[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015178170A1 - アーク溶接制御方法 - Google Patents

アーク溶接制御方法 Download PDF

Info

Publication number
WO2015178170A1
WO2015178170A1 PCT/JP2015/062700 JP2015062700W WO2015178170A1 WO 2015178170 A1 WO2015178170 A1 WO 2015178170A1 JP 2015062700 W JP2015062700 W JP 2015062700W WO 2015178170 A1 WO2015178170 A1 WO 2015178170A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
welding
signal
value
arc
Prior art date
Application number
PCT/JP2015/062700
Other languages
English (en)
French (fr)
Inventor
田中 利幸
利昭 中俣
Original Assignee
株式会社ダイヘン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイヘン filed Critical 株式会社ダイヘン
Priority to EP15795407.4A priority Critical patent/EP3147064B1/en
Priority to US15/303,295 priority patent/US10391578B2/en
Priority to KR1020167023337A priority patent/KR102284586B1/ko
Priority to JP2016521015A priority patent/JP6555825B2/ja
Priority to CN201580009849.8A priority patent/CN106029282B/zh
Publication of WO2015178170A1 publication Critical patent/WO2015178170A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Definitions

  • the present invention periodically repeats a forward feed period and a reverse feed period of the feeding speed of the welding wire to generate a short circuit period and an arc period, and the constriction of droplets formed on the welding wire during the short circuit period is prevented.
  • the present invention relates to an arc welding control method in which, when detected, the welding current is reduced to shift to an arc period.
  • a welding wire as a consumable electrode is fed at a constant speed, and an arc is generated between the welding wire and the base material to perform welding.
  • the welding wire and the base material are often in a welding state in which a short circuit state and an arc generation state are alternately repeated.
  • FIG. 4 is a waveform diagram in a welding method in which a normal feeding period and a reverse feeding period of the welding wire feeding speed are periodically repeated and constriction detection control is performed.
  • FIG. 4A shows the waveform of the feeding speed Fw
  • FIG. 4B shows the waveform of the welding current Iw
  • FIG. 4C shows the waveform of the welding voltage Vw.
  • the feed speed Fw is a forward feed period above 0 and a reverse feed period below. Forward feeding is feeding in the direction in which the welding wire is brought closer to the base material, and reverse feeding is feeding in a direction away from the base material.
  • the feeding speed Fw changes in a sine wave shape and has a waveform shifted to the forward feeding side. For this reason, the average value of the feeding speed Fw is a positive value, and the welding wire is fed forward on average.
  • the feeding speed Fw is 0 at time t1
  • the period from time t1 to t2 is the forward acceleration period
  • the maximum value of forward feeding at time t2 and the time t2 to
  • the period of t3 is the forward deceleration period
  • the period of time t3 to t4 is the reverse acceleration period
  • the period of time t4 to t5 is the reverse deceleration period It becomes.
  • the feeding speed Fw is repeated with time t1 to t5 as one cycle.
  • the feeding speed Fw is in the reverse feed period from time t3, so the welding wire is fed backward.
  • the short circuit is released by this reverse feed, and the arc is regenerated at time t31.
  • the reoccurrence of the arc often occurs before and after the maximum reverse feed value at time t4. In the figure, the case occurs at time t31 during the reverse acceleration period before the reverse maximum value.
  • the welding voltage Vw When the arc is regenerated at time t31, the welding voltage Vw rapidly increases to an arc voltage value of several tens of volts as shown in FIG. As shown in FIG. 5B, the welding current Iw is suddenly reduced from about a few hundred ⁇ s before the time t31 by the control for detecting the constriction of the droplet, which is a precursor phenomenon of arc re-occurrence, and at the time t31.
  • the current value When the arc is regenerated, the current value is small.
  • the detection of the necking is performed by detecting that when the necking is formed in the droplet, the current path becomes narrow and the resistance value or the welding voltage value between the welding wire and the base material increases.
  • the feeding speed Fw is reversely sent from time t31 to time t5.
  • the arc length becomes longer.
  • the welding current Iw increases at a predetermined slope, and when the predetermined first welding current value is reached, that value is set at the time of arc re-occurrence (time Maintain for a predetermined period from t31). Thereafter, a second welding current that is smaller than the first welding current is applied until time t61 when the next short circuit occurs.
  • the feeding speed Fw is a forward feeding period from time t5 and becomes a forward feeding peak value at time t6.
  • the next short circuit occurs at time t61.
  • the welding voltage Vw gradually decreases as shown in FIG. 5C, and the welding current Iw also gradually decreases as shown in FIG.
  • the cycle between the short circuit and the arc substantially coincides with the cycle between the forward feed and the reverse feed of the feed speed. That is, in this welding method, the cycle between the short circuit and the arc can be set to a desired value by setting the cycle between the forward feed and the reverse feed of the feed speed. For this reason, if this welding method is carried out, it becomes possible to suppress variations in the cycle between the short circuit and the arc so as to be substantially constant. Welding with a good appearance can be performed.
  • an object of the present invention is to provide an arc welding control method capable of suppressing the instability.
  • the present invention provides: The welding wire feed speed forward feed period and reverse feed period are periodically repeated to generate a short circuit period and an arc period,
  • the detection sensitivity of the constriction is changed according to the waveform parameter of the feeding speed, An arc welding control method characterized by the above.
  • the present invention The welding wire feed speed forward feed period and reverse feed period are periodically repeated to generate a short circuit period and an arc period, Detecting the constriction of droplets formed on the welding wire during the short circuit period, reducing the welding current and shifting to the arc period,
  • the arc welding control method for automatically setting and controlling the detection sensitivity of the constriction based on the constriction detection time based on the constriction detection time from the time when the constriction is detected during the short circuit period, Changing the gain of the automatic setting control according to the waveform parameter of the feeding speed;
  • An arc welding control method characterized by the above.
  • the waveform parameter of the feeding speed is at least one of amplitude, period, or a ratio of the forward feed period and the reverse feed period.
  • the detection sensitivity of the necking is automatically optimized, so that the necking detection control is performed. Can be prevented from becoming unstable.
  • FIG. 1 is a block diagram of a welding power source for carrying out an arc welding control method according to Embodiment 1 of the present invention. Hereinafter, each block will be described with reference to FIG.
  • the power supply main circuit PM receives a commercial power supply (not shown) such as a three-phase 200V, performs output control such as inverter control according to an error amplification signal Ea described later, and outputs a welding voltage Vw and a welding current Iw.
  • a commercial power supply not shown
  • output control such as inverter control according to an error amplification signal Ea described later
  • This power supply main circuit PM is omitted in the drawing, but a primary rectifier that rectifies commercial power, a smoothing capacitor that smoothes the rectified direct current, an inverter circuit that converts the smoothed direct current to high frequency alternating current, and high frequency alternating current for welding A high-frequency transformer that steps down the voltage to an appropriate voltage value, a secondary rectifier that rectifies the stepped-down high-frequency alternating current into direct current, a reactor that smoothes the rectified direct current, and modulation that performs pulse width modulation control using the error amplification signal Ea as an input.
  • the circuit includes an inverter drive circuit that receives a pulse width modulation control signal as input and drives a switching element of the inverter circuit.
  • the current reducing resistor R is inserted between the power supply main circuit PM and the welding torch 4.
  • the value of the current reducing resistor R is set to a value (about 0.5 to 3 ⁇ ) that is 10 times or more larger than the short-circuit load (about 0.01 to 0.03 ⁇ ).
  • the feed motor WM receives a feed control signal Fc, which will be described later, and feeds the welding wire 1 at a feed speed Fw by periodically repeating forward feed and reverse feed.
  • a feed control signal Fc which will be described later
  • Fc feed control signal
  • the feeding motor WM may be installed near the tip of the welding torch 4. In some cases, two feed motors WM are used to form a push-pull feed system.
  • the welding wire 1 is fed through the welding torch 4 by the rotation of the feeding roll 5 coupled to the feeding motor WM, and an arc 3 is generated between the base metal 2 and the welding wire 1.
  • a welding voltage Vw is applied between the power feed tip (not shown) in the welding torch 4 and the base material 2, and a welding current Iw is conducted.
  • the welding current detection circuit ID detects the welding current Iw and outputs a welding current detection signal Id.
  • the welding voltage detection circuit VD detects the welding voltage Vw and outputs a welding voltage detection signal Vd.
  • the short-circuit determination circuit SD receives the welding voltage detection signal Vd as described above, and when this value is less than a predetermined short-circuit / arc determination value (set to about 10 V), determines that it is in the short-circuit period and becomes High level. In the above case, it is determined that the arc period is in effect, and a short-circuit determination signal Sd that goes low is output.
  • a predetermined short-circuit / arc determination value set to about 10 V
  • the average feed speed setting circuit FAR outputs a predetermined average feed speed setting signal Far.
  • the amplitude fine adjustment circuit WFR outputs an amplitude fine adjustment signal Wfr for finely adjusting the amplitude of the feeding speed.
  • the cycle fine adjustment circuit TFR outputs a cycle fine adjustment signal Tfr for finely adjusting the cycle of the feeding speed.
  • the forward / reverse ratio fine adjustment circuit DFR outputs a forward / reverse ratio fine adjustment signal Dfr for finely adjusting a ratio (hereinafter referred to as forward / reverse ratio) D between the forward feed period and the reverse feed period of the feeding speed.
  • the forward / reverse ratio D is (back feed period) / (forward feed period).
  • the feed speed setting circuit FR receives the average feed speed setting signal Far, the amplitude fine adjustment signal Wfr, the period fine adjustment signal Tfr, and the forward / reverse ratio fine adjustment signal Dfr as inputs.
