[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015146330A1 - 液晶表示素子 - Google Patents

液晶表示素子 Download PDF

Info

Publication number
WO2015146330A1
WO2015146330A1 PCT/JP2015/053747 JP2015053747W WO2015146330A1 WO 2015146330 A1 WO2015146330 A1 WO 2015146330A1 JP 2015053747 W JP2015053747 W JP 2015053747W WO 2015146330 A1 WO2015146330 A1 WO 2015146330A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
carbons
ring
crystal display
Prior art date
Application number
PCT/JP2015/053747
Other languages
English (en)
French (fr)
Inventor
好優 古里
将之 齋藤
Original Assignee
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jnc石油化学株式会社 filed Critical Jnc株式会社
Priority to KR1020167020768A priority Critical patent/KR20160138948A/ko
Priority to CN201580010146.7A priority patent/CN106164758A/zh
Priority to EP15768285.7A priority patent/EP3125033B1/en
Priority to JP2016510106A priority patent/JP6893784B2/ja
Priority to US15/122,175 priority patent/US10041000B2/en
Publication of WO2015146330A1 publication Critical patent/WO2015146330A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0633Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1096Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors containing azo linkage in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3098Unsaturated non-aromatic rings, e.g. cyclohexene rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • C09K2019/0411Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems containing a chlorofluoro-benzene, e.g. 2-chloro-3-fluoro-phenylene-1,4-diyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3027Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3028Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon single bonds
    • C09K2019/3036Cy-C2H4-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring
    • C09K2019/3425Six-membered ring with oxygen(s) in fused, bridged or spiro ring systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13706Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having positive dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric

Definitions

  • the present invention relates to a liquid crystal display element, a liquid crystal composition having a negative dielectric anisotropy used in this element, and a liquid crystal alignment film.
  • the present invention relates to a liquid crystal display element having modes such as TN, OCB, IPS, VA, FFS, and FPA.
  • the present invention also relates to a polymer-supported alignment type liquid crystal display element.
  • the classification based on the operation mode of the liquid crystal molecules is as follows: PC (phase change), TN (twisted nematic), STN (super twisted nematic), ECB (electrically controlled birefringence), OCB (optically compensated bend), IPS. (In-plane switching), VA (vertical alignment), FFS (fringe field switching), FPA (field-induced photo-reactive alignment) mode.
  • the classification based on the element drive system is PM (passive matrix) and AM (active matrix). PM is classified into static, multiplex, etc., and AM is classified into TFT (thin film insulator), MIM (metal film insulator), and the like. TFTs are classified into amorphous silicon and polycrystalline silicon. The latter is classified into a high temperature type and a low temperature type according to the manufacturing process.
  • the classification based on the light source includes a reflection type using natural light, a transmission type using backlight, and a semi-transmission type using both natural light and backlight.
  • the liquid crystal display element contains a liquid crystal composition having a nematic phase.
  • This composition has suitable properties. By improving the characteristics of the composition, an AM device having good characteristics can be obtained. The relationship between the two characteristics is summarized in Table 1 below. The characteristics of the composition will be further described based on a commercially available AM device.
  • the temperature range of the nematic phase is related to the temperature range in which the device can be used.
  • a preferred upper limit temperature of the nematic phase is about 70 ° C. or more, and a preferred lower limit temperature of the nematic phase is about ⁇ 10 ° C. or less.
  • the viscosity of the composition is related to the response time of the device. A short response time is preferred for displaying moving images on the device. A shorter response time is desirable even at 1 millisecond. Therefore, a small viscosity in the composition is preferred. Small viscosities at low temperatures are more preferred.
  • the optical anisotropy of the composition is related to the contrast ratio of the device. Depending on the mode of the device, a large optical anisotropy or a small optical anisotropy, ie an appropriate optical anisotropy is required.
  • the product ( ⁇ n ⁇ d) of the optical anisotropy ( ⁇ n) of the composition and the cell gap (d) of the device is designed to maximize the contrast ratio.
  • the appropriate product value depends on the type of operation mode. This value is about 0.45 ⁇ m for a mode element such as TN, about 0.30 ⁇ m to about 0.40 ⁇ m for a VA mode element, and about 0.20 ⁇ m for an IPS mode or FFS mode element. To about 0.30 ⁇ m.
  • a composition having a large optical anisotropy is preferable for a device having a small cell gap.
  • a large dielectric anisotropy in the composition contributes to a low threshold voltage, a small power consumption and a large contrast ratio in the device. Therefore, a large dielectric anisotropy is preferable.
  • the stability of the composition to ultraviolet light and heat is related to the lifetime of the device. When this stability is high, the lifetime of the device is long. Such characteristics are preferable for an AM device used in a liquid crystal projector, a liquid crystal television, and the like.
  • a liquid crystal composition containing a polymer is used.
  • a composition to which a small amount of a polymerizable compound is added is injected into the device.
  • the composition is irradiated with ultraviolet rays while applying a voltage between the substrates of the device.
  • the polymerizable compound polymerizes to form a polymer network in the composition.
  • the response time of the device is shortened, and image burn-in is improved.
  • Such an effect of the polymer can be expected for a device having modes such as TN, ECB, OCB, IPS, VA, FFS, and FPA.
  • a composition having a positive dielectric anisotropy is used for an AM device having a TN mode.
  • a composition having a negative dielectric anisotropy is used in an AM device having a VA mode.
  • an AM device having an IPS mode or an FFS mode a composition having a positive or negative dielectric anisotropy is used.
  • a composition having a positive or negative dielectric anisotropy is used in a polymer-supported alignment (PSA) type AM device.
  • PSA polymer-supported alignment
  • An example of a liquid crystal composition having negative dielectric anisotropy is disclosed in Patent Document 1 below.
  • liquid crystal alignment film plays such a role.
  • the liquid crystal alignment film is one of the important elements related to the display quality of the liquid crystal display element, and the role of the liquid crystal alignment film is becoming important year by year as the quality of the display element is improved.
  • the liquid crystal alignment film is formed using a liquid crystal aligning agent.
  • the liquid crystal aligning agent mainly used is a solution (varnish) obtained by dissolving polyamic acid or soluble polyimide in an organic solvent. After this solution is applied to the substrate, it is formed by means such as heating to form a polyimide-based liquid crystal alignment film.
  • the rubbing method is currently used industrially as a method for imparting a function of aligning liquid crystal molecules to this film (alignment treatment).
  • the rubbing method is a process in which the surface of the liquid crystal alignment film is rubbed in one direction using a cloth in which fibers of nylon, rayon, polyester, or the like are planted, and this makes it possible to obtain uniform alignment of liquid crystal molecules.
  • a photo-alignment method for irradiating light to a photoreactive film to perform alignment treatment includes photolysis, photoisomerization, photodimerization, photocrosslinking (for example, (See Non-Patent Document 1 and Patent Documents 2 to 6.)
  • the photo-alignment method has higher alignment uniformity than the rubbing method, and the non-contact alignment method does not damage the film, reducing the causes of display defects such as dust generation and static electricity. There are advantages such as being able to.
  • photo-alignment film a polyimide using tetracarboxylic dianhydride, particularly cyclobutane tetracarboxylic dianhydride as a raw material, can align liquid crystal molecules uniformly and stably (see, for example, Patent Document 2).
  • This is a method of giving a function of aligning liquid crystal molecules in a certain direction by irradiating a film formed on a substrate with ultraviolet rays or the like to cause a chemical change in polyimide.
  • the photo-alignment method has a smaller anchoring energy than the rubbing method and the orientation of liquid crystal molecules is inferior, which may cause a decrease in response speed and burn-in of the liquid crystal display element.
  • Patent Document 5 we have found a method of applying a polyamic acid to a substrate, irradiating with light, and then baking, and obtained a photo-alignment film having a large anchoring energy by this method.
  • a photo-alignment film using a polyamic acid produced using a diamine having an azo group as a raw material has a low light transmittance, and there is a possibility that the luminance of the liquid crystal display element is lowered.
  • One object of the present invention is a liquid crystal display device having characteristics such as a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, a long lifetime, and a small flicker ratio.
  • Another object is a liquid crystal composition used for such a device.
  • Other objectives are: high maximum temperature of nematic phase, low minimum temperature of nematic phase, small viscosity, appropriate optical anisotropy, negatively large dielectric anisotropy, large specific resistance, high stability against ultraviolet rays, high heat resistance
  • the liquid crystal composition satisfies at least one characteristic in characteristics such as high stability and a large elastic constant.
  • Another object is a liquid crystal composition having an appropriate balance regarding at least two properties.
  • the present invention provides an electrode group formed on one or both of a pair of opposed substrates, a plurality of active elements connected to the electrode group, and opposing surfaces of the pair of substrates.
  • the present invention relates to a liquid crystal display element including the formed liquid crystal alignment film and a liquid crystal composition sandwiched between the pair of substrates, a liquid crystal composition included in the element, and a liquid crystal alignment film included in the element.
  • One advantage of the present invention is a liquid crystal display device having characteristics such as a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, a long lifetime, and a small flicker ratio.
  • Another advantage is a liquid crystal composition used in such a device.
  • Another advantage is the high maximum temperature of the nematic phase, the low minimum temperature of the nematic phase, small viscosity, suitable optical anisotropy, negative large dielectric anisotropy, large specific resistance, high stability against ultraviolet light, high heat resistance
  • the liquid crystal composition satisfies at least one characteristic in characteristics such as high stability and a large elastic constant.
  • Another advantage is a liquid crystal composition having an appropriate balance with respect to at least two properties.
  • liquid crystal composition and “liquid crystal display element” may be abbreviated as “composition” and “element”, respectively.
  • “Liquid crystal display element” is a general term for liquid crystal display panels and liquid crystal display modules.
  • “Liquid crystal compound” is a compound having a liquid crystal phase such as a nematic phase and a smectic phase, and a liquid crystal phase, but has a composition for the purpose of adjusting characteristics such as temperature range, viscosity, and dielectric anisotropy of the nematic phase. It is a general term for compounds mixed with products.
  • This compound has a six-membered ring such as 1,4-cyclohexylene and 1,4-phenylene, and has a rod-like molecular structure.
  • the “polymerizable compound” is a compound added for the purpose of forming a polymer in the composition.
  • the liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds.
  • the ratio (content) of the liquid crystal compound is expressed as a percentage by weight (% by weight) based on the weight of the liquid crystal composition.
  • additives such as an optically active compound, an antioxidant, an ultraviolet absorber, a dye, an antifoaming agent, a polymerizable compound, a polymerization initiator, and a polymerization inhibitor are added to the liquid crystal composition.
  • the ratio (addition amount) of the additive is represented by a weight percentage (% by weight) based on the weight of the liquid crystal composition, similarly to the ratio of the liquid crystal compound. Weight parts per million (ppm) may be used.
  • the ratio of the polymerization initiator and the polymerization inhibitor is exceptionally expressed based on the weight of the polymerizable compound.
  • the upper limit temperature of the nematic phase may be abbreviated as “the upper limit temperature”.
  • “Lower limit temperature of nematic phase” may be abbreviated as “lower limit temperature”.
  • High voltage holding ratio means that the device has a large voltage holding ratio not only at room temperature in the initial stage but also at a temperature close to the upper limit temperature of the nematic phase. It means having a large voltage holding ratio even at a temperature close to.
  • the expression “increasing the dielectric anisotropy” means that when the composition has a positive dielectric anisotropy, this value increases positively, and the composition having a negative dielectric anisotropy. For objects, this means that this value increases negatively.
  • the expression “at least one 'A' may be replaced by 'B'” means that the number of 'A' is arbitrary. When the number of “A” is one, the position of “A” is arbitrary, and when the number of “A” is two or more, the positions can be selected without limitation. This rule also applies to the expression “at least one 'A' is replaced by 'B'”.
  • the expression “in alkyl, at least one —CH 2 — may be replaced by —O— or —S—” includes —OCH 3 , —CH 2 OCH 3 , —CH 2 OCH 2 CH Groups such as 2 OCH 3 , —SCH 2 CH 2 CH 3 , —CH 2 CH 2 SCH 3 , —CH 2 OCH 2 CH 2 SCH 3 and the like are included.
  • the symbol of the terminal group R 1 is used for a plurality of compounds.
  • two groups represented by two arbitrary R 1 may be the same or different.
  • R 1 of the compound (1-1) is ethyl and R 1 of the compound (1-2) is ethyl.
  • R 1 of compound (1-1) is ethyl and R 1 of compound (1-2) is propyl.
  • This rule also applies to symbols such as other end groups.
  • Formula (1) when a is 2, two rings A exist. In this compound, the two rings represented by the two rings A may be the same or different. This rule also applies to any two rings A when a is greater than 2. This rule also applies to symbols such as Z 1 and ring C.
  • 2-Fluoro-1,4-phenylene means the following two divalent groups.
  • fluorine may be leftward (L) or rightward (R).
  • This rule also applies to asymmetric divalent groups such as tetrahydropyran-2,5-diyl.
  • This rule also applies to linking groups such as carbonyloxy (—COO— and —OCO—).
  • the liquid crystal alignment film used in the liquid crystal display element of the present invention contains a polymer having a photoreactive group.
  • the polymer include polyamic acid and derivatives thereof.
  • at least one of a tetracarboxylic dianhydride having a photoreactive group or a diamine having a photoreactive group is an essential component.
  • the other component is other tetracarboxylic dianhydrides or other diamines.
  • examples of other tetracarboxylic dianhydrides include aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, aromatic tetracarboxylic dianhydrides, and the like.
  • diamines include non-side chain diamines, side chain diamines, and hydrazides.
  • derivative of polyamic acid include soluble polyimide, polyamic acid ester, polyhydrazide acid, polyamic acid amide, polyhydrazide acid-amide acid, and the like.
  • a polyimide formed by the dehydration ring-closing reaction of all aminos and carboxyls of the polyamic acid 2) a partial polyimide formed by the partial dehydration ring-closing reaction of the polyamic acid, and 3) polyamic Polyamic acid ester formed by converting carboxyl of acid into ester, 4) polyamic acid-polyamide copolymer obtained by reacting a mixture of tetracarboxylic dianhydride and organic dicarboxylic acid, and 5) this Examples thereof include a polyamideimide produced by subjecting a part or all of the polyamic acid-polyamide copolymer to a dehydration ring-closing reaction.
  • the polyamic acid or this derivative may be a single compound or a mixture of two or more compounds.
  • An alignment film formed from a polyamic acid having a photoreactive group or a derivative thereof (or a diamine having a photoreactive group) may be simply referred to as “photo-alignment film”.
  • the “tetracarboxylic dianhydride” may be a single compound or a mixture of two or more tetracarboxylic dianhydrides. This rule also applies to diamines.
  • the present invention includes the following items.
  • Item 1 An electrode group formed on one or both of a pair of substrates disposed opposite to each other, a plurality of active elements connected to the electrode group, and a liquid crystal formed on surfaces of the pair of substrates facing each other
  • a liquid crystal display element comprising an alignment film and a liquid crystal composition sandwiched between the pair of substrates.
  • Item 2 The liquid crystal display device according to item 1, wherein the liquid crystal composition contains at least one compound selected from the group of compounds represented by formula (1) as a first component.
  • R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or Ring having 1 to 12 carbon atoms in which at least one hydrogen is replaced by halogen;
  • ring A and ring C are each independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4- Phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, or tetrahydropyran-2,5-diyl;
  • ring B is 2,3-difluoro-1,4-phenylene, 2- Chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,5
  • Item 3. The liquid crystal display device according to item 2, wherein the first component is at least one compound selected from the group of compounds represented by formulas (1-1) to (1-20).
  • R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, carbon The alkenyloxy having 2 to 12 carbon atoms or the alkyl having 1 to 12 carbon atoms in which at least one hydrogen is replaced by halogen.
  • Item 4. The liquid crystal display element according to any one of items 1 to 3, wherein the ratio of the first component is in the range of 10% by weight to 90% by weight based on the weight of the liquid crystal composition.
  • Item 5 The liquid crystal display device according to any one of items 1 to 4, wherein the liquid crystal composition contains at least one compound selected from the group of compounds represented by formula (2) as the second component.
  • R 3 and R 4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, and at least one hydrogen is replaced by halogen.
  • Item 6. The liquid crystal display device according to item 5, wherein the second component is at least one compound selected from the group of compounds represented by formulas (2-1) to (2-13).
  • R 3 and R 4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, It is alkyl having 1 to 12 carbons in which one hydrogen is replaced with halogen, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced with halogen.
  • Item 7 The liquid crystal display device according to item 5 or 6, wherein the ratio of the second component is in the range of 10% by weight to 90% by weight based on the weight of the liquid crystal composition.
  • Item 8 The liquid crystal display device according to any one of items 1 to 7, wherein the liquid crystal composition contains at least one polymerizable compound selected from the group of compounds represented by formula (3) as an additive component.
  • ring F and ring I are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidine- 2-yl or pyridin-2-yl, in which at least one hydrogen is halogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or at least one hydrogen being halogen.
  • ring G is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl Naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, Phthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5-diyl, , 3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl, in
  • At least one hydrogen may be replaced by fluorine or chlorine; d is 0, 1, or 2; e, f, and g are independently 0, 1, 2, 3, or 4 And the sum of e, f, and g is 1 or greater.
  • P 1 , P 2 , and P 3 are each independently a polymerizable group selected from the group of groups represented by Formula (P-1) to Formula (P-6).
  • Item 9. A liquid crystal display device according to item 8.
  • M 1 , M 2 , and M 3 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or at least one hydrogen is replaced by halogen
  • At least one of Sp 1 and g Sp 3 is alkylene in which at least one —CH 2 — is replaced by —O—, —COO—, —OCO—, or —OCOO—.
  • Item 10 The liquid crystal display device according to item 8 or 9, wherein the additive component is at least one polymerizable compound selected from the group of compounds represented by formulas (3-1) to (3-27).
  • the additive component is at least one polymerizable compound selected from the group of compounds represented by formulas (3-1) to (3-27).
  • P 4 , P 5 and P 6 are independently from the group of groups represented by formula (P-1) to formula (P-3).
  • Selected polymerizable groups are: In formula (P-1) to formula (P-3), M 1 , M 2 , and M 3 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or at least one hydrogen is replaced by halogen In formulas (3-1) to (3-27), Sp 1 , Sp 2 , and Sp 3 are each independently a single bond or a carbon number of 1 to 10 In which at least one —CH 2 — may be replaced by —O—, —COO—, —OCO—, or —OCOO—, and at least one —CH 2 —CH 2 — May be replaced with —CH ⁇ CH— or —C ⁇ C—, in which at least one hydrogen may be replaced with fluorine or chlorine.
  • Item 11 The liquid crystal display device according to any one of items 8 to 10, wherein the ratio of the additive component is in the range of 0.03% by weight to 10% by weight based on the weight of the liquid crystal composition.
  • Item 12. The liquid crystal display element according to any one of items 1 to 11, wherein the liquid crystal alignment film contains a polymer having a photoreactive group.
  • Item 13 The liquid crystal display element according to item 12, wherein the polymer is polyamic acid, polyimide, polyamic acid ester, or a mixture thereof.
  • Polymers are azobenzene derivatives, stilbene derivatives, tolan derivatives, diphenylbutadiyne derivatives, spiropyran derivatives, spirobenzopyran derivatives, ⁇ -aryl- ⁇ -keto acid derivatives, ⁇ -hydrazono- ⁇ -keto acid derivatives, chalcone derivatives, azo Derivatives, benzylidenephthalimidene derivatives, hemithioindigo derivatives, thioindigo derivatives, spirooxazine derivatives, cinnamaldehyde derivatives, retinal derivatives, fulgide derivatives, diarylethene derivatives, polymethine compounds, benzothiazolinospiropyran derivatives, benzochiopyran pyropyran derivatives, and these Item 14.
  • Item 15 The liquid crystal display according to any one of Items 12 to 14, wherein the polymer is derived from a compound having a photoreactive group selected from the group of groups represented by Formulas (I) to (VII): element.
  • R 7 is a divalent organic group having an aromatic ring.
  • Item 16 A polymer derived from at least one of tetracarboxylic dianhydride and diamine, wherein the liquid crystal alignment film has a photoreactive group selected from the group of groups represented by formulas (I) to (VII) Item 12.
  • Item 17. The liquid crystal display element according to item 16, wherein the liquid crystal alignment film contains a polymer derived from a compound represented by formula (PAN-1) or (PAN-2).
  • Item 18 The liquid crystal display element according to item 16, wherein the liquid crystal alignment film contains a polymer derived from at least one compound selected from compounds represented by formulas (PDI-1) to (PDI-8).
  • a group in which the bond position is not fixed to any carbon atom constituting the ring indicates that the bond position in the ring is any carbon atom.
  • R 8 is —CH 3 , —OCH 3 , —CF 3 , or —COOCH 3 ; h is an integer from 0 to 2.
  • Item 19 The liquid crystal display element according to item 16, wherein the liquid crystal alignment film contains a polymer derived from a compound represented by formula (PDI-6-1) or formula (PDI-7-1).
  • Item 20 Items 16 to 19 in which the liquid crystal alignment film further contains a polymer derived by using at least one compound selected from the group of compounds represented by formulas (AN-I) to (AN-VII): The liquid crystal display element according to any one of the above.
  • X is a single bond or —CH 2 —;
  • G is a single bond, alkylene having 1 to 20 carbons, —CO—, —O—, —S—, —SO 2 —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 —;
  • Y is one selected from the group of trivalent groups: In these groups, at least one hydrogen may be replaced by methyl, ethyl or phenyl;
  • ring J is a monocyclic hydrocarbon group having 3 to 10 carbon atoms or a condensed polycyclic ring having 6 to 30 carbon atoms In which at least one hydrogen may be replaced by methyl, ethyl or phenyl, and the bond on the ring is linked to any carbon constituting the ring.
  • X 10 is alkylene having 2 to 6 carbon atoms; Me is methyl; Ph is phenyl; G 10 is —O -, -COO-, or -OCO-; i is 0 or 1;
  • the liquid crystal alignment film has the formula (AN-1-1), formula (AN-1-13), formula (AN-2-1), formula (AN-3-1), formula (AN-3-2), Formula (AN-4-5), Formula (AN-4-17), Formula (AN-4-21), Formula (AN-4-28), Formula (AN-4-29), Formula (AN-7) -2), a polymer derived by further using at least one compound selected from the group of compounds represented by formula (AN-10) and formula (AN-11-3), 20.
  • the liquid crystal display element according to any one of items 1 to 19.
  • j is an integer of 1 to 12.
  • Item 22 Item 16 to 20 in which the liquid crystal alignment film contains a polymer derived by further using at least one compound selected from the group of compounds represented by formula (DI-1) to formula (DI-15).
  • the liquid crystal display element according to any one of the above.
  • k is an integer of 1 to 12;
  • G 21 is a single bond, —NH—, —O—, —S—, —SS— , —SO 2 —, —CO—, —CONH—, —CON (CH 3 ) —, —NHCO—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, — (CH 2 ) m —, —O— (CH 2 ) m —O—, —N (CH 3 ) — (CH 2 ) n —N (CH 3 ) —, or —S— (CH 2 ) m —S—;
  • n is an integer from 1 to 5;
  • G 22 is a single bond, —O—, —S—, —CO—, —C (CH 3 ) 2 —, — C (CF 3) 2 -, or
  • R 10 and R 11 are independently alkyl or phenyl having 1 to 3 carbons; G 23 is alkylene or phenylene having 1 to 6 carbons; Or phenylene in which at least one hydrogen is replaced by alkyl; p is an integer of 1 to 10; R 12 is alkyl of 1 to 5 carbons, alkoxy of 1 to 5 carbons or chlorine Q is an integer from 0 to 3; r is an integer from 0 to 4; R 13 is hydrogen, alkyl having 1 to 4 carbons, phenyl, or benzyl; G 24 is —CH 2 or -NH-; G 25 is a single bond, alkylene having 2 to 6 carbon atoms or 1,4-phenylene; s is 0 or 1; and at any carbon atom constituting the ring Join position is Groups which are not constant indicates that the binding position in the ring is either carbon atoms; binding position of -NH 2 bonded to the benzene ring is
  • G 31 represents a single bond, alkylene having 1 to 20 carbon atoms, —CO—, —O—, —S—, —SO 2 —, —C ( CH 3 ) 2 —, or —C (CF 3 ) 2 —;
  • ring K is a cyclohexane ring, a benzene ring, or a naphthalene ring, in which at least one hydrogen is methyl, ethyl, or Ring L may be a cyclohexane ring or a benzene ring, in which at least one hydrogen may be replaced with methyl, ethyl, or phenyl.
  • the liquid crystal alignment film has the formula (DI-1-3), (DI-4-1), (DI-5-1), (DI-5-5), (DI-5-9), (DI-5 -12), (DI-5-22), (DI-5-28), (DI-5-30), (DI-5-31), (DI-7-3), (DI-9-1) ), (DI-13-1), (DI-13-2), (DI-14-1), and (DI-14-2), at least one compound selected from the group of compounds represented by Item 21.
  • the liquid crystal display element according to any one of items 16 to 20, further comprising a polymer derived by use.
  • the operation mode of the liquid crystal display element is VA mode, ECB mode, OCB mode, IPS mode, FFS mode, PSA mode, or FPA mode, and the driving method of the liquid crystal display element is any one of items 1 to 23 2.
  • a liquid crystal display device according to item 1.
  • Item 25 The liquid crystal display element according to any one of items 1 to 24, wherein an operation mode of the liquid crystal display element is an IPS mode or an FFS mode, and a driving method of the liquid crystal display element is an active matrix method.
  • Item 26 Item 12. A liquid crystal composition used for the liquid crystal display device according to any one of items 2 to 11.
  • Item 27 The liquid crystal composition according to item 26, wherein the elastic constant (K11) at 25 ° C. is 11 pN or more and the elastic constant (K33) is 11 pN or more.
  • Item 28 A liquid crystal display device comprising the liquid crystal composition according to item 26 or 27 and having a flicker rate at 25 ° C. in the range of 0% to 1%.
  • Item 24. A liquid crystal alignment film used for the liquid crystal display element according to any one of items 12 to 23.
  • Item 30 The liquid crystal alignment film according to Item 29, wherein the volume resistivity ( ⁇ ) at 25 ° C. is 1.0 ⁇ 10 14 ⁇ cm or more.
  • Item 31 The liquid crystal alignment film according to Item 29, wherein the dielectric constant ( ⁇ ) at 25 ° C. is in the range of 3 to 5.
  • the present invention includes the following items.
  • A The above composition further containing at least one of additives such as an optically active compound, an antioxidant, an ultraviolet absorber, a dye, an antifoaming agent, a polymerizable compound, a polymerization initiator, and a polymerization inhibitor.
  • B An AM device containing the above composition.
  • C The above-mentioned composition further containing a polymerizable compound, and a polymer-supported orientation (PSA) type AM device containing this composition.
  • D A polymer-supported orientation (PSA) type AM device comprising the above-described composition, wherein the polymerizable compound in the composition is polymerized.
  • (E) A device containing the above composition and having a mode of PC, TN, STN, ECB, OCB, IPS, VA, FFS, or FPA.
  • (F) A transmissive device containing the above composition.
  • (G) Use of the above composition as a composition having a nematic phase.
  • (H) Use as an optically active composition by adding an optically active compound to the above composition.
  • the present invention includes the following items. (I) containing at least one compound selected from the group of compounds represented by formula (1-1) to formula (1-20) as the first component, and formula (1-1), formula (1) -2), Formula (1-3), Formula (1-5), Formula (1-7), Formula (1-8), Formula (1-10), Formula (1-14), Formula (1- 17)
  • a liquid crystal display comprising the above liquid crystal composition, wherein the total proportion of the compounds represented by formula (1-18) is in the range of 50 wt% to 100 wt% based on the weight of the first component element.
  • the liquid crystal composition in the liquid crystal display element of the present invention will be described in the following order.
  • First, the constitution of component compounds in the composition will be described.
  • Second, the main characteristics of the component compounds and the main effects of the compounds on the composition will be explained.
  • Third, the combination of components in the composition, the preferred ratio of the components, and the basis thereof will be described.
  • Fourth, a preferred form of the component compound will be described.
  • Fifth, preferred component compounds are shown.
  • Sixth, additives that may be added to the composition will be described.
  • Eighth, the use of the composition will be described.
  • the liquid crystal alignment film will be described in the following order.
  • composition of the component compounds in the composition will be described.
  • the composition of the present invention is classified into Composition A and Composition B.
  • the composition A may further contain other liquid crystal compounds, additives and the like in addition to the liquid crystal compound selected from the compound (1) and the compound (2).
  • the “other liquid crystal compound” is a liquid crystal compound different from the compound (1) and the compound (2).
  • Such compounds are mixed into the composition for the purpose of further adjusting the properties.
  • Additives include optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerizable compounds, polymerization initiators, polymerization inhibitors, and the like.
  • Composition B consists essentially of a liquid crystalline compound selected from compound (1) and compound (2). “Substantially” means that the composition may contain an additive but no other liquid crystal compound. Composition B has fewer components than composition A. From the viewpoint of reducing the cost, the composition B is preferable to the composition A. The composition A is preferable to the composition B from the viewpoint that the characteristics can be further adjusted by mixing other liquid crystal compounds.
  • the main characteristics of the component compounds and the main effects of the compounds on the characteristics of the composition will be explained.
  • the main characteristics of the component compounds are summarized in Table 2 based on the effects of the present invention.
  • L means large or high
  • M means moderate
  • S means small or low.
  • L, M, and S are classifications based on a qualitative comparison among the component compounds, and 0 (zero) means that the value is zero or the value is close to zero.
  • Compound (1) increases the dielectric anisotropy and decreases the minimum temperature.
  • Compound (2) decreases the viscosity or increases the maximum temperature.
  • Compound (3) gives a polymer by polymerization, and this polymer shortens the response time of the device and improves image burn-in.
  • a desirable ratio of the first component is approximately 10% by weight or more for increasing the dielectric anisotropy, and approximately 90% by weight or less for decreasing the minimum temperature.
  • a more desirable ratio is in the range of approximately 20% by weight to approximately 85% by weight.
  • a particularly desirable ratio is in the range of approximately 30% by weight to approximately 85% by weight.
  • a desirable ratio of the second component is approximately 10% by weight or more for increasing the maximum temperature or decreasing the viscosity, and approximately 90% by weight or less for increasing the dielectric anisotropy.
  • a more desirable ratio is in the range of approximately 15% by weight to approximately 75% by weight.
  • a particularly preferred ratio is in the range of approximately 15% by weight to approximately 60% by weight.
  • Compound (3) is added to the composition for the purpose of adapting to a polymer-supported orientation type device.
  • a desirable ratio of the additive is approximately 0.03% by weight or more for aligning liquid crystal molecules based on the weight of the liquid crystal composition, and approximately 10% by weight or less for preventing display defects of the device.
  • a more desirable ratio is in the range of approximately 0.1% by weight to approximately 2% by weight.
  • a particularly preferred ratio is in the range of approximately 0.2% by weight to approximately 1% by weight.
  • R 1 and R 2 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or 2 to 12 carbons. Or an alkyl having 1 to 12 carbon atoms in which at least one hydrogen is replaced by a halogen. Desirable R 1 or R 2 is alkyl having 1 to 12 carbons for increasing the stability, and alkoxy having 1 to 12 carbons for increasing the dielectric anisotropy.
  • R 3 and R 4 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, 1 to 12 carbons in which at least one hydrogen is replaced by halogen.
  • Desirable R 3 or R 4 is alkenyl having 2 to 12 carbons for decreasing the viscosity, and alkyl having 1 to 12 carbons for increasing the stability.
  • Alkyl is linear or branched and does not include cyclic alkyl. Linear alkyl is preferred over branched alkyl. The same applies to terminal groups such as alkoxy and alkenyl.
  • Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. More desirable alkyl is ethyl, propyl, butyl, pentyl, or heptyl for decreasing the viscosity.
  • alkyl in which at least one hydrogen is replaced by halogen are fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl, 7-fluoroheptyl, or 8-Fluorooctyl. Further preferred examples are 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl or 5-fluoropentyl for increasing the dielectric anisotropy.
  • Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, or heptyloxy. More desirable alkoxy is methoxy or ethoxy for decreasing the viscosity.
  • Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl. More desirable alkenyl is vinyl, 1-propenyl, 3-butenyl, or 3-pentenyl for decreasing the viscosity.
  • the preferred configuration of —CH ⁇ CH— in these alkenyls depends on the position of the double bond.
  • Trans is preferable in alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl for decreasing the viscosity.
  • Cis is preferred for alkenyl such as 2-butenyl, 2-pentenyl, and 2-hexenyl.
  • Preferred alkenyloxy is vinyloxy, allyloxy, 3-butenyloxy, 3-pentenyloxy, or 4-pentenyloxy. More preferable alkenyloxy is allyloxy or 3-butenyloxy for decreasing the viscosity.
  • alkenyl in which at least one hydrogen is replaced by halogen include 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro-4 -Pentenyl, or 6,6-difluoro-5-hexenyl. Further preferred examples are 2,2-difluorovinyl or 4,4-difluoro-3-butenyl for decreasing the viscosity.
  • Ring A and Ring C are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, Or tetrahydropyran-2,5-diyl.
  • Preferred examples of “1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine” are 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene or 2-chloro- 3-fluoro-1,4-phenylene.
  • Preferred ring A or ring C is 1,4-cyclohexylene for decreasing the viscosity, tetrahydropyran-2,5-diyl for increasing the dielectric anisotropy, and for increasing the optical anisotropy.
  • 1,4-phenylene As the configuration of 1,4-cyclohexylene, trans is preferable to cis for increasing the maximum temperature. Tetrahydropyran-2,5-diyl is
  • Ring B is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4, 5-trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl.
  • Preferred ring B is 2,3-difluoro-1,4-phenylene for decreasing the viscosity, and 2-chloro-3-fluoro-1,4-phenylene for decreasing the optical anisotropy. In order to increase the anisotropy, 7,8-difluorochroman-2,6-diyl.
  • Ring D and ring E are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 2,5-difluoro-1,4-phenylene.
  • Preferred ring D or ring E is 1,4-cyclohexylene for decreasing the viscosity or increasing the maximum temperature, and 1,4-phenylene for decreasing the minimum temperature.
  • Z 1 and Z 2 are independently a single bond, ethylene, carbonyloxy, or methyleneoxy. Desirable Z 1 or Z 2 is a single bond for decreasing the viscosity, ethylene for decreasing the minimum temperature, and methyleneoxy for increasing the dielectric anisotropy.
  • Z 3 is a single bond, ethylene or carbonyloxy. Desirable Z 3 is a single bond for increasing the stability.
  • A is 0, 1, 2, or 3, b is 0 or 1, and the sum of a and b is 3 or less.
  • Preferred a is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature.
  • Preferred b is 0 for decreasing the viscosity, and 1 for decreasing the minimum temperature.
  • c is 1, 2 or 3.
  • Preferred c is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature.
  • P 1 , P 2 , and P 3 are independently a polymerizable group.
  • Preferred P 1 , P 2 , or P 3 is a polymerizable group selected from the group of groups represented by formula (P-1) to formula (P-6). More desirable P 1 , P 2 , or P 3 is a group (P-1) or a group (P-2).
  • a particularly preferred group (P-1) is —OCO—CH ⁇ CH 2 or —OCO—C (CH 3 ) ⁇ CH 2 .
  • the wavy line from the group (P-1) to the group (P-6) indicates a binding site.
  • M 1 , M 2 , and M 3 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or at least one hydrogen is replaced by halogen The alkyl having 1 to 5 carbon atoms.
  • Preferred M 1 , M 2 or M 3 is hydrogen or methyl for increasing the reactivity. More preferred M 1 is methyl, and more preferred M 2 or M 3 is hydrogen.
  • e number of P 1, d ⁇ f-number of P 2, and g-number of at least two of the P 3 is a group (P-1)
  • any of P 1, P 2, and P 3 The two M 1 , M 2 , or M 3 may be the same or different. The same applies to the group (P-2) or the group (P-3).
  • e P 1 and g P 3 are groups (P-4), at least one of e Sp 1 and g Sp 3 is at least one —CH 2 — Is alkylene substituted with —O—, —COO—, —OCO—, or —OCOO—. That is, not all of e P 1 and g P 3 are alkenyl such as 1-propenyl.
  • P 4 , P 5 , and P 6 are independently groups represented by formulas (P-1) to (P-3).
  • Preferable P 4 , P 5 or P 6 is a group (P-1) or a group (P-2).
  • Further preferred group (P-1) is —OCO—CH ⁇ CH 2 or —OCO—C (CH 3 ) ⁇ CH 2 .
  • the wavy line from the group (P-1) to the group (P-3) indicates a bonding site.
  • Any two of M 1 , M 2 , or M 3 may be the same or different. The same applies to the group (P-2) or the group (P-3).
  • Sp 1 , Sp 2 , and Sp 3 are each independently a single bond or alkylene having 1 to 10 carbons, in which at least one —CH 2 — is —O—, —COO—, —OCO—, or —OCOO— may be substituted, and at least one —CH 2 —CH 2 — may be substituted with —CH ⁇ CH— or —C ⁇ C— In this group, at least one hydrogen may be replaced by fluorine or chlorine.
  • Preferred Sp 1 , Sp 2 or Sp 3 is a single bond.
  • Ring F and Ring I are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidin-2-yl, or pyridine -2-yl, and in these rings, at least one hydrogen is halogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or 1 carbon in which at least one hydrogen is replaced by halogen. To 12 alkyls. Preferred ring F and ring I are phenyl.
  • Ring G is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, Naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene- 2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl, in these rings , At least one hydrogen is halogen, al
  • Z 4 and Z 5 are each independently a single bond or alkylene having 1 to 10 carbon atoms, in which at least one —CH 2 — is —O—, —CO—, —COO—, or — OCO— may be substituted, and at least one —CH 2 —CH 2 — may be —CH ⁇ CH—, —C (CH 3 ) ⁇ CH—, —CH ⁇ C (CH 3 ) —, or —C (CH 3 ) ⁇ C (CH 3 ) — may be replaced, and in these groups at least one hydrogen may be replaced with fluorine or chlorine.
  • Preferred Z 4 or Z 5 is a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—. Further preferred Z 4 or Z 5 is a single bond.
  • D is 0, 1, or 2.
  • Preferred d is 0 or 1.
  • e, f, and g are independently 0, 1, 2, 3, or 4, and the sum of e, f, and g is 1 or greater.
  • Preferred e, f, or g is 1 or 2.
  • the first component is a compound (1) having a large negative dielectric anisotropy.
  • Desirable compounds (1) are the compounds (1-1) to (1-20) described in item 3.
  • Preferred compounds from the viewpoint of reducing the flicker rate of the device are as follows.
  • a compound having a single bond or ethylene is preferable to a compound having methyleneoxy.
  • Compounds having 1,4-cyclohexylene or 1,4-phenylene are preferred over compounds having tetrahydropyran-2,5-diyl. More preferable compounds are specifically the compound (1-1), the compound (1-2), the compound (1-3), the compound (1-5), the compound (1-7), the compound (1-8). ), Compound (1-10), compound (1-14), compound (1-17), or compound (1-18).
  • the total proportion of these compounds is preferably in the range of 50% to 100% by weight based on the weight of the first component.
  • the total proportion of these compounds is preferably in the range of 10% to 90% by weight based on the weight of the liquid crystal composition.
  • the total proportion of these compounds is more preferably in the range of 20% to 85% by weight based on the weight of the liquid crystal composition.
  • the second component is a compound (2) having a small dielectric anisotropy.
  • Desirable compounds (2) are the compounds (2-1) to (2-13) described in item 6.
  • at least one of the second components is the compound (2-1), the compound (2-3), the compound (2-5), the compound (2-6), or the compound (2-7). It is preferable. It is preferable that at least two of the second components are the compound (2-1) and the compound (2-3), or the combination of the compound (2-1) and the compound (2-5).
  • Desirable compound (3) is the compound (3-1) to the compound (3-27) according to item 10.
  • at least one of the additive components is compound (3-1), compound (3-2), compound (3-24), compound (3-25), compound (3-26), or compound (3-27) is preferred.
  • At least two of the additive components are compound (3-1) and compound (3-2), compound (3-1) and compound (3-18), compound (3-2) and compound (3-24), Compound (3-2) and Compound (3-25), Compound (3-2) and Compound (3-26), Compound (3-25) and Compound (3-26), or Compound (3-18) and A combination of compounds (3-24) is preferred.
  • preferred M 1 , M 2 , or M 3 is hydrogen or methyl.
  • additives that may be added to the composition will be described.
  • Such additives are optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerizable compounds, polymerization initiators, polymerization inhibitors, and the like.
  • An optically active compound is added to the composition for the purpose of inducing a helical structure in liquid crystal molecules to give a twist angle. Examples of such a compound are the compound (4-1) to the compound (4-5).
  • a desirable ratio of the optically active compound is approximately 5% by weight or less. A more desirable ratio is in the range of approximately 0.01% by weight to approximately 2% by weight.
  • an antioxidant is added to the composition in order to maintain a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature.
  • a preferred example of the antioxidant is a compound (5) wherein z is an integer of 1 to 9.
  • preferred z is 1, 3, 5, 7, or 9. Further preferred z is 7. Since the compound (5) in which z is 7 has low volatility, it is effective for maintaining a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature after using the device for a long time.
  • a desirable ratio of the antioxidant is approximately 50 ppm or more for achieving this effect, and approximately 600 ppm or less for avoiding a decrease in the maximum temperature or avoiding an increase in the minimum temperature.
  • a more desirable ratio is in the range of approximately 100 ppm to approximately 300 ppm.
  • the ultraviolet absorber examples include benzophenone derivatives, benzoate derivatives, triazole derivatives and the like. Also preferred are light stabilizers such as sterically hindered amines. A desirable ratio of these absorbers and stabilizers is approximately 50 ppm or more for achieving this effect, and approximately 10,000 ppm or less for avoiding a decrease in the maximum temperature or avoiding an increase in the minimum temperature. A more desirable ratio is in the range of approximately 100 ppm to approximately 10,000 ppm.
  • a dichroic dye such as an azo dye or an anthraquinone dye is added to the composition in order to adapt it to a GH (guest host) mode element.
  • a preferred ratio of the dye is in the range of approximately 0.01% by weight to approximately 10% by weight.
  • an antifoaming agent such as dimethyl silicone oil or methylphenyl silicone oil is added to the composition.
  • a desirable ratio of the antifoaming agent is approximately 1 ppm or more for achieving this effect, and approximately 1000 ppm or less for preventing display defects.
  • a more desirable ratio is in the range of approximately 1 ppm to approximately 500 ppm.
  • a polymerizable compound is used to adapt to a polymer support alignment (PSA) type device.
  • Compound (3) is suitable for this purpose.
  • a polymerizable compound different from the compound (3) may be added to the composition together with the compound (3).
  • Preferable examples of such a polymerizable compound are compounds such as acrylate, methacrylate, vinyl compound, vinyloxy compound, propenyl ether, epoxy compound (oxirane, oxetane), vinyl ketone and the like. Further preferred examples are acrylate or methacrylate derivatives.
  • a desirable ratio of the compound (3) is 10% by weight or more based on the total weight of the polymerizable compound.
  • a more desirable ratio is 50% by weight or more.
  • a particularly desirable ratio is 80% by weight or more. The most preferred ratio is 100% by weight.
  • a polymerizable compound such as compound (3) is polymerized by ultraviolet irradiation.
  • the polymerization may be performed in the presence of a suitable initiator such as a photopolymerization initiator.
  • a suitable initiator such as a photopolymerization initiator.
  • Appropriate conditions for polymerization, the appropriate type of initiator, and the appropriate amount are known to those skilled in the art and are described in the literature.
  • Irgacure 651 registered trademark; BASF
  • Irgacure 184 registered trademark; BASF
  • Darocur 1173 registered trademark; BASF
  • a desirable ratio of the photopolymerization initiator is in the range of approximately 0.1% by weight to approximately 5% by weight based on the total weight of the polymerizable compound.
  • a more desirable ratio is in the range of approximately 1% by weight to approximately 3% by weight.
  • a polymerization inhibitor When storing a polymerizable compound such as compound (3), a polymerization inhibitor may be added to prevent polymerization.
  • the polymerizable compound is usually added to the composition without removing the polymerization inhibitor.
  • the polymerization inhibitor include hydroquinone derivatives such as hydroquinone and methylhydroquinone, 4-tert-butylcatechol, 4-methoxyphenol, phenothiazine and the like.
  • the composition mainly has a minimum temperature of about ⁇ 10 ° C. or lower, a maximum temperature of about 70 ° C. or higher, and an optical anisotropy in the range of about 0.07 to about 0.20.
  • a device containing this composition has a large voltage holding ratio.
  • This composition is suitable for an AM device.
  • This composition is particularly suitable for a transmissive AM device.
  • a composition having an optical anisotropy in the range of about 0.08 to about 0.25 may be prepared by controlling the ratio of the component compounds or by mixing other liquid crystal compounds.
  • Compositions having optical anisotropy in the range of about 0.10 to about 0.30 may be prepared by this method.
  • This composition can be used as a composition having a nematic phase, or can be used as an optically active composition by adding an optically active compound.
  • This composition can be used for an AM device. Further, it can be used for PM elements.
  • This composition can be used for an AM device or a PM device having modes such as PC, TN, STN, ECB, OCB, IPS, FFS, VA, and FPA.
  • Use in an AM device having a TN, OCB, IPS, or FFS mode is particularly preferable.
  • the alignment of liquid crystal molecules may be parallel to or perpendicular to the glass substrate.
  • These elements may be reflective, transmissive, or transflective. Use in a transmissive element is preferred. It can also be used for an amorphous silicon-TFT device or a polycrystalline silicon-TFT device.
  • NCAP non-curvilinear-aligned-phase
  • PD polymer-dispersed
  • a preferred liquid crystal alignment film is prepared from a liquid crystal alignment agent containing a polymer having a photoreactive group.
  • Preferred photoreactive groups include azobenzene derivatives, stilbene derivatives, tolan derivatives, diphenylbutadiyne derivatives, spiropyran derivatives, spirobenzopyran derivatives, ⁇ -aryl- ⁇ -keto acid derivatives, ⁇ -hydrazono- ⁇ -keto acid derivatives, chalcones Derivatives, azo derivatives, benzylidenephthalimidene derivatives, hemithioindigo derivatives, thioindigo derivatives, spirooxazine derivatives, cinnamaldehyde derivatives, retinal derivatives, fulgide derivatives, diarylethene derivatives, polymethine compounds, benzothiazolinospiropyran derivatives, benzochiopyran pyropyran derivatives, And a group derived from at least one compound selected from the group consisting of isomers and heteroatom substituents thereof.
  • a heteroatom-substituted product is a compound
  • the polyamic acid having a photoreactive group or a derivative thereof is, for example, a tetracarboxylic dianhydride having at least one photoreactive group selected from the group of groups represented by the following formulas (I) to (VII): It is obtained by using at least one diamine as a raw material.
  • R 7 is a divalent organic group having an aromatic ring.
  • a diamine having a photoreactive group is preferred from the viewpoint of availability of raw materials and ease of synthesis.
  • a tetracarboxylic dianhydride having a photoreactive group is preferable from the viewpoint of characteristics.
  • a photo-alignment film using at least one of a tetracarboxylic dianhydride or a diamine having a photoreactive group selected from the group of groups represented by formulas (I) to (VII) as a raw material has good photosensitivity. Have sex.
  • Suitable tetracarboxylic dianhydrides having a photoreactive group include compounds of the following formula (PAN-1) or (PAN-2).
  • Suitable diamines having a photoreactive group include compounds of the following formulas (PDI-1) to (PDI-8).
  • a group in which the bond position is not fixed to any carbon atom constituting the ring indicates that the bond position in the ring is any carbon atom.
  • R 8 is —CH 3 , —OCH 3 , —CF 3 , or —COOCH 3 ;
  • h is an integer from 0 to 2.
  • a compound of the following formula (PDI-6-1) or (PDI-7-1) is more preferable.
  • tetracarboxylic dianhydrides In producing a polyamic acid or a derivative thereof, a tetracarboxylic dianhydride other than a tetracarboxylic dianhydride having a photoreactive group can be further used, which is restricted from known tetracarboxylic dianhydrides. You can choose without having to.
