[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015174538A1 - 摺動用樹脂組成物及び摺動部材 - Google Patents

摺動用樹脂組成物及び摺動部材 Download PDF

Info

Publication number
WO2015174538A1
WO2015174538A1 PCT/JP2015/064118 JP2015064118W WO2015174538A1 WO 2015174538 A1 WO2015174538 A1 WO 2015174538A1 JP 2015064118 W JP2015064118 W JP 2015064118W WO 2015174538 A1 WO2015174538 A1 WO 2015174538A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
sliding
aggregate
solid lubricant
resin
Prior art date
Application number
PCT/JP2015/064118
Other languages
English (en)
French (fr)
Inventor
大樹 小早川
絵里奈 安田
Original Assignee
大同メタル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同メタル工業株式会社 filed Critical 大同メタル工業株式会社
Priority to JP2016519418A priority Critical patent/JP6705744B2/ja
Priority to US15/311,262 priority patent/US10760031B2/en
Priority to GB1618815.3A priority patent/GB2543431B/en
Priority to DE112015002267.8T priority patent/DE112015002267T5/de
Publication of WO2015174538A1 publication Critical patent/WO2015174538A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/38Lubricating compositions characterised by the base-material being a macromolecular compound containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/0653Sulfides; Selenides; Tellurides used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • C10M2201/0663Molybdenum sulfide used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • C10M2213/0623Polytetrafluoroethylene [PTFE] used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/22Internal combustion engines

Definitions

  • the present invention relates to a sliding resin composition and an improvement of a sliding member using the composition.
  • bearing sliding surfaces applied to vehicle engines are required to have high wear resistance and seizure resistance, and as one of the countermeasures, a technology to coat the bearing sliding surfaces with a resin composition is proposed.
  • a resin composition layer is formed on the inner peripheral surface (sliding surface) of the half-cylindrical base material layer by coating.
  • Such a sliding resin composition includes a resin binder, a solid lubricant, and protective reinforcing particles.
  • Patent Document 1 when a load is applied to the resin composition, the solid lubricant itself deforms (for example, cleaves), and more specifically, slips on the crystal plane to relieve the stress of the resin composition.
  • Patent Document 2 nano-order silica (20 to 50 nm diameter) silica is employed as the protective reinforcing particles, and the wear resistance of the entire resin composition is improved.
  • Patent Documents 3-5 refer to prior art documents disclosing techniques related to the present invention.
  • JP 2013-72535 A JP 2007-517165 A JP 2006-116458 A JP 2007-92995 A JP 2008-95725 A
  • Recent automobile engines tend to be frequently started and stopped to improve fuel efficiency.
  • the viscosity of the engine oil has been reduced.
  • the oil film between the shaft and the bearing becomes insufficient, and sliding in the boundary lubrication state increases.
  • the friction coefficient during sliding increases, and the load applied to the resin composition layer in contact with the shaft in the bearing increases.
  • the load on the resin composition layer is increased, deformation exceeding the limit occurs in the resin composition layer, and the resin composition itself may be destroyed or the resin composition may be peeled off from the base material.
  • Patent Documents 1 and 2 improve the seizure resistance by improving the resin composition layer.
  • the present invention has been made to solve such a problem, and an object thereof is to improve the seizure resistance while maintaining the wear resistance of a resin composition employed in a bearing for a vehicle engine, for example.
  • the following resin composition is proposed. That is, Resin binder, A sliding resin composition comprising: a solid lubricant; and a protective reinforcing agent that is harder than the resin binder and brittle than the resin binder.
  • the protective reinforcing agent harder than the resin binder is blended, high wear resistance is obtained in the entire sliding resin composition. Furthermore, when a load is applied to the resin composition that cannot be absorbed by deformation of the solid lubricant, this load is also applied to the protective reinforcing agent. Since the protective reinforcing agent is more brittle than the resin binder, the protective reinforcing agent deforms or collapses before the resin binder is deformed. Thereby, the stress of the resin binder is relieved, and as a result, it can be avoided that the resin binder, which can be said to be a skeleton of the sliding resin composition, is largely broken at a stretch. When the sliding surface of the bearing is composed of such a sliding resin composition, as described above, the durability of the resin composition is improved, direct contact between the shaft and the bearing is prevented, and seizure resistance is improved.
  • the hardness of each element becomes an index of wear resistance, and can be expressed by, for example, Vickers hardness.
  • the hardness of the protective reinforcing agent is 10 to 100 times different in Vickers hardness compared to that of the resin binder.
  • the brittleness of each element can be expressed by its limit stress.
  • the limit stress is the maximum stress that can be withstood without plastic deformation or destruction of each element when a load is applied to each element constituting the resin composition. The smaller the critical stress, the easier it is to collapse and the greater the brittleness.
  • the solid lubricant blended in the resin composition reduces the coefficient of friction on the surface of the resin composition and improves its sliding characteristics.
  • molybdenum disulfide, tungsten disulfide, boron nitride, graphite or the like is employed as the solid lubricant. All of these materials are softer (small hardness) than the resin binder and are brittle (small limit stress).
  • the critical stresses of the three elements constituting these resin compositions that is, the resin binder, the solid lubricant, and the protective reinforcing agent are defined as follows.
  • Solid lubricant ⁇ protective reinforcing agent ⁇ resin binder According to the resin composition of the second aspect thus defined, when a heavy load is applied to the resin composition, the solid lubricant and the protective reinforcing agent are more than the resin binder. Since they are brittle, they deform or collapse before the resin binder is deformed. Thereby, the stress of the resin binder is relieved, and as a result, the resin binder that can be said to be the skeleton of the sliding resin composition is retained.
  • Examples of the protective reinforcing agent that is harder than the resin binder and brittle than the resin binder include the following.
  • One is an agglomeration of particles formed of a material harder than the molding material of the resin binder (sometimes referred to as “protection-enhanced primary particles” in this specification).
  • the particles are directly bonded to each other, such as secondary particles obtained by directly connecting simple particles (that is, primary particles), and tertiary particles obtained by connecting the secondary particles.
  • the aspect of the multi-particulate particles (secondary or higher particles), the aspect in which the primary particles are connected through the resin binder, and the aspect in which the connection of the primary particles is supported by the resin binder are conceivable.
  • the aggregates of the protection-enhanced primary particles are sometimes referred to as “aggregates”.
  • aggregates When a load is applied to such an aggregate, before the resin binder is deformed, the particles are displaced and deformed, and as a result, the aggregated state collapses.
  • the load applied to the resin composition exceeds the limit stress of the aggregate, the deviation of the particles constituting the aggregate occurs irreversibly, and when this deviation further increases, the aggregate itself collapses and aggregates. A part of the particles connected as an aggregate is separated.
  • the balloon can be controlled by controlling at least one of the particle size, shape, wall thickness and molding material of the balloon.
  • the brittleness of the particles themselves can be controlled.
  • the balloon-like protective strengthened primary particles themselves can be provided with the property that they are harder than the resin binder and more brittle than the resin binder. Therefore, when adopting balloon-shaped protective strengthened primary particles, they may or may not be aggregates.
  • a resin material harder than the molding material of a metal oxide such as silica or titanium oxide or a resin binder can be employed as the molding material for the balloon-shaped protective strengthened primary particles.
  • the compounding amount of the protective reinforcing agent is 1 vol.% To 20 vol.% With respect to the entire resin composition.
  • the blending amount of the protective reinforcing agent is 1 vol.% Or more with respect to the entire resin composition, the amount of aggregates appearing on the sliding surface becomes sufficient, and as a result, a sufficient lubricating oil pool can be formed.
  • particles that are harder than the resin binder are used as the particles and an attempt is made to improve the wear resistance of the resin composition, a sufficient improvement in wear resistance can be obtained.
  • the viscosity of a resin binder becomes suitable for manufacture by making the compounding quantity of particle
  • the primary particles for strengthening protection to be aggregated have a smaller diameter than the solid lubricant.
  • the diameters of the protection-enhanced primary particles and the solid lubricant are the diameters in the measurement field of view, and the diameters of all the protection-enhanced primary particles are substantially smaller than the diameters of all the solid lubricants. If the diameter of the protective strengthened primary particles is larger than that of the solid lubricant, the aggregate is further increased in diameter, which may impede the function of the solid lubricant.
  • the fifth aspect of the present invention is defined as follows. That is, In the sliding resin composition of the first aspect, the protective reinforcing agent is an aggregate of particles harder than the resin binder and smaller in diameter than the solid lubricant, and is 1 vol.% Or more in the entire sliding resin composition. It occupies 20 vol.% Or less.
  • the sixth aspect of the present invention is defined as follows. That is, In the resin composition defined in the fifth aspect, the average particle size of the particles is 10 nm or more and 100 nm or less. According to the resin composition of the sixth aspect defined in this way, by adopting protective strengthened primary particles having an average particle diameter of 10 nm or more and 100 nm or less, the resin composition is composed of a simple substance (that is, a primary particle). ) Particles tend to aggregate. For example, the primary particles appearing in the cross section of the sliding resin composition perpendicular to the sliding surface can be approximated to an ellipse, and the major axis of the ellipse can be used as the particle size.
  • the amount of the protective reinforcing agent is as described above and the average particle diameter of the primary particles is 10 nm or more, the aggregation between the protective reinforcing primary particles blended in the resin composition proceeds excessively. Can be suppressed.
  • the average particle diameter is less than 10 nm, the aggregation of the protective reinforcing primary particles proceeds excessively, the portion where the protective reinforcing agent is not present in the resin composition becomes large, and the resin composition improvement by the protective reinforcing agent may be insufficient. is there.
  • the protective reinforcing primary particles are surely formed without excessive dispersion. Can do. If the average particle diameter exceeds 100 nm, the protective strengthened primary particles may be dispersed too much in the resin composition, and in this case, the resin composition is prevented from being destroyed by deformation or collapse of the aggregate of the protective strengthened primary particles. There is a possibility that the action required for the protective strengthening agent will not be sufficiently achieved. If deformation or collapse of the aggregates of the protective strengthened primary particles can be appropriately caused, it is possible to efficiently suppress the accumulation of stress in the resin binder, so that the resin binder may be greatly broken at once. Absent. As a result, the seizure resistance of the resin composition is improved. From another viewpoint, the average particle diameter of the protective strengthened primary particles that should form an aggregate may be 15 nm or more and 50 nm or less.
  • the seventh aspect of the present invention is defined as follows.
  • the aggregate of protective strengthened primary particles has an average particle diameter of A and a standard deviation of ⁇ , and A-1 ⁇ is 60 nm or more and A + 1 ⁇ is 400 nm or less.
  • A-1 ⁇ is 60 nm or more
  • a + 1 ⁇ is 400 nm or less.
  • the shape of the aggregate is not necessarily a sphere, in this specification, the aggregate appears in the measurement field of the cut surface obtained when the sliding resin composition is cut in a direction perpendicular to the sliding surface.
  • the diameter is adopted. More specifically, the observed aggregate is approximated by an ellipse, and the major axis of the ellipse is defined as the diameter of the aggregate.
  • the diameter defining the aggregate is an approximate ellipse. The major axis was taken as the diameter.
  • the size of the agglomerate is appropriate, so that it itself deforms or collapses before the resin composition with respect to the load.
  • the protective function is ensured, and the dispersibility of being uniformly dispersed in the resin composition is also ensured.
  • the value of A-1 ⁇ is 60 nm or more, the degree of aggregation of particles in the resin composition is sufficient. Accordingly, the critical stress due to the deviation between the particles is smaller than that of the resin binder.
  • the value of A + 1 ⁇ is 400 nm or less, the degree of dispersion of the aggregate of particles is sufficient, and the uneven distribution region of the protective reinforcing agent is eliminated in the resin composition.
  • the eighth aspect of the present invention is defined as follows. That is, In the sliding resin composition defined in any one of the third to seventh, the angle formed between the long axis of the aggregate and the sliding surface is 45 degrees or less.
  • the major axis of the aggregate is defined similarly to the diameter of the aggregate described in the seventh aspect. That is, when the sliding resin composition is cut in a direction perpendicular to the sliding surface, the long axis of the aggregate appearing in the measurement field of the cut surface obtained is inserted, and for example, the observed aggregate is approximated to an ellipse. The major axis of the ellipse is taken as the major axis of the aggregate.
  • the average value of the major axis angles of the aggregates observed on the cut surface is set to 45 degrees or less.
  • the angle formed between the long axis of the aggregate and the sliding surface is 45 degrees or less and 5 degrees or more.
  • the angle formed is less than 5 degrees, when the aspect ratio of the aggregate is relatively large, the stress relaxation function of the aggregate may not work sufficiently with respect to a load in a direction parallel to the sliding surface.
  • so-called twisted aggregates having an angle of less than 5 may be gathered near the surface of the sliding resin composition, and the characteristics of the resin composition may be uneven.
  • the angle formed between the long axis of the aggregate and the sliding surface is 45 degrees or less, in other words, the load applied in the vertical direction from the sliding surface as the long axis of the aggregate is closer to the sliding surface. Since the load acts as a shearing force in the short axis direction, the deformation or collapse of the aggregate is more reliably performed. Further, the closer the long axis of the aggregate is to the parallel with the sliding surface, the wider the sliding body is exposed on the sliding surface. As a result, a part of the exposed sliding body is separated, and a minute recess that becomes a lubricating oil reservoir is easily formed there.
  • FIG. 1 is a schematic view showing the structure of a sliding member according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged view showing the structure of the resin coating layer.
  • FIG. 3 is an enlarged view of a portion indicated by an arrow line III in FIG.
  • FIG. 4 is a schematic diagram for explaining an aspect of peeling and breaking of the resin binder when no aggregate of protective reinforcing particles is present in the resin composition.
  • FIG. 5 is a schematic diagram for explaining a mode in which a part of the aggregate is detached when the critical stress is applied to the aggregate of the protective reinforcing particles.
  • FIG. 6 is a schematic diagram for explaining the angle formed between the long axis of the aggregate of the protective reinforcing particles and the sliding surface of the resin composition.
  • FIG. 1 shows a layer structure of a sliding member 1 according to an embodiment of the present invention.
  • This sliding member 1 has a structure in which a resin coating layer 7 made of a sliding resin composition is laminated on a base material layer 2.
  • the base material layer 2 includes a steel plate layer 3 formed in a cylindrical or semi-cylindrical shape, and the surface of the steel plate layer 3 (inside An alloy layer 5 made of an alloy such as Al, Cu, or Sn is provided on the peripheral surface.
  • the base material layer 2 may be one in which a plating layer of Sn group, Bi group or Pb group is provided on the surface of the alloy layer 5 or a layer having a resin.
  • the layer having the resin is different from the resin coating layer 7.
  • the inner peripheral surface of the base material layer 2 can be roughened.
  • a chemical surface treatment method such as a combination of alkali etching and pickling, or a mechanical surface treatment method such as shot blasting can be employed.
  • the material for forming the steel plate layer 3 is not limited to steel, and an alloy of aluminum, copper, tungsten, or the like can be used.
  • the sliding resin composition constituting the resin coating layer 7 includes a resin binder 10, a solid lubricant 11, and aggregates 20 of protective reinforcing primary particles 13.
  • the resin binder 10 bonds the resin coating layer 7 to the base material layer 2 and fixes the solid lubricant 11.
  • the resin material used for the resin binder 10 can be appropriately selected according to the use of the sliding member 1 and the like, but when applied to a vehicle engine, polyimide resin, polyamideimide resin, epoxy resin, phenol resin, polyamide One or more of a resin, a fluororesin, and an elastomer can be employed, and a polymer alloy may be used.
  • the thickness of the resin coating layer 7 can also be designed arbitrarily, it can be made into 1 micrometer or more and 20 micrometers or less, for example.
  • the lamination method of the resin coating layer 7 can also be arbitrarily selected. For example, pad printing method, screen printing method, air spray method, airless spray method, electrostatic coating method, tumbling method, squeeze method, roll method, roll coat method, etc. Can be adopted.
  • the material of the solid lubricant 11 can also be appropriately selected according to the use of the sliding member.
  • the compounding quantity of the solid lubricant 11 can also be arbitrarily selected according to the use of the sliding member, for example, when the entire resin composition constituting the resin coating layer 7 is 100 vol.%, The solid lubricant 11 is 20 vol. % To 70 vol.%. In order to improve the sliding characteristics of the resin coating layer 7, it is preferable that the solid lubricant 11 has an (0, 0, L) plane orientation strength ratio of 75% or more.
  • the protective reinforcing primary particles 13 are disposed in the sliding resin composition constituting the resin coating layer 7, and the protective reinforcing primary particles 13 aggregate to form an aggregate as a protective reinforcing agent. 20 is formed.
  • ultrafine particles, preferably nano-order which is harder than the material of the resin binder 10 and smaller in diameter than the solid lubricant 11 as the primary particles 13 for strengthening the protection
  • the wear resistance of the resin coating layer 7 itself is improved ( Patent Document 2).
  • the protective reinforcing primary particles 13 are more evenly dispersed in the resin coating layer. That is, it is preferable that the protection-enhanced primary particles 13 are dispersed as little as possible, that is, in a primary particle state.
  • FIG. . 4A and 4B schematically show a situation where the resin coating layer 7 is peeled off from the base material layer 2 due to the destruction of the resin binder 10.
  • the aggregate 20 is formed by intentionally agglomerating the protective strengthened primary particles 13.
  • the connection state of the protective strengthened primary particles 13 constituting the aggregate 20 is not affected at all by the stress at which the deformation of the solid lubricant starts when viewed from the viewpoint of the stress applied to the resin coating layer 7 (that is, the aggregate).
  • the resin binder 10 deforms or collapses before the resin binder 10 exceeds its limit stress and starts to deform. Thereby, when a strong load is applied to the resin coating layer 7, a part of the stress generated in the resin coating layer 7 is relieved by deformation or collapse of the aggregate 20, and the resin coating layer 7 may be greatly broken at a stretch. I can stop it.
  • the material constituting the protection-enhanced primary particles 13 is harder than the resin binder 10 and smaller in diameter than the solid lubricant from the viewpoint of improving the wear resistance of the resin coating layer 7 itself. More specifically, it can be arbitrarily selected according to the use of the sliding member. For example, fine particles such as gold, silver, silicon oxide (silica), aluminum oxide, zinc oxide, tin oxide, and zirconium oxide are used. Can be mentioned.
  • the average particle diameter of the protection-enhanced primary particles 13 can be 10 nm or more and 100 nm or less.
  • the average particle diameter of the protective strengthened primary particles 13 can of course be specified from the specifications at the time of the raw material, but can be specified in the resin coating layer 7 as follows. That is, for example, the resin coating layer is cut in a direction perpendicular to the sliding surface and along the axis, and an arbitrary portion of the cutting surface (hereinafter sometimes referred to as “axial cutting surface”) Shoot within range.
  • the obtained image is subjected to image analysis software to approximate the photographed primary particles to an ellipse (particle equivalent ellipse).
  • an ellipse having the same area, primary moment and secondary moment as the target object is used as the particle equivalent ellipse.
  • protection-enhanced primary particles include, for example, a pulverization method using a ball mill or a jet mill, an agglomeration method using a reducing agent or electrochemical reduction and aggregation (reduction method), and a thermal decomposition method by thermal decomposition. It can be formed by physical vapor deposition such as evaporation in plasma gas, laser evaporation that rapidly evaporates with a laser, or chemical vapor deposition that causes a chemical reaction in the gas phase.
  • the reaction field for producing the protection-enhanced primary particles may be a gas phase or a liquid phase.
  • the blending amount of the protective strengthening primary particles 13, that is, the blending amount of the aggregate 20 can be 1 vol.% Or more and 20 vol.% Or less when the entire resin composition constituting the resin coating layer 7 is 100 vol. Thereby, sufficient abrasion resistance is ensured for the resin composition, and the viscosity of the resin composition is controlled to be suitable for production.
  • the size of the obtained aggregate is such that A-1 ⁇ is 60 nm or more and A + 1 ⁇ is 400 nm or less, where A is the average particle size and ⁇ is the standard deviation.
  • the average particle diameter of the aggregate can be obtained by the same method as that for the primary particles with enhanced protection.
  • the size of the aggregate is adjusted by appropriately adjusting the surface treatment method and the degree of the protection-enhanced primary particles, the type and viscosity of the dispersion medium in which the protection-enhanced primary particles are dispersed, the concentration of the primary particles in the dispersion medium, and the like. This can be done by homogenizing this dispersion.
  • the angle formed by the major axis of the aggregate 20 and the surface (sliding surface) of the resin coating layer 7 is set to 45 degrees or less.
  • the long axis of the aggregate 20 can be obtained by the same method as that for the protective-enhanced primary particles. Adjustment of the angle formed between the aggregate 20 and the surface of the resin coating layer 7 is performed until the resin coating layer 7 is cured from the viscosity of the raw material of the resin coating layer 7 (a solvent is added to improve fluidity) and the raw material. This is done by controlling the time.
  • the agglomerates contained in the resin composition having high fluidity are initially disordered in the direction of the major axis, but as time passes, the major axis is parallel to the sliding surface under the influence of gravity.
  • FIG. 6 schematically shows the relationship between the long axis of the aggregate 20 and the sliding surface 7 a of the resin coating layer 7.
  • an alternate long and short dash line is a virtual ellipse D of the aggregate 20, and its long axis is indicated by an arrow.
  • An angle ⁇ formed by the long axis and the sliding surface 7a is set to 45 degrees or less.
  • hard particles that do not substantially form aggregates can be added to the resin composition constituting the resin coating layer 7.
  • the materials are oxides such as aluminum oxide, chromium oxide, cerium oxide, zirconium oxide, titanium oxide, silicon oxide, and magnesium oxide, silicon nitride, and cubic boron nitride.
  • nitrides such as silicon carbide, diamonds such as silicon carbide, and diamond.
  • the amount of the hard particles can be 1 vol.% Or more and 5 vol.% Or less when the entire resin composition constituting the resin coating layer 7 is 100 vol.%.
  • the characteristics of the resin coating layer 7 can be easily controlled. If it is made the same as the material of a protection reinforcement
  • the total volume of the resin composition is 100 vol.%, Metal particles such as Sn, Bi, Pb, and In can be blended in an amount of 1 vol.
  • this sliding member 1 a solution in which a resin binder is dissolved in a solvent, a solution in which an aggregate is dispersed in the solvent are mixed, and a solid lubricant and other additives are mixed in this mixed solution according to the application, Prepare a coating solution.
  • the amount of the solvent is adjusted as necessary to adjust the viscosity of the coating liquid to a preferred range.
  • the coating liquid is applied to the base material layer 2.
  • it is left for a predetermined time (leveling process) so that the angle formed between the long axis of the aggregate and the sliding surface is 45 degrees or less (leveling process), followed by a drying process in which the solvent is removed from the coating liquid by heating.
  • a resin coating layer 7 made of a sliding resin composition is formed by curing.
  • the sliding member (bearing) thus obtained was subjected to a seizure test under the following conditions.
  • Table 1 the blending ratio (vol.%) Of each element, the diameter of the primary particles for strengthening protection, the size diameter of the aggregate, and the angle of the major axis of the aggregate (aggregate inclination angle) are the axes of the resin coating layer 7, respectively. It was obtained by observing the direction cut surface. More specifically, an arbitrary part (constant area) on the cut surface was photographed, and the obtained image was analyzed with image analysis software (Image-pro plus ver.4.5) to calculate each value.
  • image analysis software Image-pro plus ver.4.5
  • Example 12 and Example 13 of Group II since “(1) the compounding amount of the protective strengthened primary particles satisfies the requirement that 1 vol.% Or more and 20 vol.% Or less with respect to the entire resin composition”, Compared to the Group I examples, the seizure surface pressure is higher.
  • Example 6 to 11 of Group III “(1) Requirement that the amount of primary particles for strengthening protection is 1 vol.% Or more and 20 vol.% Or less with respect to the entire resin composition” and “(2) Strengthening protection” Since the requirement that the average particle diameter of the primary particles be 10 nm or more and 100 nm or less is satisfied, the baking surface pressure is higher than those in Examples 12 and 13 of Group II.
  • Group IV Example 5 satisfies the requirements (1) and (2) above, “(3) Aggregate size A-1 ⁇ is 60 nm or more and A + 1 ⁇ is 400 nm or less”, Group III Example Compared with 6 to Example 11, the baking surface pressure is high. Since Examples 1 to 4 of Group V satisfy the requirements (1) to (3) and “(4) Requirements for an aggregate aspect ratio of 10 or less”, compared with Group IV Example 5 The seizure surface pressure is high.
  • the aspect ratio of the aggregate is 10 or less.
  • the aspect ratio of the aggregate is defined as follows. That is, the ratio of the major axis to the minor axis of the ellipse is obtained by approximating the aggregate appearing in the measurement field of the cut surface obtained by cutting the sliding resin composition in the direction perpendicular to the sliding surface. The ratio (major axis / minor axis). In other words, the aspect ratio of this aggregate is 10 or less.
  • a general aggregate is approximated to an ellipsoid. Therefore, if the aggregate has an aspect ratio of 10 or less, the area appearing on the sliding surface of the resin composition is stabilized regardless of the direction of the major axis.
  • the solid lubricant that relieves the stress of the resin binder and the agglomerate work together, and as the load increases, the solid lubricant with a small limit stress is first deformed, and then the agglomerate with a relatively large limit stress is formed. Deform. In this way, it is possible to prevent a stress relaxation gap from occurring with an increase in load. In addition, even when the agglomerates are in close contact with the side portions of the solid lubricant, if the solid lubricant is deformed for the first time under a load, the effect is on the resin binder that surrounds the solid lubricant, and this is minutely deformed. .
  • the distance between the solid lubricant and the aggregate is set to an average particle diameter (10 nm or more and 100 nm or less) of the protective strengthened primary particles.
  • the stress locally generated in the resin composition in the vicinity of the solid lubricant due to the deformation of the solid lubricant can be reliably relieved.
  • the aggregate that is in close contact with or near the solid lubricant is 10% or more, the influence of deformation of the solid lubricant directly affects the aggregate of 10% or more. Continuously, that is, without any gap, the solid lubricant and the aggregate work together to relieve the stress.
  • % of the aggregate is obtained as follows.
  • the solid lubricant that relieves the stress of the resin binder and the agglomerate work together, and as the load increases, the solid lubricant with a small limit stress is first deformed, and then the agglomerate with a relatively large limit stress is formed. Deform. In this way, it is possible to prevent a stress relaxation gap from occurring with an increase in load. Furthermore, if one aggregate is in close contact with the tip of two or more solid lubricants and they are connected, deformation of each solid lubricant concentrates on one aggregate, which is accompanied by deformation of the solid lubricant. The force applied to the aggregate increases, and the aggregate deforms or collapses more reliably.
  • the aggregate of solid lubricants connected by aggregates is easily deformed or collapsed as described above, the aggregate itself acts as one solid lubricant. In other words, the aggregate covers a wider range of resin binder and relieves the stress. Thereby, collapse and detachment of the resin binder can be prevented more reliably.
  • Aggregates that connect the ends of the solid lubricant are 5.0% or more of the total aggregates.
  • the aggregate of 5.0% or more connects the ends of two or more solid lubricants
  • the influence of deformation of the two or more solid lubricants directly affects the aggregate. Is more reliably deformed or collapsed and exerts a stress relaxation function. Therefore, the solid lubricant and the aggregate work together to relieve stress continuously or without any gap as load increases.
  • the average particle size of the aggregate is set to 40% or less of the average particle size of the solid lubricant.
  • the aggregate is sufficiently smaller than the solid lubricant.
  • distribution of the aggregate in a resin composition is accelerated
  • Relationship of Particles Constructing Aggregate When the cumulative height of the protection strengthened primary particles composing the aggregate is 10%, the particle diameter D10 is 10% when the cumulative height is 90% and the particle diameter when the cumulative height 90% is D90.
  • the value of D10 is 5 or less.
  • the cumulative height of the particle diameter indicates the integrated amount of the distribution curve of the particle diameter
  • D10 indicates the particle diameter of 10% of the particle diameter integrated from the lower side in the distribution curve
  • D90 indicates the particle diameter. Indicates the particle diameter of 90% of the particles from the lower side. Therefore, the smaller the D90 / D10 value, the sharper the particle distribution.
  • the value of D90 / D10 is set to 5 or less, the particle size distribution of the particles becomes sharp and the particle diameter becomes uniform.
  • 1 sliding member 2 base material layer, 3 backing metal layer, 5 alloy layer, 7 resin coating layer, 10 resin binder, 11 solid lubricant, 13 protection strengthened primary particles, 20 aggregate, 30 recess.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Sliding-Contact Bearings (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

【課題】摺動部材に採用される樹脂組成物の耐摩耗性を維持しつつ、その耐焼付性を向上させる。 【解決手段】 樹脂バインダ、固体潤滑剤、及び樹脂バインダより硬くかつ前記樹脂バインダより脆い保護強化剤を含む摺動用樹脂組成物を提案する。保護強化剤として樹脂バインダより硬い粒子の凝集体を採用し、その配合量は摺動用樹脂組成物全体において1vol.%以上20vol. %以下とする。樹脂バインダより硬い粒子の平均粒径は固体潤滑剤より小さく10nm以上100nm以下とする。凝集体はその平均粒径をA及びその標準偏差をσとしたとき、A-1σが60nm以上、A+1σが400nm以下とし、更に、凝集体の長軸と摺動面とのなす角を45度以下とする。

Description

摺動用樹脂組成物及び摺動部材
 本発明は摺動用樹脂組成物及び該組成物を用いた摺動部材の改良に関する。
 車両のエンジンに適用される軸受の摺動面には高い耐摩耗性や耐焼付性が求められており、その対策の一つとして、軸受の摺動面を樹脂組成物でコーティングする技術が提案されている(特許文献1、特許文献2参照)。
 これら先行技術文献に開示の技術では、半割筒状の基材層の内周面(摺動面)に樹脂組成物の層がコーティングにより形成されている。
 かかる摺動用樹脂組成物(以下、単に「樹脂組成物」ということがある)は、樹脂バインダ、固体潤滑剤及び保護強化粒子を含む。ここに、樹脂組成物に負荷がかかったとき、固体潤滑剤はそれ自体が変形(例えば劈開)して、より具体的にはその結晶面に滑りを生じて、樹脂組成物の応力を緩和する(特許文献1)。他方、保護強化粒子として例えばナノオーダ(20~50nm径)のシリカが採用され、樹脂組成物全体の耐摩耗性を向上させている(特許文献2)。
 その他、本願発明に関連する技術を開示する先行技術文献として特許文献3-5を参照されたい。
特開2013-72535号公報 特開2007-517165号公報 特開2006-116458号公報 特開2007-92995号公報 特開2008-95725号公報
 昨今の自動車用エンジンは、燃費向上のため、起動停止が頻繁に繰り返される傾向にある。また、オイルのせん断抵抗を低減するためにエンジンオイルの低粘度化も進んでいる。こういったエンジンの場合、軸-軸受間の油膜が不足ぎみとなり、境界潤滑状態での摺動が多くなる。その結果、摺動中の摩擦係数が増加し、軸受において軸と接触する樹脂組成物層にかかる負荷が高くなる。
 樹脂組成物層への負荷が高くなることによって、樹脂組成物層に限界を超えた変形が生じ、樹脂組成物自体が破壊されたり、樹脂組成物が基材から剥離したりするおそれが生じる。その結果、軸受の基材(合金層)と軸との固体接触が生じ、過剰に発熱して軸受基材と軸とが溶着して、焼付損傷の原因となりかねない。
 特許文献1及び2で紹介される技術は樹脂組成物層を改良して、耐焼付性を改善している。
 しかしながら、下記の理由により、軸受の樹脂組成物層には更なる耐焼付性が求められている。
 近年、ガソリンエンジンだけでなく、大型トラックのようなディーゼルエンジンも、低燃費化のために、起動停止の繰り返される頻度を高くする要請が高まってきた。ディーゼルエンジンの軸受には、ガソリンエンジンに比べ、低周速・高面圧の負荷がかかるため、その軸-軸受間の油膜を維持することがより困難になる。更には、ディーゼルエンジンを搭載する車両は、ガソリンエンジン搭載車に比べ、一般的にメンティナンス間における走行距離が長いので、軸-軸受間に異物が混入する可能性が高くなる。この点においても、油膜を維持することが困難となる。更には、軸の低コスト化を狙い、軸粗さが従前よりも粗い鋳鉄軸も登場してきており、これも油膜維持を困難とする一因となっている。
 勿論、ディーゼルエンジン用の軸受には大きな負荷がかかるので、軸受の摺動面を構成する樹脂組成物には高い耐摩耗性が要求されている。
 この発明は、かかる課題を解決すべくなされたものであり、例えば車両エンジン用の軸受に採用される樹脂組成物の耐摩耗性を維持しつつ、その耐焼付性を向上させることを目的とする。
 かかる目的を達成するために、この発明の第1の局面では、次なる樹脂組成物を提案する。即ち、
 樹脂バインダ、
 固体潤滑剤、及び
 前記樹脂バインダより硬くかつ前記樹脂バインダより脆い保護強化剤、を含む摺動用樹脂組成物。
 このように規定される第1の局面の摺動用樹脂組成物によれば、樹脂バインダより硬い保護強化剤が配合されているので、摺動用樹脂組成物全体に高い耐摩耗性が得られる。
 さらには、固体潤滑剤の変形では吸収できないほどに強い負荷が樹脂組成物にかけられたとき、この負荷は保護強化剤にもかかる。保護強化剤は樹脂バインダより脆いので、樹脂バインダが変形する前に保護強化剤が変形ないし崩壊する。これにより、樹脂バインダの応力が緩和され、その結果、摺動用樹脂組成物の骨格とも言える樹脂バインダが一気に大きく破壊されてしまうことを避けることができる。
 かかる摺動用樹脂組成物で軸受の摺動面を構成すると、前述したように樹脂組成物の耐久性が向上し、軸と軸受との直接接触が防止され、もって、耐焼付性が向上する。
 ここに各要素の硬さは耐摩耗性の指標となり、例えばビッカース硬さで表すことができる。
 保護強化剤の硬さは樹脂バインダのそれに比べて、ビッカース硬さで10~100倍の差がある。
 また、各要素の脆さはその限界応力で表すことができる。限界応力とは樹脂組成物を構成する各要素に負荷がかけられたとき、各要素が塑性変形したり破壊されたりせずに耐え得る最大限度の応力をいう。限界応力の小さいものほど崩れやすく脆さが大きい。
 樹脂組成物に配合される固体潤滑剤は樹脂組成物の表面の摩擦係数を低減してそのすべり特性を向上させる。一般的に、この固体潤滑剤には二硫化モリブデン、二硫化タングステン、窒化ホウ素、グラファイトなどが採用される。これらの材料はいずれも樹脂バインダより柔らかく(硬度が小さく)、また脆い(限界応力が小さい。
 この発明の第2の局面では、これら樹脂組成物を構成する3つの要素、即ち、樹脂バインダ、固体潤滑剤及び保護強化剤の各限界応力を次のように規定する。
  固体潤滑剤≦保護強化剤<樹脂バインダ
 このように規定される第2の局面の樹脂組成物によれば、強い負荷が樹脂組成物にかけられたとき、固体潤滑剤と保護強化剤は樹脂バインダより脆いので、樹脂バインダが変形する前にこれらが変形ないし崩壊する。これにより、樹脂バインダの応力が緩和され、その結果、摺動用樹脂組成物の骨格とも言える樹脂バインダを保形する。
 樹脂バインダより硬く、かつ樹脂バインダより脆い保護強化剤として次のものを挙げられる。一つには、樹脂バインダの成形材料より硬い材料で形成された粒子(この明細書で「保護強化一次粒子」ということがある)を凝集させたものがある。
 ここに保護強化一次粒子の凝集には、単体(即ち、一次)の粒子同士が直接連結してなる二次粒子、更にこの二次粒子が連結してなる三次粒子というように粒子が直接結合してなる多次粒子(二次以上の粒子)の態様、一次粒子の連結が樹脂バインダを介してなされる態様、更には一次粒子の連結が樹脂バインダによりサポートされる態様が考えられる。この明細書では、保護強化一次粒子が凝集したものを「凝集体」と呼ぶことがある。
かかる凝集体に負荷がかかると、樹脂バインダが変形する前に、粒子同士のずれが生じて変形し、ひいては凝集した状態の崩壊が生じる。換言すれば、樹脂組成物にかかる負荷が凝集体の限界応力を超えると、凝集体を構成する粒子同士のずれが非可逆的に生じ、このずれが更に大きくなると凝集体自体が崩壊し、凝集体として連結されていた粒子の一部が分離される。凝集体のこの限界応力を樹脂バインダのそれより小さくしておくことで、樹脂バインダの応力が緩和される。
樹脂組成物の摺動面に表出する凝集体の中には、与えられた負荷が当該凝集体の限界応力を超えたとき、その一部が崩壊して分離し、摺動面に微小な凹部を形成する。この凹部は潤滑油溜まりとなり、当該摺動面上の油膜維持に寄与する。
 保護強化一次粒子として、樹脂バインダの成形材料より硬い材料でバルーン状に形成された粒子を採用したときは、バルーンの粒径、形状、壁厚及び成形材料の少なくとも一つを制御することでバルーン粒子自体の脆さを制御できる。従って、かかるバルーン状の保護強化一次粒子自体が樹脂バインダより硬くかつ樹脂バインダより脆いという特性を備えることができる。よって、バルーン状の保護強化一次粒子を採用するときは、これを凝集体としても、また、凝集体としなくよい。
 バルーン状の保護強化一次粒子の成形材料としてはシリカや酸化チタンなどの金属酸化物や樹脂バインダの成形材料より硬い樹脂材料を採用することができる。
 保護強化剤の配合量は、樹脂組成物全体に対して1vol. %以上20vol. %以下とする。保護強化剤の配合量が樹脂組成物全体に対して1vol. %以上とすることにより、摺動面に表出する凝集体の量が十分となり、その結果、十分な潤滑油溜まりを形成できる。粒子として樹脂バインダより硬いものを採用し、樹脂組成物の耐摩耗性向上を企図したときには、十分な耐摩耗性向上を得られる。他方、粒子の配合量を樹脂組成物全体に対して20vol.%以下とすることにより、樹脂バインダの粘度が製造に適したものとなる。
 凝集させる保護強化一次粒子は固体潤滑剤より小径とする。ここに、保護強化一次粒子と固体潤滑剤の径は測定視野における径をいい、実質的に全ての保護強化一次粒子の径が全ての固体潤滑剤の径より小さいものとする。保護強化一次粒子の径が固体潤滑剤より大径であると、その凝集体は更に大径となり、固体潤滑剤の機能を阻害するおそれがある。
 以上より、この発明の第5の局面は次のように規定される。即ち、
 第1の局面の摺動用樹脂組成物において、前記保護強化剤は、前記樹脂バインダより硬くかつ前記固体潤滑剤より小径な粒子の凝集体からなり、前記摺動用樹脂組成物全体において1vol.%以上20vol. %以下を占める。
 なお、かかる配合量(vol.%=体積%)は、原料時点での比較により特定できることはもとより、樹脂組成物のバルクをICPにより化学分析して特定可能である。
この発明の第6の局面は次のように規定される。即ち、
 第5の局面で規定の樹脂組成物において、前記粒子の平均粒径は10nm以上100nm以下とする。
 このように規定される第6の局面の樹脂組成物によれば、平均粒径が10nm以上100nm以下である保護強化一次粒子を採用することにより、樹脂組成物内において単体の(即ち、一次の)粒子同士が凝集しやすくなる。
 かかる一次粒子の粒径は、例えば、その摺動面に垂直な摺動用樹脂組成物の断面に現れる一次粒子を楕円に近似し、その楕円の長軸をもって粒径とすることができる。
 ここに、保護強化剤の量を前述のようにしてかつその一次粒子の平均粒径を10nm以上とすると、樹脂組成物内に配合された保護強化一次粒子間の凝集が過剰に進行することを抑えることができる。平均粒子径が10nm未満となると保護強化一次粒子の凝集が過剰に進行し、樹脂組成物において保護強化剤の存在しない部分が大きくなり、保護強化剤による樹脂組成物改良が不十分になるおそれがある。
 また、保護強化剤の配合量を前述のようにしてかつその保護強化一次粒子の平均粒径を100nm以下とすると、保護強化一次粒子が分散し過ぎることなく適切な凝集体を確実に形成することができる。平均粒子径が100nmをこえると樹脂組成物中に保護強化一次粒子が単体で分散し過ぎてしまうおそれがあり、そうすると、保護強化一次粒子の凝集体の変形若しくは崩壊によって樹脂組成物の破壊を防止するという保護強化剤に求められる作用が十分に奏されないおそれがある。
 保護強化一次粒子の凝集体の変形ないし崩壊を適切に起こさせることができると、樹脂バインダに応力が蓄積されことを効率的に抑えることができるので、樹脂バインダが一気に大きく破壊されてしまうことがない。その結果、樹脂組成物の耐焼付性は向上する。
 別の観点から、凝集体を形成すべき保護強化一次粒子の平均粒径を15nm以上50nm以下とすることもできる。
 この発明の第7の局面は次のように規定される。
 第6の局面に規定の摺動用樹脂組成物において、保護強化一次粒子の凝集体はその平均粒径をA及びその標準偏差をσとしたとき、A-1σが60nm以上、A+1σが400nm以下とする。
 ここに、凝集体の形状は球とは限らないので、この明細書では、摺動用樹脂組成物をその摺動面に対して垂直方向に切断したとき得られる切断面の測定視野に現れる凝集体の径を採用する。更に詳しくは、観察された凝集体を楕円近似してその楕円の長軸を凝集体の径とする。摺動用樹脂組成物にはその摺動面に対して垂直方向により強い負荷がかかるので、摺動面に対して垂直方向の切断面を測定視野とした。また、該垂直方向の負荷を受ける凝集体の幅(=凝集体を摺動面に投影したときの長さ)がその限界応力に大きく関与するので、凝集体を規定する径にはその近似楕円の長軸を径とした。
 このように規定される第7の局面に規定の摺動用樹脂組成物によれば、凝集体の大きさが適当であるため、負荷に対して樹脂組成物より先に変形若しくは崩壊するというそれ自体の保護機能が確保され、かつ樹脂組成物中に均等に分散する分散性も確保される。
 他方、上記A-1σの値が60nm以上であると、樹脂組成物中において粒子の凝集度合が十分となる。もって、粒子間のずれに起因する限界応力が、樹脂バインダのそれに比べて小さくなる。る。また、上記A+1σの値が400nm以下であると、粒子の凝集体の分散度合いが十分であり樹脂組成物において保護強化剤の偏在領域が無くなる。
 この発明の第8の局面は次のように規定される。即ち、
 第3~第7のいずれかに規定の摺動用樹脂組成物において、前記凝集体の長軸と摺動面とのなす角度が45度以下である。
 ここに、凝集体の長軸とは、第7の局面で説明した凝集体の径と同様に規定される。即ち、摺動用樹脂組成物をその摺動面に対して垂直方向に切断したとき得られる切断面の測定視野に現れる凝集体の長軸を差し、例えば観察された凝集体を楕円近似してその楕円の長軸を凝集体の長軸とする。
 なお、全ての凝集体の長軸の角度がそろっているわけではないので、切断面で観察された凝集体の長軸の角度の平均値が45度以下とする。
 別の観点から、凝集体の長軸と摺動面とのなす角度は45度以下5度以上とする。当該なす角度が5度未満になると、凝集体のアスペクト比が比較的大きい場合、摺動面と平行な方向の負荷に対して凝集体の応力緩和機能が十分に働かないおそれがある。また、当該角度が5未満のような、いわゆるねた状態の凝集体は摺動用樹脂組成物の表面近くに集まっているおそれがあり、樹脂組成物の特性が不均一になるおそれがある。
 この凝集体の長軸と摺動面とのなす角度が45度以下であると、換言すれば、凝集体の長軸が摺動面と平行に近いほど、摺動面から垂直方向に加わる負荷を確実に受け止められ、また、その負荷は短軸方向へのせん断力として働くので、凝集体の変形若しくは崩壊がより確実に実行される。
 また、凝集体の長軸が摺動面と平行に近いほど、摺動体は摺動面においてより広く表出する。これにより、表出した摺動体の一部が分離してそこに潤滑油溜まりとなる微小な凹部が形成されやすくなる。
 他方、凝集体の長軸と摺動面となす角度が45度を超えると、凝集体において、摺動面から垂直方向に加わる負荷を受け止める部位が狭くなり、凝集体が変形し又は崩壊し難くなるおそれがある。また、同じく45度を超えると、摺動面における摺動体の表出面積が狭くなり、そこは潤滑油溜まりとなる凹部も形成され難くなるおそれがある。
図1はこの発明の実施例の摺動部材の構造を示す模式図である。 図2は樹脂コーティング層の構造を示す部分拡大図である。 図3は図2における矢視線IIIで示される部分の拡大図である。 図4は樹脂組成物に保護強化粒子の凝集体が存在しないときの、樹脂バインダの剥離及び破壊の態様を説明する模式図である。 図5は保護強化粒子の凝集体にその限界応力がかけられたときに凝集体の一部が脱離する態様を説明する模式図である。 図6は保護強化粒子の凝集体の長軸と樹脂組成物の摺動面とのなす角を説明する模式図である。
 図1には、この発明の実施形態の摺動部材1の層構成を示す。
 この摺動部材1は基材層2へ摺動用樹脂組成物からなる樹脂コーティング層7を積層した構成である。
 筒状又は半円筒状の軸受からなる摺動部材1では、その基材層2は筒状又は半円筒状に附形された鋼板層3を備え、必要に応じて鋼板層3の表面(内周面)にAl、Cu、Sn等の合金からなる合金層5が設けられる。基材層2は、図示しないが、合金層5の表面にSn基やBi基やPb基のめっき層を設けたものでも良いし、樹脂を有する層を設けたものでも良い。その樹脂を有する層は、樹脂コーティング層7とは異なる。
 基材層2と樹脂コーティング層7との接着性を向上させるため、基材層2の内周面を粗面化することができる。粗面化の方法として、アルカリエッチングと酸洗との組み合わせのような化学的表面処理方法やショットブラスト等の機械的表面処理方法を採用できる。
 鋼板層3の形成材料は鋼鉄に限定されず、アルミニウム、銅及びタングステンの合金等を採用できる。
 樹脂コーティング層7を構成する摺動用樹脂組成物は、樹脂バインダ10、固体潤滑剤11及び保護強化一次粒子13の凝集体20を含んでいる。
 樹脂組成物において樹脂バインダ10は、樹脂コーティング層7を基材層2に結合するとともに、固体潤滑剤11を固定する。この樹脂バインダ10に採用する樹脂材料は、摺動部材1の用途等に応じて適宜選択可能であるが、車両エンジンに適用する場合は、ポリイミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、フェノール樹脂、ポリアミド樹脂、フッ素樹脂、およびエラストマーの一種以上を採用でき、ポリマーアロイであっても良い。
 樹脂コーティング層7の厚さも任意に設計できるが、例えば1μm以上20μm以下とすることができる。
 樹脂コーティング層7の積層方法も任意に選択でき、例えば、パッド印刷法、スクリーン印刷法、エアスプレー法、エアレススプレー法、静電塗装法、タンブリング法、スクイズ法、ロール法、ロールコート法等を採用できる。
 固体潤滑剤11の材質も摺動部材の用途に応じて適宜選択できる。例えば、二硫化モリブデン、二硫化タングステン、h-窒化ホウ素、ポリテトラフルオロエチレン、メラミンシアヌレート、フッ化カーボン、フタロシアニン、グラフェンナノプレートレット、フラーレン、超高分子量ポリエチレン(三井化学製、商標名「ミペロン」)、Nε-ラウロイル-L-リジン(味の素製、商標名「アミホープ」)等の1種以上を選択できる。
 固体潤滑剤11の配合量も摺動部材の用途に応じて任意に選択できるが、例えば、樹脂コーティング層7を構成する樹脂組成物全体を100vol.%としたとき、この固体潤滑剤11を20vol.%以上70vol.%以下とすることができる。
 樹脂コーティング層7のすべり特性を向上するため、この固体潤滑剤11はその(0,0,L)面の配向強度比を75%以上とすることが好ましい。
 保護強化一次粒子13は、図3に示されるように、樹脂コーティング層7を構成する摺動用樹脂組成物内に配置されかつ、保護強化一次粒子13どうしが凝集して保護強化剤としての凝集体20を形成している。
 この保護強化一次粒子13として樹脂バインダ10の材料よりも硬く、固体潤滑剤11よりも小径な、好ましくはナノオーダの超微粒子を採用することにより、樹脂コーティング層7自体の耐摩耗性が向上する(特許文献2参照)。
 かかる目的を直接的に達成するためには、保護強化一次粒子13は樹脂コーティング層内においてより均等に分散されることが好ましい。即ち、保護強化一次粒子13はできる限り相互に連結せずに、即ち一次粒子の状態で分散されることが好ましい。
 しかしながら、本発明者らの検討によれば、強い負荷が樹脂コーティング層7へかかると、図4に示す通り、樹脂バインダ10がその限界を超えて変形し、これが一気に大きく破壊されるおそれがある。図4の(a)及び(b)は、樹脂バインダ10の破壊により樹脂コーティング層7が基材層2から剥離する状況を模式的に示している。
 一方、この発明では、図3に示すとおり、保護強化一次粒子13どうしを意図的に凝集させて凝集体20を構成する。凝集体20を構成する保護強化一次粒子13どうしの連結状態は、樹脂コーティング層7にかかる応力の観点からみたとき、固体潤滑剤の変形が開始する応力では何ら影響を受けず(即ち、凝集体20は変形しない)、他方、樹脂バインダ10がその限界応力を超えて変形を開始する前に、変形ないし崩壊する。
 これにより、強い負荷が樹脂コーティング層7にかけられたとき、樹脂コーティング層7に生じた応力の一部は凝集体20の変形若しくは崩壊により緩和され、樹脂コーティング層7が一気に大きく破壊されることがくい止められる。
 このとき、図5に示すように、凝集体20が摺動面に表出していると、凝集体20を構成する一部の保護強化一次粒子13が脱離する。これにより、図5(b)に示すように、凝集体20に凹部(微小ポッド)30が形成される。この凹部30は摺動部材1の摺動面に供給される潤滑油を保持可能である。この点からも、凝集体20は、摺動部材1の摺動面の油膜維持に寄与する。
 保護強化一次粒子13を構成する材料は、樹脂コーティング層7自体の耐摩耗性を向上させる見地から、樹脂バインダ10より硬く、かつ固体潤滑剤より小径なものとする。より具体的には、摺動部材の用途に応じて任意に選択可能であるが、例えば、金、銀、酸化シリコン(シリカ)、酸化アルミニウム、酸化亜鉛、酸化スズ、酸化ジルコニウム等の微小粒子を挙げられる。
 保護強化一次粒子13の平均粒径は10nm以上100nm以下とすることができる。
 保護強化一次粒子13の平均粒径は、勿論原料時のスペックから特定することも可能であるが、樹脂コーティング層7の中では次のようにして特定できる。即ち、例えば樹脂コーティング層をその摺動面に対して垂直にかつ軸に沿った方向に切断し、その切断面(以下、「軸方向切断面」ということがある)の任意の部分を所定の範囲で撮影する。得られた画像を画像解析ソフトにかけて、撮影された一次粒子を楕円(粒子相当楕円)に近似する。この解析ソフトでは対象オブジェクト(一次粒子)と等しい面積、一次モーメント及び二次モーメントを有する楕円を当該粒子相当楕円としている。
 このような保護強化一次粒子は例えば、ボールミルやジェットミル等での粉砕法、還元剤を使用しまたは電気化学的に還元し凝集させて作製する凝集法(還元法)、加熱分解する熱分解法、プラズマガス中蒸発法などの物理的気相成長法、レーザで急速に蒸発させるレーザ蒸発法、気相中で化学反応を起こす化学気相成長法などで形成できる。保護強化一次粒子の作製にあたっての反応場は、気相でも液相でも良い。
 保護強化一次粒子13の配合量、即ち凝集体20の配合量は樹脂コーティング層7を構成する樹脂組成物全体を100vol.%としたとき、1vol.%以上20vol.%以下とすることができる。
 これにより、樹脂組成物に充分な耐摩耗性が確保されるとともに、樹脂組成物の粘度が製造に好適なものに制御される。
 得られた凝集体のサイズはその平均粒径をA及びその標準偏差をσとしたとき、A-1σが60nm以上、A+1σが400nm以下とする。
 凝集体の平均粒径は保護強化一次粒子と同様の手法で得ることができる。
 凝集体のサイズの調整は、保護強化一次粒子の表面処理方法及びその程度、保護強化一次粒子を分散させる分散媒の種類及び粘度、分散媒中における一次粒子の濃度などを適宜調節し、更には、この分散系をホモジナイズすることにより行える。
 凝集体20の長軸と樹脂コーティング層7の表面(摺動面)とのなす角度を45度以下とする。ここに、凝集体20の長軸は保護強化一次粒子と同様の手法で得ることができる。
 凝集体20と樹脂コーティング層7の表面とのなす角度の調整は樹脂コーティング層7の原料(流動性を高めるため溶媒が付加されている)の粘度と当該原料から樹脂コーティング層7を硬化するまでの時間を制御することにより行う。
 流動性の高い樹脂組成物に含まれる凝集体は、当初のその長軸の方向は無秩序であるが、時間が経つにつれて重力の影響を受けてその長軸が摺動面に平行となるように回転する(以下、「レベリング」ということがある)。この回転は時間とともに進行し、かつ原料の粘度が小さいほどその進行が促進される。
 図6に凝集体20の長軸と樹脂コーティング層7の摺動面7aとのなす角度の関係を模式的に示す。図6において、一点鎖線は、凝集体20の仮想楕円Dであり、その長軸を矢印でしめす。長軸と摺動面7aとのなす角βを45度以下とする。
 樹脂コーティング層7を構成する樹脂組成物には、その耐摩耗性を向上させる見地から、実質的に凝集体を形成しない硬質粒子を添加することができる。
 かかる硬質粒子として、100nmよりも大きいものが好ましく、材質は、酸化アルミニウム、酸化クロム、酸化セリウム、酸化ジルコニウム、酸化チタン、酸化シリコン、及び酸化マグネシウムのような酸化物、窒化ケイ素、及び立方窒化ホウ素のような窒化物、及び炭化ケイ素のような炭化物、並びにダイヤモンド等が挙げられる。かかる硬質粒子の配合量は樹脂コーティング層7を構成する樹脂組成物全体を100vol.%としたとき、この硬質粒子を1vol.%以上5vol.%以下とすることができる。保護強化一次粒子の材質と異ならせると、樹脂コーティング層7の特性を制御し易い。保護強化一次粒子の材質と同じにすると、摺動部材を安価に製造することができる。
 樹脂組成物全体の100vol.%としたとき、Sn、Bi、Pb、In等の金属粒子を1vol.%以上5vol.%以下配合することもできる。
 次に、この摺動部材1の製造方法について説明する。
 本実施の形態では、樹脂バインダを溶剤に溶かした溶液、凝集体を当該溶剤に分散させた溶液を混合し、この混合液に固体潤滑剤、及びその他用途に応じて添加物を混合させて、塗液を作製する。必要に応じて溶剤の量を調整して塗液の粘度を好ましい範囲に調整する。その後、その塗液を基材層2へ塗布する。その後、凝集体の長軸と摺動面とのなす角度が45度以下に収まるように所定時間放置し(レベリング工程)、加熱して塗液から溶剤を除去する乾燥工程を経て、塗液を硬化させて摺動用樹脂組成物からなる樹脂コーティング層7を形成する。
 以下、この発明を半割筒状の形態の摺動部材に適したこの実施例について説明する。
 半割筒状の鋼材からなる裏金層の表面にアルミニウム軸受合金層を圧接した。この合金層の内周面に軸受としての内面仕上げを実施した後、脱脂及び不純物除去を行った。
 その後、ショットブラストによる粗面化処理を行った。
 ここでは、この中間体の内周面に、予め作製した塗液をスプレー法にて約5μmの厚さに塗布し、所定時間のレベリング工程と、乾燥工程を経た後、200℃~300℃で30分~120分間の硬化工程を行って、表1に示す各実施例及び比較例の樹脂組成物からなる樹脂コーティング層7を備えた摺動部材(軸受)を作製した。
 このようにして得られた摺動部材(軸受)に対し、下記の条件で焼付試験を行った。
回転数:1500rpm
潤滑油:VG22
給油量:150ml/分
軸材質:S55C
 面圧を段階的に上昇させて焼付面圧を特定した。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1において、各要素の配合割合(vol.%)、保護強化一次粒子の径、凝集体のサイズ径、凝集体の長軸の角度(凝集体傾斜角度)は、それぞれ樹脂コーティング層7の軸方向切断面を観察して得た。より具体的には、当該切断面における任意の部位(一定面積)を撮影し、得られた画像を画像解析ソフト(Image-pro plus ver.4.5)で解析して、それぞれの値を算出した。
表1の結果から次のことがわかる。
 実施例1~15の樹脂コーティング層7には、樹脂バインダ10の中に保護強化一次粒子の凝集体20が分散され、その一部は樹脂コーティング層7の摺動面に表出していた。比較例1では、凝集体20が形成されていなかった。
 グループIの実施例14及び実施例15では、「(1)保護強化一次粒子の配合量が、樹脂組成物全体に対して1vol.%以上20vol. %以下」なる要件を満足していないので、比較例1よりも焼付面圧が高いが、他のグループの実施例に比べて焼付面圧が比較的低い。
 グループIIの実施例12及び実施例13では、『(1)保護強化一次粒子の配合量が、樹脂組成物全体に対して1vol.%以上20vol. %以下なる要件』を満足しているので、グループIの実施例に比べて焼付面圧が高い。
 グループIIIの実施例6~実施例11では、『(1)保護強化一次粒子の配合量が樹脂組成物全体に対して1vol.%以上20vol. %以下なる要件』、及び『(2)保護強化一次粒子の平均粒子径が10nm以上100nm以下なる要件』を満足しているので、グループIIの実施例12及び実施例13に比べて焼付面圧が高い。
 グループIVの実施例5は上記(1)(2)の要件と共に『(3)凝集体サイズのA-1σが60nm以上でA+1σが400nm以下なる要件』を満足しているので、グループIII実施例6~実施例11に比べて焼付面圧が高い。
 グループVの実施例1~実施例4は上記(1)~(3)の要件と共に『(4)凝集体アスペクト比が10以下なる要件』を満足しているので、グループIV実施例5に比べて焼付面圧が高い。
 本発明者らの検討によれば、この樹脂組成物の有する下記の特性の一つ又は複数はその耐焼付性能に影響をあたえる。
 (1)凝集体のアスペクト比
 保護強化粒子として凝集体を用いた場合、凝集体のアスペクト比は10以下とする。ここに、凝集体のアスペクト比は次のように規定される。即ち、摺動用樹脂組成物をその摺動面に対して垂直方向に切断したとき得られる切断面の測定視野に現れる凝集体を楕円近似してその楕円の長軸と短軸との比をアスペクト比(長軸/短軸)とする。
 この凝集体のアスペクト比が10以下であると、換言すれば、凝集体が球に近いほど樹脂組成物の摺動面に表出する凝集体の面積が安定する。一般的な凝集体は楕円体に近似される。従って、10以下のアスペクト比の凝集体であると、その長軸の方向に拘わらず、樹脂組成物の摺動面に現れる面積が安定する。
 (2)凝集体と固体潤滑剤との関係I
 凝集体のうちの10%以上が固体潤滑剤に密着若しくは近傍に存在する。
 ここに、固体潤滑剤に凝集体が密着していると、負荷を受けて最初に変形又は劈開若しくは崩壊する固体潤滑剤の影響がこれに密着した凝集体に伝搬する。
 例えば、劈開する固体潤滑剤の端部へこれを覆うように凝集体が密着しているとき、固体潤滑剤の劈開がこの凝集体をせん断する力となり、この凝集体の変形を誘発する。即ち、樹脂バインダの応力を緩和する固体潤滑剤と凝集体とが連動し、負荷の増加にともない限界応力の小さな固体潤滑剤に最初に変形生じ、それに続いて比較的限界応力の大きい凝集体が変形する。このように、負荷の増加に対して応力緩和のギャップが生じることを防止できる。
 また、固体潤滑剤の側部に凝集体が密着しているときも、負荷を受けて最初に固体潤滑剤が変形すると、その影響は固体潤滑剤を取り囲む樹脂バインダにおよびこれを微小に変形させる。即ち、樹脂バインダにおいて固体潤滑剤の近傍に局所的に大きな応力が発生する。このとき、固体潤滑剤に凝集体が密着していると、樹脂バインダに発生したこの局所的な応力を確実に緩和できる。
 以上の説明から、固体潤滑剤の近傍に凝集体が存在し、樹脂組成物に発生した局所的な応力を緩和できればよいことがわかる。この場合、固体潤滑剤と凝集体との距離は、保護強化一次粒子の平均粒子径(10nm以上100nm以下)以下とする。固体潤滑剤に対して凝集体がこの距離内に存在すると、固体潤滑剤の変形により固体潤滑剤近傍の樹脂組成物に局所的に発生した応力を確実に緩和できる。
 固体潤滑剤に密着し又はその近傍に存在する凝集体を10%以上とすると、10%以上の凝集体に対して固体潤滑剤の変形の影響が直接的に及ぶので、負荷の増大に対して連続的に即ち何らギャップなく、固体潤滑剤と凝集体とが連動して応力を緩和する。
 ここに、凝集体の%は次のようにして求める。
 摺動用樹脂組成物をその摺動面に対して垂直方向に切断したとき得られる切断面の所定の測定視野に現れる凝集体全カウント数に対する固体潤滑剤に密着する若しくは近傍に存在する凝集体のカウント数を対比する。
 (3)凝集体と固体潤滑剤との関係II
 凝集体のうちの5.0%以上により、二以上の前記固体潤滑剤の端部が連結されている。
 ここに、固体潤滑剤の先端に凝集体が密着していると、負荷を受けて最初に変形又は劈開若しくは崩壊する固体潤滑剤の影響がその先端に密着した凝集体に伝搬する。
 例えば、劈開する固体潤滑剤の端部へこれを覆うように凝集体が密着しているとき、固体潤滑剤の劈開がこの凝集体をせん断する力となり、この凝集体の変形を誘発する。即ち、樹脂バインダの応力を緩和する固体潤滑剤と凝集体とが連動し、負荷の増加にともない限界応力の小さな固体潤滑剤に最初に変形生じ、それに続いて比較的限界応力の大きい凝集体が変形する。このように、負荷の増加に対して応力緩和のギャップが生じることを防止できる。
 更に、1つの凝集体が二以上の固体潤滑剤の先端に密着し、これらを連結していると、各固体潤滑剤の変形が一つの凝集体に集中するので、固体潤滑剤の変形に伴う凝集体に付加される力が大きくなり、凝集体がより確実に変形ないし崩壊する。
 更には、凝集体でつながれた固体潤滑剤の集合体は、既述のように凝集体が変形ないし崩壊しやすくなったので、当該集合体自体が一つの固体潤滑剤として作用する。換言すれば、当該集合体がより広い範囲の樹脂バインダをカバーしてその応力を緩和する。これにより、樹脂バインダの崩壊や脱離をより確実に防止できる。
 固体潤滑剤の端部どうしを連結する凝集体は、凝集体全体の5.0%以上とする。5.0%以上の凝集体が二以上の固体潤滑剤の端部どうしを連結していると、凝集体に対して二以上の固体潤滑剤の変形の影響が直接的に及ぶので、凝集体はより確実に変形ないし崩壊して応力緩和機能を奏する。よって、負荷の増大に対して連続的に即ち何らギャップなく、固体潤滑剤と凝集体とが連動して応力を緩和する。
(4)凝集体と固体潤滑剤との関係III
 凝集体の平均粒径を固体潤滑剤の平均粒径の40%以下とする。
 凝集体の平均粒径が固体潤滑剤の平均粒径の40%以下とすることにより、固体潤滑剤に比べて凝集体が十分に小さくなる。これにより、樹脂組成物中において凝集体の分散が促進され、凝集体による樹脂バインダの応力緩和硬化を樹脂組成物の全域において確保できる。
(5)凝集体を構成する粒子の関係
 凝集体を構成する保護強化一次粒子の粒子経の累積高さ10%時の粒径D10、累積高さ90%時の粒径をD90とするとD90/D10の値が5以下とする。
 ここに、粒子径の累積高さは粒子径の分布曲線の積算量をさし、D10は分布曲線において粒子径が下位側から積算して10%の粒子の粒子径を差し、D90は粒子径が下位側から90%の粒子の粒子径を指す。従って、D90/D10の値が小さいほど、粒子の分布はシャープになる。
 このようにD90/D10の値を5以下とすることにより、粒子の粒度分布はシャープとなり、もって粒子径が均一になる。
 この発明は、上記発明の実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
 実施の形態では、摺動部材として軸受を例にとり説明をしてきたが、その他の摺動部材にも適用可能である。
1 摺動部材、2 基材層、3 裏金層、5 合金層、7 樹脂コーティング層、10 樹脂バインダ、11 固体潤滑剤、13 保護強化一次粒子、20 凝集体、30 凹部。

Claims (14)

  1.  樹脂バインダ、
     固体潤滑剤、及び
     前記樹脂バインダより硬く、かつ前記樹脂バインダより脆い保護強化剤、を含む摺動用樹脂組成物。
  2.  前記樹脂バインダ、前記固体潤滑剤及び前記保護強化剤の限界応力は、次の関係にある、
      固体潤滑剤≦保護強化剤<樹脂バインダ
     請求項1に記載の摺動用樹脂組成物。
  3.  前記保護強化剤は、前記樹脂バインダより硬い粒子の凝集体からなる、請求項1又は請求項2に記載の摺動用樹脂組成物。
  4.  前記凝集体の限界応力より前記樹脂バインダの限界応力が大きい、請求項3に記載の摺動用樹脂組成物。
  5.  前記保護強化剤は、前記樹脂バインダより硬くかつ前記固体潤滑剤より小径な粒子の凝集体からなり、前記摺動用樹脂組成物全体において1vol.%以上20vol. %以下を占める、請求項1に記載の摺動用樹脂組成物。
  6.  前記粒子の平均粒径は10nm以上100nm以下である、請求項5に記載の摺動用樹脂組成物。
  7.  前記凝集体は、その平均粒径をA及びその標準偏差をσとしたとき、A-1σが60nm以上、A+1σが400nm以下である、請求項6に記載の摺動用樹脂組成物。
  8.  前記凝集体の長軸と摺動面とのなす角が45度以下である、請求項3~7の何れかに記載の摺動用樹脂組成物。
  9.  樹脂バインダ、固体潤滑剤及び前記樹脂バインダより硬い粒子の凝集体からなる保護強化剤を含む摺動用樹脂組成物であって、
     前記粒子は、前記固体潤滑剤より小径であり、組成物全体において1vol.%以上20vol. %以下配合される摺動用樹脂組成物。
  10.  前記粒子の平均粒径は10nm以上100nm以下である、請求項9に記載の摺動用樹脂組成物。
  11.  前記凝集体は、その平均粒径をA及びその標準偏差をσとしたとき、A-1σが60nm以上、A+1σが400nm以下である、請求項10に記載の摺動用樹脂組成物。
  12.  前記凝集体の長軸と摺動面とのなす角が45度以下である、請求項9~11の何れかに記載の摺動用樹脂組成物。
  13.  基材層と、該基材層に積層され、請求項1~請求項12のいずれかに記載の摺動用樹脂組成物からなるコーティング層と、を備える摺動部材。
  14.  基材層が半割筒形状の部分を含む、請求項13に記載の摺動部材。
PCT/JP2015/064118 2014-05-15 2015-05-15 摺動用樹脂組成物及び摺動部材 WO2015174538A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016519418A JP6705744B2 (ja) 2014-05-15 2015-05-15 摺動用樹脂組成物及び摺動部材
US15/311,262 US10760031B2 (en) 2014-05-15 2015-05-15 Sliding resin composition, and sliding member
GB1618815.3A GB2543431B (en) 2014-05-15 2015-05-15 Sliding resin composition, and sliding member
DE112015002267.8T DE112015002267T5 (de) 2014-05-15 2015-05-15 Gleitharzzusammensetzung und Gleitelement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-101855 2014-05-15
JP2014101855 2014-05-15

Publications (1)

Publication Number Publication Date
WO2015174538A1 true WO2015174538A1 (ja) 2015-11-19

Family

ID=54480072

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/064118 WO2015174538A1 (ja) 2014-05-15 2015-05-15 摺動用樹脂組成物及び摺動部材
PCT/JP2015/064117 WO2015174537A1 (ja) 2014-05-15 2015-05-15 摺動用樹脂組成物及び摺動部材

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064117 WO2015174537A1 (ja) 2014-05-15 2015-05-15 摺動用樹脂組成物及び摺動部材

Country Status (5)

Country Link
US (2) US20170088792A1 (ja)
JP (7) JP6705743B2 (ja)
DE (2) DE112015002269T5 (ja)
GB (2) GB2543431B (ja)
WO (2) WO2015174538A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3284965B1 (en) * 2016-08-19 2021-12-15 Mahle International GmbH Sliding component and method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6333305B2 (ja) * 2016-04-28 2018-05-30 大同メタル工業株式会社 摺動部材
CN118854222A (zh) * 2016-12-19 2024-10-29 Smc 株式会社 耐腐蚀部件
US10787624B2 (en) * 2017-06-22 2020-09-29 Purdue Research Foundation Solid lubricant and method of making the same
GB2569158B (en) * 2017-12-07 2020-08-05 Mahle Engine Systems Uk Ltd Bearing material, bearing element and method
GB2586166B (en) * 2019-08-09 2021-11-10 Mahle Int Gmbh Sliding element comprising polymer overlay
JP7344093B2 (ja) * 2019-11-07 2023-09-13 大同メタル工業株式会社 摺動部材
JP2021116842A (ja) * 2020-01-24 2021-08-10 トヨタ自動車株式会社 車両用動力伝達機構
GB2599119B (en) * 2020-09-24 2023-02-01 Mahle Int Gmbh Bearing material with solid lubricant
CN114276864B (zh) * 2021-12-30 2022-10-25 二重(德阳)重型装备有限公司 水性不锈钢紧固件防卡咬剂及其制备方法
US11680174B1 (en) * 2022-02-04 2023-06-20 Mazda Motor Corporation Coating composition, coating film forming method, and engine component

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261514A (ja) * 1988-04-07 1989-10-18 Taiho Kogyo Co Ltd 摺動材料
JPH07166182A (ja) * 1993-12-14 1995-06-27 Taiho Kogyo Co Ltd 摺動材料
JPH0859991A (ja) * 1995-07-26 1996-03-05 Taiho Kogyo Co Ltd 摺動材料
JPH1037962A (ja) * 1996-07-18 1998-02-13 Taiho Kogyo Co Ltd すべり軸受
JP2002053883A (ja) * 2000-08-07 2002-02-19 Toyota Motor Corp 摺動部材用組成物
JP2003306604A (ja) * 2002-04-15 2003-10-31 Toyobo Co Ltd 摺動部材用ポリアミドイミド樹脂組成物及びこれを用いた摺動部材
JP2004323789A (ja) * 2003-04-28 2004-11-18 Toshiba Corp 摺動部材用複合材料およびその製造方法
JP2007092995A (ja) * 2005-09-16 2007-04-12 Miba Gleitlager Gmbh 軸受要素
JP2010121123A (ja) * 2008-10-22 2010-06-03 Dow Corning Toray Co Ltd パーフルオロポリエーテルコンパウンド組成物
WO2015020020A1 (ja) * 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 ポリイミド樹脂組成物及びポリイミド樹脂-繊維複合材

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196268A (ja) * 1982-05-12 1983-11-15 Mitsubishi Rayon Co Ltd 床および壁面コ−テイングまたは道路マ−キング組成物
US5763513A (en) * 1994-05-19 1998-06-09 Mitsui Toatsu Chemicals, Inc. L-lactic acid polymer composition, molded product and film
JP3472644B2 (ja) * 1994-05-19 2003-12-02 三井化学株式会社 L−乳酸ポリマー組成物、成形物及びフィルム
JP3017626U (ja) 1995-05-02 1995-10-31 オーロラ株式会社 洋傘の握り部構造
JP3611682B2 (ja) * 1996-07-30 2005-01-19 京セラケミカル株式会社 耐熱非粘着性塗料
JP4010064B2 (ja) * 1998-10-19 2007-11-21 東レ株式会社 ポリエステル組成物およびそれからなるフィルム
JP4075469B2 (ja) * 2001-07-23 2008-04-16 日本精工株式会社 シール
JP2007211983A (ja) * 2001-07-23 2007-08-23 Nsk Ltd シール
GB0314372D0 (en) 2003-06-20 2003-07-23 Dana Corp Bearings
JP2005170960A (ja) * 2003-12-05 2005-06-30 Toyota Industries Corp 摺動部材、潤滑性被膜、潤滑性被膜用塗料および摺動部材の表面被覆方法
JP4470633B2 (ja) * 2004-07-30 2010-06-02 Nok株式会社 Nbr組成物
JP2006116458A (ja) 2004-10-22 2006-05-11 Arakawa Chem Ind Co Ltd 摺動部材
JP2008101189A (ja) * 2006-09-19 2008-05-01 Nissan Motor Co Ltd 低摩擦摺動機構
JP4827680B2 (ja) 2006-10-06 2011-11-30 大豊工業株式会社 摺動部材
EP2557125B1 (en) * 2010-04-08 2017-11-15 Taiho Kogyo Co., Ltd. Sliding material based on graphite-containing resin, and sliding member
JP5132806B1 (ja) 2011-09-29 2013-01-30 大同メタル工業株式会社 すべり軸受

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261514A (ja) * 1988-04-07 1989-10-18 Taiho Kogyo Co Ltd 摺動材料
JPH07166182A (ja) * 1993-12-14 1995-06-27 Taiho Kogyo Co Ltd 摺動材料
JPH0859991A (ja) * 1995-07-26 1996-03-05 Taiho Kogyo Co Ltd 摺動材料
JPH1037962A (ja) * 1996-07-18 1998-02-13 Taiho Kogyo Co Ltd すべり軸受
JP2002053883A (ja) * 2000-08-07 2002-02-19 Toyota Motor Corp 摺動部材用組成物
JP2003306604A (ja) * 2002-04-15 2003-10-31 Toyobo Co Ltd 摺動部材用ポリアミドイミド樹脂組成物及びこれを用いた摺動部材
JP2004323789A (ja) * 2003-04-28 2004-11-18 Toshiba Corp 摺動部材用複合材料およびその製造方法
JP2007092995A (ja) * 2005-09-16 2007-04-12 Miba Gleitlager Gmbh 軸受要素
JP2010121123A (ja) * 2008-10-22 2010-06-03 Dow Corning Toray Co Ltd パーフルオロポリエーテルコンパウンド組成物
WO2015020020A1 (ja) * 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 ポリイミド樹脂組成物及びポリイミド樹脂-繊維複合材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3284965B1 (en) * 2016-08-19 2021-12-15 Mahle International GmbH Sliding component and method

Also Published As

Publication number Publication date
GB2544197A (en) 2017-05-10
JP2015232127A (ja) 2015-12-24
GB2543431B (en) 2021-04-07
WO2015174537A1 (ja) 2015-11-19
JP2015232391A (ja) 2015-12-24
JPWO2015174537A1 (ja) 2017-04-20
JP6705744B2 (ja) 2020-06-03
JP7015290B2 (ja) 2022-02-02
GB2543431A (en) 2017-04-19
JP6705743B2 (ja) 2020-06-03
US10760031B2 (en) 2020-09-01
DE112015002269T5 (de) 2017-02-09
US20170088791A1 (en) 2017-03-30
DE112015002267T5 (de) 2017-03-02
JP2020034157A (ja) 2020-03-05
JPWO2015174538A1 (ja) 2017-05-25
US20170088792A1 (en) 2017-03-30
JP2015232129A (ja) 2015-12-24
JP2015232128A (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
WO2015174538A1 (ja) 摺動用樹脂組成物及び摺動部材
JP6826466B2 (ja) 摺動部材
US10422380B2 (en) Sliding member
EP3284965B1 (en) Sliding component and method
JP5905699B2 (ja) 燃料噴射ポンプ用黒鉛添加軸受
US10995296B2 (en) Sliding member
EP3263932B1 (en) Sliding member
JP6649108B2 (ja) 摺動装置
JP2009293660A (ja) すべり軸受及びそのすべり軸受を組み付けた軸受装置
JP2018119593A (ja) 摺動部材
JP2013204808A (ja) すべり軸受
JP5850777B2 (ja) 摺動部材
JP6704832B2 (ja) 摺動装置
JP6667613B2 (ja) Al基軸受合金及びこれを用いたすべり軸受
RU2476736C1 (ru) Подшипник скольжения с наноструктурным антифрикционным керамическим покрытием
JP4584101B2 (ja) 樹脂系摺動部材及びその製造方法
RU2485365C1 (ru) Подшипник скольжения с наноструктурным металлокерамоматричным антифрикционным покрытием
US20220176673A1 (en) Sliding member and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15791934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201618815

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150515

WWE Wipo information: entry into national phase

Ref document number: 1618815.3

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 2016519418

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15311262

Country of ref document: US

Ref document number: 112015002267

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15791934

Country of ref document: EP

Kind code of ref document: A1