  • the amplitude standard value, period standard value, and forward / reverse ratio standard value set in advance corresponding to the speed setting signal Far are set to the amplitude fine adjustment signal Wfr, period fine adjustment signal Tfr, and forward / reverse ratio fine adjustment signal Dfr.
  • a feed speed setting signal Fr of a pattern formed from the waveform parameter finely adjusted with the value is output. That is, the amplitude standard value is calculated by a predetermined amplitude calculation function with the average feed speed setting signal Far as an input.
  • amplitude setting value amplitude standard value + amplitude fine adjustment signal Wfr is performed.
  • the amplitude setting value 80 m / min.
  • the cycle setting value and the forward / reverse ratio setting value are calculated. Wfr, Tfr, and Dfr are positive and negative values.
  • a feed rate setting signal Fr that repeats a forward feed period and a reverse feed period in a sine wave shape is output.
  • the pattern of the feed speed setting signal Fr may be trapezoidal or triangular.
  • the feed control circuit FC receives the feed speed setting signal Fr as an input, and sends a feed control signal Fc for feeding the welding wire 1 at a feed speed Fw corresponding to the set value to the feed motor. Output to WM.
  • the first welding current setting circuit IWR1 outputs a predetermined first welding current setting signal Iwr1.
  • First welding current energization period setting circuit TWR1 outputs a predetermined first welding current energization period setting signal Twr1.
  • the squeezing detection sensitivity setting circuit NTR receives the average feed speed setting signal Far, the amplitude fine adjustment signal Wfr, the period fine adjustment signal Tfr, and the forward / reverse ratio fine adjustment signal Dfr as inputs.
  • a squeezing detection sensitivity standard value Nts is calculated by a predetermined squeezing detection sensitivity calculation function based on the speed setting signal Far, and the squeezing detection sensitivity standard value Nts is calculated from the amplitude fine adjustment signal Wfr, the period fine adjustment signal Tfr, and the forward / reverse ratio fine.
  • a squeezing detection sensitivity setting signal Ntr is output after correction by each value of the adjustment signal Dfr. Correction is performed by the following equation.
  • Ntr Nts + a ⁇ Wfr + b ⁇ Tfr + c ⁇ Dfr (1)
  • a, b, and c are constants and are positive real numbers. These constants are calculated in advance by experiments.
  • the squeezing detection sensitivity standard value Nts is corrected so that the sensitivity decreases when the amplitude fine adjustment signal Wfr is a positive value, and is corrected when it is a negative value.
  • the squeezing detection sensitivity standard value Nts is corrected so that the sensitivity decreases when the periodic fine adjustment signal Tfr is a positive value, and is corrected so as to increase when the period fine adjustment signal Tfr is a negative value.
  • the squeezing detection sensitivity standard value Nts is corrected so that the sensitivity becomes low when the forward / reverse ratio fine adjustment signal Dfr is a positive value, and is corrected so as to be high when the value is negative.
  • the squeezing detection circuit ND receives the short circuit determination signal Sd, the welding voltage detection signal Vd, the welding current detection signal Id, and the squeezing detection sensitivity setting signal Ntr, and the short circuit determination signal Sd is at a high level (short circuit). Period), when the voltage rise value of the welding voltage detection signal Vd reaches the value of the squeezing detection sensitivity setting signal Ntr, it is determined that the squeezing formation state has become the reference state, and becomes the High level, and the short circuit determination signal Sd. When the signal changes to the low level (arc period), the squeezing detection signal Nd which becomes the low level is output.
  • the squeezing detection signal Nd may be changed to a high level when the differential value of the welding voltage detection signal Vd during the short circuit period reaches the value of the squeezing detection sensitivity setting signal Ntr corresponding thereto. Further, the resistance value of the droplet is calculated by dividing the value of the welding voltage detection signal Vd by the value of the welding current detection signal Id, and the differential value of this resistance value reaches the value of the squeezing detection sensitivity setting signal Ntr corresponding thereto. At this point, the squeezing detection signal Nd may be changed to a high level.
  • the low level current setting circuit ILR outputs a predetermined low level current setting signal Ilr.
  • the current comparison circuit CM receives the low level current setting signal Ilr and the welding current detection signal Id as input, and becomes a high level when Id ⁇ Ilr, and a low level current comparison signal Cm when Id ⁇ Ilr. Is output.
  • the drive circuit DR receives the current comparison signal Cm and the squeezing detection signal Nd as input, and changes to a low level when the squeezing detection signal Nd changes to a high level, and then changes to a high level after the current comparison signal Cm changes to a high level.
  • the drive signal Dr that changes to High level is output to the base terminal of the transistor TR. Therefore, when the constriction is detected, the drive signal Dr becomes a low level, the transistor TR is turned off, and the current reducing resistor R is inserted into the energization path. Therefore, the welding current Iw for energizing the short-circuit load decreases rapidly. .
  • the sharply decreased welding current Iw value decreases to the low level current setting signal Ilr value
  • the drive signal Dr becomes a high level and the transistor TR is turned on, so that the current reducing resistor R is short-circuited and is normally Return to the state.
  • the current control setting circuit ICR receives the short circuit determination signal Sd, the low level current setting signal Ilr, the squeezing detection signal Nd, and the first welding current setting signal Iwr1 as input, and performs the following processing.
  • a control setting signal Icr is output. 1)
  • a predetermined initial current set value is output as the current control setting signal Icr during a predetermined initial period from the time when the short circuit determination signal Sd changes to the high level (short circuit). 2) Thereafter, the value of the current control setting signal Icr is increased from the initial current setting value to a predetermined peak setting value at a predetermined short-circuit slope, and the value is maintained.
  • the off-delay circuit TDS receives the short-circuit determination signal Sd and the first welding current energization period setting signal Twr1 as input, and sets the first welding current energization period when the short-circuit determination signal Sd changes from the High level to the Low level.
  • the delay signal Tds is output with an off-delay for the period of the signal Twr1. Therefore, the delay signal Tds is a signal that becomes a high level when the short-circuiting period starts, and is turned off and delayed to a low level only during the period of the first welding current energization period setting signal Twr1 after the arc is regenerated.
  • the current error amplification circuit EI amplifies an error between the current control setting signal Icr (+) and the welding current detection signal Id ( ⁇ ), and outputs a current error amplification signal Ei.
  • the voltage setting circuit VR outputs a predetermined voltage setting signal Vr for setting the welding voltage during the arc period.
  • the voltage error amplification circuit EV amplifies an error between the voltage setting signal Vr (+) and the welding voltage detection signal Vd ( ⁇ ), and outputs a voltage error amplification signal Ev.
  • the control switching circuit SW receives the current error amplification signal Ei, the voltage error amplification signal Ev, and the delay signal Tds as inputs, and the delay signal Tds is at the high level (the arc is regenerated from the start of the short circuit and the first welding is performed).
  • Current error amplification signal Ei is output as error amplification signal Ea when current energization period setting signal Twr1 elapses), and voltage error amplification signal Ev is output when delay signal Tds is at a low level (arc). Output as error amplified signal Ea.
  • constant current control is performed during the short-circuit period + first welding current energization period, and constant voltage control is performed during the other arc periods.
  • FIG. 2 is a timing chart of each signal in the welding power source of FIG. 1 for explaining the arc welding control method according to the first embodiment of the present invention.
  • the figure (A) shows the time change of the feeding speed Fw of the welding wire 1
  • the figure (B) shows the time change of the welding current Iw
  • the figure (C) shows the time change of the welding voltage Vw
  • (D) shows the time change of the squeezing detection signal Nd
  • (E) shows the time change of the drive signal Dr
  • (F) shows the time change of the delay signal Tds
  • G Shows the time change of the current control setting signal Icr.
  • the feeding speed Fw when the feeding speed Fw is a positive value above 0, it indicates that the welding wire is being fed forward, and when the feeding speed Fw is a negative value below 0, Indicates that it is being sent back. Since the feeding speed Fw shown in FIG. 5A is set by a feeding speed setting signal Fr (not shown), both waveforms are similar waveforms. As described above with reference to FIG. 1, the feed speed setting signal Fr is a fine amplitude adjustment of an amplitude standard value, a cycle standard value, and a forward / reverse ratio standard value set in advance corresponding to the average feed speed setting signal Far.
  • the feeding speed Fw is 0 at time t1
  • the period from time t1 to t2 is the forward acceleration period
  • the maximum value of forward feeding at time t2 and the time t2 to
  • the period of t3 is the forward deceleration period
  • the period of time t3 to t4 is the reverse acceleration period
  • the period of time t4 to t5 is the reverse deceleration period It becomes. Therefore, the feeding speed Fw has a waveform that repeats the period from time t1 to t5 as one cycle T.
  • the amplitude W is the difference between the maximum value for forward feed and the maximum value for reverse feed.
  • the forward / reverse ratio D is (period from time t3 to t5) / (period from time t1 to t3).
  • the normal transmission period from time t1 to t3 is 5.4 ms
  • the reverse transmission period from time t3 to t5 is 4.6 ms.
  • one cycle T is 10 ms
  • the normal / reverse ratio D is 0.85. It becomes.
  • the maximum value for forward feed is 50 m / min
  • the maximum value for reverse feed is ⁇ 40 m / min
  • the amplitude W at this time is 90 m / min.
  • the average feed speed is about +4 m / min
  • the average welding current value is about 150A.
  • the welding voltage Vw rapidly decreases to a short circuit voltage value of several volts.
  • the delay signal Tds changes from the Low level to the High level as shown in FIG.
  • the current control setting signal Icr changes to a predetermined initial current setting value which is a small value at time t21.