  • a tetracarboxylic dianhydride has an aromatic system (including a heteroaromatic ring system) in which —CO—O—CO— is directly bonded to an aromatic ring, and —CO—O—CO— It may belong to any group of aliphatic systems (including heterocyclic systems) that are not directly bonded.
  • tetracarboxylic dianhydrides are represented by formulas (AN-I) to (AN-VII) from the viewpoint of easy availability of raw materials, ease of polymer polymerization, and electrical characteristics of the film. And tetracarboxylic dianhydride.
  • X is a single bond or —CH 2 —;
  • G is a single bond, alkylene having 1 to 20 carbons, —CO—, —O—, —S—, —SO 2 —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 —;
  • Y is one selected from the group of trivalent groups described below.
  • ring J is a monocyclic hydrocarbon group having 3 to 10 carbon atoms or a condensed polyhydric group having 6 to 30 carbon atoms.
  • Cyclic hydrocarbon groups in which at least one hydrogen may be replaced by methyl, ethyl or phenyl, and the bond on the ring is linked to any carbon constituting the ring And two bonds may be linked to the same carbon;
  • X 10 is alkylene having 2 to 6 carbons; Me is methyl; Ph is phenyl; and G 10 is —O—, —COO— or —OCO—; i is 0 or 1;
  • tetracarboxylic dianhydrides represented by the following formulas (AN-1) to (AN-16-14) can be mentioned.
  • G 11 is a single bond, alkylene having 1 to 12 carbons, 1,4-phenylene, or 1,4-cyclohexylene.
  • X 11 is a single bond or —CH 2 —.
  • G 12 is either a trivalent of the following groups.
  • G 12 When G 12 is CH, the hydrogen of CH may be replaced with —CH 3 .
  • G 12 When G 12 is N, G 11 is not a single bond or —CH 2 —, and X 11 is not a single bond.
  • R 14 is hydrogen or —CH 3 .
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-1) include compounds represented by the following formula.
  • u is an integer from 1 to 12.
  • R 15 is hydrogen, —CH 3 , —CH 2 CH 3 , or phenyl.
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-2) include compounds represented by the following formula.
  • ring J 11 is a cyclohexane ring or a benzene ring.
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-3) include compounds represented by the following formula.
  • G 13 is a single bond, alkylene having 1 to 12 carbons, —O—, —S—, —C (CH 3 ) 2 —, —SO 2 —, —CO—, —C (CF 3 ) 2 — or a divalent group represented by the following formula (G13-1).
  • the phenylene in the formula (G13-1) is preferably 1,4-phenylene or 1,3-phenylene.
  • Ring J 11 is a cyclohexane ring or a benzene ring.
  • G 13 may be bonded to any position of ring J 11 .
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-4) include compounds represented by the following formula.
  • u is an integer from 1 to 12.
  • R 14 is hydrogen or —CH 3 .
  • R 14 whose bonding position is not fixed to the carbon atom constituting the benzene ring indicates that the bonding position in the benzene ring is any carbon atom.
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-5) include compounds represented by the following formula.
  • X 11 is a single bond or —CH 2 —.
  • v is 1 or 2.
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-6) include compounds represented by the following formula.
  • X 11 is a single bond or —CH 2 —.
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-7) include compounds represented by the following formula.
  • X 11 is a single bond or —CH 2 —.
  • R 16 is hydrogen, —CH 3 , —CH 2 CH 3 , or phenyl, and ring J 12 is a cyclohexane ring or a cyclohexene ring.
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-8) include compounds represented by the following formula.
  • w is 0 or 1.
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-9) include compounds represented by the following formula.
  • the compound represented by the formula (AN-10) is the following tetracarboxylic dianhydride.
  • the ring J 11 is a cyclohexane ring or a benzene ring.
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-11) include compounds represented by the following formula.
  • ring J 11 is a cyclohexane ring or a benzene ring.
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-12) include compounds represented by the following formula.
  • X 10 is alkylene having 2 to 6 carbon atoms
  • Ph is phenyl.
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-13) include compounds represented by the following formula. In the following formula, Ph is phenyl.
  • G 10 is independently —O—, —COO— or —OCO—, and i is 0 or 1.
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-14) include compounds represented by the following formula.
  • x is an integer from 1 to 10.
  • Examples of the tetracarboxylic dianhydride represented by the formula (AN-15) include compounds represented by the following formula.
  • Examples of tetracarboxylic dianhydrides other than the above include the following compounds.
  • the formulas (AN-1-1), (AN-1-13), (AN-2-1) , (AN-3-1), (AN-4-17), (AN-4-28), or (AN-4-29) is particularly preferable.
  • the formulas (AN-1-1), (AN-1-13), (AN-2-1) , (AN-3-1), (AN-4-28), (AN-4-29), (AN-7-2), or (AN-10) is particularly preferable.
  • a diamine other than a diamine having a photoreactive group can be further used, and can be selected without limitation from known diamines.
  • Diamines can be divided into two types according to their structure. That is, when a skeleton connecting two amino groups is viewed as a main chain, a group branched from the main chain, that is, a diamine having a side chain group and a diamine having no side chain group.
  • This side chain group is a group having an effect of increasing the pretilt angle.
  • the side chain group having such an effect needs to be a group having 3 or more carbon atoms. Specific examples include alkyl having 3 or more carbon atoms, alkoxy having 3 or more carbon atoms, alkoxyalkyl having 3 or more carbon atoms, or A group having a steroid skeleton can be exemplified.
  • a group having one or more rings, wherein the terminal ring has any one of alkyl having 1 or more carbon atoms, alkoxy having 1 or more carbon atoms, and alkoxyalkyl having 2 or more carbon atoms as a substituent also has an effect as a side chain group.
  • a diamine having such a side chain group may be referred to as a “side chain diamine”.
  • a diamine having no side chain group is sometimes referred to as a “non-side chain diamine”.
  • the necessary pretilt angle can be obtained by properly using non-side chain diamine and side chain diamine.
  • the non-side chain diamine or the side chain diamine can be used for the purpose of improving characteristics such as vertical orientation, voltage holding ratio, image burn-in, and orientation.
  • the side chain diamine is preferably used in combination so as not to impair the properties of the present invention.
  • non-side chain diamine will be described.
  • Known non-side chain diamines include the following diamines of formulas (DI-1) to (DI-12) or dihydrazides of formulas (DI-13) to (DI-15).
  • dihydrazide is also included in the diamine.
  • k is an integer of 1 to 12;
  • G 21 is a single bond, —NH—, —O—, —S—, —SS— , —SO 2 —, —CO—, —CONH—, —CON (CH 3 ) —, —NHCO—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, — (CH 2 ) m —, —O— (CH 2 ) m —O—, —N (CH 3 ) — (CH 2 ) n —N (CH 3 ) —, or —S— (CH 2 ) m —S—;
  • n is an integer from 1 to 5;
  • G 22 is a single bond, —O—, —S—, —CO—, —C (CH 3 ) 2 —, — C (CF 3) 2 -, or
  • a group whose bonding position is not fixed to the carbon atom constituting the ring indicates that the bonding position in the ring is any carbon atom.
  • the bonding position of —NH 2 to the cyclohexane ring or the benzene ring is any position excluding the bonding position of G 21 or G 22 .
  • R 9 is hydrogen or —CH 3 .
  • R 10 and R 11 are independently alkyl or phenyl having 1 to 3 carbons;
  • G 23 is alkylene or phenylene having 1 to 6 carbons; Or alkyl-substituted phenylene;
  • p is an integer from 1 to 10;
  • R 12 is alkyl having 1 to 5 carbons, alkoxy having 1 to 5 carbons or chlorine;
  • q is 0 to 3 R is an integer from 0 to 4;
  • R 13 is hydrogen, alkyl having 1 to 4 carbons, phenyl, or benzyl;
  • G 24 is —CH 2 — or —NH—.
  • G 25 is a single bond, alkylene having 2 to 6 carbon atoms or 1,4-phenylene; s is 0 or 1; and the bond position is fixed to any carbon atom constituting the ring There is no group this In indicates that the binding position is any carbon atoms; binding position of -NH 2 bonded to the benzene ring is any position.
  • G 31 represents a single bond, alkylene having 1 to 20 carbon atoms, —CO—, —O—, —S—, —SO 2 —, —C ( CH 3 ) 2 —, Or —C (CF 3 ) 2 —;
  • ring K is a cyclohexane ring, a benzene ring or a naphthalene ring, in which at least one hydrogen is replaced by methyl, ethyl, or phenyl Ring
  • L is a cyclohexane ring or a benzene ring, and in these groups, at least one hydrogen may be replaced with methyl, ethyl, or phenyl.
  • non-side chain diamines of the above formulas (DI-1) to (DI-15) include diamines of the following formulas (DI-1-1) to (DI-15-6).
  • diamines represented by formulas (DI-1) to (DI-3) are shown below.
  • diamines represented by the formula (DI-4) are shown below.
  • diamines represented by the formula (DI-5) are shown below.
  • m is an integer from 1 to 12.
  • m is an integer of 1 to 12.
  • y is an integer from 1 to 6.
  • n is an integer from 1 to 5.
  • diamines represented by the formula (DI-6) are shown below.
  • m is an integer from 1 to 12, and t is 1 or 2.
  • diamines represented by the formula (DI-8) are shown below.
  • diamines represented by the formula (DI-9) are shown below.
  • diamines represented by the formula (DI-10) are shown below.
  • diamines represented by the formula (DI-11) are shown below.
  • Examples of the diamine represented by the formula (DI-12) are shown below.
  • diamines represented by the formula (DI-13) are shown below.
  • t is an integer of 1 to 12.
  • diamines represented by the formula (DI-15) are shown below.
  • the side chain type diamine will be described.
  • Examples of the side chain group of the side chain type diamine include the following groups.
  • alkyl, alkenyl, and alkynyl are all groups having 3 or more carbon atoms. However, in alkyloxyalkyl, it is sufficient if the entire group has 3 or more carbon atoms. These groups may be linear or branched.
  • phenyl, phenylalkyl, phenylalkyloxy, phenyl provided that the terminal ring has alkyl having 1 or more carbon atoms, alkoxy having 1 or more carbon atoms, or alkoxyalkyl having 2 or more carbon atoms as a substituent.
  • a group having two or more benzene rings, a group having two or more cyclohexane rings, or two or more groups composed of a benzene ring and a cyclohexane ring wherein the bonding groups are independently a single bond, -O-, -COO-, -OCO-, -CONH-, or alkylene having 1 to 3 carbon atoms, and the terminal ring is alkyl having 1 or more carbon atoms as a substituent, fluorine-substituted alkyl having 1 or more carbon atoms,
  • a ring assembly group having alkoxy having 1 or more carbon atoms or alkoxyalkyl having 2 or more carbon atoms can be given.
  • a group having a steroid skeleton is also effective as a side chain group.
  • Examples of the side chain diamine include compounds represented by the following formulas (DI-16) to (DI-20).
  • G 26 represents a single bond, —O—, —COO—, —OCO—, —CO—, —CONH—, —CH 2 O—, —OCH 2 —, —CF 2 O—. , —OCF 2 —, or — (CH 2 ) A —, wherein A is an integer of 1 to 12.
  • G 26 are a single bond, —O—, —COO—, —OCO—, —CH 2 O—, or alkylene having 1 to 3 carbon atoms, and particularly preferred examples are a single bond, —O—, -COO -, - OCO -, - CH 2 O -, - CH 2 -, or -CH 2 CH 2 -.
  • R 17 is an alkyl having 3 to 30 carbon atoms, phenyl, a group having a steroid skeleton, or a group represented by the following formula (DI-16-a).
  • At least one hydrogen may be replaced with fluorine, and at least one —CH 2 — may be replaced with —O—, —CH ⁇ CH—, or —C ⁇ C—.
  • the hydrogen of this phenyl may be replaced by fluorine, —CH 3 , —OCH 3 , —OCH 2 F, —OCHF 2, —OCF 3, alkyl having 3 to 30 carbons or alkoxy having 3 to 30 carbons.
  • the bonding position of —NH 2 bonded to the benzene ring is any position in this ring.
  • a preferred bonding position is meta or para. That is, when the bonding position of the group “R 17 —G 26 —” is the first position, the two bonding positions are preferably the third position and the fifth position, or the second position and the fifth position.
  • G 27 , G 28 , and G 29 are bonding groups, and these are independently a single bond or alkylene having 1 to 12 carbons, and in the alkylene, at least 1 Two —CH 2 — may be replaced by —O—, —COO—, —OCO—, —CONH—, —CH ⁇ CH—.
  • Ring B 21 , Ring B 22 , Ring B 23 , and Ring B 24 are each independently 1,4-phenylene, 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, pyrimidine-2 , 5-diyl, pyridine-2,5-diyl, naphthalene-1,5-diyl, naphthalene-2,7-diyl or anthracene-9,10-diyl, ring B 21 , ring B 22 , ring B 23 , And in ring B 24 , at least one hydrogen may be replaced by fluorine or —CH 3 , D, E, and F are independently integers from 0 to 2, and their sum is from 1 to 5.
  • R 18 is fluorine, —OH, alkyl having 1 to 30 carbons, fluorine-substituted alkyl having 1 to 30 carbons, alkoxy having 1 to 30 carbons, —CN, —OCH 2 F, —OCHF 2 , or —OCF 3
  • at least one —CH 2 — of the alkyl having 1 to 30 carbon atoms may be replaced with a divalent group represented by the following formula (DI-16-b).
  • R 19 and R 20 are independently alkyl having 1 to 3 carbons, and G is an integer of 1 to 6.
  • Preferred examples of R 18 are alkyl having 1 to 30 carbons and alkoxy having 1 to 30 carbons.
  • G 30 is a single bond, —CO— or —CH 2 —, R 21 is hydrogen or —CH 3 , and R 22 is hydrogen. , Alkyl having 1 to 20 carbons, or alkenyl having 2 to 20 carbons.
  • One hydrogen of the benzene ring in formula (DI-18) may be replaced with alkyl having 1 to 20 carbons or phenyl.
  • a group whose bond position is not fixed to any carbon atom constituting the ring indicates that the bond position in the ring is any carbon atom.
  • One of the two groups “-phenylene-G 30 —O—” in formula (DI-17) is preferably bonded to the 3-position of the steroid nucleus and the other is bonded to the 6-position of the steroid nucleus.
  • the bonding position of the two groups “-phenylene-G 30 —O—” in the formula (DI-18) to the benzene ring is preferably a meta position or a para position with respect to the bonding position of the steroid nucleus.
  • the bonding position of —NH 2 bonded to the benzene ring is any position.
  • G 31 is independently —O— or alkylene having 1 to 6 carbons, and G 32 is a single bond or alkylene having 1 to 3 carbons.
  • R 23 is hydrogen or alkyl having 1 to 20 carbons, and at least one —CH 2 — of the alkyl may be replaced by —O—, —CH ⁇ CH— or —C ⁇ C—.
  • R 24 is alkyl having 6 to 22 carbon atoms, and R 25 is hydrogen or alkyl having 1 to 22 carbon atoms.
  • Ring B 25 is 1,4-phenylene or 1,4-cyclohexylene, and H is 0 or 1.
  • —NH 2 bonded to the benzene ring is any carbon atom at the bonding position in this ring. Each —NH 2 is preferably in the meta position or the para position with respect to the bonding position of G 31 .
  • side chain diamines are illustrated below.
  • Examples of the side chain diamines of the above formulas (DI-16) to (DI-20) include compounds represented by the following formulas (DI-16-1) to (DI-20-3).
  • R 26 is alkyl having 1 to 30 carbons or alkoxy having 1 to 30 carbons, preferably alkyl or carbon having 5 to 25 carbons. The number 5 to 25 alkoxy.
  • R 27 is alkyl having 1 to 30 carbons or alkoxy having 1 to 30 carbons, preferably alkyl having 3 to 25 carbons or alkoxy having 3 to 25 carbons.
  • R 28 is alkyl having 4 to 30 carbons, preferably alkyl having 6 to 25 carbons.
  • R 29 is alkyl having 6 to 30 carbons, preferably alkyl having 8 to 25 carbons.
  • R 30 is alkyl having 1 to 20 carbons or alkoxy having 1 to 20 carbons, preferably alkyl having 3 to 20 carbons or carbon The number 3 to 20 alkoxy.
  • R 31 is hydrogen, fluorine, alkyl having 1 to 30 carbons, alkoxy having 1 to 30 carbons, —CN, —OCH 2 F, —OCHF 2 or —OCF 3 , preferably alkyl having 3 to 25 carbons Or alkoxy having 3 to 25 carbon atoms.
  • G 33 is alkylene having 1 to 20 carbons.
  • Formulas (DI-16-44) to (DI-16-50) are examples of compounds having a steroid skeleton.
  • R 32 is hydrogen or alkyl having 1 to 20 carbons, preferably hydrogen or alkyl having 1 to 10 carbons, and R 33 is hydrogen. Or alkyl having 1 to 12 carbons.
  • R 29 is alkyl having 6 to 30 carbons
  • R 33 is hydrogen or alkyl having 1 to 12 carbons.
  • Examples of the diamine in the present invention include the photosensitive diamines represented by the formulas (PDI-1) to (PDI-8) and the diamines represented by the formulas (DI-1-1) to (DI-20-3). Other diamines can also be used. Examples of such diamines include side chain diamines other than formulas (DI-16-1) to (DI-20-3).
  • Examples thereof include compounds represented by the following formulas (DI-21-1) to (DI-21-8).
  • R 34 represents an alkyl having 3 to 30 carbon atoms.
  • a part of the diamine may be replaced by a monoamine in a range where the ratio of the monoamine to the diamine is 40 mol% or less.
  • Such replacement causes termination of the polymerization reaction when the polyamic acid is produced, so that the progress of the polymerization reaction can be suppressed. Since the molecular weight of the resulting polymer (polyamic acid or this derivative) can be controlled, the coating properties of the liquid crystal aligning agent can be improved without impairing the effects of the present invention. As long as the effects of the present invention are not impaired, monoamines may be used alone or in combination of two or more.
  • Examples of monoamines include aniline, 4-hydroxyaniline, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, and n-un. Decylamine, n-dodecylamine, n-tridecylamine, n-tetradecylamine, n-pentadecylamine, n-hexadecylamine, n-heptadecylamine, n-octadecylamine, or n-eicosylamine Can be mentioned.
  • a monoisocyanate compound When producing a polyamic acid or a derivative thereof, a monoisocyanate compound may be added to the raw material. By adding a monoisocyanate compound to a raw material, the terminal of the polyamic acid obtained or this derivative is modified, and molecular weight is adjusted. By using this terminal-modified polyamic acid or derivative thereof, for example, the coating properties of the liquid crystal aligning agent can be improved without impairing the effects of the present invention.
  • the content of the monoisocyanate compound in the raw material is preferably 1 to 10 mol% based on the total amount of the diamine and tetracarboxylic dianhydride in the raw material from the above viewpoint.
  • the monoisocyanate compound include phenyl isocyanate and naphthyl isocyanate.
  • the diamine when importance is attached to further improving the orientation of liquid crystal molecules, the diamine may be represented by the formula (DI-1-3), (DI-5-1), (DI-5 A diamine represented by -12), (DI-7-3), (DI-13-2), (DI-14-1) or (DI-14-2) is preferred.
  • the diamine when importance is attached to further improving the reactivity and photosensitivity, the diamine may be represented by the formula (DI-1-4), (DI-4-1), (DI-5 -1), (DI-5-12), (DI-5-28), (DI-5-30), (DI-9-1), (DI-13-1), (DI-13-2) ), (DI-14-1) or (DI-14-2) is preferred.
  • the diamine when importance is attached to further improving the transmittance, the diamine may be represented by the formula (DI-1-3), (DI-1-4), (DI-13-1)
  • a diamine represented by ((DI-13-2), (DI-14-1) or (DI-14-2)) is preferred.
  • the diamine when emphasis is placed on further improving the electrical characteristics, the diamine may be represented by the formula (DI-4-1), (DI-5-5), (DI-5-9) , (DI-5-21), (DI-5-28), (DI-5-30), (DI-5-31), (DI-9-1), (DI-14-1), or A diamine represented by (DI-14-2) is preferred.
  • the polyamic acid used for the liquid crystal aligning agent for manufacturing the alignment film used by this invention is obtained by making an acid dianhydride and diamine react in a solvent. In this synthesis reaction, no special conditions other than the selection of the raw materials are required, and the conditions for normal polyamic acid synthesis can be applied as they are. The solvent to be used will be described later.
  • the liquid crystal aligning agent may be a so-called blend type, and may further contain a polyamic acid or a derivative thereof, or may further contain other components other than the polyamic acid or the derivative.
  • the other component may be one type or two or more types.
  • the liquid crystal aligning agent is an acrylic acid polymer, an acrylate polymer, a tetracarboxylic dianhydride, a dicarboxylic acid or a polyamic acid or an amount within 20% by weight of the derivative within a range that does not impair the effects of the present invention.
  • You may further contain other polymer components, such as a polyamideimide which is a reaction product of this derivative and diamine.
  • the polyamic acid or derivative thereof can be produced in the same manner as a known polyamic acid or derivative thereof used for forming a polyimide film.
  • the total amount of tetracarboxylic dianhydride is preferably approximately equimolar to the total number of moles of diamine (from about 0.9 to about 1.1 in molar ratio).
  • the molecular weight of the polyamic acid or this derivative is a weight average molecular weight (Mw) in terms of polystyrene, preferably 10,000 to 500,000, and more preferably 20,000 to 200,000.
  • Mw weight average molecular weight
  • the molecular weight of the polyamic acid or derivative thereof can be determined from measurement by gel permeation chromatography (GPC) method.
  • polyamic acid or this derivative can be confirmed by analyzing the solid content obtained by precipitation with a large amount of poor solvent by IR or NMR. Moreover, the raw material used can be confirmed by analyzing the extract of the polyamic acid by the strong alkali aqueous solution, such as KOH and NaOH, or the decomposition product of this derivative by the organic solvent by GC, HPLC or GC-MS. .
  • An additive such as an alkenyl-substituted nadiimide compound, a compound having a radical polymerizable unsaturated double bond, an oxazine compound, an oxazoline compound, an epoxy compound, or a silane coupling agent may be contained as necessary.
  • Such additives are described in detail in paragraphs 0120 to 0231 of JP2013-242526A.
  • the liquid crystal aligning agent may further contain a solvent from the viewpoint of the coating property of the liquid crystal aligning agent and the adjustment of the concentration of the polyamic acid or this derivative.
  • a solvent from the viewpoint of the coating property of the liquid crystal aligning agent and the adjustment of the concentration of the polyamic acid or this derivative.
  • Any solvent can be used without particular limitation as long as it has the ability to dissolve the polymer component.
  • the solvent includes a wide variety of solvents usually used in the production process and applications of polymer components such as polyamic acid and soluble polyimide, and can be appropriately selected according to the purpose of use.
  • the solvent may be one type or a mixed solvent of two or more types.
  • the solvent examples include a polyamic acid or a parent solvent of this derivative, and other solvents for the purpose of improving coating properties.
  • aprotic polar organic solvent that is a parent solvent for polyamic acid or its derivatives
  • examples of the aprotic polar organic solvent that is a parent solvent for polyamic acid or its derivatives include N-methyl-2-pyrrolidone, dimethylimidazolidinone, N-methylcaprolactam, N-methylpropionamide, N, N-dimethylacetamide Lactones such as dimethyl sulfoxide, N, N-dimethylformamide, N, N-diethylformamide, diethylacetamide, and ⁇ -butyrolactone.
  • solvents for improving coating properties include alkyl lactate, 3-methyl-3-methoxybutanol, tetralin, isophorone, ethylene glycol monoalkyl ethers such as ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, etc.
  • the solvent is N-methyl-2-pyrrolidone, dimethylimidazolidinone, ⁇ -butyrolactone, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether, or dipropylene glycol monomethyl. Ether is particularly preferred.
  • the concentration of polyamic acid in the liquid crystal aligning agent is preferably 0.1 to 40% by weight.
  • an operation of diluting the contained polyamic acid with a solvent in advance may be required to adjust the film thickness.
  • the solid content concentration in the aligning agent is not particularly limited, and an optimum value may be selected according to the following various coating methods.
  • the content is preferably 0.1 to 30% by weight, more preferably 1 to 10% by weight, based on the varnish weight.
  • a liquid crystal aligning film is formed by heating the coating film of a liquid crystal aligning agent.
  • a liquid crystal aligning film can be obtained by the normal method of producing a liquid crystal aligning film from a liquid crystal aligning agent.
  • a liquid crystal aligning film can be obtained by passing through the process of forming the coating film of a liquid crystal aligning agent, the process of drying by heating, and the process of baking by heating.
  • a coating film can be formed by apply
  • the substrate include a glass substrate on which an ITO (Indium Tin Oxide) electrode, an IZO (In 2 O 3 —ZnO) electrode, an IGZO (In—Ga—ZnO 4 ) electrode, a color filter, or the like may be provided. It is done.
  • a spinner method, a printing method, a dipping method, a dropping method, an ink jet method and the like are generally known.
  • the heat drying step a method of heat treatment in an oven or an infrared furnace, a method of heat treatment on a hot plate, and the like are generally known.
  • the heat drying step is preferably performed at a temperature within a range where the solvent can be evaporated, and more preferably at a relatively low temperature compared to the temperature in the heat baking step.
  • the heat drying temperature is preferably in the range of 30 ° C to 150 ° C, and more preferably in the range of 50 ° C to 120 ° C.
  • the heating and firing step can be performed under conditions necessary for the polyamic acid or this derivative to exhibit dehydration and ring closure reactions.
  • a method of heat treatment in an oven or an infrared furnace, a method of heat treatment on a hot plate, and the like are known. In general, it is preferably performed at a temperature of about 100 to 300 ° C. for 1 minute to 3 hours, more preferably 120 to 280 ° C., and still more preferably 150 to 250 ° C.
  • the formation method of the liquid crystal alignment film by the photo-alignment method is as follows. After drying the coating film of the liquid crystal aligning agent, anisotropy is imparted to the coating film by irradiating linearly polarized light or non-polarized light, and this coating film is heated and fired to form a film. it can. Alternatively, the film can be formed by irradiating linearly polarized light or non-polarized light after the coating film is dried by heating and baked. From the viewpoint of orientation, the radiation irradiation step is preferably performed before the heating and baking step.
  • the procedure for imparting liquid crystal alignment ability to the alignment film by light irradiation is as follows.
  • the liquid crystal aligning agent of the present invention is applied to a substrate, dried by preheating, and then irradiated with ultraviolet linearly polarized light through a polarizing plate, the reactive group on the polymer chain that is substantially parallel to the polarization direction is light-emitted.
  • the polymer chain is dominated by components oriented in a direction substantially perpendicular to the polarization direction of the irradiated ultraviolet light.
  • the substrate is heated to dehydrate and ring the polyamic acid to form a polyimide film, and then an element is assembled using this substrate.
  • the liquid crystal molecules are aligned in the direction of the polymer chain. Accordingly, the liquid crystal molecules are aligned with their major axes aligned in a direction perpendicular to the polarization direction.
  • the step of irradiating the film with ultraviolet linearly polarized light may be before the heating step for the formation of polyimide, or may be after the formation of polyimide by heating.
  • radiation linearly polarized light or non-polarized light can be irradiated while heating the coating film. Irradiation may be performed in a step of heating and drying the coating film or a step of heating and baking, or may be performed between the heating and drying step and the heating and baking step.
  • the heating and drying temperature in this step is preferably in the range of 30 ° C to 150 ° C, and more preferably in the range of 50 ° C to 120 ° C.
  • the heating and baking temperature in the step is preferably in the range of 30 ° C to 300 ° C, and more preferably in the range of 50 ° C to 250 ° C.
  • ultraviolet light or visible light containing light having a wavelength of 150 to 800 nm can be used, but ultraviolet light containing light of 300 to 400 nm is preferable.
  • linearly polarized light or non-polarized light can be used. These lights are not particularly limited as long as they can impart a liquid crystal alignment ability to the coating film, but linearly polarized light is preferable when it is desired to exert a strong alignment regulating force on the liquid crystal.
  • the liquid crystal alignment film can exhibit high liquid crystal alignment ability even with low energy light irradiation.
  • the irradiation amount of linearly polarized light in the radiation irradiation step is preferably 0.05 to 20 J / cm2, and more preferably 0.5 to 10 J / cm2.
  • the wavelength of linearly polarized light is preferably 200 to 400 nm, and more preferably 300 to 400 nm.
  • the irradiation angle of the linearly polarized light with respect to the film surface is not particularly limited. However, in order to develop a strong alignment regulating force with respect to the liquid crystal, it is preferable to be as perpendicular as possible to the film surface from the viewpoint of shortening the alignment treatment time.
  • the liquid crystal alignment film can align liquid crystal molecules in a direction perpendicular to the polarization direction of the linearly polarized light by irradiating the linearly polarized light.
  • the light applied to the film may be linearly polarized light or non-polarized light as described above.
  • the amount of light irradiation is preferably 0.05 to 20 J / cm 2, particularly preferably 0.5 to 10 J / cm 2, and this wavelength is preferably 250 to 400 nm, particularly preferably 300 to 380 nm.
  • the irradiation angle of the light with respect to the film surface is not particularly limited, but is preferably 30 to 60 degrees from the viewpoint of shortening the alignment treatment time.
  • Ultra-high pressure mercury lamp high pressure mercury lamp, low pressure mercury lamp, deep UV lamp, halogen lamp, metal halide lamp, high power metal halide lamp, xenon lamp, mercury xenon lamp, excimer lamp, KrF excimer laser Fluorescent lamps, LED lamps, sodium lamps, microwave excitation electrodeless lamps, and the like can be used without limitation.
  • the thickness of the liquid crystal alignment film is not particularly limited, but is preferably 10 to 300 nm, and more preferably 30 to 150 nm. This film thickness can be measured by a known film thickness measuring device such as a step meter or an ellipsometer.
  • the alignment film has a particularly large anisotropy of alignment.
  • the magnitude of such anisotropy can be evaluated by the polarization infrared method described in JP-A-2005-275364. Further, as shown in the following examples, it can be evaluated by ellipsometry.
  • An alignment film having a larger film anisotropy is considered to have a larger alignment regulating force on the liquid crystal composition.
  • the liquid crystal layer is formed in a form in which the liquid crystal composition is sandwiched between a pair of substrates facing each other on which the liquid crystal alignment film is formed.
  • a spacer such as fine particles or a resin sheet that is interposed between a pair of substrates to form an appropriate interval can be used as necessary.
  • the present invention will be described in more detail with reference to examples. The invention is not limited by these examples.
  • the present invention includes a mixture of the composition of Composition Example M1 and the composition of Composition Example M2.
  • the present invention also includes a mixture in which at least two of the compositions of the composition examples are mixed.
  • the synthesized compound was identified by a method such as NMR analysis. The characteristics of the compound, composition, and device were measured by the methods described below.
  • NMR analysis DRX-500 manufactured by Bruker BioSpin Corporation was used for measurement.
  • the sample was dissolved in a deuterated solvent such as CDCl 3, and the measurement was performed at room temperature, 500 MHz, and 16 times of integration.
  • Tetramethylsilane was used as an internal standard.
  • CFCl 3 was used as an internal standard and the number of integrations was 24.
  • s is a singlet
  • d is a doublet
  • t is a triplet
  • q is a quartet
  • quint is a quintet
  • sex is a sextet
  • m is a multiplet
  • br is broad.
  • GC-14B gas chromatograph manufactured by Shimadzu Corporation was used for measurement.
  • the carrier gas is helium (2 mL / min).
  • the sample vaporization chamber was set at 280 ° C, and the detector (FID) was set at 300 ° C.
  • capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m; stationary liquid phase is dimethylpolysiloxane; nonpolar) manufactured by Agilent Technologies Inc. was used.
  • the column was held at 200 ° C. for 2 minutes and then heated to 280 ° C. at a rate of 5 ° C./min.
  • a sample was prepared in an acetone solution (0.1% by weight), and 1 ⁇ L thereof was injected into the sample vaporizing chamber.
  • the recorder is a C-R5A Chromatopac manufactured by Shimadzu Corporation or an equivalent thereof.
  • the obtained gas chromatogram showed the peak retention time and peak area corresponding to the component compounds.
  • capillary column As a solvent for diluting the sample, chloroform, hexane or the like may be used.
  • the following capillary column may be used.
  • HP-1 from Agilent Technologies Inc. (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m), Rtx-1 from Restek Corporation (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m), BP-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m) manufactured by SGE International Pty.
  • a capillary column CBP1-M50-025 length 50 m, inner diameter 0.25 mm, film thickness 0.25 ⁇ m
  • Shimadzu Corporation may be used.
  • the ratio of the liquid crystal compound contained in the composition may be calculated by the following method.
  • a liquid crystal compound (mixture) is detected by a gas chromatograph (FID).
  • the area ratio of peaks in the gas chromatogram corresponds to the ratio (weight ratio) of liquid crystal compounds.
  • the correction coefficient of each liquid crystal compound may be regarded as 1. Therefore, the ratio (% by weight) of the liquid crystal compound can be calculated from the peak area ratio.
  • Measurement sample When measuring the characteristics of the composition or the device, the composition was used as it was as a sample.
  • a sample for measurement was prepared by mixing this compound (15% by weight) with mother liquid crystals (85% by weight). The characteristic value of the compound was calculated from the value obtained by the measurement by extrapolation.
  • (Extrapolated value) ⁇ (Measured value of sample) ⁇ 0.85 ⁇ (Measured value of mother liquid crystal) ⁇ / 0.15.
  • the ratio of the compound and the mother liquid crystal is 10% by weight: 90% by weight, 5% by weight: 95% by weight, 1% by weight: 99% by weight in this order. changed.
  • the maximum temperature, optical anisotropy, viscosity, and dielectric anisotropy values for the compound were determined.
  • the following mother liquid crystals were used.
  • the ratio of the component compounds is shown by weight%.
  • Measurement method The characteristics were measured by the following method. Many of these methods have been modified by the methods described in the JEITA standards (JEITA ED-2521B) deliberated by the Japan Electronics and Information Industry Association (JEITA). Was the way. No thin film transistor (TFT) was attached to the TN device used for the measurement.
  • TFT thin film transistor
  • nematic phase (NI; ° C.): A sample was placed on a hot plate of a melting point measuring apparatus equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid.
  • the upper limit temperature of the nematic phase may be abbreviated as “upper limit temperature”.
  • T C Minimum temperature of nematic phase
  • a sample having a nematic phase is placed in a glass bottle and placed in a freezer at 0 ° C., ⁇ 10 ° C., ⁇ 20 ° C., ⁇ 30 ° C., and ⁇ 40 ° C. for 10 days. After storage, the liquid crystal phase was observed. For example, when the sample remained in a nematic phase at ⁇ 20 ° C. and changed to a crystalline or smectic phase at ⁇ 30 ° C., the TC was described as ⁇ 20 ° C.
  • the lower limit temperature of the nematic phase may be abbreviated as “lower limit temperature”.
  • Viscosity Bulk viscosity; ⁇ ; measured at 20 ° C .; mPa ⁇ s: An E-type viscometer manufactured by Tokyo Keiki Co., Ltd. was used for the measurement.
  • Viscosity (rotational viscosity; ⁇ 1; measured at 25 ° C .; mPa ⁇ s): The measurement was performed according to the method described in M. ⁇ Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). I followed. A sample was put in a VA device having a distance (cell gap) between two glass substrates of 20 ⁇ m. This element was applied stepwise in increments of 1 volt within a range of 39 to 50 volts. After no application for 0.2 seconds, the application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds).
  • the dielectric constants ( ⁇ and ⁇ ) were measured as follows. 1) Measurement of dielectric constant ( ⁇ ): An ethanol (20 mL) solution of octadecyltriethoxysilane (0.16 mL) was applied to a well-cleaned glass substrate. The glass substrate was rotated with a spinner and then heated at 150 ° C. for 1 hour. A sample was put in a VA element in which the distance between two glass substrates (cell gap) was 4 ⁇ m, and the element was sealed with an adhesive that was cured with ultraviolet rays.
  • Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, the dielectric constant ( ⁇ ) in the major axis direction of the liquid crystal molecules was measured.
  • 2) Measurement of dielectric constant ( ⁇ ) A polyimide solution was applied to a well-cleaned glass substrate. After baking this glass substrate, the obtained alignment film was rubbed. A sample was put in a TN device in which the distance between two glass substrates (cell gap) was 9 ⁇ m and the twist angle was 80 degrees. Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, the dielectric constant ( ⁇ ) in the minor axis direction of the liquid crystal molecules was measured.
  • Threshold voltage (Vth; measured at 25 ° C .; V): An LCD5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for the measurement.
  • the light source was a halogen lamp.
  • a sample is placed in a normally black mode VA element in which the distance between two glass substrates (cell gap) is 4 ⁇ m and the rubbing direction is anti-parallel, and an adhesive that cures the element with ultraviolet rays is used. And sealed.
  • the voltage (60 Hz, rectangular wave) applied to this element was increased stepwise from 0V to 20V by 0.02V.
  • the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured.
  • a voltage-transmittance curve was created in which the transmittance was 100% when the light amount reached the maximum and the transmittance was 0% when the light amount was the minimum.
  • the threshold voltage was expressed as a voltage when the transmittance reached 10%.
  • VHR-1 Voltage holding ratio
  • the TN device used for the measurement had a polyimide alignment film, and the distance between two glass substrates (cell gap) was 5 ⁇ m. . This element was sealed with an adhesive that was cured with ultraviolet rays after the sample was placed.
  • the TN device was charged by applying a pulse voltage (60 microseconds at 5 V).
  • the decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined.
  • Area B was the area when it was not attenuated.
  • the voltage holding ratio was expressed as a percentage of area A with respect to area B.
  • VHR-2 Voltage holding ratio (VHR-2; measured at 80 ° C .;%): The voltage holding ratio was measured in the same procedure as above except that it was measured at 80 ° C. instead of 25 ° C. The obtained value was expressed as VHR-2.
  • VHR-3 Voltage holding ratio
  • the TN device used for the measurement had a polyimide alignment film, and the cell gap was 5 ⁇ m.
  • a sample was injected into this element and irradiated with light for 20 minutes.
  • the light source was an ultra high pressure mercury lamp USH-500D (manufactured by USHIO), and the distance between the element and the light source was 20 cm.
  • a decaying voltage was measured for 16.7 milliseconds.
  • a composition having a large VHR-3 has a large stability to ultraviolet light.
  • VHR-3 is preferably 90% or more, and more preferably 95% or more.
  • VHR-4 Voltage holding ratio
  • the TN device injected with the sample was heated in a constant temperature bath at 80 ° C. for 500 hours, and then the voltage holding ratio was measured to determine the stability against heat. Evaluated. In the measurement of VHR-4, a voltage decaying for 16.7 milliseconds was measured. A composition having a large VHR-4 has a large stability to heat.
  • Response time is the time required to change the transmittance from 10% to 90% (rise time; rise time; millisecond) and the time required to change the transmittance from 90% to 10% (fall time; fall) time (milliseconds).
  • the response time is preferably 60 ms or less, more preferably 40 ms or less.
  • Elastic constant (K11: spray elastic constant, K33: bend elastic constant; measured at 25 ° C .; pN):
  • an EC-1 type elastic constant measuring instrument manufactured by Toyo Corporation was used. Using. A sample was put in a vertical alignment cell in which the distance between two glass substrates (cell gap) was 20 ⁇ m. A 20 to 0 volt charge was applied to the cell, and the capacitance and applied voltage were measured. Fitting the measured values of capacitance (C) and applied voltage (V) using “Liquid Crystal Device Handbook” (Nikkan Kogyo Shimbun), formulas (2.98) and (2.101) on page 75 The value of the elastic constant was obtained from the formula (2.100).
  • Flicker rate (measured at 25 ° C .;%): A multimedia display tester 3298F manufactured by Yokogawa Electric Corporation was used for measurement. The light source was an LED. A sample was put in the FFS element produced in the examples described later. The device was sealed using an adhesive that was cured with ultraviolet light. A voltage was applied to this element, and the voltage at which the amount of light transmitted through the element was maximized was measured. While applying this voltage to the element, the sensor portion was brought close to the element, and the displayed flicker rate was read. The flicker rate is preferably 2% or less, and more preferably 1% or less.
  • Weight average molecular weight (Mw) The weight average molecular weight of the polyamic acid was measured by GPC method using a 2695 separation module / 2414 differential refractometer (manufactured by Waters) and calculated by polystyrene conversion.
  • the column was HSPgel RT MB-M (manufactured by Waters), and the measurement was performed under the conditions of a column temperature of 50 ° C. and a flow rate of 0.40 mL / min using the mixed solution as a developing agent.
  • As the standard polystyrene TSK standard polystyrene manufactured by Tosoh Corporation was used.
  • Pretilt angle A spectroscopic ellipsometer M-2000U (manufactured by JAWoollam Co. Inc.) was used to measure the pretilt angle.
  • volume resistivity ( ⁇ ; measured at 25 ° C .; ⁇ ⁇ cm) A polyimide film was formed on the entire glass substrate with ITO, and Al was vapor-deposited on the alignment film surface of the substrate to form an upper electrode (electrode area 0.23 cm 2 ). A voltage of 3 V was applied between the ITO electrode and the upper electrode, and the volume resistivity was calculated from the current value after 300 seconds.
  • d is the film thickness of the polyimide film
  • ⁇ 0 the vacuum dielectric constant
  • S the electrode area.
  • the compounds in Examples were represented by symbols based on the definitions in Table 3 below.
  • Table 3 the configuration regarding 1,4-cyclohexylene is trans.
  • the number in parentheses after the symbol corresponds to the compound number.
  • the symbol ( ⁇ ) means other liquid crystal compounds.
  • the ratio (percentage) of the liquid crystal compound is a weight percentage (% by weight) based on the weight of the liquid crystal composition.
  • the mixture was mixed at /7.0 to obtain PA25.
  • PA43 was prepared from a polyamic acid solution (PA26) having a polymer solid concentration of 6% by weight by changing the types of component [A] and component [B] and the mixing ratio of [A] / [B]. The results are summarized in Table 6.
  • the additive (Ad1) was added to the polyamic acid solution (PA3) having a polymer solid concentration of 6% by weight prepared in Synthesis Example 3 at a ratio of 5% by weight based on the weight of the polymer solids. Let the obtained polyamic acid solution be PA44. Additives (Ad2) to (Ad4) were added to the polyamic acid solution to prepare (PA48) from the polyamic acid solution (PA45). The results are summarized in Table 7. In addition, the abbreviation of the additive such as Ad1 is described in the item (22).
  • the rotation speed of the spinner was adjusted according to the viscosity of the liquid crystal aligning agent so that the alignment film had the following film thickness.
  • This coating film was heated and dried at 70 ° C. for 80 seconds on a hot plate (manufactured by AS ONE Corporation, EC hot plate (EC-1200N)).
  • a hot plate manufactured by AS ONE Corporation, EC hot plate (EC-1200N)
  • the substrate was irradiated with ultraviolet linearly polarized light from the vertical direction through the polarizing plate.
  • the exposure energy at this time is 2.0 ⁇ 0.1 J / cm 2 at a wavelength of 365 nm by measuring the amount of light using a UV integrated light meter UIT-150 (receiver UVD-S365) manufactured by USHIO INC. The exposure time was adjusted. Subsequently, heat treatment was performed at 230 ° C. for 15 minutes in a clean oven (manufactured by ESPEC CORP., Clean oven (PVHC-231)) to form an alignment film having a thickness of 100 ⁇ 10 nm.
  • a clean oven manufactured by ESPEC CORP., Clean oven (PVHC-231)
  • a liquid crystal aligning agent was obtained.
  • an FFS liquid crystal display element was produced by a method according to Example 1.
  • the liquid crystal compositions prepared in Composition Examples M2 to M13 were injected into this device, and the response time and flicker rate were measured. The results are summarized in Table 8.
  • the liquid crystal aligning agent was applied to a glass substrate with a column spacer and a glass substrate with an ITO electrode by a spinner (manufactured by Mikasa Co., Ltd., spin coater (1H-DX2)). This coating film was heated and dried at 70 ° C. for 80 seconds on a hot plate (manufactured by AS ONE Corporation, EC hot plate (EC-1200N)).
  • the substrate was irradiated with linearly polarized ultraviolet light from a vertical direction through a polarizing plate.
  • the exposure energy at this time is 0.7 ⁇ 0.1 J / cm 2 at a wavelength of 365 nm when the light intensity is measured using a UV integrated light meter UIT-150 (receiver UVD-S365) manufactured by USHIO INC.
  • the exposure time was adjusted.
  • the substrate was heated to 50 ° C. during UV exposure.
  • the irradiation of ultraviolet rays was performed in air at room temperature by covering the entire apparatus with an ultraviolet ray preventing film.
  • the film was heat-treated at 230 ° C. for 15 minutes in a clean oven (manufactured by ESPEC Corporation, clean oven (PVHC-231)) to form an alignment film having a thickness of 100 ⁇ 10 nm.
  • a liquid crystal aligning agent was obtained.
  • a liquid crystal display device was produced by the method according to Example 22 using the obtained liquid crystal aligning agent.
  • the liquid crystal compositions prepared in Composition Examples M10 to M13 were injected into this device, and the response time and flicker rate were measured. The results are summarized in Table 8.
  • the liquid crystal aligning agent was applied to a glass substrate with a column spacer and a glass substrate with an ITO electrode by a spinner (manufactured by Mikasa Co., Ltd., spin coater (1H-DX2)). This coating film was heated and dried at 70 ° C. for 80 seconds on a hot plate (manufactured by AS ONE Corporation, EC hot plate (EC-1200N)).
  • UV lamp UV lamp (UVL-1500M2-N1) manufactured by Ushio Electric Co., Ltd.
  • the exposure energy at this time is 1.0 ⁇ 0.1 J / cm 2 at a wavelength of 365 nm by measuring the amount of light using a UV integrated light meter UIT-150 (receiver UVD-S365) manufactured by USHIO INC.
  • the exposure time was adjusted.
  • the irradiation of ultraviolet rays was performed in air at room temperature by covering the entire apparatus with an ultraviolet ray preventing film. Subsequently, the film was heat-treated at 230 ° C. for 15 minutes in a clean oven (manufactured by ESPEC Corporation, clean oven (PVHC-231)) to form an alignment film having a thickness of 100 ⁇ 10 nm.
  • a liquid crystal display element was produced by the method according to Example 26 using the obtained liquid crystal aligning agent.
  • the liquid crystal compositions prepared in Composition Examples M10 to M13 were injected into this device, and the response time and flicker rate were measured. The results are summarized in Table 8.
  • the substrate was irradiated with linearly polarized ultraviolet light from a vertical direction through a polarizing plate.
  • the exposure energy at this time is 2.0 ⁇ 0.1 J / cm 2 at a wavelength of 365 nm by measuring the amount of light using a UV integrated light meter UIT-150 (receiver UVD-S365) manufactured by USHIO INC.
  • the exposure time was adjusted.
  • heat treatment was performed at 230 ° C. for 15 minutes in a clean oven (manufactured by ESPEC CORP., Clean oven (PVHC-231)) to form an alignment film having a thickness of 100 ⁇ 10 nm.
  • NMP / BC 4/1 (weight ratio) for each of polyamic acid solutions (PA41), (PA44), (PA44), (PA41), (PA33), and (PA43) having a polymer solid concentration of 6% by weight
  • a liquid crystal aligning agent was prepared by diluting to a polymer solid content concentration of 4% by weight.
  • an FFS liquid crystal display element was produced by a method according to Example 1.
  • the liquid crystal compositions prepared in Composition Examples M4 to M8 were injected into this device, and response time and flicker rate were measured. The results are summarized in Table 8.
  • the type of liquid crystal composition injected into the FFS element was entered.
  • These are the liquid crystal compositions prepared in Composition Example M1 to Composition Example M13.
  • the maximum temperature (NI) is in the range of 70.9 ° C to 98.5 ° C.
  • the optical anisotropy ( ⁇ n) is in the range of 0.084 to 0.129.
  • the dielectric anisotropy ( ⁇ ) is in the range of ⁇ 2.0 to ⁇ 4.7.
  • the viscosity ( ⁇ ) is in the range of 15.8 mPa ⁇ s to 29.9 mPa ⁇ s. In this way, 13 kinds of liquid crystal compositions having different characteristics were injected into liquid crystal display elements having different kinds of alignment films, and the response time and flicker rate of the elements were measured.
  • the response time is short.
  • the response time is preferably 60 ms or less, more preferably 40 ms or less.
  • a smaller flicker rate is preferable.
  • the flicker rate is preferably 2% or less, and more preferably 1% or less.
  • the response times of Examples 1 to 34 ranged from 29.9 ms to 59.4 ms, and the flicker rate ranged from 0.24% to 0.75%. These values were in a more preferable range. From these results, it can be said that the response time and the flicker rate can be kept within such optimum ranges in the liquid crystal composition and the alignment film, although the types of components are very different. This is the first feature of the present invention that should be noted.
  • the flicker rate was 0.7% or more.
  • the response times of these devices were 31.3 ms, 30.4 ms, and 31.7 ms, respectively. These results show that the flicker rate is small even in an element having a short response time. This is the second feature of the present invention that should be noted.
  • the liquid crystal display element of the present invention has characteristics such as a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, a long lifetime, and a small flicker ratio. Therefore, this element can be used for a liquid crystal projector, a liquid crystal television, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

