[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015033545A1 - 光ネットワーク制御装置および光ネットワーク制御方法 - Google Patents

光ネットワーク制御装置および光ネットワーク制御方法 Download PDF

Info

Publication number
WO2015033545A1
WO2015033545A1 PCT/JP2014/004468 JP2014004468W WO2015033545A1 WO 2015033545 A1 WO2015033545 A1 WO 2015033545A1 JP 2014004468 W JP2014004468 W JP 2014004468W WO 2015033545 A1 WO2015033545 A1 WO 2015033545A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical path
path
network control
band
Prior art date
Application number
PCT/JP2014/004468
Other languages
English (en)
French (fr)
Inventor
竹下 仁士
智之 樋野
田島 章雄
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015535311A priority Critical patent/JP6451636B2/ja
Priority to US14/914,159 priority patent/US10231035B2/en
Publication of WO2015033545A1 publication Critical patent/WO2015033545A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • the present invention relates to an optical network control device and an optical network control method, and more particularly to an optical network control device and an optical network control method used for an optical network based on a high-density wavelength division multiplexing method using a flexible frequency grid.
  • Dense Wavelength Division Multiplexing Multiplexing is based on the standardization of the International Telecommunications Union (ITU) Telecommunication Standardization Sector (ITU-T). Is being used. In the DWDM system, the entire available optical band is subdivided by a fixed-width grid called a wavelength grid, and an optical signal of one wavelength channel is allocated within the grid width (ITU-T recommendation G.694.1). .
  • the optical band dedicated to all optical signals needs to be 50 GHz or less.
  • An optical band occupied by an optical signal having a transmission rate of 40 Gbps is about 50 GHz in consideration of a guard band for avoiding interference with an adjacent channel. Therefore, if the transmission speed of all the optical signals used in the optical network having a grid width of 50 GHz is 40 Gbps, the optical band that can be used in the optical network can be used without any gap.
  • 10 Gbps optical signals having an optical band of about 15 GHz are mixed, the optical band for 35 GHz in the 50 GHz grid becomes unused and cannot be assigned to other optical signals.
  • the flexible frequency grid is a technology that supports wavelength division multiplexing, which is an advanced function of DWDM, and is standardized by ITU-T (ITU-T recommendation G.694.1).
  • ITU-T ITU-T recommendation G.694.1
  • the grid width is further subdivided compared to the DWDM frequency grid.
  • the grid width assigned to the optical path is variable, and the grid width can be set individually for each optical path.
  • optical paths are allocated in consideration of failure recovery.
  • OSPF Open Shortest Path First
  • the operational optical path is set so that the distance in the optical network is the shortest. Therefore, the length of the standby optical path is longer than the length of the operational optical path.
  • the minimum required optical bandwidth is allocated according to the optical path length and traffic volume. Therefore, in the entire optical network, the optical band in the standby optical path is larger than that in the active optical path.
  • the standby optical path is indispensable for ensuring the reliability of the optical network, but the optical bandwidth of the standby optical path is not used unless a failure occurs, and this is a wasteful bandwidth allocation for the operational optical path. . For this reason, the utilization efficiency of the entire optical network is reduced.
  • An object of the present invention is to provide an optical network control device and an optical network control method that solve the above-described problems.
  • the optical network control device of the present invention selects a plurality of optical node pairs composed of two optical nodes among a plurality of optical nodes constituting an optical network based on a high-density wavelength division multiplexing system using a flexible frequency grid,
  • An optical path setting means for setting a plurality of optical paths including a first optical path and a second optical path connecting the optical node pairs through different paths between each of the plurality of optical node pairs;
  • an optical band setting means for setting each optical band based on the communication capacity so that the total metric of the optical band of the first optical path is equal to or greater than the total metric of the optical band of the second optical path.
  • the optical network control method of the present invention selects a plurality of optical node pairs composed of two optical nodes out of a plurality of optical nodes constituting a high-density wavelength division multiplexing optical network using a flexible frequency grid, A plurality of optical paths including a first optical path and a second optical path that connect the optical node pairs through different paths are set between each of the plurality of optical node pairs, and based on the length of the optical path and the communication capacity
  • the optical bands are respectively set so that the total metric of the optical band of the first optical path is equal to or greater than the total metric of the optical band of the second optical path.
  • optical network control apparatus and the optical network control method of the present invention it is possible to improve fault tolerance in an optical network using a high-density wavelength division multiplexing system using a flexible frequency grid. At the same time, it is possible to improve the optical band utilization efficiency of the entire optical network.
  • FIG. 1 is a block diagram showing a configuration of an optical network control apparatus 100 according to the first embodiment of the present invention.
  • the optical network control device 100 is used to control an optical network 1000 using a high-density wavelength division multiplexing system using a flexible frequency grid.
  • the optical network 1000 has a plurality of optical nodes connected by optical fibers, and can set a plurality of optical paths with each optical node as a start point, a passing point, and an end point.
  • the optical network control device 100 includes an optical path setting unit 110 and an optical band setting unit 120.
  • the optical path setting unit 110 selects a plurality of optical node pairs each including two optical nodes among a plurality of optical nodes constituting the optical network 1000. Then, a plurality of optical paths including a first optical path and a second optical path that connect the optical node pairs through different paths are set between the plurality of optical node pairs.
  • the optical band setting means 120 is configured so that the total metric of the optical band of the first optical path is equal to or greater than the total metric of the optical band of the second optical path based on the length of the optical path and the communication capacity. Set each.
  • the optical network control device 100 of the present embodiment By adopting such a configuration, according to the optical network control device 100 of the present embodiment, a plurality of optical paths are set between the same optical node pair, so that fault tolerance can be improved. At the same time, since the optical band is set so that the total metric of the optical band of the first optical path is equal to or greater than the total metric of the optical band of the second optical path, the optical band utilization efficiency of the entire optical network is improved. Can be achieved.
  • the fault tolerance is improved, and the optical bandwidth utilization efficiency during operation is improved. It can be improved as a whole.
  • FIG. 2 is a schematic diagram showing an example of the configuration of the optical network 1000.
  • a ring network in which the five optical nodes A 1001 to E 1005 shown in FIG. 2 are connected in a ring shape will be described as an example of the optical network 1000.
  • the optical path 1011 passes through the optical node A ⁇ B ⁇ C and passes through the optical node A ⁇ E ⁇ D ⁇ C.
  • a counterclockwise optical path 1010 can be set.
  • the length of the optical path 1010 is larger than the length of the optical path 1011.
  • the optical band 1020 to be allocated to the optical path 1010 is larger than the optical band 1021 to be allocated to the optical path 1011. This is because, as shown in FIG. 3, as the communication capacity increases or the transmission distance becomes longer, optical noise is accumulated, so that an optical signal component corresponding to that amount, that is, an optical bandwidth is required. is there.
  • both the optical path 1011 and the optical path 1010 can be assigned to the active system (or the standby system).
  • the optical path 1011 is assigned to the active optical path
  • the optical path 1010 is assigned to the standby optical path.
  • the optical band of the active optical path is smaller than the optical band of the standby optical path from the relationship shown in FIG.
  • both of the two types of optical paths are operated (or Can be assigned to the standby system).
  • the optical bandwidth of the active optical path is the standby optical path in the entire optical network. It becomes smaller than the optical band of the path.
  • the optical band becomes an optical band that cannot be used during normal operation. As a result, the effective utilization efficiency of the entire optical network is reduced.
  • the optical band is set so that the total metric of one of the plurality of optical paths is equal to or greater than the total metric of the optical band of the other optical path. To do. Therefore, in the entire optical network, it is possible to set so that the optical band of the operational optical path is equal to or greater than the optical band of the standby optical path. As a result, it is possible to avoid a decrease in effective utilization efficiency of the entire optical network.
  • FIG. 4 shows an example in which the same optical band is assigned to both the active optical path and the standby optical path regardless of the transmission distance.
  • B001 and B002, B003 and B004,..., B009 and B010 are a pair of an active optical path and a standby optical path, respectively, and indicate the allocation of optical bands to them.
  • the optical bands assigned to the active optical path and the standby optical path are always equal. For this reason, there is no difference in the utilization efficiency of the optical band of the entire optical network due to the difference between using each optical path as an active optical path or a standby optical path.
  • FIGS. 5A and 5B show an example of optical band allocation to the optical path of the entire optical network when the minimum required optical band is allocated according to the transmission distance of the optical path.
  • FIG. 5A shows an example in which an optical path is set based on the OSPF protocol described above.
  • the optical path with the shortest distance is set as the operational optical path.