  • the current control setting signal Icr becomes the above initial current set value during a predetermined initial period from time t21 to t22, and during a predetermined short circuit during the period from time t22 to t23. It rises with an inclination and becomes a predetermined peak set value during the period of time t23 to t31. Since the constant current control is performed as described above during the short circuit period, the welding current Iw is controlled to a value corresponding to the current control setting signal Icr. For this reason, as shown in FIG.
  • the welding current Iw rapidly decreases from the welding current during the arc period at time t21, becomes an initial current value during the initial period from time t21 to t22, and reaches from time t22 to t23. During the period, it rises with a slope at the time of short circuit, and reaches a peak value during the period of time 23 to t31.
  • the initial period is set to 1 ms
  • the initial current is set to 50 A
  • the short-circuit slope is set to 400 A / ms
  • the peak value is set to 450 A. As shown in FIG.
  • the squeezing detection signal Nd is at a high level during a period between times t31 and t33, which will be described later, and is at a low level during other periods.
  • the drive signal Dr is at a low level during a period from time t31 to t32 described later, and is at a high level during other periods. Therefore, during the period before time t31 in the figure, the drive signal Dr is at a high level and the transistor TR in FIG. 1 is turned on, so that the current reducing resistor R is short-circuited and the normal consumable electrode arc welding power source is connected. It becomes the same state.
  • the welding voltage Vw increases from around time t23 when the welding current Iw reaches its peak value. This is because a constriction is gradually formed in the droplet due to the reverse feed of the welding wire and the action of the pinch force caused by the welding current Iw.
  • the squeezing detection signal Nd changes to the high level.
  • the squeezing detection signal Nd is at a high level when the squeezing is detected at time t31, and is at a low level when the arc is regenerated at time t33.
  • a period in which the squeezing detection signal Nd is at a high level is referred to as a squeezing detection time Tn.
  • the squeezing detection sensitivity setting signal Ntr is calculated by the squeezing detection sensitivity setting circuit NTR of FIG. 1 by using the average feed speed setting signal Far as an input to calculate a squeezing detection sensitivity standard value Nts by a predetermined squeezing detection sensitivity calculation function.
  • This squeezing detection sensitivity standard value Nts is a value corrected by the values of the amplitude fine adjustment signal Wfr, the period fine adjustment signal Tfr, and the forward / reverse ratio fine adjustment signal Dfr. That is, the squeezing detection sensitivity setting signal Ntr is calculated by the above-described equation (1) and is automatically set to a value suitable for the waveform parameter of the feeding speed Fw. For this reason, it is possible to suppress the squeezing detection control from becoming unstable when the waveform parameter of the feeding speed is changed.
  • the drive signal Dr becomes Low level, so that the transistor TR in FIG. A flow resistor R is inserted into the current path.
  • the current control setting signal Icr decreases to the value of the low level current setting signal Ilr.
  • the welding current Iw rapidly decreases from the peak value to the low level current value Il.
  • the drive signal Dr returns to the high level as shown in FIG. 5E, so that the transistor TR in FIG. The device R is short-circuited.
  • FIG. 5G the current control setting signal Icr decreases to the value of the low level current setting signal Ilr.
  • the welding current Iw maintains the low level current value Il until the arc is regenerated at time t33 because the current control setting signal Icr remains the low level current setting signal Ilr. Therefore, the transistor TR is turned off only during a period from the time when the squeezing detection signal Nd changes to the high level at time t31 until the welding current Iw decreases to the low level current value Il at time t32. As shown in FIG. 5C, the welding voltage Vw rapidly increases after once decreasing from time t31 because the welding current Iw becomes small.
  • the low level current value Il is set to 50 A, for example.
  • the feed speed Fw is decelerated while maintaining the reverse feed state, as shown in FIG.
  • the value of the current control setting signal Icr rises from the value of the low level current setting signal Ilr at a predetermined arc slope as shown in FIG.
  • the delay signal Tds remains at the high level until time t41 when the predetermined first welding current energization period setting signal Twr1 elapses after the arc is regenerated at time t33. is there.
  • the welding power source is controlled at a constant current until time t41, as shown in FIG. 5B, the welding current Iw rises at the arc slope from time t33, and the value of the first welding current setting signal Iwr1.
  • the value is maintained until time t41.
  • the welding voltage Vw is in a state of a large first welding voltage value during the first welding current energization period Tw1 from time t33 to t41.
  • the squeezing detection signal Nd changes to the low level because the arc is regenerated at time t33.
  • the arc-time inclination is set to 400 A / ms
  • the first welding current setting signal Iwr1 is set to 450 A
  • the first welding current energization period setting signal Twr1 is set to 2 ms.
  • the delay signal Tds changes to the Low level as shown in FIG.
  • the welding power source is switched from constant current control to constant voltage control. From the time when the arc is regenerated at time t33 to time t5, the welding wire is fed backward, so the arc length gradually increases. Since it is the forward feed acceleration period from time t5, the feed speed Fw is switched to forward feed as shown in FIG.
  • the welding current Iw is energized by the second welding current Iw2 that gradually decreases from the first welding current Iw1.
  • the welding voltage Vw gradually decreases from the first welding voltage value. The next short circuit occurs at time t61 after the maximum forward value at time t6.
  • the detection sensitivity of the constriction is changed according to the waveform parameter of the feeding speed.
  • the detection sensitivity of the squeezing is automatically set and controlled based on the squeezing detection time, which is the time from the time when the squeezing is detected during the short circuit period to the time when the squeezing is started. Is changed according to the waveform parameter of the feeding speed.
  • FIG. 3 is a block diagram of a welding power source for carrying out the arc welding control method according to Embodiment 2 of the present invention.
  • This figure corresponds to FIG. 1, and the same reference numerals are given to the same blocks, and the description thereof will not be repeated.
  • a squeezing detection time setting circuit TNR is added to FIG. 1
  • the squeezing detection sensitivity setting circuit NTR of FIG. 1 is replaced with a gain setting circuit GR
  • a squeezing detection sensitivity automatic setting control circuit NTC is added to FIG. It is.
  • these blocks will be described with reference to FIG.
  • the constriction detection time setting circuit TNR outputs a predetermined constriction detection time setting signal Tnr.
  • the squeezing detection sensitivity setting signal Ntr is an appropriate value and the squeezing detection control is stable, the squeezing detection time Tn becomes an appropriate value in the range of 200 to 1000 ⁇ s. Therefore, the squeezing detection time setting signal Tnr is set to 500 ⁇ s, for example.
  • the gain setting circuit GR receives an average feed speed setting signal Far, an amplitude fine adjustment signal Wfr, a period fine adjustment signal Tfr, and a forward / reverse ratio fine adjustment signal Dfr as inputs, and an average feed speed setting signal Far as an input.
  • the gain standard value Gs is calculated by the gain calculation function, and the gain standard value Gs is corrected by each value of the amplitude fine adjustment signal Wfr, the period fine adjustment signal Tfr, and the forward / reverse ratio fine adjustment signal Dfr, and the gain setting signal Gr is obtained.
  • Output. Correction is performed by the following equation.
  • the gain standard value Gs is corrected so that the gain is decreased when the amplitude fine adjustment signal Wfr is a positive value, and is increased when the amplitude fine adjustment signal Wfr is a negative value.
  • the gain standard value Gs is corrected so that the gain decreases when the period fine adjustment signal Tfr is a positive value, and is increased when the period fine adjustment signal Tfr is a negative value.
  • the gain standard value Gs is corrected so that the gain decreases when the forward / reverse ratio fine adjustment signal Dfr is a positive value, and is increased when it is a negative value.
  • Nt0 is a predetermined initial value.
  • the value of the squeezing detection sensitivity setting signal Ntr is automatically set to an appropriate value so that the squeezing detection time Tn becomes equal to the value of the squeezing detection time setting signal Tnr.
  • the gain setting signal Gr is optimized, so that the automatic setting control is stabilized. As a result, when the waveform parameter of the feeding speed Fw changes, it is possible to suppress the squeezing detection control from becoming unstable.
  • FIG. 3 is a timing chart of each signal in the welding power source of FIG. 3 for explaining the arc welding control method according to the second embodiment of the present invention, and the description thereof will not be repeated.
  • FIG. 2 is different in that the squeezing detection sensitivity setting signal Ntr that determines the timing at which the squeezing detection signal Nd shown in FIG. Yes.
  • the value of the gain setting signal Gr of this automatic setting control is such that the change in the waveform parameter of the feed speed Fw can maintain the stability of the control system even if the waveform parameter of the feed speed Fw changes. The point that changes to an appropriate value in accordance with is different.
  • the detection sensitivity of the squeezing is automatically set based on the squeezing detection time, which is the time from the time when the squeezing is detected during the short circuit period to the time when the transition to the arc period occurs, and the auto setting control is performed.
  • the gain is changed according to the waveform parameter of the feeding speed.
  • the gain for automatically setting and controlling the detection sensitivity of the squeezing is optimized when the waveform parameters such as the amplitude of the feeding speed, the period, and the ratio between the forward feeding period and the reverse feeding period change. The For this reason, even if the waveform parameter of the feeding speed is changed, the detection sensitivity of the necking is optimized, so that it is possible to prevent the necking detection control from becoming unstable.
  • the detection sensitivity of the necking is automatically optimized, so that the necking detection control is performed. Can be prevented from becoming unstable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

溶接ワイヤ(1)の正送と逆送とを周期的に繰り返し、かつ、くびれ検出制御を行う溶接方法において、溶接状態の安定性を向上させる。溶接ワイヤ(1)の送給速度(Fw)の正送期間(t1~t3)と逆送期間(t3~t5)とを周期的に繰り返して短絡期間(t21~t33)とアーク期間(t33~t21)とを発生させ、短絡期間(t21~t33)中に溶接ワイヤ(1)に形成された溶滴のくびれを検出すると溶接電流(Iw)を減少させてアーク期間(t33~t21)に移行させるアーク溶接制御方法において、くびれの検出感度を、振幅(W)、周期(T)、正送期間(t1~t3)と逆送期間(t3~t5)との比率(D)等の送給速度(Fw)の波形パラメータに応じて変化させる。これにより、波形パラメータが変化しても、くびれの検出感度が自動的に適正化されるので、くびれ検出制御が不安定になることを抑制することができる。

Description

アーク溶接制御方法
 本発明は、溶接ワイヤの送給速度の正送期間と逆送期間とを周期的に繰り返して短絡期間とアーク期間とを発生させ、短絡期間中に溶接ワイヤに形成された溶滴のくびれを検出すると溶接電流を減少させてアーク期間に移行させるアーク溶接制御方法に関するものである。
 一般的な消耗電極式アーク溶接では、消耗電極である溶接ワイヤを一定速度で送給し、溶接ワイヤと母材との間にアークを発生させて溶接が行なわれる。消耗電極式アーク溶接では、溶接ワイヤと母材とが短絡状態とアーク発生状態とを交互に繰り返す溶接状態になることが多い。
 ところで、溶接品質をさらに向上させるために、溶接ワイヤの正送と逆送とを周期的に繰り返して溶接する方法が提案されている(例えば、特許文献1参照)。また、アークが再発生する前兆現象である溶滴のくびれを検出して溶接電流を急減させ、小電流値の状態でアークを再発生させることによって、スパッタの発生量を削減するくびれ検出制御方法が提案されている(例えば、特許文献2参照)。以下、これらの溶接方法について説明する。
 図4は、溶接ワイヤの送給速度の正送期間と逆送期間とを周期的に繰り返し、かつ、くびれ検出制御を行う溶接方法における波形図である。同図(A)は送給速度Fwの波形を示し、同図(B)は溶接電流Iwの波形を示し、同図(C)は溶接電圧Vwの波形を示す。以下、同図を参照して説明する。
 同図(A)に示すように、送給速度Fwは、0よりも上側が正送期間となり、下側が逆送期間となる。正送とは溶接ワイヤを母材に近づける方向に送給することであり、逆送とは母材から離反する方向に送給することである。送給速度Fwは、正弦波状に変化しており、正送側にシフトした波形となっている。このために、送給速度Fwの平均値は正の値となり、溶接ワイヤは平均的には正送されている。
 同図(A)に示すように、送給速度Fwは、時刻t1時点では0であり、時刻t1~t2の期間は正送加速期間となり、時刻t2で正送の最大値となり、時刻t2~t3の期間は正送減速期間となり、時刻t3で0となり、時刻t3~t4の期間は逆送加速期間となり、時刻t4で逆送の最大値となり、時刻t4~t5の期間は逆送減速期間となる。送給速度Fwは、時刻t1~t5を1周期として繰り返される。
 溶接ワイヤと母材との短絡は、時刻t2の正送最大値の前後で発生することが多い。同図では、正送最大値の後の正送減速期間中の時刻t21で発生した場合である。時刻t21において短絡が発生すると、同図(C)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減し、同図(B)に示すように、溶接電流Iwも小電流値の初期電流値に減少する。その後、溶接電流Iwは、所定の傾斜で増加し、予め定めたピーク値に達するとその値を維持する。
 同図(A)に示すように、送給速度Fwは、時刻t3からは逆送期間になるので、溶接ワイヤは逆送される。この逆送によって短絡が解除されて、時刻t31においてアークが再発生する。アークの再発生は、時刻t4の逆送最大値の前後で発生することが多い。同図では、逆送最大値の前の逆送加速期間中の時刻t31で発生した場合である。
 時刻t31においてアークが再発生すると、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増する。同図(B)に示すように、溶接電流Iwは、アーク再発生の前兆現象である溶滴のくびれを検出する制御によって、時刻t31よりも数百μs程度前の時点から急減し、時刻t31のアーク再発生時点では小電流値となっている。このくびれの検出は、溶滴にくびれが形成されると通電路が狭くなり溶接ワイヤと母材との間の抵抗値又は溶接電圧値が上昇することを検出することによって行われる。
 同図(A)に示すように、送給速度Fwは、時刻t31から時刻t5まで逆送される。この期間中は、アーク長が長くなる期間となる。時刻t31~t5の期間中は、同図(B)に示すように、溶接電流Iwは、所定の傾斜で増加し、所定の第1溶接電流値に達するとその値をアーク再発生時(時刻t31)からの所定期間維持する。その後は次の短絡が発生する時刻t61まで第1溶接電流よりも小となる第2溶接電流が通電する。
 同図(A)に示すように、送給速度Fwは、時刻t5から正送期間となり、時刻t6で正送ピーク値となる。そして、同図では、時刻t61において、次の短絡が発生する。この時刻t5~t61の期間中は、同図(C)に示すように、溶接電圧Vwは次第に減少し、同図(B)に示すように、溶接電流Iwも次第に減少する。
 上述したように、短絡とアークとの周期は、送給速度の正送と逆送との周期と略一致することになる。すなわち、この溶接方法では、送給速度の正送と逆送との周期を設定することによって短絡とアークとの周期を所望値にすることができる。このために、この溶接方法を実施すれば、短絡とアークとの周期のばらつきを抑制して略一定にすることが可能となり、くびれ検出制御と組み合わせることによって、スパッタ発生量の少ない、かつ、ビード外観の良好な溶接を行なうことができる。
日本国特許第5201266号公報 日本国特開2006-281219号公報
 特許文献1及び2の従来技術では、送給速度の正送期間と逆送期間とを周期的に繰り返し、かつ、くびれ検出制御を行うことによって、スパッタ発生の少ない安定した溶接を行うことができる。このときに、溶接ワイヤの種類、平均溶接電流値、溶接速度、継手形状等の溶接条件に応じて、送給速度の波形パラメータ(振幅、周期等)を変化させて適正化する必要がある。さらには、溶接条件が同一であっても、ビード外観を所望形状にするため、アークの感触を作業者の好みに合わせるため等の要求から送給速度の波形パラメータを変化させる場合がある。
 送給速度の波形パラメータが変化すると、溶滴の形成状態が変化するので、くびれの形成状態も変化する。このために、送給速度の波形パラメータが変化した場合には、くびれ検出制御が不安定になり、スパッタ発生量が増加する問題があった。
 そこで、本発明では、送給速度の正送期間と逆送期間とを周期的に繰り返し、かつ、くびれ検出制御を行う溶接方法において、送給速度の波形パラメータが変化したときに、くびれ検出制御が不安定になることを抑制することができるアーク溶接制御方法を提供することを目的とする。
 上述した課題を解決するために、本発明は、
溶接ワイヤの送給速度の正送期間と逆送期間とを周期的に繰り返して短絡期間とアーク期間とを発生させ、
前記短絡期間中に前記溶接ワイヤに形成された溶滴のくびれを検出すると溶接電流を減少させて前記アーク期間に移行させるアーク溶接制御方法において、
 前記くびれの検出感度を、前記送給速度の波形パラメータに応じて変化させる、
ことを特徴とするアーク溶接制御方法である。
 本発明は、
溶接ワイヤの送給速度の正送期間と逆送期間とを周期的に繰り返して短絡期間とアーク期間とを発生させ、
前記短絡期間中に前記溶接ワイヤに形成された溶滴のくびれを検出すると溶接電流を減少させて前記アーク期間に移行させ、
前記短絡期間中に前記くびれを検出した時点から前記アーク期間に移行した時点までの時間であるくびれ検出時間に基づいて前記くびれの検出感度を自動設定制御するアーク溶接制御方法において、
 前記自動設定制御のゲインを、前記送給速度の波形パラメータに応じて変化させる、
ことを特徴とするアーク溶接制御方法である。
 本発明は、前記送給速度の前記波形パラメータが、振幅、周期又は前記正送期間と前記逆送期間との比率の少なくとも1つ以上である、
ことを特徴とするアーク溶接制御方法である。
 本発明によれば、送給速度の振幅、周期、正送期間と逆送期間との比率等の波形パラメータが変化した場合、くびれの検出感度が自動的に適正化されるので、くびれ検出制御が不安定になることを抑制することができる。
本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。 本発明の実施の形態1に係るアーク溶接制御方法を説明するための、図1の溶接電源における各信号のタイミングチャートである。 本発明の実施の形態2に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。 従来技術において、溶接ワイヤの送給速度の正送期間と逆送期間とを周期的に繰り返し、かつ、くびれ検出制御を行う溶接方法における波形図である。
 以下、図面を参照して本発明の実施の形態について説明する。
[実施の形態1]
 図1は、本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。以下、同図を参照して、各ブロックについて説明する。
 電源主回路PMは、3相200V等の商用電源(図示は省略)を入力として、後述する誤差増幅信号Eaに従ってインバータ制御等の出力制御を行い、溶接電圧Vw及び溶接電流Iwを出力する。この電源主回路PMは、図示は省略するが、商用電源を整流する1次整流器、整流された直流を平滑する平滑コンデンサ、平滑された直流を高周波交流に変換するインバータ回路、高周波交流を溶接に適した電圧値に降圧する高周波変圧器、降圧された高周波交流を直流に整流する2次整流器、整流された直流を平滑するリアクトル、上記の誤差増幅信号Eaを入力としてパルス幅変調制御を行う変調回路、パルス幅変調制御信号を入力としてインバータ回路のスイッチング素子を駆動するインバータ駆動回路を備えている。
 減流抵抗器Rは、上記の電源主回路PMと溶接トーチ4との間に挿入される。この減流抵抗器Rの値は、短絡負荷(0.01~0.03Ω程度)の10倍以上大きな値(0.5~3Ω程度)に設定される。この減流抵抗器Rが通電路に挿入されると、溶接電源内の直流リアクトル及び外部ケーブルのリアクトルに蓄積されたエネルギーが急放電される。トランジスタTRは、減流抵抗器Rと並列に接続されて、後述する駆動信号Drに従ってオン又はオフ制御される。
 送給モータWMは、後述する送給制御信号Fcを入力として、正送と逆送とを周期的に繰り返して溶接ワイヤ1を送給速度Fwで送給する。この送給モータWMには、過渡応答性の速いモータが使用される。溶接ワイヤ1の送給速度Fwの変化率及び送給方向の反転を速くするために、送給モータWMは溶接トーチ4の先端の近くに設置される場合がある。また、送給モータWMを2個使用して、プッシュプル方式の送給系とする場合もある。
 溶接ワイヤ1は、上記の送給モータWMに結合された送給ロール5の回転によって溶接トーチ4内を送給されて、母材2との間にアーク3が発生する。溶接トーチ4内の給電チップ(図示は省略)と母材2との間には溶接電圧Vwが印加し、溶接電流Iwが通電する。
 溶接電流検出回路IDは、上記の溶接電流Iwを検出して、溶接電流検出信号Idを出力する。溶接電圧検出回路VDは、上記の溶接電圧Vwを検出して、溶接電圧検出信号Vdを出力する。
 短絡判別回路SDは、上記の溶接電圧検出信号Vdを入力として、この値が予め定めた短絡/アーク判別値(10V程度に設定)未満であるときは短絡期間にあると判別してHighレベルとなり、以上のときはアーク期間にあると判別してLowレベルになる短絡判別信号Sdを出力する。
 平均送給速度設定回路FARは、予め定めた平均送給速度設定信号Farを出力する。振幅微調整回路WFRは、送給速度の振幅を微調整するための振幅微調整信号Wfrを出力する。周期微調整回路TFRは、送給速度の周期を微調整するための周期微調整信号Tfrを出力する。正逆比率微調整回路DFRは、送給速度の正送期間と逆送期間との比率(以下、正逆比率という)Dを微調整するための正逆比率微調整信号Dfrを出力する。正逆比率Dは、(逆送期間)/(正送期間)である。
 送給速度設定回路FRは、上記の平均送給速度設定信号Far、上記の振幅微調整信号Wfr、上記の周期微調整信号Tfr及び上記の正逆比率微調整信号Dfrを入力として、平均送給速度設定信号Farに対応して予め設定されている振幅標準値、周期標準値及び正逆比率標準値を、振幅微調整信号Wfr、周期微調整信号Tfr及び正逆比率微調整信号Dfrのそれぞれの値で微調整した波形パラメータから形成されるパターンの送給速度設定信号Frを出力する。すなわち、平均送給速度設定信号Farを入力として、予め定めた振幅算出関数によって振幅標準値が算出される。そして、振幅設定値=振幅標準値+振幅微調整信号Wfrを行う。例えば、振幅標準値=90m/min、Wfr=-10m/minであるときは、振幅設定値=80m/minとなる。同様にして、周期設定値及び正逆比率設定値を算出する。Wfr、Tfr及びDfrは、正負の値となる。算出された振幅設定値、周期設定値及び正逆比率設定値を波形パラメータとして、正弦波状に正送期間と逆送期間とを繰り返す送給速度設定信号Frが出力される。送給速度設定信号Frのパターンは、台形波状、三角波状等でも良い。
 送給制御回路FCは、上記の送給速度設定信号Frを入力として、この設定値に相当する送給速度Fwで溶接ワイヤ1を送給するための送給制御信号Fcを上記の送給モータWMに出力する。
 第1溶接電流設定回路IWR1は、予め定めた第1溶接電流設定信号Iwr1を出力する。第1溶接電流通電期間設定回路TWR1は、予め定めた第1溶接電流通電期間設定信号Twr1を出力する。
 くびれ検出感度設定回路NTRは、上記の平均送給速度設定信号Far、上記の振幅微調整信号Wfr、上記の周期微調整信号Tfr及び上記の正逆比率微調整信号Dfrを入力として、平均送給速度設定信号Farに基づいて予め定めたくびれ検出感度算出関数によってくびれ検出感度標準値Ntsを算出し、このくびれ検出感度標準値Ntsを振幅微調整信号Wfr、周期微調整信号Tfr及び正逆比率微調整信号Dfrの各値によって補正して、くびれ検出感度設定信号Ntrを出力する。補正は、以下の式によって行う。
 Ntr=Nts+a・Wfr+b・Tfr+c・Dfr …(1)式
但し、a、b及びcは定数であり、正の実数である。これらの定数は、実験によって予め算出されている。くびれ検出感度標準値Ntsは、振幅微調整信号Wfrが正の値のとき感度が低くなるように補正され、負の値のとき高くなるように補正される。同様に、くびれ検出感度標準値Ntsは、周期微調整信号Tfrが正の値のとき感度が低くなるように補正され、負の値のとき高くなるように補正される。同様に、くびれ検出感度標準値Ntsは、正逆比率微調整信号Dfrが正の値のとき感度が低くなるように補正され、負の値のとき高くなるように補正される。
 くびれ検出回路NDは、上記の短絡判別信号Sd、上記の溶接電圧検出信号Vd、上記の溶接電流検出信号Id及び上記のくびれ検出感度設定信号Ntrを入力として、短絡判別信号SdがHighレベル(短絡期間)であるときの溶接電圧検出信号Vdの電圧上昇値がくびれ検出感度設定信号Ntrの値に達した時点でくびれの形成状態が基準状態になったと判別してHighレベルとなり、短絡判別信号SdがLowレベル(アーク期間)に変化した時点でLowレベルになるくびれ検出信号Ndを出力する。また、短絡期間中の溶接電圧検出信号Vdの微分値がそれに対応したくびれ検出感度設定信号Ntrの値に達した時点でくびれ検出信号NdをHighレベルに変化させるようにしても良い。さらに、溶接電圧検出信号Vdの値を溶接電流検出信号Idの値で除算して溶滴の抵抗値を算出し、この抵抗値の微分値がそれに対応するくびれ検出感度設定信号Ntrの値に達した時点でくびれ検出信号NdをHighレベルに変化させるようにしても良い。
 低レベル電流設定回路ILRは、予め定めた低レベル電流設定信号Ilrを出力する。電流比較回路CMは、この低レベル電流設定信号Ilr及び上記の溶接電流検出信号Idを入力として、Id<IlrのときはHighレベルになり、Id≧IlrのときはLowレベルになる電流比較信号Cmを出力する。
 駆動回路DRは、上記の電流比較信号Cm及び上記のくびれ検出信号Ndを入力として、くびれ検出信号NdがHighレベルに変化するとLowレベルに変化し、その後に電流比較信号CmがHighレベルに変化するとHighレベルに変化する駆動信号Drを上記のトランジスタTRのベース端子に出力する。したがって、この駆動信号Drはくびれが検出されるとLowレベルになり、トランジスタTRがオフ状態になり通電路に減流抵抗器Rが挿入されるので、短絡負荷を通電する溶接電流Iwは急減する。そして、急減した溶接電流Iwの値が低レベル電流設定信号Ilrの値まで減少すると、駆動信号DrはHighレベルになり、トランジスタTRがオン状態になるので、減流抵抗器Rは短絡されて通常の状態に戻る。
 電流制御設定回路ICRは、上記の短絡判別信号Sd、上記の低レベル電流設定信号Ilr、上記のくびれ検出信号Nd及び上記の第1溶接電流設定信号Iwr1を入力として、以下の処理を行い、電流制御設定信号Icrを出力する。
1)短絡判別信号SdがHighレベル(短絡)に変化した時点から予め定めた初期期間中は、予め定めた初期電流設定値を電流制御設定信号Icrとして出力する。
2)その後は、電流制御設定信号Icrの値を、上記の初期電流設定値から予め定めた短絡時傾斜で予め定めたピーク設定値まで上昇させ、その値を維持する。
3)くびれ検出信号NdがHighレベルに変化すると、電流制御設定信号Icrの値を低レベル電流設定信号Ilrの値に切り換えて維持する。
4)短絡判別信号SdがLowレベル(アーク)に変化すると、電流制御設定信号Icrを、予め定めたアーク時傾斜で第1溶接電流設定信号Iwr1の値まで上昇させ、その値を維持する。