 短い応答時間、大きな電圧保持率、低いしきい値電圧、大きなコントラスト比、長い寿命、小さなフリッカ率などの特性を有する液晶表示素子を提供する。 対向配置されている一対の基板の一方または両方に形成されている電極群と、前記電極群に接続された複数のアクティブ素子と、前記一対の基板それぞれの対向している面に形成された液晶配向膜と、前記一対の基板間に挟持された液晶組成物とを含む液晶表示素子である。

Description

液晶表示素子
 本発明は、液晶表示素子、この素子に用いられる誘電率異方性が負の液晶組成物、そして液晶配向膜に関する。特に、TN、OCB、IPS、VA、FFS、FPAなどのモードを有する液晶表示素子に関する。高分子支持配向型の液晶表示素子にも関する。
 液晶表示素子において、液晶分子の動作モードに基づいた分類は、PC(phase change)、TN(twisted nematic)、STN(super twisted nematic)、ECB(electrically controlled birefringence)、OCB(optically compensated bend)、IPS(in-plane switching)、VA(vertical alignment)、FFS(fringe field switching)、FPA(field-induced photo-reactive alignment)などのモードである。素子の駆動方式に基づいた分類は、PM(passive matrix)とAM(active matrix)である。PMは、スタティック(static)、マルチプレックス(multiplex)などに分類され、AMは、TFT(thin film transistor)、MIM(metal insulator metal)などに分類される。TFTの分類は非晶質シリコン(amorphous silicon)および多結晶シリコン(polycrystal silicon)である。後者は製造工程によって高温型と低温型とに分類される。光源に基づいた分類は、自然光を利用する反射型、バックライトを利用する透過型、そして自然光とバックライトの両方を利用する半透過型である。
 液晶表示素子はネマチック相を有する液晶組成物を含有する。この組成物は適切な特性を有する。この組成物の特性を向上させることによって、良好な特性を有するAM素子を得ることができる。2つの特性における関連を下記の表1にまとめる。組成物の特性を市販されているAM素子に基づいてさらに説明する。ネマチック相の温度範囲は、素子の使用できる温度範囲に関連する。ネマチック相の好ましい上限温度は約70℃以上であり、そしてネマチック相の好ましい下限温度は約-10℃以下である。組成物の粘度は素子の応答時間に関連する。素子で動画を表示するためには短い応答時間が好ましい。1ミリ秒でもより短い応答時間が望ましい。したがって、組成物における小さな粘度が好ましい。低い温度における小さな粘度はより好ましい。
Figure JPOXMLDOC01-appb-I000026
 組成物の光学異方性は、素子のコントラスト比に関連する。素子のモードに応じて、大きな光学異方性または小さな光学異方性、すなわち適切な光学異方性が必要である。組成物の光学異方性(Δn)と素子のセルギャップ(d)との積(Δn×d)は、コントラスト比を最大にするように設計される。適切な積の値は動作モードの種類に依存する。この値は、TNのようなモードの素子では約0.45μmであり、VAモードの素子では約0.30μmから約0.40μmの範囲であり、IPSモードまたはFFSモードの素子では約0.20μmから約0.30μmの範囲である。これらの場合、小さなセルギャップの素子には大きな光学異方性を有する組成物が好ましい。組成物における大きな誘電率異方性は、素子における低いしきい値電圧、小さな消費電力と大きなコントラスト比に寄与する。したがって、大きな誘電率異方性が好ましい。紫外線および熱に対する組成物の安定性は、素子の寿命に関連する。この安定性が高いとき、素子の寿命は長い。このような特性は、液晶プロジェクター、液晶テレビなどに用いるAM素子に好ましい。
 高分子支持配向(PSA;polymer sustained alignment)型の液晶表示素子では、重合体を含有する液晶組成物が用いられる。まず、少量の重合性化合物を添加した組成物を素子に注入する。次に、この素子の基板のあいだに電圧を印加しながら、組成物に紫外線を照射する。重合性化合物は重合して、組成物中に重合体の網目構造を生成する。この組成物では、重合体によって液晶分子の配向を制御することが可能になるので、素子の応答時間が短縮され、画像の焼き付きが改善される。重合体のこのような効果は、TN、ECB、OCB、IPS、VA、FFS、FPAのようなモードを有する素子に期待できる。
 液晶表示素子を長時間使用すると、表示画面にフリッカ(flicker)が発生することがある。このフリッカは、画像の焼き付きに関連し、交流で駆動させる際に正フレームの電位と負フレームの電位との間に差が生じることによって発生すると推定される。フリッカの発生を低減させるために、素子の構造や組成物の成分の観点から改良が試みられている。
 TNモードを有するAM素子においては正の誘電率異方性を有する組成物が用いられる。VAモードを有するAM素子においては負の誘電率異方性を有する組成物が用いられる。IPSモードまたはFFSモードを有するAM素子においては正または負の誘電率異方性を有する組成物が用いられる。高分子支持配向(PSA;polymer sustained alignment)型のAM素子においては正または負の誘電率異方性を有する組成物が用いられる。負の誘電率異方性を有する液晶組成物の例は下記の特許文献1に開示されている。
 これらの液晶表示素子に均一な表示特性を持たせるためには、液晶分子の配列を制御することが必要である。具体的には、基板上の液晶分子を一方向に均一に配向させること、液晶分子に基板面から一定の傾斜角(プレチルト角)を持たせること等である。このような役割を担うのが液晶配向膜である。液晶配向膜は、液晶表示素子の表示品位に係わる重要な要素の1つであり、表示素子の高品質化に伴って液晶配向膜の役割が年々重要になってきている。
 液晶配向膜は液晶配向剤を用いて形成される。主として用いられている液晶配向剤とは、ポリアミック酸または可溶性のポリイミドを有機溶剤に溶解させた溶液(ワニス)である。この溶液を基板に塗布した後、加熱等の手段により成膜してポリイミド系液晶配向膜を形成する。この膜に液晶分子を配向させる機能を与える(配向処理)方法として、現在工業的に用いられているのがラビング法である。ラビング法は、ナイロン、レーヨン、ポリエステル等の繊維を植毛した布を用いて液晶配向膜の表面を一方向に擦る処理であり、これによって液晶分子の一様な配向を得ることが可能になる。
 一方、光反応性の膜に光を照射して配向処理を施す光配向法が提案されており、この方法には、光分解、光異性化、光二量化、光架橋などが含まれる(例えば、非特許文献1および特許文献2から6を参照。)。光配向法はラビング法に比べて配向の均一性が高く、また非接触の配向法であるため膜に傷が付かず、発塵や静電気等の液晶表示素子の表示不良を発生させる原因を低減できる等の利点がある。
 光反応性の液晶配向膜(以降、「光配向膜」と略記することがある。)に用いる原料の検討も数多くなされている。テトラカルボン酸二無水物、特にシクロブタンテトラカルボン酸二無水物を原料に用いたポリイミドは、液晶分子を均一かつ安定に配向させることができると報告されている(例えば、特許文献2を参照。)。これは基板上に形成した膜に紫外線等を照射して、ポリイミドに化学変化を起こさせることによって液晶分子を一定方向に配向させる機能を与える方法である。しかしながら、このような方式による光配向膜はラビング法による配向膜に比べて、不純物イオンの量が増加して電圧保持率が低下する等、電気特性が劣るという可能性があった。これを解決するためにポリイミドを構成する分子構造に様々な検討が加えられている(例えば、特許文献2および3を参照。)。
 光配向法はラビング法に比べてアンカリングエネルギーが小さく、液晶分子の配向性が劣るため、液晶表示素子の応答速度の低下や焼き付きを引き起こすという可能性が指摘されていた。我々は例えば特許文献5に記載したように、ポリアミック酸を基板に塗布した後、光照射し、その後焼成する方法を見出し、この方法によって大きなアンカリングエネルギーを有する光配向膜を得た。しかしながら、アゾ基を有するジアミンを原料として製造したポリアミック酸を用いた光配向膜は光の透過率が低く、液晶表示素子の輝度が低下するという可能性がある。
国際公開2012-053323号 特開平9-297313号公報 特開2004-206091号公報 国際公開2005-083504号 特開2005-275364号公報 特開2006-171304号公報
液晶、第3巻、第4号、262ページ、1999年
 本発明の1つの目的は、短い応答時間、大きな電圧保持率、低いしきい値電圧、大きなコントラスト比、長い寿命、小さなフリッカ率などの特性を有する液晶表示素子である。別の目的は、このような素子に用いられる液晶組成物である。別の目的は、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、負に大きな誘電率異方性、大きな比抵抗、紫外線に対する高い安定性、熱に対する高い安定性、大きな弾性定数などの特性において、少なくとも1つの特性を充足する液晶組成物である。他の目的は、少なくとも2つの特性に関して適切なバランスを有する液晶組成物である。
 本発明は、対向配置されている一対の基板の一方または両方に形成されている電極群と、前記電極群に接続された複数のアクティブ素子と、前記一対の基板それぞれの対向している面に形成された液晶配向膜と、前記一対の基板間に挟持された液晶組成物とを含む液晶表示素子、この素子に含まれる液晶組成物、この素子に含まれる液晶配向膜に関する。
 本発明の1つの長所は、短い応答時間、大きな電圧保持率、低いしきい値電圧、大きなコントラスト比、長い寿命、小さなフリッカ率などの特性を有する液晶表示素子である。別の長所は、このような素子に用いられる液晶組成物である。別の長所は、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、負に大きな誘電率異方性、大きな比抵抗、紫外線に対する高い安定性、熱に対する高い安定性、大きな弾性定数などの特性において、少なくとも1つの特性を充足する液晶組成物である。他の長所は、少なくとも2つの特性に関して適切なバランスを有する液晶組成物である。
 この明細書における用語の使い方は次のとおりである。「液晶組成物」および「液晶表示素子」の用語をそれぞれ「組成物」および「素子」と略すことがある。「液晶表示素子」は液晶表示パネルおよび液晶表示モジュールの総称である。「液晶性化合物」は、ネマチック相、スメクチック相などの液晶相を有する化合物および液晶相を有しないが、ネマチック相の温度範囲、粘度、誘電率異方性のような特性を調節する目的で組成物に混合される化合物の総称である。この化合物は、例えば1,4-シクロヘキシレンや1,4-フェニレンのような六員環を有し、分子構造は棒状(rod like)である。「重合性化合物」は、組成物中に重合体を生成させる目的で添加する化合物である。
 液晶組成物は、複数の液晶性化合物を混合することによって調製される。液晶性化合物の割合(含有量)は、この液晶組成物の重量に基づいた重量百分率(重量%)で表される。この液晶組成物に、光学活性化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤のような添加物が必要に応じて添加される。添加物の割合(添加量)は、液晶性化合物の割合と同様に、液晶組成物の重量に基づいた重量百分率(重量%)で表される。重量百万分率(ppm)が用いられることもある。重合開始剤および重合禁止剤の割合は、例外的に重合性化合物の重量に基づいて表される。
 「ネマチック相の上限温度」を「上限温度」と略すことがある。「ネマチック相の下限温度」を「下限温度」と略すことがある。「電圧保持率が大きい」は、素子が初期段階において室温だけでなくネマチック相の上限温度に近い温度でも大きな電圧保持率を有し、そして長時間使用したあと室温だけでなくネマチック相の上限温度に近い温度でも大きな電圧保持率を有することを意味する。「誘電率異方性を上げる」の表現は、誘電率異方性が正である組成物のときは、この値が正に増加することを意味し、誘電率異方性が負である組成物のときは、この値が負に増加することを意味する。
 「少なくとも1つの‘A’は、‘B’で置き換えられてもよい」の表現は、‘A’の数は任意であることを意味する。‘A’の数が1つのとき、‘A’の位置は任意であり、‘A’の数が2つ以上のときも、それらの位置は制限なく選択できる。このルールは、「少なくとも1つの‘A’が、‘B’で置き換えられた」の表現にも適用される。例えば、「アルキルにおいて、少なくとも1つの-CH-は、-O-または-S-で置き換えられてもよい」の表現には、-OCH、-CHOCH、-CHOCHCHOCH、-SCHCHCH、-CHCHSCH、-CHOCHCHSCHなどの基が含まれる。
 式(1)から式(3)において、六角形で囲んだA、B、Cなどの記号はそれぞれ環A、環B、環Cなどに対応する。式(3)において、環Fの六角形を横切る斜線は、P-Sp基が環上の結合位置を任意に選択できることを意味する。このルールは環GなどのP-Sp基などにも適用される。eなどの添え字は、環Fなどに結合する基の数を表す。eが2のとき、環F上に2つのP-Sp基が存在する。P-Spが表す2つの基は、同一であってもよいし、または異なってもよい。このルールは、eが2より大きいときの任意の2つにも適用される。このルールは他の基にも適用される。式(1)で表される化合物を化合物(1)と略すことがある。この略記は、式(2)などで表される化合物にも適用される。化合物(1)は、式(1)で表される1つの化合物または2つ以上の化合物を意味する。
 成分化合物の化学式において、末端基Rの記号を複数の化合物に用いた。これらの化合物において、任意の2つのRが表す2つの基は同一であってもよく、または異なってもよい。例えば、化合物(1-1)のRがエチルであり、化合物(1-2)のRがエチルであるケースがある。化合物(1-1)のRがエチルであり、化合物(1-2)のRがプロピルであるケースもある。このルールは、他の末端基などの記号にも適用される。式(1)において、aが2のとき、2つの環Aが存在する。この化合物において、2つの環Aが表す2つの環は、同一であってもよく、または異なってもよい。このルールは、aが2より大きいとき、任意の2つの環Aにも適用される。このルールは、Z、環Cなどの記号にも適用される。
 2-フルオロ-1,4-フェニレンは、下記の2つの二価基を意味する。化学式において、フッ素は左向き(L)であってもよいし、右向き(R)であってもよい。このルールは、テトラヒドロピラン-2,5-ジイルのような非対称の二価基にも適用される。このルールは、カルボニルオキシ(-COO-および-OCO-)のような結合基にも適用される。

Figure JPOXMLDOC01-appb-I000027
 本発明の液晶表示素子に用いられる液晶配向膜は、光反応性基を有する重合体を含有する。重合体は、ポリアミック酸、この誘導体などである。光反応性基をポリマーに導入するため、光反応性基を有するテトラカルボン酸二無水物または光反応性基を有するジアミンのうちの少なくとも1つを必須成分とする。他の成分は、その他のテトラカルボン酸二無水物またはその他のジアミンである。その他のテトラカルボン酸二無水物としては、脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物などが挙げられる。その他のジアミンとしては、非側鎖型ジアミン、側鎖型ジアミン、ヒドラジドが挙げられる。ポリアミック酸の誘導体としては、可溶性ポリイミド、ポリアミック酸エステル、ポリヒドラジド酸、ポリアミック酸アミド、ポリヒドラジド酸-アミド酸等が挙げられる。より具体的には、1)ポリアミック酸のすべてのアミノとカルボキシルとが脱水閉環反応することによって生成したポリイミド、2)ポリアミック酸が部分的に脱水閉環反応することによって生成した部分ポリイミド、3)ポリアミック酸のカルボキシルがエステルに変換されて生成したポリアミック酸エステル、4)テトラカルボン酸二無水物と有機ジカルボン酸との混合物を反応させることによって得られたポリアミック酸-ポリアミド共重合体、さらに5)このポリアミック酸-ポリアミド共重合体の一部または全部を脱水閉環反応させることによって生成したポリアミドイミド等が挙げられる。ポリアミック酸またはこの誘導体は、1つの化合物であってもよいし、2つ以上の化合物の混合物であってもよい。
 光反応性基を有するポリアミック酸またはこの誘導体(または、光反応性基を有するジアミン)から形成される配向膜を単に「光配向膜」と表すことがある。「テトラカルボン酸二無水物」は、1つの化合物であってもよいし、または2つ以上のテトラカルボン酸二無水物の混合物であってもよい。このルールは、ジアミンにも適用される。
 本発明は、下記の項などである。
項1. 対向配置されている一対の基板の一方または両方に形成されている電極群と、前記電極群に接続された複数のアクティブ素子と、前記一対の基板それぞれの対向している面に形成された液晶配向膜と、前記一対の基板間に挟持された液晶組成物とを含む液晶表示素子。
項2. 液晶組成物が、第一成分として式(1)で表される化合物の群から選択された少なくとも1つの化合物を含有する、項1に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000028

式(1)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルであり;環Aおよび環Cは独立して、1,4-シクロへキシレン、1,4-シクロへキセニレン、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、またはテトラヒドロピラン-2,5-ジイルであり;環Bは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、または7,8-ジフルオロクロマン-2,6-ジイルであり;ZおよびZは独立して、単結合、エチレン、カルボニルオキシ、またはメチレンオキシであり;aは、0、1、2、または3であり;bは、0または1であり;そして、aおよびbの和は3以下である。
項3. 第一成分が、式(1-1)から式(1-20)で表される化合物の群から選択された少なくとも1つの化合物である、項2に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030

式(1-1)から式(1-20)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルである。
項4. 液晶組成物の重量に基づいて、第一成分の割合が10重量%から90重量%の範囲である、項1から3のいずれか1項に記載の液晶表示素子。
項5. 液晶組成物が、第二成分として式(2)で表される化合物の群から選択された少なくとも1つの化合物を含有する、項1から4のいずれか1項に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000031

式(2)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数2から12のアルケニルであり;環Dおよび環Eは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンであり;Zは、単結合、エチレンまたはカルボニルオキシであり;cは、1、2、または3である。
項6. 第二成分が、式(2-1)から式(2-13)で表される化合物の群から選択された少なくとも1つの化合物である、項5に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000032

式(2-1)から式(2-13)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数2から12のアルケニルである。
項7. 液晶組成物の重量に基づいて、第二成分の割合が10重量%から90重量%の範囲である、項5または6に記載の液晶表示素子。
項8. 液晶組成物が、添加物成分として式(3)で表される化合物の群から選択された少なくとも1つの重合性化合物を含有する、項1から7のいずれか1項に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000033

式(3)において、環Fおよび環Iは独立して、シクロヘキシル、シクロヘキセニル、フェニル、1-ナフチル、2-ナフチル、テトラヒドロピラン-2-イル、1,3-ジオキサン-2-イル、ピリミジン-2-イル、またはピリジン-2-イルであり、これらの環において、少なくとも1つの水素は、ハロゲン、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルで置き換えられてもよく;環Gは、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-1,2-ジイル、ナフタレン-1,3-ジイル、ナフタレン-1,4-ジイル、ナフタレン-1,5-ジイル、ナフタレン-1,6-ジイル、ナフタレン-1,7-ジイル、ナフタレン-1,8-ジイル、ナフタレン-2,3-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、これらの環において、少なくとも1つの水素は、ハロゲン、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルで置き換えられてもよく;ZおよびZは独立して、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの-CH-CH-は、-CH=CH-、-C(CH)=CH-、-CH=C(CH)-、または-C(CH)=C(CH)-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;P、P、およびPは独立して、重合性基であり;Sp、Sp、およびSpは独立して、単結合、または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH-CH-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;dは、0、1、または2であり;e、f、およびgは独立して、0、1、2、3、または4であり;そしてe、f、およびgの和は1以上である。
項9. 式(3)において、P、P、およびPが独立して、式(P-1)から式(P-6)で表される基の群から選択された重合性基である、項8に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000034

式(P-1)から式(P-6)において、M、M、およびMは独立して、水素、フッ素、炭素数1から5のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から5のアルキルであり;式(3)において、e個のPおよびg個のPのすべてが式(P-4)で表される基であるとき、e個のSpおよびg個のSpの少なくとも1つは、少なくとも1つの-CH-が、-O-、-COO-、-OCO-、または-OCOO-で置き換えられたアルキレンである。
項10. 添加物成分が、式(3-1)から式(3-27)で表される化合物の群から選択された少なくとも1つの重合性化合物である、項8または9に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000035

Figure JPOXMLDOC01-appb-I000036

Figure JPOXMLDOC01-appb-I000037

式(3-1)から式(3-27)において、P、P、およびPは独立して、式(P-1)から式(P-3)で表される基の群から選択された重合性基であり:
Figure JPOXMLDOC01-appb-I000038

式(P-1)から式(P-3)において、M、M、およびMは独立して、水素、フッ素、炭素数1から5のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から5のアルキルであり;式(3-1)から式(3-27)において、Sp、Sp、およびSpは独立して、単結合、または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH-CH-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよい。
項11. 液晶組成物の重量に基づいて、添加物成分の割合が0.03重量%から10重量%の範囲である、項8から10のいずれか1項に記載の液晶表示素子。
項12. 液晶配向膜が、光反応性基を有する重合体を含有する、項1から11のいずれか1項に記載の液晶表示素子。
項13. 重合体が、ポリアミック酸、ポリイミド、ポリアミック酸エステル、またはこれらの混合物である、項12に記載の液晶表示素子。
項14. 重合体が、アゾベンゼン誘導体、スチルベン誘導体、トラン誘導体、ジフェニルブタジイン誘導体、スピロピラン誘導体、スピロベンゾピラン誘導体、α-アリール-β-ケト酸誘導体、α-ヒドラゾノ-β-ケト酸誘導体、カルコン誘導体、アゾ誘導体、ベンジリデンフタルイミデン誘導体、ヘミチオインジゴ誘導体、チオインジゴ誘導体、スピロオキサジン誘導体、シンナムアルデヒド誘導体、レチナール誘導体、フルギド誘導体、ジアリールエテン誘導体、ポリメチン系化合物、ベンゾチアゾリノスピロピラン誘導体、ベンゾキオピラン系ピロピラン誘導体、およびこれらの異性体またはヘテロ原子置換体の群から選択された少なくとも1つの化合物から誘導される、項12または13に記載の液晶表示素子。
項15. 重合体が、式(I)から式(VII)で表される基の群から選択された光反応性基を有する化合物から誘導される、項12から14のいずれか1項に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000039

式(IV)および式(V)において、Rは芳香環を有する二価の有機基である。
項16. 液晶配向膜が、式(I)から式(VII)で表される基の群から選択された光反応性基を有する、テトラカルボン酸二無水物およびジアミンの少なくとも1つから誘導された重合体を含有する、項1から11のいずれか1項に記載の液晶表示素子。

Figure JPOXMLDOC01-appb-I000040

式(IV)および式(V)において、Rは芳香環を有する二価の有機基である。
項17. 液晶配向膜が、式(PAN-1)または式(PAN-2)で表される化合物から誘導された重合体を含有する、項16に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000041
項18. 液晶配向膜が、式(PDI-1)から式(PDI-8)で表される化合物から選択された少なくとも1つの化合物から誘導された重合体を含有する、項16に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000042

式(PDI-1)から式(PDI-8)において、環を構成するどの炭素原子にも結合位置が固定されていない基は、この環における結合位置がいずれかの炭素原子であることを示し;Rは、-CH、-OCH、-CF、または-COOCHであり;hは、0から2の整数である。
項19. 液晶配向膜が、式(PDI-6-1)または式(PDI-7-1)で表される化合物から誘導された重合体を含有する、項16に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000043
項20. 液晶配向膜が、式(AN-I)から式(AN-VII)で表される化合物の群から選択された少なくとも1つの化合物をさらに用いて誘導された重合体を含有する、項16から19のいずれか1項に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000044

式(AN-I)から式(AN-VII)において、Xは、単結合または-CH-であり;Gは、単結合、炭素数1から20のアルキレン、-CO-、-O-、-S-、-SO-、-C(CH-、または-C(CF-であり;Yは下記の三価の基の群から選択された1つであり:
Figure JPOXMLDOC01-appb-I000045

これらの基において、少なくとも1つの水素は、メチル、エチルまたはフェニルで置き換えられてもよく;環Jは、炭素数3から10の単環式炭化水素の基または炭素数6から30の縮合多環式炭化水素の基であり、これらの基において、少なくとも1つの水素はメチル、エチルまたはフェニルで置き換えられてもよく、環に掛かっている結合手は環を構成するいずれかの炭素に連結しており、2本の結合手が同一の炭素に連結してもよく;X10は、炭素数2から6のアルキレンであり;Meはメチルであり;Phはフェニルであり;G10は、-O-、-COO-、または-OCO-であり;iは、0または1である。
項21. 液晶配向膜が、式(AN-1-1)、式(AN-1-13)、式(AN-2-1)、式(AN-3-1)、式(AN-3-2)、式(AN-4-5)、式(AN-4-17)、式(AN-4-21)、式(AN-4-28)、式(AN-4-29)、式(AN-7-2)、式(AN-10)、および式(AN-11-3)で表される化合物の群から選択された少なくとも1つの化合物をさらに用いて誘導された重合体を含有する、項16から19のいずれか1項に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000046

式(AN-4-17)において、jは、1から12の整数である。
項22. 液晶配向膜が、式(DI-1)から式(DI-15)で表される化合物の群から選択された少なくとも1つの化合物をさらに用いて誘導された重合体を含有する、項16から20のいずれか1項に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000047

式(DI-1)から式(DI-7)において、kは、1から12の整数であり;G21は、単結合、-NH-、-O-、-S-、-S-S-、-SO-、-CO-、-CONH-、-CON(CH)-、-NHCO-、-C(CH-、-C(CF-、-(CH-、-O-(CH-O-、-N(CH)-(CH-N(CH)-、または-S-(CH-S-であり;mは、1から12の整数であり;nは、1から5の整数であり;G22は、単結合、-O-、-S-、-CO-、-C(CH-、-C(CF-、または炭素数1から10のアルキレンであり;シクロヘキサン環またはベンゼン環の少なくとも1つの水素は、フッ素、-CH、-OH、-CF、-COH、-CONH、またはベンジルで置き換えられてもよく、加えて式(DI-4)においては、ベンゼン環の少なくとも1つの水素は、下記式(DI-4-a)から(DI-4-c)で置き換えられてもよく;
Figure JPOXMLDOC01-appb-I000048

は、水素または-CHであり;環を構成するどの炭素原子にも結合位置が固定されていない基は、この環における結合位置がいずれかの炭素原子であることを示し、シクロヘキサン環またはベンゼン環への-NHの結合位置は、G21またはG22の結合位置を除くいずれかの位置である。
Figure JPOXMLDOC01-appb-I000049

式(DI-8)から式(DI-12)において、R10およびR11は独立して、炭素数1から3のアルキルまたはフェニルであり;G23は、炭素数1から6のアルキレン、フェニレン、または少なくとも1つの水素がアルキルで置き換えられたフェニレンであり;pは、1から10の整数であり;R12は、炭素数1から5のアルキル、炭素数1から5のアルコキシまたは塩素であり;qは、0から3の整数であり;rは、0から4の整数であり;R13は、水素、炭素数1から4のアルキル、フェニル、またはベンジルであり;G24は、-CH-または-NH-であり;G25は、単結合、炭素数2から6のアルキレンまたは1,4-フェニレンであり;sは、0または1であり;環を構成するどの炭素原子にも結合位置が固定されていない基は、この環における結合位置がいずれかの炭素原子であることを示し;ベンゼン環に結合する-NHの結合位置はいずれかの位置である。
Figure JPOXMLDOC01-appb-I000050

式(DI-13)から式(DI-15)において、G31は、単結合、炭素数1から20のアルキレン、-CO-、-O-、-S-、-SO-、-C(CH-、または-C(CF-であり;環Kは、シクロヘキサン環、ベンゼン環、またはナフタレン環であり、これらの基において、少なくとも1つの水素は、メチル、エチル、またはフェニルで置き換えられてもよく;環Lは、シクロヘキサン環、またはベンゼン環であり、これらの基において、少なくとも1つの水素はメチル、エチル、またはフェニルで置き換えられてもよい。
項23. 液晶配向膜が、式(DI-1-3)、(DI-4-1)、(DI-5-1)、(DI-5-5)、(DI-5-9)、(DI-5-12)、(DI-5-22)、(DI-5-28)、(DI-5-30)、(DI-5-31)、(DI-7-3)、(DI-9-1)、(DI-13-1)、(DI-13-2)、(DI-14-1)、および(DI-14-2)で表される化合物の群から選択された少なくとも1つの化合物をさらに用いて誘導された重合体を含有する、項16から20のいずれか1項に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-I000051