  • the relationship between the product of the communication capacity and the transmission distance and the optical bandwidth necessary to realize the product is directly proportional. Therefore, the required optical bandwidth can be reduced as the length of the optical path is shorter. For this reason, there is a difference between the optical bandwidth necessary for allocation to the operational optical path and the optical bandwidth necessary for allocation to the standby optical path.
  • the optical bandwidth of the active optical path is smaller than the optical bandwidth of the standby optical path.
  • the optical bands are set so that the total metric of the optical band of one optical path is equal to or greater than the total metric of the optical band of the other optical path.
  • FIG. 5B shows an example of optical band allocation to the optical path of the entire optical network in this case.
  • FIG. 5B shows, as an example, a case where optical band allocation is performed by switching the settings of the active system and the standby system in the pair of optical paths A001 and A002 and the pair of optical paths A003 and A004 in FIG. 5A.
  • the optical bandwidth of the operational optical path can be made larger than the optical bandwidth of the standby optical path for the entire optical network.
  • the optical bandwidth of the standby optical path is an optical bandwidth that is not normally used. If the optical bandwidth of the standby optical path increases, the utilization efficiency of the optical bandwidth of the entire optical network is reduced. Problems arise.
  • the optical band can be set not only considering the optical path length but also taking into consideration the optical bandwidths of the operational optical path and the standby optical path. Such a problem can be solved.
  • the optical nodes A1001 to E1005 are connected in a ring shape.
  • Two optical paths are set between the optical node pair composed of the optical node A 1001 and the optical node C 1003. That is, an optical path 1011 through which signal light passes in the order of optical node A 1001 ⁇ optical node B 1002 ⁇ optical node C 1003 and an optical path 1010 through which signal light passes in order of optical node A 1001 ⁇ optical node E 1005 ⁇ optical node D 1004 ⁇ optical node C 1003. Is set. It is assumed that the distances between the optical nodes 1001 to 1005 are equal.
  • the optical path 1011 and the optical path 1010 have the same communication capacity but different transmission distances. That is, the optical path 1011 has 2 hops, whereas the optical path 1010 has 3 hops. Therefore, referring to the relationship shown in FIG. 3, the optical band allocated to the optical path 1011 is 2/3 of the optical band allocated to the optical path 1010.
  • the unit optical band is 1 slot
  • the optical band 1021 assigned to the optical path 1011 is 2 slots
  • the optical band 1020 assigned to the optical path 1010 is 3 slots.
  • the optical network control device 100 further selects a new optical node pair from the optical nodes of the optical network 1000, and sets an optical path between the optical node pairs.
  • FIG. 6 shows an example in which an optical path is set between new optical nodes in addition to the setting of the optical path between the optical nodes shown in FIG.
  • FIG. 6 shows a case where a plurality of optical paths are set between an optical node pair composed of the optical node A 3001 and the optical node D 3004 and an optical node pair composed of the optical node B 3002 and the optical node E 3005. That is, between the optical node A 3001 and the optical node D 3004, an optical path 3012 connected in two hops counterclockwise and an optical path 3013 connected in three hops clockwise are set. Similarly, between the optical node B 3002 and the optical node E 3005, an optical path 3014 connected in two hops counterclockwise and an optical path 3015 connected in three hops clockwise are set.
  • the optical path with the shortest distance is assigned to the active optical path, so that the optical path 3012 and the optical path 3014 are the active optical path, and the optical path 3013 is The optical path 3015 is assigned to the backup optical path.
  • the optical bandwidth required for the optical path 3012 and the optical path 3014 is 2 slots each, and the required optical bandwidth for the optical path 3013 and the optical path 3015 is 3 respectively.
  • the optical bandwidth allocated to the operational optical path in the entire optical network is 2 slots each for the optical path 3011 (1011), the optical path 3012, and the optical path 3014, for a total of 6 slots.
  • the optical bandwidth allocated to the backup optical path is 3 slots each for the optical path 3010 (1010), the optical path 3013, and the optical path 3015, for a total of 9 slots.
  • the optical bandwidth of the operational optical path is used for normal optical communication, but the optical bandwidth of the standby optical path is not used during normal operation.
  • the optical bandwidth of the standby optical path that is not used in the normal time exceeds the optical bandwidth of the operational optical path. As a result, the effective utilization efficiency of the entire optical network is reduced.
  • the optical bandwidth is set so that the optical bandwidth of the operational optical path of the entire optical network is equal to or greater than the optical bandwidth of the standby optical path.
  • the optical path 3012 and the optical path 3014 are assigned to the backup optical path
  • the optical path 3013 and the optical path 3015 are assigned to the active optical path.
  • the operational optical path optical bandwidth of the entire optical network is 2 slots wide for the optical path 3011 (1011) and 3 slots wide for the optical path 3013 and the optical path 3015, for a total of 8 slot widths. It becomes.
  • the optical bandwidth of the standby optical path is 3 slots wide for the optical path 3010 (1010) and 2 slots wide for the optical path 3012 and the optical path 3014, for a total of 7 slots. That is, the optical bandwidth allocated to the active optical path can be made larger than the optical bandwidth allocated to the standby optical path. As a result, it is possible to prevent a decrease in effective optical band utilization efficiency in the entire optical network.
  • the optical network control method of this embodiment controls an optical network by a high-density wavelength division multiplexing method using a flexible frequency grid.
  • optical network control method of the present embodiment first, a plurality of optical node pairs composed of two optical nodes among a plurality of optical nodes constituting the optical network are selected. An optical path including a first optical path and a second optical path that connect the optical node pair through different paths is set between each of the plurality of optical node pairs. Then, based on the length of the optical path and the communication capacity, the optical bands are respectively set so that the total optical band of the first optical path is larger than the total optical band of the second optical path.
  • the first optical path can be assigned to the active optical path
  • the second optical path can be assigned to the standby optical path
  • the utilization efficiency of the optical band of the entire optical network can be improved.
  • the reason is as follows.
  • the minimum required optical bandwidth is allocated according to the optical path length and traffic volume (communication capacity), and the optical bandwidth allocated to the active optical path is set as the standby optical path. It is set so as to be larger than the optical band to be allocated to. This is because the optical band actually used in the entire optical network can be increased, and the effective optical band is increased.
  • FIG. 7 is a block diagram showing a configuration of an optical network control apparatus 200 according to the second embodiment of the present invention.
  • the optical network control device 200 is used to control an optical network by a high-density wavelength division multiplexing method using a flexible frequency grid, and includes an optical path setting unit 110 and an optical band setting unit 120.
  • the configuration and operation of these means are the same as those in the optical network control apparatus 100 according to the first embodiment.
  • the optical network control apparatus 200 further includes an unused optical band search unit 210 and an optical path generation unit 220.
  • the unused optical band search unit 210 searches for an unused optical band in the optical network.
  • the optical path generation unit 220 generates a new optical path by wavelength multiplexing a plurality of unused optical bands having different center wavelengths obtained from the search result of the unused optical band search unit 210.
  • the optical path setting means 110 can allocate the new optical path to either the active optical path or the standby optical path.
  • the optical network control device 200 of the present embodiment it is possible to use up the optical bandwidth that can be used in the entire optical network.
  • the reason is as follows.
  • the optical network control apparatus 200 of the present embodiment after setting the necessary operational and standby optical paths, the remaining unused optical band is wavelength-multiplexed to create a new optical path. Can be generated. This is because an unused optical band that is not assigned as an optical path in the optical network can be eliminated.
  • the reliability of the network can be improved. This is because a new optical path generated using the remaining unused optical band can be used as an additional standby optical path to prepare for multiple failures.
  • the utilization efficiency of the optical band of the operational optical path is maximized, and an additional standby optical path is generated using the unused optical band that remains independently from the efficiency, thereby preparing for multiple failures. It is possible. Therefore, it is possible to simultaneously improve the utilization efficiency and reliability of the optical band of the optical network.
  • the optical network control device 200 generates a new optical path by wavelength multiplexing a plurality of discontinuous unused optical bands.
  • FIGS. 8A and 8B are schematic diagrams showing optical band allocation to the optical path of the entire optical network.
  • FIG. 8A is the same as FIG. 5B, and shows a case where the optical network control device 200 assigns optical bands to the active optical path and the standby optical path in the same manner as the optical network control device 100 according to the first embodiment.
  • the optical network control apparatus 200 collects these unused bands and wavelength-multiplexes them to generate a new optical path, as shown in FIG. 8B.
  • the optical bands 4011 to 4016 are unused optical bands that remain unused in the entire optical network after the optical bands are allocated to the active optical path and the standby optical path. It is.