 オフディレイ回路TDSは、上記の短絡判別信号Sd及び上記の第1溶接電流通電期間設定信号Twr1を入力として、短絡判別信号SdがHighレベルからLowレベルに変化する時点を第1溶接電流通電期間設定信号Twr1の期間だけオフディレイさせて遅延信号Tdsを出力する。したがって、この遅延信号Tdsは、短絡期間になるとHighレベルとなり、アークが再発生してから第1溶接電流通電期間設定信号Twr1の期間だけオフディレイしてLowレベルになる信号である。
 電流誤差増幅回路EIは、上記の電流制御設定信号Icr(+)と上記の溶接電流検出信号Id(-)との誤差を増幅して、電流誤差増幅信号Eiを出力する。
 電圧設定回路VRは、アーク期間中の溶接電圧を設定するための予め定めた電圧設定信号Vrを出力する。電圧誤差増幅回路EVは、この電圧設定信号Vr(+)と上記の溶接電圧検出信号Vd(-)との誤差を増幅して、電圧誤差増幅信号Evを出力する。
 制御切換回路SWは、上記の電流誤差増幅信号Ei、上記の電圧誤差増幅信号Ev及び上記の遅延信号Tdsを入力として、遅延信号TdsがHighレベル(短絡開始からアークが再発生して第1溶接電流通電期間設定信号Twr1の期間が経過するまでの期間)のときは電流誤差増幅信号Eiを誤差増幅信号Eaとして出力し、遅延信号TdsがLowレベル(アーク)のときは電圧誤差増幅信号Evを誤差増幅信号Eaとして出力する。この回路により、短絡期間+第1溶接電流通電期間中は定電流制御となり、それ以外のアーク期間中は定電圧制御となる。
 図2は、本発明の実施の形態1に係るアーク溶接制御方法を説明するための、図1の溶接電源における各信号のタイミングチャートである。同図(A)は溶接ワイヤ1の送給速度Fwの時間変化を示し、同図(B)は溶接電流Iwの時間変化を示し、同図(C)は溶接電圧Vwの時間変化を示し、同図(D)はくびれ検出信号Ndの時間変化を示し、同図(E)は駆動信号Drの時間変化を示し、同図(F)は遅延信号Tdsの時間変化を示し、同図(G)は電流制御設定信号Icrの時間変化を示す。以下、同図を参照して説明する。
 同図(A)に示すように、送給速度Fwは、0よりも上側の正の値のときは溶接ワイヤが正送されていることを示し、0よりも下側の負の値のときは逆送されていることを示す。同図(A)に示す送給速度Fwは送給速度設定信号Fr(図示は省略)によって設定されるので、両波形は相似波形となる。送給速度設定信号Frは、図1で上述したように、平均送給速度設定信号Farに対応して予め設定されている振幅標準値、周期標準値及び正逆比率標準値を、振幅微調整信号Wfr、周期微調整信号Tfr及び正逆比率微調整信号Dfrのそれぞれの値で微調整した波形パラメータから形成される正弦波状のパターンとなる。同図では正弦波状に変化しているが、三角波状又は台形波状に変化するようにしても良い。
 同図(A)に示すように、送給速度Fwは、時刻t1時点では0であり、時刻t1~t2の期間は正送加速期間となり、時刻t2で正送の最大値となり、時刻t2~t3の期間は正送減速期間となり、時刻t3で0となり、時刻t3~t4の期間は逆送加速期間となり、時刻t4で逆送の最大値となり、時刻t4~t5の期間は逆送減速期間となる。したがって、送給速度Fwは、時刻t1~t5の期間を1周期Tとして繰り返す波形となる。振幅Wは正送の最大値と逆送の最大値との差となる。正逆比率Dは、(時刻t3~t5の期間)/(時刻t1~t3の期間)となる。例えば、時刻t1~t3の正送期間は5.4msであり、時刻t3~t5の逆送期間は4.6msであり、このときの1周期Tは10msとなり、正逆比率Dは0.85となる。また、正送の最大値は50m/minであり、逆送の最大値は-40m/minであり、このときの振幅Wは90m/minとなる。平均送給速度は約+4m/minとなり、平均溶接電流値は約150Aとなる。
 同図(C)に示すように、溶接ワイヤと母材との短絡が時刻t21で発生すると、溶接電圧Vwは数Vの短絡電圧値に急減する。時刻t21において短絡が発生して溶接電圧Vwが短絡/アーク判別値Vta未満になったことを判別すると、同図(F)に示すように、遅延信号TdsはLowレベルからHighレベルに変化する。これに応動して、同図(G)に示すように、電流制御設定信号Icrは時刻t21において小さな値である予め定めた初期電流設定値に変化する。
 時刻t3からは逆送加速期間となるので、送給速度Fwは逆送方向に切り換わる。同図(G)に示すように、電流制御設定信号Icrは、時刻t21~t22の予め定めた初期期間中は上記の初期電流設定値となり、時刻t22~t23の期間中は予め定めた短絡時傾斜で上昇し、時刻t23~t31の期間中は予め定めたピーク設定値となる。短絡期間中は上述したように定電流制御されているので、溶接電流Iwは電流制御設定信号Icrに相当する値に制御される。このために、同図(B)に示すように、溶接電流Iwは、時刻t21においてアーク期間の溶接電流から急減し、時刻t21~t22の初期期間中は初期電流値となり、時刻t22~t23の期間中は短絡時傾斜で上昇し、時刻23~t31の期間中はピーク値となる。例えば、初期期間は1msに、初期電流は50Aに、短絡時傾斜は400A/msに、ピーク値は450Aに設定される。同図(D)に示すように、くびれ検出信号Ndは、後述する時刻t31~t33の期間はHighレベルとなり、それ以外の期間はLowレベルとなる。同図(E)に示すように、駆動信号Drは、後述する時刻t31~t32の期間はLowレベルとなり、それ以外の期間はHighレベルとなる。したがって、同図において時刻t31以前の期間中は、駆動信号DrはHighレベルとなり、図1のトランジスタTRがオン状態となるので、減流抵抗器Rは短絡されて通常の消耗電極アーク溶接電源と同一の状態となる。
 同図(C)に示すように、溶接電圧Vwは、溶接電流Iwがピーク値となる時刻t23あたりから上昇する。これは、溶接ワイヤの逆送及び溶接電流Iwによるピンチ力の作用により、溶滴にくびれが次第に形成されるためである。
 時刻t31において、短絡期間中の溶接電圧Vwの電圧上昇値がくびれ検出感度設定信号Ntrの値に達すると、くびれの形成状態が基準状態になったと判別して、同図(D)に示すように、くびれ検出信号NdはHighレベルに変化する。くびれ検出信号Ndは、時刻t31のくびれの検出時点でHighレベルとなり、時刻t33のアーク再発生時点でLowレベルとなる。このくびれ検出信号NdがHighレベルである期間をくびれ検出時間Tnと呼ぶことにする。上記のくびれ検出感度設定信号Ntrは、図1のくびれ検出感度設定回路NTRによって、平均送給速度設定信号Farを入力として予め定めたくびれ検出感度算出関数によってくびれ検出感度標準値Ntsを算出し、このくびれ検出感度標準値Ntsを振幅微調整信号Wfr、周期微調整信号Tfr及び正逆比率微調整信号Dfrの各値によって補正された値となる。すなわち、くびれ検出感度設定信号Ntrは、上述した(1)式によって算出されて、送給速度Fwの波形パラメータに適合した値に自動設定される。このために、送給速度の波形パラメータが変化したときに、くびれ検出制御が不安定になることを抑制することができる。
 時刻t31において、くびれ検出信号NdがHighレベルになったことに応動して、同図(E)に示すように、駆動信号DrはLowレベルになるので、図1のトランジスタTRはオフ状態となり減流抵抗器Rが通電路に挿入される。同時に、同図(G)に示すように、電流制御設定信号Icrは低レベル電流設定信号Ilrの値へと小さくなる。このために、同図(B)に示すように、溶接電流Iwはピーク値から低レベル電流値Ilへと急減する。そして、時刻t32において溶接電流Iwが低レベル電流値Ilまで減少すると、同図(E)に示すように、駆動信号DrはHighレベルに戻るので、図1のトランジスタTRはオン状態となり減流抵抗器Rは短絡される。同図(B)に示すように、溶接電流Iwは、電流制御設定信号Icrが低レベル電流設定信号Ilrのままであるので、時刻t33のアーク再発生までは低レベル電流値Ilを維持する。したがって、トランジスタTRは、時刻t31にくびれ検出信号NdがHighレベルに変化した時点から時刻t32に溶接電流Iwが低レベル電流値Ilに減少するまでの期間のみオフ状態となる。同図(C)に示すように、溶接電圧Vwは、溶接電流Iwが小さくなるので時刻t31から一旦減少した後に急上昇する。低レベル電流値Ilは、例えば50Aに設定される。
 時刻t33において、溶接ワイヤの逆送及び溶接電流Iwの通電によるピンチ力によってくびれが進行してアークが再発生すると、同図(C)に示すように、溶接電圧Vwの値は短絡/アーク判別値Vta以上となる。
