layer 756 and the metal layer 756 made of a conductive material having a low work function to supply electrons to the organic light emitting layer 752. Hybrid-graphene layer 710.
하이브리드-그래핀층(710)을 구성하는 하이브리드-그래핀 복합물은 금속 나노 파티클 또는 탄소 나노 파티클, 혹은 두가지 나노 파티클 모두를 포함하는 하이브리드-그래핀 복합물을 사용할 수 있다. 도 7에서는 2개의 유기 발광 소자(750)가 도시되었으나, 설명의 편의상 도 7에서 우측에 위치한 유기 발광 소자(750)에만 도면 부호를 표시하였다. 하지만 도 7에서와 같이 전극의 패터닝이 필요하지 않은 경우에는 탄소 나노 파티클만을 사용하는 것이 공정의 편의상 더 바람직할 수 있다.The hybrid-graphene composite constituting the hybrid-graphene layer 710 may use a hybrid-graphene composite including metal nanoparticles or carbon nanoparticles, or both nanoparticles. Although two organic light emitting diodes 750 are illustrated in FIG. 7, for convenience of description, reference numerals are shown only to the organic light emitting diodes 750 positioned on the right side of FIG. However, when the patterning of the electrode is not required as shown in FIG. 7, it may be more preferable to use only carbon nanoparticles for the convenience of the process.
평탄화층(711) 상에서 2개의 유기 발광 소자(750) 사이에 보조 전극(740)이 형성된다. 보조 전극(740)은 탑 에미션 방식의 유기 발광 표시 장치에서 발생할 수 있는 전압 강하 현상을 보완하기 위한 전극으로서, 애노드(751)와 동일한 물질로 형성된다. 구체적으로, 보조 전극(740)은 투명 도전층(741) 및 반사층(742)으로 형성된다.The auxiliary electrode 740 is formed between the two organic light emitting diodes 750 on the planarization layer 711. The auxiliary electrode 740 is an electrode to compensate for voltage drop that may occur in the top emission type organic light emitting diode display and is formed of the same material as the anode 751. In detail, the auxiliary electrode 740 is formed of the transparent conductive layer 741 and the reflective layer 742.
평탄화층(711) 상에는 뱅크(720)가 형성된다. 뱅크(720)는, 도 7에 도시된 바와 같이, 보조 전극(740)의 일 측과 유기 발광 소자(750)의 애노드(751)의 일 측을 커버하도록 형성된다.The bank 720 is formed on the planarization layer 711. As shown in FIG. 7, the bank 720 is formed to cover one side of the auxiliary electrode 740 and one side of the anode 751 of the organic light emitting element 750.
보조 전극(740) 상에 격벽(760)이 형성된다. 격벽(760)은 역 테이퍼(taper) 형상으로 형성되어, 격벽(760)을 기준으로 우측에 도시된 유기 발광 소자(750)의 유기 발광층(751)과 좌측에 도시된 유기 발광 소자의 유기 발광층(752)을 단절시킨다. 구체적으로, 유기 발광층(752)을 형성하기 위해 유기 발광 물질을 평탄화층(711) 전면 상에서 증착시키는 방식이 사용되는데, 유기 발광 물질은 스텝 커버리지(step coverage)가 좋지 않으므로 유기 발광 소자(750)의 유기 발광층(752)은 역 테이퍼 형상의 격벽(760)에 의해 단절되고, 격벽(760) 상에 유기 발광층(762)이 형성된다. 또한, 캐소드(753)의 메탈층(756)으로 사용되는 물질인 금속 물질들의 경우 일반적으로 스텝 커버리지가 좋지 않으므로, 캐소드(753)의 메탈층(756) 또한 역 테이퍼 형상의 격벽(760)에 의해 단절된다.The partition wall 760 is formed on the auxiliary electrode 740. The partition wall 760 is formed in an inverse taper shape, and the organic light emitting layer 751 of the organic light emitting element 750 shown on the right side and the organic light emitting layer of the organic light emitting element shown on the left side of the partition wall 760 are formed. Disconnect 752). Specifically, a method of depositing an organic light emitting material on the entire surface of the planarization layer 711 is used to form the organic light emitting layer 752. Since the organic light emitting material has poor step coverage, the organic light emitting device 750 may be formed. The organic light emitting layer 752 is disconnected by the inverse tapered partition wall 760, and the organic light emitting layer 762 is formed on the partition wall 760. In addition, in the case of metal materials, which are materials used as the metal layer 756 of the cathode 753, the step coverage is generally poor, so that the metal layer 756 of the cathode 753 is also formed by the inverse tapered partition wall 760. Disconnected.
본 발명의 일 실시예에 따른 유기 발광 표시 장치(700)에서 캐소드(753)는 하이브리드-그래핀층(710)을 포함하고, 하이브리드-그래핀층(710)은 용액 공정으로 형성된다. 하이브리드-그래핀층(710)을 형성하는 하이브리드-그래핀 복합물의 점성에 따라 하이브리드-그래핀층(710)의 스탭 커버리지가 결정될 수 있다. 따라서 원하는 하이브리드-그래핀층(710)의 스탭 커버리지를 구현하기 위해서 하이브리드-그래핀 복합물을 제조 시에 추가되는 폴리머, 3차원적 구조의 파티클 향상을 가진 필러 그리고 2차원적 평면구조를 가진 환원 그래핀 플레이트렛의 구성비를 조절하여 점도를 조절할 수 있다. 또한 바인더를 추가로 더 첨가하여 점성을 얻을 수도 있다. 따라서, 도 7에 도시된 바와 같이, 하이브리드-그래핀층(710)은 격벽(760)에 의해 단절되지 않고 격벽(760) 아래에서 격벽(760)과 뱅크(720) 사이에서 노출된 보조 전극(740)과 접할 수 있고, 캐소드(750)의 메탈층(756)과 보조 전극(740) 사이의 전기적 연결을 제공할 수 있다. In the organic light emitting diode display 700 according to the exemplary embodiment, the cathode 753 includes a hybrid graphene layer 710, and the hybrid graphene layer 710 is formed by a solution process. Step coverage of the hybrid-graphene layer 710 may be determined according to the viscosity of the hybrid-graphene composite forming the hybrid-graphene layer 710. Thus, to add the desired step coverage of the hybrid-graphene layer 710, a polymer added in the manufacture of the hybrid-graphene composite, a filler with three-dimensional particle enhancement, and reduced graphene with a two-dimensional planar structure The viscosity can be controlled by adjusting the composition ratio of the platelets. It is also possible to further add a binder to obtain viscosity. Thus, as shown in FIG. 7, the hybrid-graphene layer 710 is not disconnected by the partition wall 760, but the auxiliary electrode 740 exposed between the partition wall 760 and the bank 720 under the partition wall 760. ) And provide an electrical connection between the metal layer 756 of the cathode 750 and the auxiliary electrode 740.
또한, 유기 발광층(752)을 구성하는 물질들은 수분 및 산소에 매우 취약하므로, 유기 발광층(752)에 대한 외부로부터의 수분 및 산소 침투를 최소화하기 위한 구성이 필요하다. 이에, 박막 봉지(TFE)와 같은 별도의 봉지부가 유기 발광 표시 장치(700)에 사용될 수 있으나, 이와 같은 봉지부를 추가적으로 형성하기 위해서는 별도의 장비들이 필요하여 추가적인 장비 비용이 발생하며, 제조 시간 또한 증가하게 되므로 별도의 봉지부를 사용하는 방식에는 문제점이 있다. 또한, 현재 사용되고 있는 TFE, 유리 봉지, 메탈 봉지 등의 봉지부들은 플렉서블 디바이스에서 요구되는 플렉서빌리티(flexibility)를 충분히 갖추지 못한다. 본 발명의 일 실시예에 따른 유기 발광 표시 장치(700)에서는 캐소드(753)에 포함되는 하이브리드-그래핀층(710)이 상술한 바와 같은 우수한 기체/수분 배리어 특성을 가지므로, 하이브리드-그래핀층(710)이 봉지부와 같은 기능을 수행할 수 있다. 따라서, 별도의 봉지부가 형성되지 않아도 되므로, 제조 공정 측면에서 유리함이 있다. 또한 하이브리드-그래핀층을 유기 발광층 상부와 하부에 각각 사용하여 유기발광층을 보호하는 역할을 더 강화할 수 있다.In addition, since the materials constituting the organic light emitting layer 752 are very vulnerable to moisture and oxygen, a configuration for minimizing moisture and oxygen penetration from the outside to the organic light emitting layer 752 is required. Thus, a separate encapsulation unit such as a thin film encapsulation (TFE) may be used in the organic light emitting display device 700, but in order to additionally form such an encapsulation unit, additional equipments are required and additional equipment costs are generated and manufacturing time is also increased. Since there is a problem in using a separate encapsulation. In addition, currently used encapsulation such as TFE, glass encapsulation, metal encapsulation does not have enough flexibility required for the flexible device. In the organic light emitting diode display 700 according to the exemplary embodiment, the hybrid-graphene layer 710 included in the cathode 753 has excellent gas / moisture barrier characteristics as described above. 710 may perform the same function as the encapsulation unit. Therefore, there is no advantage in terms of manufacturing process, since the separate sealing portion does not have to be formed. In addition, the hybrid graphene layer may be used on the upper and lower portions of the organic light emitting layer, respectively, to further strengthen the role of protecting the organic light emitting layer.
도 7에서는 캐소드(753)가 메탈층(756) 및 하이브리드-그래핀층(700)을 포함하는 것으로 설명되었으나, 캐소드(753)는 유기 발광층(752)에 전자를 제공하는 메탈층(756)만으로 구성되고, 하이브리드-그래핀층(700)은 캐소드(753)에 포함되지 않는 것으로 정의될 수도 있다.In FIG. 7, the cathode 753 is described as including a metal layer 756 and a hybrid-graphene layer 700. However, the cathode 753 is formed of only the metal layer 756 that provides electrons to the organic emission layer 752. The hybrid-graphene layer 700 may be defined as not included in the cathode 753.
이하에서는, 본 발명의 일 실시예에 따른 플렉서블 디스플레이 디바이스의 다양한 특징들에 대해 설명한다.Hereinafter, various features of the flexible display device according to an exemplary embodiment will be described.
본 발명의 다른 특징에 따르면, 베리어층에 포함된 2차원적 평면 형상을 가진 탄소기반의 필러들은 복수의 환원 그래핀 옥사이드 플레이트렛들을 포함할 수 있다.According to another feature of the present invention, the carbon-based fillers having a two-dimensional planar shape included in the barrier layer may include a plurality of reduced graphene oxide platelets.
본 발명의 또 다른 특징에 따르면, 복수의 환원 그래핀 플레이트렛들의 평균 횡방향 길이는 약 0.5 μm 내지 약 10 μm 일 수 있다.According to another feature of the invention, the average transverse length of the plurality of reduced graphene platelets may be from about 0.5 μm to about 10 μm.
본 발명의 또 다른 특징에 따르면, 베리어층의 포함된 환원 그래핀 옥사이드 플레이트렛들의 평균 층의 개수는 2 내지 10층일 수 있다.According to another feature of the invention, the average number of reduced graphene oxide platelets included in the barrier layer may be 2 to 10 layers.
본 발명의 또 다른 특징에 따르면, 플렉서블 디스플레이 디바이스는 최소한 하나이상의 도전층을 더 포함하고, 도전층은 2차원적 평면 형상을 가진 탄소기반의 필러들이 최소 2층이상 적층되어 형성될 수 있다.According to another feature of the present invention, the flexible display device further includes at least one or more conductive layers, and the conductive layer may be formed by stacking at least two layers of carbon-based fillers having a two-dimensional planar shape.
본 발명의 또 다른 특징에 따르면, 도전층에 포함된 2차원적 평면 형상을 가진 탄소기반의 필러들은 복수의 환원 그래핀 옥사이드 플레이트렛을 포함할 수 있다.According to another feature of the present invention, the carbon-based filler having a two-dimensional planar shape included in the conductive layer may include a plurality of reduced graphene oxide platelets.
본 발명의 또 다른 특징에 따르면, 복수의 환원 그래핀 플레이트렛들의 평균 횡방향 길이는 0.5 μm 내지 10 μm 일 수 있다.According to another feature of the invention, the average transverse length of the plurality of reduced graphene platelets may be 0.5 μm to 10 μm.
본 발명의 또 다른 특징에 따르면, 도전층의 포함된 환원 그래핀 옥사이드 플레이트렛들의 평균 층의 개수는 2 내지 10층일 수 있다.According to another feature of the invention, the average number of reduced graphene oxide platelets included in the conductive layer may be 2 to 10 layers.
본 발명의 또 다른 특징에 따르면, 도전층의 면저항값은 15Ω/square 이하일 수 있다.According to another feature of the invention, the sheet resistance value of the conductive layer may be 15 kW / square or less.
이하에서는, 본 발명의 일 실시예에 따른 전자 디바이스의 다양한 특징들에 대해 설명한다.Hereinafter, various features of an electronic device according to an embodiment of the present invention will be described.
본 발명의 다른 특징에 따르면, 하이브리드-그래핀층에 포함된 환원 그래핀 플레이트렛들의 평균 층의 개수는 2 내지 10층일 수 있다.According to another feature of the invention, the average number of reduced graphene platelets included in the hybrid-graphene layer may be 2 to 10 layers.
본 발명의 또 다른 특징에 따르면, 하이브리드-그래핀층은 전자 디바이스의 배리어층으로 기능할 수 있다.According to another feature of the invention, the hybrid-graphene layer can function as a barrier layer of an electronic device.
본 발명의 또 다른 특징에 따르면, 하이브리드-그래핀층은 전자 디바이스의 전극층으로 기능할 수 있다.According to another feature of the invention, the hybrid-graphene layer can function as an electrode layer of an electronic device.
이하에서는, 본 발명의 일 실시예에 따른 용액 공정용 하이브리드-그래핀 복합물의 제조 방법의 다양한 특징들에 대해 설명한다.Hereinafter, various features of a method of manufacturing a hybrid-graphene composite for solution processing according to an embodiment of the present invention will be described.
본 발명의 다른 특징에 따르면, 액적들의 열분해는 300℃ 내지 2000℃의 온도에서 수행될 수 있다.According to another feature of the invention, the pyrolysis of the droplets can be carried out at a temperature of 300 ℃ to 2000 ℃.
본 발명의 또 다른 특징에 따르면, 탄소 나노 파티클들의 평균 지름은 50nm 이하이고 그래핀 옥사이드 플레이트렛들의 평균 횡방향 길이는 0.5 μm 내지 10 μm 일 수 있다.According to another feature of the invention, the average diameter of the carbon nanoparticles may be 50 nm or less and the average lateral length of the graphene oxide platelets may be 0.5 μm to 10 μm.
본 발명의 또 다른 특징에 따르면, 에어로졸 액적들에 열분해를 수행하는 단계는 환원분위기를 가진 가열로로 안에서 수행될 수 있다.According to another feature of the invention, the step of performing pyrolysis on the aerosol droplets may be carried out in a furnace with a reducing atmosphere.
본 발명의 또 다른 특징에 따르면, 환원분위기는 박리용 가스를 더 포함할 수 있다.According to another feature of the invention, the reducing atmosphere may further include a gas for stripping.
본 발명의 또 다른 특징에 따르면, 분산용액을 준비하는 단계는, 음파처리 및 원심분리로 흑연 옥사이드를 박리하여, 그래핀 옥사이드 플레이트렛을 획득하는 단계; 및 원심분리의 회전율을 조정하여, 그래핀 옥사이드 플레이트렛의 횡방향 길이를 제어하는 단계를 포함할 수 있다.According to another feature of the invention, the step of preparing a dispersion solution, the step of exfoliating graphite oxide by sonication and centrifugation, to obtain a graphene oxide platelet; And adjusting the rotation rate of the centrifugation to control the transverse length of the graphene oxide platelet.
본 발명의 또 다른 특징에 따르면, 수용액은 폴리머, 및 폴리머를 액상 상태로 유지할 수 있는 유기 용매를 포함할 수 있다.According to another feature of the invention, the aqueous solution may comprise a polymer, and an organic solvent capable of maintaining the polymer in a liquid state.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Although the embodiments of the present invention have been described in more detail with reference to the accompanying drawings, the present invention is not necessarily limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention. . Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
Claims (20)
- 유기발광소자가 형성된 플렉서블 기판; 및A flexible substrate on which an organic light emitting element is formed; And상기 유기발광소자의 기체/수분의 침투를 억제하는 베리어층을 포함하는 플렉서블 디스플레이 디바이스에서, In the flexible display device comprising a barrier layer for suppressing the penetration of gas / moisture of the organic light emitting device,상기 베리어층은 2차원적 평면 형상을 가진 탄소기반의 필러들이 최소 2층이상 적층되어 형성된 것을 특징으로 하는, 플렉서블 디스플레이 디바이스The barrier layer may be formed by stacking at least two layers of carbon-based fillers having a two-dimensional planar shape.
- 제1항에 있어서,The method of claim 1,상기 베리어층에 포함된 2차원적 평면 형상을 가진 탄소기반의 필러들은 복수의 환원 그래핀 옥사이드 플레이트렛들을 포함하는 것을 특징으로 하는, 플렉서블 디스플레이 디바이스.The carbon-based filler having a two-dimensional planar shape included in the barrier layer comprises a plurality of reduced graphene oxide platelets.
- 제2항에 있어서, The method of claim 2,상기 복수의 환원 그래핀 플레이트렛들의 평균 횡방향 길이는 약 0.5 μm 내지 약 10 μm 인것을 특징으로 하는, 플렉서블 디스플레이 디바이스.And wherein the average transverse length of the plurality of reduced graphene platelets is between about 0.5 μm and about 10 μm.
- 제2항에 있어서,The method of claim 2,상기 베리어층의 포함된 상기 환원 그래핀 옥사이드 플레이트렛들의 평균 층의 개수는 2 내지 10층인 것을 특징으로 하는, 플렉서블 디스플레이 디바이스.And the average number of the reduced graphene oxide platelets included in the barrier layer is 2 to 10 layers.
- 제1항에 있어서,The method of claim 1,플렉서블 디스플레이 디바이스는 최소한 하나이상의 도전층을 더 포함하고,The flexible display device further includes at least one conductive layer,상기 도전층은 2차원적 평면 형상을 가진 탄소기반의 필러들이 최소 2층이상 적층되어 형성된 것을 특징으로 하는, 플렉서블 디스플레이 디바이스.The conductive layer is a flexible display device, characterized in that formed by stacking at least two layers of carbon-based filler having a two-dimensional planar shape.
- 제5항에 있어서,The method of claim 5,상기 도전층에 포함된 2차원적 평면 형상을 가진 탄소기반의 필러들은 복수의 환원 그래핀 옥사이드 플레이트렛을 포함하는 것을 특징으로 하는, 플렉서블 디스플레이 디바이스.The carbon-based filler having a two-dimensional planar shape included in the conductive layer includes a plurality of reduced graphene oxide platelets.
- 제6항에 있어서, The method of claim 6,상기 복수의 환원 그래핀 플레이트렛들의 평균 횡방향 길이는 0.5 μm 내지 10 μm 인 것을 특징으로 하는, 플렉서블 디스플레이 디바이스.And a mean transverse length of said plurality of reduced graphene platelets is between 0.5 μm and 10 μm.
- 제6항에 있어서,The method of claim 6,상기 도전층의 포함된 상기 환원 그래핀 옥사이드 플레이트렛들의 평균 층의 개수는 2 내지 10층인 것을 특징으로 하는, 플렉서블 디스플레이 디바이스.And an average number of layers of the reduced graphene oxide platelets included in the conductive layer is 2 to 10 layers.
- 제5항에 있어서,The method of claim 5,상기 도전층의 면저항값은 15Ω/square 이하인 것을 특징으로 하는, 플렉서블 디스플레이 디바이스.The sheet resistance value of the said conductive layer is 15 kV / square or less, The flexible display device.
- 기판 또는 폴리머 매트릭스; 및Substrate or polymer matrix; And복수의 환원 그래핀 옥사이드 플레이트렛들을 포함하는 하이브리드-그래핀층을 포함하는 전자 디바이스에서,In an electronic device comprising a hybrid-graphene layer comprising a plurality of reduced graphene oxide platelets,상기 하이브리드-그래핀층에 포함된 환원 그래핀 옥사이드 플레이트렛들은 수평으로 배향되어있는 것을 특징으로 하는, 전자 디바이스.The reduced graphene oxide platelets included in the hybrid-graphene layer are oriented horizontally.
- 제10항에 있어서,The method of claim 10,상기 하이브리드-그래핀층에 포함된 환원 그래핀 플레이트렛들의 평균 층의 개수는 2 내지 10층인 것을 특징으로 하는, 전자 디바이스.The average number of reduced graphene platelets included in the hybrid-graphene layer is 2 to 10, characterized in that the electronic device.
- 제10항에 있어서, The method of claim 10,상기 하이브리드-그래핀층은 상기 전자 디바이스의 배리어층으로 기능하는 것을 특징으로 하는, 전자 디바이스.And wherein said hybrid-graphene layer functions as a barrier layer of said electronic device.
- 제10항에 있어서, The method of claim 10,상기 하이브리드-그래핀층은 상기 전자 디바이스의 전극층으로 기능하는 것을 특징으로 하는, 전자 디바이스.And wherein said hybrid-graphene layer functions as an electrode layer of said electronic device.
- 그래핀 옥사이드 플레이트렛을 포함하는 분산용액을 생성하는 단계;Generating a dispersion solution containing graphene oxide platelets;상기 분산용액에 탄소 나노 파티클들을 분산하여 전구체 용액을 생성하는 단계;Dispersing carbon nanoparticles in the dispersion solution to form a precursor solution;상기 전구체 용액을 에어로졸화 하여 그래핀 옥사이드 플레이트렛들과 탄소 나노 파티클들을 가진 에어로졸 액적으로 변환하는 단계;Aerosolizing the precursor solution to convert it into an aerosol droplet having graphene oxide platelets and carbon nanoparticles;상기 에어로졸 액적들에 열분해를 수행하여 그래핀 옥사이드 플레이트렛을 환원하는 단계; 및Performing pyrolysis on the aerosol droplets to reduce graphene oxide platelets; And상기 환원된 그래핀 옥사이드 플렛이트렛을 함유하는 증기를 계면활성제가 포함된 수용액에 통과시켜 환원 그래핀 옥사이드 플레이트렛을 포집하는 단계를 포함하는 것을 특징으로 하는, 용액 공정용 하이브리드-그래핀 복합물의 제조 방법.And collecting the reduced graphene oxide platelet by passing the vapor containing the reduced graphene oxide platelet through an aqueous solution containing a surfactant. Manufacturing method.
- 제14 항에 있어서,The method of claim 14,상기 액적들의 열분해는 300℃ 내지 2000℃의 온도에서 수행되는 것을 특징으로 하는, 용액 공정용 하이브리드-그래핀 복합물의 제조 방법.The pyrolysis of the droplets is characterized in that it is carried out at a temperature of 300 ℃ to 2000 ℃, a method for producing a hybrid-graphene composite for a solution process.
- 제15항에 있어서, The method of claim 15,상기 탄소 나노 파티클들의 평균 지름은 50nm 이하이고 상기 그래핀 옥사이드 플레이트렛들의 평균 횡방향 길이는 0.5 μm 내지 10 μm 인 것을 특징으로 하는, 용액 공정용 하이브리드-그래핀 복합물의 제조 방법.And the average diameter of the carbon nanoparticles is 50 nm or less and the average lateral length of the graphene oxide platelets is 0.5 μm to 10 μm.
- 제16항에 있어서, The method of claim 16,상기 에어로졸 액적들에 열분해를 수행하는 단계는 환원분위기를 가진 가열로로 안에서 수행되는 것을 특징으로 하는, 용액 공정용 하이브리드-그래핀 복합물의 제조 방법.The pyrolysis of the aerosol droplets is characterized in that it is carried out in a furnace with a reducing atmosphere, a method for producing a hybrid-graphene composite for a solution process.
- 제17 항에 있어서,The method of claim 17,상기 환원분위기는 박리용 가스를 더 포함하는 것을 특징으로 하는, 용액 공정용 하이브리드-그래핀 복합물의 제조 방법.The reducing atmosphere is characterized in that it further comprises a gas for peeling, a method for producing a hybrid-graphene composite for a solution process.
- 제18항에 있어서, The method of claim 18,상기 분산용액을 준비하는 단계는,Preparing the dispersion solution,음파처리 및 원심분리로 흑연 옥사이드를 박리하여, 상기 그래핀 옥사이드 플레이트렛을 획득하는 단계; 및Exfoliating graphite oxide by sonication and centrifugation to obtain the graphene oxide platelet; And상기 원심분리의 회전율을 조정하여, 상기 그래핀 옥사이드 플레이트렛의 횡방향 길이를 제어하는 단계를 포함하는 것을 특징으로 하는, 용액 공정용 하이브리드-그래핀 복합물의 제조 방법.And adjusting the rotation rate of the centrifugation to control the transverse length of the graphene oxide platelet.
- 제14 항에 있어서,The method of claim 14,상기 수용액은 폴리머, 및 상기 폴리머를 액상 상태로 유지할 수 있는 유기 용매를 포함하는 것을 특징으로 하는, 용액 공정용 하이브리드-그래핀 복합물의 제조 방법.The aqueous solution comprises a polymer, and an organic solvent capable of maintaining the polymer in a liquid state, the method of producing a hybrid-graphene composite for a solution process.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0169560 | 2013-12-31 | ||
KR1020130169560A KR102034657B1 (en) | 2013-12-31 | 2013-12-31 | Flexible electronic device with solution processable composite layer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015102399A1 true WO2015102399A1 (en) | 2015-07-09 |
Family
ID=53493674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/013086 WO2015102399A1 (en) | 2013-12-31 | 2014-12-30 | Flexible device having graphene composite layer for solution process |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102034657B1 (en) |
WO (1) | WO2015102399A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017065340A1 (en) * | 2015-10-13 | 2017-04-20 | 한국세라믹기술원 | Method for manufacturing two-dimensional hybrid composite |
CN114203930B (en) * | 2021-12-09 | 2023-05-30 | 深圳市华星光电半导体显示技术有限公司 | Cathode, organic light-emitting diode and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240097025A (en) * | 2022-12-19 | 2024-06-27 | 삼성디스플레이 주식회사 | Display device and method for manufacturing the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100055458A1 (en) * | 2008-09-03 | 2010-03-04 | Jang Bor Z | Dispersible and conductive Nano Graphene Platelets |
US20110227000A1 (en) * | 2010-03-19 | 2011-09-22 | Ruoff Rodney S | Electrophoretic deposition and reduction of graphene oxide to make graphene film coatings and electrode structures |
US20120068122A1 (en) * | 2009-05-31 | 2012-03-22 | College Of William & Mary | Method for making polymer composites containing graphene sheets |
US20120282419A1 (en) * | 2010-01-15 | 2012-11-08 | Jonghyun Ahn | Graphene protective film serving as a gas and moisture barrier, method for forming same, and use thereof |
WO2013109891A1 (en) * | 2012-01-20 | 2013-07-25 | Brown University | Substrate with graphene-based layer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101006488B1 (en) * | 2009-03-13 | 2011-01-07 | 한국표준과학연구원 | Control Method on The Electric Property of Graphene |
KR20130056147A (en) * | 2011-11-21 | 2013-05-29 | 삼성전기주식회사 | Electrode paste composition, electrode for electronic device and fabrication method thereof |
-
2013
- 2013-12-31 KR KR1020130169560A patent/KR102034657B1/en active IP Right Grant
-
2014
- 2014-12-30 WO PCT/KR2014/013086 patent/WO2015102399A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100055458A1 (en) * | 2008-09-03 | 2010-03-04 | Jang Bor Z | Dispersible and conductive Nano Graphene Platelets |
US20120068122A1 (en) * | 2009-05-31 | 2012-03-22 | College Of William & Mary | Method for making polymer composites containing graphene sheets |
US20120282419A1 (en) * | 2010-01-15 | 2012-11-08 | Jonghyun Ahn | Graphene protective film serving as a gas and moisture barrier, method for forming same, and use thereof |
US20110227000A1 (en) * | 2010-03-19 | 2011-09-22 | Ruoff Rodney S | Electrophoretic deposition and reduction of graphene oxide to make graphene film coatings and electrode structures |
WO2013109891A1 (en) * | 2012-01-20 | 2013-07-25 | Brown University | Substrate with graphene-based layer |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017065340A1 (en) * | 2015-10-13 | 2017-04-20 | 한국세라믹기술원 | Method for manufacturing two-dimensional hybrid composite |
CN114203930B (en) * | 2021-12-09 | 2023-05-30 | 深圳市华星光电半导体显示技术有限公司 | Cathode, organic light-emitting diode and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20150080381A (en) | 2015-07-09 |
KR102034657B1 (en) | 2019-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015102401A1 (en) | Synthesis method for solution-processable graphene | |
WO2011046415A2 (en) | Roll-to-roll transfer method of graphene, graphene roll produced by the method, and roll-to-roll transfer equipment for graphene | |
Xin et al. | A review on high throughput roll-to-roll manufacturing of chemical vapor deposition graphene | |
Qing et al. | Towards large-scale graphene transfer | |
US8987710B2 (en) | Carbonaceous nanomaterial-based thin-film transistors | |
US8426309B2 (en) | Graphene nanoelectric device fabrication | |
WO2017065340A1 (en) | Method for manufacturing two-dimensional hybrid composite | |
CN105393312B (en) | Copper and/or Cu oxide dispersion and the conducting film formed using the dispersion | |
JP2011032156A (en) | Method for manufacturing graphene or thin film graphite | |
WO2013094840A1 (en) | Method for manufacturing large-scale three-dimensional transparent graphene electrodes by electrospraying, and large-scale three-dimensional transparent graphene electrode manufactured by using the method | |
KR101071224B1 (en) | Methods for fabricating the thin film graphene | |
KR20170081575A (en) | Conductors and electronic devices including the same | |
WO2015102399A1 (en) | Flexible device having graphene composite layer for solution process | |
WO2015102402A1 (en) | Flexible electronic device having multi-functional barrier layer | |
CN112053806A (en) | Preparation method of transparent heating film with nanosheet-nanowire composite structure | |
WO2014196776A1 (en) | Method for transfer and adhesion of nano thin film | |
KR20140073613A (en) | Graphene composition and organic electronic device comprising electrodes using the same | |
TWI522684B (en) | Panel structure and fabricating method thereof | |
WO2014137180A1 (en) | Carbon based electronic device using partial reduction of graphene oxide and method for manufacturing same | |
KR101654133B1 (en) | Graphene composition and organic electronic device comprising electrodes using the same | |
WO2015102403A1 (en) | Flexible electronic device having multi-functional barrier layer | |
Oh et al. | Fabrication of high-performance graphene nanoplatelet-based transparent electrodes via self-interlayer-exfoliation control | |
WO2013115597A1 (en) | Method for dispersing carbon nanosheets | |
WO2013002564A2 (en) | Anti-releasing composition, graphene laminate including the composition, and preparation method thereof | |
EP3532539B1 (en) | Composite material and method of forming same, and electrical component including composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14876307 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14876307 Country of ref document: EP Kind code of ref document: A1 |