  • the optical network control device 200 wavelength-multiplexes a plurality of unused optical bands so that the new optical path generation condition is satisfied as a whole.
  • the new optical path generated by wavelength multiplexing in this way can be used for both the operational optical path and the standby optical path.
  • a new optical path can be used as an additional operational optical path for the optical band 4002 that forms an operational optical path with an optical band of four slots.
  • the utilization efficiency of the optical band can be improved.
  • the unused optical band when the generation of the new optical path according to the present embodiment is not performed is 10 slots as shown in FIG. 8A.
  • the unused optical band is 2 slots as shown in FIG. 8B. Since the optical bandwidth of the entire optical network is 34 slots, the utilization efficiency of the optical network is about 70% (((34-10) / 34) ⁇ 100) to about 94% (( It can be seen that (34-2) / 34) ⁇ 100). That is, in the example shown in FIGS. 8A and 8B, according to the optical network control device 200 of the present embodiment, the utilization efficiency of the optical band in the optical network can be improved by 24%.
  • a new optical path generated by wavelength multiplexing an unused optical band can be assigned to a standby optical path.
  • it can be used as an additional spare optical path for the spare optical path assigned to the optical bandwidth 4001 and the optical bandwidth 4006 of three slots.
  • the following five sets are set as a pair of the active optical path and the standby optical path. That is, there are five pairs of (4001, 4002) (4003, 4004) (4005, 4006) (4007, 4008) (4009, 4010). Therefore, 100% of the standby optical path is prepared with respect to the active optical path.
  • the pair of the operation optical path and the backup optical path is (4001+ (4011 to 4014), 4002) (4003, 4004) (4005, 4006+ (4015 to 4016)) (4007, 4008) (4009, 4010) It becomes.
  • the optical network control apparatus 200 operates by giving priority to the first operation guideline with the improvement of the optical band utilization efficiency as the first operation guideline and the improvement of the failure recovery rate as the second operation guideline. That is, the allocation of the optical band is performed with priority given to the improvement of the utilization efficiency of the optical band.
  • FIGS. 9A and 9B are schematic views showing optical band allocation to the optical path of the entire optical network.
  • FIG. 9A is the same as FIG. 8A, and shows a case where the optical network control device 200 assigns optical bands to the active optical path and the standby optical path in the same manner as the optical network control device 100 according to the first embodiment.
  • the optical network control device 200 minimizes the number of slots in the unused optical band according to the first operation guideline.
  • the operation is performed so as to maximize the number of additional backup paths.
  • the optical path setting unit 110 of the optical network control device 200 can assign the new optical path as an additional backup path of the backup optical path in ascending order of the required optical bandwidth of the backup optical path. Thereby, the number of additional backup paths can be maximized while minimizing the unused optical band.
  • Unused optical bands are allocated as additional spare optical bands 5020 to 5023 in ascending order of the required optical bandwidth among the optical bands for the standby optical path. That is, the optical bands 5004 (1 slot), 5008 (2 slots), 5010 (2 slots), 5001 (3 slots), and 5006 (3 slots) are allocated in this order.
  • the number of unused optical bandwidth slots is 10 in total, and therefore there is an optical bandwidth in the additional standby optical path for the optical bandwidth 5006 (3 slots) for the standby optical path. Is not assigned. Therefore, the unused optical band for 2 slots remains unallocated.
  • the optical network control device 200 operates by giving priority to improving the optical band utilization efficiency, which is the first operation guideline, over improving the failure recovery rate, which is the second operation guideline.
  • the additional spare optical band 5031 is assigned as the second additional spare optical path for the optical band 5004 (1 slot) for the spare optical path. Ends. Further, the same assignment is repeated. At this time, since the number of slots of the unused optical band becomes zero at the stage where the additional standby optical band 5041 is allocated as an additional standby optical path for the optical band 5004, the allocation of the unused optical band is completed.
  • the number of slots in the unused optical band is reduced from 10 slots to zero before and after the operation according to the present embodiment.
  • the additional standby optical path is quadrupled for the optical band 5004 and doubled for the optical bands 5008, 5010, and 5001, respectively. Therefore, the utilization efficiency of the optical band in the optical network is improved from about 70% (((34-10) / 34) ⁇ 100) to 100% (((34-0) / 34) ⁇ 100), and the failure recovery is performed.
  • the rate is 220% ((1 ⁇ 400 + 3 ⁇ 200 + 1 ⁇ 100) / 5). That is, according to the optical network control apparatus 200 according to the present embodiment, the failure recovery rate can be improved about twice while maximizing the optical band utilization efficiency of the optical network to 100%.
  • the optical network control method of this embodiment controls an optical network by a high-density wavelength division multiplexing method using a flexible frequency grid.
  • the optical network control method of the present embodiment first, a plurality of optical node pairs composed of two optical nodes among a plurality of optical nodes constituting the optical network are selected. An optical path including a first optical path and a second optical path that connect the optical node pair through different paths is set between each of the plurality of optical node pairs. Then, based on the length of the optical path and the communication capacity, the optical bands are respectively set so that the total optical band of the first optical path is larger than the total optical band of the second optical path. Further, when setting the optical path, the first optical path can be assigned to the active optical path, and the second optical path can be assigned to the standby optical path.
  • the steps so far are the same as those in the optical network control method according to the first embodiment.
  • the optical network control method of this embodiment further searches for an unused optical band in the optical network. Then, a new optical path is generated by wavelength multiplexing a plurality of unused optical bands having different center wavelengths obtained from the search results. Then, when setting the optical path, the new optical path can be assigned to either the active optical path or the standby optical path. Further, when setting the optical path, the new optical path may be assigned as an additional backup path of the backup optical path in order of increasing optical bandwidth of the backup optical path.
  • the optical network control device and the optical network control method according to the present embodiment it is possible to independently improve the use efficiency and reliability of the optical band in the optical network.
  • the effective communication capacity of the optical network increases.
  • the standby optical path it is possible to cope with multiple failures with respect to the operational optical path, and the fault tolerance is improved. It is also possible to set a ratio for assigning a new optical path to the active optical path and the standby optical path. Therefore, when the user requests large-capacity communication, the ratio allocated to the active optical path can be increased, and when the user requests reliability, the ratio allocated to the standby optical path can be increased. Thereby, it is possible to set and control the optical path according to the user's request.
  • the optical network control device 200 uses the first operation guideline as the first operation guideline for improving the utilization efficiency of the optical band, and prioritizes the first operation guideline for improving the failure recovery rate.
  • the first operation guideline is that the optical network control device 200 makes the optical band allocated to the active optical path larger than the optical band allocated to the standby optical path.
  • the second operation guideline may be to maximize the number of.
  • the second operation guideline is applied as a subordinate operation guideline of the first operation guideline. Thereby, it is possible to improve the failure recovery rate of the entire optical network while maximizing the width of the optical band allocated to the active optical path.
  • the second operation guideline may be to maximize the power consumption reduction efficiency by maximizing the number of optical cut-throughs in the relay optical node of the active optical path in the optical network. Then, when there are a plurality of patterns for assigning optical bands to the optical paths based on the first operation guideline, the second operation guideline is applied as a subordinate operation guideline of the first operation guideline. Thereby, it is possible to improve the power consumption reduction efficiency of the entire optical network while maximizing the width of the optical band allocated to the operational optical path.
  • a plurality of operation guides are added according to the user's request such as maximizing the reduction efficiency of power consumption and improving the failure recovery rate. It is possible to delete. Then, by making it possible to change the priorities of the plurality of operation guidelines, it is possible to cope with functions that are prioritized by the user.
  • the entire optical network may be divided into a plurality of domains, and operation guidelines may be set for each of these domains. This makes it possible to respond to user requests for each domain.
  • the utilization efficiency of the optical band is improved, so that more traffic can be accommodated without changing the hardware. Therefore, the communication capacity can be expanded at low cost.
  • the optical network control device and the control method according to the above embodiment can be configured by software, and can be realized at low cost. Furthermore, the configuration according to the above embodiment does not depend on the scale or topology of the optical network. Therefore, even if the number of nodes or the number of optical paths increases, the optical network control device and control method according to the above embodiment can be used. Therefore, the effect of high scalability can be obtained.
  • Optical network control device 110
  • Optical path setting means 120
  • Optical band setting means 210
  • Optical path generation means 1000
  • Optical nodes 1010, 1011, 3010 to 3015 Optical path 1020, 1021, A001 to A010, B001 to B010, 3020, 3021, 4001 to 4010, 5001 to 5010