 アークが再発生した直後の時刻t4からは逆送減速期間になるので、同図(A)に示すように、送給速度Fwは逆送状態を維持しつつ減速する。時刻t33にアークが再発生すると、同図(G)に示すように、電流制御設定信号Icrの値は、低レベル電流設定信号Ilrの値から予め定めたアーク時傾斜で上昇し、予め定めた第1溶接電流設定信号Iwr1の値に達するとその値を維持する。同図(F)に示すように、遅延信号Tdsは、時刻t33にアークが再発生してから予め定めた第1溶接電流通電期間設定信号Twr1の期間が経過する時刻t41までHighレベルのままである。したがって、溶接電源は時刻t41まで定電流制御されているので、同図(B)に示すように、溶接電流Iwは、時刻t33からアーク時傾斜で上昇し、第1溶接電流設定信号Iwr1の値に達するとその値を時刻t41まで維持する。同図(C)に示すように、溶接電圧Vwは、時刻t33~t41の第1溶接電流通電期間Tw1中は大きな値の第1溶接電圧値の状態にある。同図(D)に示すように、くびれ検出信号Ndは、時刻t33にアークが再発生するので、Lowレベルに変化する。例えば、アーク時傾斜は400A/msに設定され、第1溶接電流設定信号Iwr1は450Aに設定され、第1溶接電流通電期間設定信号Twr1は2msに設定される
 時刻t41において、同図(F)に示すように、遅延信号TdsがLowレベルに変化する。この結果、溶接電源は定電流制御から定電圧制御へと切り換えられる。時刻t33にアークが再発生してから時刻t5までは、溶接ワイヤは逆送しているので、アーク長は次第に長くなる。時刻t5からは正送加速期間になるので、同図(A)に示すように、送給速度Fwは正送に切り換えられる。時刻t41に定電圧制御に切り換えられると、同図(B)に示すように、溶接電流Iwは、第1溶接電流Iw1から次第に減少する第2溶接電流Iw2が通電する。同様に、同図(C)に示すように、溶接電圧Vwは、第1溶接電圧値から次第に減少する。時刻t6の正送最大値の後の時刻t61において、次の短絡が発生する。
 上述した実施の形態1によれば、くびれの検出感度を、送給速度の波形パラメータに応じて変化させる。これにより、本実施の形態では、送給速度の振幅、周期、正送期間と逆送期間との比率等の波形パラメータが変化した場合、くびれの検出感度が自動的に適正化されるので、くびれ検出制御が不安定になることを抑制することができる。
[実施の形態2]
 実施の形態2の発明は、短絡期間中にくびれを検出した時点からアーク期間に移行した時点までの時間であるくびれ検出時間に基づいてくびれの検出感度を自動設定制御し、自動設定制御のゲインを送給速度の波形パラメータに応じて変化させるものである。
 図3は、本発明の実施の形態2に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。同図は図1と対応しており、同一のブロックには同一符号を付して、それらの説明は繰り返さない。同図は、図1にくびれ検出時間設定回路TNRを追加し、図1のくびれ検出感度設定回路NTRをゲイン設定回路GRに置換し、図1にくびれ検出感度自動設定制御回路NTCを追加したものである。以下、これらのブロックについて同図を参照して説明する。
 くびれ検出時間設定回路TNRは、予め定めたくびれ検出時間設定信号Tnrを出力する。くびれ検出感度設定信号Ntrが適正値であり、くびれ検出制御が安定しているときは、くびれ検出時間Tnが200~1000μsの範囲の適正値となる。したがって、くびれ検出時間設定信号Tnrは例えば500μsに設定される。
 ゲイン設定回路GRは、平均送給速度設定信号Far、振幅微調整信号Wfr、周期微調整信号Tfr及び正逆比率微調整信号Dfrを入力として、平均送給速度設定信号Farを入力として予め定めたゲイン算出関数によってゲイン標準値Gsを算出し、このゲイン標準値Gsを振幅微調整信号Wfr、周期微調整信号Tfr及び正逆比率微調整信号Dfrの各値によって補正して、ゲイン設定信号Grを出力する。補正は、以下の式によって行う。
 Gr=Gs+a2・Wfr+b2・Tfr+c2・Dfr …(2)式
但し、a2、b2及びc2は定数であり、負の実数である。これらの定数は、実験によって予め算出されている。ゲイン標準値Gsは、振幅微調整信号Wfrが正の値のときゲインが小さくなるように補正され、負の値のとき大きくなるように補正される。同様に、ゲイン標準値Gsは、周期微調整信号Tfrが正の値のときゲインが小さくなるように補正され、負の値のとき大きくなるように補正される。同様に、ゲイン標準値Gsは、正逆比率微調整信号Dfrが正の値のときゲインが小さくなるように補正され、負の値のとき大きくなるように補正される。
 くびれ検出感度自動設定制御回路NTCは、上記のゲイン設定信号Gr、上記のくびれ検出時間設定信号Tnr及びくびれ検出信号Ndを入力として、くびれ検出信号NdがLowレベル(アーク再発生)に変化した時点ごとに、くびれ検出信号NdがHighレベルであった時間を計数してくびれ検出時間Tnを検出し、このくびれ検出時間Tnとくびれ検出時間設定信号Tnrの値との誤差をゲイン設定信号Grによって定まるゲインで増幅して誤差増幅値Etを算出し加算し、くびれ検出感度設定信号Ntr=Nt0+ΣEtを出力する。ここで、Nt0は予め定めた初期値である。この回路によって、くびれ検出時間Tnがくびれ検出時間設定信号Tnrの値と等しくなるようにくびれ検出感度設定信号Ntrの値が適正値に自動設定制御される。そして、送給速度Fwの波形パラメータが変化した場合、ゲイン設定信号Grが適正化されるので、自動設定制御が安定化する。この結果、送給速度Fwの波形パラメータが変化した場合、くびれ検出制御が不安定になることを抑制することができる。
 本発明の実施の形態2に係るアーク溶接制御方法を説明するための、図3の溶接電源における各信号のタイミングチャートは、上述した図2と同一であるので、説明は繰り返さない。但し、図2において、同図(D)に示すくびれ検出信号NdがHighレベルとなるタイミングを決めるくびれ検出感度設定信号Ntrの値が適正値になるように自動設定制御されている点は異なっている。さらに、この自動設定制御のゲイン設定信号Grの値は、送給速度Fwの波形パラメータが変化しても制御系の安定性を維持することができるように、送給速度Fwの波形パラメータの変化に応じて適正値に変化する点は異なっている。
 上述した実施の形態2によれば、短絡期間中にくびれを検出した時点からアーク期間に移行した時点までの時間であるくびれ検出時間に基づいてくびれの検出感度を自動設定制御し、自動設定制御のゲインを送給速度の波形パラメータに応じて変化させる。これにより、本実施の形態では、送給速度の振幅、周期、正送期間と逆送期間との比率等の波形パラメータが変化した場合、くびれの検出感度を自動設定制御するゲインが適正化される。このために、送給速度の波形パラメータが変化してもくびれの検出感度が適正化されるので、くびれ検出制御が不安定になることを抑制することができる。
 本発明によれば、送給速度の振幅、周期、正送期間と逆送期間との比率等の波形パラメータが変化した場合、くびれの検出感度が自動的に適正化されるので、くびれ検出制御が不安定になることを抑制することができる。
 以上、本発明を特定の実施形態によって説明したが、本発明はこの実施形態に限定されるものではなく、開示された発明の技術思想を逸脱しない範囲で種々の変更が可能である。
 本出願は、2014年5月19日出願の日本特許出願(特願2014-103477)に基づくものであり、その内容はここに取り込まれる。
1   溶接ワイヤ
2   母材
3   アーク
4   溶接トーチ
5   送給ロール
CM  電流比較回路
Cm  電流比較信号
D   正逆比率
DFR 正逆比率微調整回路
Dfr 正逆比率微調整信号
DR  駆動回路
Dr  駆動信号
Ea  誤差増幅信号
EI  電流誤差増幅回路
Ei  電流誤差増幅信号
Et  誤差増幅値
EV  電圧誤差増幅回路
Ev  電圧誤差増幅信号
FAR 平均送給速度設定回路
Far 平均送給速度設定信号
FC  送給制御回路
Fc  送給制御信号
FR  送給速度設定回路
Fr  送給速度設定信号
Fw  送給速度
GR  ゲイン設定回路
Gr  ゲイン設定信号
Gs  ゲイン標準値
ICR 電流制御設定回路
Icr 電流制御設定信号
ID  溶接電流検出回路
Id  溶接電流検出信号
Il  低レベル電流値
ILR 低レベル電流設定回路
Ilr 低レベル電流設定信号
Iw  溶接電流
Iw1 第1溶接電流
Iw2 第2溶接電流
IWR1 第1溶接電流設定回路
Iwr1 第1溶接電流設定信号
ND  くびれ検出回路
Nd  くびれ検出信号
NTC くびれ  検出感度自動設定制御回路
NTR くびれ検出感度設定回路
Ntr くびれ検出感度設定信号
Nts くびれ検出感度標準値
PM  電源主回路
R   減流抵抗器
SD  短絡判別回路
Sd  短絡判別信号
SW  制御切換回路
T   周期
TDS オフディレイ回路
Tds 遅延信号
TFR 周期微調整回路
Tfr 周期微調整信号
Tn  くびれ検出時間
TNR くびれ検出時間設定回路
Tnr くびれ検出時間設定信号
TR  トランジスタ
Tw1 第1溶接電流通電期間
TWR1 第1溶接電流通電期間設定回路
Twr1 第1溶接電流通電期間設定信号
VD  溶接電圧検出回路
Vd  溶接電圧検出信号
VR  電圧設定回路
Vr  電圧設定信号
Vta 短絡・アーク判別値
Vw  溶接電圧
W   振幅
WFR 振幅微調整回路
Wfr 振幅微調整信号
WM  送給モータ

Claims (3)

  1.  溶接ワイヤの送給速度の正送期間と逆送期間とを周期的に繰り返して短絡期間とアーク期間とを発生させ、
    前記短絡期間中に前記溶接ワイヤに形成された溶滴のくびれを検出すると溶接電流を減少させて前記アーク期間に移行させるアーク溶接制御方法において、
     前記くびれの検出感度を、前記送給速度の波形パラメータに応じて変化させる、
    ことを特徴とするアーク溶接制御方法。
  2.  溶接ワイヤの送給速度の正送期間と逆送期間とを周期的に繰り返して短絡期間とアーク期間とを発生させ、
    前記短絡期間中に前記溶接ワイヤに形成された溶滴のくびれを検出すると溶接電流を減少させて前記アーク期間に移行させ、
    前記短絡期間中に前記くびれを検出した時点から前記アーク期間に移行した時点までの時間であるくびれ検出時間に基づいて前記くびれの検出感度を自動設定制御するアーク溶接制御方法において、
     前記自動設定制御のゲインを、前記送給速度の波形パラメータに応じて変化させる、
    ことを特徴とするアーク溶接制御方法。
  3.  前記送給速度の前記波形パラメータが、振幅、周期又は前記正送期間と前記逆送期間との比率の少なくとも1つ以上である、
    ことを特徴とする請求項1又は2記載のアーク溶接制御方法。
PCT/JP2015/062700 2014-05-19 2015-04-27 アーク溶接制御方法 WO2015178170A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15795407.4A EP3147064B1 (en) 2014-05-19 2015-04-27 Arc welding control method
US15/303,295 US10391578B2 (en) 2014-05-19 2015-04-27 Arc welding control method
KR1020167023337A KR102284586B1 (ko) 2014-05-19 2015-04-27 아크 용접 제어 방법
JP2016521015A JP6555825B2 (ja) 2014-05-19 2015-04-27 アーク溶接制御方法
CN201580009849.8A CN106029282B (zh) 2014-05-19 2015-04-27 电弧焊接控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014103477 2014-05-19
JP2014-103477 2014-05-19

Publications (1)

Publication Number Publication Date
WO2015178170A1 true WO2015178170A1 (ja) 2015-11-26

Family

ID=54553845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062700 WO2015178170A1 (ja) 2014-05-19 2015-04-27 アーク溶接制御方法

Country Status (6)

Country Link
US (1) US10391578B2 (ja)
EP (1) EP3147064B1 (ja)
JP (1) JP6555825B2 (ja)
KR (1) KR102284586B1 (ja)
CN (1) CN106029282B (ja)
WO (1) WO2015178170A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7576504B2 (ja) 2021-04-16 2024-10-31 株式会社ダイヘン アーク溶接装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178170A1 (ja) * 2014-05-19 2015-11-26 株式会社ダイヘン アーク溶接制御方法
EP3569340B1 (en) 2017-01-16 2024-03-13 Daihen Corporation Arc start control method for forward and reverse feeding arc welding
JP7017979B2 (ja) * 2018-04-26 2022-02-09 株式会社神戸製鋼所 溶接電源および溶接電源の制御方法
JP7272740B2 (ja) * 2019-05-07 2023-05-12 株式会社ダイヘン アーク溶接制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240101A (ja) * 2011-05-23 2012-12-10 Daihen Corp 消耗電極アーク溶接のくびれ検出制御方法
JP2014030831A (ja) * 2012-08-01 2014-02-20 Daihen Corp 消耗電極アーク溶接制御方法
JP2014039937A (ja) * 2012-08-21 2014-03-06 Daihen Corp 消耗電極アーク溶接制御方法
JP2015020204A (ja) * 2013-07-23 2015-02-02 株式会社ダイヘン 溶接電源のくびれ検出制御方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521266B1 (ja) 1967-07-18 1977-01-13
IT1038966B (it) 1975-06-12 1979-11-30 Itw Fastex Italia Spa Madrevite in materiale plastico funzionante da tassello
JP4907892B2 (ja) 2005-03-31 2012-04-04 株式会社ダイヘン 消耗電極アーク溶接のくびれ検出制御方法
JP5038206B2 (ja) 2007-11-26 2012-10-03 株式会社ダイヘン 消耗電極アーク溶接のくびれ検出制御方法
EP2402104B1 (en) 2009-07-29 2018-04-11 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding apparatus
JP5170315B2 (ja) * 2009-07-29 2013-03-27 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
JP5370089B2 (ja) * 2009-11-06 2013-12-18 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
CN102380691B (zh) 2010-08-31 2014-11-05 株式会社大亨 消耗电极电弧焊接的缩颈检测控制方法
JP5801058B2 (ja) * 2011-02-07 2015-10-28 株式会社ダイヘン 溶接装置および炭酸ガスアーク溶接方法
WO2013190746A1 (ja) * 2012-06-18 2013-12-27 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
US20140039937A1 (en) * 2012-08-03 2014-02-06 Cloudbridge, Llc Insurance Data Management System
CN104602847B (zh) * 2012-10-01 2016-12-28 松下知识产权经营株式会社 电弧焊接控制方法
EP2918365B1 (en) * 2012-11-07 2017-07-05 Panasonic Intellectual Property Management Co., Ltd. Arc welder and method for controlling arc welding
US11014186B2 (en) * 2014-02-14 2021-05-25 Panasonic Intellectual Property Management Co., Ltd. Wire fed arc welding method having abnormal arc or abnormal short circuit welding steps
WO2015178170A1 (ja) * 2014-05-19 2015-11-26 株式会社ダイヘン アーク溶接制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240101A (ja) * 2011-05-23 2012-12-10 Daihen Corp 消耗電極アーク溶接のくびれ検出制御方法
JP2014030831A (ja) * 2012-08-01 2014-02-20 Daihen Corp 消耗電極アーク溶接制御方法
JP2014039937A (ja) * 2012-08-21 2014-03-06 Daihen Corp 消耗電極アーク溶接制御方法
JP2015020204A (ja) * 2013-07-23 2015-02-02 株式会社ダイヘン 溶接電源のくびれ検出制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7576504B2 (ja) 2021-04-16 2024-10-31 株式会社ダイヘン アーク溶接装置

Also Published As

Publication number Publication date
CN106029282A (zh) 2016-10-12
EP3147064A4 (en) 2018-01-24
EP3147064B1 (en) 2020-12-09
EP3147064A1 (en) 2017-03-29
US20170028502A1 (en) 2017-02-02
KR20170003907A (ko) 2017-01-10
JPWO2015178170A1 (ja) 2017-04-20
CN106029282B (zh) 2019-10-18
JP6555825B2 (ja) 2019-08-07
KR102284586B1 (ko) 2021-07-30
US10391578B2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
JP6472436B2 (ja) アーク溶接制御方法
JP6555825B2 (ja) アーク溶接制御方法
JP6555818B2 (ja) アーク溶接制御方法
JP6472435B2 (ja) アーク溶接電源
JP2018001270A (ja) アーク溶接制御方法
WO2015105151A1 (ja) アーク溶接制御方法
WO2018025572A1 (ja) アーク溶接制御方法
JP6448622B2 (ja) アーク溶接制御方法
KR102224414B1 (ko) 아크 용접 제어 방법
WO2016027638A1 (ja) アーク溶接制御方法
JP2016144820A (ja) アーク溶接制御方法
JP6340295B2 (ja) アーク溶接制御方法
JP6347721B2 (ja) アーク溶接制御方法
WO2015166793A1 (ja) アーク溶接制御方法
JP6341610B2 (ja) アーク溶接制御方法
JP6377427B2 (ja) アーク溶接制御方法
JP2015231632A (ja) アーク溶接制御方法
JP6261614B2 (ja) アーク溶接制御方法
JP6198327B2 (ja) アーク溶接制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521015

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167023337

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15303295

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015795407

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015795407

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE