[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015194508A1 - 光学活性体の製造方法 - Google Patents

光学活性体の製造方法 Download PDF

Info

Publication number
WO2015194508A1
WO2015194508A1 PCT/JP2015/067195 JP2015067195W WO2015194508A1 WO 2015194508 A1 WO2015194508 A1 WO 2015194508A1 JP 2015067195 W JP2015067195 W JP 2015067195W WO 2015194508 A1 WO2015194508 A1 WO 2015194508A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optionally substituted
substituent
formula
nmr
Prior art date
Application number
PCT/JP2015/067195
Other languages
English (en)
French (fr)
Inventor
祐希 竹内
健裕 浅野
浩一 和田
和也 津崎
Original Assignee
第一ファインケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一ファインケミカル株式会社 filed Critical 第一ファインケミカル株式会社
Priority to JP2016529335A priority Critical patent/JP6630667B2/ja
Publication of WO2015194508A1 publication Critical patent/WO2015194508A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/42Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups or hydroxy groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C215/44Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups or hydroxy groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton bound to carbon atoms of the same ring or condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing an optically active substance.
  • the compound represented by the formula (Z) (hereinafter, also referred to as “compound (Z)”) is a compound in which an oxygen atom or a nitrogen atom is bonded to two consecutive carbon atoms, and at least in one molecule. Since it has two asymmetric carbons, there are multiple optical isomers.
  • the optically active compound (Z) is one of chemical structures widely used in the field of pharmaceutical or agricultural chemical development, and can also be used as a ligand for a transition metal catalyst used in an asymmetric reaction.
  • X represents —O— or —NR f —
  • Y represents —O—, —NR g — or —S—
  • R a , R b , R c , R d , R e , R f and R g each independently represent a hydrogen atom or an organic group, and an asterisk indicates that the carbon atom is an asymmetric carbon.
  • the compound (Z) includes, for example, 1,2-diol (when X and Y are both —O—), 1,2-aminoalcohol (where X is —O— and Y is —NH—). Or X is —NH— and Y is —O—), 1,2-diamine (when both X and Y are —NH—), 1,2-mercaptoalcohol (where X is -O- and Y is -S-), 1,2-mercaptoamine (when X is -NH- and Y is -S-).
  • optically active compounds Z
  • a method of obtaining an optically active compound (Z) by reacting a compound having an epoxide structure or an aziridine structure, which is readily available, with a nucleophile, and performing stereoselective ring opening has high atomic efficiency and is useful. is there.
  • an optically active compound (Z) by reacting a compound having an epoxide structure with a nucleophile
  • A a method of optically resolving a racemate (for example, Patent Documents 1 to 3, Non-patent Documents 1, 2)
  • B a method of introducing an asymmetric carbon at another position and separating the resulting diastereomers (for example, Patent Document 4, Non-Patent Document 3)
  • C Optically active catalyst
  • a method using an optically active acid as a resolving agent a method using a column chromatography using an optically active filler, and an enzyme derived from an animal or a microorganism are used. Methods are known.
  • Japanese Patent No. 4406483 Japanese Patent No. 4406482 US Pat. No. 5,981,267 JP-A-9-157258 JP 2003-206266 A JP 2011-83934 A
  • the target optically active compound (Z) can be produced in a short process, but in many cases, a metal catalyst or a strong acid catalyst is used as the optically active catalyst. Use. Therefore, in the methods (C) and (E), usable compounds or nucleophiles having a hetero-containing three-membered ring structure are limited, and an expensive metal catalyst recovery step is required.
  • an object of the present invention is to react a compound having an epoxide or aziridine with a nucleophile by a simple operation using an inexpensive and easily available catalyst, and convert the compound represented by the formula (3) into a steric form. It is to provide a method for selective and efficient production.
  • An optionally substituted C 6-10 aryl group, and the substituent is a C 1-4 alkyl group, a C 2-4 alkenyl group, a C 2-4 alkynyl group, a C 1-4 alkoxy group, an amino group, an imino group.
  • a nitro group, a hydroxy group, an oxo group, a nitrile group, a mercapto group or a halogen atom, and R 2 and R 3 may be bonded to each other to form a compound represented by the formula (1b)) (Wherein X, R 1 and R 4 are the same as defined above, and R 7 represents a group formed by combining R 2 and R 3 with each other)
  • an optionally substituted C 3-6 cycloalkyl group an optionally substituted C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, a substituted group A C 2-6 alkynyl group which may have a substituent or a C 6-10 aryl group which may have a substituent, wherein the substituent is a C 1-4 alkoxy group, a C 6-10 aryl group, amino A group, an imino group, a nitro group, a hydroxy group, an oxo group, a nitrile group, a mercapto group, or a halogen atom, and R 5 and R 6 are bonded to each other to form a compound represented by the formula (2a).
  • the compound represented by the formula (2) is water or sulfurized. Not in the original) (Wherein R 8 represents a group formed by combining R 5 and R 6 with each other) And a compound represented by the following: Formula (3): (Wherein X, Y, R 1 , R 2 , R 3 , R 4 and R 5 are the same as defined above) The manufacturing method of the compound represented by Formula (3) including the process of obtaining the compound represented by these. [2] The production method according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the formula (1c). (Wherein X and R 7 are the same as defined above) [3] The production method according to [1], wherein the compound represented by the formula (1) is a compound represented by the formula (1a).
  • X is —O— or —NR—
  • R is a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a C 3-6 which may have a substituent.
  • An optionally substituted C 1-6 alkylsulfonyl group or a C 6-10 arylsulfonyl group, and R 2 and R 3 each independently represent a hydrogen atom or an optionally substituted C 1-6 alkyl having group, an optionally substituted C 3-6 cycloalkyl group, a substituent Good C 2-6 alkenyl group
  • [5] The production method according to any one of [1] to [3], wherein Y is —O—.
  • [6] The production method according to any one of [1] to [3], wherein Y is —S—.
  • the processed plant product is a legume, cucurbitaceae, eggplant, urushiaceae, ginger, citrus, antaceae, sage, cruciferous, lotus, matabidae, rose, lily, gramineous
  • a compound represented by the formula (3) is obtained by reacting a compound having an epoxide structure or an aziridine structure with various nucleophiles by a simple operation using an inexpensive and easily available catalyst. Can be produced stereoselectively and efficiently.
  • the catalyst used in the present invention is an easily obtained plant processed product, and does not necessarily require recovery of the catalyst. Furthermore, the catalyst can be recovered and reused after completion of the reaction.
  • a compound represented by the formula (1) (hereinafter, also referred to as “compound (1)” or the like) and a compound (2) are reacted in the presence of a processed plant product to obtain a compound (3 ).
  • X is —O— or —NR—. That is, the compound (1) means a compound having an epoxide structure or a compound having an aziridine structure.
  • R is a hydrogen atom, an optionally substituted C 1-6 alkyl group, an optionally substituted C 3-6 cycloalkyl group, or an optionally substituted C 2-6 alkenyl.
  • a C 3-6 cycloalkenyl group which may have a substituent a C 2-6 alkynyl group which may have a substituent, a C 6-10 aryl group which may have a substituent, a substituent
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a C 1-6 alkyl group, a C 3-6 cycloalkyl group, a C 2-6 alkenyl group, a C 3-6 cycloalkenyl A group, a C 2-6 alkynyl group or a C 6-10 aryl group.
  • the C 1-6 alkyl group means an alkyl group having 1 to 6 carbon atoms.
  • Examples of the C 1-6 alkyl group include a methyl group, an ethyl group, a propan-1-yl group, a propan-2-yl group (isopropyl group), a butan-1-yl group, a butan-2-yl group, and pentane.
  • Examples include a 1-yl group, a pentan-2-yl group, a pentan-3-yl group, a hexane-1-yl group, a hexane-2-yl group, and a 3-hexyl group.
  • the C 3-6 cycloalkyl group means a cycloalkyl group having 3 to 6 carbon atoms.
  • Examples of the C 3-6 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • the C 2-6 alkenyl group means an alkenyl group having 2 to 6 carbon atoms.
  • Examples of the C 2-6 alkenyl group include a vinyl group, 1-propen-1-yl group, 2-propen-1-yl group, propen-2-yl group, 2-buten-1-yl group, 2- Buten-2-yl group, 3-buten-1-yl group, 2-penten-1-yl group, 3-penten-1-yl group, 2-hexen-1-yl group, 3-hexen-1-yl Groups, 4-hexen-1-yl group and 5-hexen-1-yl group.
  • the C 3-6 cycloalkenyl group means a cycloalkenyl group having 3 to 6 carbon atoms.
  • Examples of the C 3-6 cycloalkenyl group include a cyclobutenyl group, a cyclopentenyl group, and a cyclohexenyl group.
  • the C 2-6 alkynyl group means an alkynyl group having 2 to 6 carbon atoms.
  • Examples of the C 2-6 alkynyl group include an ethynyl group, a propargyl group, and a 3-butyn-1-yl group.
  • the C 6-10 aryl group means an aryl group having 6 to 10 carbon atoms.
  • Examples of the C 6-10 aryl group include a phenyl group and a naphthyl group.
  • the C 1-6 alkyl group, C 3-6 cycloalkyl group, C 2-6 alkenyl group, C 3-6 cycloalkenyl group, C 2-6 alkynyl group and C 6-10 aryl group are each unsubstituted. Alternatively, it may have a substituent.
  • Substituents include C 1-4 alkyl group, C 2-4 alkenyl group, C 2-4 alkynyl group, C 1-4 alkoxy group, amino group, imino group, nitro group, hydroxy group, oxo group, nitrile group , A mercapto group or a halogen atom.
  • Examples of the C 1-4 alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butoxy group.
  • Examples of the compound (1) include Cis-2,3-epoxybutane.
  • a compound having a thiirane structure in which X is —S— may be used.
  • 1,2-mercaptoamine, 1,2-mercaptoalcohol, and 1,2-dithiol can be obtained.
  • the compound (1) may be the compound (1b).
  • X, R 1 and R 4 are the same as defined above, and R 7 represents a group formed by combining R 2 and R 3 with each other.
  • X represents —O— or —NR—
  • R 7 represents a group formed by combining R 2 and R 3 with each other.
  • the groups R 2 and R 3 are bonded to each other to form, when R 2 or R 3 has a substituent, may be coupled to be connected via the substituent. That is, R 7 is not only a C 1-6 alkylene group, a C 2-6 alkenylene group, a C 2-6 alkynylene group and a C 6-10 arylene group, but R 2 and R 3 are bonded via a substituent.
  • the aspect formed as above is also included.
  • a C 1-6 alkylene group, a C 2-6 alkenylene group, a C 2-6 alkynylene group and a C 6-10 arylene group are respectively a C 1-6 alkyl group defined by the formula (1), a C 2-6 A group obtained by further removing one hydrogen atom from an alkenyl group, a C 2-6 alkynyl group and a C 6-10 aryl group.
  • R 2 and R 3 are bonded via a substituent includes, for example, a 2-oxapropylene group (—CH 2 OCH 2 —), a 3-oxapentylene group (—CH 2 CH 2 OCH 2 CH 2 —) and 3-oxopentylene group (—CH 2 CH 2 C ( ⁇ O) CH 2 CH 2 —).
  • Specific examples of the compound represented by the formula (1b) include 6-oxabicyclo [3.1.0] hexane, 7-oxabicyclo [4.1.0] heptane, 8-oxabicyclo [5.1. 0] octane and 3,6-dioxabicyclo [3.1.0] hexane.
  • Y is —O—, —NR 6 — or —S—. That is, the compound (2) means alcohol, amine or thiol. However, water and hydrogen sulfide are excluded from the range of the compound (2).
  • R 5 and R 6 are each independently a hydrogen atom, a C 1-6 alkyl group, a C 3-6 cycloalkyl group, a C 2-6 alkenyl group, a C 3-6 cycloalkenyl group, a C 2-6 An alkynyl group or a C 6-10 aryl group.
  • Examples of the C 1-6 alkyl group include a methyl group, an ethyl group, a propan-1-yl group, a propan-2-yl group (isopropyl group), a butan-1-yl group, a butan-2-yl group, and pentane.
  • Examples include a 1-yl group, a pentan-2-yl group, a pentan-3-yl group, a hexane-1-yl group, a hexane-2-yl group, and a 3-hexyl group.
  • Examples of the C 3-6 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • Examples of the C 2-6 alkenyl group include a vinyl group, 1-propen-1-yl group, 2-propen-1-yl group, propen-2-yl group, 2-buten-1-yl group, 2- Buten-2-yl group, 3-buten-1-yl group, 2-penten-1-yl group, 3-penten-1-yl group, 2-hexen-1-yl group, 3-hexen-1-yl Groups, 4-hexen-1-yl group and 5-hexen-1-yl group.
  • Examples of the C 3-6 cycloalkenyl group include a cyclobutenyl group, a cyclopentenyl group, and a cyclohexenyl group.
  • Examples of the C 2-6 alkynyl group include an ethynyl group, a propargyl group, and a 3-butyn-1-yl group.
  • Examples of the C 6-10 aryl group include a phenyl group and a naphthyl group.
  • the C 1-6 alkyl group, C 3-6 cycloalkyl group, C 2-6 alkenyl group, C 3-6 cycloalkenyl group, C 2-6 alkynyl group and C 6-10 aryl group are each unsubstituted. Alternatively, it may have a substituent.
  • substituents include C 1-4 alkyl group, C 2-4 alkenyl group, C 2-4 alkynyl group, C 6-10 aryl group, C 1-4 alkoxy group, amino group, imino group, nitro group, hydroxy group Group, oxo group, nitrile group, mercapto group or halogen atom.
  • Examples of the C 1-4 alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butoxy group.
  • the compound (2) include methanol, ethanol, 1-propanol, 2-propanol (isopropanol), 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, phenol, ammonia, methylamine, Ethylamine, propylamine, 2-propylamine (isopropylamine), 2-pentylamine, 3-pentylamine, cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, tert-butylamine, allylamine, propargylamine, benzylamine, 2 -Phenylethylamine, aniline, dimethylamine, diethylamine, 3-methoxypropylamine, 3-ethoxypropylamine, methanethiol, ethanethiol, 1-propanethiol 2-propanethiol, include butanethiol.
  • the compound (2) may be the compound (2a).
  • R 8 represents a group formed by combining R 5 and R 6 with each other.
  • R 8 represents a group formed by combining R 5 and R 6 with each other.
  • the groups R 5 and R 6 are bonded to each other to form, when R 5 or R 6 has a substituent may be attached so as to be connected via the substituent. That is, R 8 is a C 1-6 alkylene group, a C 3-6 cycloalkylene group, a C 2-6 alkenylene group, a C 3-6 cycloalkenylene group, a C 2-6 alkynylene group and a C 6-10 arylene group only.
  • R 5 and R 6 are bonded via a substituent is also included.
  • C 1-6 alkylene group, C 3-6 cycloalkylene group, C 2-6 alkenylene group, C 3-6 cycloalkenylene group, C 2-6 alkynylene group and C 6-10 arylene group are each represented by the formula (2 And a C 1-6 alkyl group, a C 2-6 alkenyl group, a C 2-6 alkynyl group, and a C 6-10 aryl group defined in (1) above.
  • R 5 and R 6 are bonded via a substituent includes, for example, a 2-oxapropylene group (—CH 2 OCH 2 —), a 3-oxapentylene group (—CH 2 CH 2 OCH 2 CH 2 —) and a 3-oxopentylene group (—CH 2 CH 2 C ( ⁇ O) CH 2 CH 2 —).
  • the compound (2a) is pyrrolidine, piperidine, morpholine, piperazine, homopiperazine, and thiomorpholine.
  • the amount of the compound (2) can be any amount in consideration of economy and recoverability. Such an amount is, for example, 0.01 to 100 equivalents, preferably 0.1 to 10 equivalents, more preferably 0.5 to 2 equivalents, relative to the number of moles of the compound (1).
  • the compound (3) is a compound represented by the formula (3), in which X, Y, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are Is the same as defined above.
  • the compound (3) includes the compounds (3a) to (3c).
  • the compound (3) examples include 1,2-diol (when X and Y are both —O—), 1,2-amino alcohol (when X is —O— and Y is —NH—). Or X is —NH— and Y is —O—), 1,2-diamine (when X and Y are both —NH—), 1,2-mercaptoalcohol (X is —O—). And Y is -S-) and 1,2-mercaptoamine (when X is -NH- and Y is -S-).
  • the processed plant product is a powder or extract obtained by processing a part of an edible plant.
  • the above “edible plant” means a plant generally known as a plant that a human can eat a part of.
  • the edible plant is, for example, a plant classified into cereals, beans, vegetables, fruits or potatoes, and part of the edible plant is the whole fruit, pulp, pericarp, stem, seed, germ, root, bulb and It can be appropriately selected from leaves.
  • edible plants include legumes (for example, soybeans, black beans, red kidney beans, peas), oleaceae (for example, olives), salamanders (for example, bananas), gramineae (for example, wheat), Cucurbitaceae (for example, pumpkin), solanaceae (for example, tomato, potato), urushiaceae (for example, pistachio, cashew nut), ginger (for example, turmeric), camellia (for example, tea), citrus (for example, Natsumikan) , Eggplant, flower bud, buntan), Amaryllidaceae (eg, garlic), celery family (eg, carrot), Brassicaceae (eg, radish), lotus family (eg, lotus root), matabidae (eg, kiwi), rose Plants of the family (eg apple) and leeks (eg leek) are mentioned.
  • legumes for example, soybeans, black beans, red kidney beans, peas
  • Edible plants include legumes (e.g., soybeans, black beans, red kidney beans, peas), camellia (e.g., tea), serpentaceae (e.g., carrots), matabidae (e.g., kiwi) and lily families (e.g., Preferably selected from the group consisting of leek).
  • a leek may be classified as a leek family.
  • processing means, if necessary, processing such as drying, heating, baking, roasting, oiling, fermenting, removing unnecessary parts, etc. It means to pulverize until it becomes or to extract components.
  • the processed plant product includes a powder obtained by extracting an extract of an edible plant and then pulverizing a dried product. Therefore, the tea may be green tea or black tea.
  • the soybean may be kinako or natto.
  • the plant processed product may be a commercially available product that has been processed into a powder or liquid state, or a product that has been processed in a processed state may be appropriately pulverized into a powder.
  • commercially available products include kina flour, defatted soybean flour (for example, Fujipro F (trade name, manufactured by Fuji Oil Co., Ltd.), Sunrich F (trade name, manufactured by Showa Sangyo Co., Ltd.), Soya Flower FT-N ( Nisshin Oilio Co., Ltd., trade name), Essan Meat Special (Ajinomoto Co., trade name), Toyotomi Soipro (J-Oil Mills Co., trade name), water-soluble soybean polysaccharide (for example, It is preferable to use a processed soybean product such as Soya Five S-DN (trade name, manufactured by Fuji Oil Co., Ltd.), and it is more preferable to use Kina Flour, Soya Flower FT-N or Soya Five S-DN.
  • the amount of the processed plant product any amount in consideration of economy and recoverability can be used.
  • the amount of such processed plant product is, for example, 0.01 to 100 times, preferably 0.1 to 10 times, and more preferably 0.1 to 10 times the mass of the compound represented by formula (1).
  • the amount is preferably 1 to 5 times.
  • the asymmetric ring-opening reaction according to the embodiment of the present invention may be performed in a solvent.
  • an organic solvent and water well known in organic synthetic chemistry can be used as long as the solvent does not react with compound (1) and compound (2).
  • organic solvents include aromatic hydrocarbons such as benzene, toluene, and xylene; hydrocarbons such as hexane, cyclohexane, and heptane; diisopropyl ether, tetrahydrofuran, methyl tert-butyl ether, ethyl tert-butyl ether, and cyclopentyl.
  • ethers such as methyl ether
  • esters such as ethyl acetate and butyl acetate
  • halogenated hydrocarbons such as dichloromethane and chloroform.
  • These solvents may be used alone or in combination of two or more.
  • the amount of the solvent that can be used in the asymmetric ring-opening reaction can be used in consideration of economic efficiency in either a single solvent or mixed solvent.
  • the amount of such a solvent is, for example, 0 to 100 times, preferably 0.5 to 50 times, more preferably 2 to 10 times the volume of the compound (1) by volume.
  • the content of water that can be used for the asymmetric ring-opening reaction can be 0.05 to 1 times the mass of water with respect to the catalyst, and 0.20 to 0.50 of water with respect to the catalyst. More preferably, it is in the range of double amount. Within such a range, the conversion rate of the reaction and the optical purity of the product are further improved.
  • the reaction temperature is preferably -20 ° C to 100 ° C, particularly preferably 30 ° C to 50 ° C.
  • the corresponding compound (3) can be obtained by filtering off the catalyst.
  • the catalyst recovered by filtration can be reused.
  • the reaction time can be reacted until a time when an arbitrary conversion rate considering economic efficiency is obtained.
  • a reaction time is, for example, 1 to 500 hours, preferably 1 to 100 hours, and more preferably 1 to 48 hours.
  • the compound (3) After completion of the reaction, the compound (3) can be obtained by filtering the catalyst.
  • the obtained compound (3) can also be easily purified by a conventional method such as crystallization or distillation.
  • Solvents that can be used for crystallization are not particularly limited as long as they are usually used in organic synthetic chemistry; hydrocarbons such as hexane, heptane, and cyclohexane; aromatic hydrocarbons such as toluene, benzene, and xylene; Ethers such as diisopropyl ether, methyl tert-butyl ether, ethyl tert-butyl ether, and cyclopentyl methyl ether can be used, and these solvents may be used alone or in admixture of two or more.
  • the amount of the above-mentioned solvent can be set in consideration of economic efficiency in either case of a single solvent or a mixed solvent, and is 0.1 to 100 times by volume with respect to the mass of the compound (3).
  • the amount is preferably 0.5 to 50 times, more preferably 1 to 10 times.
  • the compound (3) obtained by the present invention can increase the optical purity by forming a salt with an inorganic acid or an organic acid usually used in organic synthetic chemistry.
  • the acid include inorganic acids such as hydrochloric acid, sulfuric acid, sulfurous acid, nitric acid, perchloric acid, chloric acid, iodic acid, and phosphoric acid; formic acid, acetic acid, lactic acid, oxalic acid, citric acid, maleic acid, fumaric acid, Organic acids such as benzoic acid, phthalic acid, salicylic acid, methanesulfonic acid, toluenesulfonic acid and the like can be mentioned.
  • a salt with an optically active acid may be formed.
  • the optically active acid include tartaric acid, malic acid, mandelic acid, phenylglycine and the like, and the acid may be substituted.
  • a solvent usually used in organic synthetic chemistry can be used in consideration of economy and recoverability.
  • the solvent include aromatic hydrocarbons such as benzene, toluene and xylene; hydrocarbons such as hexane, cyclohexane and heptane; diisopropyl ether, tetrahydrofuran, methyl tert-butyl ether, ethyl tert-butyl ether, cyclopentyl methyl ether and the like.
  • Ethers such as ethyl acetate and butyl acetate; halogenated hydrocarbons such as dichloromethane and chloroform; alcohols such as methanol, ethanol and isopropanol; water and the like. More than one species may be mixed.
  • the amount of the solvent used when forming the salt can be used in an amount taking into consideration economic efficiency in either a single solvent or a mixed solvent.
  • the amount of the solvent is, for example, 0 to 100 times, preferably 0.5 to 50 times, more preferably 2 to 10 times the volume of the compound (1) by volume.
  • the compound (3) having a higher purity can be purified by a method well known to those skilled in the art.
  • Compound B When reacting Compound A and Compound B, Compound B can be reacted after reacting Compound A and a carbonylating reagent in advance as shown in the following formula (Eq.1).
  • the reaction product may be purified after reacting Compound A and the carbonylating reagent. [Wherein R represents a residue of the carbonylation reagent. ]
  • Reaction (i) can be carried out without solvent or in a solvent.
  • solvent examples include ethers such as dioxane, tetrahydrofuran, and diethyl ether; aromatic hydrocarbons such as benzene, toluene, and xylene; halogenated hydrocarbons such as dichloromethane and chloroform; methanol, Examples include alcohols such as ethanol and isopropanol; polar solvents such as N, N-dimethylformamide, acetone, dimethyl sulfoxide, acetonitrile, and water. These solvents may be used alone or in combination of two or more.
  • Examples of the carbonylation reagent include chloroformate such as phenyl chloroformate, carbonate such as diethyl carbonate, carbonyldiimidazole, phosgene, and triphosgene.
  • Reaction (i) is usually performed at ⁇ 20 to 150 ° C., preferably ⁇ 20 to 100 ° C.
  • Reaction (i) can be performed in the presence or absence of a basic compound.
  • basic compounds that can be used in the reaction (i) include inorganic bases such as potassium carbonate, sodium carbonate, sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, sodium hydride; triethylamine, N, N-diisopropylethylamine, imidazole, An organic base such as pyridine can be used.
  • an additive may be further used in order to advance the reaction more efficiently.
  • additives include potassium iodide, sodium iodide, imidazole, 4-dimethylaminopyridine, 4-pyrrolidinopyridine and the like.
  • Reaction (ii) can be carried out without solvent or in a solvent.
  • the solvent that can be used in the reaction (ii) the solvents mentioned in the reaction (i) can be used.
  • the reaction (ii) is usually performed at ⁇ 20 to 150 ° C., preferably ⁇ 20 to 100 ° C.
  • Reaction (ii) can be performed in the presence or absence of a basic compound.
  • a basic compound that can be used in the reaction (ii)
  • the basic compounds mentioned in the reaction (i) can be used.
  • compound A may be reacted after reacting compound B and a carbonylating reagent in advance.
  • each step can be performed by the same method as in the case of formula (Eq.1). [Wherein R represents a residue of the carbonylation reagent. ]
  • the compound B used in the present invention may be a protected compound B.
  • the protected compound B one in which the 1-position of quinolinone is substituted with a protecting group can be used.
  • protecting groups include alkyl groups such as methoxymethyl group and benzyl group; substituted silyl groups such as triethylsilyl group and triphenylsilyl group; substituted acyl groups such as acetyl group and trifluoroacetyl group; Examples thereof include alkoxycarbonyl groups such as butoxycarbonyl group.
  • 6- (3-aminopropoxy) -quinoline substituted at the 2-position can also be used as the protected compound B.
  • the substituent of 6- (3-aminopropoxy) -quinoline substituted at the 2-position is, for example, a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom; an alkoxy group such as a methoxy group or a methoxymethoxy group; a benzyloxy group Arylalkyloxy groups such as acetoxy group, pivaloyloxy group and other acyloxy groups; triethylsilyloxy group and other silyloxy groups.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom
  • an alkoxy group such as a methoxy group or a methoxymethoxy group
  • a benzyloxy group Arylalkyloxy groups such as acetoxy group, pivaloy
  • the structural formula of the synthesized compound was determined by 1 H-NMR and 13 C-NMR spectra using tetramethylsilane as an internal standard.
  • the data described the chemical shift value ( ⁇ ) when TMS (tetramethylsilane) used as an internal standard was 0 ppm.
  • TMS tetramethylsilane
  • the “conversion rate” used in the specification is a value calculated based on the following formula. Specifically, the conversion rate calculation method is as follows. First, a small amount of a reaction solution is collected when the reaction between the compound (1) and the compound (2) is performed in the presence of the processed plant product. Next, the reaction solution collected using gas chromatography is measured to obtain the peak areas of compound (1) and compound (3). From the obtained peak areas, the molar ratio of the compound (1) and the compound (3) is calculated by the effective carbon number method (ECN), and is a value calculated based on the following formula.
  • ECN effective carbon number method
  • the effective carbon number method (ECN) is described in, for example, Gas Chromatography, Academic Press, New York, 1962, p207 and the Analytical Chemistry Handbook 5th edition (Seishiro Murata, edited by Japan Analytical Chemical Society, Maruzen Co., Ltd.) It is a method.
  • ECN effective carbon number of 7-oxabicyclo [4.1.0] heptane
  • heptane 5.00
  • 2-cyclopropylamino-1-cyclohexanol 7.50.
  • Conversion rate (%) 100 ⁇ number of moles of compound (3) / (number of moles of compound (1) + number of moles of compound (3))
  • BETADEX 120 (length: 30 m, inner diameter: 0.25 ⁇ m, manufactured by Supelco)
  • CP-CHIRASIL-DEX CB (length: 25 m, inner diameter: 0.25 mm, film thickness: 0.25 ⁇ m, manufactured by Varian)
  • racemic synthesis and analysis method for analysis are shown in the following reference examples.
  • Reference Example 2 synthesis of trans-2- (cyclopropylamino) cyclohexanol All operations were performed in the same manner as Reference Example 1 except that cyclopropylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
  • Reference Example 15 synthesis of trans-2- (2-phenylethylamino) cyclohexanol All operations were performed in the same manner as Reference Example 1 except that 2-phenylethylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
  • Reference Example 17 synthesis of trans-2- (3-ethoxypropylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that 3-ethoxypropylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
  • Reference Example 30 Synthesis of trans-4- (isopropylamino) -3-tetrahydrofuran-3-ol The same operation as in Reference Example 1 was conducted except that 3,6-dioxabicyclo [3.1.0] hexane was used as the epoxide.
  • Reference Example 33 Synthesis of trans-4- (allylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30 except that allylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
  • Reference Example 41 synthesis of trans-4- (3-ethoxypropylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30 except that 3-ethoxypropylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
  • Reference Example 42 synthesis of trans-2- (isopropylamino) cycloheptanol The same operation as in Reference Example 1 was conducted except that 8-oxabicyclo [5.1.0] octane was used as the epoxide. The obtained crude product was used for analysis as it was.
  • Reference Example 51 The same procedure as in Reference Example 1 was conducted except that trans-3-cyclopropylamino-2-butanol Cis-2,3-epoxybutane and cyclopropylamine were used. The obtained crude product was used for analysis as it was. (Outer bath temperature 135-140 ° C, pressure 0.1mmHg) Analysis condition G Retention time 11.0 minutes, 11.3 minutes
  • Reference Example 54 trans-N-tosyl- (2- (2-phenylethylamino) cyclohexylamine) Reference Example except that 2-phenylethylamine was used in place of isopropylamine and 7-tosyl-7-azabicyclo [4.1.0] heptane was used in place of 7-oxabicyclo [4.1.0] heptane The same operation as in 1 was performed. The obtained crude product was used for analysis as it was.
  • the catalyst used in this example was obtained as follows.
  • the defatted soybean powder, pectin (citrus-derived), water-soluble soybean polysaccharide, pumpkin, lotus root, potato, carrot, wheat germ, and turmeric were processed into powder.
  • Unprocessed plant pieces such as kiwi, buntan, natsum, flower aubergine, garlic, soy, leek, pistachio, cashew nut, tea (tea, green tea), red kidney beans, peas, etc. are heated in a desiccator if necessary.
  • Examples 1 to 27 To a 5 mL test tube, 100 mg of the processed plant product described in Table 3 was weighed, and 0.4 mL of toluene, 48 mg of 7-oxabicyclo [4.1.0] heptane, 34 mg of cyclopropylamine, and 17 mg of water were added. Sealed and shaken in a 37 ° C. bath for 16 hours. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC.
  • Examples 28-47 To a 5 mL test tube, 100 mg of the processed plant product described in Table 4 was weighed, and 0.4 mL of toluene, 48 mg of 7-oxabicyclo [4.1.0] heptane, 29 mg of isopropylamine, and 17 mg of water were added. Sealed and shaken in a 40 ° C. bath for 6 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC.
  • pumpkin powder made by Kodama Foods
  • Mashed Potato made by Miki Foods
  • Carrot Powder made by Kodama Foods
  • Tomato Powder made by Kodama Foods
  • Japanese radish “Dried radish grated” manufactured by Kodama Foods
  • “Loren powder” manufactured by Kodama Foods) as a lotus root was pulverized into a powder form, and pistachio was degreased and pulverized.
  • Example 28 to 47 compound (3) was obtained stereoselectively.
  • Examples 28 to 31, 33, 39, 43 and 46 were excellent in both conversion rate and stereoselectivity.
  • Examples 48-63 In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soya Five S-DN) was weighed, 0.4 mL of toluene, 48 mg of 7-oxabicyclo [4.1.0] heptane, compound (2) shown in Table 5 1.2 equivalents and 17 mg of water were added. Sealed and shaken in a 40 ° C. bath for 6 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC.
  • Soya Five S-DN water-soluble soybean polysaccharide
  • Examples 77-88 In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soya Five S-DN) is weighed, 0.4 mL of toluene, 41 mg of 6-oxabicyclo [3.1.0] hexane, compound (2) shown in Table 7 1.2 equivalents and 17 mg of water were added. Sealed and shaken in a 40 ° C. bath for 6 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC.
  • Soya Five S-DN water-soluble soybean polysaccharide
  • Examples 89-100 In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soya Five S-DN) is weighed, 0.4 mL of toluene, 42 mg of 3,6-dioxabicyclo [3.1.0] hexane, and the compounds described in Table 8 (2) 1.2 equivalents and 17 mg of water were added. Sealed and shaken in a 40 ° C. bath for 6 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC.
  • Soya Five S-DN water-soluble soybean polysaccharide
  • Examples 101-108 In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soya Five S-DN) was weighed, 0.4 mL of toluene, 41 mg of 8-oxabicyclo [5.1.0] octane, compound (2) shown in Table 9 1.2 equivalents and 17 mg of water were added. Sealed and shaken in a 40 ° C. bath for 6 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC.
  • Soya Five S-DN water-soluble soybean polysaccharide
  • Example 101-108 all gave compound (3) stereoselectively.
  • Example 107 was excellent in both conversion rate and stereoselectivity.
  • Example 109 In a 5 mL test tube, weigh 1.1 g of water-soluble soybean polysaccharide (Soya Five S-DN), 2.87 mL of toluene, 41 mg of Cis-2,3-epoxybutane, 1.2 equivalent of cyclopropylamine, and 390 mg of water. added. Sealed and shaken in a 40 ° C. bath for 6 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC. As a result, the conversion was 55% and the selectivity was 4% ee.
  • Soya Five S-DN water-soluble soybean polysaccharide
  • toluene 41 mg
  • Cis-2,3-epoxybutane 41 mg
  • cyclopropylamine 1.2 equivalent of cyclopropylamine
  • Examples 110-114 In a 1 L four-necked flask equipped with a stirrer and a thermometer, 70.0 g of processed soybean, 198 mL of toluene, 28.0 mL of water, 35.0 g of 7-oxabicyclo [4.1.0] heptane and 24. 4 g was added and stirred at 40 ° C. under a nitrogen atmosphere. Table 1 shows the processed soybean and reaction time used in each example. A small amount of the reaction solution was collected, and the conversion rate and selectivity at a predetermined reaction time were calculated using gas chromatography.
  • Examples 110 to 114 all gave compound (3) stereoselectively.
  • Examples 112 to 114 were excellent in both conversion rate and stereoselectivity.
  • Example 115 In a 5 mL test tube, weigh 100 mg of water-soluble soybean polysaccharide (Soya Five S-DN), and add 0.4 mL of toluene, 100 mg of 7-oxabicyclo [4.1.0] heptane, 109 mg of 2-propanethiol, and 17 mg of water. added. Sealed and shaken in a 50 ° C. bath for 5 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC. As a result, the conversion rate was 7% and the selectivity rate was 72% ee.
  • Example 116 In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soya Five S-DN) was weighed, 0.4 mL of toluene, 100 mg of 7-tosyl-7-azabicyclo [4.1.0] heptane, 58 mg of 2-phenylethylamine, 17 mg of water was added. Sealed and shaken in a 50 ° C. bath for 5 days. After the reaction, the catalyst was filtered and the filtrate was concentrated to obtain 120 mg of a crude product of trans-N-tosyl (2- (2-phenylethylamino) cyclohexylamine). The crude yield was 81% and the selectivity was 4% ee.
  • the obtained filtrate was concentrated under reduced pressure, and 58.4 g (content 51.0 g, 64% ee, yield 92%) of (1R, 2R) -2- (cyclopropylamino) cyclohexanol was obtained as a crude product. Obtained.
  • the content was calculated based on the mass of the crude product by measuring the 1 H-NMR spectrum of the crude product and using the integral ratio of protons of 2- (cyclopropylamino) cyclohexanol and toluene. Value.
  • the obtained toluene layer was washed with 68 mL of water three times and concentrated under reduced pressure using a rotary evaporator to obtain 154.1 g (content 135.6 g) of a solid.
  • 154.1 g (content 135.6 g) of the solid and 407 mL of heptane add 154.1 g (content 135.6 g) of the solid and 407 mL of heptane, adjust the internal temperature to 25 ° C., add 135 mg of seed crystal B, and take 30 minutes. Left to stand. At this time, (1R, 2R) -2- (cyclopropylamino) cyclohexanol was used as seed crystal B.
  • the precipitated crystals were collected by filtration.
  • the obtained crystals were washed with 68 mL of heptane at 0 ° C. and dried under reduced pressure at room temperature to obtain 103.0 g (100% ee) of primary crystals of white (1R, 2R) -2- (cyclopropylamino) cyclohexanol. It was.
  • the filtrate was concentrated on a rotary evaporator under reduced pressure to obtain 11.0 g (100% ee) of secondary crystals in the same manner as when primary crystals were obtained.
  • the yield of was 42%.
  • Example 118 Synthesis of optically active trans-2- (isopropylamino) cyclohexanol
  • 14.4 g of Soya Five S-DN 36 mL of heptane, 4.3 mL of water, 7-oxabicyclo [4.1.0] 12 g of heptane and 8.7 g of isopropylamine were added, and the mixture was stirred at 40 ° C. for 49 hours under a nitrogen atmosphere.
  • Soya Five S-DN was filtered off using Nutsche and washed with 50 mL of heptane.
  • Example 119 Synthesis of optically active trans-2- (propargylamino) cyclohexanol Into a 50 mL four-necked flask equipped with a stirrer and a thermometer, 1.2 g of Soya Five S-DN, 3 mL of heptane, 0.36 mL of water, 7-oxabicyclo [4.1.0] Heptane (0.858 g) and propargylamine (0.407 g) were added, and the mixture was stirred at 40 ° C. for 6 days under a nitrogen atmosphere. Toluene 3 mL was added and stirred, and Soya Five S-DN was filtered off using Nutsche and washed with toluene 3 mL.
  • the obtained filtrate was concentrated under reduced pressure to obtain 1.19 g (45% ee, 91% yield) of optically active trans-2- (propargylamino) cyclohexanol as a crude product.
  • 1.19 g (45% ee) of the optically active trans-2- (propargylamino) cyclohexanol of the obtained crude product and 12 mL of ethanol were added, and the mixture was heated to 40 ° C. After the temperature was raised, 0.595 g of fumaric acid and 10 mg of seed crystals were added and allowed to stand for 30 minutes.
  • racemic trans-2- (propargylamino) cyclohexanol fumarate was used as a seed crystal.
  • the precipitated racemic trans-2- (propargylamino) cyclohexanol fumarate crystals were filtered off using Nutsche and washed with 1 mL of ethanol. The obtained filtrate was concentrated under reduced pressure using a rotary evaporator.
  • optically active trans-2- (propargylamino) cyclohexanol 10 mL of toluene, 1 mL of water and 0.480 g of potassium hydroxide were added to convert to a free form, and the toluene layer was separated.
  • the obtained toluene layer was washed with 1 mL of water three times and concentrated under reduced pressure using a rotary evaporator to obtain 0.440 g (90% ee) of optically active trans-2- (propargylamino) cyclohexanol.
  • the total yield at this time was 31%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Quinoline Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 式(1):(式中、Xは、-O-または-NR-であり、R、R、R、RおよびRは、それぞれ独立に、C1-6アルキル基等である) で表される化合物と、 式(2):(式中、Yは、-O-、-NR-または-S-であり、RおよびRはそれぞれ独立に、C1-6アルキル基等である) で表される化合物と、を植物加工物の存在下反応させ、 式(3):(式中、X、Y、R、R、R、RおよびRは、前記定義と同一である) で表される化合物を得る工程を含む、式(3)で表される化合物の製造方法。

Description

光学活性体の製造方法
 本発明は、光学活性体の製造方法に関する。
 式(Z)で表される化合物(以下、「化合物(Z)」ともいう。)は、連続する2つの炭素原子に、それぞれ酸素原子または窒素原子が結合した化合物であり、1分子中に少なくとも2つの不斉炭素を有するため、複数の光学異性体が存在する。光学活性な化合物(Z)は、医薬品または農薬の開発の分野において汎用される化学構造の1つであり、不斉反応で使用する遷移金属触媒のリガンドとしても使用できる。
Figure JPOXMLDOC01-appb-C000008
 なお、式中、Xは-O-または-NR-を示し、Yは-O-、-NR-または-S-を示し、R、R、R、R、R、RおよびRは、それぞれ独立に水素原子または有機基を示し、アスタリスクはその炭素原子が不斉炭素であることを示す。
 化合物(Z)は、具体的には、例えば、1,2-ジオール(XおよびYがともに-O-である場合)、1,2-アミノアルコール(Xが-O-かつYが-NH-である場合、または、Xが-NH-かつYが-O-である場合)、1,2-ジアミン(XおよびYがともに-NH-である場合)、1,2-メルカプトアルコール(Xが-O-かつYが-S-である場合)、1,2-メルカプトアミン(Xが-NH-かつYが-S-である場合)である。
 現在までに、光学活性な化合物(Z)の製造方法について、多くの検討が行われている。なかでも、入手が容易なエポキシド構造またはアジリジン構造を有する化合物に求核剤を反応させ、立体選択的に開環することにより光学活性な化合物(Z)を得る方法は、原子効率が高く有用である。
 例えば、エポキシド構造を有する化合物に求核剤を反応させて、光学活性な化合物(Z)を得る方法としては、(A)ラセミ体を光学分割する方法(例えば、特許文献1~3、非特許文献1、2)、(B)他の位置に不斉炭素を導入し、生じたジアステレオマーを分離する方法(例えば、特許文献4、非特許文献3)、(C)光学活性な触媒の存在下でエポキシド構造を有する化合物と求核剤の不斉開環反応を行う方法(例えば、特許文献5、非特許文献4~6)等がある。特に、(A)の方法としては、分割剤として光学活性な酸を用いる方法、光学活性な充填剤を利用したカラムクラマトグラフィーを用いて分離する方法、および動物または微生物に由来する酵素を利用する方法などが知られている。
 また、アジリジン構造を有する化合物に求核剤を反応させて、化合物(Z)を得る方法としては、(D)ラセミ体を光学分割する方法(例えば、特許文献6)、(E)光学活性な触媒の存在下でアジリジン構造を有する化合物と求核剤の不斉開環反応を行う方法(例えば、非特許文献7,8)等がある。
特許第4406483号公報 特許第4406482号公報 米国特許第5981267号明細書 特開平9-157258号公報 特開2003-206266号公報 特開2011-83934号公報
Tetrahedron,56,9773-9779(2000) Synth.Commun.,29,1369-1377(1999) J.Med.Chem.41,38-45(1998) Tetrahedron:Asymmetry,9,1747-1752(1998) Bull.Chem.Soc.Jpn.,61,1213-1220(1988) Chemistry Letters,36,34-35(2007) Org.Biomol.Chem.,9,6205-6207(2011) J.Org.Chem.,68,5160-5167(2003)
 しかしながら、(A)、(B)および(D)の方法では、理論上の収率が50%を超えることはなく、製造物と同じ量の分割剤の使用、または、大容量カラムによる精製が必要となり、工業的に製造する方法としては問題がある。
 一方、(C)および(E)の方法では、短工程で目的の光学活性な化合物(Z)を製造することができるが、多くの場合、光学活性な触媒として金属触媒または強力な酸触媒を用いる。そのため、(C)および(E)の方法では、使用できる含ヘテロ3員環構造を有する化合物または求核剤が限定され、高価な金属触媒の回収工程が必要となる。
 したがって、本発明の目的は、安価で入手が容易な触媒を使用し、簡便な操作により、エポキシドまたはアジリジンを有する化合物と求核剤とを反応させ、式(3)で表される化合物を立体選択的かつ効率よく製造する方法を提供することである。
 本発明は、以下の[1]~[9]を提供する。
[1]式(1):
Figure JPOXMLDOC01-appb-C000009
(式中、Xは、-O-または-NR-であり、Rは、水素原子、置換基を有してもよいC1-6アルキル基、置換基を有してもよいC3-6シクロアルキル基、置換基を有してもよいC2-6アルケニル基、置換基を有してもよいC3-6シクロアルケニル基、置換基を有してもよいC2-6アルキニル基、置換基を有してもよいC6-10アリール基、置換基を有してもよいC1-6アルキルカルボニル基、置換基を有してもよいC6-10アリールカルボニル基、置換基を有してもよいC1-6アルキルスルホニル基またはC6-10アリールスルホニル基であり、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1-6アルキル基、置換基を有してもよいC3-6シクロアルキル基、置換基を有してもよいC2-6アルケニル基、置換基を有してもよいC3-6シクロアルケニル基、置換基を有してもよいC2-6アルキニル基または置換基を有してもよいC6-10アリール基であり、前記置換基が、C1-4アルキル基、C2-4アルケニル基、C2-4アルキニル基、C1-4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(1b)で表される化合物となっていてもよい)
Figure JPOXMLDOC01-appb-C000010
(式中、X、RおよびRは、前記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す)
で表される化合物と、
 式(2):
Figure JPOXMLDOC01-appb-C000011
(式中、Yは、-O-、-NR-または-S-であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1-6アルキル基、置換基を有してもよいC3-6シクロアルキル基、置換基を有してもよいC2-6アルケニル基、置換基を有してもよいC3-6シクロアルケニル基、置換基を有してもよいC2-6アルキニル基または置換基を有してもよいC6-10アリール基であり、前記置換基が、C1-4アルコキシ基、C6-10アリール基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(2a)で表される化合物となっていてもよく、ただし、式(2)で表される化合物は水または硫化水素ではない)
Figure JPOXMLDOC01-appb-C000012
(式中、Rは、RおよびRが互いに結合して形成される基を示す)
で表される化合物と、を植物加工物の存在下反応させ、
 式(3):
Figure JPOXMLDOC01-appb-C000013
(式中、X、Y、R、R、R、RおよびRは、前記定義と同一である)
で表される化合物を得る工程を含む、式(3)で表される化合物の製造方法。
[2]前記式(1)で表される化合物が、式(1c)で表される化合物である、請求項1に記載の製造方法。
Figure JPOXMLDOC01-appb-C000014
(式中、XおよびRは、前記定義と同一である)
[3]前記式(1)で表される化合物が、式(1a)で表される化合物である、[1]に記載の製造方法。
Figure JPOXMLDOC01-appb-C000015
(式中、Xは、-O-または-NR-であり、Rは、水素原子、置換基を有してもよいC1-6アルキル基、置換基を有してもよいC3-6シクロアルキル基、置換基を有してもよいC2-6アルケニル基、置換基を有してもよいC3-6シクロアルケニル基、置換基を有してもよいC2-6アルキニル基、置換基を有してもよいC6-10アリール基、置換基を有してもよいC1-6アルキルカルボニル基、置換基を有してもよいC6-10アリールカルボニル基、置換基を有してもよいC1-6アルキルスルホニル基またはC6-10アリールスルホニル基であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1-6アルキル基、置換基を有してもよいC3-6シクロアルキル基、置換基を有してもよいC2-6アルケニル基、置換基を有してもよいC3-6シクロアルケニル基、置換基を有してもよいC2-6アルキニル基または置換基を有してもよいC6-10アリール基であり、前記置換基が、C1-4アルキル基、C2-4アルケニル基、C2-4アルキニル基、C1-4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子を示す)
[4]Yが-NR-である、[1]~[3]のいずれか一項に記載の製造方法。
[5]Yが-O-である、[1]~[3]のいずれか一項に記載の製造方法。
[6]Yが-S-である、[1]~[3]のいずれか一項に記載の製造方法。
[7]前記植物加工物が、マメ科、ウリ科、ナス科、ウルシ科、ショウガ科、ミカン科、ヒガンバナ科、セリ科、アブラナ科、ハス科、マタタビ科、バラ科、ユリ科、イネ科、モクセイ科、バショウ科、ツバキ科およびネギ科の植物からなる群から選択される植物を粉砕して調製される、[1]~[6]のいずれか一項に記載の製造方法。
[8]7-オキサビシクロ[4.1.0]ヘプタンおよびシクロプロピルアミンを、大豆加工物の存在下で反応させて(1R,2R)-2-シクロプロピルアミノ-1-シクロヘキサノールを得る工程を含む、(1R,2R)-2-シクロプロピルアミノ-1-シクロヘキサノールの製造方法。
[9](1) 7-オキサビシクロ[4.1.0]ヘプタンおよびシクロプロピルアミンを、大豆加工物の存在下で反応させて(1R,2R)-2-シクロプロピルアミノ-1-シクロヘキサノールを得る工程と、
 (2a) (1R,2R)-2-シクロプロピルアミノ-1-シクロヘキサノールとカルボニル化試薬を反応させた後に、さらに保護された若しくは保護されていない6-(3-アミノプロポキシ)-2(1H)-キノリノンとを反応させ、または、
 (2b) 保護された若しくは保護されていない6-(3-アミノプロポキシ)-2(1H)-キノリノンとカルボニル化試薬を反応させた後に、さらに(1R,2R)-2-シクロプロピルアミノ-1-シクロヘキサノールを反応させ、
 保護された6-(3-アミノプロポキシ)-2(1H)-キノリノンを用いた場合は、さらに脱保護を行うことによって、
 (-)-6-〔3-〔3-シクロプロピル-3-〔(1R,2R)-2-ヒドロキシシクロヘキシル〕ウレイド〕-プロポキシ〕-2(1H)-キノリノンを得る工程と、
 を含む、(-)-6-〔3-〔3-シクロプロピル-3-〔(1R,2R)-2-ヒドロキシシクロヘキシル〕ウレイド〕-プロポキシ〕-2(1H)-キノリノンの製造方法。
 本発明によれば、安価で入手が容易な触媒を使用し、簡便な操作により、エポキシド構造またはアジリジン構造を有する化合物と種々の求核剤とを反応させ、式(3)で表される化合物を立体選択的かつ効率的に製造することができる。
 また、本発明で使用する触媒は、入手容易な植物加工物であり、必ずしも触媒の回収を必要としない。さらに、触媒は、反応終了後、回収して再利用することも可能である。
 以下、本発明について詳細に説明する。
 本発明の一実施形態は、式(1)で表される化合物(以下、「化合物(1)」等ともいう。)と化合物(2)を植物加工物の存在下で反応させ、化合物(3)を得るものである。
Figure JPOXMLDOC01-appb-C000016
<式(1)で表される化合物(化合物(1))>
 式(1)において、Xは、-O-または-NR-である。すなわち、化合物(1)は、エポキシド構造を有する化合物またはアジリジン構造を有する化合物を意味する。
Figure JPOXMLDOC01-appb-C000017
 Rは、水素原子、置換基を有してもよいC1-6アルキル基、置換基を有してもよいC3-6シクロアルキル基、置換基を有してもよいC2-6アルケニル基、置換基を有してもよいC3-6シクロアルケニル基、置換基を有してもよいC2-6アルキニル基、置換基を有してもよいC6-10アリール基、置換基を有してもよいC1-6アルキルカルボニル基、置換基を有してもよいC6-10アリールカルボニル基、置換基を有してもよいC1-6アルキルスルホニル基またはC6-10アリールスルホニル基である。
 また、R、R、RおよびRは、それぞれ独立に、水素原子、C1-6アルキル基、C3-6シクロアルキル基、C2-6アルケニル基、C3-6シクロアルケニル基、C2-6アルキニル基またはC6-10アリール基である。
 C1-6アルキル基とは、炭素数1~6のアルキル基を意味する。C1-6アルキル基としては、例えば、メチル基、エチル基、プロパン-1-イル基、プロパン-2-イル基(イソプロピル基)、ブタン-1-イル基、ブタン-2-イル基、ペンタン-1-イル基、ペンタン-2-イル基、ペンタン-3-イル基、ヘキサン-1-イル基、ヘキサン-2-イル基および3-ヘキシル基が挙げられる。
 C3-6シクロアルキル基とは、炭素数3~6のシクロアルキル基を意味する。C3-6シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。
 C2-6アルケニル基とは、炭素数2~6のアルケニル基を意味する。C2-6アルケニル基としては、例えば、ビニル基、1-プロペン-1-イル基、2-プロペン-1-イル基、プロペン-2-イル基、2-ブテン-1-イル基、2-ブテン-2-イル基、3-ブテン-1-イル基、2-ペンテン-1-イル基、3-ペンテン-1-イル基、2-ヘキセン-1-イル基、3-ヘキセン-1-イル基、4-ヘキセン-1-イル基および5-ヘキセン-1-イル基が挙げられる。
 C3-6シクロアルケニル基とは、炭素数3~6のシクロアルケニル基を意味する。C3-6シクロアルケニル基としては、例えば、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基が挙げられる。
 C2-6アルキニル基とは、炭素数2~6のアルキニル基を意味する。C2-6アルキニル基としては、例えば、エチニル基、プロパルギル基および3-ブチン-1-イル基が挙げられる。
 C6-10アリール基とは、炭素数6~10のアリール基を意味する。C6-10アリール基としては、例えば、フェニル基およびナフチル基が挙げられる。
 C1-6アルキル基、C3-6シクロアルキル基、C2-6アルケニル基、C3-6シクロアルケニル基、C2-6アルキニル基およびC6-10アリール基は、それぞれ無置換であっても、置換基を有していてもよい。置換基としては、C1-4アルキル基、C2-4アルケニル基、C2-4アルキニル基、C1-4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子が挙げられる。C1-4アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基およびブトキシ基が挙げられる。
 化合物(1)としては、例えば、Cis-2,3-エポキシブタンが挙げられる。
 また、化合物(1)の代わりに、Xが-S-であるチイラン構造を有する化合物を用いてもよい。チイラン構造を有する化合物を用いた場合、1,2-メルカプトアミン、1,2-メルカプトアルコール、1,2-ジチオールを得ることができる。
 また、化合物(1)は、化合物(1b)であってもよい。
Figure JPOXMLDOC01-appb-C000018
 式中、X、RおよびRは、上記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す。
 式(1b)中、Xは、-O-または-NR-を示し、Rは、RおよびRが互いに結合して形成される基を示す。RおよびRが互いに結合して形成される基とは、RまたはRが置換基を有している場合、当該置換基を介して接続されるように結合してもよい。すなわち、Rは、C1-6アルキレン基、C2-6アルケニレン基、C2-6アルキニレン基およびC6-10アリーレン基だけでなく、RとRとが置換基を介して結合して形成される態様も包含する。
 C1-6アルキレン基、C2-6アルケニレン基、C2-6アルキニレン基およびC6-10アリーレン基とは、それぞれ式(1)で定義されたC1-6アルキル基、C2-6アルケニル基、C2-6アルキニル基およびC6-10アリール基からさらに水素原子を1つ除いてなる基である。
 RとRが置換基を介して結合して形成される態様とは、例えば、2-オキサプロピレン基(-CHOCH-)、3-オキサペンチレン基(-CHCHOCHCH-)、3-オキソペンチレン基(-CHCHC(=O)CHCH-)が挙げられる。
 式(1b)で表される化合物の具体例としては、6-オキサビシクロ[3.1.0]ヘキサン、7-オキサビシクロ[4.1.0]ヘプタン、8-オキサビシクロ[5.1.0]オクタンおよび3,6-ジオキサビシクロ[3.1.0]ヘキサンが挙げられる。
<式(2)で表される化合物(化合物(2))>
 式(2)において、Yは、-O-、-NR-または-S-である。すなわち、化合物(2)は、アルコール、アミンまたはチオールを意味する。ただし、水および硫化水素は、化合物(2)の範囲から除かれる。
Figure JPOXMLDOC01-appb-C000019
 また、RおよびRは、それぞれ独立に、水素原子、C1-6アルキル基、C3-6シクロアルキル基、C2-6アルケニル基、C3-6シクロアルケニル基、C2-6アルキニル基またはC6-10アリール基である。
 C1-6アルキル基としては、例えば、メチル基、エチル基、プロパン-1-イル基、プロパン-2-イル基(イソプロピル基)、ブタン-1-イル基、ブタン-2-イル基、ペンタン-1-イル基、ペンタン-2-イル基、ペンタン-3-イル基、ヘキサン-1-イル基、ヘキサン-2-イル基および3-ヘキシル基が挙げられる。
 C3-6シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。
 C2-6アルケニル基としては、例えば、ビニル基、1-プロペン-1-イル基、2-プロペン-1-イル基、プロペン-2-イル基、2-ブテン-1-イル基、2-ブテン-2-イル基、3-ブテン-1-イル基、2-ペンテン-1-イル基、3-ペンテン-1-イル基、2-ヘキセン-1-イル基、3-ヘキセン-1-イル基、4-ヘキセン-1-イル基および5-ヘキセン-1-イル基が挙げられる。
 C3-6シクロアルケニル基としては、例えば、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基が挙げられる。
 C2-6アルキニル基としては、例えば、エチニル基、プロパルギル基および3-ブチン-1-イル基が挙げられる。
 C6-10アリール基としては、例えば、フェニル基およびナフチル基が挙げられる。
 C1-6アルキル基、C3-6シクロアルキル基、C2-6アルケニル基、C3-6シクロアルケニル基、C2-6アルキニル基およびC6-10アリール基は、それぞれ無置換であっても、置換基を有していてもよい。置換基としては、C1-4アルキル基、C2-4アルケニル基、C2-4アルキニル基、C6-10アリール基、C1-4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子が挙げられる。C1-4アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基およびブトキシ基が挙げられる。
 化合物(2)の具体例としては、メタノール、エタノール、1-プロパノール、2-プロパノール(イソプロパノール)、1-ブタノール、2-ブタノール、1-ペンタノール、2-ペンタノール、フェノール、アンモニア、メチルアミン、エチルアミン、プロピルアミン、2-プロピルアミン(イソプロピルアミン)、2-ペンチルアミン、3-ペンチルアミン、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミン、tert-ブチルアミン、アリルアミン、プロパルギルアミン、ベンジルアミン、2-フェニルエチルアミン、アニリン、ジメチルアミン、ジエチルアミン、3-メトキシプロピルアミン、3-エトキシプロピルアミン、メタンチオール、エタンチオール、1-プロパンチオール、2-プロパンチオール、ブタンチオールが挙げられる。
 また、化合物(2)は、化合物(2a)であってもよい。
Figure JPOXMLDOC01-appb-C000020
 式中、Rは、RおよびRが互いに結合して形成される基を示す。
 式(2a)中、Rは、RおよびRが互いに結合して形成される基を示す。RおよびRが互いに結合して形成される基とは、RまたはRが置換基を有している場合、当該置換基を介して接続されるように結合してもよい。すなわち、Rは、C1-6アルキレン基、C3-6シクロアルキレン基、C2-6アルケニレン基、C3-6シクロアルケニレン基、C2-6アルキニレン基およびC6-10アリーレン基だけでなく、RとRが置換基を介して結合して形成される態様も包含する。
 C1-6アルキレン基、C3-6シクロアルキレン基、C2-6アルケニレン基、C3-6シクロアルケニレン基、C2-6アルキニレン基およびC6-10アリーレン基とは、それぞれ式(2)で定義されたC1-6アルキル基、C2-6アルケニル基、C2-6アルキニル基およびC6-10アリール基からさらに水素原子を1つ除いてなる基である。
 RとRが置換基を介して結合して形成される態様とは、例えば、2-オキサプロピレン基(-CHOCH-)、3-オキサペンチレン基(-CHCHOCHCH-)、3-オキソペンチレン基(-CHCHC(=O)CHCH-)が挙げられる。
 化合物(2a)の具体例としては、ピロリジン、ピペリジン、モルホリン、ピペラジン、ホモピペラジン、チオモルホリンである。
 化合物(2)の量は、経済性、回収性を考慮した任意の量を用いることができる。このような量としては、例えば、化合物(1)のモル数に対して0.01~100当量、好ましくは0.1~10当量、更に好ましくは0.5~2当量である。
<式(3)で表される化合物(化合物(3))>
 化合物(3)とは、式(3)で表される化合物であり、式中、X、Y、R、R、R、R、R、R、RおよびRは、上記定義と同一である。
Figure JPOXMLDOC01-appb-C000021
 また、化合物(1)が化合物(1b)である場合、化合物(2)が化合物(2a)である場合を考慮すると、化合物(3)には化合物(3a)~(3c)が包含される。
Figure JPOXMLDOC01-appb-C000022
 化合物(3)の具体例としては、1,2-ジオール(XおよびYがともに-O-である場合)、1,2-アミノアルコール(Xが-O-かつYが-NH-である場合、または、Xが-NH-かつYが-O-である場合)、1,2-ジアミン(XおよびYがともに-NH-である場合)、1,2-メルカプトアルコール(Xが-O-かつYが-S-である場合)、1,2-メルカプトアミン(Xが-NH-かつYが-S-である場合)が挙げられる。
<植物加工物>
 本明細書において、植物加工物とは、食用植物の一部を加工して得られる粉末または抽出物である。
 上記「食用植物」とは、ヒトがその一部を食べることができる植物として、一般的に知られた植物を意味する。食用植物としては、例えば、穀類、豆類、野菜、果物またはいも類に分類される植物であり、食用植物の一部とは、果実全体、果肉、果皮、茎、種子、胚芽、根、球根および葉から適宜選択することができる。食用植物としては、具体的には、マメ科(例えば、大豆、黒豆、赤インゲンマメ、エンドウマメ)、モクセイ科(例えば、オリーブ)、バショウ科(例えば、バナナ)、イネ科(例えば、小麦)、ウリ科(例えば、カボチャ)、ナス科(例えば、トマト、ジャガイモ)、ウルシ科(例えば、ピスタチオ、カシューナッツ)、ショウガ科(例えば、ウコン)、ツバキ科(例えば、茶)、ミカン科(例えば、ナツミカン、柚子、花柚子、ブンタン)、ヒガンバナ科(例えば、ニンニク)、セリ科(例えば、ニンジン)、アブラナ科(例えば、ダイコン)、ハス科(例えば、レンコン)、マタタビ科(例えば、キウイ)、バラ科(例えば、リンゴ)およびネギ科(例えば、ネギ)の植物が挙げられる。食用植物としては、マメ科(例えば、大豆、黒豆、赤インゲンマメ、エンドウマメ)、ツバキ科(例えば、茶)、セリ科(例えば、ニンジン)、マタタビ科(例えば、キウイ)およびユリ科(例えば、ネギ)からなる群から選択されることが好ましい。なお、ネギは、ネギ科として分類される場合もある。
 上記「加工」とは、必要に応じて、乾燥する、加熱する、火であぶる、焙煎する、油であげる、発酵させる、不要な部位を除去する等の処理を行った後、粉末状になるまで粉砕すること、あるいは成分を抽出することを意味する。また、上記植物加工物には、食用植物のエキスを抽出した後、乾燥したものを粉砕して得られる粉末も包含される。したがって、上記茶は、緑茶であってもよく、紅茶であってもよい。また、上記大豆は、きな粉であってもよく、納豆であってもよい。
 植物加工物は、粉末状または液状に加工された状態で市販されたものを使用してもよく、加工された状態で市販されたものを適宜粉末状に粉砕して使用してもよい。市販されたものとしては、きな粉、脱脂大豆粉(例えば、フジプロF(不二製油(株)製、商品名)、サンリッチF(昭和産業(株)製、商品名)、ソーヤフラワーFT-N(日清オイリオ(株)製、商品名)、エスサンミート特等(味の素(株)製、商品名)、豊年ソイプロ(J-オイルミルズ(株)製、商品名)、水溶性大豆多糖類(例えば、ソヤファイブS-DN(不二製油(株)製、商品名)等の大豆加工物を用いることが好ましく、きな粉、ソーヤフラワーFT-NまたはソヤファイブS-DNを用いることがより好ましい。
 植物加工物の量としては、経済性、回収性を考慮した任意の量を用いることができる。このような植物加工物の量としては、例えば、式(1)で表される化合物の質量に対して、質量比で0.01~100倍量、好ましくは0.1~10倍量、更に好ましくは1~5倍量である。
<不斉開環反応>
 本発明の実施形態に係る不斉開環反応は、溶媒中で行ってもよい。溶媒中で行う場合は、化合物(1)および化合物(2)と反応しない溶媒であれば、通常、有機合成化学でよく知られた有機溶媒および水を使用することができる。このような有機溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ヘキサン、シクロヘキサン、ヘプタン等の炭化水素類;ジイソプロピルエーテル、テトラヒドロフラン、メチルtert-ブチルエーテル、エチルtert-ブチルエーテル、シクロペンチルメチルエーテル等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類が挙げられる。また、これらの溶媒は、単独で使用してもよく、2種以上を混合して用いてもよい。2種以上を混合して用いる場合は、有機溶媒と水を混合して用いることが好ましく、回収性、安全性、経済性の面からトルエンまたはヘプタンと水との混合溶媒を用いることが特に好ましい。
 不斉開環反応に使用できる溶媒の量は、単独溶媒、混合溶媒のいずれにおいても経済性を考慮した量で用いることができる。このような溶媒の量は、例えば、化合物(1)の質量に対して、容量比で0~100倍量、好ましくは0.5~50倍量、更に好ましくは2~10倍量である。
 不斉開環反応に使用できる水の含量は、触媒に対して水を質量比で0.05~1倍量の範囲とすることができ、触媒に対して水を0.20~0.50倍量の範囲であることが更に好ましい。このような範囲であれば、反応の変換率および生成物の光学純度がより向上する。
 反応温度は-20℃~100℃が好ましく、特に30℃~50℃が好ましい。反応終了後、触媒をろ別することで、対応する化合物(3)を得ることができる。本発明の不斉開環反応を行う際に、ろ別によって回収された触媒を再利用することができる。
 反応時間は、経済性を考慮した任意の変換率が得られる時間まで反応を行うことができる。このような反応時間としては、例えば、1~500時間、好ましくは1~100時間、更に好ましくは1~48時間である。
 反応終了後、触媒をろ別することで化合物(3)を得ることができる。得られた化合物(3)は、更に晶析、蒸留等の定法により、容易に精製することもできる。
 晶析に使用できる溶媒は、通常、有機合成化学で使用される溶媒であれば特に限定されず、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類;トルエン、ベンゼン、キシレン等の芳香族炭化水素類;ジイソプロピルエーテル、メチルtert-ブチルエーテル、エチルtert-ブチルエーテル、シクロペンチルメチルエーテル等のエーテル類などを用いることができ、これらの溶媒を単独または2種以上を混合して用いてもよい。
 上記溶媒の量は、単独溶媒、混合溶媒のいずれの場合においても、経済性を考慮した量とすることができ、化合物(3)の質量に対して、容量比で0.1~100倍量、好ましくは0.5~50倍量、さらに好ましくは1~10倍量である。
<塩形成反応>
 本発明により得られた化合物(3)は、有機合成化学で通常使用される無機酸または有機酸と、塩を形成することにより、光学純度を高めることができる。上記酸としては、例えば、塩酸、硫酸、亜硫酸、硝酸、過塩素酸、塩素酸、ヨウ素酸、リン酸等の無機酸;ギ酸、酢酸、乳酸、シュウ酸、クエン酸、マレイン酸、フマル酸、安息香酸、フタル酸、サリチル酸、メタンスルホン酸、トルエンスルホン酸等の有機酸が挙げられる。
 化合物(3)の光学純度を高めるために、光学活性な酸との塩を形成させてもよい。上記光学活性な酸としては、例えば、酒石酸、リンゴ酸、マンデル酸、フェニルグリシン等が挙げられ、上記酸は置換されているものであってもよい。
 塩を形成する際の溶媒としては経済性、回収性等を考慮して、有機合成化学で通常使用される溶媒を用いることができる。上記溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ヘキサン、シクロヘキサン、ヘプタン等の炭化水素類;ジイソプロピルエーテル、テトラヒドロフラン、メチルtert-ブチルエーテル、エチルtert-ブチルエーテル、シクロペンチルメチルエーテル等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類;メタノール、エタノール、イソプロパノール等のアルコール類;水等を挙げることができ、これらの溶媒を単独または2種以上混合してもよい。
 塩を形成する際に使用する溶媒の量は、単独溶媒、混合溶媒のいずれにおいても経済性を考慮した量で用いることができる。上記溶媒の量は、例えば、化合物(1)の質量に対して、容量比で0~100倍量、好ましくは0.5~50倍量、更に好ましくは2~10倍量である。
 塩形成反応において、より高純度の化合物(3)を得るために、当業者によく知られた方法により、精製することができる。
<医薬候補化合物への応用>
 本発明で得られる(1R,2R)-2-シクロプロピルアミノ-1-シクロヘキサノール(以下、「化合物A」ともいう。)は、6-(3-アミノプロポキシ)-2(1H)-キノリノン(以下、「化合物B」ともいう。)と反応させることにより、(-)-6-〔3-〔3-シクロプロピル-3-〔(1R,2R)-2-ヒドロキシシクロヘキシル〕ウレイド〕-プロポキシ〕-2(1H)-キノリノンを製造することができる。
 (-)-6-〔3-〔3-シクロプロピル-3-〔(1R,2R)-2-ヒドロキシシクロヘキシル〕ウレイド〕-プロポキシ〕-2(1H)-キノリノンは、インビボ(in vivo)での強い抗血栓作用および血管内皮肥厚抑制作用の2つの作用を有する物質であり、血小板凝集抑制作用、血小板塊解離作用、脳および末梢血管増加作用等を有している。したがって、(-)-6-〔3-〔3-シクロプロピル-3-〔(1R,2R)-2-ヒドロキシシクロヘキシル〕ウレイド〕-プロポキシ〕-2(1H)-キノリノンは、血栓性疾患や動脈硬化性疾患の治療および予防に有用である。
 化合物Aおよび化合物Bから(-)-6-〔3-〔3-シクロプロピル-3-〔(1R,2R)-2-ヒドロキシシクロヘキシル〕ウレイド〕-プロポキシ〕-2(1H)-キノリノンを製造する方法としては、公知の方法を用いることができる。公知の方法とは、例えば、特許文献4に記載の方法である。
 化合物Aおよび化合物Bを反応させる際には、下記式(Eq.1)のように、予め化合物Aおよびカルボニル化試薬を反応させた後に、化合物Bを反応させることができる。化合物Aおよびカルボニル化試薬を反応させた後に、反応生成物を精製してもよい。
Figure JPOXMLDOC01-appb-C000023
[式中、Rはカルボニル化試薬の残基を意味する。]
 反応(i)は、無溶媒または溶媒中で行うことができる。反応(i)で使用できる溶媒としては、例えば、ジオキサン、テトラヒドロフラン、ジエチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類;メタノール、エタノール、イソプロパノール等のアルコール類;N,N-ジメチルホルムアミド、アセトン、ジメチルスルホキシド、アセトニトリル、水等の極性溶媒が挙げられる。これらの溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。
 上記カルボニル化試薬には、例えば、クロロぎ酸フェニル等のクロロぎ酸エステル、炭酸ジエチル等の炭酸エステル、カルボニルジイミダゾール、ホスゲン、トリホスゲンが挙げられる。
 反応(i)は、通常、-20~150℃で行われ、好ましくは-20~100℃である。
 反応(i)は、塩基性化合物の存在下または非存在下で行うことができる。反応(i)で使用できる塩基性化合物としては、炭酸カリウム、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、水素化ナトリウム等の無機塩基;トリエチルアミン、N,N-ジイソプロピルエチルアミン、イミダゾール、ピリジン等の有機塩基などを用いることができる。
 反応(i)には、反応をより効率よく進行させるために、さらに添加剤を使用してもよい。このような添加剤の例には、ヨウ化カリウム、ヨウ化ナトリウム、イミダゾール、4-ジメチルアミノピリジン、4-ピロリジノピリジン等が挙げられる。
 反応(ii)は、無溶媒または溶媒中で行うことができる。反応(ii)で使用できる溶媒には、反応(i)で挙げた溶媒を使用することができる。
 反応(ii)は、通常、-20~150℃で行われ、好ましくは-20~100℃である。
 反応(ii)は、塩基性化合物の存在下または非存在下で行うことができる。反応(ii)で使用できる塩基性化合物には、反応(i)で挙げた塩基性化合物を使用することができる。
 また、下記式(Eq.2)のように、予め化合物Bおよびカルボニル化試薬を反応させた後に、化合物Aを反応させてもよい。この場合、各工程は式(Eq.1)のときと同様の方法により、行うことができる。
Figure JPOXMLDOC01-appb-C000024
[式中、Rはカルボニル化試薬の残基を意味する。]
 本発明に用いる化合物Bは、保護された化合物Bであってもよい。保護された化合物Bは、キノリノンの1位が保護基で置換されているものを用いることができる。このような保護基としては、例えば、メトキシメチル基、ベンジル基等のアルキル基;トリエチルシリル基、トリフェニルシリル基等の置換シリル基、アセチル基、トリフルオロアセチル基等の置換アシル基、tert-ブトキシカルボニル基等のアルコキシカルボニル基などが挙げられる。
 また、保護された化合物Bとして、2位が置換された6-(3-アミノプロポキシ)-キノリンを用いることもできる。2位が置換された6-(3-アミノプロポキシ)-キノリンの置換基は、例えば、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、メトキシメトキシ基等のアルコキシ基;ベンジルオキシ基等のアリールアルキルオキシ基;アセトキシ基、ピバロイルオキシ基等のアシルオキシ基;トリエチルシリルオキシ基等のシリルオキシ基などが挙げられる。
 保護された化合物Bを反応に用いた場合、反応後に公知の方法によって脱保護し、(-)-6-〔3-〔3-シクロプロピル-3-〔(1R,2R)-2-ヒドロキシシクロヘキシル〕ウレイド〕-プロポキシ〕-2(1H)-キノリノンへと変換することもできる。このような脱保護の条件としては、プロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、John Wiley and Sons刊(1980)に記載の方法を使用することができ、例えば、酸性条件、アルカリ性条件、水素添加が挙げられる。
 以下、本発明を実施例、参考例により具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 合成した化合物は、テトラメチルシランを内部標準としたH-NMRおよび13C-NMRスペクトルにより、その構造式を決定した。データは、内部標準として用いたTMS(テトラメチルシラン)を0ppmとしたときの化学シフト値(δ)を記載した。また、水酸基およびアミノ基等の幅広いピークの場合は、記載していない。
 明細書中で用いられる「変換率」とは、下記式に基づいて算出した値である。変換率の算出方法は、具体的には、次のとおりである。まず、植物加工物の存在下、化合物(1)と化合物(2)との反応を行った際の反応液を少量採取する。次に、ガスクロマトグラフィーを用いて採取した反応液を測定し、化合物(1)および化合物(3)の各ピーク面積を得る。得られた各ピーク面積から、有効炭素数法(ECN)によって化合物(1)と化合物(3)のモル比を算出し、下記式に基づいて算出した値である。なお、有効炭素数法(ECN)とは、例えば、Gas Chromatography,Academic Press,NewYork,1962,p207および分析化学便覧改訂5版(村田誠四郎、日本分析化学会編、丸善(株))に記載の方法である。例えば、7-オキサビシクロ[4.1.0]ヘプタンの有効炭素数は、5.00であり、2-シクロプロピルアミノ-1-シクロヘキサノールの有効炭素数は、7.50である。
変換率(%)=100×化合物(3)のモル数/(化合物(1)のモル数+化合物(3)のモル数)
 光学純度は、鏡像体過剰率(%ee)を算出して記載した。測定条件は以下のとおりである。
 「選択率(%ee)」は、特記しない限り、ガスクロマトグラフィー(GC)を用いて測定した後、ピーク面積の比から、下記式に基づいて計算した。すなわち、選択率が負の値の場合は、「短いGC保持時間のピーク面積」の値が「長いGC保持時間のピーク面積」の値より大きかったことを示す。なお、「選択率(R,R)%ee」と記載されている場合は、(R,R)体の選択率を示す。
選択率(%ee)=100×{(保持時間が長いピークのピーク面積)-(保持時間が短いピークのピーク面積)}/{(保持時間が長いピークのピーク面積)+(保持時間が短いピークのピーク面積)}
分析条件
(1)ガスクロマトグラフィー法
 得られた化合物の分析条件は、表1に記載の条件で測定した。なお、全ての分析条件に共通する事項は、下記共通条件に記載のとおりである。
共通条件
キャリアガス:ヘリウム
検出器:水素炎イオン化検出器
圧力:94kPa
気化室温度:220℃
検出器温度:300℃
スプリット比: 1:150
注入量:0.5μL
サンプル前処理:試料約1mgをジクロロメタンに溶解し、塩化トリメチルシランとトリエチルアミンを加え撹拌し、不溶物をろ過した。
カラム:
BETADEX 120(長さ:30m、内径:0.25μm、Supelco社製)
CP-CHIRASIL-DEX CB(長さ:25m、内径:0.25mm、膜厚:0.25μm、VARIAN社製)
Figure JPOXMLDOC01-appb-T000025
(2)液体クロマトグラフィー法
 得られた化合物の分析条件は、表2に記載の条件で測定した。なお、全ての分析条件に共通する事項は、下記共通条件に記載のとおりである。
共通条件
注入量:5μL
検出器:紫外吸光検出器(波長254nm)
カラム:
CHIRALCEL OB-H(4.6×250mm、株式会社ダイセル製)
CHIRALPAK AS-RH(4.6×150mm、株式会社ダイセル製)
CHIRALCEL OD-H(4.6×250mm、株式会社ダイセル製)
Figure JPOXMLDOC01-appb-T000026
 分析の為のラセミ体合成と分析方法は、以下の参考例に示した。
参考例1 trans-2-(イソプロピルアミノ)シクロヘキサノール合成
 50mLナスフラスコに7-オキサビシクロ[4.1.0]ヘプタン 1.45gとイソプロピルアミン0.87gを量りとり、メタノール8mLと水2mL、塩化リチウム0.13gを加え、50℃で48時間反応した。反応後、減圧下に濃縮し、粗体を得た。粗体は柴田科学社製ガラスチューブオーブンGTO-250RS(クーゲルロール)で減圧蒸留し、trans-2-(イソプロピルアミノ)シクロヘキサノールを1.26g得た。(外浴温度135-140℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 0.82-0.94(m,1H), 1.00(d,J=6.31Hz,3H), 1.06(d,J=6.31Hz,3H), 1.20-1.31(m,3H), 1.69-1.73(m,2H), 2.06-2.10(m,2H), 2.18-2.26(m,1H), 2.96(sep,J=6.31Hz,1H),3.09(m,1H)
13C-NMR(75.45MHz,CDCl) δ 22.79(CH3), 24.28(CH2), 24.73(CH3), 25.36(CH2), 31.29(CH2), 32.98(CH2), 45.05(CH), 60.64(CH), 73.87(CH)
分析条件A 保持時間 12.9分、13.2分
参考例2 trans-2-(シクロプロピルアミノ)シクロヘキサノール合成
 イソプロピルアミンに代えて、シクロプロピルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 0.19-0.55(m、4H),0.94-1.07(m,1H),1.18-1.30(m,3H),1.71-1.76(m,2H),2.00-2.06(m,1H),2.19-2.36(m,3H),3.06-3.14(m,1H)
13C-NMR(75.45MHz,CDCl) δ 5.69(CH2),7.22(CH2),24.19(CH2),24.85(CH2),27.50(CH),30.71(CH2),33.26(CH2),63.54(CH),72.94(CH)
分析条件B 保持時間 (S,S)体:26.9分、(R,R)体:27.4分
参考例3 trans-2-(プロピルアミノ)シクロヘキサンノール合成
 イソプロピルアミンに代えて、プロピルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度115-120℃、圧力0.2mmHg)
H-NMR(300.4MHz,CDCl) δ 0.90-0.99(m,4H),1.21-1.29(m,3H),1.42-1.55(m,2H),1.71-1.73(m,2H),2.02-2.22(m,3H),2.39-2.47(m,1H),2.70-2.79(m,1H),3.10-3.18(m,1H)
13C-NMR(75.45MHz,CDCl) δ 11.69(CH3),23.60(CH2),24.39(CH2),25.03(CH2),30.43(CH2),33.52(CH2),48.54(CH2),63.47(CH), 73.46(CH)
分析条件B 保持時間 20.0分、20.3分
参考例4 trans-2-(3-ペンチルアミノ)シクロヘキサノール合成
 イソプロピルアミンに替えて、3-アミノペンタンを用いる他は全て参考例1と同様に操作した。(外浴温度150-155℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 0.83-0.94(m,7H),1.20-1.56(m,7H),1.69-1.73(m,2H),2.05-2.09(m,2H),2.14-2.22(m,1H),2.44-2.52(m,1H),3.02-3.10(m,1H)
13C-NMR(75.45MHz,CDCl) δ 8.99(CH3),10.26(CH3),24.28(CH2),25.40(CH2),26.19(CH2),26.89(CH2),31.41(CH2),32.89(CH2),56.76(CH),61.14(CH),74.12(CH)
分析条件B 保持時間 30.3分、31.3分
参考例5 trans-2-(tert-ブチルアミノ)シクロヘキサノール合成
 イソプロピルアミンに代えて、tert-ブチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度100-105℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 0.90-1.19(m,1H),1.13(s,9H),1.24-1.32(m,3H),1.67-1.71(m,2H),1.98-2.07(m,2H),2.19-2.27(m,1H),2.89-2.97(m,1H)
13C-NMR(75.45MHz,CDCl) δ 24.47(CH2),25.88(CH2),30.63(CH3),32.64(CH2),34.88(CH2),50.68(C),58.13(CH),74.31(CH)
分析条件B 保持時間 15.6分、16.0分
参考例6 trans-2-(アリルアミノ)シクロヘキサノール合成
 イソプロピルアミンに代えて、アリルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 0.92-1.04(m,1H),1.19-1.31(m,3H),1.70-1.72(m,2H), 1.97-2.07(m,2H),2.24-2.32(m,1H),3.11-3.26(m,2H),3.36-3.42(m,1H),5.06-5.22(m,2H),5.84-5.97(m,1H)
13C-NMR(75.45MHz,CDCl) δ 24.28(CH2),24.71(CH2),30.07(CH2),33.62(CH2),49.17(CH2),62.65(CH),73.27(CH),115.61(CH2),136.85(CH)
分析条件A 保持時間 34.8分、35.2分
参考例7 trans-2-(プロパルギルアミノ)シクロヘキサノール合成
 イソプロピルアミンに代えて、プロパルギルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 0.92-1.05(m,1H),1.21-1.38(m,3H),1.68-1.73(m,2H),1.96-2.08(m,2H),2.24(t,J=2.40Hz,1H),2.40-2.48(m,1H),3.21-3.29(m,1H),3.47(dq,J1=16.82Hz,J2=2.40Hz,2H)
13C-NMR(75.45MHz,CDCl) δ 24.31(CH2),24.56(CH2),29.79(CH2),33.80(CH2),35.35(CH2),62.01(CH),71.30(C),73.61(CH),82.22(CH)
分析条件C 保持時間 47.1分、47.6分
参考例8 trans-2-(シクロペンチルアミノ)シクロヘキサノール合成
 イソプロピルアミンに代えて、シクロペンチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度170-175℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 0.87-0.95(m,1H),1.20-1.38(m,5H),1.50-1.87(m,8H),2.01-2.22(m,3H),3.01-3.09(m,1H),3.19-3.27(m,1H)
13C-NMR(75.45MHz,CDCl3)δ 23.59(CH2),23.79(CH2),24.31(CH2),25.27(CH2),30.91(CH2),33.08(CH2),33.12(CH2),34.59(CH2),56.14(CH),61.86(CH),73.75(CH)
分析条件D 保持時間 24.7分、25.1分
参考例9 trans-2-(シクロヘキシルアミノ)シクロヘキサノール合成
 イソプロピルアミンに代えて、シクロヘキシルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度170-175℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 0.83-1.04(m,2H),1.08-1.36(m,7H),1.62-1.73(m,6H),1.90(d,J=12.32Hz,1H),1.97-2.08(m,2H),2.21-2.30(m,1H),2.51-2.60(m,1H),3.01-3.09(m,1H)
13C-NMR(75.45MHz,CDCl3) δ 24.29(CH2),24.56(CH2),25.06(CH2),25.29(CH2),26.00(CH2),31.47(CH2),33.04(CH2),33.50(CH2),35.19(CH2),53.18(CH),60.26(CH),73.77(CH)
分析条件E 保持時間 31.4分、31.9分
参考例10 trans-2-(ジメチルアミノ)シクロヘキサノール合成
 イソプロピルアミンに代えて、ジメチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度70-75℃、圧力0.2mmHg)
H-NMR(300.4MHz,CDCl) δ 1.03-1.31(m,4H),1.69-1.78(m,3H),2.07-2.33(m,8H),3.27-3.35(m,1H)
13C-NMR(75.45MHz,CDCl) δ 20.16(CH2),23.97(CH2),25.14(CH2),33.05(CH2),39.98(CH3),69.11(CH),69.36(CH)
分析条件F 保持時間 46.5分、47.1分
参考例11 trans-2-(ジエチルアミノ)シクロヘキサノール合成
 イソプロピルアミンに代えて、ジエチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度80-85℃、圧力0.2mmHg)
H-NMR(300.4MHz,CDCl) δ 1.04(t,J=6.91Hz,6H),1.13-1.31(m,4H),1.69-1.77(m,3H),2.10-2.14(m,1H),2.26-2.42(m,3H),2.57-2.69(m,2H),3.26-3.34(m,1H)
13C-NMR(75.45MHz,CDCl) δ 14.58(CH3),22.69(CH2),24.04(CH2),25.61(CH2),33.07(CH2),43.08(CH2),66.05(CH),68.89(CH)
分析条件G 保持時間 29.7分、30.6分
参考例12 trans-2-(1-ピロリジニル)シクロヘキサノール合成
 イソプロピルアミンに代えて、ピロリジンを用いる他は全て参考例1と同様に操作した。(外浴温度100-105℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 1.17-1.27(m,4H),1.69-1.78(m,7H),2.05-2.15(m,1H),2.42-2.59(m,3H),2.64-2.71(m,2H),3.29-3.37(m,1H)
13C-NMR(75.45MHz,CDCl) δ 20.99(CH2),23.43(CH2),24.03(CH2),25.16(CH2),33.13(CH2),47.03(CH2),64.78(CH),70.51(CH)
分析条件H 保持時間 23.0分、23.2分
参考例13 trans-2-(1-ピペリジニル)シクロヘキサノール合成
 イソプロピルアミンに代えて、ピペリジンを用いる他は全て参考例1と同様に操作した。(外浴温度105-115℃、圧力0.2mmHg)
H-NMR(300.4MHz,CDCl) δ 1.12-1.26(m,4H),1.43-1.79(m,9H),2.10-2.17(m,2H),2.31-2.34(m,2H),2.63-2.70(m,2H),3.31-3.39(m,2H)
13C-NMR(75.45MHz,CDCl3) δ 22.06(CH2),24.04(CH2),24.79(CH2),25.56(CH2),26.67(CH2),33.19(CH2),49.63(CH2),68.45(CH),70.93(CH)
分析条件H 保持時間 35.6分、35.8分
参考例14 trans-2-(フェニルアミノ)シクロヘキサノール合成
 イソプロピルアミンに代えて、アニリンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 0.98-1.11(m,1H),1.24-1.47(m,3H),1.70-1.79(m,2H),2.10-2.14(m,2H),3.10-3.18(m,1H),3.31-3.39(m,1H),6.70-6.77(m,3H),7.15-7.25(m,2H)
13C-NMR(75.45MHz,CDCl3) δ 24.15(CH2),24.82(CH2),31.42(CH2),33.09(CH2),59.89(CH),74.25(CH),114.17(CH),118.07(CH),129.18(CH),147.73(C)
分析条件α 保持時間 27.5分、29.7分
参考例15 trans-2-(2-フェニルエチルアミノ)シクロヘキサノール合成
 イソプロピルアミンに代えて、2-フェニルエチルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 0.84-0.96(m,1H),1.18-1.32(m,3H),1.67-1.71(m,2H),1.99-2.07(m,2H),2.16-2.25(m,1H),2.70-2.86(m,3H),3.00-3.15(m,2H),7.18-7.32(m,5H)
13C-NMR(75.45MHz,CDCl) δ 24.29(CH2),25.15(CH2),30.55(CH2),33.25(CH2),37.01(CH2),47.89(CH2),63.55(CH),73.62(CH),126.06(CH),128.36(CH),128.63(CH),140.06(C)
分析条件α 保持時間 25.0分、35.0分
参考例16 trans-2-(ベンジルアミノ)シクロヘキサノール合成
 イソプロピルアミンに代えて、ベンジルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度175-180℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 0.91-1.05(m,1H),1.16-1.35(m,3H),1.71-1.74(m,2H),2.01-2.07(m,1H),2.15-2.21(m,1H),2.25-2.33(m,1H),3.16-3.24(m,1H),3.69(d,J=12.92Hz,1H),3.96(d,J=12.92Hz,1H),7.22-7.36(m,5H)
13C-NMR(75.45MHz,CDCl) δ 24.25(CH2),24.85(CH2),30.20(CH2),33.40(CH2),50.68(CH2),62.89(CH),73.41(CH),126.81(CH),127.96(CH),128.25(CH),140.32(C)
分析条件α 保持時間 16.9分、26.9分
参考例17 trans-2-(3-エトキシプロピルアミノ)シクロヘキサノール合成
 イソプロピルアミンに代えて、3-エトキシプロピルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体は、そのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 0.91-1.03(m,1H),1.15-1.30(m,6H),1.70-1.79(m,4H),1.99-2.09(m,2H),2.17-2.25(m,1H),2.52-2.61(m,1H),2.82-2.91(m,1H),3.14-3.22(m,1H),3.43-3.51(m,4H)
13C-NMR(75.45MHz,CDCl) δ 14.98(CH3),24.26(CH2),24.86(CH2),30.21(CH2),30.33(CH2),33.42(CH2),43.90(CH2),63.35(CH),65.98(CH2),68.80(CH2),73.27(CH)
分析条件AA 保持時間 25.6分、25.8分
参考例18 trans-2-(イソプロピルアミノ)シクロペンタノール合成
 エポキシドとして6-オキサビシクロ[3.1.0]ヘキサンを用いる他は参考例1同様に操作した。(外浴温度95-100℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 1.05-1.10(m、6H),1.21-1.31(m、1H),1.48-1.78(m、3H),1.88-2.08(m、2H),2.67-2.95(m、2H),3.78-3.85(m、1H)
13C-NMR(75.45MHz,CDCl) δ 20.03(CH2),22.44(CH3),23.85(CH3),30.41(CH2),32.18(CH2),47.03(CH),63.90(CH),77.78(CH)
分析条件I 保持時間 14.3分、14.7分
参考例19 trans-2-(シクロプロピルアミノ)シクロペンタノール合成
 イソプロピルアミンに代えて、シクロプロピルアミン用いる他は全て参考例18と同様に操作した。(外浴温度105-110℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 0.31-0.52(m,4H),1.27-1.40(m,1H),1.48-1.79(m,3H),1.88-1.99(m,1H),2.03-2.19(m,2H),2.90-2.97(m,1H),3.85(q,J=6.31Hz,1H)
13C-NMR(75.45MHz,CDCl) δ 5.89(CH2),6.46(CH2),20.08(CH2),29.30(CH),30.13(CH2),32.12(CH2),66.95(CH),77.21(CH)
分析条件J 保持時間 15.5分、15.7分
参考例20 trans-2-(プロピルアミノ)シクロペンタノール合成
 イソプロピルアミンに代えて、プロピルアミン用いる他は全て参考例18と同様に操作した。(外浴温度100-105℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 0.71(t,J=7.51Hz,3H),1.22-1.35(m,1H),1.45-1.78(m,5H),1.88-2.11(m,2H),2.50-2.66(m,2H),2.78-2.86(m,1H),3.85(q,J=6.61Hz,1H)
13C-NMR(75.45MHz,CDCl) δ 11.66(CH3),20.15(CH2),23.22(CH2),29.93(CH2),32.53(CH2),50.41(CH2),66.57(CH),77.43(CH)
分析条件K 保持時間 17.3分、17.6分
参考例21 trans-2-(アリルアミノ)シクロペンタノール合成
 イソプロピルアミンに代えて、アリルアミン用いる他は全て参考例18と同様に操作した。得られた粗体はそのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 1.23-1.36(m,1H),1.48-1.78(m,3H),1.89-2.06(m,2H),2.82-2.90(m,1H),3.18-3.34(m,4H),3.83-3.89(m,1H),5.10(d,J=10.21Hz,1H),5.18(dd,J1=17.12Hz,J2=1.50Hz,1H),5.85-5.98(m,1H)
13C-NMR(75.45MHz,CDCl) δ 20.02(CH2),29.67(CH2),32.38(CH2),50.87(CH2),65.81(CH),77.31(CH),115.97(CH2),136.31(CH)
分析条件L 保持時間 32.9分、34.0分
参考例22 trans-2-(プロパルギルアミノ)シクロペンタノール合成
 イソプロピルアミンに代えて、プロパルギルアミン用いる他は全て参考例18と同様に操作した。得られた粗体はそのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 1.25-1.37(m,1H),1.51-1.81(m,3H),1.89-2.07(m,2H),2.27-2.29(m,1H),3.01-3.08(m,1H),3.35-3.54(m,2H),3.89(q,J=6.31Hz,1H)
13C-NMR(75.45MHz,CDCl) δ 20.12(CH2),29.39(CH2),32.48(CH2),36.57(CH2),64.97(CH),71.50(C),77.53(CH),81.89(CH)
分析条件M 保持時間 40.1分、41.9分
参考例23 trans-2-(シクロペンチルアミノ)シクロペンタノール合成
 イソプロピルアミンに代えて、シクロペンチルアミン用いる他は全て参考例18と同様に操作した。(外浴温度165-170℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 1.22-1.36(m,3H),1.47-1.77(m,7H),1.82-2.06(m,4H),2.82-2.89(m,1H),3.11(quin,J=7.21Hz,1H),3.81(q,J=6.91Hz,1H)
13C-NMR(75.45MHz,CDCl) δ 19.83(CH2),23.57(CH2),23.66(CH2),29.98(CH2),32.10(CH2),32.63(CH2),33.65(CH2),58.34(CH),65.01(CH),77.25(CH)
分析条件N 保持時間 24.3分、24.5分
参考例24 trans-2-(1-ピロリジニル)シクロペンタノール合成
 イソプロピルアミンに代えて、ピロリジン用いる他は全て参考例18と同様に操作した。(外浴温度125-130℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 1.46-1.83(m,8H),1.86-2.00(m,2H),2.41-2.48(m,1H),2.59-2.61(m,4H),4.06-4.12(m,1H)
13C-NMR(75.45MHz,CDCl) δ 21.34(CH2),22.96(CH2),29.70(CH2),34.51(CH2),52.46(CH2),73.19(CH),76.28(CH)
分析条件O 保持時間 19.9分、20.3分
参考例25 trans-2-(1-ピペリジニル)シクロペンタノール合成
 イソプロピルアミンに代えて、ピペリジン用いる他は全て参考例18と同様に操作した。(外浴温度125-130℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 1.41-1.75(m,10H),1.80-1.97(m,2H),2.48-2.56(m,5H),4.10-4.16(m,1H)
13C-NMR(75.45MHz,CDCl) δ 21.71(CH2),24.29(CH2),25.76(CH2),26.92(CH2),34.36(CH2),52.14(CH2),74.38(CH),75.17(CH)
分析条件N 保持時間 23.1分、23.4分
参考例26 trans-2-(フェニルアミノ)シクロペンタノール合成
 イソプロピルアミンに代えて、アニリン用いる他は全て参考例18と同様に操作した。(外浴温度160-165℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 1.29-1.38(m,1H),1.41-2.02(m,4H),2.16-2.28(m,1H),3.52-3.58(m,1H),3.96-4.01(m,1H),6.62-6.73(m,3H),7.09-7.21(m,2H)
13C-NMR(75.45MHz,CDCl) δ 20.84(CH2),30.97(CH2),32.61(CH2),61.93(CH),77.97(CH),113.30(CH),117.42(CH),129.17(CH),147.64(C)
分析条件P 保持時間 51.3分、51.6分
参考例27 trans-2-(2-フェニルエチルアミノ)シクロペンタノール合成
 イソプロピルアミンに代えて、2-フェニルエチルアミン用いる他は全て参考例18と同様に操作した。(外浴温度160-165℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 1.18-1.31(m,1H),1.47-1.76(m,3H),1.86-2.04(m,2H),2.72-2.96(m,5H),3.82(q,J=6.31Hz,1H),7.18-7.30(m,5H)
13C-NMR(75.45MHz,CDCl) δ 20.24(CH2),30.02(CH2),32.63(CH2),36.32(CH2),49.63(CH2),66.50(CH),77.61(CH),126.07(CH),128.36(CH),128.54(CH),139.69(C)
分析条件α 保持時間 13.6分、18.3分
参考例28 trans-2-(ベンジルアミノ)シクロペンタノール合成
 イソプロピルアミンに代えて、ベンジルアミン用いる他は全て参考例18と同様に操作した。(外浴温度160-165℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 1.23-1.36(m,1H),1.43-1.57(m,1H),1.59-1.75(m,2H),1.84-2.04(m,2H),2.81-2.88(m,1H),3.66-3.85(m,3H),7.20-7.32(m,5H)
13C-NMR(75.45MHz,CDCl) δ 20.22(CH2),29.96(CH2),32.46(CH2),52.45(CH2),66.03(CH),77.69(CH),126.88(CH),128.07(CH),128.30(CH),140.04(C)
分析条件β 保持時間 33.2分、34.9分
参考例29 trans-2-(3-エトキシプロピルアミノ)シクロペンタノール合成
 イソプロピルアミンに代えて、3-エトキシプロピルアミン用いる他は全て参考例18と同様に操作した。得られた粗体は、そのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 1.19(t,J=6.91Hz,3H),1.26-1.36(m,1H),1.48-1.81(m,5H),1.89-2.07(m,2H),2.64-2.86(m,3H),3.35-3.51(m,4H),3.83-3.89(m,1H)
13C-NMR(75.45MHz,CDCl) δ 15.01(CH3),20.18(CH2),29.90(CH2),29.99(CH2),32.48(CH2),45.91(CH2),66.02(CH2),66.04(CH),68.98(CH2),77.42(CH)
分析条件γ 保持時間 23.6分、24.7分
参考例30 trans-4-(イソプロピルアミノ)-3-テトラヒドロフラン-3-オール合成
 エポキシドとして3,6-ジオキサビシクロ[3.1.0]ヘキサンを用いる他は参考例1同様に操作した。(外浴温度120-125℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 1.08(d,J=6.31Hz,3H),1.08(d,J=6.31Hz,3H),2.86(sep,J=6.31Hz,1H),3.23-3.26(m,1H),3.55(dd,J1=9.01Hz,J2=3.91Hz,1H),3.62-3.66(m,1H),3.98(dd,J1=9.61Hz,J2=5.11Hz,1H),4.05(dd,J1=9.31Hz,J2=5.71Hz,1H),4.11-4.15(m,1H)
13C-NMR(75.45MHz,CDCl) δ 22.46(CH3),23.11(CH3),46.70(CH),63.73(CH),72.17(CH2),73.63(CH2),76.33(CH)
分析条件γ 保持時間 25.5分、25.7分
参考例31 trans-4-(シクロプロピルアミノ)テトラヒドロフラン-3-オール合成
 イソプロピルアミンに代えて、シクロプロピルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体はそのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 0.41-0.53(m,4H), 2.12-2.19(m,1H), 3.27-3.31(m,1H), 3.61-3.68(m,2H), 3.97(dd,J1=9.61Hz,J2=4.81Hz,1H),4.06(dd,J1=9.01Hz,J2=5.41Hz,1H), 4.21(q,J=2.40Hz,1H)
13C-NMR(75.45MHz,CDCl) δ 6.18(CH2),6.35(CH2),28.93(CH),66.57(CH),71.90(CH2),73.62(CH2),75.59(CH)
分析条件γ 保持時間 26.2分、28.2分
参考例32 trans-4-(プロピルアミノ)テトラヒドロフラン-3-オール合成
 イソプロピルアミンに代えて、プロピルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度150-155℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 0.93(t,J=7.21Hz,3H),1.50(sext,J=7.21Hz,2H),2.58(t,J=7.21Hz,2H),3.13-3.15(m,1H),3.58(dd,J1=9.31Hz,J2=3.60Hz,1H),3.65(dd,J1=9.61Hz,J2=2.70Hz,1H),3.99(dd,J1=9.61Hz,J2=4.81Hz,1H),4.05(dd,J1=9.31Hz,J2=5.71Hz,1H),4.13-4.14(m,1H)
13C-NMR(75.45MHz,CDCl) δ 11.54(CH3),23.02(CH2),49.96(CH2),66.52(CH),71.96(CH2),73.80(CH2),75.98(CH)
分析条件Q 保持時間 18.3分、18.9分
参考例33 trans-4-(アリルアミノ)テトラヒドロフラン-3-オール合成
 イソプロピルアミンに代えて、アリルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体はそのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 3.17-3.27(m,3H),3.56-3.68(m,2H),3.95-4.05(m,2H),4.10-4.16(m,1H)5.11-5.23(m,2H),5.81-5.95(m,1H)
13C-NMR(75.45MHz,CDCl) δ 50.39(CH2),65.59(CH),71.78(CH2),73.70(CH2),75.86(CH),116.58(CH2),135.67(CH)
分析条件R 保持時間 20.3分、20.7分
参考例34 trans-4-(プロパルギルアミノ)テトラヒドロフラン-3-オール合成
 イソプロピルアミンに代えて、プロパルギルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体はそのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 2.31(s,1H),3.37-3.52(m,3H),3.57-3.72(m,2H),3.97-4.18(m,3H)
13C-NMR(75.45MHz,CDCl) δ 36.28(CH2),64.88(CH),71.94(CH2),72.07(C),73.87(CH2),75.97(CH),81.48(CH)
分析条件S 保持時間 24.5分、25.1分
参考例35 trans-4-(シクロペンチルアミノ)テトラヒドロフラン-3-オール合成
 イソプロピルアミンに代えて、シクロペンチルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度170-175℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 1.22-1.36(m,2H),1.53-1.74(m,4H),1.87-1.90(m,2H),3.06-3.22(m,2H),3.56(dd,J1=9.01Hz,J2=3.91Hz,1H),3.65(dd,J1=9.61Hz,J2=2.70Hz,1H),3.95-4.15(m,3H)
13C-NMR(75.45MHz,CDCl) δ 23.67(CH2),33.00(CH2),33.38(CH2),58.13(CH),65.27(CH),72.33(CH2),73.73(CH2),76.37(CH)
分析条件γ 保持時間 28.5分、28.7分
参考例36 trans-4-(ジエチルアミノ)テトラヒドロフラン-3-オール合成
 イソプロピルアミンに代えて、ジエチルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度115-120℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 1.05(t,J=7.21Hz.6H),2.62(q,J=7.21Hz,4H),3.21(dt,J1=6.61Hz,J2=3.00Hz,1H),3.61-3.69(m,2H),3.93-4.03(m,2H),4.27-4.32(m,1H)
13C-NMR(75.45MHz,CDCl) δ 11.55(CH3),43.97(CH2),69.59(CH2),70.33(CH),74.48(CH),74.76(CH2)
分析条件T 保持時間 15.8分、16.1分
参考例37 trans-4-(1-ピペリジニル)テトラヒドロフラン-3-オール合成
 イソプロピルアミンに代えて、ピペリジンを用いる他は全て参考例30と同様に操作した。(外浴温度150-155℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 1.47(d,J=4.81Hz,2H),1.56-1.63(m,4H),2.34-2.40(m,2H),2.54-2.57(m,2H),2.81(dt,J1=6.61Hz,J2=2.70Hz,1H),3.66-3.71(m,2H),3.95(dd,J1=9.61Hz,J2=5.71Hz,1H),4.02(dd,J1=9.01Hz,J2=7.21Hz,1H),4.32-4.36(m,1H)
13C-NMR(75.45MHz,CDCl) δ 23.99(CH2),25.48(CH2),52.39(CH2),69.63(CH2),74.11(CH),74.95(CH),75.13(CH2)
分析条件U 保持時間 16.6分、17.0分
参考例38 trans-4-(フェニルアミノ)テトラヒドロフラン-3-オール合成
 イソプロピルアミンに代えて、アニリンを用いる他は全て参考例30と同様に操作した。(外浴温度195-200℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDOD) δ 3.66-3.78(m,3H),3.95(dd,J1=9.61Hz,J2=3.91Hz,1H),4.16-4.21(m,2H),6.60-6.68(m,3H),7.08-7.13(m,2H)
13C-NMR(75.45MHz,CDOD) δ 62.66(CH),72.96(CH2),74.95(CH2),76.52(CH),114.11(CH),118.24(CH),130.07(CH),148.72(C)
分析条件V 保持時間 50.8分、51.2分
参考例39 trans-4-(2-フェニルエチルアミノ)テトラヒドロフラン-3-オール合成
 イソプロピルアミンに代えて、2-フェニルエチルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度190-195℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 2.76-2.90(m,4H),3.15(s,1H),3.51(dd,J1=9.01Hz,J2=3.30Hz,1H),3.63(dd,J1=9.61Hz,J2=1.80Hz,1H),3.93(dd,J1=9.61Hz,J2=4.81Hz,1H),4.00-4.08(m,2H),7.17-7.31(m,5H)
13C-NMR(75.45MHz,CDCl) δ 36.17(CH2),49.28(CH2),66.56(CH),72.17(CH2),73.92(CH2),76.28(CH),126.27(CH),128.47(CH),128.53(CH),139.34(C)
分析条件γ 保持時間 29.2分、29.4分
参考例40 trans-4-(ベンジルアミノ)テトラヒドロフラン-3-オール合成
 イソプロピルアミンに代えて、ベンジルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度185-190℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 3.15(s,1H),3.54(dd,J1=9.31Hz,J2=3.30Hz,1H),3.62(dd,J1=9.61Hz,J2=1.80Hz,1H),3.74(s,2H),3.94(dd,J1=9.61Hz,J2=4.51Hz,1H),4.00(dd,J1=9.31Hz,J2=5.71Hz,1H),4.08-4.10(m,1H),7.22-7.34(m,5H)
13C-NMR(75.45MHz,CDCl) δ 52.03(CH2),65.82(CH),72.08(CH2),73.82(CH2),76.18(CH),127.15(CH),128.07(CH),128.42(CH),139.37(C)
分析条件γ 保持時間 29.1分、29.3分
参考例41 trans-4-(3-エトキシプロピルアミノ)テトラヒドロフラン-3-オール合成
 イソプロピルアミンに代えて、3-エトキシプロピルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体は、そのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 1.19(t,J=6.91Hz,3H),1.76(quin,J=6.61Hz,2H),2.69-2.73(m,2H),3.13-3.17(m,1H),3.46-3.51(m,4H),3.57(dd,J1=9.01Hz,J2=3.30Hz,1H),3.66(dd,J1=9.61Hz,J2=2.40Hz,1H),3.98(dd,J1=9.61Hz,J2=4.81Hz,1H),4.06(dd,J1=9.01Hz,J2=5.41Hz,1H),4.14(quin,J=2.40Hz,1H)
13C-NMR(75.45MHz,CDCl) δ 14.98(CH3),29.78(CH2),45.74(CH2),66.05(CH2),66.55(CH),68.89(CH2),72.08(CH2),73.84(CH2),75.91(CH)
分析条件ζ 保持時間 7.3分、9.1分
参考例42 trans-2-(イソプロピルアミノ)シクロヘプタノール合成
 エポキシドとして8-オキサビシクロ[5.1.0]オクタンを用いる他は参考例1同様に操作した。得られた粗体は、そのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 1.02(d,J=6.01Hz,3H),1.06(d,J=6.01Hz,3H),1.36-1.72(m,8H),1.88-2.05(m,2H),2.23-2.31(m,1H),2.94(sep,J=6.01Hz,1H),3.08-3.14(m,1H)
13C-NMR(75.45MHz,CDCl) δ 22.35(CH3),22.56(CH2),24.07(CH3),24.38(CH2),26.50(CH2),30.69(CH2),32.96(CH2),45.56(CH),62.52(CH),75.09(CH)
分析条件W 保持時間 9.4分、9.5分
参考例43 trans-2-(シクロプロピルアミノ)シクロヘプタノール合成
 イソプロピルアミンに代えて、シクロプロピルアミンを用いる他は全て参考例42と同様に操作した。
H-NMR(300.4MHz,CDCl) δ 0.22-0.56(m,4H),1.21-1.32(m,1H),1.39-1.71(m,7H),1.89-1.99(m,1H),2.07-2.14(m,1H),2.21-2.28(m,1H),2.33-2.41(m,1H),3.06-3.16(m,1H)
13C-NMR(75.45MHz,CDCl) δ 6.20(CH2),7.13(CH2),22.03(CH2),23.71(CH2),26.55(CH2),27.62(CH), 29.90(CH2),32.75(CH2),65.76(CH),74.90(CH)
分析条件γ 保持時間 25.8分、30.8分
参考例44 trans-2-(2-フェニルエチルアミノ)シクロヘプタノール合成
 イソプロピルアミンに代えて、2-フェニルエチルアミンを用いる他は全て参考例42と同様に操作した。
H-NMR(300.4MHz,CDCl) δ 1.09-1.20(m,1H),1.33-1.67(m,7H),1.83-1.98(m,2H),2.24(dt,J1=9.31Hz,J2=2.70Hz,1H),2.67-3.07(m,5H),3.13-3.20(m,1H),7.15-7.29(m,5H)
13C-NMR(75.45MHz,CDCl) δ 21.95(CH2),23.80(CH2),26.52(CH2),29.27(CH2),33.25(CH2),36.55(CH2),47.99(CH2),65.39(CH),74.96(CH),125.83(CH),128.11(CH),128.34(CH),139.65(C)
分析条件β 保持時間 9.7分、12.4分
参考例45 trans-2-(ベンジルアミノ)シクロヘプタノール合成
 イソプロピルアミンに代えて、ベンジルアミンを用いる他は全て参考例42と同様に操作した。
H-NMR(300.4MHz,CDCl) δ 1.17-1.30(m,1H), 1.34-1.72(m,7H), 1.89-2.02(m,2H), 2.32(dt,J1=9.31Hz,J2=3.00Hz,1H), 3.19-3.26(m,1H),3.64(d,J=12.62Hz,1H),3.90(d,J=12.62Hz,1H), 7.19-7.30(m,5H)
13C-NMR(75.45MHz,CDCl) δ 22.00(CH2),23.80(CH2),26.65(CH2),29.11(CH2),33.31(CH2),50.88(CH2),64.90(CH),75.22(CH),126.81(CH),127.97(CH),128.19(CH),139.89(C)
分析条件β 保持時間 8.1分、10.1分
参考例46 trans-2-(プロパルギルアミノ)シクロヘプタノール合成
 イソプロピルアミンに代えて、プロパルギルアミンを用いる他は全て参考例42と同様に操作した。
H-NMR(300.4MHz,CDCl) δ 1.20-1.31(m,1H),1.34-1.74(m,7H),1.81-1.98(m,2H),2.21-2.26(m,1H),2.44-2.52(m,1H),3.26-3.33(m,1H),3.38-3.55(m,2H)
13C-NMR(75.45MHz,CDCl) δ 22.00(CH2),23.54(CH2),26.76(CH2),28.63(CH2),33.69(CH2),35.65(CH2),64.42(CH),71.10(C),75.41(CH),82.03(CH)
分析条件X 保持時間 22.0分、22.3分
参考例47 trans-2-(シクロペンチルアミノ)シクロヘプタノール合成
 イソプロピルアミンに代えて、シクロペンチルアミンを用いる他は全て参考例42と同様に操作した。
H-NMR(300.4MHz,CDCl) δ 1.10-2.05(m,18H),2.23(dt,J1=9.31Hz,J2=3.00Hz,1H),3.07-3.14(m,1H),3.22(quin,J=6.01Hz,1H)
13C-NMR(75.45MHz,CDCl) δ 22.28(CH2),23.47(CH2),23.69(CH2),24.03(CH2),26.49(CH2),30.15(CH2),32.77(CH2),33.03(CH2),34.26(CH2),56.33(CH),63.63(CH),75.09(CH)
分析条件Y 保持時間 21.0分、21.2分
参考例48 trans-2-(ジエチルアミノ)シクロヘプタノール合成
 イソプロピルアミンに代えて、ジエチルアミンを用いる他は全て参考例42と同様に操作した。
H-NMR(300.4MHz,CDCl) δ 1.09(t,J=7.21Hz,6H),1.19-1.78(m,9H),2.01-2.09(m,1H),2.34-2.52(m,3H),2.64-2.76(m,2H),3.38-3.45(m,1H)
13C-NMR(75.45MHz,CDCl) δ 14.08(CH3),22.00(CH2),22.47(CH2),24.74(CH2),26.90(CH2),33.52(CH2),43.59(CH2),67.37(CH),71.27(CH)
分析条件C 保持時間 21.0分、21.2分
参考例49 trans-2-(1-ピペリジニル)シクロヘプタノール合成
 イソプロピルアミンに代えて、ピペリジンを用いる他は全て参考例42と同様に操作した。
H-NMR(300.4MHz,CDCl) δ 1.14-1.26(m,1H),1.30-1.83(m,14H),2.01-2.08(m,1H),2.14-2.21(m,1H),2.31-2.33(m,2H),2.60-2.67(m,2H),3.33-3.41(m,1H)
13C-NMR(75.45MHz,CDCl) δ 21.46(CH2),21.67(CH2),24.02(CH2),24.40(CH2),26.22(CH2),26.44(CH2),33.03(CH2),48.96(CH2),70.60(CH),71.88(CH)
分析条件Z 保持時間 21.0分、21.2分
参考例50 trans-2-アミノシクロヘキサノール
 trans-2-アミノシクロヘキサン-1-オールは、シグマアルドリッチ社製のものをそのまま用いた。
分析条件A 保持時間 (S,S)体:18.3分、(R,R)体:18.7分
参考例51 trans-3-シクロプロピルアミノ-2-ブタノール
 Cis-2,3-エポキシブタンとシクロプロピルアミンを用いる他は、参考例1と同様に操作した。得られた粗体は、そのまま分析に用いた。(外浴温度135-140℃、圧力0.1mmHg)
分析条件G 保持時間 11.0分、11.3分
参考例52 trans-2-(2-プロピルチオ)シクロヘキサノール
 50mLナスフラスコに7-オキサビシクロ[4.1.0]ヘプタン 2.00gと2-プロパンチオール1.70mLを量りとり、メタノール8mLと水2mL、トリエチルアミン2.84mLを加え、50℃で20時間反応した。反応後、減圧下に濃縮し、残渣3.12g得た。残渣1.00gを柴田科学社製ガラスチューブオーブンGTO-250RS(クーゲルロール)で減圧蒸留し、trans-2-(2-プロピルチオ)シクロヘキサン-1-オールを0.77g得た。(外浴温度140-150℃、圧力0.1mmHg)
H-NMR(300.4MHz,CDCl) δ 1.20-1.51(m,4H),1.29(d,J=6.61Hz,3H),1.30(d,J=6.61Hz,3H),1.68-1.79(m,2H),2.07-2.15(m,2H),2.38-2.46(m,1H),3.03(sep.,J=6.61Hz,1H),3.26(dt,J1=4.51Hz,J2=9.91Hz,1H)
13C-NMR(75.45MHz,CDCl) δ 24.24(CH3),24.31(CH2),24.39(CH3),26.23(CH2),33.67(CH2),34.05(CH2),35.08(CH),53.58(CH),72.56(CH)
分析条件AB 保持時間 17.6分,18.8分
参考例53 7-トシル-7-アザビシクロ[4.1.0]ヘプタン
 温度計、攪拌子を設置した50mL四つ口フラスコに2-アミノシクロヘキサノール1.00g、THF15mL,トリエチルアミン1.81mLを加え、氷冷し、内温3℃で塩化トシル1.74gを加えた。この時内温は10℃まで上昇した。氷冷下で30分、室温(26℃)で30分攪拌した後、水20mL、トルエン20mLを加えて分液し、トルエン層を水10mLで2回洗浄した。洗浄後のトルエン層を硫酸ナトリウムで乾燥し、ロータリーエバポレーターで減圧濃縮した。得られたオイルを真空ポンプで乾燥しtrans-N-トシル-2-アミノシクロヘキサノール(結晶)を2.27g得た。
H-NMR(300.4MHz,CDCl) δ 1.10-1.30(m,4H),1.53-1.76(m,3H),2.00-2.04(m,1H),2.43(s,3H),2.65(d,J=3.30Hz,1H),2.80-2.90(m,1H),3.26-3.35(m,1H),4.96(d,J=6.91Hz,1H),7.32(d,J=8.11Hz,1H),7.80(d,J=8.11Hz,1H)
 温度計、攪拌子、塩化カルシウム管を設置した50mL四つ口フラスコにtrans-N-トシル-2-アミノシクロヘキサノール2.17g、トリフェニルホスフィン2.75g、THF22mLを加え、氷冷し、内温2℃でアゾジカルボン酸ジイソプロピル(90.0+%)2.17gを滴下ロートを用いて10分かけて滴下した。このとき内温は5℃まで上昇した。氷冷下で80分、室温(26℃)で60分攪拌した後、水20mL、酢酸エチル30mLを加えて分液し、酢酸エチル層をロータリーエバポレーターで減圧濃縮し、残渣7.21gを得た。残渣をシリカゲル140g、展開溶媒トルエン:酢酸エチル=5:1を用いてカラムクロマトグラフィーを行い、7-トシル-7-アザビシクロ[4.1.0]ヘプタン1.33gを得た。
H-NMR(300.4MHz,CDCl) δ 1.15-1.27(m,2H),1.35-1.44(m,2H),1.79(t,J=5.11Hz,4H),2.44(s,3H),2.97-2.98(m,2H),7.32(d,J=8.11Hz,2H),7.82(d,J=8.11Hz,2H)
参考例54 trans-N-トシル-(2-(2-フェニルエチルアミノ)シクロヘキシルアミン)
 イソプロピルアミンに代えて、2-フェニルエチルアミンを、7-オキサビシクロ[4.1.0]ヘプタンに代えて、7-トシル-7-アザビシクロ[4.1.0]ヘプタンを用いる他はすべて参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H-NMR(300.4MHz,CDCl) δ 0.83-0.94(m,1H),1.06-1.25(m,3H),1.57-1.63(m,2H),1.97-2.07(m,2H),2.16-2.24(m,1H),2.38(s,3H),2.54-2.69(m,4H),2.78-2.87(m,1H),7.13-7.30(m,7H),7.70(d,J=8.11Hz,2H)
13C-NMR(75.45MHz,CDCl) δ 21.27(CH3),24.23(CH2),24.42(CH2),30.89(CH2),32.32(CH2),36.43(CH2),46.90(CH2),57.07(CH),60.11(CH),125.92(CH),126.97(CH),128.22(CH),128.39(CH),129.35(CH),137.09(C),139.68(C),142.89(C)
分析条件θ 保持時間:37.2分、40.6分
<触媒調製例>
 本実施例で使用した触媒は、以下のようにして入手した。
 脱脂大豆粉、ペクチン(柑橘類由来)、水溶性大豆多糖類、カボチャ、レンコン、ジャガイモ、ニンジン、小麦胚芽、ウコンは、粉末状に加工されたものを入手した。
 キウイ、ブンタン、ナツミカン、花柚子、ニンニク、大豆、ネギ、ピスタチオ、カシューナッツ、茶(紅茶、緑茶)、赤インゲンマメ、エンドウマメなど加工していない植物片は、必要に応じて加温されたデシケーターで乾燥し、約5gを小型粉砕器“粉砕くん”(柴田化学器械工業社製、SCM-40A)にて30秒間粉砕した後、ヘキサン50mLを加えて分散させ、ヘキサンを除去した後、得られた粉末を減圧下乾燥した。
<実施例1~27>
 5mLの試験管に、表3に記載の植物加工物100mgを量りとり、トルエン0.4mL、7-オキサビシクロ[4.1.0]ヘプタン48mg、シクロプロピルアミン34mg、水17mgを加えた。密閉し、37℃の温浴で16時間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。なお、カボチャとして「パンプキンパウダー」(こだま食品製)、ジャガイモとして「マッシュポテト」(三木食品製)、ニンジンとして「キャロットパウダー」(こだま食品製)、トマトとして「トマトパウダー」(こだま食品製)、ダイコンとして「乾燥大根おろし」(こだま食品製)、レンコンとして「れんこんパウダー」(こだま食品製)を粉末状に粉砕して使用した。また、ピスタチオは、脱脂した後に粉砕したものを使用した。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-T000028
*:ペクチンとして、「ペクチン(柑橘類由来)」(関東化学製、Cat No.32536-32)を使用した。
 結果を表3に示した。実施例1~27では、立体選択的に化合物(3)が得られた。特に、実施例1,2,11および13は、変換率、立体選択性ともに優れていた。
実施例28~47
 5mLの試験管に、表4に記載の植物加工物100mgを量りとり、トルエン0.4mL、7-オキサビシクロ[4.1.0]ヘプタン48mg、イソプロピルアミン29mg、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。なお、カボチャとして「パンプキンパウダー」(こだま食品製)、ジャガイモとして「マッシュポテト」(三木食品製)、ニンジンとして「キャロットパウダー」(こだま食品製)、トマトとして「トマトパウダー」(こだま食品製)、ダイコンとして「乾燥大根おろし」(こだま食品製)、レンコンとして「れんこんパウダー」(こだま食品製)を粉末状に粉砕して使用し、ピスタチオは、脱脂した後に粉砕したものを使用した。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-T000030
 結果を表4に示した。実施例28~47では、立体選択的に化合物(3)が得られた。特に、実施例28~31,33,39,43および46は、変換率、立体選択性ともに優れていた。
実施例48~63
 5mLの試験管に、水溶性大豆多糖類(ソヤファイブS―DN)100mgを量りとり、トルエン0.4mL、7-オキサビシクロ[4.1.0]ヘプタン48mg、表5に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Figure JPOXMLDOC01-appb-T000031
 結果を表5に示した。実施例48~63では、立体選択的に化合物(3)が収率よく得られた。
実施例64~76
 5mLの試験管に、ニンジン100mgを量りとり、トルエン0.4mL、7-オキサビシクロ[4.1.0]ヘプタン48mg、表6に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Figure JPOXMLDOC01-appb-T000032
 結果を表6に示した。実施例64~76では、立体選択的に化合物(3)が得られた。特に、実施例69および75は、変換率、立体選択性ともに優れていた。
実施例77~88
 5mLの試験管に、水溶性大豆多糖類(ソヤファイブS―DN)100mgを量りとり、トルエン0.4mL、6-オキサビシクロ[3.1.0]ヘキサン41mg、表7に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Figure JPOXMLDOC01-appb-T000033
 結果を表7に示した。実施例77~88は全て、立体選択性、収率ともに優れていた。
実施例89~100
 5mLの試験管に、水溶性大豆多糖類(ソヤファイブS―DN)100mgを量りとり、トルエン0.4mL、3,6-ジオキサビシクロ[3.1.0]ヘキサン42mg、表8に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Figure JPOXMLDOC01-appb-T000034
 結果を表8に示した。実施例89~100は全て、立体選択性、収率ともに優れていた。
実施例101~108
 5mLの試験管に、水溶性大豆多糖類(ソヤファイブS-DN)100mgを量りとり、トルエン0.4mL、8-オキサビシクロ[5.1.0]オクタン41mg、表9に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Figure JPOXMLDOC01-appb-T000035
 結果を表9に示した。実施例101~108は全て、立体選択的に化合物(3)を与えた。特に、実施例107は、変換率、立体選択性ともに優れていた。
実施例109
 5mLの試験管に、水溶性大豆多糖類(ソヤファイブS-DN)1.1gを量りとり、トルエン2.87mL、Cis-2,3-エポキシブタン41mg、シクロプロピルアミン1.2当量、水390mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。その結果、変換率55%、選択率4%eeであった。
実施例110~114
 攪拌機、温度計を装着した1L四つ口フラスコに、大豆加工物70.0g、トルエン198mL、水28.0mL、7-オキサビシクロ[4.1.0]ヘプタン35.0gおよびシクロプロピルアミン24.4gを加え、窒素雰囲気下にて、40℃で撹拌した。各実施例で使用した大豆加工物および反応時間を表1に示した。反応液を少量採取し、ガスクロマトグラフィーを用いて、所定の反応時間における変換率および選択率を算出した。
Figure JPOXMLDOC01-appb-T000036
 結果を表10に示した。実施例110~114は全て、立体選択的に化合物(3)を与えた。特に、実施例112~114は、変換率、立体選択性ともに優れていた。
実施例115
 5mLの試験管に、水溶性大豆多糖類(ソヤファイブS-DN)100mgを量りとり、トルエン0.4mL、7-オキサビシクロ[4.1.0]ヘプタン100mg、2-プロパンチオール109mg、水17mgを加えた。密閉し、50℃の温浴で5日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。その結果、変換率7%、選択率72%eeであった。
実施例116
 5mLの試験管に、水溶性大豆多糖類(ソヤファイブS-DN)100mgを量りとり、トルエン0.4mL、7-トシル-7-アザビシクロ[4.1.0]ヘプタン100mg、2-フェニルエチルアミン58mg、水17mgを加えた。密閉し、50℃の温浴で5日間振とうした。反応後、触媒をろ過し、ろ液を濃縮し、trans-N-トシル(2-(2-フェニルエチルアミノ)シクロヘキシルアミン)の粗体120mgを得た。粗収率81%、選択率4%eeであった。
実施例117 (1R,2R)-2-(シクロプロピルアミノ)シクロヘキサノールの合成
 攪拌機、温度計を装着した1L四つ口フラスコに、ソヤファイブS-DN70.0g、トルエン198mL、水28.0mL、7-オキサビシクロ[4.1.0]ヘプタン35.0gおよびシクロプロピルアミン24.4gを加え、窒素雰囲気下にて、40℃で26時間撹拌した。ソヤファイブS-DNを、ヌッチェを用いてろ別し、トルエン140mLで洗浄した。得られたろ液を減圧下にて濃縮し、粗生成物として(1R,2R)-2-(シクロプロピルアミノ)シクロヘキサノール58.4g(含量51.0g、64%ee、収率92%)を得た。ここで、含量は、粗生成物のH-NMRスペクトルを測定し、2-(シクロプロピルアミノ)シクロヘキサノールとトルエンとのプロトンの積分比を用いて、粗生成物の質量を基に算出した値である。
 攪拌機、温度計を装着した5L四つ口フラスコに、得られた粗生成物の(1R,2R)-2-(シクロプロピルアミノ)シクロヘキサノール317.5g(含量272.4g、64%ee)とイソプロパノール2724mLを加え、40℃に昇温した後、フマル酸61.1gと種晶A10mg、活性炭(精製白鷺(日本エンバイロケミカルズ社、商品名))27.2gを加え、30分間静置した。このとき、種晶Aには、ラセミ体の2-シクロプロピルアミノシクロヘキサノールフマル酸塩を用いた。室温まで冷却し、さらに60分間静置した後に、析出したラセミ体の2-(シクロプロピルアミノ)シクロヘキサノールフマル酸塩の結晶および活性炭を、ヌッチェを用いてろ別し、イソプロパノール272mLで結晶を洗浄した。得られたろ液をロータリーエバポレーターで減圧下、濃縮した。得られた(1R,2R)-2-(シクロプロピルアミノ)シクロヘキサノールにトルエン1498mL、水34.5mLおよび水酸化カリウム40.3gを加えて、フリー体に変換し、トルエン層を分離した。得られたトルエン層を水68mLで3回洗浄し、ロータリーエバポレーターを用いて減圧下にて濃縮し、固形物154.1g(含量135.6g)を得た。攪拌機、温度計を装着した1L四つ口フラスコに、当該固形物154.1g(含量135.6g)とヘプタン407mLを加え、内温25℃に調整し、種晶B135mgを加え、30分間かけて静置した。このとき、種晶Bには、(1R,2R)-2-(シクロプロピルアミノ)シクロヘキサノールを用いた。さらに、内温10~15℃で60分間、0℃で60分間静置した後、析出した結晶をろ取した。得られた結晶を0℃のヘプタン68mLで洗浄し、室温で減圧乾燥し、白色の(1R,2R)-2-(シクロプロピルアミノ)シクロヘキサノールの一次晶103.0g(100%ee)を得た。ろ液はロータリーエバポレーターで減圧下にて濃縮し、一次晶を得た時と同様の操作で二次晶11.0g(100%ee)を得た。粗生成物の(1R,2R)-2-(シクロプロピルアミノ)シクロヘキサノールから、一次晶および二次晶を合わせた(1R,2R)-2-(シクロプロピルアミノ)シクロヘキサノールの結晶を得る工程の収率は42%であった。
実施例118 光学活性trans-2-(イソプロピルアミノ)シクロヘキサノールの合成
 攪拌機、温度計を装着した1L四つ口フラスコに、ソヤファイブS-DN14.4g、ヘプタン36mL、水4.3mL、7-オキサビシクロ[4.1.0]ヘプタン12gおよびイソプロピルアミン8.7gを加え、窒素雰囲気下にて、40℃で49時間撹拌した。ソヤファイブS-DNを、ヌッチェを用いてろ別し、ヘプタン50mLで洗浄した。得られたろ液を減圧下にて濃縮し、再び36mLのヘプタンに溶解し、生じた結晶をろ過した。結晶を5mLのヘプタンで洗浄し、母液を濃縮して、光学活性trans-2-(イソプロピルアミノ)シクロヘキサノール11g(保持時間の長い異性体 82%ee)を得た。
実施例119 光学活性trans-2-(プロパルギルアミノ)シクロヘキサノールの合成
 攪拌機、温度計を装着した50mL四つ口フラスコに、ソヤファイブS-DN1.2g、ヘプタン3mL、水0.36mL、7-オキサビシクロ[4.1.0]ヘプタン0.858gおよびプロパルギルアミン0.407gを加え、窒素雰囲気下にて、40℃で6日間撹拌した。トルエン3mLを加え攪拌し、ソヤファイブS-DNを、ヌッチェを用いてろ別し、トルエン3mLで洗浄した。得られたろ液を減圧下にて濃縮し、粗生成物として光学活性trans-2-(プロパルギルアミノ)シクロヘキサノール1.19g(45%ee、収率91%)を得た。
 攪拌機、温度計を装着した50mL四つ口フラスコに、得られた粗生成物の光学活性trans-2-(プロパルギルアミノ)シクロヘキサノール1.19g(45%ee)とエタノール12mLを加え、40℃に昇温した後、フマル酸0.595gと種晶10mgを加え、30分間静置した。このとき、種晶には、ラセミ体のtrans-2-(プロパルギルアミノ)シクロヘキサノールフマル酸塩を用いた。室温まで冷却し、さらに60分間静置した後に、析出したラセミ体のtrans-2-(プロパルギルアミノ)シクロヘキサノールフマル酸塩の結晶を、ヌッチェを用いてろ別し、エタノール1mLで結晶を洗浄した。得られたろ液をロータリーエバポレーターで減圧下、濃縮した。得られた光学活性trans-2-(プロパルギルアミノ)シクロヘキサノールにトルエン10mL、水1mLおよび水酸化カリウム0.480gを加えて、フリー体に変換し、トルエン層を分離した。得られたトルエン層を水1mLで3回洗浄し、ロータリーエバポレーターを用いて減圧下にて濃縮し、光学活性trans-2-(プロパルギルアミノ)シクロヘキサノール0.440g(90%ee)を得た。この時の通算収率は31%であった。

Claims (9)

  1.  式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは、-O-または-NR-であり、Rは、水素原子、置換基を有してもよいC1-6アルキル基、置換基を有してもよいC3-6シクロアルキル基、置換基を有してもよいC2-6アルケニル基、置換基を有してもよいC3-6シクロアルケニル基、置換基を有してもよいC2-6アルキニル基、置換基を有してもよいC6-10アリール基、置換基を有してもよいC1-6アルキルカルボニル基、置換基を有してもよいC6-10アリールカルボニル基、置換基を有してもよいC1-6アルキルスルホニル基またはC6-10アリールスルホニル基であり、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1-6アルキル基、置換基を有してもよいC3-6シクロアルキル基、置換基を有してもよいC2-6アルケニル基、置換基を有してもよいC3-6シクロアルケニル基、置換基を有してもよいC2-6アルキニル基または置換基を有してもよいC6-10アリール基であり、前記置換基が、C1-4アルキル基、C2-4アルケニル基、C2-4アルキニル基、C1-4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、または、RおよびRが互いに結合して式(1b)で表される化合物となっていてもよい)
    Figure JPOXMLDOC01-appb-C000002
    (式中、X、RおよびRは、前記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す)
    で表される化合物と、
     式(2):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Yは、-O-、-NR-または-S-であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1-6アルキル基、置換基を有してもよいC3-6シクロアルキル基、置換基を有してもよいC2-6アルケニル基、置換基を有してもよいC3-6シクロアルケニル基、置換基を有してもよいC2-6アルキニル基または置換基を有してもよいC6-10アリール基であり、前記置換基が、C1-4アルコキシ基、C6-10アリール基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、または、RおよびRが互いに結合して式(2a)で表される化合物であってもよく、ただし、式(2)で表される化合物は水または硫化水素ではない)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは、RおよびRが互いに結合して形成される基を示す)
    で表される化合物と、を植物加工物の存在下反応させ、
     式(3):
    Figure JPOXMLDOC01-appb-C000005
    (式中、X、Y、R、R、R、RおよびRは、前記定義と同一である)
    で表される化合物を得る工程を含む、式(3)で表される化合物の製造方法。
  2.  式(1)で表される化合物が、式(1c)で表される化合物である、請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    (式中、XおよびRは、前記定義と同一である)
  3.  式(1)で表される化合物が、式(1a)で表される化合物である、請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (式中、Xは、-O-または-NR-であり、Rは、水素原子、置換基を有してもよいC1-6アルキル基、置換基を有してもよいC3-6シクロアルキル基、置換基を有してもよいC2-6アルケニル基、置換基を有してもよいC3-6シクロアルケニル基、置換基を有してもよいC2-6アルキニル基、置換基を有してもよいC6-10アリール基、置換基を有してもよいC1-6アルキルカルボニル基、置換基を有してもよいC6-10アリールカルボニル基、置換基を有してもよいC1-6アルキルスルホニル基またはC6-10アリールスルホニル基であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1-6アルキル基、置換基を有してもよいC3-6シクロアルキル基、置換基を有してもよいC2-6アルケニル基、置換基を有してもよいC3-6シクロアルケニル基、置換基を有してもよいC2-6アルキニル基または置換基を有してもよいC6-10アリール基であり、前記置換基が、C1-4アルキル基、C2-4アルケニル基、C2-4アルキニル基、C1-4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子を示す)
  4.  Yが-NR-である、請求項1~3のいずれか一項に記載の製造方法。
  5.  Yが-O-である、請求項1~3のいずれか一項に記載の製造方法。
  6.  Yが-S-である、請求項1~3のいずれか一項に記載の製造方法。
  7.  前記植物加工物が、マメ科、ウリ科、ナス科、ウルシ科、ショウガ科、ミカン科、ヒガンバナ科、セリ科、アブラナ科、ハス科、マタタビ科、バラ科、ユリ科、イネ科、モクセイ科、バショウ科、ツバキ科およびネギ科の植物から選択される植物を粉砕して調製される、請求項1~6のいずれか一項に記載の製造方法。
  8.  7-オキサビシクロ[4.1.0]ヘプタンおよびシクロプロピルアミンを、大豆加工物の存在下で反応させて(1R,2R)-2-シクロプロピルアミノ-1-シクロヘキサノールを得る工程を含む、(1R,2R)-2-シクロプロピルアミノ-1-シクロヘキサノールの製造方法。
  9.  (1) 7-オキサビシクロ[4.1.0]ヘプタンおよびシクロプロピルアミンを、大豆加工物の存在下で反応させて(1R,2R)-2-シクロプロピルアミノ-1-シクロヘキサノールを得る工程と、
     (2a) (1R,2R)-2-シクロプロピルアミノ-1-シクロヘキサノールとカルボニル化試薬を反応させた後に、さらに保護された若しくは保護されていない6-(3-アミノプロポキシ)-2(1H)-キノリノンとを反応させ、または、
     (2b) 保護された若しくは保護されていない6-(3-アミノプロポキシ)-2(1H)-キノリノンとカルボニル化試薬を反応させた後に、さらに(1R,2R)-2-シクロプロピルアミノ-1-シクロヘキサノールを反応させ、
     保護された6-(3-アミノプロポキシ)-2(1H)-キノリノンを用いた場合は、さらに脱保護を行うことによって、
     (-)-6-〔3-〔3-シクロプロピル-3-〔(1R,2R)-2-ヒドロキシシクロヘキシル〕ウレイド〕-プロポキシ〕-2(1H)-キノリノンを得る工程と、
     を含む、(-)-6-〔3-〔3-シクロプロピル-3-〔(1R,2R)-2-ヒドロキシシクロヘキシル〕ウレイド〕-プロポキシ〕-2(1H)-キノリノンの製造方法。
PCT/JP2015/067195 2014-06-17 2015-06-15 光学活性体の製造方法 WO2015194508A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529335A JP6630667B2 (ja) 2014-06-17 2015-06-15 光学活性体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014124316 2014-06-17
JP2014-124316 2014-06-17

Publications (1)

Publication Number Publication Date
WO2015194508A1 true WO2015194508A1 (ja) 2015-12-23

Family

ID=54935494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067195 WO2015194508A1 (ja) 2014-06-17 2015-06-15 光学活性体の製造方法

Country Status (2)

Country Link
JP (1) JP6630667B2 (ja)
WO (1) WO2015194508A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017104044A (ja) * 2015-12-09 2017-06-15 協和ファーマケミカル株式会社 触媒活性の向上方法
WO2021100852A1 (ja) 2019-11-21 2021-05-27 キリンホールディングス株式会社 結晶スポンジ法による構造解析のための結晶構造解析用試料の調製方法
WO2023191088A1 (ja) * 2022-03-31 2023-10-05 協和ファーマケミカル株式会社 植物由来有機分子触媒

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103289A (ja) * 1994-10-05 1996-04-23 Nisshinbo Ind Inc 植物細胞による立体選択的なα−アルキル−β−ヒドロキシカルボン酸エステルの製造方法
JPH09157258A (ja) * 1995-10-05 1997-06-17 Otsuka Pharmaceut Co Ltd カルボスチリル誘導体
WO1999034010A1 (fr) * 1997-12-29 1999-07-08 Sanyo Shokuhin Co., Ltd. Procede pour produire des alcools optiquement actifs
JP2003206266A (ja) * 2002-01-08 2003-07-22 Mitsubishi Chemicals Corp 光学活性trans−2−アミノ−1−シクロアルカノール化合物の製造方法
JP2005508619A (ja) * 2001-08-03 2005-04-07 ディヴァーサ コーポレイション エポキシドヒドロラーゼ、それらをコードした核酸及びそれらの作製法と利用法
WO2010134642A1 (ja) * 2009-05-22 2010-11-25 サンヨー食品株式会社 不斉酸化反応を有する蛋白質複合体およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648691B2 (ja) * 2004-12-02 2011-03-09 長瀬産業株式会社 光学活性な化合物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103289A (ja) * 1994-10-05 1996-04-23 Nisshinbo Ind Inc 植物細胞による立体選択的なα−アルキル−β−ヒドロキシカルボン酸エステルの製造方法
JPH09157258A (ja) * 1995-10-05 1997-06-17 Otsuka Pharmaceut Co Ltd カルボスチリル誘導体
WO1999034010A1 (fr) * 1997-12-29 1999-07-08 Sanyo Shokuhin Co., Ltd. Procede pour produire des alcools optiquement actifs
JP2005508619A (ja) * 2001-08-03 2005-04-07 ディヴァーサ コーポレイション エポキシドヒドロラーゼ、それらをコードした核酸及びそれらの作製法と利用法
JP2003206266A (ja) * 2002-01-08 2003-07-22 Mitsubishi Chemicals Corp 光学活性trans−2−アミノ−1−シクロアルカノール化合物の製造方法
WO2010134642A1 (ja) * 2009-05-22 2010-11-25 サンヨー食品株式会社 不斉酸化反応を有する蛋白質複合体およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IAIN D. GL WATSON ET AL.: "Ring-Opening Reactions of Nonactivated Aziridines Catalyzed by Tris(pentafluorophenyl)borane", J. ORG. CHEM., vol. 68, 2003, pages 5160 - 5167, XP055244918 *
XUE-LONG HOU ET AL.: "Desymmetric ring-opening of meso-epoxides with anilines: a simple way to chiral beta-amino alcohols", TETRAHEDRON : ASYMMETRY, vol. 9, 1998, pages 1747 - 1752, XP004131434 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017104044A (ja) * 2015-12-09 2017-06-15 協和ファーマケミカル株式会社 触媒活性の向上方法
WO2021100852A1 (ja) 2019-11-21 2021-05-27 キリンホールディングス株式会社 結晶スポンジ法による構造解析のための結晶構造解析用試料の調製方法
WO2023191088A1 (ja) * 2022-03-31 2023-10-05 協和ファーマケミカル株式会社 植物由来有機分子触媒

Also Published As

Publication number Publication date
JP6630667B2 (ja) 2020-01-15
JPWO2015194508A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP2632863B2 (ja) アリールオキシカルボン酸誘導体及びその製造法
IL46988A (en) N-(1'-methoxycarbonylethyl)-n-furan-2-ylcarbonyl aniline derivatives their manufacture and microbicidal and fungicidal compositions containing them
JP6630667B2 (ja) 光学活性体の製造方法
CN1446196A (zh) 酰基乙腈化合物,其制备方法及包含该化合物的杀螨剂
HUE033642T2 (en) A new method for the destruction of prostaglandin amides
FR2540490A1 (fr) Procede de resolution d'isomeres optiques, les isomeres ainsi produits et leur application pharmaceutique
JPS5879964A (ja) 光学活性n−(1′−メチル−2′−メトキシエチル)−n−クロルアセチル−2−エチル−6−メチルアニリン、その製法及び該化合物を含有する除草組成物
JP6797380B2 (ja) カケロマイシンおよびその誘導体の製造方法
Kudo et al. Isolation and absolute stereochemistry of optically active sydonic acid from Glonium sp.(Hysteriales, Ascomycota)
DE2515113C2 (ja)
US10040775B2 (en) Synthesis of chirally enriched 2,4-disubstituted tetrahydropyran-4-ol and its derivatives
US9598346B2 (en) Enantioselective process for the preparation of enantiomers of sex pheromones
CN103509012A (zh) 菲并吲哚里西啶生物碱c14位胺化衍生物及其制备和抗植物病毒活性
JP6678442B2 (ja) 触媒活性の向上方法
US11905250B2 (en) Methods for preparation of jasmonate compounds
CA3191072A1 (en) Phenyl alkyl carbamate compounds for use in preventing or treating neurodegenerative disease
US20110137041A1 (en) Process for preparing atovaquone and associate intermediates
AU2021337531A1 (en) Dithiophosphate derivatives as hydrogen sulfide release chemicals for improving plant growth and crop yield
Yamano et al. Versatile amine-promoted mild methanolysis of 3, 5-dinitrobenzoates and its application to the synthesis of colorado potato beetle pheromone
US20130245303A1 (en) Method for producing sanshool
WO2014128724A1 (en) Antitubercular compounds and process for the preparation thereof
Nobilec et al. Lactones 1. Hydroxylation of dihydro-β-campholenolactone by Fusarium culmorum
JPH05213842A (ja) アシル化アミノフエノール誘導体
JP4696588B2 (ja) カプシノイドの製造方法及び安定化法、並びにカプシノイド組成物
FI77648C (fi) Foerfaranden foer framstaellning av citrat, maleat, fumarat och pamoat av 2-dietylamino-1-metyletyl-cis-1- hydroxi(bicyklohexyl)-2-karboxylat samt vid foerfarandena anvaent fosfatsalt.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15810068

Country of ref document: EP

Kind code of ref document: A1