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

 フレキシブル周波数グリッドを用いた高密度波長分割多重方式による光ネットワークにおいては、障害耐性を向上させるとともに、光ネットワーク全体としての光帯域利用効率の向上を図ることが困難であるため、本発明の光ネットワーク制御装置は、フレキシブル周波数グリッドを用いた高密度波長分割多重方式による光ネットワークを構成する複数の光ノードのうちの2個の光ノードからなる光ノード対を複数個選択し、複数の光ノード対のそれぞれの間に、光ノード対を異なる経路で結ぶ第1の光パスと第2の光パスを含む複数の光パスを設定する光パス設定手段と、光パスの長さと通信容量に基づいて、第1の光パスの光帯域の総計量が、第2の光パスの光帯域の総計量以上となるように、光帯域をそれぞれ設定する光帯域設定手段、とを有する。

Description

光ネットワーク制御装置および光ネットワーク制御方法
 本発明は、光ネットワーク制御装置および光ネットワーク制御方法に関し、特に、フレキシブル周波数グリッドを用いた高密度波長分割多重方式による光ネットワークに使用する光ネットワーク制御装置および光ネットワーク制御方法に関する。
 今後予想される情報通信量の爆発的な拡大に対応するため、基幹系光ネットワークの容量の拡大が課題となっている。これに対して、様々な取り組みが行われているが、その一つとして、光帯域利用効率の向上を図る研究開発が行われている。
 光ネットワークでは、国際電気通信連合(International Telecommunication Union:ITU)電気通信標準化部門(Telecommunication Standardization Sector:ITU-T)で標準化されている高密度波長分割多重(Dense Wavelength Division Multiplexing:DWDM)方式に従って光帯域が利用されている。DWDM方式においては、利用可能な光帯域全体を波長グリッドと呼ばれる一定幅のグリッドで細分化し、そのグリッド幅内に一波長チャネルの光信号を割り当てている(ITU-T勧告G.694.1)。
 例えば、グリッド幅が50GHzの光ネットワークでは、すべての光信号について専有する光帯域が50GHz以下である必要がある。伝送速度が40Gbps(Gigabits per second)の光信号が占める光帯域は、隣接チャネルとの干渉を避けるためのガードバンドを考慮すると約50GHzである。したがって、グリッド幅が50GHzの光ネットワークで利用する光信号の伝送速度がすべて40Gbpsであれば、その光ネットワーク内で利用可能な光帯域は隙間なく利用可能である。しかし、光帯域が約15GHzである10Gbpsの光信号が混在している場合、50GHzのグリッドのうち35GHz分の光帯域が未使用となり、かつ、他の光信号に割り当てることもできない。
 また、伝送距離に着目すると、上述した例のようにグリッド幅が50GHzの光ネットワークにおいて、光信号の伝送速度がすべて40Gbpsである場合であっても、以下に示すように光帯域の割り当てに無駄が生じる。50GHzの光帯域をすべて専有した場合、光終端することなく伝送可能な距離は約500km程度である。従って、光パス長が500kmよりも短い場合、実際に割り当てられた50GHzよりも少ない光帯域でも伝送が可能である。例えば、伝送速度が40Gbpsで光パス長が250kmである光パスを考える。このとき、最低限必要な光帯域が25GHzであるとすると、グリッド幅が50GHzの光ネットワークでは25GHz分の光帯域が過剰な割り当てとなり、かつ、他の光信号に割り当てることもできない。
 このような問題を解決する技術としてフレキシブル周波数グリッドを利用したエラスティック光ネットワーク技術が提案されている(例えば、特許文献1参照)。フレキシブル周波数グリッドはDWDMをさらに高機能化した波長分割多重を支える技術であり、ITU-Tで標準化されている(ITU-T勧告G.694.1)。フレキシブル周波数グリッドでは、グリッド幅をDWDMの周波数グリッドよりもさらに細分化している。そして、光パスに割り当てるグリッド幅を可変とし、光パス毎に個別にグリッド幅を設定できるようにしている。これにより、エラスティック光ネットワークでは、光パス長とトラフィック量に応じて光パスに必要最低限の光帯域を割り当てることが可能であり、光帯域の利用効率を向上させることができる。
国際公開第2012/147889号
 光ネットワークでは、障害回復を考慮に入れた光パスの割り当てを行っている。このとき、例えばOSPF(Open Shortest Path First)プロトコルを用いた光パス設定では、光ネットワーク内の距離が最短となるように運用系の光パスを設定する。したがって、予備系光パスの長さは運用系光パスの長さよりも長くなる。
 しかしながら、上述したエラスティック光ネットワークのようなフレキシブル周波数グリッドを用いた光ネットワークにおいては、光パス長とトラフィック量に応じて必要最低限の光帯域を割り当てる。そのため、光ネットワーク全体では運用系光パスよりも予備系光パスにおける光帯域の方が大きくなる。予備系光パスは光ネットワークの信頼性を確保するためには不可欠であるが、予備系光パスの光帯域は障害が発生しない限り使用されないので、運用系光パスにとっては無駄な帯域割り当てとなる。そのため、光ネットワーク全体の利用効率が低下してしまう。
 このように、フレキシブル周波数グリッドを用いた高密度波長分割多重方式による光ネットワークにおいては、障害耐性を向上させるとともに、光ネットワーク全体としての光帯域利用効率の向上を図ることが困難である、という問題点があった。
 本発明の目的は、上述した問題点を解決する光ネットワーク制御装置および光ネットワーク制御方法を提供することにある。
 本発明の光ネットワーク制御装置は、フレキシブル周波数グリッドを用いた高密度波長分割多重方式による光ネットワークを構成する複数の光ノードのうちの2個の光ノードからなる光ノード対を複数個選択し、複数の光ノード対のそれぞれの間に、光ノード対を異なる経路で結ぶ第1の光パスと第2の光パスを含む複数の光パスを設定する光パス設定手段と、光パスの長さと通信容量に基づいて、第1の光パスの光帯域の総計量が、第2の光パスの光帯域の総計量以上となるように、光帯域をそれぞれ設定する光帯域設定手段、とを有する。
 本発明の光ネットワーク制御方法は、フレキシブル周波数グリッドを用いた高密度波長分割多重方式による光ネットワークを構成する複数の光ノードのうちの2個の光ノードからなる光ノード対を複数個選択し、複数の光ノード対のそれぞれの間に、光ノード対を異なる経路で結ぶ第1の光パスと第2の光パスを含む複数の光パスを設定し、光パスの長さと通信容量に基づいて、第1の光パスの光帯域の総計量が、第2の光パスの光帯域の総計量以上となるように、光帯域をそれぞれ設定する。
 本発明の光ネットワーク制御装置および光ネットワーク制御方法によれば、フレキシブル周波数グリッドを用いた高密度波長分割多重方式による光ネットワークにおいて、障害耐性を向上させることができる。それとともに、光ネットワーク全体としての光帯域利用効率の向上を図ることができる。
本発明の第1の実施形態に係る光ネットワーク制御装置の構成を示すブロック図である。 光ネットワークの構成の一例を示す概略図である。 通信容量と伝送距離の積と光帯域幅との関係を示す概略図である。 フレキシブル周波数グリッドを用いたDWDM方式における光帯域を説明するための模式図である。 光ネットワーク全体の光パスへの光帯域割り当てを説明するための模式図であり、OSPFプロトコルに基づいて割り当てた場合である。 光ネットワーク全体の光パスへの光帯域割り当てを説明するための模式図であり、本発明の第1の実施形態に係る光ネットワーク制御装置を用いて割り当てた場合である。 本発明の第1の実施形態に係る光ネットワーク制御装置の動作を説明するための光ネットワークの構成の一例を示す概略図である。 本発明の第2の実施形態に係る光ネットワーク制御装置の構成を示すブロック図である。 光ネットワーク全体の光パスへの光帯域割り当てを説明するための模式図であり、本発明の第1の実施形態に係る光ネットワーク制御装置を用いて割り当てた場合である。 光ネットワーク全体の光パスへの光帯域割り当てを説明するための模式図であり、本発明の第2の実施形態に係る光ネットワーク制御装置を用いて割り当てた場合である。 光ネットワーク全体の光パスへの別の光帯域割り当てを説明するための模式図であり、本発明の第1の実施形態に係る光ネットワーク制御装置を用いて割り当てた場合である。 光ネットワーク全体の光パスへの別の光帯域割り当てを説明するための模式図であり、本発明の第2の実施形態に係る光ネットワーク制御装置を用いて割り当てた場合である。
 以下に、図面を参照しながら、本発明の実施形態について説明する。
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る光ネットワーク制御装置100の構成を示すブロック図である。
 光ネットワーク制御装置100は、フレキシブル周波数グリッドを用いた高密度波長分割多重方式による光ネットワーク1000を制御するために用いられる。ここで、光ネットワーク1000は、光ファイバで接続された複数の光ノードを有し、各光ノードを始点、通過点、および終点とする複数の光パスを設定することが可能である。
 光ネットワーク制御装置100は、光パス設定手段110と光帯域設定手段120とを有する。
 光パス設定手段110は、光ネットワーク1000を構成する複数の光ノードのうちの2個の光ノードからなる光ノード対を複数個選択する。そして、複数の光ノード対のそれぞれの間に、光ノード対を異なる経路で結ぶ第1の光パスと第2の光パスを含む複数の光パスを設定する。光帯域設定手段120は、光パスの長さと通信容量に基づいて、第1の光パスの光帯域の総計量が、第2の光パスの光帯域の総計量以上となるように、光帯域をそれぞれ設定する。
 このような構成とすることにより、本実施形態の光ネットワーク制御装置100によれば、同一の光ノード対の間に複数の光パスが設定されるので、障害耐性を向上させることができる。それとともに、第1の光パスの光帯域の総計量が第2の光パスの光帯域の総計量以上となるように光帯域が設定されるので、光ネットワーク全体としての光帯域利用効率の向上を図ることができる。
 具体的には、第1の光パスを運用系光パスに割り当て、第2の光パスを予備系光パスに割り当てることにより、障害耐性を向上させるとともに、運用時の光帯域利用効率を光ネットワーク全体として向上させることができる。
 ここで、光ネットワーク1000に設定される光パスについて図2を用いて説明する。図2は光ネットワーク1000の構成の一例を示す概略図である。以下では、図2に示した5個の光ノードA1001~E1005がリング状に接続されたリングネットワークを光ネットワーク1000の一例として説明する。
 光ノードA1001と光ノードC1003からなる光ノード対に光パスを設定する場合、光ノードA→B→Cを経由する右回りの光パス1011と、光ノードA→E→D→Cを経由する左回りの光パス1010を設定することができる。簡単のため、各光ノード間の距離は等しいとすると、光パス1010の長さは光パス1011の長さよりも大きい。そのため、光パス1010に割り当てるべき光帯域1020の方が光パス1011に割り当てるべき光帯域1021よりも大きくなる。これは、図3に示すように、通信容量が大きくなるほど、または、伝送距離が長くなるほど光雑音が蓄積されるので、それに見合った分量の光信号成分、すなわち光帯域幅が必要になるからである。
 ここで、光パス1011と光パス1010のいずれも運用系(または予備系)に割り当てることができる。例えば、光パス1011を運用系光パスに割り当てるとすると、光パス1010を予備系光パスに割り当てることになる。この場合、光ノードA1001と光ノードC1003からなる光ノード対の光パスにおいては、図3に示した関係から運用系光パスの光帯域の方が予備系光パスの光帯域よりも小さくなる。
 図2に示したリングネットワーク1000において、他のノード間の接続が存在する場合、例えば光ノードBと光ノードDを接続する場合についても同様に、二通りの光パスのいずれも運用系(または予備系)に割り当てることができる。
 このとき、OSPF(Open Shortest Path First)プロトコルに基づいて、距離が短い方の光パスを運用系光パスに割り当てることとすると、光ネットワーク全体では運用系光パスの光帯域の方が予備系光パスの光帯域よりも小さくなる。一旦、予備系光パスに設定されると、その光帯域は通常の運用時には使用できない光帯域となる。そのため、光ネットワーク全体の実効的な利用効率が低下することになる。
 しかしながら、本実施形態の光ネットワーク制御装置100によれば、複数の光パスの内の一方の光帯域の総計量が、他方の光パスの光帯域の総計量以上となるように光帯域を設定する。そのため、光ネットワーク全体では運用系光パスの光帯域が予備系光パスの光帯域以上となるように設定することが可能になる。その結果、光ネットワーク全体の実効的な利用効率が低下することを回避することができる。
 次に、本実施形態による光ネットワーク制御装置100の動作について詳細に説明する。
 まず、フレキシブル周波数グリッドを用いたDWDM方式における光帯域について図4を用いて説明する。図4は、伝送距離に関わらず、運用系光パスおよび予備系光パスのいずれに対しても同じ光帯域を割り当てた場合の一例を示している。同図中、B001とB002、B003とB004、~、B009とB010がそれぞれ運用系光パスと予備系光パスの対となっており、それらに対する光帯域の割り当てを示している。この場合、運用系光パスと予備系光パスに割り当てられる光帯域は常に等しい。そのため、個々の光パスを運用系光パスとして使用するか、あるいは予備系光パスとして使用するかの違いに起因する光ネットワーク全体の光帯域の利用効率には差が生じない。
 図5A、5Bに、光パスの伝送距離に応じて、必要となる最小限の光帯域を割り当てることとした場合における、光ネットワーク全体の光パスへの光帯域割り当ての例を示す。
 図5Aは、上述したOSPFプロトコルに基づいて光パスを設定した例を示す。この場合は、最短距離の光パスを運用系光パスに設定する。ここで、図3を用いて説明したように、通信容量と伝送距離の積と、それを実現するために必要な光帯域幅との関係は正比例の関係にある。したがって、光パスの長さが短いほど、必要な光帯域幅を減らすことができる。そのため、運用系光パス向けに割り当てるのに必要な光帯域幅と、予備系光パス向けに割り当てるのに必要な光帯域幅に差異が生じる。その結果、図5Aに示すように、光ネットワーク全体では運用系光パスの光帯域幅が予備系光パスの光帯域幅よりも少なくなってしまう。
  それに対して、本実施形態の光ネットワーク制御装置100によれば、一方の光パスの光帯域の総計量が、他方の光パスの光帯域の総計量以上となるように、光帯域をそれぞれ設定する。この場合における、光ネットワーク全体の光パスへの光帯域割り当ての例を図5Bに示す。図5Bでは一例として、図5Aにおける光パスA001とA002の対、および光パスA003とA004の対における運用系と予備系の設定を入れ替えて光帯域割り当てを行った場合を示す。これにより、光ネットワーク全体としては、運用系光パスの光帯域幅が予備系光パスの光帯域幅よりも大きくすることができる。
 上述したように、予備系光パスの光帯域は通常時は使用されない光帯域であり、予備系光パスの光帯域が多くなると、光ネットワーク全体の光帯域幅の利用効率が低下してしまうという問題が生じる。しかし、本実施形態の光ネットワーク制御装置100では、光パス長だけを考慮するのではなく、運用系光パスおよび予備系光パスの光帯域幅までも考慮に入れて光帯域を設定することが可能となるので、このような問題を解決することができる。
 続いて、本実施形態による光ネットワーク制御装置100の動作について、さらに具体的に説明する。
 図2に示したように、光ノードA1001~E1005はリング状に接続されている。また、光ノードA1001と光ノードC1003からなる光ノード対の間には二つの光パスが設定されている。すなわち、光ノードA1001→光ノードB1002→光ノードC1003の順に信号光が通過する光パス1011と、光ノードA1001→光ノードE1005→光ノードD1004→光ノードC1003の順に信号光が通過する光パス1010が設定されている。なお、光ノード1001~1005の間のそれぞれの距離は等しいものとする。
 ここで、光パス1011と光パス1010は、通信容量は等しいが伝送距離が異なる。つまり、光パス1011は2ホップであるのに対して、光パス1010は3ホップである。したがって、図3に示した関係を参照すると、光パス1011に割り当てる光帯域は、光パス1010に割り当てる光帯域の2/3となる。図2では、単位光帯域を1スロットとし、光パス1011に割り当てる光帯域1021は2スロット、光パス1010に割り当てる光帯域1020は3スロットとして示している。
 光ネットワーク制御装置100はさらに、光ネットワーク1000の光ノードから新たな光ノード対を選択し、この光ノード対の間に光パスを設定する。図6に、図2に示した光ノード間の光パスの設定に加えて、新たな光ノード間に光パスを設定した場合の一例を示す。
 図6では、光ノードA3001と光ノードD3004からなる光ノード対と、光ノードB3002と光ノードE3005からなる光ノード対のそれぞれの間に複数の光パスを設定する場合を示す。すなわち、光ノードA3001と光ノードD3004の間には、左回りに2ホップで接続する光パス3012と、右回りに3ホップで接続する光パス3013が設定される。同様に、光ノードB3002と光ノードE3005の間には、左回りに2ホップで接続する光パス3014と、右回りに3ホップで接続する光パス3015が設定される。
 上述したOSPFプロトコルに基づいて光パスを割り当てる場合には、最短距離の光パスを運用系光パスに割り当てることになるので、光パス3012と光パス3014が運用系光パスに、光パス3013と光パス3015が予備系光パスに割り当てられることになる。
 ここで、必要となる光帯域幅に注目すると、光パス3012と光パス3014に必要な光帯域幅はそれぞれ2スロット幅であり、光パス3013と光パス3015に必要な光帯域幅はそれぞれ3スロット幅である。したがって、光ネットワーク全体で運用系光パスに割り当てられる光帯域幅は、光パス3011(1011)、光パス3012、および光パス3014に対してそれぞれ2スロット幅であり、合計6スロット幅となる。一方、予備系光パスに割り当てられる光帯域幅は、光パス3010(1010)、光パス3013、および光パス3015に対してそれぞれ3スロット幅であり、合計9スロット幅となる。運用系光パスの光帯域幅は通常時の光通信に使用されるが、予備系光パスの光帯域幅は通常時には使用されない。しかし、上述したように、OSPFプロトコルにより光パスを割り当てる場合には、通常時に使用されない予備系光パスの光帯域幅が運用系光パスの光帯域幅を上回ることになる。そのため、光ネットワーク全体の実効的な利用効率が低下してしまう。
 それに対して、本実施形態の光ネットワーク制御装置100によれば、光ネットワーク全体の運用系光パスの光帯域幅が予備系光パスの光帯域幅以上となるように光帯域をそれぞれ設定する。具体的には例えば、光パス3012と光パス3014を予備系光パスに割り当て、光パス3013と光パス3015を運用系光パスに割り当てる。これにより、光ネットワーク全体の運用系光パス光帯域幅は、光パス3011(1011)に対して2スロット幅、光パス3013および光パス3015に対してそれぞれ3スロット幅であり、合計8スロット幅となる。一方、予備系光パスの光帯域幅は、光パス3010(1010)に対して3スロット幅、光パス3012および光パス3014に対してそれぞれ2スロット幅であり、合計7スロット幅となる。つまり、運用系光パスに割り当てる光帯域幅を予備系光パスに割り当てる光帯域幅よりも多くすることができる。その結果、光ネットワーク全体における実効的な光帯域の利用効率の低下を防止することができる。
 次に、本実施形態による光ネットワーク制御方法について説明する。本実施形態の光ネットワーク制御方法はフレキシブル周波数グリッドを用いた高密度波長分割多重方式による光ネットワークを制御する。
 本実施形態の光ネットワーク制御方法は、まず、光ネットワークを構成する複数の光ノードのうちの2個の光ノードからなる光ノード対を複数個選択する。これらの複数の光ノード対のそれぞれの間に、光ノード対を異なる経路で結ぶ第1の光パスと第2の光パスを含む光パスを設定する。そして、光パスの長さと通信容量に基づいて、第1の光パスの光帯域の総計が、第2の光パスの光帯域の総計よりも大きくなるように、光帯域をそれぞれ設定する。
 さらに、光パスを設定する際に、第1の光パスを運用系光パスに割り当て、第2の光パスを予備系光パスに割り当てることができる。
 以上説明したように、本実施形態による光ネットワーク制御装置および光ネットワーク制御方法によれば、光ネットワーク全体の光帯域の利用効率を向上させることができる。その理由は以下の通りである。本実施形態の光ネットワーク制御装置および制御方法では、光パス長とトラフィック量(通信容量)に応じて必要最低限の光帯域割り当てを行うとともに、運用系光パスに割り当てる光帯域を予備系光パスに割り当てる光帯域よりも多くなるように設定する。これにより、光ネットワーク全体で実際に使用される光帯域を増大させることが可能となり、実効的な光帯域が増加するからである。
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図7は、本発明の第2の実施形態に係る光ネットワーク制御装置200の構成を示すブロック図である。
 光ネットワーク制御装置200は、フレキシブル周波数グリッドを用いた高密度波長分割多重方式による光ネットワークを制御するために用いられ、光パス設定手段110と光帯域設定手段120とを有する。これらの手段の構成および動作は第1の実施形態による光ネットワーク制御装置100におけるものと同様である。
 光ネットワーク制御装置200は、未使用光帯域検索手段210と光パス生成手段220をさらに有する。未使用光帯域検索手段210は、光ネットワーク内において未使用である光帯域を検索する。光パス生成手段220は、未使用光帯域検索手段210が検索した結果から得た中心波長が異なる複数の未使用光帯域を、波長多重することによって新規光パスを生成する。ここで、光パス設定手段110が、この新規光パスを運用系光パスおよび予備系光パスのいずれか一方に割り当てるようにすることができる。
 このような構成としたことにより、本実施形態の光ネットワーク制御装置200によれば、光ネットワーク全体で利用可能な光帯域を使い切ることができる。その理由は以下の通りである。本実施形態の光ネットワーク制御装置200によれば、必要な運用系光パスと予備系光パスの設定を行った後に、残存する未使用の光帯域を波長多重することによって、新規の光パスを生成することができる。これにより、光ネットワーク内で光パスとして割り当てられない未使用光帯域をなくすことができるためである。
 さらに、本実施形態の光ネットワーク制御装置200によれば、ネットワークの信頼性を向上させることができる。その理由は、残存する未使用の光帯域を用いて生成した新規の光パスを、追加の予備系光パスとして使用することによって、多重障害に備えることが可能となるからである。
 このとき、運用系光パスの光帯域の利用効率を最大化した上で、それとは独立に残存する未使用の光帯域を利用して追加の予備系光パスを生成することによって多重障害に備えることが可能である。そのため、光ネットワークの光帯域の利用効率向上と信頼性向上を同時に実現することができる。
 次に、本実施形態による光ネットワーク制御装置200の動作について図8A、8Bを用いて詳細に説明する。光ネットワーク制御装置200は、上述したように、複数の不連続な未使用光帯域を波長多重することによって新規の光パスを生成する。
 図8A、8Bは、光ネットワーク全体の光パスへの光帯域割り当てを示す模式図である。図8Aは図5Bと同じであり、光ネットワーク制御装置200が第1の実施形態による光ネットワーク制御装置100と同様に、運用系光パスおよび予備系光パスに光帯域を割り当てた場合を示す。このとき、未使用の光帯域が残っていた場合、光ネットワーク制御装置200は図8Bに示すように、これらの未使用帯域を集めて波長多重し、新規の光パスを生成する。図8A、8Bに示した例では、光帯域4011~4016が、運用系光パスおよび予備系光パスに光帯域を割り当てた後に、光ネットワーク全体の中で未使用のまま残った未使用光帯域である。
 図8Bに示すように、例えば、新規光パス生成のために4スロット分の光帯域が必要な場合、未使用光帯域4011~4016の個々の未使用光帯域だけでは生成条件を満たすことができない。そこで、光ネットワーク制御装置200は複数の未使用光帯域を波長多重し、全体として新規光パス生成条件を満足するようにする。図8Bの例では、未使用光帯域4011~4014と、未使用光帯域4015、4016をそれぞれ波長多重することによって、2個の新規光パス4020、4021を生成することが可能となる。
 このように波長多重によって生成された新規光パスは、運用系光パスおよび予備系光パスの双方で利用することができる。例えば、図8Bにおいて、4スロット分の光帯域によって運用系光パスを形成する光帯域4002に対して、追加の運用系光パスとして新規光パスを利用することができる。この場合、光ネットワーク全体として光パスが2個だけ新たに生成されたことになるので、光帯域の利用効率を向上させることができる。
 具体的に説明すると図8A、8Bに示した例では、本実施形態による新規光パスの生成を行わなかった場合の未使用光帯域は、図8Aに示すように10スロットである。それに対して本実施形態によれば、図8Bに示すように未使用光帯域は2スロットとなる。光ネットワーク全体の光帯域は34スロットであるから、本実施形態を実施する前後で光ネットワークの利用効率が、約70%(((34-10)/34)×100)から約94%(((34-2)/34)×100)に向上することがわかる。すなわち、図8A、8Bに示した例では、本実施形態の光ネットワーク制御装置200によれば、光ネットワークにおける光帯域の利用効率を24%向上させることができる。
 また、本実施形態の光ネットワーク制御装置200によれば、未使用光帯域を波長多重することによって生成した新規光パスを、予備系光パスに割り当てることもできる。例えば、3スロットの光帯域4001と光帯域4006に割り当てられた予備系光パスに対して、追加の予備系光パスとして利用することが可能である。これによって、2重障害にまで対応可能となるので、光ネットワークの障害耐性をさらに向上させることができる。
 具体的に説明すると図8A、8Bに示した例では、運用系光パスと予備系光パスのペアとして次の5組が設定されている。すなわち、(4001、4002)(4003、4004)(4005、4006)(4007、4008)(4009、4010)の5ペアである。したがって、運用系光パスに対して予備系光パスが100%準備されている。この場合に本実施形態の光ネットワーク制御装置200を用いると、2ペアが2重障害に対応したものとなる。すなわち、運用系光パスと予備系光パスのペアは、(4001+(4011~4014)、4002)(4003、4004)(4005、4006+(4015~4016))(4007、4008)(4009、4010)となる。2重障害に対応している場合の障害回復率を200%とすると、光ネットワーク全体の障害回復率は、(2×200+3×100)/5=140%となる。したがって、本実施形態の光ネットワーク制御装置200によれば、障害回復率を100%から140%に40%向上させることができる。
 次に、本実施形態による光ネットワーク制御装置200の別の動作について図9A、9Bを用いて詳細に説明する。ここでは、光ネットワーク制御装置200は、光帯域の利用効率の向上を第1の動作指針とし、障害回復率の向上を第2の動作指針とし、第1の動作指針を優先して動作する。すなわち、光帯域の利用効率の向上を優先して光帯域の割り当てを行う。
 図9A、9Bは、光ネットワーク全体の光パスへの光帯域割り当てを示す模式図である。図9Aは図8Aと同じであり、光ネットワーク制御装置200が第1の実施形態による光ネットワーク制御装置100と同様に、運用系光パスおよび予備系光パスに光帯域を割り当てた場合を示す。
 この状態で、光ネットワーク制御装置200は第1の動作指針に従って、未使用光帯域のスロット数を最小化する。次に、第2の動作指針に従って、追加の予備パス数を最大化するように動作する。このとき、光ネットワーク制御装置200の光パス設定手段110は新規光パスを、予備系光パスの必要な光帯域が小さい順に、予備系光パスの追加予備系パスとして割り当てることができる。これにより、未使用光帯域を最小化しつつ、追加の予備パス数を最大化することができる。
 このときの光帯域の割り当てについて、図9Bを用いて具体的に説明する。予備系光パス向けの光帯域のうち必要な光帯域幅が小さい順に、未使用光帯域を追加の予備光帯域5020~5023として割り当てる。つまり、光帯域5004(1スロット)、5008(2スロット)、5010(2スロット)、5001(3スロット)、5006(3スロット)の順に割り当てる。図9A、9Bに示した例では、未使用光帯域のスロット数は全部で10個であるから、予備系光パス向けの光帯域5006(3スロット)に対する追加の予備系光パスには光帯域は割り当てられない。そのため、2スロット分の未使用光帯域が割り当てられないまま残ることになる。
 これに続いて、再度、未使用光帯域の割り当てを行う。このときも、光ネットワーク制御装置200は、第1の動作指針である光帯域の利用効率の向上を、第2の動作指針である障害回復率の向上よりも優先して動作する。
 この場合、未使用光帯域は2スロットであるので、予備系光パス向けの光帯域5004(1スロット)に対する2つめの追加の予備系光パスとして追加の予備光帯域5031を割り当てることにより、割り当ては終了する。さらに、同様な割り当てを繰り返す。このとき、光帯域5004に対する追加の予備系光パスとして追加の予備光帯域5041を割り振った段階で未使用光帯域のスロット数がゼロとなるので、未使用光帯域の割り当ては完了する。
 この結果、未使用光帯域のスロット数は、本実施形態による動作の前後で、10スロットからゼロになる。また、追加の予備系光パスは、光帯域5004に対しては4重に、光帯域5008、5010、5001に対してはそれぞれ2重になる。したがって、光ネットワークにおける光帯域の利用効率は、約70%(((34-10)/34)×100)から100%(((34-0)/34)×100)に向上し、障害回復率は220%((1×400+3×200+1×100)/5)となる。すなわち、本実施形態による光ネットワーク制御装置200によれば、光ネットワークの光帯域利用効率を100%に最大化しつつ、障害回復率を約2倍向上させることができる。
 次に、本実施形態による光ネットワーク制御方法について説明する。本実施形態の光ネットワーク制御方法はフレキシブル周波数グリッドを用いた高密度波長分割多重方式による光ネットワークを制御する。
 本実施形態の光ネットワーク制御方法は、まず、光ネットワークを構成する複数の光ノードのうちの2個の光ノードからなる光ノード対を複数個選択する。これらの複数の光ノード対のそれぞれの間に、光ノード対を異なる経路で結ぶ第1の光パスと第2の光パスを含む光パスを設定する。そして、光パスの長さと通信容量に基づいて、第1の光パスの光帯域の総計が、第2の光パスの光帯域の総計よりも大きくなるように、光帯域をそれぞれ設定する。また、光パスを設定する際に、第1の光パスを運用系光パスに割り当て、第2の光パスを予備系光パスに割り当てることができる。
 ここまでのステップは第1の実施形態による光ネットワーク制御方法と同様である。本実施形態の光ネットワーク制御方法はさらに、光ネットワーク内において未使用である光帯域を検索する。そして、検索した結果から得た中心波長が異なる複数の未使用光帯域を、波長多重することによって新規光パスを生成する。そして、光パスを設定する際に、新規光パスを、運用系光パスおよび予備系光パスのいずれか一方に割り当てることができる。また、光パスを設定する際に、新規光パスを、予備系光パスの光帯域が小さい順に、予備系光パスの追加予備系パスとして割り当てることとしてもよい。
 以上説明したように、本実施形態による光ネットワーク制御装置および光ネットワーク制御方法によれば、光ネットワークにおける光帯域の利用効率の向上と信頼性向上をそれぞれ独立に実現することができる。
 すなわち、未使用光帯域を利用して生成した新規光パスのすべてを運用系光パスに新たに設定すれば、光ネットワークの実効的な通信容量が増加する。一方、予備系光パスに設定することとすれば運用系光パスに対して、多重障害にも対応することが可能となり障害耐性が向上する。また、新規光パスを運用系光パスおよび予備系光パスに割り当てる際の比率を設定することも可能である。そのため、ユーザが大容量通信を要求している場合には運用系光パスに割り当てる比率を増やし、信頼性を要求している場合には予備系光パスに割り当てる比率を増やすことができる。それによって、ユーザの要求に応じた光パスの設定および制御が可能となる。
 本実施形態においては、光ネットワーク制御装置200は、光帯域の利用効率の向上を第1の動作指針とし、障害回復率の向上を第2の動作指針とし、第1の動作指針を優先して動作する場合について説明した。しかし、これに限らず、光ネットワーク制御装置200が、運用系光パスに割り当てる光帯域を予備系光パスに割り当てる光帯域よりも大きくすることを第1の動作指針とし、追加の予備系光パスの個数を最大化することを第2の動作指針としてもよい。このとき、第1の動作指針に基づく光パスへの光帯域の割り当て方法が複数パターン存在するとき、第2の動作指針を第1の動作指針の従属動作指針として適用する。それにより、運用系光パスに割り当てる光帯域の幅を最大化しつつ、光ネットワーク全体の障害回復率を向上させることができる。
 この場合に、光ネットワーク内における運用系光パスの中継光ノードにおける光カットスルー回数を最大化することによって消費電力の削減効率を最大化することを第2の動作指針としてもよい。そして、第1の動作指針に基づく光パスへの光帯域の割り当て方法が複数パターン存在するとき、第2の動作指針を第1の動作指針の従属動作指針として適用する。それにより、運用系光パスに割り当てる光帯域の幅を最大化しつつ、光ネットワーク全体の消費電力の削減効率を向上させることができる。
 これらの場合とは逆に、第1の動作指針を第2の動作指針の従属動作指針とすることによって、光帯域の利用効率よりも障害回復率または消費電力の削減効率の向上を優先させることとしてもよい。これによって、光帯域の利用効率向上と、障害回復率または消費電力の削減効率の向上を同時に行うことが可能となる。
 また、光帯域の利用効率を最大化するという第1の動作指針に加えて、消費電力の削減効率の最大化、障害回復率の向上等、ユーザの要求に応じて複数の動作指針を追加または削除することが可能である。そして、これらの複数の動作指針の優先度を変更可能とすることによって、ユーザが優先する機能に対応することができる。
 さらに、光ネットワーク全体を複数のドメインに分割し、これらのドメイン毎に動作指針を設定することとしてもよい。これによって、ドメイン毎にユーザの要求に対応することが可能になる。
 上述した実施形態による光ネットワーク制御装置および光ネットワーク制御方法によれば、光帯域の利用効率が向上するので、ハードウェア変更することなく、より多くのトラフィックを収容することが可能となる。そのため、低コストで通信容量を拡張することができる。また、上記実施形態による光ネットワーク制御装置および制御方法は、ソフトウェアによって構成することが可能であるので、低コストで実現することができる。さらに、上記実施形態による構成は光ネットワークの規模やトポロジーには依存しない。したがって、ノード数や光パス数が増加しても上記実施形態による光ネットワーク制御装置および制御方法を用いることができる。そのため、スケーラビリティが高いという効果が得られる。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2013年9月9日に出願された日本出願特願2013-186561を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100、200  光ネットワーク制御装置
 110  光パス設定手段
 120  光帯域設定手段
 210  未使用光帯域検索手段
 220  光パス生成手段
 1000  光ネットワーク
 1001~1005、3001~3005  光ノード
 1010、1011、3010~3015  光パス
 1020、1021、A001~A010、B001~B010、3020、3021、4001~4010、5001~5010  光帯域
 4011~4016、5011~5016  未使用光帯域
 4020、4021  新規光パス
 5020~5023、5031、5041  追加の予備光帯域

Claims (10)

  1. フレキシブル周波数グリッドを用いた高密度波長分割多重方式による光ネットワークを構成する複数の光ノードのうちの2個の光ノードからなる光ノード対を複数個選択し、複数の前記光ノード対のそれぞれの間に、前記光ノード対を異なる経路で結ぶ第1の光パスと第2の光パスを含む複数の光パスを設定する光パス設定手段と、
     前記光パスの長さと通信容量に基づいて、前記第1の光パスの光帯域の総計量が、前記第2の光パスの光帯域の総計量以上となるように、前記光帯域をそれぞれ設定する光帯域設定手段、とを有する
     光ネットワーク制御装置。
  2. 請求項1に記載した光ネットワーク制御装置において、
     前記光パス設定手段は、前記第1の光パスを運用系光パスに割り当て、前記第2の光パスを予備系光パスに割り当てる
     光ネットワーク制御装置。
  3. 請求項2に記載した光ネットワーク制御装置において、
     前記光ネットワーク内において未使用である光帯域を検索する未使用光帯域検索手段と、
     前記未使用光帯域検索手段が検索した結果から得た中心波長が異なる複数の未使用光帯域を、波長多重することによって新規光パスを生成する光パス生成手段、とをさらに有する
     光ネットワーク制御装置。
  4. 請求項3に記載した光ネットワーク制御装置において、
     前記光パス設定手段は、前記新規光パスを、前記運用系光パスおよび前記予備系光パスのいずれか一方に割り当てる
     光ネットワーク制御装置。
  5. 請求項3に記載した光ネットワーク制御装置において、
     前記光パス設定手段は、前記新規光パスを、前記予備系光パスの前記光帯域が小さい順に、前記予備系光パスの追加予備系パスとして割り当てる
     光ネットワーク制御装置。
  6. フレキシブル周波数グリッドを用いた高密度波長分割多重方式による光ネットワークを構成する複数の光ノードのうちの2個の光ノードからなる光ノード対を複数個選択し、
     複数の前記光ノード対のそれぞれの間に、前記光ノード対を異なる経路で結ぶ第1の光パスと第2の光パスを含む複数の光パスを設定し、
     前記光パスの長さと通信容量に基づいて、前記第1の光パスの光帯域の総計量が、前記第2の光パスの光帯域の総計量以上となるように、前記光帯域をそれぞれ設定する
     光ネットワーク制御方法。
  7. 請求項6に記載した光ネットワーク制御方法において、
     前記光パスを設定する際に、前記第1の光パスを運用系光パスに割り当て、前記第2の光パスを予備系光パスに割り当てる
     光ネットワーク制御方法。
  8. 請求項7に記載した光ネットワーク制御方法において、
     前記光ネットワーク内において未使用である光帯域を検索し、検索した結果から得た中心波長が異なる複数の未使用光帯域を、波長多重することによって新規光パスを生成する
     光ネットワーク制御方法。
  9. 請求項8に記載した光ネットワーク制御方法において、
     前記光パスを設定する際に、前記新規光パスを、前記運用系光パスおよび前記予備系光パスのいずれか一方に割り当てる
     光ネットワーク制御方法。
  10. 請求項8に記載した光ネットワーク制御方法において、
     前記光パスを設定する際に、前記新規光パスを、前記予備系光パスの前記光帯域が小さい順に、前記予備系光パスの追加予備系パスとして割り当てる
     光ネットワーク制御方法。
PCT/JP2014/004468 2013-09-09 2014-09-01 光ネットワーク制御装置および光ネットワーク制御方法 WO2015033545A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015535311A JP6451636B2 (ja) 2013-09-09 2014-09-01 光ネットワーク制御装置および光ネットワーク制御方法
US14/914,159 US10231035B2 (en) 2013-09-09 2014-09-01 Optical network controller and optical network control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-186561 2013-09-09
JP2013186561 2013-09-09

Publications (1)

Publication Number Publication Date
WO2015033545A1 true WO2015033545A1 (ja) 2015-03-12

Family

ID=52628045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004468 WO2015033545A1 (ja) 2013-09-09 2014-09-01 光ネットワーク制御装置および光ネットワーク制御方法

Country Status (3)

Country Link
US (1) US10231035B2 (ja)
JP (1) JP6451636B2 (ja)
WO (1) WO2015033545A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162875A1 (ja) * 2014-04-24 2015-10-29 日本電気株式会社 光ノード装置、光ネットワーク制御装置、および光ネットワーク制御方法
JPWO2015162874A1 (ja) * 2014-04-24 2017-04-13 日本電気株式会社 光ノード装置、光ネットワーク制御装置、および光ネットワーク制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345069A (ja) * 2005-06-07 2006-12-21 Nippon Telegr & Teleph Corp <Ntt> 予備チャネルの波長予約方法および光伝送装置
WO2011030897A1 (ja) * 2009-09-14 2011-03-17 日本電信電話株式会社 帯域可変通信方法、帯域可変通信装置、伝送帯域決定装置、伝送帯域決定方法、ノード装置、通信路設定システム、及び通信路設定方法
JP2011166503A (ja) * 2010-02-10 2011-08-25 Nippon Telegr & Teleph Corp <Ntt> Wdm伝送システム、予備パス設定方法および予備パス切替方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147889A1 (ja) * 2011-04-27 2012-11-01 日本電信電話株式会社 光通信装置及び光経路切替装置及びネットワーク
JP6107166B2 (ja) * 2013-01-24 2017-04-05 富士通株式会社 波長可変光フィルタのモニタ装置およびモニタ方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345069A (ja) * 2005-06-07 2006-12-21 Nippon Telegr & Teleph Corp <Ntt> 予備チャネルの波長予約方法および光伝送装置
WO2011030897A1 (ja) * 2009-09-14 2011-03-17 日本電信電話株式会社 帯域可変通信方法、帯域可変通信装置、伝送帯域決定装置、伝送帯域決定方法、ノード装置、通信路設定システム、及び通信路設定方法
JP2011166503A (ja) * 2010-02-10 2011-08-25 Nippon Telegr & Teleph Corp <Ntt> Wdm伝送システム、予備パス設定方法および予備パス切替方法

Also Published As

Publication number Publication date
JPWO2015033545A1 (ja) 2017-03-02
US10231035B2 (en) 2019-03-12
US20160212511A1 (en) 2016-07-21
JP6451636B2 (ja) 2019-01-16

Similar Documents

Publication Publication Date Title
Shen et al. Survivable elastic optical networks: survey and perspective
Patel et al. Survivable transparent flexible optical WDM (FWDM) networks
JP6536562B2 (ja) 光ネットワーク制御装置および光ネットワーク制御方法
Koster et al. Demand-wise shared protection for meshed optical networks
US9124385B2 (en) Optical connection hitless bandwidth or spectrum resizing
JP2002335276A (ja) パスルーティング方法及びデータ処理システム
Fujii et al. Dynamic spectrum and core allocation with spectrum region reducing costs of building modules in AoD nodes
Oliveira et al. Protection, routing, spectrum and core allocation in EONs-SDM for efficient spectrum utilization
WO2012163015A1 (zh) 路径计算的方法及装置
JP6451636B2 (ja) 光ネットワーク制御装置および光ネットワーク制御方法
JP5759636B2 (ja) 光ネットワークにおいて帯域幅を割り当てる方法
EP2858319B1 (en) Path setting method and apparatus
Soto et al. Greedy randomized path-ranking virtual optical network embedding onto EON-based substrate networks
JP6451648B2 (ja) 光ノード装置、光通信システム、および光通信路切替方法
JP3760781B2 (ja) 通信ネットワークにおけるパス設定方法
Din Spectrum expansion/contraction and survivable routing and spectrum assignment problems on EONs with time-varying traffic
EP2858280A1 (en) Path establishment method and device thereof
WO2018056285A1 (ja) 光パス設計装置および光パス設計方法
EP2858270B1 (en) Method and apparatus for path establishment
Popescu et al. Cost of protection in time-domain wavelength interleaved networks
JP3816831B2 (ja) 光ネットワーク
Lohani Dynamic Routing and Spectrum Assignment based on the Availability of Consecutive Sub-channels in Flexible-grid Optical Networks
Waldman et al. A Proactive Algorithm for the Mitigation of Fragmentation Losses in Elastic Links
Hou et al. A Provident Spectrum Defragmentation based on Virtual Concatenation in Elastic Optical Networks
Huo Survivable design and analysis of WDM mesh networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535311

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14914159

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841741

Country of ref document: EP

Kind code of ref document: A1