Figure JPOXMLDOC01-appb-I000052

式(DI-1-3)、(DI-4-1)、(DI-5-1)、(DI-5-5)、(DI-5-9)、(DI-5-12)、(DI-5-22)、(DI-5-28)、(DI-5-30)、(DI-5-31)、(DI-7-3)、(DI-9-1)、(DI-13-1)、(DI-13-2)、(DI-14-1)、および(DI-14-2)において、mは、1から12の整数であり;nは、1から5の整数であり;tは、1または2である。
項24. 液晶表示素子の動作モードが、VAモード、ECBモード、OCBモード、IPSモード、FFSモード、PSAモード、またはFPAモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である項1から23のいずれか1項に記載の液晶表示素子。
項25. 液晶表示素子の動作モードがIPSモードまたはFFSモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である項1から24のいずれか1項に記載の液晶表示素子。
項26. 項2から11のいずれか1項に記載の液晶表示素子に使用される、液晶組成物。
項27. 25℃における弾性定数(K11)が11pN以上であり、弾性定数(K33)が11pN以上である、項26に記載の液晶組成物。
項28. 項26または27に記載の液晶組成物を含有し、25℃におけるフリッカ率が0%から1%の範囲である液晶表示素子。
項29. 項12から23のいずれか1項に記載の液晶表示素子に使用される、液晶配向膜。
項30. 25℃における体積抵抗率(ρ)が1.0×1014Ωcm以上である、項29に記載の液晶配向膜。
項31. 25℃における誘電率(ε)が3から5の範囲である、項29に記載の液晶配向膜。
 本発明は、次の項も含む。(a)光学活性化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤などの添加物の少なくとも1つをさらに含有する上記の組成物。(b)上記の組成物を含有するAM素子。(c)重合性化合物をさらに含有する上記の組成物、およびこの組成物を含有する高分子支持配向(PSA)型のAM素子。(d)上記の組成物を含有し、この組成物中の重合性化合物が重合されている、高分子支持配向(PSA)型のAM素子。(e)上記の組成物を含有し、そしてPC、TN、STN、ECB、OCB、IPS、VA、FFS、またはFPAのモードを有する素子。(f)上記の組成物を含有する透過型の素子。(g)上記の組成物を、ネマチック相を有する組成物としての使用。(h)上記の組成物に光学活性化合物を添加することによって光学活性な組成物としての使用。
 本発明は、次の項も含む。(i)第一成分として式(1-1)から式(1-20)で表される化合物の群から選択された少なくとも1つの化合物を含有し、そして式(1-1)、式(1-2)、式(1-3)、式(1-5)、式(1-7)、式(1-8)、式(1-10)、式(1-14)、式(1-17)、式(1-18)で表される化合物の合計の割合が、第一成分の重量に基づいて50重量%から100重量%の範囲である、上記の液晶組成物を含有する液晶表示素子。(j)式(1-1)、式(1-2)、式(1-3)、式(1-5)、式(1-7)、式(1-8)、式(1-10)、式(1-14)、式(1-17)、式(1-18)で表される化合物の合計の割合が、液晶組成物の重量に基づいて10重量%から90重量%の範囲である、上記の液晶組成物を含有する液晶表示素子。(k)式(1-1)、式(1-2)、式(1-3)、式(1-5)、式(1-7)、式(1-8)、式(1-10)、式(1-14)、式(1-17)、式(1-18)で表される化合物の合計の割合が、液晶組成物の重量に基づいて20重量%から85重量%の範囲である、上記の液晶組成物を含有する液晶表示素子。
 本発明の液晶表示素子における液晶組成物を次の順で説明する。第一に、組成物における成分化合物の構成を説明する。第二に、成分化合物の主要な特性、およびこの化合物が組成物に及ぼす主要な効果を説明する。第三に、組成物における成分の組み合わせ、成分の好ましい割合およびその根拠を説明する。第四に、成分化合物の好ましい形態を説明する。第五に、好ましい成分化合物を示す。第六に、組成物に添加してもよい添加物を説明する。第七に、成分化合物の合成法を説明する。第八に、組成物の用途を説明する。液晶配向膜は、次の順で説明する。第九に、光反応性基を有するポリアミック酸またはこの誘導体、および光反応性基を有するジアミンを説明する。第十に、その他のテトラカルボン酸二無水物を説明する。第十一に、その他のジアミンを説明する。第十二に、液晶配向剤を説明する。第十三に、液晶配向膜を説明する。
 第一に、組成物における成分化合物の構成を説明する。本発明の組成物は組成物Aと組成物Bに分類される。組成物Aは、化合物(1)および化合物(2)から選択された液晶性化合物の他に、その他の液晶性化合物、添加物などをさらに含有してもよい。「その他の液晶性化合物」は、化合物(1)および化合物(2)とは異なる液晶性化合物である。このような化合物は、特性をさらに調整する目的で組成物に混合される。添加物は、光学活性化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤などである。
 組成物Bは、実質的に化合物(1)および化合物(2)から選択された液晶性化合物のみからなる。「実質的に」は、組成物が添加物を含有してもよいが、その他の液晶性化合物を含有しないことを意味する。組成物Bは組成物Aに比較して成分の数が少ない。コストを下げるという観点から、組成物Bは組成物Aよりも好ましい。その他の液晶性化合物を混合することによって特性をさらに調整できるという観点から、組成物Aは組成物Bよりも好ましい。
 第二に、成分化合物の主要な特性、およびこの化合物が組成物の特性に及ぼす主要な効果を説明する。成分化合物の主要な特性を本発明の効果に基づいて表2にまとめる。表2の記号において、Lは大きいまたは高い、Mは中程度の、Sは小さいまたは低い、を意味する。記号L、M、Sは、成分化合物のあいだの定性的な比較に基づいた分類であり、0(ゼロ)は、値がゼロであるか、または値がゼロに近いことを意味する。
Figure JPOXMLDOC01-appb-I000053
 成分化合物を組成物に混合したとき、成分化合物が組成物の特性に及ぼす主要な効果は次のとおりである。化合物(1)は誘電率異方性を上げ、そして下限温度を下げる。化合物(2)は、粘度を下げる、または上限温度を上げる。化合物(3)は、重合によって重合体を与え、この重合体は、素子の応答時間を短縮し、そして画像の焼き付きを改善する。
 第三に、組成物における成分の組み合わせ、成分化合物の好ましい割合およびその根拠を説明する。組成物における成分の好ましい組み合わせは、第一成分+第二成分、第一成分+添加物成分、または第一成分+第二成分+添加物成分である。さらに好ましい組み合わせは、第一成分+第二成分または第一成分+第二成分+添加物成分である。
 第一成分の好ましい割合は、誘電率異方性を上げるために約10重量%以上であり、下限温度を下げるために約90重量%以下である。さらに好ましい割合は約20重量%から約85重量%の範囲である。特に好ましい割合は約30重量%から約85重量%の範囲である。
 第二成分の好ましい割合は、上限温度を上げるために、または粘度を下げるために約10重量%以上であり、誘電率異方性を上げるために約90重量%以下である。さらに好ましい割合は約15重量%から約75重量%の範囲である。特に好ましい割合は約15重量%から約60重量%の範囲である。
 化合物(3)は、高分子支持配向型の素子に適合させる目的で、組成物に添加される。この添加物の好ましい割合は、液晶組成物の重量に基づいて、液晶分子を配向させるために約0.03重量%以上であり、素子の表示不良を防ぐために約10重量%以下である。さらに好ましい割合は、約0.1重量%から約2重量%の範囲である。特に好ましい割合は、約0.2重量%から約1重量%の範囲である。
 第四に、成分化合物の好ましい形態を説明する。式(1)および式(2)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルである。好ましいRまたはRは、安定性を上げるために炭素数1から12のアルキルであり、誘電率異方性を上げるために炭素数1から12のアルコキシである。RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数2から12のアルケニルである。好ましいRまたはRは、粘度を下げるために、炭素数2から12のアルケニルであり、安定性を上げるために炭素数1から12のアルキルである。アルキルは、直鎖状または分岐状であり、環状アルキルを含まない。直鎖状アルキルは、分岐状アルキルよりも好ましい。これらのことは、アルコキシ、アルケニルなどの末端基についても同様である。
 好ましいアルキルは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、またはオクチルである。さらに好ましいアルキルは、粘度を下げるためにエチル、プロピル、ブチル、ペンチル、またはヘプチルである。
 少なくとも1つの水素がハロゲンで置き換えられたアルキルの好ましい例は、フルオロメチル、2-フルオロエチル、3-フルオロプロピル、4-フルオロブチル、5-フルオロペンチル、6-フルオロヘキシル、7-フルオロヘプチル、または8-フルオロオクチルである。さらに好ましい例は、誘電率異方性を上げるために2-フルオロエチル、3-フルオロプロピル、4-フルオロブチル、または5-フルオロペンチルである。
 好ましいアルコキシは、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、またはヘプチルオキシである。粘度を下げるために、さらに好ましいアルコキシは、メトキシまたはエトキシである。
 好ましいアルケニルは、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、または5-ヘキセニルである。さらに好ましいアルケニルは、粘度を下げるためにビニル、1-プロペニル、3-ブテニル、または3-ペンテニルである。これらのアルケニルにおける-CH=CH-の好ましい立体配置は、二重結合の位置に依存する。粘度を下げるためなどから1-プロペニル、1-ブテニル、1-ペンテニル、1-ヘキセニル、3-ペンテニル、3-ヘキセニルのようなアルケニルにおいてはトランスが好ましい。2-ブテニル、2-ペンテニル、2-ヘキセニルのようなアルケニルにおいてはシスが好ましい。
 好ましいアルケニルオキシは、ビニルオキシ、アリルオキシ、3-ブテニルオキシ、3-ペンテニルオキシ、または4-ペンテニルオキシである。粘度を下げるために、さらに好ましいアルケニルオキシは、アリルオキシまたは3-ブテニルオキシである。
 少なくとも1つの水素がハロゲンで置き換えられたアルケニルの好ましい例は、2,2-ジフルオロビニル、3,3-ジフルオロ-2-プロペニル、4,4-ジフルオロ-3-ブテニル、5,5-ジフルオロ-4-ペンテニル、または6,6-ジフルオロ-5-ヘキセニルである。さらに好ましい例は、粘度を下げるために2,2-ジフルオロビニルまたは4,4-ジフルオロ-3-ブテニルである。
 環Aおよび環Cは独立して、1,4-シクロへキシレン、1,4-シクロへキセニレン、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、またはテトラヒドロピラン-2,5-ジイルである。「少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン」の好ましい例は、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレンまたは2-クロロ-3-フルオロ-1,4-フェニレンである。好ましい環Aまたは環Cは、粘度を下げるために1,4-シクロヘキシレンであり、誘電率異方性を上げるためにテトラヒドロピラン-2,5-ジイルであり、光学異方性を上げるために1,4-フェニレンである。1,4-シクロヘキシレンに関する立体配置は、上限温度を上げるためにシスよりもトランスが好ましい。テトラヒドロピラン-2,5-ジイルは、
Figure JPOXMLDOC01-appb-I000054
 環Bは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、または7,8-ジフルオロクロマン-2,6-ジイルである。好ましい環Bは、粘度を下げるために2,3-ジフルオロ-1,4-フェニレンであり、光学異方性を下げるために2-クロロ-3-フルオロ-1,4-フェニレンであり、誘電率異方性を上げるために7,8-ジフルオロクロマン-2,6-ジイルである。
 環Dおよび環Eは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンである。好ましい環Dまたは環Eは粘度を下げるために、または上限温度を上げるために、1,4-シクロヘキシレンであり、下限温度を下げるために1,4-フェニレンである。
 ZおよびZは独立して、単結合、エチレン、カルボニルオキシ、またはメチレンオキシである。好ましいZまたはZは、粘度を下げるために単結合であり、下限温度を下げるためにエチレンであり、誘電率異方性を上げるためにメチレンオキシである。Zは、単結合、エチレンまたはカルボニルオキシである。好ましいZは、安定性を上げるために単結合である。
 aは、0、1、2、または3であり、bは、0または1であり、そして、aとbとの和は3以下である。好ましいaは粘度を下げるために1であり、上限温度を上げるために2または3である。好ましいbは粘度を下げるために0であり、下限温度を下げるために1である。cは、1、2、または3である。好ましいcは粘度を下げるために1であり、上限温度を上げるために2または3である。
 式(3)において、P、P、およびPは独立して、重合性基である。好ましいP、P、またはPは、式(P-1)から式(P-6)で表される基の群から選択された重合性基である。さらに好ましいP、P、またはPは、基(P-1)または基(P-2)である。特に好ましい基(P-1)は、-OCO-CH=CHまたは-OCO-C(CH)=CHである。基(P-1)から基(P-6)の波線は、結合する部位を示す。
Figure JPOXMLDOC01-appb-I000055
 基(P-1)から基(P-6)において、M、M、およびMは独立して、水素、フッ素、炭素数1から5のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から5のアルキルである。好ましいM、MまたはMは、反応性を上げるために水素またはメチルである。さらに好ましいMはメチルであり、さらに好ましいMまたはMは水素である。e個のP、d×f個のP、およびg個のPのうちの少なくとも2つが、基(P-1)であるとき、P、P、およびPのうちの任意の2つのM、M、またはMが、同一であってもよいし、または異なってもよい。基(P-2)または基(P-3)であるときも同様である。
 e個のPおよびg個のPのすべてが、基(P-4)であるとき、e個のSpおよびg個のSpのうちの少なくとも1つは、少なくとも1つの-CH-が、-O-、-COO-、-OCO-、または-OCOO-で置き換えられたアルキレンである。すなわち、e個のPおよびg個のPのすべてが1-プロペニルのようなアルケニルであることはない。
 式(3-1)から式(3-27)において、P、P、およびPは独立して、式(P-1)から式(P-3)で表される基である。好ましいP、P、またはPは、基(P-1)または基(P-2)である。さらに好ましい基(P-1)は、-OCO-CH=CHまたは-OCO-C(CH)=CHである。基(P-1)から基(P-3)の波線は、結合する部位を示す。
Figure JPOXMLDOC01-appb-I000056
 1つまたは2つのP、1つまたは2つのP、および1つまたは2つのPのうちの少なくとも2つが、基(P-1)であるとき、P、P、およびPのうちの任意の2つのM、M、またはMが、同一であってもよいし、または異なってもよい。基(P-2)または基(P-3)であるときも同様である。
 式(3)において、Sp、Sp、およびSpは独立して、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH-CH-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよい。好ましいSp、SpまたはSpは、単結合である。
 環Fおよび環Iは独立して、シクロヘキシル、シクロヘキセニル、フェニル、1-ナフチル、2-ナフチル、テトラヒドロピラン-2-イル、1,3-ジオキサン-2-イル、ピリミジン-2-イル、またはピリジン-2-イルであり、これらの環において、少なくとも1つの水素は、ハロゲン、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルで置き換えられてもよい。好ましい環Fおよび環Iは、フェニルである。環Gは、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-1,2-ジイル、ナフタレン-1,3-ジイル、ナフタレン-1,4-ジイル、ナフタレン-1,5-ジイル、ナフタレン-1,6-ジイル、ナフタレン-1,7-ジイル、ナフタレン-1,8-ジイル、ナフタレン-2,3-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、これらの環において、少なくとも1つの水素は、ハロゲン、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルで置き換えられてもよい。好ましい環Gは、1,4-フェニレンまたは2-フルオロ-1,4-フェニレンである。
 ZおよびZは独立して、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの-CH-CH-は、-CH=CH-、-C(CH)=CH-、-CH=C(CH)-、または-C(CH)=C(CH)-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよい。好ましいZまたはZは、単結合、-CHCH-、-CHO-、-OCH-、-COO-、または-OCO-である。さらに好ましいZまたはZは、単結合である。
 dは、0、1、または2である。好ましいdは、0または1である。e、f、およびgは独立して、0、1、2、3、または4であり、そしてe、f、およびgの和は1以上である。好ましいe、f、またはgは、1または2である。
 第五に、好ましい成分化合物を示す。第一成分は、誘電率異方性が負に大きな化合物(1)である。好ましい化合物(1)は、項3に記載した化合物(1-1)から化合物(1-20)である。素子のフリッカ率を下げるという観点から好ましい化合物は、次のとおりである。単結合またはエチレンを有する化合物は、メチレンオキシを有する化合物よりも好ましい。1,4-シクロへキシレンまたは1,4-フェニレンを有する化合物は、テトラヒドロピラン-2,5-ジイルを有する化合物よりも好ましい。さらに好ましい化合物は、具体的には、化合物(1-1)、化合物(1-2)、化合物(1-3)、化合物(1-5)、化合物(1-7)、化合物(1-8)、化合物(1-10)、化合物(1-14)、化合物(1-17)、または化合物(1-18)である。これらの化合物の合計の割合は、第一成分の重量に基づいて50重量%から100重量%の範囲であることが好ましい。これらの化合物の合計の割合は、液晶組成物の重量に基づいて10重量%から90重量%の範囲であるであることが好ましい。これらの化合物の合計の割合は、液晶組成物の重量に基づいて20重量%から85重量%の範囲であることがさらに好ましい。
 第二成分は、誘電率異方性が小さな化合物(2)である。好ましい化合物(2)は、項6に記載した化合物(2-1)から化合物(2-13)である。これらの化合物において、第二成分の少なくとも1つが、化合物(2-1)、化合物(2-3)、化合物(2-5)、化合物(2-6)、または化合物(2-7)であることが好ましい。第二成分の少なくとも2つが化合物(2-1)および化合物(2-3)、または化合物(2-1)および化合物(2-5)の組み合わせであることが好ましい。
 好ましい化合物(3)は、項10に記載の化合物(3-1)から化合物(3-27)である。これらの化合物において、添加物成分の少なくとも1つが、化合物(3-1)、化合物(3-2)、化合物(3-24)、化合物(3-25)、化合物(3-26)、または化合物(3-27)であることが好ましい。添加物成分の少なくとも2つが、化合物(3-1)および化合物(3-2)、化合物(3-1)および化合物(3-18)、化合物(3-2)および化合物(3-24)、化合物(3-2)および化合物(3-25)、化合物(3-2)および化合物(3-26)、化合物(3-25)および化合物(3-26)、または化合物(3-18)および化合物(3-24)の組み合わせであることが好ましい。基(P-1)から基(P-3)において、好ましいM、M、またはMは、水素またはメチルである。好ましいSp、Sp、またはSpは、単結合、-CHCH-、-CHO-、-OCH-、-COO-、-OCO-、-CO-CH=CH-、または-CH=CH-CO-である。
 第六に、組成物に添加してもよい添加物を説明する。このような添加物は、光学活性化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤などである。液晶分子にらせん構造を誘起してねじれ角を与える目的で光学活性化合物が組成物に添加される。このような化合物の例は、化合物(4-1)から化合物(4-5)である。光学活性化合物の好ましい割合は約5重量%以下である。さらに好ましい割合は約0.01重量%から約2重量%の範囲である。
Figure JPOXMLDOC01-appb-I000057
 素子を長時間使用したあと、室温だけではなく上限温度に近い温度でも大きな電圧保持率を維持するために、酸化防止剤が組成物に添加される。酸化防止剤の好ましい例は、zが1から9の整数である化合物(5)などである。
Figure JPOXMLDOC01-appb-I000058
 化合物(5)において、好ましいzは、1、3、5、7、または9である。さらに好ましいzは7である。zが7である化合物(5)は、揮発性が小さいので、素子を長時間使用したあと、室温だけではなく上限温度に近い温度でも大きな電圧保持率を維持するのに有効である。酸化防止剤の好ましい割合は、この効果を得るために約50ppm以上であり、上限温度を下げないように、または下限温度を上げないように約600ppm以下である。さらに好ましい割合は、約100ppmから約300ppmの範囲である。
 紫外線吸収剤の好ましい例は、ベンゾフェノン誘導体、ベンゾエート誘導体、トリアゾール誘導体などである。立体障害のあるアミンのような光安定剤もまた好ましい。これらの吸収剤や安定剤における好ましい割合は、この効果を得るために約50ppm以上であり、上限温度を下げないように、または下限温度を上げないために約10000ppm以下である。さらに好ましい割合は約100ppmから約10000ppmの範囲である。
 GH(guest host)モードの素子に適合させるために、アゾ系色素、アントラキノン系色素などのような二色性色素(dichroic dye)が組成物に添加される。色素の好ましい割合は、約0.01重量%から約10重量%の範囲である。泡立ちを防ぐために、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどの消泡剤が組成物に添加される。消泡剤の好ましい割合は、この効果を得るために約1ppm以上であり、表示不良を防ぐために約1000ppm以下である。さらに好ましい割合は、約1ppmから約500ppmの範囲である。
 高分子支持配向(PSA)型の素子に適合させるために重合性化合物が用いられる。化合物(3)はこの目的に適している。化合物(3)と共に化合物(3)とは異なる重合性化合物を組成物に添加してもよい。このような重合性化合物の好ましい例は、アクリレート、メタクリレート、ビニル化合物、ビニルオキシ化合物、プロペニルエーテル、エポキシ化合物(オキシラン、オキセタン)、ビニルケトンなどの化合物である。さらに好ましい例は、アクリレートまたはメタクリレートの誘導体である。化合物(3)の好ましい割合は、重合性化合物の全重量に基づいて10重量%以上である。さらに好ましい割合は、50重量%以上である。特に好ましい割合は、80重量%以上である。最も好ましい割合は、100重量%である。
 化合物(3)のような重合性化合物は紫外線照射により重合する。光重合開始剤などの適切な開始剤存在下で重合させてもよい。重合のための適切な条件、開始剤の適切なタイプ、および適切な量は、当業者には既知であり、文献に記載されている。例えば光開始剤であるIrgacure651(登録商標;BASF)、Irgacure184(登録商標;BASF)、またはDarocure1173(登録商標;BASF)がラジカル重合に対して適切である。光重合開始剤の好ましい割合は、重合性化合物の全重量に基づいて約0.1重量%から約5重量%の範囲である。さらに好ましい割合は約1重量%から約3重量%の範囲である。
 化合物(3)のような重合性化合物を保管するとき、重合を防止するために重合禁止剤を添加してもよい。重合性化合物は、通常は重合禁止剤を除去しないまま組成物に添加される。重合禁止剤の例は、ヒドロキノン、メチルヒドロキノンのようなヒドロキノン誘導体、4-tert-ブチルカテコール、4-メトキシフェノ-ル、フェノチアジンなどである。
 第七に、成分化合物の合成法を説明する。これらの化合物は既知の方法によって合成できる。合成法を例示する。化合物(1-7)は、特開2000-53602号公報に記載された方法で合成する。化合物(2-1)は、特開昭59-176221号公報に記載された方法で合成する。式(5)のzが1である化合物は、アルドリッチ(Sigma-Aldrich Corporation)から入手できる。zが7である化合物(5)などは、米国特許3660505号明細書に記載された方法によって合成する。
 合成法を記載しなかった化合物は、オーガニック・シンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などの成書に記載された方法によって合成できる。組成物は、このようにして得た化合物から公知の方法によって調製される。例えば、成分化合物を混合し、そして加熱によって互いに溶解させる。
 第八に、組成物の用途を説明する。この組成物は主として、約-10℃以下の下限温度、約70℃以上の上限温度、そして約0.07から約0.20の範囲の光学異方性を有する。この組成物を含有する素子は大きな電圧保持率を有する。この組成物はAM素子に適する。この組成物は透過型のAM素子に特に適する。成分化合物の割合を制御することによって、またはその他の液晶性化合物を混合することによって、約0.08から約0.25の範囲の光学異方性を有する組成物を調製してもよい。この方法によって約0.10から約0.30の範囲の光学異方性を有する組成物を調製してもよい。この組成物は、ネマチック相を有する組成物としての使用、光学活性化合物を添加することによって光学活性な組成物としての使用が可能である。
 この組成物はAM素子への使用が可能である。さらにPM素子への使用も可能である。この組成物は、PC、TN、STN、ECB、OCB、IPS、FFS、VA、FPAなどのモードを有するAM素子またはPM素子への使用が可能である。TN、OCB、IPS、またはFFSのモードを有するAM素子への使用は特に好ましい。IPSモードまたはFFSモードを有するAM素子において、電圧が無印加のとき、液晶分子の配列がガラス基板に対して並行であってもよく、または垂直であってもよい。これらの素子が反射型、透過型または半透過型であってもよい。透過型の素子への使用は好ましい。非結晶シリコン-TFT素子または多結晶シリコン-TFT素子への使用も可能である。この組成物をマイクロカプセル化して作製したNCAP(nematic curvilinear aligned phase)型の素子や、組成物中に三次元の網目状高分子を形成させたPD(polymer dispersed)型の素子にも使用できる。
 第九に、光反応性基を有するポリアミック酸またはこの誘導体、および光反応性基を有するジアミンを説明する。好ましい液晶配向膜は、光反応性基を有する重合体を含有する液晶配向剤から調製される。好ましい光反応性基は、アゾベンゼン誘導体、スチルベン誘導体、トラン誘導体、ジフェニルブタジイン誘導体、スピロピラン誘導体、スピロベンゾピラン誘導体、α-アリール-β-ケト酸誘導体、α-ヒドラゾノ-β-ケト酸誘導体、カルコン誘導体、アゾ誘導体、ベンジリデンフタルイミデン誘導体、ヘミチオインジゴ誘導体、チオインジゴ誘導体、スピロオキサジン誘導体、シンナムアルデヒド誘導体、レチナール誘導体、フルギド誘導体、ジアリールエテン誘導体、ポリメチン系化合物、ベンゾチアゾリノスピロピラン誘導体、ベンゾキオピラン系ピロピラン誘導体、およびこれらの異性体またはヘテロ原子置換体の群から選択された少なくとも1つの化合物に由来する基である。ヘテロ原子置換体とは、少なくとも1つの炭素原子がヘテロ原子に置き換えられた化合物である。
 光反応性基を有するポリアミック酸またはこの誘導体は、例えば下記式(I)から(VII)で表される基の群から選択された少なくとも1つの光反応性基を有するテトラカルボン酸二無水物またはジアミンの少なくとも1つを原料に用いることによって得られる。


Figure JPOXMLDOC01-appb-I000059
式(IV)および式(V)においてRは芳香環を有する二価の有機基である。光反応性基を有するジアミンは、原料の入手や合成の容易さの観点から好ましい。光反応性基を有するテトラカルボン酸二無水物は、特性の観点から好ましい。
 式(I)から(VII)で表される基の群から選択された光反応性基を有するテトラカルボン酸二無水物またはジアミンの少なくとも1つを原料に用いた光配向膜は、良好な感光性を有する。
 好適な光反応性基を有するテトラカルボン酸二無水物の例として下記式(PAN-1)または(PAN-2)の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000060
 好適な光反応性基を有するジアミンの例として下記式(PDI-1)から(PDI-8)の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000061
 式(PDI-1)から式(PDI-8)において、環を構成するどの炭素原子にも結合位置が固定されていない基は、この環における結合位置がいずれかの炭素原子であることを示し;Rは、-CH、-OCH、-CF、または-COOCHであり;hは、0から2の整数である。
 反応性または感光性の点から、下記式(PDI-6-1)または(PDI-7-1)の化合物がより好ましい。
Figure JPOXMLDOC01-appb-I000062
 第十に、その他のテトラカルボン酸二無水物を説明する。ポリアミック酸またはこの誘導体を製造するにあたっては、光反応性基を有するテトラカルボン酸二無水物以外のテトラカルボン酸二無水物をさらに使用することができ、公知のテトラカルボン酸二無水物から制限されることなく選択することができる。このようなテトラカルボン酸二無水物は、芳香環に-CO-O-CO-が直接に結合した芳香族系(複素芳香環系を含む)、および芳香環に-CO-O-CO-が直接に結合していない脂肪族系(複素環系を含む)の何れの群に属するものであってもよい。
 このようなテトラカルボン酸二無水物の例としては、原料入手の容易さや、ポリマー重合時の容易さ、膜の電気特性の点から、式(AN-I)から(AN-VII)で表されるテトラカルボン酸二無水物が挙げられる。
Figure JPOXMLDOC01-appb-I000063
 式(AN-I)から式(AN-VII)において、Xは、単結合または-CH-であり;Gは、単結合、炭素数1から20のアルキレン、-CO-、-O-、-S-、-SO-、-C(CH-、または-C(CF-であり;Yは下記の三価の基の群から選択された1つである。
Figure JPOXMLDOC01-appb-I000064
 これらの基において、少なくとも1つの水素は、メチル、エチル、またはフェニルで置き換えられてもよく;環Jは、炭素数3から10の単環式炭化水素の基または炭素数6から30の縮合多環式炭化水素の基であり、これらの基において、少なくとも1つの水素は、メチル、エチルまたはフェニルで置き換えられてもよく、環に掛かっている結合手は環を構成するいずれかの炭素に連結しており、2本の結合手が同一の炭素に連結してもよく;X10は、炭素数2から6のアルキレンであり;Meはメチルであり;Phはフェニルであり;G10は、-O-、-COO-または-OCO-であり;iは、0または1である。
 さらに詳しくは以下の式(AN-1)から(AN-16-14)で表されるテトラカルボン酸二無水物が挙げられる。
Figure JPOXMLDOC01-appb-I000065
 式(AN-1)において、G11は、単結合、炭素数1から12のアルキレン、1,4-フェニレン、または1,4-シクロヘキシレンである。X11は、単結合または-CH-である。G12は、下記の三価の基のどちらかである。
Figure JPOXMLDOC01-appb-I000066
 G12がCHであるとき、CHの水素は-CHに置き換えられてもよい。G12がNであるとき、G11が単結合または-CH-であることはなく、X11は単結合であることはない。そしてR14は、水素または-CHである。式(AN-1)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000067
 式(AN-1-2)および(AN-1-14)において、uは1から12の整数である。
Figure JPOXMLDOC01-appb-I000068
 式(AN-2)において、R15は、水素、-CH、-CHCH、またはフェニルである。式(AN-2)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000069
Figure JPOXMLDOC01-appb-I000070
 式(AN-3)において、環J11はシクロヘキサン環またはベンゼン環である。式(AN-3)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000071
Figure JPOXMLDOC01-appb-I000072
 式(AN-4)において、G13は単結合、炭素数1から12のアルキレン、-O-、-S-、-C(CH-、-SO-、-CO-、-C(CF-、または下記の式(G13-1)で表される二価の基である。
Figure JPOXMLDOC01-appb-I000073
 式(G13-1)におけるフェニレンは、1,4-フェニレンまたは1,3-フェニレンが好ましい。
 環J11は、シクロヘキサン環またはベンゼン環である。G13は環J11のいずれかの位置に結合してよい。式(AN-4)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000074
Figure JPOXMLDOC01-appb-I000075
 式(AN-4-17)において、uは1から12の整数である。
Figure JPOXMLDOC01-appb-I000076
Figure JPOXMLDOC01-appb-I000077
Figure JPOXMLDOC01-appb-I000078
 式(AN-5)において、R14は、水素または-CHである。ベンゼン環を構成する炭素原子に結合位置が固定されていないR14は、ベンゼン環における結合位置がいずれかの炭素原子であることを示す。式(AN-5)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000080
 式(AN-6)において、X11は、単結合または-CH-である。X12は、-CH-、-CHCH-または-CH=CH-である。vは、1または2である。式(AN-6)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000081
Figure JPOXMLDOC01-appb-I000082
 式(AN-7)において、X11は単結合または-CH-である。式(AN-7)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000083
Figure JPOXMLDOC01-appb-I000084
 式(AN-8)において、X11は、単結合または-CH-である。R16は、水素、-CH、-CHCH、またはフェニルであり、環J12はシクロヘキサン環またはシクロヘキセン環である。式(AN-8)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000085
Figure JPOXMLDOC01-appb-I000086
 式(AN-9)において、wは、0または1である。式(AN-9)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000087
 式(AN-10)で表される化合物は下記のテトラカルボン酸二無水物である。
Figure JPOXMLDOC01-appb-I000088
Figure JPOXMLDOC01-appb-I000089
 式(AN-11)において、環J11は、シクロヘキサン環またはベンゼン環である。式(AN-11)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000090
Figure JPOXMLDOC01-appb-I000091
 式(AN-12)において、環J11は、シクロヘキサン環またはベンゼン環である。式(AN-12)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000092
Figure JPOXMLDOC01-appb-I000093
 式(AN-13)において、X10は炭素数2から6のアルキレンであり、Phはフェニルである。式(AN-13)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。下記の式において、Phはフェニルである。
Figure JPOXMLDOC01-appb-I000094
Figure JPOXMLDOC01-appb-I000095
 式(AN-14)において、G10は独立して-O-、-COO-または-OCO-であり、iは、0または1である。式(AN-14)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000096
Figure JPOXMLDOC01-appb-I000097
 式(AN-15)において、xは1から10の整数である。式(AN-15)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000098
 上記以外のテトラカルボン酸二無水物の例として、下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000099
 液晶表示素子の配向性を向上させることを重視する場合には、上記の酸二無水物のうち、式(AN-1-1)、(AN-1-13)、(AN-2-1)、(AN-3-1)、(AN-4-17)、(AN-4-28)、または(AN-4-29)で表される化合物が特に好ましい。
 液晶表示素子の透過率を向上させることを重視する場合には、上記の酸二無水物のうち、式(AN-1-1)、(AN-1-13)、(AN-2-1)、(AN-3-1)、(AN-4-28)、(AN-4-29)、(AN-7-2)、または(AN-10)で表される化合物が特に好ましい。
 液晶表示素子の電気特性を向上させることを重視する場合には、上記の酸二無水物のうち、式(AN-3-2)、(AN-4-5)、(AN-4-17)、(AN-4-21)、(AN-7-2)、(AN-10)、または(AN-11-3)で表される化合物が特に好ましい。
 第十一に、その他のジアミンを説明する。本発明のポリアミック酸またはこの誘導体を製造するにあたっては、光反応性基を有するジアミン以外のジアミンをさらに使用することができ、公知のジアミンから制限されることなく選択することができる。
 ジアミンはその構造によって2種類に分けることができる。即ち、2つのアミノ基を結ぶ骨格を主鎖として見たときに、主鎖から分岐する基、即ち側鎖基を有するジアミンと側鎖基を持たないジアミンである。この側鎖基はプレチルト角を大きくする効果を有する基である。このような効果を有する側鎖基は炭素数3以上の基である必要があり、具体的な例として炭素数3以上のアルキル、炭素数3以上のアルコキシ、炭素数3以上のアルコキシアルキル、またはステロイド骨格を有する基を挙げることができる。1つ以上の環を有する基であって、その末端の環が置換基として炭素数1以上のアルキル、炭素数1以上のアルコキシ、および炭素数2以上のアルコキシアルキルのいずれか1つを有する基も側鎖基としての効果を有する。以下の説明では、このような側鎖基を有するジアミンを「側鎖型ジアミン」と称することがある。そして、このような側鎖基を持たないジアミンを「非側鎖型ジアミン」と称することがある。
 非側鎖型ジアミンと側鎖型ジアミンを適切に使い分けることにより、必要なプレチルト角を得ることができる。非側鎖型ジアミンまたは側鎖型ジアミンは、垂直配向性、電圧保持率、画像の焼き付き、配向性のような特性を向上させる目的で使用することできる。側鎖型ジアミンは、本発明の特性を損なわない程度に併用するのが好ましい。
 非側鎖型ジアミンについて説明する。既知の非側鎖型ジアミンとしては、以下の式(DI-1)から(DI-12)のジアミン、または式(DI-13)から(DI-15)のジヒドラジドを挙げることができる。ここでは、ジヒドラジドもジアミンに含まれる。
Figure JPOXMLDOC01-appb-I000100
 式(DI-1)から式(DI-7)において、kは、1から12の整数であり;G21は、単結合、-NH-、-O-、-S-、-S-S-、-SO-、-CO-、-CONH-、-CON(CH)-、-NHCO-、-C(CH-、-C(CF-、-(CH-、-O-(CH-O-、-N(CH)-(CH-N(CH)-、または-S-(CH-S-であり;mは、1から12の整数であり;nは、1から5の整数であり;G22は、単結合、-O-、-S-、-CO-、-C(CH-、-C(CF-、または炭素数1から10のアルキレンであり;シクロヘキサン環またはベンゼン環の少なくとも1つの水素は、フッ素、-CH、-OH、-CF、-COH、-CONH、またはベンジルで置き換えられてもよく、加えて式(DI-4)においては、ベンゼン環の少なくとも1つの水素が、下記式(DI-4-a)から(DI-4-c)で置き換えられてもよい。環を構成する炭素原子に結合位置が固定されていない基は、この環における結合位置がいずれかの炭素原子であることを示す。そして、シクロヘキサン環またはベンゼン環への-NHの結合位置は、G21またはG22の結合位置を除くいずれかの位置である。
Figure JPOXMLDOC01-appb-I000101
 式(DI-4-a)および(DI-4-b)において、Rは、水素または-CHである。
Figure JPOXMLDOC01-appb-I000102
 式(DI-8)から式(DI-12)において、R10およびR11は独立して、炭素数1から3のアルキルまたはフェニルであり;G23は、炭素数1から6のアルキレン、フェニレンまたはアルキル置換されたフェニレンであり;pは、1から10の整数であり;R12は、炭素数1から5のアルキル、炭素数1から5のアルコキシまたは塩素であり;qは、0から3の整数であり;rは、0から4の整数であり;R13は、水素、炭素数1から4のアルキル、フェニル、またはベンジルであり;G24は、-CH-または-NH-であり;G25は、単結合、炭素数2から6のアルキレンまたは1,4-フェニレンであり;sは、0または1であり;環を構成するいずれかの炭素原子に結合位置が固定されていない基は、この環における結合位置がいずれかの炭素原子であることを示し;ベンゼン環に結合する-NHの結合位置はいずれかの位置である。
Figure JPOXMLDOC01-appb-I000103
 式(DI-13)から式(DI-15)において、G31は、単結合、炭素数1から20のアルキレン、-CO-、-O-、-S-、-SO-、-C(CH
-、または-C(CF-であり;環Kは、シクロヘキサン環、ベンゼン環またはナフタレン環であり、これらの基において、少なくとも1つの水素は、メチル、エチル、またはフェニルで置き換えられてもよく;環Lは、シクロヘキサン環またはベンゼン環であり、これらの基において、少なくとも1つの水素は、メチル、エチル、またはフェニルで置き換えられてもよい。
 上記式(DI-1)から(DI-15)の非側鎖型ジアミンの具体例として、以下の式(DI-1-1)から(DI-15-6)のジアミンを挙げることができる。
 式(DI-1)から(DI-3)で表されるジアミンの例を以下に示す。
Figure JPOXMLDOC01-appb-I000104
 式(DI-4)で表されるジアミンの例を以下に示す。
Figure JPOXMLDOC01-appb-I000105
Figure JPOXMLDOC01-appb-I000106

Figure JPOXMLDOC01-appb-I000107
 式(DI-5)で表されるジアミンの例を以下に示す。
Figure JPOXMLDOC01-appb-I000108
 式(DI-5-1)において、mは1から12の整数である。
Figure JPOXMLDOC01-appb-I000109
 式(DI-5-12)および式(DI-5-13)において、mは1から12の整数である。
Figure JPOXMLDOC01-appb-I000110
 式(DI-5-16)において、yは1から6の整数である。
Figure JPOXMLDOC01-appb-I000111
 式(DI-5-30)において、nは1から5の整数である。
 式(DI-6)で表されるジアミンの例を以下に示す。
Figure JPOXMLDOC01-appb-I000112
式(DI-7)で表されるジアミンの例を以下に示す。
Figure JPOXMLDOC01-appb-I000113
 式(DI-7-3)および(DI-7-4)において、mは1から12の整数であり、tは、1または2である。
Figure JPOXMLDOC01-appb-I000114
 式(DI-8)で表されるジアミンの例を以下に示す。
Figure JPOXMLDOC01-appb-I000115
 式(DI-9)で表されるジアミンの例を以下に示す。
Figure JPOXMLDOC01-appb-I000116
 式(DI-10)で表されるジアミンの例を以下に示す。
Figure JPOXMLDOC01-appb-I000117
 式(DI-11)で表されるジアミンの例を以下に示す。
Figure JPOXMLDOC01-appb-I000118
式(DI-12)で表されるジアミンの例を以下に示す。
Figure JPOXMLDOC01-appb-I000119
 式(DI-13)で表されるジアミンの例を以下に示す。
Figure JPOXMLDOC01-appb-I000120
 式(DI-13-2)において、tは、1から12の整数である。
 式(DI-14)で表されるジアミンの例を以下に示す。
Figure JPOXMLDOC01-appb-I000121
 式(DI-15)で表されるジアミンの例を以下に示す。
Figure JPOXMLDOC01-appb-I000122
 側鎖型ジアミンについて説明する。側鎖型ジアミンの側鎖基としては、以下の基をあげることができる。
 側鎖基としてまず、アルキル、アルキルオキシ、アルキルオキシアルキル、アルキルカルボニル、アルキルカルボニルオキシ、アルキルオキシカルボニル、アルキルアミノカルボニル、アルケニル、アルケニルオキシ、アルケニルカルボニル、アルケニルカルボニルオキシ、アルケニルオキシカルボニル、アルケニルアミノカルボニル、アルキニル、アルキニルオキシ、アルキニルカルボニル、アルキニルカルボニルオキシ、アルキニルオキシカルボニル、またはアルキニルアミノカルボニル等を挙げることができる。これらの基において、アルキル、アルケニル、およびアルキニルは、いずれも炭素数3以上の基である。但し、アルキルオキシアルキルにおいては、基全体で炭素数3以上であればよい。これらの基は直鎖状であっても分岐鎖状であってもよい。
 次に、末端の環が置換基として、炭素数1以上のアルキル、炭素数1以上のアルコキシ、または炭素数2以上のアルコキシアルキルを有することを条件に、フェニル、フェニルアルキル、フェニルアルキルオキシ、フェニルオキシ、フェニルカルボニル、フェニルカルボニルオキシ、フェニルオキシカルボニル、フェニルアミノカルボニル、フェニルシクロヘキシルオキシ、炭素数3以上のシクロアルキル、シクロヘキシルアルキル、シクロヘキシルオキシ、シクロヘキシルオキシカルボニル、シクロヘキシルフェニル、シクロヘキシルフェニルアルキル、シクロヘキシルフェニルオキシ、ビス(シクロヘキシル)オキシ、ビス(シクロヘキシル)アルキル、ビス(シクロヘキシル)フェニル、ビス(シクロヘキシル)フェニルアルキル、ビス(シクロヘキシル)オキシカルボニル、ビス(シクロヘキシル)フェニルオキシカルボニル、またはシクロヘキシルビス(フェニル)オキシカルボニル等の環構造の基を挙げることができる。
 さらに、2個以上のベンゼン環を有する基、2個以上のシクロヘキサン環を有する基、またはベンゼン環およびシクロヘキサン環で構成される2環以上の基であって、結合基が独立して単結合、-O-、-COO-、-OCO-、-CONH-、または炭素数1から3のアルキレンであり、末端の環が置換基として炭素数1以上のアルキル、炭素数1以上のフッ素置換アルキル、炭素数1以上のアルコキシ、または炭素数2以上のアルコキシアルキルを有する環集合基を挙げることができる。ステロイド骨格を有する基も側鎖基として有効である。
 側鎖型ジアミンとしては、以下の式(DI-16)から(DI-20)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-I000123
 式(DI-16)において、G26は単結合、-O-、-COO-、-OCO-、-CO-、-CONH-、-CHO-、-OCH-、-CFO-、-OCF-、または-(CH-であり、Aは1から12の整数である。G26の好ましい例は、単結合、-O-、-COO-、-OCO-、-CHO-、または炭素数1から3のアルキレンであり、特に好ましい例は単結合、-O-、-COO-、-OCO-、-CHO-、-CH-、または-CHCH-である。R17は炭素数3から30のアルキル、フェニル、ステロイド骨格を有する基、または下記の式(DI-16-a)で表される基である。このアルキルにおいて、少なくとも1つの水素はフッ素で置き換えられてもよく、そして少なくとも1つの-CH2-は、-O-、-CH=CH-、または-C≡C-で置き換えられてもよい。このフェニルの水素は、フッ素、-CH、-OCH、-OCHF、-OCHF2、-OCF3、炭素数3から30のアルキルまたは炭素数3から30のアルコキシで置き換えられてもよい。ベンゼン環に結合する-NHの結合位置はこの環においていずれかの位置である。好ましい結合位置はメタまたはパラである。即ち、基「R17-G26-」の結合位置を1位としたとき、2つの結合位置は3位と5位、または2位と5位であることが好ましい。
Figure JPOXMLDOC01-appb-I000124
 式(DI-16-a)において、G27、G28、およびG29は結合基であり、これらは独立して単結合、または炭素数1から12のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は-O-、-COO-、-OCO-、-CONH-、-CH=CH-で置き換えられてもよい。環B21、環B22、環B23、および環B24は独立して、1,4-フェニレン、1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイル、ナフタレン-1,5-ジイル、ナフタレン-2,7-ジイルまたはアントラセン-9,10-ジイルであり、環B21、環B22、環B23、および環B24において、少なくとも1つの水素はフッ素または-CHで置き換えられてもよく、D、E、およびFは独立して、0から2の整数であって、これらの合計は1から5である。D、E、またはFが2であるとき、各々の括弧内の2つの結合基は同じであっても異なってもよく、そして、2つの環は同じであっても異なってもよい。R18はフッ素、-OH、炭素数1から30のアルキル、炭素数1から30のフッ素置換アルキル、炭素数1から30のアルコキシ、-CN、-OCHF、-OCHF、または-OCFであり、この炭素数1から30のアルキルの少なくとも1つの-CH-は下記式(DI-16-b)で表される二価の基で置き換えられてもよい。
Figure JPOXMLDOC01-appb-I000125
 式(DI-16-b)において、R19およびR20は独立して、炭素数1から3のアルキルであり、Gは、1から6の整数である。R18の好ましい例は炭素数1から30のアルキルおよび炭素数1から30のアルコキシである。
Figure JPOXMLDOC01-appb-I000126
 式(DI-17)および式(DI-18)において、G30は、単結合、-CO-または-CH2-であり、R21は、水素または-CHであり、R22は、水素、炭素数1から20のアルキル、または炭素数2から20のアルケニルである。式(DI-18)におけるベンゼン環の1つの水素は、炭素数1から20のアルキルまたはフェニルで置き換えられてもよい。そして、環を構成するどの炭素原子にも結合位置が固定されていない基は、この環における結合位置がいずれかの炭素原子であることを示す。式(DI-17)における2つの基「-フェニレン-G30-O-」の一方はステロイド核の3位に結合し、もう一方はステロイド核の6位に結合していることが好ましい。式(DI-18)における2つの基「-フェニレン-G30-O-」のベンゼン環への結合位置は、ステロイド核の結合位置に対して、メタ位またはパラ位であることが好ましい。式(DI-17)および式(DI-18)において、ベンゼン環に結合する-NHの結合位置はいずれかの位置である。
Figure JPOXMLDOC01-appb-I000127
 式(DI-19)および式(DI-20)において、G31は独立して-O-または炭素数1から6のアルキレンであり、G32は単結合または炭素数1から3のアルキレンである。R23は水素または炭素数1から20のアルキルであり、このアルキルの少なくとも1つの-CH-は、-O-、-CH=CH-または-C≡C-で置き換えられてもよい。R24は炭素数6から22のアルキルであり、R25は水素または炭素数1から22のアルキルである。環B25は1,4-フェニレンまたは1,4-シクロヘキシレンであり、Hは0または1である。そしてベンゼン環に結合する-NHは、この環における結合位置がいずれかの炭素原子である。各-NHはG31の結合位置に対してメタ位またはパラ位であることが好ましい。
 側鎖型ジアミンの具体例を以下に例示する。上記式(DI-16)から(DI-20)の側鎖型ジアミンとして、下記の式(DI-16-1)から(DI-20-3)で表される化合物を挙げることができる。
 式(DI-16)で表される化合物の例を以下に示す。
Figure JPOXMLDOC01-appb-I000128
 式(DI-16-1)から(DI-16-11)において、R26は炭素数1から30のアルキルまたは炭素数1から30のアルコキシであり、好ましくは炭素数5から25のアルキルまたは炭素数5から25のアルコキシである。R27は炭素数1から30のアルキルまたは炭素数1から30のアルコキシであり、好ましくは炭素数3から25のアルキルまたは炭素数3から25のアルコキシである。
Figure JPOXMLDOC01-appb-I000129
 式(DI-16-12)から(DI-16-17)において、R28は炭素数4から30のアルキルであり、好ましくは炭素数6から25のアルキルである。R29は炭素数6から30のアルキルであり、好ましくは炭素数8から25のアルキルである。
Figure JPOXMLDOC01-appb-I000130
Figure JPOXMLDOC01-appb-I000131
Figure JPOXMLDOC01-appb-I000132
Figure JPOXMLDOC01-appb-I000133
 式(DI-16-18)から(DI-16-43)において、R30は炭素数1から20のアルキルまたは炭素数1から20のアルコキシであり、好ましくは炭素数3から20のアルキルまたは炭素数3から20のアルコキシである。R31は水素、フッ素、炭素数1から30のアルキル、炭素数1から30のアルコキシ、-CN、-OCHF、-OCHFまたは-OCFであり、好ましくは炭素数3から25のアルキル、または炭素数3から25のアルコキシである。そしてG33は炭素数1から20のアルキレンである。式(DI-16-44)から(DI-16-50)は、ステロイド骨格を有する化合物の例である。
Figure JPOXMLDOC01-appb-I000134
Figure JPOXMLDOC01-appb-I000135
Figure JPOXMLDOC01-appb-I000136
 式(DI-17)で表される化合物の例を以下に示す。
Figure JPOXMLDOC01-appb-I000137
 式(DI-18)で表される化合物の例を以下に示す。
Figure JPOXMLDOC01-appb-I000138
 式(DI-19)で表される化合物の例を以下に示す。
Figure JPOXMLDOC01-appb-I000139
Figure JPOXMLDOC01-appb-I000140
 式(DI-19-1)から(DI-19-12)において、R32は水素または炭素数1から20のアルキル、好ましくは水素または炭素数1から10のアルキルであり、そしてR33は水素または炭素数1から12のアルキルである。
 式(DI-20)で表される化合物の例を以下に示す。
Figure JPOXMLDOC01-appb-I000141
 式(DI-20-1)から(DI-20-3)において、R29は炭素数6から30のアルキルであり、R33は水素または炭素数1から12のアルキルである。
 本発明におけるジアミンとしては、前述した式(PDI-1)から(PDI-8)で表される感光性ジアミンおよび式(DI-1-1)から(DI-20-3)で表されるジアミン以外のジアミンも用いることができる。このようなジアミンとしては、例えば、式(DI-16-1)から(DI-20-3)以外の側鎖型ジアミンが挙げられる。
 例えば下記式(DI-21-1)から(DI-21-8)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000142
 式(DI-21-1)から(DI-21-8)において、R34は炭素数3から30のアルキルを表す。
 各ジアミンにおいて、ジアミンに対するモノアミンの比率が40モル%以下の範囲で、ジアミンの一部がモノアミンに置き換えられてもよい。このような置き換えは、ポリアミック酸を生成する際の重合反応のターミネーションを起こすので、重合反応の進行を抑えることができる。得られる重合体(ポリアミック酸またはこの誘導体)の分子量を制御することができるので、本発明の効果が損われることなく液晶配向剤の塗布特性を改善することができる。モノアミンは、本発明の効果が損なわれなければ、一種でも二種以上でもよい。モノアミンとしては、例えばアニリン、4-ヒドロキシアニリン、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン、n-ウンデシルアミン、n-ドデシルアミン、n-トリデシルアミン、n-テトラデシルアミン、n-ペンタデシルアミン、n-ヘキサデシルアミン、n-ヘプタデシルアミン、n-オクタデシルアミン、またはn-エイコシルアミンが挙げられる。
 ポリアミック酸またはこの誘導体を製造するときは、原料にモノイソシアネート化合物を添加してもよい。モノイソシアネート化合物を原料に添加することによって、得られるポリアミック酸またはこの誘導体の末端が修飾され、分子量が調節される。この末端修飾型のポリアミック酸またはこの誘導体を用いることにより、例えば本発明の効果が損われることなく液晶配向剤の塗布特性を改善することができる。原料中のモノイソシアネート化合物の含有量は、原料のジアミンおよびテトラカルボン酸二無水物の総量に対して1から10モル%であることが、前記の観点から好ましい。モノイソシアネート化合物としては、例えばフェニルイソシアネート、またはナフチルイソシアネートが挙げられる。
 上記のジアミンの具体例のうち、液晶分子の配向性をさらに向上させることを重視する場合には、ジアミンが、式(DI-1-3)、(DI-5-1)、(DI-5-12)、(DI-7-3)、(DI-13-2)、(DI-14-1)または(DI-14-2)で表されるジアミンが好ましい。
 上記のジアミンの具体例のうち、反応性、感光性をさらに向上させることを重視する場合には、ジアミンが、式(DI-1-4)、(DI-4-1)、(DI-5-1)、(DI-5-12)、(DI-5-28)、(DI-5-30)、(DI-9-1)、(DI-13-1)、(DI-13-2)、(DI-14-1)または(DI-14-2)で表されるジアミンが好ましい。
 上記のジアミンの具体例のうち、透過率をさらに向上させることを重視する場合には、ジアミンが、式(DI-1-3)、(DI-1-4)、(DI-13-1)、((DI-13-2)、(DI-14-1)または(DI-14-2)で表されるジアミンが好ましい。
 上記のジアミンの具体例のうち、電気特性をさらに向上させることを重視する場合には、ジアミンが、式(DI-4-1)、(DI-5-5)、(DI-5-9)、(DI-5-21)、(DI-5-28)、(DI-5-30)、(DI-5-31)、(DI-9-1)、(DI-14-1)、または(DI-14-2)で表されるジアミンが好ましい。
 第十二に、液晶配向剤を説明する。本発明で用いられる配向膜を製造するための液晶配向剤に用いるポリアミック酸は、酸二無水物とジアミンを溶剤中で反応させることによって得られる。この合成反応においては、原料の選択以外に特別な条件は必要でなく、通常のポリアミック酸合成における条件をそのまま適用することができる。使用する溶剤については後述する。
 液晶配向剤は、いわゆるブレンドタイプでもよく、ポリアミック酸またはこの誘導体をさらに含有してもよいし、ポリアミック酸またはこの誘導体以外の他の成分をさらに含有してもよい。他の成分は、1種であっても2種以上であってもよい。
 液晶配向剤は、本発明の効果が損なわれない範囲(好ましくは、ポリアミック酸またはこの誘導体の20重量%以内の量)で、アクリル酸ポリマー、アクリレートポリマー、テトラカルボン酸二無水物、ジカルボン酸またはこの誘導体とジアミンとの反応生成物であるポリアミドイミド等の他のポリマー成分をさらに含有してもよい。
 ポリアミック酸またはこの誘導体は、ポリイミドの膜の形成に用いられる公知のポリアミック酸またはこの誘導体と同様に製造することができる。テトラカルボン酸二無水物の総仕込み量は、ジアミンの総モル数とほぼ等モル(モル比で約0.9から約1.1)とすることが好ましい。
 ポリアミック酸またはこの誘導体の分子量は、ポリスチレン換算の重量平均分子量(Mw)で、好ましくは10,000から500,000であり、さらに好ましくは20,000から200,000である。ポリアミック酸またはこの誘導体の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法による測定から求めることができる。
 ポリアミック酸またはこの誘導体は、多量の貧溶剤で沈殿させて得られる固形分をIR、NMRで分析することによりその存在を確認することができる。またKOHやNaOH等の強アルカリの水溶液によるポリアミック酸またはこの誘導体の分解物の有機溶剤による抽出物をGC、HPLCまたはGC-MSで分析することにより、使用されている原料を確認することができる。
 アルケニル置換ナジイミド化合物、ラジカル重合性不飽和二重結合を有する化合物、オキサジン化合物、オキサゾリン化合物、エポキシ化合物、シランカップリング剤のような添加物を必要に応じて含有してもよい。このような添加物については、特開2013-242526号公報の段落0120から0231に詳しく記載されている。
 液晶配向剤は、液晶配向剤の塗布性やポリアミック酸またはこの誘導体の濃度の調整の観点から、溶剤をさらに含有してもよい。溶剤は、高分子成分を溶解する能力を持った溶剤であれば格別制限なく適用可能である。溶剤は、ポリアミック酸、可溶性ポリイミド等の高分子成分の製造工程や用途面で通常使用されている溶剤を広く含み、使用目的に応じて、適宜選択できる。溶剤は1種でも2種以上の混合溶剤であってもよい。
 溶剤としては、ポリアミック酸またはこの誘導体の親溶剤や、塗布性改善を目的とした他の溶剤が挙げられる。
 ポリアミック酸またはこの誘導体に対し親溶剤である非プロトン性極性有機溶剤としては、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、N-メチルカプロラクタム、N-メチルプロピオンアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、ジエチルアセトアミド、γ-ブチロラクトン等のラクトンが挙げられる。
 塗布性改善等を目的とした他の溶剤の例としては、乳酸アルキル、3-メチル-3-メトキシブタノール、テトラリン、イソホロン、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル、ジエチレングリコールモノエチルエーテル等のジエチレングリコールモノアルキルエーテル、エチレングリコールモノアルキルまたはフェニルアセテート、トリエチレングリコールモノアルキルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル、マロン酸ジエチル等のマロン酸ジアルキル、ジプロピレングリコールモノメチルエーテル等のジプロピレングリコールモノアルキルエーテル、これらアセテート類等のエステル化合物が挙げられる。
 これらの中で、溶剤は、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、γ-ブチロラクトン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、またはジプロピレングリコールモノメチルエーテルが特に好ましい。
 液晶配向剤中のポリアミック酸の濃度は0.1から40重量%であることが好ましい。この配向剤を基板に塗布するときには、膜厚の調整のために、含有されているポリアミック酸を予め溶剤により希釈する操作が必要とされることがある。
 配向剤における固形分濃度は特に限定されるものではなく、下記の種々の塗布法に合わせ最適な値を選べばよい。通常、塗布時のムラやピンホール等を抑えるため、ワニス重量に対し、好ましくは0.1から30重量%、より好ましくは1から10重量%である。
 第十三に、液晶配向膜を説明する。液晶配向膜は、液晶配向剤の塗膜を加熱することによって形成される。液晶配向膜は、液晶配向剤から液晶配向膜を作製する通常の方法によって得ることができる。例えば、液晶配向膜は、液晶配向剤の塗膜を形成する工程と、加熱乾燥する工程と、加熱焼成する工程を経ることによって得ることができる。必要に応じて、塗膜工程、加熱乾燥工程の後に光を照射して、または加熱焼成工程の後に光を照射して異方性を付与してもよい。
 塗膜は、液晶表示素子の基板に液晶配向剤を塗布することによって形成することができる。基板の例には、ITO(Indium TinOxide)電極、IZO(In-ZnO)電極、IGZO(In-Ga-ZnO)電極やカラーフィルタ等が設けられてもよいガラス製の基板が挙げられる。液晶配向剤を基板に塗布する方法としてはスピンナー法、印刷法、ディッピング法、滴下法、インクジェット法等が一般に知られている。
 加熱乾燥工程は、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。加熱乾燥工程は溶剤の蒸発が可能な範囲内の温度で実施することが好ましく、加熱焼成工程における温度に比べて比較的低い温度で実施することがより好ましい。具体的には加熱乾燥温度は30℃から150℃の範囲であること、さらには50℃から120℃の範囲であることが好ましい。
 加熱焼成工程は、ポリアミック酸またはこの誘導体が脱水・閉環反応を呈するのに必要な条件で行うことができる。塗膜の焼成は、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が知られている。一般に100から300℃程度の温度で1分間から3時間行うことが好ましく、120から280℃がより好ましく、150から250℃がさらに好ましい。
 光配向法による液晶配向膜の形成方法は、次のとおりである。液晶配向剤の塗膜を加熱乾燥した後、放射線の直線偏光または無偏光を照射することにより、塗膜に異方性を付与し、この塗膜を加熱焼成することにより膜を形成することができる。または、塗膜を加熱乾燥し、加熱焼成した後に、放射線の直線偏光または無偏光を照射することにより膜を形成することができる。配向性の点から、放射線の照射工程は加熱焼成工程前に行うのが好ましい。
 光照射によって配向膜に液晶配向能を付与する手順は次のとおりである。本発明の液晶配向剤を基板に塗布し、予備加熱によって乾燥させた後、偏光板を介して紫外線の直線偏光を照射すると、偏光方向に概ね平行しているポリマー鎖上の反応性基が光異性化(または光二量化)を起こす。これによって、ポリマー鎖は、照射した紫外線の偏光方向に対して概ね直角方向に向いた成分が支配的になる。基板を加熱してポリアミック酸を脱水・閉環させてポリイミド膜とした後、この基板を用いて素子を組み立てる。この素子に液晶組成物を注入すると、液晶分子はポリマー鎖の方向に配列する。したがって、液晶分子は、偏光方向に対して直角の方向に長軸を揃えて配向することになる。膜に紫外線の直線偏光を照射する工程は、ポリイミド化のための加熱工程の前でもよく、加熱してポリイミド化した後であってもよい。
 さらに、液晶配向膜の液晶配向能を上げるために、塗膜を加熱しながら放射線の直線偏光または無偏光を照射することもできる。放射線の照射は、塗膜を加熱乾燥する工程、または加熱焼成する工程で行っても良いし、加熱乾燥工程と加熱焼成工程の間に行っても良い。該工程における加熱乾燥温度は、30℃から150℃の範囲であること、さらには50℃から120℃の範囲であることが好ましい。また該工程における加熱焼成温度は、30℃から300℃の範囲であること、さらには50℃から250℃の範囲であることが好ましい。
 放射線としては、例えば150から800nmの波長の光を含む紫外線または可視光を用いることができるが、300から400nmの光を含む紫外線が好ましい。また、直線偏光または無偏光を用いることができる。これらの光は、塗膜に液晶配向能を付与することができる光であれば特に限定されないが、液晶に対して強い配向規制力を発現させたい場合、直線偏光が好ましい。
 液晶配向膜は、低エネルギーの光照射でも高い液晶配向能を示すことができる。放射線照射工程における直線偏光の照射量は0.05から20J/cm2であることが好ましく、0.5から10J/cm2がより好ましい。また直線偏光の波長は200から400nmであることが好ましく、300から400nmであることがより好ましい。直線偏光の膜表面に対する照射角度は特に限定されないが、液晶に対する強い配向規制力を発現させたい場合、膜表面に対してなるべく垂直であることが配向処理時間を短縮するという観点から好ましい。液晶配向膜は、直線偏光を照射することにより、直線偏光の偏光方向に対して垂直な方向に液晶分子を配向させることができる。
 プレチルト角を発現させたい場合に膜に照射する光は、前述同様直線偏光であっても無偏光であってもよい。光の照射量は0.05から20J/cm2であることが好ましく、0.5から10J/cm2が特に好ましく、この波長は250から400nmであることが好ましく、300から380nmが特に好ましい。光の膜表面に対する照射角度は特に限定されないが、30から60度であることが配向処理時間を短縮するという観点から好ましい。
 照射工程に使用する光源には、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、Deep UVランプ、ハロゲンランプ、メタルハライドランプ、ハイパワーメタルハライドランプ、キセノンランプ、水銀キセノンランプ、エキシマランプ、KrFエキシマレーザー、蛍光ランプ、LEDランプ、ナトリウムランプ、マイクロウェーブ励起無電極ランプ、などを制限なく用いることができる。
 液晶配向膜の膜厚は、特に限定されないが、10から300nmであることが好ましく、30から150nmであることがより好ましい。この膜厚は、段差計やエリプソメータ等の公知の膜厚測定装置によって測定することができる。
 配向膜は特に大きな配向の異方性を持つことを特徴とする。このような異方性の大きさは特開2005-275364等に記載の偏光赤外法で評価する事ができる。また以下の実施例に示すようにエリプソメトリーによっても評価することができる。より大きな膜の異方性を持つ配向膜は、液晶組成物に対してより大きな配向規制力を持つと考えられる。
 液晶層は、液晶配向膜が形成された面が対向している一対の基板によって液晶組成物が挟持される形で形成される。液晶層の形成では、微粒子や樹脂シート等の、一対の基板の間に介在して適当な間隔を形成するスペーサを必要に応じて用いることができる。
 実施例により本発明をさらに詳しく説明する。本発明はこれらの実施例によっては制限されない。本発明は、組成例M1の組成物と組成例M2の組成物との混合物を含む。本発明は、組成例の組成物の少なくとも2つを混合した混合物をも含む。合成した化合物は、NMR分析などの方法により同定した。化合物、組成物、および素子の特性は、下記に記載した方法により測定した。
 NMR分析:測定には、ブルカーバイオスピン社製のDRX-500を用いた。H-NMRの測定では、試料をCDClなどの重水素化溶媒に溶解させ、測定は、室温で、500MHz、積算回数16回の条件で行った。テトラメチルシランを内部標準として用いた。19F-NMRの測定では、CFClを内部標準として用い、積算回数24回で行った。核磁気共鳴スペクトルの説明において、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、quinはクインテット、sexはセクステット、mはマルチプレット、brはブロードであることを意味する。
 ガスクロマト分析:測定には島津製作所製のGC-14B型ガスクロマトグラフを用いた。キャリアーガスはヘリウム(2mL/分)である。試料気化室を280℃に、検出器(FID)を300℃に設定した。成分化合物の分離には、Agilent Technologies Inc.製のキャピラリカラムDB-1(長さ30m、内径0.32mm、膜厚0.25μm;固定液相はジメチルポリシロキサン;無極性)を用いた。このカラムは、200℃で2分間保持したあと、5℃/分の割合で280℃まで昇温した。試料はアセトン溶液(0.1重量%)に調製したあと、このうちの1μLを試料気化室に注入した。記録計は島津製作所製のC-R5A型Chromatopac、またはこの同等品である。得られたガスクロマトグラムは、成分化合物に対応するピークの保持時間およびピークの面積を示した。
 試料を希釈するための溶媒は、クロロホルム、ヘキサンなどを用いてもよい。成分化合物を分離するために、次のキャピラリカラムを用いてもよい。Agilent Technologies Inc.製のHP-1(長さ30m、内径0.32mm、膜厚0.25μm)、Restek Corporation製のRtx-1(長さ30m、内径0.32mm、膜厚0.25μm)、SGE International Pty. Ltd製のBP-1(長さ30m、内径0.32mm、膜厚0.25μm)。化合物ピークの重なりを防ぐ目的で島津製作所製のキャピラリカラムCBP1-M50-025(長さ50m、内径0.25mm、膜厚0.25μm)を用いてもよい。
 組成物に含有される液晶性化合物の割合は、次のような方法で算出してよい。液晶性化合物(混合物)をガスクロマトグラフ(FID)で検出する。ガスクロマトグラムにおけるピークの面積比は液晶性化合物の割合(重量比)に相当する。上に記載したキャピラリカラムを用いたときは、各々の液晶性化合物の補正係数を1とみなしてよい。したがって、液晶性化合物の割合(重量%)は、ピークの面積比から算出することができる。
 測定試料:組成物または素子の特性を測定するときは、組成物をそのまま試料として用いた。化合物の特性を測定するときは、この化合物(15重量%)を母液晶(85重量%)に混合することによって測定用の試料を調製した。測定によって得られた値から外挿法によって化合物の特性値を算出した。(外挿値)={(試料の測定値)-0.85×(母液晶の測定値)}/0.15。この割合でスメクチック相(または結晶)が25℃で析出するときは、化合物と母液晶の割合を10重量%:90重量%、5重量%:95重量%、1重量%:99重量%の順に変更した。この外挿法によって化合物に関する上限温度、光学異方性、粘度、および誘電率異方性の値を求めた。
 下記の母液晶を用いた。成分化合物の割合は重量%で示した。
Figure JPOXMLDOC01-appb-I000143
 測定方法:特性の測定は下記の方法で行った。これらの多くは、社団法人電子情報技術産業協会(Japan Electronics and Information Technology Industries Association;以下JEITAという)で審議制定されるJEITA規格(JEITA・ED-2521B)に記載された方法、またはこれを修飾した方法であった。測定に用いたTN素子には、薄膜トランジスター(TFT)を取り付けなかった。
(1)ネマチック相の上限温度(NI;℃):偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃/分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。ネマチック相の上限温度を「上限温度」と略すことがある。
(2)ネマチック相の下限温度(T;℃):ネマチック相を有する試料をガラス瓶に入れ、0℃、-10℃、-20℃、-30℃、および-40℃のフリーザー中に10日間保管したあと、液晶相を観察した。例えば、試料が-20℃ではネマチック相のままであり、-30℃では結晶またはスメクチック相に変化したとき、Tを<-20℃と記載した。ネマチック相の下限温度を「下限温度」と略すことがある。
(3)粘度(バルク粘度;η;20℃で測定;mPa・s):測定には東京計器株式会社製のE型回転粘度計を用いた。
(4)粘度(回転粘度;γ1;25℃で測定;mPa・s):測定は、M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995) に記載された方法に従った。2枚のガラス基板の間隔(セルギャップ)が20μmのVA素子に試料を入れた。この素子に39ボルトから50ボルトの範囲で1ボルト毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件で印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)を測定した。これらの測定値とM. Imaiらの論文、40頁の計算式(8)とから回転粘度の値を得た。この計算に必要な誘電率異方性は、(6)項で測定した。
(5)光学異方性(屈折率異方性;Δn;25℃で測定):測定は、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビングしたあと、試料を主プリズムに滴下した。屈折率n∥は偏光の方向がラビングの方向と平行であるときに測定した。屈折率n⊥は偏光の方向がラビングの方向と垂直であるときに測定した。光学異方性の値は、Δn=n∥-n⊥、の式から計算した。
(6)誘電率異方性(Δε;25℃で測定):誘電率異方性の値は、Δε=ε∥-ε⊥、の式から計算した。誘電率(ε∥およびε⊥)は次のように測定した。
1)誘電率(ε∥)の測定:よく洗浄したガラス基板にオクタデシルトリエトキシシラン(0.16mL)のエタノール(20mL)溶液を塗布した。ガラス基板をスピンナーで回転させたあと、150℃で1時間加熱した。2枚のガラス基板の間隔(セルギャップ)が4μmであるVA素子に試料を入れ、この素子を紫外線で硬化する接着剤で密閉した。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の長軸方向における誘電率(ε∥)を測定した。
2)誘電率(ε⊥)の測定:よく洗浄したガラス基板にポリイミド溶液を塗布した。このガラス基板を焼成した後、得られた配向膜にラビング処理をした。2枚のガラス基板の間隔(セルギャップ)が9μmであり、ツイスト角が80度であるTN素子に試料を入れた。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の短軸方向における誘電率(ε⊥)を測定した。
(7)しきい値電圧(Vth;25℃で測定;V):測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプであった。2枚のガラス基板の間隔(セルギャップ)が4μmであり、ラビング方向がアンチパラレルであるノーマリーブラックモード(normally black mode)のVA素子に試料を入れ、この素子を紫外線で硬化する接着剤を用いて密閉した。この素子に印加する電圧(60Hz、矩形波)は0Vから20Vまで0.02Vずつ段階的に増加させた。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%である電圧-透過率曲線を作成した。しきい値電圧は透過率が10%になったときの電圧で表した。
(8)電圧保持率(VHR-1;25℃で測定;%):測定に用いたTN素子はポリイミド配向膜を有し、そして2枚のガラス基板の間隔(セルギャップ)は5μmであった。この素子は試料を入れたあと紫外線で硬化する接着剤で密閉した。このTN素子にパルス電圧(5Vで60マイクロ秒)を印加して充電した。減衰する電圧を高速電圧計で16.7ミリ秒のあいだ測定し、単位周期における電圧曲線と横軸との間の面積Aを求めた。面積Bは減衰しなかったときの面積であった。電圧保持率は面積Bに対する面積Aの百分率で表した。
(9)電圧保持率(VHR-2;80℃で測定;%):25℃の代わりに、80℃で測定した以外は、上記と同じ手順で電圧保持率を測定した。得られた値をVHR-2で表した。
(10)電圧保持率(VHR-3;25℃で測定;%):紫外線を照射したあと、電圧保持率を測定し、紫外線に対する安定性を評価した。測定に用いたTN素子はポリイミド配向膜を有し、そしてセルギャップは5μmであった。この素子に試料を注入し、光を20分間照射した。光源は超高圧水銀ランプUSH-500D(ウシオ電機製)であり、素子と光源の間隔は20cmであった。VHR-3の測定では、16.7ミリ秒のあいだ減衰する電圧を測定した。大きなVHR-3を有する組成物は紫外線に対して大きな安定性を有する。VHR-3は90%以上が好ましく、95%以上がより好ましい。
(11)電圧保持率(VHR-4;25℃で測定;%):試料を注入したTN素子を80℃の恒温槽内で500時間加熱したあと、電圧保持率を測定し、熱に対する安定性を評価した。VHR-4の測定では、16.7ミリ秒のあいだ減衰する電圧を測定した。大きなVHR-4を有する組成物は熱に対して大きな安定性を有する。
(12)応答時間(τ;25℃で測定;ms):測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプであった。ローパス・フィルター(Low-pass filter)は5kHzに設定した。後述の実施例で作製したFFS素子に試料を入れた。この素子を紫外線で硬化する接着剤を用いて密閉した。この素子に、素子を透過する光量が最大となる電圧の矩形波(60Hz、0.5秒)を印加した。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%であるとみなした。応答時間は透過率10%から90%に変化するのに要した時間(立ち上がり時間;rise time;ミリ秒)と透過率90%から10%に変化するのに要した時間(立ち下がり時間;fall time;ミリ秒)との和で表した。応答時間は、好ましくは60ms以下であり、さらに好ましくは40ms以下である。
(13)弾性定数(K11:広がり(spray)弾性定数、K33:曲げ(bend)弾性定数;25℃で測定;pN):測定には株式会社東陽テクニカ製のEC-1型弾性定数測定器を用いた。2枚のガラス基板の間隔(セルギャップ)が20μmである垂直配向セルに試料を入れた。このセルに20ボルトから0ボルト電荷を印加し、静電容量および印加電圧を測定した。測定した静電容量(C)と印加電圧(V)の値を『液晶デバイスハンドブック』(日刊工業新聞社)、75頁にある式(2.98)、式(2.101)を用いてフィッティングし、式(2.100)から弾性定数の値を得た。
(14)比抵抗(ρ;25℃で測定;Ωcm):電極を備えた容器に試料1.0mLを注入した。この容器に直流電圧(10V)を印加し、10秒後の直流電流を測定した。比抵抗は次の式から算出した。(比抵抗)={(電圧)×(容器の電気容量)}/{(直流電流)×(真空の誘電率)}。
(15)フリッカ率(25℃で測定;%):測定には横河電機(株)製のマルチメディアディスプレイテスタ3298Fを用いた。光源はLEDであった。後述の実施例で作製したFFS素子に試料を入れた。この素子を紫外線で硬化する接着剤を用いて密閉した。この素子に電圧を印加し、素子を透過した光量が最大になる電圧を測定した。この電圧を素子に印加しながらセンサ部を素子に近づけ、表示されたフリッカ率を読み取った。フリッカ率は、好ましくは2%以下であり、さらに好ましくは1%以下である。
(16)重量平均分子量(Mw)
 ポリアミック酸の重量平均分子量は、2695セパレーションモジュール・2414示差屈折計(Waters製)を用いてGPC法により測定し、ポリスチレン換算することにより求めた。得られたポリアミック酸をリン酸-DMF混合溶液(リン酸/DMF=0.6/100:重量比)で、ポリアミック酸濃度が約2重量%になるように希釈した。カラムはHSPgel RT MB-M(Waters製)を使用し、前記混合溶液を展開剤として、カラム温度50℃、流速0.40mL/minの条件で測定を行った。標準ポリスチレンは東ソー(株)製TSK標準ポリスチレンを用いた。
(17)プレチルト角
 プレチルト角の測定には、分光エリプソメータM-2000U(J.A.Woollam Co. Inc.製)を使用した。
(18)AC残像(輝度変化率)
 後述する液晶表示素子の輝度-電圧特性(B-V特性)を測定し、これをストレス印加前の輝度-電圧特性:B(before)とした。次に、素子に4.5V、60Hzの交流を20分間印加した後、1秒間ショートし、再び輝度-電圧特性(B-V特性)を測定した。これをストレス印加後の輝度-電圧特性:B(after)とした。輝度変化率ΔB(%)は、これらの値から、次の式を用いて算出した。
ΔB(%)=[B(after)-B(before)]/B(before)   (式1)
この測定は国際公開2000-43833号を参考に行った。電圧0.75VにおけるΔB(%)の値が小さいほど、AC残像の発生が少ないといえる。
(19)配向安定性(液晶配向軸安定性)
 後述する液晶表示素子の電極側の液晶配向軸の変化を評価した。ストレス印加前の電極側の液晶配向角度φ(before)を測定し、その後、素子に矩形波4.5V、60Hzを20分間印加した後、1秒間ショートし、1秒後および5分後に再び電極側の液晶配向角度φ(after)を測定した。これらの値から、1秒後および5分後の液晶配向角度の変化Δφ(deg.)を次の式を用いて算出した。
Δφ(deg.)=φ(after)-φ(before)           (式2)
これらの測定はJ. Hilfiker, B. Johs, C. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos Thin Solid Films, 455-456, (2004) 596-600を参考に行った。Δφが小さいほうが液晶配向軸の変化率が小さく、液晶配向軸の安定性が良いといえる。
(20)体積抵抗率(ρ;25℃で測定;Ω・cm)
 全面ITO付きガラス基板にポリイミド膜を成膜し、この基板の配向膜面に、Alを蒸着し、上部電極とした(電極面積0.23cm)。ITO電極と上部電極との間に、3Vの電圧を印加し、300秒後の電流値より体積抵抗率を算出した。
(21)誘電率(ε;25℃で測定)
 全面ITO付きガラス基板にポリイミド膜を成膜し、この基板の配向膜面に、Alを蒸着し、上部電極とした(電極面積0.23cm)。ITO電極と上部電極との間に、1V・周波数1kHzの交流電圧を印加し、この膜の電気容量(C)を測定した。この値から、以下の式を用いてこの膜の誘電率(ε)を計算した。
ε=(C×d)/(ε×S)           (式3)
ここで、dはポリイミド膜の膜厚であり、εは真空の誘電率であり、Sは電極面積である。
(22)略称
 実施例において用いる溶剤、添加剤の略称は次の通りである。
<溶剤>
 NMP:N-メチル-2-ピロリドン
 BC:ブチルセロソルブ(エチレングリコールモノブチルエーテル)
<添加剤>
 添加剤(Ad1):ビス[4-(アリルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド)フェニル]メタン
 添加剤(Ad2):N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン
 添加剤(Ad3):3-アミノプロピルトリエトキシシラン
 添加剤(Ad4):2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン
 実施例における化合物は、下記の表3の定義に基づいて記号により表した。表3において、1,4-シクロヘキシレンに関する立体配置はトランスである。記号の後にあるかっこ内の番号は化合物の番号に対応する。(-)の記号はその他の液晶性化合物を意味する。液晶性化合物の割合(百分率)は、液晶組成物の重量に基づいた重量百分率(重量%)である。最後に、組成物の特性値をまとめた。
Figure JPOXMLDOC01-appb-I000144
[組成例M1]
3-HB(2F,3F)-O2        (1-1)    10%
5-HB(2F,3F)-O2        (1-1)    10%
3-H2B(2F,3F)-O2       (1-3)     8%
5-H2B(2F,3F)-O2       (1-3)     8%
3-HDhB(2F,3F)-O2      (1-12)    5%
3-HBB(2F,3F)-O2       (1-14)    8%
4-HBB(2F,3F)-O2       (1-14)    5%
5-HBB(2F,3F)-O2       (1-14)    5%
V-HBB(2F,3F)-O2       (1-14)    5%
V2-HBB(2F,3F)-O2      (1-14)    5%
3-HH-4                (2-1)    14%
V-HHB-1               (2-5)    11%
3-HBB-2               (2-6)     6%
 NI=89.4℃;Tc<-30℃;Δn=0.109;Δε=-3.8;Vth=2.24V;η=24.6mPa・s;VHR-1=99.2%;VHR-2=98.1%;VHR-3=97.9%.
[組成例M2]
3-HB(2F,3F)-O2        (1-1)    10%
V-HB(2F,3F)-O2        (1-1)     7%
3-BB(2F,3F)-O2        (1-5)     7%
V2-BB(2F,3F)-O1       (1-5)     7%
3-B(2F,3F)B(2F,3F)-O2 (1-6)     3%
2-HHB(2F,3F)-O2       (1-7)     5%
3-HHB(2F,3F)-O2       (1-7)    10%
3-HBB(2F,3F)-O2       (1-14)   10%
V-HBB(2F,3F)-O2       (1-14)    8%
2-HH-3                (2-1)    14%
3-HB-O1               (2-2)     5%
3-HHB-1               (2-5)     3%
3-HHB-O1              (2-5)     3%
3-HHB-3               (2-5)     5%
2-BB(F)B-3            (2-7)     3%
 NI=72.5℃;Tc<-20℃;Δn=0.112;Δε=-3.9;Vth=2.14V;η=22.8mPa・s.
[組成例M3]
3-HB(2F,3F)-O4        (1-1)     6%
3-H2B(2F,3F)-O2       (1-3)     8%
3-H1OB(2F,3F)-O2      (1-4)     5%
3-BB(2F,3F)-O2        (1-5)    10%
3-HHB(2F,3F)-O2       (1-7)     7%
V-HHB(2F,3F)-O2       (1-7)     7%
V-HHB(2F,3F)-O4       (1-7)     7%
3-HBB(2F,3F)-O2       (1-14)    6%
V-HBB(2F,3F)-O2       (1-14)    6%
1V2-HBB(2F,3F)-O2     (1-14)    5%
3-HH-V                (2-1)    11%
1-BB-3                (2-3)     6%
3-HHB-1               (2-5)     4%
3-HHB-O1              (2-5)     4%
3-HBB-2               (2-6)     5%
3-B(F)BB-2            (2-8)     3%
 NI=87.7℃;Tc<-30℃;Δn=0.129;Δε=-4.4;Vth=2.17V;η=26.2mPa・s.
[組成例M4]
3-HB(2F,3F)-O2        (1-1)     7%
1V2-HB(2F,3F)-O2      (1-1)     7%
3-BB(2F,3F)-O2        (1-5)     8%
3-HHB(2F,3F)-O2       (1-7)     5%
5-HHB(2F,3F)-O2       (1-7)     4%
3-HH1OB(2F,3F)-O2     (1-9)     5%
2-BB(2F,3F)B-3        (1-10)    4%
2-HBB(2F,3F)-O2       (1-14)    3%
3-HBB(2F,3F)-O2       (1-14)    8%
4-HBB(2F,3F)-O2       (1-14)    5%
V-HBB(2F,3F)-O2       (1-14)    8%
3-HH-V                (2-1)    27%
3-HH-V1               (2-1)     6%
V-HHB-1               (2-5)     3%
 NI=78.2℃;Tc<-30℃;Δn=0.109;Δε=-3.3;Vth=2.08V;η=16.3mPa・s.
[組成例M5]
3-HB(2F,3F)-O4        (1-1)    15%
3-chB(2F,3F)-O2       (1-2)     7%
2-HchB(2F,3F)-O2      (1-8)     8%
3-HBB(2F,3F)-O2       (1-14)    8%
5-HBB(2F,3F)-O2       (1-14)    7%
V-HBB(2F,3F)-O2       (1-14)    5%
3-dhBB(2F,3F)-O2      (1-15)    5%
5-HH-V                (2-1)    18%
7-HB-1                (2-2)     5%
V-HHB-1               (2-5)     7%
V2-HHB-1              (2-5)     7%
3-HBB(F)B-3           (2-13)    8%
 NI=98.5℃;Tc<-30℃;Δn=0.112;Δε=-3.2;Vth=2.47V;η=23.5mPa・s.
[組成例M6]
3-H2B(2F,3F)-O2       (1-3)    18%
5-H2B(2F,3F)-O2       (1-3)    17%
3-DhHB(2F,3F)-O2      (1-11)    5%
3-HHB(2F,3CL)-O2      (1-17)    5%
3-HBB(2F,3CL)-O2      (1-18)    8%
5-HBB(2F,3CL)-O2      (1-18)    7%
3-HH-V                (2-1)    11%
3-HH-VFF              (2-1)     7%
F3-HH-V               (2-1)    10%
3-HHEH-3              (2-4)     4%
3-HB(F)HH-2           (2-9)     3%
3-HHEBH-3             (2-10)    5%
 NI=78.2℃;Tc<-30℃;Δn=0.084;Δε=-2.6;Vth=2.45V;η=22.5mPa・s.
[組成例M7]
3-H2B(2F,3F)-O2       (1-3)     7%
V-HHB(2F,3F)-O2       (1-7)     8%
2-HchB(2F,3F)-O2      (1-8)     8%
3-HH1OB(2F,3F)-O2     (1-9)     5%
2-BB(2F,3F)B-3        (1-10)    7%
2-BB(2F,3F)B-4        (1-10)    7%
3-HDhB(2F,3F)-O2      (1-12)    3%
3-DhH1OB(2F,3F)-O2    (1-13)    4%
4-HH-V                (2-1)    15%
3-HH-V1               (2-1)     6%
1-HH-2V1              (2-1)     5%
3-HH-2V1              (2-1)     5%
V2-BB-1               (2-3)     5%
1V2-BB-1              (2-3)     5%
3-HHB-1               (2-5)     6%
3-HB(F)BH-3           (2-12)    4%
 NI=87.5℃;Tc<-30℃;Δn=0.115;Δε=-2.0;Vth=2.82V;η=17.2mPa・s.
[組成例M8]
V-HB(2F,3F)-O2        (1-1)     8%
3-H2B(2F,3F)-O2       (1-3)    10%
3-BB(2F,3F)-O2        (1-5)    10%
2O-BB(2F,3F)-O2       (1-5)     3%
2-HHB(2F,3F)-O2       (1-7)     4%
3-HHB(2F,3F)-O2       (1-7)     7%
V-HHB(2F,3F)-O2       (1-7)     5%
2-BB(2F,3F)B-3        (1-10)    6%
2-BB(2F,3F)B-4        (1-10)    6%
3-HDhB(2F,3F)-O2      (1-12)    6%
2-HBB(2F,3F)-O2       (1-14)    5%
3-HBB(2F,3F)-O2       (1-14)    6%
3-dhBB(2F,3F)-O2      (1-15)    4%
3-HH1OCro(7F,8F)-5    (1-20)    4%
3-HH-V                (2-1)    11%
1-BB-5                (2-3)     5%
 NI=70.9℃;Tc<-20℃;Δn=0.129;Δε=-4.4;Vth=1.74V;η=27.2mPa・s.
[組成例M9]
3-HB(2F,3F)-O2        (1-1)     7%
V-HB(2F,3F)-O2        (1-1)     8%
3-H2B(2F,3F)-O2       (1-3)     8%
3-BB(2F,3F)-O2        (1-5)    10%
2-HHB(2F,3F)-O2       (1-7)     4%
3-HHB(2F,3F)-O2       (1-7)     7%
V-HHB(2F,3F)-O2       (1-7)     6%
3-HDhB(2F,3F)-O2      (1-12)    6%
2-HBB(2F,3F)-O2       (1-14)    5%
3-HBB(2F,3F)-O2       (1-14)    6%
V-HBB(2F,3F)-O2       (1-14)    5%
V2-HBB(2F,3F)-O2      (1-14)    4%
3-HEB(2F,3F)B(2F,3F)-O2
                      (1-16)    3%
3-H1OCro(7F,8F)-5     (1-19)    3%
3-HH-O1               (2-1)     5%
1-BB-5                (2-3)     4%
V-HHB-1               (2-5)     4%
5-HBBH-3              (2-11)    5%
 NI=81.5℃;Tc<-30℃;Δn=0.122;Δε=-4.7;Vth=1.76V;η=31.8mPa・s.
[組成例M10]
V-HB(2F,3F)-O4        (1-1)    14%
V-H1OB(2F,3F)-O2      (1-4)     3%
3-BB(2F,3F)-O2        (1-5)    10%
3-HHB(2F,3F)-O2       (1-7)     7%
V2-HHB(2F,3F)-O2      (1-7)     7%
V-HH1OB(2F,3F)-O2     (1-9)     6%
V-HBB(2F,3F)-O4       (1-14)    9%
1V2-HBB(2F,3F)-O2     (1-14)    5%
3-HH-V                (2-1)    13%
1-BB-3                (2-3)     3%
3-HHB-1               (2-5)     4%
3-HHB-O1              (2-5)     4%
V-HBB-2               (2-6)     5%
1-BB(F)B-2V           (2-7)     6%
5-HBBH-1O1            (-)       4%
 NI=93.6℃;Tc<-30℃;Δn=0.125;Δε=-3.9;Vth=2.20V;η=29.9mPa・s.
[組成例M11]
3-HB(2F,3F)-O4        (1-1)     6%
3-H2B(2F,3F)-O2       (1-3)     8%
3-H1OB(2F,3F)-O2      (1-4)     4%
3-BB(2F,3F)-O2        (1-5)     7%
3-HHB(2F,3F)-O2       (1-7)    10%
V-HHB(2F,3F)-O2       (1-7)     7%
V-HHB(2F,3F)-O4       (1-7)     7%
3-HBB(2F,3F)-O2       (1-14)    6%
V-HBB(2F,3F)-O2       (1-14)    6%
1V2-HBB(2F,3F)-O2     (1-14)    5%
2-HH-3                (2-1)    12%
1-BB-3                (2-3)     6%
3-HHB-1               (2-5)     4%
3-HHB-O1              (2-5)     4%
3-HBB-2               (2-6)     5%
3-B(F)BB-2            (2-7)     3%
 NI=92.8℃;Tc<-20℃;Δn=0.126;Δε=-4.4;Vth=2.19V;η=26.0mPa・s.
[組成例M12]
3-HB(2F,3F)-O2        (1-1)     5%
1V2-HB(2F,3F)-O2      (1-1)     7%
V2-BB(2F,3F)-O2       (1-5)     8%
3-HHB(2F,3F)-O2       (1-7)     5%
5-HHB(2F,3F)-O2       (1-7)     4%
3-HH1OB(2F,3F)-O2     (1-9)     5%
2-BB(2F,3F)B-3        (1-10)    4%
2-HBB(2F,3F)-O2       (1-14)    3%
3-HBB(2F,3F)-O2       (1-14)    8%
4-HBB(2F,3F)-O2       (1-14)    5%
V-HBB(2F,3F)-O2       (1-14)    8%
3-HH-V                (2-1)    27%
3-HH-V1               (2-1)     6%
V-HHB-1               (2-5)     5%
 NI=81.7℃;Tc<-20℃;Δn=0.110;Δε=-3.2;Vth=2.12V;η=15.8mPa・s.
[組成例M13]
3-HB(2F,3F)-O2        (1-1)     7%
1V2-HB(2F,3F)-O2      (1-1)     7%
3-BB(2F,3F)-O2        (1-5)     8%
3-HHB(2F,3F)-O2       (1-7)     5%
5-HHB(2F,3F)-O2       (1-7)     4%
3-HH1OB(2F,3F)-O2     (1-9)     5%
2-BB(2F,3F)B-3        (1-10)    4%
2-HBB(2F,3F)-O2       (1-14)    3%
3-HBB(2F,3F)-O2       (1-14)    8%
4-HBB(2F,3F)-O2       (1-14)    5%
V-HBB(2F,3F)-O2       (1-14)    8%
3-HH-V                (2-1)    33%
V-HHB-1               (2-5)     3%
 NI=76.0℃;Tc<-30℃;Δn=0.107;Δε=-3.2;Vth=2.08V;η=16.0mPa・s.
<1.ポリアミック酸溶液(成分〔A〕)の調製>
[合成例1]
 温度計、攪拌機、原料投入仕込み口、および窒素ガス導入口を備えた50mLの褐色四つ口フラスコにジアミン(DI-5-1,m=2)0.2102g、ジアミン(DI-9-1)0.0664g、ジアミン(PDI-6-1)0.2082g、ジアミン(PDI-7-1)0.5778g、および脱水NMP18.5gを入れ、乾燥窒素気流下攪拌溶解した。次いで酸二無水物(AN-1-13)0.1268g、酸二無水物(AN-4-17,j=8)1.8106g、および脱水NMP18.5gを入れ、室温で24時間攪拌を続けた。この反応溶液にBC10.0gを加えて、ポリマー固形分濃度が6重量%のポリアミック酸溶液を得た。このポリアミック酸溶液をPA1とする。PA1に含まれるポリアミック酸の重量平均分子量は39,400であった。
[合成例2から8]
 テトラカルボン酸二無水物およびジアミンの種類を変更した以外は、合成例1に準拠してポリマー固形分濃度が6重量%のポリアミック酸溶液(PA2)から(PA8)を調製した。ポリアミック酸溶液(PA1)から(PA8)を成分〔A〕という。結果を表4にまとめた。
表4.ポリアミック酸溶液(PA1)から(PA8)の調製
Figure JPOXMLDOC01-appb-I000145
<2.ポリアミック酸溶液(成分〔B〕)の調製>
[合成例9]
 温度計、攪拌機、原料投入仕込み口、および窒素ガス導入口を備えた50mLの褐色四つ口フラスコにジアミン(DI-4-1)0.7349gおよび脱水NMP18.5gを入れ、乾燥窒素気流下攪拌溶解した。次いで酸二無水物(AN-1-1)0.6732g、酸二無水物(AN-4-28)1.5918g、および脱水NMP18.5gを入れ、室温で24時間攪拌を続けた。この反応溶液にBC10.0gを加えて、ポリマー固形分濃度が6重量%のポリアミック酸溶液を得た。このポリアミック酸溶液をPA9とする。PA9に含まれるポリアミック酸の重量平均分子量は51,500であった。
[合成例10から24]
 テトラカルボン酸二無水物およびジアミンの種類を変更した以外は、合成例7に準拠してポリマー固形分濃度が6重量%のポリアミック酸溶液(PA10)から(PA24)を調製した。ポリアミック酸溶液(PA9)から(PA24)を成分〔B〕という。結果を表5にまとめた。
表5.ポリアミック酸溶液(PA9)から(PA24)の調製
Figure JPOXMLDOC01-appb-I000146
 成分〔A〕として、合成例1で合成したポリアミック酸(PA1)と、成分〔B〕として合成例9で合成したポリアミック酸(PA9)を重量比、〔A〕/〔B〕=3.0/7.0で混合し、PA25とした。
 成分〔A〕と成分〔B〕の種類および〔A〕/〔B〕混合比を変更することによってポリマー固形分濃度が6重量%のポリアミック酸溶液(PA26)から(PA43)を調製した。結果を表6にまとめた。
表6.ポリアミック酸溶液(PA26)から(PA43)
Figure JPOXMLDOC01-appb-I000147
 合成例3で調製したポリマー固形分濃度6重量%のポリアミック酸溶液(PA3)に、添加剤(Ad1)をポリマー固形分の重量に基づいて5重量%の割合で添加した。得られたポリアミック酸溶液をPA44とする。添加剤(Ad2)から(Ad4)をポリアミック酸溶液に添加してポリアミック酸溶液(PA45)から(PA48)を調製した。結果を表7にまとめた。なお、Ad1のような添加剤の略称は、項(22)で説明した。
表7.添加剤を含むポリアミック酸溶液(PA45)から(PA48)
Figure JPOXMLDOC01-appb-I000148
<3.液晶表示素子の作製>
[実施例1]
配向膜の形成
 合成例1で調製したポリマー固形分濃度6重量%のポリアミック酸溶液(PA1)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。液晶配向剤をカラムスペーサー付きガラス基板とITO電極付きガラス基板とにスピンナー(ミカサ株式会社製、スピンコーター(1H-DX2))にて塗布した。なお、以降の実施例、比較例をも含めて、液晶配向剤の粘度に応じてスピンナーの回転速度を調整し、配向膜が下記の膜厚になるようにした。この塗膜を、ホットプレート(アズワン株式会社製、ECホットプレート(EC-1200N))上で70℃にて80秒間加熱乾燥した。次いで、ウシオ電機(株)製マルチライトML-501C/Bを用い、基板に対して鉛直方向から、偏光板を介して紫外線の直線偏光を照射した。この時の露光エネルギーは、ウシオ電機(株)製紫外線積算光量計UIT-150(受光器UVD-S365)を用いて光量を測定し、波長365nmで2.0±0.1J/cmになるよう、露光時間を調整した。次いで、クリーンオーブン(エスペック株式会社製、クリーンオーブン(PVHC-231))中で230℃にて15分間加熱処理して、膜厚100±10nmの配向膜を形成した。
素子の作製
 配向膜の面を内側にした2枚の基板を紫外線の偏光方向が平行になるように張り合わせ、基板の間隔が4μmのFFS素子を組み立てた。液晶の注入口は、液晶の流動する方向が、紫外線の偏光方向とほぼ平行するような位置に設けた。このFFS素子に組成例M1の液晶組成物を真空注入し、応答時間およびフリッカ率を測定した。結果を表8にまとめた。
[実施例2から21]
 ポリマー固形分濃度6重量%のポリアミック酸溶液PA2、PA25からPA39およびPA44からPA47のそれぞれに、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、実施例1に準じた方法でFFS液晶表示素子を作製した。この素子に組成例M2からM13で調製した液晶組成物を注入し、応答時間およびフリッカ率を測定した。結果は、表8にまとめた。
[実施例22]
配向膜の形成
 ポリマー固形分濃度6重量%のポリアミック酸溶液(PA27)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。液晶配向剤をカラムスペーサー付きガラス基板とITO電極付きガラス基板とにスピンナー(ミカサ株式会社製、スピンコーター(1H-DX2))にて塗布した。この塗膜を、ホットプレート(アズワン株式会社製、ECホットプレート(EC-1200N))上で70℃にて80秒間加熱乾燥した。ウシオ電機(株)製マルチライトML-501C/Bを用い、基板に対して鉛直方向から、偏光板を介して紫外線の直線偏光を照射した。この時の露光エネルギーは、ウシオ電機(株)製紫外線積算光量計UIT-150(受光器UVD-S365)を用いて光量を測定し、波長365nmで0.7±0.1J/cmになるよう、露光時間を調整した。紫外線露光中、基板は50℃に加熱した。紫外線の照射は、装置全体を紫外線防止フィルムで覆い、室温、空気中で行った。次いで、クリーンオーブン(エスペック株式会社製、クリーンオーブン(PVHC-231))中で、230℃にて15分間加熱処理して、膜厚100±10nmの配向膜を形成した。
素子の作製
 配向膜の面を内側にした2枚の基板を紫外線の偏光方向が平行になるように張り合わせ、基板の間隔が4μmのFFS素子を組み立てた。液晶の注入口は、液晶の流動する方向が、紫外線の偏光方向とほぼ平行するような位置に設けた。このFFS素子に組成例M9の液晶組成物を真空注入し、応答時間およびフリッカ率を測定した。結果を表8にまとめた。
[実施例23から25]
 ポリマー固形分濃度6重量%のポリアミック酸溶液(PA40)、(PA42)および(PA48)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、実施例22に準じた方法で液晶表示素子を作製した。この素子に組成例M10からM13で調製した液晶組成物を注入し、応答時間およびフリッカ率を測定した。結果は、表8にまとめた。
[実施例26]
配向膜の形成
 ポリマー固形分濃度6重量%のポリアミック酸溶液(PA34)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。液晶配向剤をカラムスペーサー付きガラス基板とITO電極付きガラス基板とにスピンナー(ミカサ株式会社製、スピンコーター(1H-DX2))にて塗布した。この塗膜を、ホットプレート(アズワン株式会社製、ECホットプレート(EC-1200N))上で70℃にて80秒間加熱乾燥した。ウシオ電機(株)製UVランプ(UVL-1500M2-N1)を用い、基板に対して鉛直方向から、偏光板を介して紫外線の直線偏光を照射した。この時の露光エネルギーは、ウシオ電機(株)製紫外線積算光量計UIT-150(受光器UVD-S365)を用いて光量を測定し、波長365nmで1.0±0.1J/cmになるよう、露光時間を調整した。紫外線の照射は、装置全体を紫外線防止フィルムで覆い、室温、空気中で行った。次いで、クリーンオーブン(エスペック株式会社製、クリーンオーブン(PVHC-231))中で、230℃にて15分間加熱処理して、膜厚100±10nmの配向膜を形成した。
素子の作製
 配向膜の面を内側にした2枚の基板を紫外線の偏光方向が平行になるように張り合わせ、基板の間隔が4μmのFFS素子を組み立てた。液晶の注入口は、液晶の流動する方向が、紫外線の偏光方向とほぼ平行するような位置に設けた。このFFS素子に組成例M13の液晶組成物を真空注入し、応答時間およびフリッカ率を測定した。結果を表8にまとめた。
[実施例27、28]
 ポリマー固形分濃度6重量%のポリアミック酸溶液(PA41)および(PA43)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、実施例26に準じた方法で液晶表示素子を作製した。この素子に組成例M10からM13で調製した液晶組成物を注入し、応答時間およびフリッカ率を測定した。結果は、表8にまとめた。
[実施例29]
配向膜の形成
 ポリマー固形分濃度6重量%のポリアミック酸溶液(PA33)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。液晶配向剤をカラムスペーサー付きガラス基板とITO電極付きガラス基板それぞれ1枚ずつにスピンナー(ミカサ株式会社製、スピンコーター(1H-DX2))にて塗布した。この塗膜を、ホットプレート(アズワン株式会社製、ECホットプレート(EC-1200N))上で70℃にて80秒間加熱乾燥した。ウシオ電機(株)製マルチライトML-501C/Bを用い、基板に対して鉛直方向から、偏光板を介して紫外線の直線偏光を照射した。この時の露光エネルギーは、ウシオ電機(株)製紫外線積算光量計UIT-150(受光器UVD-S365)を用いて光量を測定し、波長365nmで2.0±0.1J/cmになるよう、露光時間を調整した。次いで、クリーンオーブン(エスペック株式会社製、クリーンオーブン(PVHC-231))中で230℃にて15分間加熱処理して、膜厚100±10nmの配向膜を形成した。
素子の作製
 配向膜の面を内側にした2枚の基板を紫外線の偏光方向が平行になるように張り合わせ、基板の間隔が4μmのFFS素子を組み立てた。液晶の注入口は、液晶の流動する方向が、紫外線の偏光方向とほぼ平行するような位置に設けた。このFFS素子に組成例M3の液晶組成物を真空注入し、応答時間およびフリッカ率を測定した。結果を表8にまとめた。
[実施例30から34]
 ポリマー固形分濃度6重量%のポリアミック酸溶液(PA41)、(PA44)、(PA44)、(PA41)、(PA33)、および(PA43)のそれぞれに、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、実施例1に準じた方法でFFS液晶表示素子を作製した。この素子に組成例M4からM8で調製した液晶組成物を注入し、応答時間およびフリッカ率を測定した。結果は、表8にまとめた。
Figure JPOXMLDOC01-appb-I000149
 表8の第三カラムには、FFS素子に注入した液晶組成物の種類を記入した。これらは組成例M1から組成例M13で調製された液晶組成物である。これらの組成物において、上限温度(NI)は、70.9℃から98.5℃の範囲である。光学異方性(Δn)は、0.084から0.129の範囲である。誘電率異方性(Δε)は、-2.0から-4.7の範囲である。粘度(η)は、15.8mPa・sから29.9mPa・sの範囲である。このように、特性の異なる13種類の液晶組成物を、種類が異なる配向膜を有する液晶表示素子に注入し、素子の応答時間とフリッカ率を測定した。
 液晶表示素子においては、応答時間が短い方が好ましい。応答時間は、好ましくは60ms以下であり、さらに好ましくは40ms以下である。フリッカ率が小さい方が好ましい。フリッカ率は、好ましくは2%以下であり、さらに好ましくは1%以下である。実施例1から34の、応答時間は、29.9msから59.4msの範囲であり、フリッカ率は、0.24%から0.75%の範囲であった。これらの値は、さらに好ましい範囲に入った。この結果から、液晶組成物および配向膜において、成分の種類が非常に異なるにも拘わらず、応答時間とフリッカ率の値をこのような最適な範囲に収めることができた、といえる。これは、特筆すべき本発明の第一の特徴である。実施例7、20および33の素子では、フリッカ率が0.7%以上であった。これらの素子の応答時間はそれぞれ31.3ms、30.4msおよび31.7msであった。これらの結果は、短い応答時間を有する素子においてもフリッカ率が小さいことを示している。これは特筆すべき本発明の第二の特徴である。
 本発明の液晶表示素子は、短い応答時間、大きな電圧保持率、低いしきい値電圧、大きなコントラスト比、長い寿命、小さなフリッカ率などの特性を有する。したがって、この素子は、液晶プロジェクター、液晶テレビなどに用いることができる。

Claims (31)

  1.  対向配置されている一対の基板の一方または両方に形成されている電極群と、前記電極群に接続された複数のアクティブ素子と、前記一対の基板それぞれの対向している面に形成された液晶配向膜と、前記一対の基板間に挟持された液晶組成物とを含む液晶表示素子。
  2.  液晶組成物が、第一成分として式(1)で表される化合物の群から選択された少なくとも1つの化合物を含有する、請求項1に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000001

    式(1)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルであり;環Aおよび環Cは独立して、1,4-シクロへキシレン、1,4-シクロへキセニレン、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、またはテトラヒドロピラン-2,5-ジイルであり;環Bは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、または7,8-ジフルオロクロマン-2,6-ジイルであり;ZおよびZは独立して、単結合、エチレン、カルボニルオキシ、またはメチレンオキシであり;aは、0、1、2、または3であり;bは、0または1であり;そして、aおよびbの和は3以下である。
  3.  第一成分が、式(1-1)から式(1-20)で表される化合物の群から選択された少なくとも1つの化合物である、請求項2に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000002

    Figure JPOXMLDOC01-appb-I000003

    式(1-1)から式(1-20)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルである。
  4.  液晶組成物の重量に基づいて、第一成分の割合が10重量%から90重量%の範囲である、請求項1から3のいずれか1項に記載の液晶表示素子。
  5.  液晶組成物が、第二成分として式(2)で表される化合物の群から選択された少なくとも1つの化合物を含有する、請求項1から4のいずれか1項に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000004

    式(2)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数2から12のアルケニルであり;環Dおよび環Eは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンであり;Zは、単結合、エチレンまたはカルボニルオキシであり;cは、1、2、または3である。
  6.  第二成分が、式(2-1)から式(2-13)で表される化合物の群から選択された少なくとも1つの化合物である、請求項5に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000005

    式(2-1)から式(2-13)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数2から12のアルケニルである。
  7.  液晶組成物の重量に基づいて、第二成分の割合が10重量%から90重量%の範囲である、請求項5または6に記載の液晶表示素子。
  8.  液晶組成物が、添加物成分として式(3)で表される化合物の群から選択された少なくとも1つの重合性化合物を含有する、請求項1から7のいずれか1項に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000006

    式(3)において、環Fおよび環Iは独立して、シクロヘキシル、シクロヘキセニル、フェニル、1-ナフチル、2-ナフチル、テトラヒドロピラン-2-イル、1,3-ジオキサン-2-イル、ピリミジン-2-イル、またはピリジン-2-イルであり、これらの環において、少なくとも1つの水素は、ハロゲン、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルで置き換えられてもよく;環Gは、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-1,2-ジイル、ナフタレン-1,3-ジイル、ナフタレン-1,4-ジイル、ナフタレン-1,5-ジイル、ナフタレン-1,6-ジイル、ナフタレン-1,7-ジイル、ナフタレン-1,8-ジイル、ナフタレン-2,3-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、これらの環において、少なくとも1つの水素は、ハロゲン、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から12のアルキルで置き換えられてもよく;ZおよびZは独立して、単結合または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-CO-、-COO-、または-OCO-で置き換えられてもよく、少なくとも1つの-CH-CH-は、-CH=CH-、-C(CH)=CH-、-CH=C(CH)-、または-C(CH)=C(CH)-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;P、P、およびPは独立して、重合性基であり;Sp、Sp、およびSpは独立して、単結合、または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH-CH-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;dは、0、1、または2であり;e、f、およびgは独立して、0、1、2、3、または4であり;そしてe、f、およびgの和は1以上である。
  9.  式(3)において、P、P、およびPが独立して、式(P-1)から式(P-6)で表される基の群から選択された重合性基である、請求項8に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000007

    式(P-1)から式(P-6)において、M、M、およびMは独立して、水素、フッ素、炭素数1から5のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から5のアルキルであり;式(3)において、e個のPおよびg個のPのすべてが式(P-4)で表される基であるとき、e個のSpおよびg個のSpの少なくとも1つは、少なくとも1つの-CH-が、-O-、-COO-、-OCO-、または-OCOO-で置き換えられたアルキレンである。
  10.  添加物成分が、式(3-1)から式(3-27)で表される化合物の群から選択された少なくとも1つの重合性化合物である、請求項8または9に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000008

    Figure JPOXMLDOC01-appb-I000009

    Figure JPOXMLDOC01-appb-I000010

    式(3-1)から式(3-27)において、P、P、およびPは独立して、式(P-1)から式(P-3)で表される基の群から選択された重合性基であり:
    Figure JPOXMLDOC01-appb-I000011

    式(P-1)から式(P-3)において、M、M、およびMは独立して、水素、フッ素、炭素数1から5のアルキル、または少なくとも1つの水素がハロゲンで置き換えられた炭素数1から5のアルキルであり;式(3-1)から式(3-27)において、Sp、Sp、およびSpは独立して、単結合、または炭素数1から10のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、少なくとも1つの-CH-CH-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよい。
  11.  液晶組成物の重量に基づいて、添加物成分の割合が0.03重量%から10重量%の範囲である、請求項8から10のいずれか1項に記載の液晶表示素子。
  12.  液晶配向膜が、光反応性基を有する重合体を含有する、請求項1から11のいずれか1項に記載の液晶表示素子。
  13.  重合体が、ポリアミック酸、ポリイミド、ポリアミック酸エステル、またはこれらの混合物である、請求項12に記載の液晶表示素子。
  14.  重合体が、アゾベンゼン誘導体、スチルベン誘導体、トラン誘導体、ジフェニルブタジイン誘導体、スピロピラン誘導体、スピロベンゾピラン誘導体、α-アリール-β-ケト酸誘導体、α-ヒドラゾノ-β-ケト酸誘導体、カルコン誘導体、アゾ誘導体、ベンジリデンフタルイミデン誘導体、ヘミチオインジゴ誘導体、チオインジゴ誘導体、スピロオキサジン誘導体、シンナムアルデヒド誘導体、レチナール誘導体、フルギド誘導体、ジアリールエテン誘導体、ポリメチン系化合物、ベンゾチアゾリノスピロピラン誘導体、ベンゾキオピラン系ピロピラン誘導体、およびこれらの異性体またはヘテロ原子置換体の群から選択された少なくとも1つの化合物から誘導される、請求項12または13に記載の液晶表示素子。
  15.  重合体が、式(I)から式(VII)で表される基の群から選択された光反応性基を有する化合物から誘導される、請求項12から14のいずれか1項に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000012

    式(IV)および式(V)において、Rは芳香環を有する二価の有機基である。
  16.  液晶配向膜が、式(I)から式(VII)で表される基の群から選択された光反応性基を有する、テトラカルボン酸二無水物およびジアミンの少なくとも1つから誘導された重合体を含有する、請求項1から11のいずれか1項に記載の液晶表示素子。

    Figure JPOXMLDOC01-appb-I000013

    式(IV)および式(V)において、Rは芳香環を有する二価の有機基である。
  17.  液晶配向膜が、式(PAN-1)または式(PAN-2)で表される化合物から誘導された重合体を含有する、請求項16に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000014
  18.  液晶配向膜が、式(PDI-1)から式(PDI-8)で表される化合物から選択された少なくとも1つの化合物から誘導された重合体を含有する、請求項16に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000015

    式(PDI-1)から式(PDI-8)において、環を構成するどの炭素原子にも結合位置が固定されていない基は、この環における結合位置がいずれかの炭素原子であることを示し;Rは、-CH、-OCH、-CF、または-COOCHであり;hは、0から2の整数である。
  19.  液晶配向膜が、式(PDI-6-1)または式(PDI-7-1)で表される化合物から誘導された重合体を含有する、請求項16に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000016
  20.  液晶配向膜が、式(AN-I)から式(AN-VII)で表される化合物の群から選択された少なくとも1つの化合物をさらに用いて誘導された重合体を含有する、請求項16から19のいずれか1項に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000017

    式(AN-I)から式(AN-VII)において、Xは、単結合または-CH-であり;Gは、単結合、炭素数1から20のアルキレン、-CO-、-O-、-S-、-SO-、-C(CH-、または-C(CF-であり;Yは下記の三価の基の群から選択された1つであり:
    Figure JPOXMLDOC01-appb-I000018

    これらの基において、少なくとも1つの水素は、メチル、エチルまたはフェニルで置き換えられてもよく;環Jは、炭素数3から10の単環式炭化水素の基または炭素数6から30の縮合多環式炭化水素の基であり、これらの基において、少なくとも1つの水素はメチル、エチルまたはフェニルで置き換えられてもよく、環に掛かっている結合手は環を構成するいずれかの炭素に連結しており、2本の結合手が同一の炭素に連結してもよく;X10は、炭素数2から6のアルキレンであり;Meはメチルであり;Phはフェニルであり;G10は、-O-、-COO-、または-OCO-であり;iは、0または1である。
  21.  液晶配向膜が、式(AN-1-1)、式(AN-1-13)、式(AN-2-1)、式(AN-3-1)、式(AN-3-2)、式(AN-4-5)、式(AN-4-17)、式(AN-4-21)、式(AN-4-28)、式(AN-4-29)、式(AN-7-2)、式(AN-10)、および式(AN-11-3)で表される化合物の群から選択された少なくとも1つの化合物をさらに用いて誘導された重合体を含有する、請求項16から19のいずれか1項に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000019

    式(AN-4-17)において、jは、1から12の整数である。
  22.  液晶配向膜が、式(DI-1)から式(DI-15)で表される化合物の群から選択された少なくとも1つの化合物をさらに用いて誘導された重合体を含有する、請求項16から20のいずれか1項に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000020

    式(DI-1)から式(DI-7)において、kは、1から12の整数であり;G21は、単結合、-NH-、-O-、-S-、-S-S-、-SO-、-CO-、-CONH-、-CON(CH)-、-NHCO-、-C(CH-、-C(CF-、-(CH-、-O-(CH-O-、-N(CH)-(CH-N(CH)-、または-S-(CH-S-であり;mは、1から12の整数であり;nは、1から5の整数であり;G22は、単結合、-O-、-S-、-CO-、-C(CH-、-C(CF-、または炭素数1から10のアルキレンであり;シクロヘキサン環またはベンゼン環の少なくとも1つの水素は、フッ素、-CH、-OH、-CF、-COH、-CONH、またはベンジルで置き換えられてもよく、加えて式(DI-4)においては、ベンゼン環の少なくとも1つの水素は、下記式(DI-4-a)から(DI-4-c)で置き換えられてもよく;
    Figure JPOXMLDOC01-appb-I000021

    は、水素または-CHであり;環を構成するどの炭素原子にも結合位置が固定されていない基は、この環における結合位置がいずれかの炭素原子であることを示し、シクロヘキサン環またはベンゼン環への-NHの結合位置は、G21またはG22の結合位置を除くいずれかの位置である。
    Figure JPOXMLDOC01-appb-I000022

    式(DI-8)から式(DI-12)において、R10およびR11は独立して、炭素数1から3のアルキルまたはフェニルであり;G23は、炭素数1から6のアルキレン、フェニレン、または少なくとも1つの水素がアルキルで置き換えられたフェニレンであり;pは、1から10の整数であり;R12は、炭素数1から5のアルキル、炭素数1から5のアルコキシまたは塩素であり;qは、0から3の整数であり;rは、0から4の整数であり;R13は、水素、炭素数1から4のアルキル、フェニル、またはベンジルであり;G24は、-CH-または-NH-であり;G25は、単結合、炭素数2から6のアルキレンまたは1,4-フェニレンであり;sは、0または1であり;環を構成するどの炭素原子にも結合位置が固定されていない基は、この環における結合位置がいずれかの炭素原子であることを示し;ベンゼン環に結合する-NHの結合位置はいずれかの位置である。
    Figure JPOXMLDOC01-appb-I000023

    式(DI-13)から式(DI-15)において、G31は、単結合、炭素数1から20のアルキレン、-CO-、-O-、-S-、-SO-、-C(CH-、または-C(CF-であり;環Kは、シクロヘキサン環、ベンゼン環、またはナフタレン環であり、これらの基において、少なくとも1つの水素は、メチル、エチル、またはフェニルで置き換えられてもよく;環Lは、シクロヘキサン環、またはベンゼン環であり、これらの基において、少なくとも1つの水素はメチル、エチル、またはフェニルで置き換えられてもよい。
  23.  液晶配向膜が、式(DI-1-3)、(DI-4-1)、(DI-5-1)、(DI-5-5)、(DI-5-9)、(DI-5-12)、(DI-5-22)、(DI-5-28)、(DI-5-30)、(DI-5-31)、(DI-7-3)、(DI-9-1)、(DI-13-1)、(DI-13-2)、(DI-14-1)、および(DI-14-2)で表される化合物の群から選択された少なくとも1つの化合物をさらに用いて誘導された重合体を含有する、請求項16から20のいずれか1項に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-I000024

    Figure JPOXMLDOC01-appb-I000025

    式(DI-1-3)、(DI-4-1)、(DI-5-1)、(DI-5-5)、(DI-5-9)、(DI-5-12)、(DI-5-22)、(DI-5-28)、(DI-5-30)、(DI-5-31)、(DI-7-3)、(DI-9-1)、(DI-13-1)、(DI-13-2)、(DI-14-1)、および(DI-14-2)において、mは、1から12の整数であり;nは、1から5の整数であり;tは、1または2である。
  24.  液晶表示素子の動作モードが、VAモード、ECBモード、OCBモード、IPSモード、FFSモード、PSAモード、またはFPAモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である請求項1から23のいずれか1項に記載の液晶表示素子。
  25.  液晶表示素子の動作モードがIPSモードまたはFFSモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である請求項1から24のいずれか1項に記載の液晶表示素子。
  26.  請求項2から11のいずれか1項に記載の液晶表示素子に使用される、液晶組成物。
  27.  25℃における弾性定数(K11)が11pN以上であり、弾性定数(K33)が11pN以上である、請求項26に記載の液晶組成物。
  28.  請求項26または27に記載の液晶組成物を含有し、25℃におけるフリッカ率が0%から1%の範囲である液晶表示素子。
  29.  請求項12から23のいずれか1項に記載の液晶表示素子に使用される、液晶配向膜。
  30.  25℃における体積抵抗率(ρ)が1.0×1014Ωcm以上である、請求項29に記載の液晶配向膜。
  31.  25℃における誘電率(ε)が3から5の範囲である、請求項29に記載の液晶配向膜。
PCT/JP2015/053747 2014-03-28 2015-02-12 液晶表示素子 WO2015146330A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167020768A KR20160138948A (ko) 2014-03-28 2015-02-12 액정 표시 소자
CN201580010146.7A CN106164758A (zh) 2014-03-28 2015-02-12 液晶显示元件
EP15768285.7A EP3125033B1 (en) 2014-03-28 2015-02-12 Liquid crystal display device
JP2016510106A JP6893784B2 (ja) 2014-03-28 2015-02-12 液晶表示素子
US15/122,175 US10041000B2 (en) 2014-03-28 2015-02-12 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-068507 2014-03-28
JP2014068507 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146330A1 true WO2015146330A1 (ja) 2015-10-01

Family

ID=54194868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053747 WO2015146330A1 (ja) 2014-03-28 2015-02-12 液晶表示素子

Country Status (7)

Country Link
US (1) US10041000B2 (ja)
EP (1) EP3125033B1 (ja)
JP (1) JP6893784B2 (ja)
KR (1) KR20160138948A (ja)
CN (1) CN106164758A (ja)
TW (1) TWI663248B (ja)
WO (1) WO2015146330A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075095A (ja) * 2015-10-13 2017-04-20 Jnc株式会社 テトラヒドロピラン環を有する化合物、液晶組成物および液晶表示素子
WO2017068962A1 (ja) * 2015-10-23 2017-04-27 株式会社ブイ・テクノロジー 光照射装置
WO2017141824A1 (ja) * 2016-02-17 2017-08-24 シャープ株式会社 液晶表示装置
CN108474982A (zh) * 2016-01-07 2018-08-31 夏普株式会社 液晶显示装置以及液晶显示装置的制造方法
US11667843B2 (en) 2019-01-17 2023-06-06 Lg Chem, Ltd. Liquid crystal alignment agent composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
JP7484664B2 (ja) 2020-10-29 2024-05-16 Jnc株式会社 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜、およびこれを用いた液晶素子

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3133136B1 (en) * 2014-04-15 2019-08-07 JNC Corporation Liquid crystal display device
JPWO2016002252A1 (ja) * 2014-06-30 2017-05-18 Jnc株式会社 液晶表示素子
JPWO2017051709A1 (ja) * 2015-09-25 2018-08-16 Jnc株式会社 液晶表示素子
CN106674027B (zh) * 2016-12-30 2018-10-16 江苏创拓新材料有限公司 二胺化合物、聚酰亚胺、光学薄膜及其制备方法
CN109705881A (zh) * 2018-11-30 2019-05-03 成都中电熊猫显示科技有限公司 液晶以及显示面板和显示装置
JP7302305B2 (ja) * 2019-06-04 2023-07-04 Dic株式会社 液晶組成物及び液晶表示素子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275645A (ja) * 1999-03-19 2000-10-06 Fujitsu Ltd 液晶表示装置及びその製造方法
JP2007279691A (ja) * 2006-03-16 2007-10-25 Chisso Corp 光配向膜及び液晶表示素子
JP2008134291A (ja) * 2006-11-27 2008-06-12 Epson Imaging Devices Corp 液晶表示装置
WO2011092973A1 (ja) * 2010-01-26 2011-08-04 Jnc株式会社 液晶組成物および液晶表示素子
JP5299595B1 (ja) * 2012-03-30 2013-09-25 Dic株式会社 液晶表示素子及びその製造方法
JP5333693B1 (ja) * 2012-03-30 2013-11-06 Dic株式会社 液晶表示素子及びその製造方法
JP2013242526A (ja) * 2012-04-26 2013-12-05 Jnc Corp 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (ja) 1996-03-05 2007-03-14 日産化学工業株式会社 液晶配向処理方法
DE69725733T2 (de) 1996-03-05 2004-07-29 Nissan Chemical Industries, Ltd. Verfahren zum ausrichten von flussigkristallen
DE19959033A1 (de) * 1999-12-08 2001-06-13 Merck Patent Gmbh Flüssigkristallines Medium
US7718234B2 (en) 2002-12-09 2010-05-18 Hitachi Displays, Ltd. Liquid crystal display and method for manufacturing same
JP2005083504A (ja) 2003-09-09 2005-03-31 Kansai Electric Power Co Inc:The 電動弁装置の保守管理システム
KR101158382B1 (ko) 2004-02-26 2012-06-22 닛산 가가쿠 고교 가부시키 가이샤 광 배향용 액정 배향제 및 그것을 사용한 액정 표시 소자
JP4620438B2 (ja) 2004-02-27 2011-01-26 チッソ株式会社 液晶配向膜、液晶配向剤、及び液晶表示素子
JP4968422B2 (ja) 2004-12-15 2012-07-04 Jsr株式会社 液晶配向膜の製造方法
TWI481587B (zh) * 2006-03-16 2015-04-21 Jnc Corp 二胺
JP2012053323A (ja) 2010-09-02 2012-03-15 Brother Ind Ltd 画像光形成装置
TWI515289B (zh) 2010-10-20 2016-01-01 捷恩智股份有限公司 液晶組成物及液晶顯示元件
EP2853580A4 (en) * 2012-05-23 2016-01-27 Jnc Corp LIQUID CRYSTAL COMPOSITION AND LIQUID CRYSTAL DISPLAY ELEMENT
US9150787B2 (en) * 2012-07-06 2015-10-06 Jnc Corporation Liquid crystal composition and liquid crystal display device
TWI565790B (zh) * 2012-08-08 2017-01-11 捷恩智股份有限公司 液晶組成物、液晶顯示元件及液晶組成物的使用
JPWO2016002252A1 (ja) * 2014-06-30 2017-05-18 Jnc株式会社 液晶表示素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275645A (ja) * 1999-03-19 2000-10-06 Fujitsu Ltd 液晶表示装置及びその製造方法
JP2007279691A (ja) * 2006-03-16 2007-10-25 Chisso Corp 光配向膜及び液晶表示素子
JP2008134291A (ja) * 2006-11-27 2008-06-12 Epson Imaging Devices Corp 液晶表示装置
WO2011092973A1 (ja) * 2010-01-26 2011-08-04 Jnc株式会社 液晶組成物および液晶表示素子
JP5299595B1 (ja) * 2012-03-30 2013-09-25 Dic株式会社 液晶表示素子及びその製造方法
JP5333693B1 (ja) * 2012-03-30 2013-11-06 Dic株式会社 液晶表示素子及びその製造方法
JP2013242526A (ja) * 2012-04-26 2013-12-05 Jnc Corp 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3125033A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075095A (ja) * 2015-10-13 2017-04-20 Jnc株式会社 テトラヒドロピラン環を有する化合物、液晶組成物および液晶表示素子
WO2017068962A1 (ja) * 2015-10-23 2017-04-27 株式会社ブイ・テクノロジー 光照射装置
CN108474982A (zh) * 2016-01-07 2018-08-31 夏普株式会社 液晶显示装置以及液晶显示装置的制造方法
CN108474982B (zh) * 2016-01-07 2021-11-02 夏普株式会社 液晶显示装置以及液晶显示装置的制造方法
WO2017141824A1 (ja) * 2016-02-17 2017-08-24 シャープ株式会社 液晶表示装置
US11667843B2 (en) 2019-01-17 2023-06-06 Lg Chem, Ltd. Liquid crystal alignment agent composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
JP7484664B2 (ja) 2020-10-29 2024-05-16 Jnc株式会社 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜、およびこれを用いた液晶素子

Also Published As

Publication number Publication date
TWI663248B (zh) 2019-06-21
KR20160138948A (ko) 2016-12-06
EP3125033A4 (en) 2017-12-27
EP3125033B1 (en) 2021-06-02
TW201536897A (zh) 2015-10-01
EP3125033A1 (en) 2017-02-01
CN106164758A (zh) 2016-11-23
JP6893784B2 (ja) 2021-06-23
US20160369168A1 (en) 2016-12-22
US10041000B2 (en) 2018-08-07
JPWO2015146330A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6893784B2 (ja) 液晶表示素子
JP5903890B2 (ja) 液晶表示素子、液晶組成物及び配向剤並びに液晶表示素子の製造方法及びその使用
US10435627B2 (en) Liquid crystal display device
EP3163368B1 (en) Liquid crystal display element
WO2017145611A1 (ja) 液晶組成物および液晶表示素子
EP3179303B1 (en) Liquid crystal display element
WO2017130566A1 (ja) 液晶組成物および液晶表示素子
WO2017051709A1 (ja) 液晶表示素子
WO2018221270A1 (ja) 液晶組成物および液晶表示素子
JP2019168612A (ja) 液晶表示素子
JP2023034229A (ja) 液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510106

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015768285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768285

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167020768

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15122175

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE