WO2015022853A1 - Drive device for vehicle - Google Patents
Drive device for vehicle Download PDFInfo
- Publication number
- WO2015022853A1 WO2015022853A1 PCT/JP2014/069784 JP2014069784W WO2015022853A1 WO 2015022853 A1 WO2015022853 A1 WO 2015022853A1 JP 2014069784 W JP2014069784 W JP 2014069784W WO 2015022853 A1 WO2015022853 A1 WO 2015022853A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- transmission
- counter
- output
- gear mechanism
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/62—Gearings having three or more central gears
- F16H3/66—Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
- F16H3/663—Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another with conveying rotary motion between axially spaced orbital gears, e.g. RAVIGNEAUX
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/40—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K2006/4808—Electric machine connected or connectable to gearbox output shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/003—Transmissions for multiple ratios characterised by the number of forward speeds
- F16H2200/0043—Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising four forward speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/20—Transmissions using gears with orbital motion
- F16H2200/2002—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
- F16H2200/2005—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with one sets of orbital gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/20—Transmissions using gears with orbital motion
- F16H2200/202—Transmissions using gears with orbital motion characterised by the type of Ravigneaux set
- F16H2200/2023—Transmissions using gears with orbital motion characterised by the type of Ravigneaux set using a Ravigneaux set with 4 connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/20—Transmissions using gears with orbital motion
- F16H2200/203—Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
- F16H2200/2043—Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with five engaging means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the present invention relates to a transmission that shifts the rotation of an input member that is drivingly connected to an internal combustion engine and transmits it to an output member, a differential gear mechanism that distributes driving force to a plurality of wheels, and a reduction in the rotation of the output member.
- the present invention also relates to a vehicle drive device including a counter gear mechanism that transmits to the differential gear mechanism and a rotating electrical machine.
- Patent Documents 1 to 4 are already known as vehicle drive devices as described above.
- the front wheels are driven by the driving force of the internal combustion engine transmitted via the transmission, and the rear wheels are driven by the driving force of the rotating electrical machine.
- the transmission includes an input shaft 34 to which a drive gear corresponding to each gear is fixed, and a driven gear of each gear that is parallel to the input shaft 34 and meshes with the drive gear.
- the output shaft 42 is fixed, and the drive gear 49 that rotates integrally with the output shaft 42 meshes with the differential gear 14 that is connected to the wheels.
- the rotating electrical machine is configured to be coupled to the differential gear 14 via a dedicated counter gear mechanism.
- the transmission is a belt-and-pulley type continuously variable transmission, and includes a drive shaft 11 that rotates integrally with the drive-side pulley, a shaft parallel to the drive shaft 11 and a driven-side pulley.
- the output shaft 13 that rotates integrally with the driven shaft 12 is configured to mesh with the first ring gear 43 of the differential gear mechanism that is drivingly connected to the wheels.
- the rotating electric machine is configured to be drivingly connected to the second ring gear 44 of the differential gear mechanism via a dedicated counter gear mechanism.
- the transmission is a belt-and-pulley type continuously variable transmission, and includes an input shaft 11 that rotates integrally with the driving pulley, an axis parallel to the input shaft 11, and a driven pulley.
- the output shaft 12 that rotates integrally with the output shaft 12 has a two-shaft configuration, and the output gear 20 that rotates integrally with the output shaft 12 is connected to the ring gear 25 of the differential gear mechanism that is drivingly connected to the wheels via the counter gear mechanism. It is configured to be drive-coupled.
- the rotating electrical machine is also configured to be drivingly connected to the ring gear 25 of the differential gear mechanism via the counter gear mechanism.
- a vehicle drive device that can suppress an increase in the size of the vehicle drive device even if a rotating electric machine is provided, and can suppress an increase in the cost of the device due to the provision of a gear mechanism.
- a transmission for shifting the rotation of an input member drivingly connected to an internal combustion engine and transmitting it to an output member, a differential gear mechanism for distributing driving force to a plurality of wheels, and rotation of the output member A characteristic configuration of a vehicle drive device including a counter gear mechanism that decelerates and transmits to the differential gear mechanism, and a rotating electrical machine,
- the speed change device is configured to change a speed change ratio, convert torque of the input member according to the speed change ratio, and transmit the torque to the output member.
- the input member and the output member of the transmission are disposed on a first virtual axis;
- the rotating electrical machine is disposed on a second virtual axis;
- the counter gear mechanism is arranged on the third virtual axis, and is configured such that the counter input gear and the counter output gear having a smaller diameter than the counter input gear rotate integrally.
- a speed change output gear provided on the output member meshes with the counter input gear,
- the electric output gear that rotates integrally with the rotor of the rotating electric machine meshes with the counter input gear and has a smaller diameter than the counter input gear
- the differential input gear provided in the differential gear mechanism is in mesh with the counter output gear.
- the “rotary electric machine” is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that functions as both a motor and a generator as necessary.
- driving connection refers to a state where two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or It is used as a concept including a state in which two rotating elements are connected so as to be able to transmit a driving force via one or more transmission members.
- Such a transmission member examples include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like. Further, as such a transmission member, an engagement device that selectively transmits rotation and driving force, for example, a friction engagement device or a meshing engagement device may be included.
- the speed change output gear provided on the output member of the transmission meshes with the counter input gear
- the electric machine output gear that rotates integrally with the rotor of the rotating electric machine meshes with the counter input gear.
- the counter output gear meshes with the differential input gear of the differential gear mechanism.
- the electric machine output gear of the rotating electric machine is configured to mesh with the counter input gear that meshes with the transmission output gear of the transmission, so that the rotating electric machine can be used as a wheel without providing a counter gear mechanism dedicated to the rotating electric machine. Drive-coupled.
- the electric machine output gear of a rotary electric machine is smaller diameter than a counter input gear
- a counter output gear is smaller diameter than a counter input gear.
- the rotation of the rotating electrical machine is decelerated at a predetermined speed ratio (reduction ratio) by the electrical machine output gear and the counter gear mechanism, and is transmitted to the differential gear mechanism. Therefore, the rotation of the rotating electrical machine can be reduced to at least two stages and transmitted to the wheels without providing a counter gear mechanism dedicated to the rotating electrical machine. Therefore, even if a rotating electrical machine is provided, an increase in cost due to provision of a gear mechanism or the like can be suppressed.
- a reduction ratio from the rotor to the differential input gear is larger than a reduction ratio from the output member to the differential input gear.
- the rotating electrical machine that is drivingly connected to the wheel side power transmission path from the transmission is less likely to increase the reduction ratio than an internal combustion engine that is drivingly connected to the wheel side via the transmission.
- the reduction ratio from the rotor to the differential input gear is made larger than the reduction ratio from the output member to the differential input gear. Therefore, as described above, the rotation of the rotating electrical machine can be reduced to at least two stages and transmitted to the wheels.
- the rotating electrical machine has a portion that overlaps with the transmission when viewed in the radial direction of the rotating electrical machine, and is disposed so as to have a portion that overlaps with the counter gear mechanism when viewed in the axial direction of the rotating electrical machine. It is preferable.
- the transmission can be disposed in a cylindrical space as a whole.
- the counter input gear is arranged so as to mesh with the transmission output gear, the counter gear mechanism is arranged on the radially outer side of the transmission. Since the length of the transmission in the axial direction is often longer than the length of the counter gear mechanism in the axial direction, a space in which the counter gear mechanism is not disposed is formed outside the transmission in the radial direction.
- the rotating electrical machine has a portion that overlaps with the transmission device as viewed in the radial direction of the rotating electrical machine and uses the counter gear as viewed in the axial direction of the rotating electrical machine so as to effectively use the space. It arrange
- the transmission includes a gear mechanism and an engagement device as constituent members, and the constituent members are arranged separately in a first region and a second region arranged in the axial direction of the first virtual axis, and the first region It is preferable that the speed change output gear is disposed between the first region and the second region.
- the transmission output gear is arranged in the intermediate region between the first region and the second region in the axial direction of the transmission
- the counter input gear that meshes with the transmission output gear is in the intermediate region. It arrange
- An electric machine output gear that meshes with the counter input gear is also arranged in a space radially outside the transmission in the intermediate region. Therefore, the counter output gear can be arranged in the space of the first region or the second region with respect to the space of the intermediate region in which the counter input gear is arranged, and the rotating electric machine can be arranged in the middle in which the electric machine output gear is arranged.
- the counter output gear can be disposed in the space of the first region and the second region where the counter output gear is not disposed. That is, the rotating electrical machine and the counter gear mechanism (counter output gear) can be allocated and arranged in the radially outer space of the transmission in the first region and the second region, and the radially outer space of the transmission is axially arranged. Can be used effectively. Therefore, even if a rotating electrical machine is provided, it is possible to suppress an increase in the axial length of the vehicle drive device while suppressing an increase in the length in the direction orthogonal to the axial direction of the vehicle drive device, An increase in the size of the vehicle drive device can be suppressed.
- a parking gear provided to rotate integrally with any one of the rotating elements in the power transmission path from the output member to the differential input gear, and a mechanism for engaging the parking gear and restricting the rotation of the parking gear. It is preferable that a parking lock mechanism having a joint member is further provided, and the parking gear is disposed on the first virtual axis.
- the parking gear can be arranged so as not to interfere with the rotating electric machine arranged on the second virtual axis and the counter gear mechanism arranged on the third virtual axis.
- the degree of freedom of arrangement can be increased. Therefore, it becomes easy to arrange the rotating electrical machine to suppress the increase in the size of the vehicle drive device as described above.
- the transmission is configured to be able to change between a normal rotation transmission state in which the rotation direction of the input member and the rotation direction of the output member are the same, and a reverse rotation transmission state in which these rotation directions are reversed. Is preferred.
- the vehicle drive device since the vehicle drive device does not require a device that reverses the rotation direction in addition to the transmission, it is possible to suppress a reduction in the degree of freedom in the arrangement of the rotating electrical machines.
- FIG. 1 is an axially developed sectional view of a vehicle drive device according to an embodiment of the present invention.
- FIG. 2 is an arrangement diagram showing an arrangement of each component of the vehicle drive device according to the embodiment of the present invention when viewed in the axial direction. It is an operation
- FIG. 1 is a skeleton diagram showing a schematic configuration of a vehicle drive device 1 according to the present embodiment
- FIG. 2 shows parts of a counter gear mechanism CG, a rotating electrical machine MG, and an output differential gear mechanism DF in FIG. It is the figure which represented this with the axial direction expanded sectional view.
- FIG. 3 is an arrangement diagram showing the arrangement of each component of the vehicle drive device 1 when viewed in the axial direction (when viewed in the axial direction from the second axial direction X2 side to the first axial direction X1 side). is there.
- the vehicle drive device 1 includes a plurality of transmission devices TM that change the speed of the transmission input shaft I that is drivingly connected to the internal combustion engine ENG and transmit the rotation to the transmission output member O.
- An output differential gear mechanism DF that distributes the driving force to the wheels W, a counter gear mechanism CG that decelerates the rotation of the speed change output member O and transmits it to the output differential gear mechanism DF, and a rotating electrical machine MG.
- the transmission input shaft I is drivingly connected to the internal combustion engine ENG via the torque converter TC.
- the transmission input shaft I corresponds to the “input member” in the present invention
- the transmission output member O corresponds to the “output member” in the present invention
- the output differential gear mechanism DF includes the “differential gear mechanism”. Is equivalent to.
- the transmission TM can change the transmission ratio, and is configured to convert the torque of the transmission input shaft I and transmit it to the transmission output member O in accordance with the transmission ratio.
- the transmission input shaft I and the transmission output member O of the transmission apparatus TM are disposed on the first virtual axis A1.
- the rotating electrical machine MG is disposed on the second virtual axis A2.
- the counter gear mechanism CG is disposed on the third virtual axis A3.
- the counter gear mechanism CG is configured such that a counter input gear GCi and a counter output gear GCo having a smaller diameter than the counter input gear GCi rotate integrally.
- a speed change output gear GTo provided on the speed change output member O meshes with the counter input gear GCi.
- the axial direction is an axial direction common to these virtual axes.
- a direction (right side in FIGS. 1 and 2) from the vehicle drive device 1 to the internal combustion engine ENG in the axial direction is defined as an axial first direction X1, and from the internal combustion engine ENG, which is the opposite direction, to the vehicle drive device 1.
- the direction (left side in FIGS. 1 and 2) is defined as the second axial direction X2.
- the hybrid vehicle includes an internal combustion engine ENG and a rotating electrical machine MG as a driving force source for the vehicle.
- the hybrid vehicle includes a transmission TM, and the transmission TM shifts the rotational speed of the internal combustion engine ENG transmitted to the transmission input shaft I and converts the torque to the transmission output member O.
- the internal combustion engine ENG is a heat engine that is driven by the combustion of fuel.
- various known internal combustion engines such as a gasoline engine and a diesel engine can be used.
- an internal combustion engine output shaft such as a crankshaft of the internal combustion engine ENG is drivingly connected to a power input shaft Ip that is drivingly connected to the torque converter TC.
- the output shaft of the internal combustion engine ENG is arranged on the first virtual axis A1.
- the torque converter TC, the transmission TM, the counter gear mechanism CG, the rotating electrical machine MG, and the output differential gear mechanism DF constituting the vehicle drive device 1 are accommodated in the case CS.
- the case CS includes an outer wall formed to cover the outside of the vehicle drive device 1.
- the case CS partially or entirely covers the torque converter TC, the transmission TM, the counter gear mechanism CG, the rotating electrical machine MG, and the output differential gear mechanism DF in order to support or isolate each. Provided with a partition wall.
- the torque converter TC transmits the rotational driving force of the internal combustion engine ENG transmitted to the power input shaft Ip to the transmission device TM side via hydraulic oil filled therein. It is.
- the torque converter TC includes a pump impeller TCa as an input side rotating member drivingly connected to the power input shaft Ip, a turbine runner TCb as an output side rotating member drivingly connected to the transmission input shaft I, and a gap between them. And a stator TCc provided with a one-way clutch.
- the torque converter TC transmits driving force between the driving-side pump impeller TCa and the driven-side turbine runner TCb via hydraulic oil filled therein.
- the oil pump OP is drivingly coupled so as to rotate integrally with the pump impeller TCa, and is configured to rotate integrally with the power input shaft Ip.
- the power input shaft Ip and the torque converter TC are disposed on the first virtual axis A1.
- the torque converter TC is provided with a lockup clutch LC as an engagement device for lockup.
- This lock-up clutch LC is a clutch that connects the pump impeller TCa and the turbine runner TCb so as to rotate together to eliminate the rotational difference (slip) between the pump impeller TCa and the turbine runner TCb and increase the transmission efficiency. It is. Therefore, when the lockup clutch LC is engaged, the torque converter TC transmits the driving force of the internal combustion engine ENG to the transmission input shaft I without passing through the hydraulic oil. Further, the torque converter TC includes a damper DP.
- the transmission TM shifts the rotation of the transmission input shaft I at a predetermined transmission ratio and transmits it to the transmission output member O, and converts the torque of the transmission input shaft I according to the predetermined transmission ratio to change the transmission output member O. Is configured to communicate.
- the gear ratio can be changed.
- the transmission apparatus TM is a stepped automatic transmission apparatus having a plurality of shift stages having different speed ratios.
- the transmission apparatus TM includes a gear mechanism such as a planetary gear mechanism and an engagement device such as a friction engagement device in order to form the plurality of gear speeds.
- the transmission TM shifts the rotational speed of the transmission input shaft I at the gear ratio of each gear stage, converts the torque of the transmission input shaft I, and transmits it to the transmission output member O.
- Torque transmitted from the transmission TM to the transmission output member O is distributed and transmitted to the two left and right axles AX via the counter gear mechanism CG and the output differential gear mechanism DF, and is connected to each axle AX. It is transmitted to the wheel W.
- the transmission gear ratio is the ratio of the rotational speed of the transmission input shaft I to the rotational speed of the transmission output member O when each gear stage is formed in the transmission apparatus TM. Is divided by the rotational speed of the speed change output member O.
- the rotational speed obtained by dividing the rotational speed of the transmission input shaft I by the transmission ratio becomes the rotational speed of the transmission output member O. Further, torque obtained by multiplying the torque transmitted from the transmission input shaft I to the transmission TM by the transmission ratio becomes the torque transmitted from the transmission TM to the transmission output member O.
- the transmission apparatus TM includes four shift speeds (first speed 1st, second speed 2nd, third speed 3rd, and fourth speed 4th) having different speed ratios (reduction ratios) as forward speeds.
- the transmission TM includes a gear mechanism including a planetary gear mechanism PLG and six engagement devices C1, C2, C3, B1, B2, and F1. Yes.
- the engagement and disengagement of the plurality of engagement devices C1, B1,... Excluding the one-way clutch F1 are controlled to switch the rotation state of each rotation element of the planetary gear mechanism PLG, and the plurality of engagement devices C1, B1,. ... Are selectively engaged to switch the four shift speeds.
- the transmission apparatus TM includes a reverse gear Rev in addition to the above four gears.
- the planetary gear mechanism PLG is a Ravigneaux type planetary gear mechanism arranged coaxially with the transmission input shaft I. That is, the planetary gear mechanism includes two sun gears, a first sun gear S1 and a second sun gear S2, a ring gear R, a long pinion gear P1, a long pinion gear P1, and a first sun gear S1 that mesh with both the second sun gear S2 and the ring gear R. It has four rotating elements, which are a common carrier CA that supports the meshing short pinion gear P2.
- the second sun gear S2 of the planetary gear mechanism PLG is drive-coupled to selectively rotate integrally with the transmission input shaft I via the third clutch C3.
- the carrier CA is drive-coupled to selectively rotate integrally with the transmission input shaft I via the second clutch C2, and is selected as a case CS as a non-rotating member via the second brake B2 or the one-way clutch F1.
- the ring gear R is drivingly connected so as to rotate integrally with the transmission output member O.
- the first sun gear S1 is drivably coupled to the transmission input shaft I via the first clutch C1 so as to selectively rotate integrally.
- each of the engagement devices C1, C2, C3, B1, and B2 except the one-way clutch F1 is a friction engagement device.
- these are constituted by a multi-plate clutch or a multi-plate brake operated by hydraulic pressure.
- the engagement states of these engagement devices C1, C2, C3, B1, and B2 are controlled by the hydraulic pressure supplied from the hydraulic control device.
- FIG. 4 is an operation table showing operation states of the plurality of engagement devices C1, B1,.
- “ ⁇ ” indicates that each engaging device is in an engaged state
- “no mark” indicates that each engaging device is in a released state.
- “( ⁇ )” indicates that the engagement device is brought into an engaged state when engine braking is performed.
- “ ⁇ ” indicates a released state when rotating in one direction (the carrier CA rotates in the positive direction) and engaging when rotating in the other direction (the carrier CA rotates in the negative direction). It shows that it will be in the state.
- FIG. 5 is a speed diagram of the transmission TM.
- the vertical axis corresponds to the rotational speed of each rotating element. That is, “0” described corresponding to the vertical axis indicates that the rotation speed is zero, the upper side is positive rotation (rotation speed is positive), and the lower side is negative rotation (rotation speed is negative). is there.
- Each of the plurality of vertical lines arranged in parallel corresponds to each rotating element of the planetary gear mechanism PLG. That is, “S1”, “R”, “CA”, and “S2” described above each vertical line are respectively connected to the first sun gear S1, the ring gear R, the carrier CA, and the second sun gear S2 of the planetary gear mechanism PLG. It corresponds.
- “ ⁇ ” indicates that the engaging device connected to each rotating element is in a directly connected state.
- “C1”, “C2”, “C3”, “B1”, “B2”, and “F1” written adjacent to each “ ⁇ ” indicate the engagement devices in the direct engagement state.
- “ ⁇ ” indicates the state of the rotational speed of the rotating element (ring gear R of the planetary gear mechanism PLG) connected to the transmission output member O. Note that “1st”, “2nd”, “3rd”, “4th”, and “Rev”, which are described adjacent to each “ ⁇ ”, indicate the shift speeds that are formed.
- the first stage 1st is realized by the engagement of the first clutch C1 and the one-way clutch F1. That is, when the rotational driving force of the transmission input shaft I is transmitted to the first sun gear S1 with the first clutch C1 engaged, the one-way clutch F1 is engaged and fixed to the case CS. Then, the rotational driving force of the first sun gear S1 is decelerated based on the gear ratio ⁇ 1 and transmitted to the transmission output member O.
- the first stage 1st is realized even when the engagement of the first clutch C1 and the engagement of the second brake B2 cooperate when performing engine braking or the like.
- the rotational driving force of the transmission input shaft I is transmitted to the first sun gear S1.
- the carrier CA is fixed to the case CS. Then, the rotational driving force of the first sun gear S1 is decelerated based on the gear ratio ⁇ 1 and transmitted to the transmission output member O.
- the second stage 2nd is realized by cooperation of the engagement of the first clutch C1 and the engagement of the first brake B1. That is, when the first clutch C1 is engaged, the rotational driving force of the transmission input shaft I is transmitted to the first sun gear S1. Further, when the first brake B1 is engaged, the second sun gear S2 is fixed to the case CS. Then, the rotational driving force of the first sun gear S1 is decelerated based on the gear ratios ⁇ 1 and ⁇ 2 and transmitted to the transmission output member O.
- the third stage 3rd is realized by the cooperation of the first clutch C1 and the engagement of the second clutch C2. That is, when the first clutch C1 is engaged, the rotational driving force of the transmission input shaft I is transmitted to the first sun gear S1. When the second clutch C2 is engaged, the rotational driving force of the transmission input shaft I is transmitted to the second sun gear S2. Then, the second sun gear S2 and the first sun gear S1 rotate at the same speed, so that the rotational driving force of the transmission input shaft I is transmitted to the transmission output member O as it is.
- the fourth stage 4th is realized by the cooperation of the second clutch C2 and the engagement of the first brake B1. That is, when the second clutch C2 is engaged, the rotational driving force of the transmission input shaft I is transmitted to the carrier CA. Further, when the first brake B1 is engaged, the second sun gear S2 is fixed to the case CS. Then, the rotational driving force of the carrier CA is increased based on the gear ratio ⁇ 2 and transmitted to the transmission output member O.
- the reverse speed Rev is realized by the engagement of the third clutch C3 and the engagement of the second brake B2. That is, when the third clutch C3 is engaged, the rotational driving force of the transmission input shaft I is transmitted to the second sun gear S2. Further, when the second brake B2 is engaged, the carrier CA is fixed to the case CS. Then, the rotational driving force of the second sun gear S2 is decelerated based on the gear ratio ⁇ 2, and the rotational direction is reversed and transmitted to the transmission output member O.
- the transmission apparatus TM includes the forward gears 1st, 2nd,... And the reverse gear Rev so that the rotational direction of the transmission input shaft I is the same as the rotational direction of the transmission output member O.
- the forward rotation transmission state and the reverse rotation transmission state in which these rotation directions are reversed can be changed.
- the rotating electrical machine MG includes a stator St fixed to the case CS and a rotor Ro that is rotatably supported on the radially inner side of the stator St.
- the rotor Ro is drivably coupled to the electric machine output gear GMo via the rotor shaft SR.
- the rotating electrical machine MG is disposed on the second virtual axis A2.
- the rotor shaft SR is supported by the case CS so as to be rotatable via a bearing.
- the rotor shaft SR includes a rotor support shaft SR1 that supports the rotor Ro, and an output gear support shaft SR2 that supports the electric machine output gear GMo.
- the inner peripheral surface of the end portion in the first shaft direction X1 of the rotor support shaft SR1 is spline-fitted with the outer peripheral surface of the end portion on the second shaft direction X2 side of the output gear support shaft SR2, and the rotor support shaft SR1 and output gear support shaft SR2 are configured to rotate integrally.
- An electric machine output gear GMo is formed on the outer peripheral surface of the output gear support shaft SR2.
- Rotating electrical machine MG is electrically connected to a battery as a power storage device via an inverter that performs DC / AC conversion.
- the rotating electrical machine MG can perform a function as a motor (electric motor) that generates power upon receiving power supply and a function as a generator (generator) that generates power upon receiving power supply. It is possible. That is, the rotating electrical machine MG is powered by receiving power supply from the battery via the inverter, or generates power by the rotational driving force transmitted from the internal combustion engine ENG or the wheel W, and the generated power is transmitted via the inverter. It is stored in the battery.
- the counter gear mechanism CG decelerates the rotation of the speed change output member O and transmits it to the output differential gear mechanism DF.
- the counter gear mechanism CG is configured such that a counter input gear GCi and a counter output gear GCo having a smaller diameter than the counter input gear GCi are connected by a counter shaft SC and rotate integrally. As shown in FIG. 2, both ends of the counter shaft SC in the axial direction are supported by the case CS in a rotatable state via bearings.
- the counter gear mechanism CG is disposed on the third virtual axis A3.
- the counter input gear GCi meshes with a transmission output gear GTo provided on the transmission output member O.
- the counter input gear GCi meshes with the electric machine output gear GMo that rotates integrally with the rotor Ro of the rotary electric machine MG at a position different from the transmission output gear GTo in the circumferential direction (see FIG. 3).
- the counter output gear GCo meshes with a differential input gear GDi provided in the output differential gear mechanism DF.
- the output differential gear mechanism DF has a differential input gear GDi, and distributes torque transmitted to the differential input gear GDi to the plurality of wheels W for transmission.
- the output differential gear mechanism DF is a differential gear mechanism using a plurality of bevel gears DF1 and DF2 meshing with each other, and distributes torque transmitted to the differential input gear GDi, This is transmitted to the left and right wheels W via the axle AX.
- the output differential gear mechanism DF is disposed on the fourth virtual axis A4.
- the fourth virtual axis A4 is arranged in parallel with the first virtual axis A1, the second virtual axis A2, and the third virtual axis A3.
- the output differential gear mechanism DF includes a differential carrier DF4 that rotates integrally with the differential input gear GDi.
- a pair of side gears DF2 that rotate integrally with the respective axles AX, and a pair of pinion gears DF1 that connect the two side gears DF2 and rotate together with the differential carrier DF4 are accommodated.
- the differential carrier DF4 includes a pinion rotation shaft DF3 that rotates integrally with the differential carrier DF4, and the pinion gear DF1 is supported so as to be capable of rotating about the pinion rotation shaft DF3.
- Each pinion gear DF1 meshes with both the left and right two side gears DF2.
- the differential carrier DF4 rotates, the left and right side gears DF2 rotate via the pinion gear DF1 that rotates together with the differential carrier DF4, and each axle AX that is drivingly connected to each side gear DF2 rotates.
- each wheel W that is drivingly connected to each axle AX rotates.
- Each pinion gear DF1 rotates around the pinion rotation axis DF3 to differentially operate the left and right side gears DF2.
- the transmission output gear GTo provided on the transmission output member O of the transmission TM is engaged with the counter input gear GCi.
- the electric machine output gear GMo that rotates integrally with the rotor Ro of the rotary electric machine MG is engaged with the counter input gear GCi.
- the counter output gear GCo meshes with the differential input gear GDi of the output differential gear mechanism DF.
- the electric machine output gear GMo of the rotating electric machine MG is configured to mesh with the counter input gear GCi that meshes with the transmission output gear GTo of the transmission apparatus TM, so that a counter gear mechanism dedicated to the rotating electric machine MG is not provided.
- the rotating electrical machine MG can be drivingly connected to the wheel W.
- the electric machine output gear GMo of the rotating electric machine MG has a smaller diameter than the counter input gear GCi
- the counter output gear GCo has a smaller diameter than the counter input gear GCi. Therefore, the rotation of the rotating electrical machine MG is decelerated at a predetermined speed ratio (reduction ratio) by the electrical machine output gear GMo and the counter gear mechanism CG, and is transmitted to the output differential gear mechanism DF. Therefore, the rotation of the rotating electrical machine MG can be decelerated in two stages and transmitted to the wheels W without providing a counter gear mechanism dedicated to the rotating electrical machine MG.
- the rotating electrical machine MG that is drivingly connected to the power transmission path on the wheel W side from the transmission TM is less likely to increase the reduction ratio than the internal combustion engine ENG that is drivingly connected to the wheel W side via the transmission TM.
- the electric machine output gear GMo has a smaller diameter than the transmission output gear GTo of the transmission apparatus TM, and the reduction ratio from the rotor Ro to the differential input gear GDi. Is greater than the reduction ratio from the transmission output member O to the differential input gear GDi. Therefore, it is possible to balance the reduction ratio from the internal combustion engine ENG to the wheel W and to reduce the rotation of the rotating electrical machine MG in two stages and transmit it to the wheel W.
- the transmission input shaft I and the transmission output member O of the transmission device TM are disposed on the first virtual axis A1.
- the gear mechanism and the engagement device that constitute the transmission TM are also arranged on the first virtual axis A1. Therefore, the gear mechanism and the engagement device of the transmission device TM are arranged around the first virtual axis A1, and the transmission device TM can be arranged in a cylindrical space parallel to the axial direction as a whole.
- the counter input gear GCi is disposed so as to mesh with the transmission output gear GTo
- the counter gear mechanism CG is disposed on the radially outer side of the transmission apparatus TM.
- the rotating electrical machine MG has a portion that overlaps with the transmission device TM when viewed in the radial direction of the rotating electrical machine MG, and the counter gear mechanism when viewed in the axial direction of the rotating electrical machine MG so as to effectively use the space. It arrange
- the transmission TM includes a gear mechanism and an engagement device as components, and at least the components excluding the gear shift output gear GTo are arranged in the first region D1 and the first region D1 aligned in the axial direction of the first virtual axis A1.
- the transmission output gear GTo is disposed in an intermediate region DM between the first region D1 and the second region D2.
- a region set on the first axial direction X1 side with respect to the intermediate region DM is referred to as a first region D1
- a region set on the second axial direction X2 side with respect to the intermediate region DM is referred to as a second region D2.
- a second clutch C2 as a component is disposed in the first region D1, and a planetary gear mechanism PLG, a first clutch C1, a third clutch C3, a first brake B1, and a second as components are disposed in the second region D2.
- a brake B2 and a one-way clutch F1 are arranged.
- a shift output gear GTo and a shift output member O as constituent members are arranged in the intermediate region DM.
- the intermediate region DM is disposed closer to the first axial direction X1 side in the axial length of the transmission device TM.
- the axial length of the second region D2 is longer than the axial length of the first region D1
- the space outside the radial direction of the transmission device TM in the second region D2 is the speed change in the first region D1. It is made wider in the axial direction than the space on the radially outer side of the device TM. Therefore, as will be described later, a rotating electrical machine MG having a longer axial length than the counter output gear GCo can be disposed in the space outside the second region D2 in the radial direction, and the space outside the first region D1 in the radial direction. As will be described later, the counter output gear GCo having a relatively short axial length can be disposed without generating a useless space.
- the counter output gear GCi meshes with the speed change output gear GTo disposed in the intermediate region DM, and the counter input gear GCi is disposed in a space radially outside the transmission device TM in the intermediate region DM.
- the counter output gear GCo is disposed on the first axial direction X1 side of the counter input gear GCi, and is disposed in a space radially outward of the transmission apparatus TM in the first region D1. Therefore, in the space outside the radial direction of the transmission TM in the second region D2, the gears GCi and GCo of the counter gear mechanism CG are not arranged, and a space for arranging the rotating electrical machine MG is secured.
- the rotating electrical machine MG is disposed in a radially outer space of the transmission apparatus TM in the second region D2.
- the entire rotor Ro and stator St of the rotating electrical machine MG are arranged so as to overlap with a portion of the second region D2 of the transmission TM.
- the rotating electrical machine MG and the portion of the second region D2 of the transmission apparatus TM are disposed adjacent to each other in the radial direction via the wall of the case CS.
- the rotating electrical machine MG is disposed in the space on the side in the second axial direction X2 of the counter gear mechanism CG (counter input gear GCi). As shown in FIG. 2, the rotating electrical machine MG and the counter gear mechanism CG are disposed adjacent to each other in the axial direction via the wall of the case CS.
- the rotating electrical machine MG when viewed in the axial direction of the rotating electrical machine MG or the counter gear mechanism CG, the rotating electrical machine MG is a part of the counter input gear GCi and the counter output gear GCo (1/4 or more of the total (in this example, About 1/3)).
- the electric machine output gear GMo has a smaller diameter than the counter input gear GCi, and the rotating electric machine MG can be arranged close to the third virtual axis A3 on which the counter gear mechanism CG is arranged.
- the counter output gear GCo is disposed on the side of the first axis direction X1 with respect to the counter input gear GCi, and the rotating electrical machine MG has a shaft with respect to the counter input gear GCi. Since it is arranged on the second direction X2 side, the electric machine output gear GMo of the rotary electric machine MG can be meshed with the counter input gear GCi. Further, the axial interval between the rotor Ro of the rotating electrical machine MG and the electrical machine output gear GMo can be shortened, and the strength of the rotor shaft SR can be easily secured.
- the first virtual axis A1, the second virtual axis A2, and the fourth virtual axis A4 are arranged such that a line connecting these virtual axes forms a triangle when viewed in the axial direction.
- the transmission TM, the rotating electrical machine MG, and the output differential gear mechanism DF arranged on the virtual axes A1, A2, and A4 have a circular shape with the virtual center as the center when viewed in the axial direction. Since they are arranged adjacent to each other when viewed in the axial direction, the gap between them can be minimized when viewed in the axial direction.
- the third virtual axis A3 is arranged inside a triangle formed by the virtual axes A1, A2, and A4 when viewed in the axial direction.
- the counter gear mechanism CG corresponding to the third virtual axis A3 overlaps with each of the transmission TM, the rotating electrical machine MG, and the output differential gear mechanism DF that are arranged adjacent to each other in the axial direction.
- the counter gear mechanism CG is arranged without providing a gap for arranging the counter gear mechanism CG between the transmission device TM, the rotating electrical machine MG, and the output differential gear mechanism DF as viewed in the axial direction. Have been able to. Therefore, the components of the vehicle drive device 1 can be arranged close to each other to reduce the overall outer shape of the vehicle drive device 1.
- the vehicle drive device 1 includes a parking lock mechanism PR.
- the parking lock mechanism PR includes a parking gear PG and an engagement member PS that engages with the parking gear PG and restricts the rotation of the parking gear PG.
- the parking gear PG is provided so as to rotate integrally with any of the rotating elements in the power transmission path from the speed change output member O to the differential input gear GDi.
- the parking gear PG is disposed on the first virtual axis A1 and provided to rotate integrally with the speed change output member O, as shown in FIGS.
- the parking gear PG can be disposed so as not to interfere with the rotating electrical machine MG disposed on the second virtual axis A2 and the counter gear mechanism CG disposed on the third virtual axis A3.
- the degree of freedom of MG arrangement can be increased.
- the parking gear PG has a smaller diameter than the speed change output gear GTo, and is disposed closer to the shaft first direction X1 than the speed change output gear GTo. Further, as shown in FIG. 3, the engaging member PS can swing around a swinging fulcrum PS1 fixed to the case CS, and a claw portion PS2 is integrally formed on the engaging member PS. Yes.
- the engagement member PS is swung within a predetermined movable range by a cam mechanism (not shown) or the like.
- the parking lock mechanism PR In a state in which the pawl portion PS2 is engaged with the parking gear PG and these are engaged, the parking lock mechanism PR forcibly stops the rotation of the transmission output member O.
- the parking lock mechanism PR allows the transmission output member O to rotate in a state in which the pawl portion PS2 does not mesh with the parking gear PG and is disengaged.
- the engaging member PS is disposed at a circumferential position different from the circumferential position of the first virtual axis A1 where the transmission output gear GTo meshes with the counter input gear GCi.
- the engaging member PS is disposed at a circumferential position that is 90 degrees or more different from the meshing position of the transmission output gear GTo (in this example, a circumferential position that is 180 degrees different).
- the transmission TM is configured to include a Ravigneaux planetary gear mechanism PLG and six engagement devices C1, C2, C3, B1, B2, and F1.
- the embodiment of the present invention is not limited to this. That is, the transmission apparatus TM may be provided with an arbitrary gear mechanism such as a double pinion type planetary gear mechanism as long as the transmission input shaft I and the transmission output member O are disposed on the first virtual axis A1. Any number of gear mechanisms may be provided, and any number of engagement devices may be provided.
- the speed change device TM is arranged by dividing the gear mechanism and the engagement device into the first region D1 and the second region D2 arranged in the axial direction of the first virtual axis A1, and the first region D1 and the second region It is preferable that the speed change output gear GTo is disposed in the intermediate region DM between D2.
- the case where one counter input gear GCi is provided has been described as an example.
- the embodiment of the present invention is not limited to this. That is, two counter input gears GCi may be provided, that is, a first counter input gear GCi that meshes with the transmission output gear GTo and a second counter input gear GCi that meshes with the electric machine output gear GMo.
- the first and second counter input gears GCi have a larger diameter than the counter output gear GCo, and the electric machine output gear GMo of the rotating electric machine MG has a smaller diameter than the second counter input gear GCi.
- the reduction ratio from the rotor Ro to the differential input gear GDi is made larger than the reduction ratio from the transmission output member O to the differential input gear GDi.
- the second counter input gear GCi is disposed on the second axial direction X2 side of the first counter input gear GCi, and the counter output gear GCo is disposed on the first axial direction X1 side of the first counter input gear GCi. Be placed.
- the transmission TM includes a gear mechanism and an engagement device as constituent members, and the constituent members are arranged in the axial direction of the first virtual axis A1 in the first region D1 and the second region D2.
- the case where the transmission output gear GTo is disposed in the intermediate region DM between the first region D1 and the second region D2 has been described as an example.
- the embodiment of the present invention is not limited to this. That is, the gear mechanism and the engaging device of the transmission TM are not arranged separately in the first region D1 and the second region D2, and the region of the end portion of the transmission TM on the first axial direction X1 side, or
- the speed change output gear GTo may be disposed in the end region on the second axial direction X2 side.
- the rotating electrical machine MG is in the second shaft direction X2 with respect to the counter input gear GCi meshing with the transmission output gear GTo. It is the side and is arrange
- the counter output gear GCo may be arranged on the first shaft direction X1 side with respect to the counter input gear GCi, or on the second shaft direction X2 side with respect to the counter input gear GCi and with respect to the rotating electrical machine MG. You may arrange
- the rotating electrical machine MG is in the first shaft direction X1 with respect to the counter input gear GCi meshing with the transmission output gear GTo. It is the side and is arrange
- the counter output gear GCo may be arranged on the second shaft direction X2 side with respect to the counter input gear GCi, or on the first shaft direction X1 side with respect to the counter input gear GCi and with respect to the rotating electrical machine MG. You may arrange
- the present invention relates to a transmission that shifts the rotation of an input member that is drivingly connected to an internal combustion engine and transmits it to an output member, a differential gear mechanism that distributes driving force to a plurality of wheels, and a reduction in the rotation of the output member
- a vehicle drive device including a counter gear mechanism that transmits to the differential gear mechanism and a rotating electrical machine.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Hybrid Electric Vehicles (AREA)
- Structure Of Transmissions (AREA)
- Motor Power Transmission Devices (AREA)
- Gear-Shifting Mechanisms (AREA)
- Arrangement Of Transmissions (AREA)
Abstract
Provided is a drive device for a vehicle, the drive device being configured so that the device can be kept compact even if a dynamo-electric machine is provided thereto and so that an increase in the cost of the device caused by the installation of a gear mechanism can be minimized. A drive device (1) for a vehicle is configured in such a manner that the input member (I) and the output member (O) of a transmission device (TM) are arranged on a first imaginary axis (A1), a counter gear mechanism (CG) is configured so that a counter input gear (GCi) and a small-diameter counter output gear (GCo) rotate together, the transmission output gear (GTo) of the output member (O) meshes with the counter input gear (GCi), the dynamo-electric machine output gear (GMo) of a dynamo-electric machine (MG) meshes with the counter input gear (GCi), and the differential input gear (GDi) of a differential gear mechanism (DF) meshes with the counter output gear (GCo).
Description
本発明は、内燃機関に駆動連結される入力部材の回転を変速して出力部材へ伝達する変速装置と、複数の車輪に駆動力を分配する差動歯車機構と、前記出力部材の回転を減速して前記差動歯車機構へ伝達するカウンタギヤ機構と、回転電機と、を備えた車両用駆動装置に関する。
The present invention relates to a transmission that shifts the rotation of an input member that is drivingly connected to an internal combustion engine and transmits it to an output member, a differential gear mechanism that distributes driving force to a plurality of wheels, and a reduction in the rotation of the output member. The present invention also relates to a vehicle drive device including a counter gear mechanism that transmits to the differential gear mechanism and a rotating electrical machine.
上記のような車両用駆動装置として、例えば、下記の特許文献1から4に記載された装置が既に知られている。特許文献1の技術では、前輪が変速装置を介して伝達された内燃機関の駆動力により駆動され、後輪が回転電機の駆動力で駆動されるように構成されている。
For example, the devices described in the following Patent Documents 1 to 4 are already known as vehicle drive devices as described above. In the technique of Patent Document 1, the front wheels are driven by the driving force of the internal combustion engine transmitted via the transmission, and the rear wheels are driven by the driving force of the rotating electrical machine.
特許文献2の技術では、変速装置は、各変速段に対応した駆動ギヤが固定される入力軸34と、当該入力軸34に平行な軸であって駆動ギヤに噛み合う各変速段の被動ギヤが固定される出力軸42と、の2軸構成となっており、出力軸42と一体回転する駆動ギヤ49が、車輪に連結される差動ギヤ14に噛み合うように構成されている。また、回転電機は、専用のカウンタギヤ機構を介して、差動ギヤ14に連結されるように構成されている。
In the technique of Patent Document 2, the transmission includes an input shaft 34 to which a drive gear corresponding to each gear is fixed, and a driven gear of each gear that is parallel to the input shaft 34 and meshes with the drive gear. The output shaft 42 is fixed, and the drive gear 49 that rotates integrally with the output shaft 42 meshes with the differential gear 14 that is connected to the wheels. The rotating electrical machine is configured to be coupled to the differential gear 14 via a dedicated counter gear mechanism.
特許文献3の技術では、変速装置は、ベルト及びプーリ式の無段変速装置であり、駆動側プーリと一体回転する駆動軸11と、当該駆動軸11に平行な軸であって従動側プーリと一体回転する従動軸12と、の2軸構成となっており、従動軸12と一体回転する出力ギヤ13が、車輪に駆動連結される差動歯車機構の第1リングギヤ43に噛み合うように構成されている。また、回転電機は、専用のカウンタギヤ機構を介して、差動歯車機構の第2リングギヤ44に駆動連結されるように構成されている。
In the technique of Patent Document 3, the transmission is a belt-and-pulley type continuously variable transmission, and includes a drive shaft 11 that rotates integrally with the drive-side pulley, a shaft parallel to the drive shaft 11 and a driven-side pulley. The output shaft 13 that rotates integrally with the driven shaft 12 is configured to mesh with the first ring gear 43 of the differential gear mechanism that is drivingly connected to the wheels. ing. The rotating electric machine is configured to be drivingly connected to the second ring gear 44 of the differential gear mechanism via a dedicated counter gear mechanism.
特許文献4の技術では、変速装置は、ベルト及びプーリ式の無段変速装置であり、駆動側プーリと一体回転する入力軸11と、当該入力軸11に平行な軸であって従動側プーリと一体回転する出力軸12と、の2軸構成となっており、出力軸12と一体回転する出力ギヤ20が、カウンタギヤ機構を介して、車輪に駆動連結される差動歯車機構のリングギヤ25に駆動連結されるように構成されている。回転電機も、カウンタギヤ機構を介して、差動歯車機構のリングギヤ25に駆動連結されるように構成されている。
In the technique of Patent Document 4, the transmission is a belt-and-pulley type continuously variable transmission, and includes an input shaft 11 that rotates integrally with the driving pulley, an axis parallel to the input shaft 11, and a driven pulley. The output shaft 12 that rotates integrally with the output shaft 12 has a two-shaft configuration, and the output gear 20 that rotates integrally with the output shaft 12 is connected to the ring gear 25 of the differential gear mechanism that is drivingly connected to the wheels via the counter gear mechanism. It is configured to be drive-coupled. The rotating electrical machine is also configured to be drivingly connected to the ring gear 25 of the differential gear mechanism via the counter gear mechanism.
しかしながら、特許文献1の技術では、駆動力源である内燃機関と回転電機とが、前輪と後輪とに分かれて駆動連結されるため、回転電機を備えるために、歯車機構、ケースなどが別途必要となり、装置のコストが高くなるという問題があった。
特許文献2から4の技術では、変速装置の出力側に回転電機を備えており、回転電機のための専用のカウンタギヤ機構を設けることなどにより、回転電機から車輪の減速比も大きく確保されている。しかし、軸数が多いため、車両用駆動装置が大型化するなどの問題があった。 However, in the technique ofPatent Document 1, since the internal combustion engine that is a driving force source and the rotating electric machine are driven and connected separately to the front wheels and the rear wheels, a gear mechanism, a case, and the like are separately provided to include the rotating electric machine. There is a problem that the cost of the apparatus becomes high.
In the techniques ofPatent Documents 2 to 4, a rotating electrical machine is provided on the output side of the transmission, and a dedicated gear gear mechanism for the rotating electrical machine is provided, so that the reduction ratio of the wheel from the rotating electrical machine is also ensured. Yes. However, since the number of axes is large, there is a problem that the vehicle drive device is enlarged.
特許文献2から4の技術では、変速装置の出力側に回転電機を備えており、回転電機のための専用のカウンタギヤ機構を設けることなどにより、回転電機から車輪の減速比も大きく確保されている。しかし、軸数が多いため、車両用駆動装置が大型化するなどの問題があった。 However, in the technique of
In the techniques of
そこで、回転電機を備えても、車両用駆動装置の大型化を抑制できるとともに、歯車機構を設けることなどによる装置のコスト増加を抑制できる車両駆動装置の実現が望まれる。
Therefore, it is desired to realize a vehicle drive device that can suppress an increase in the size of the vehicle drive device even if a rotating electric machine is provided, and can suppress an increase in the cost of the device due to the provision of a gear mechanism.
本発明に係る、内燃機関に駆動連結される入力部材の回転を変速して出力部材へ伝達する変速装置と、複数の車輪に駆動力を分配する差動歯車機構と、前記出力部材の回転を減速して前記差動歯車機構へ伝達するカウンタギヤ機構と、回転電機と、を備えた車両用駆動装置の特徴構成は、
前記変速装置は、変速比を変更可能であって、当該変速比に応じて前記入力部材のトルクを変換して前記出力部材に伝達するように構成され、
前記変速装置の前記入力部材と前記出力部材とが第1仮想軸上に配置され、
前記回転電機は、第2仮想軸上に配置され、
前記カウンタギヤ機構は、第3仮想軸上に配置されていると共に、カウンタ入力ギヤと当該カウンタ入力ギヤより小径のカウンタ出力ギヤとが一体回転するように構成され、
前記出力部材に設けられた変速出力ギヤは、前記カウンタ入力ギヤに噛み合い、
前記回転電機のロータと一体回転する電機出力ギヤは、前記カウンタ入力ギヤに噛み合うと共に、前記カウンタ入力ギヤより小径であり、
前記差動歯車機構に設けられた差動入力ギヤは、前記カウンタ出力ギヤに噛み合っている点にある。 According to the present invention, a transmission for shifting the rotation of an input member drivingly connected to an internal combustion engine and transmitting it to an output member, a differential gear mechanism for distributing driving force to a plurality of wheels, and rotation of the output member A characteristic configuration of a vehicle drive device including a counter gear mechanism that decelerates and transmits to the differential gear mechanism, and a rotating electrical machine,
The speed change device is configured to change a speed change ratio, convert torque of the input member according to the speed change ratio, and transmit the torque to the output member.
The input member and the output member of the transmission are disposed on a first virtual axis;
The rotating electrical machine is disposed on a second virtual axis;
The counter gear mechanism is arranged on the third virtual axis, and is configured such that the counter input gear and the counter output gear having a smaller diameter than the counter input gear rotate integrally.
A speed change output gear provided on the output member meshes with the counter input gear,
The electric output gear that rotates integrally with the rotor of the rotating electric machine meshes with the counter input gear and has a smaller diameter than the counter input gear,
The differential input gear provided in the differential gear mechanism is in mesh with the counter output gear.
前記変速装置は、変速比を変更可能であって、当該変速比に応じて前記入力部材のトルクを変換して前記出力部材に伝達するように構成され、
前記変速装置の前記入力部材と前記出力部材とが第1仮想軸上に配置され、
前記回転電機は、第2仮想軸上に配置され、
前記カウンタギヤ機構は、第3仮想軸上に配置されていると共に、カウンタ入力ギヤと当該カウンタ入力ギヤより小径のカウンタ出力ギヤとが一体回転するように構成され、
前記出力部材に設けられた変速出力ギヤは、前記カウンタ入力ギヤに噛み合い、
前記回転電機のロータと一体回転する電機出力ギヤは、前記カウンタ入力ギヤに噛み合うと共に、前記カウンタ入力ギヤより小径であり、
前記差動歯車機構に設けられた差動入力ギヤは、前記カウンタ出力ギヤに噛み合っている点にある。 According to the present invention, a transmission for shifting the rotation of an input member drivingly connected to an internal combustion engine and transmitting it to an output member, a differential gear mechanism for distributing driving force to a plurality of wheels, and rotation of the output member A characteristic configuration of a vehicle drive device including a counter gear mechanism that decelerates and transmits to the differential gear mechanism, and a rotating electrical machine,
The speed change device is configured to change a speed change ratio, convert torque of the input member according to the speed change ratio, and transmit the torque to the output member.
The input member and the output member of the transmission are disposed on a first virtual axis;
The rotating electrical machine is disposed on a second virtual axis;
The counter gear mechanism is arranged on the third virtual axis, and is configured such that the counter input gear and the counter output gear having a smaller diameter than the counter input gear rotate integrally.
A speed change output gear provided on the output member meshes with the counter input gear,
The electric output gear that rotates integrally with the rotor of the rotating electric machine meshes with the counter input gear and has a smaller diameter than the counter input gear,
The differential input gear provided in the differential gear mechanism is in mesh with the counter output gear.
なお、本願において「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
また、本願において、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。また、このような伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば摩擦係合装置や噛み合い式係合装置等が含まれていてもよい。 In the present application, the “rotary electric machine” is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that functions as both a motor and a generator as necessary.
Further, in the present application, “driving connection” refers to a state where two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or It is used as a concept including a state in which two rotating elements are connected so as to be able to transmit a driving force via one or more transmission members. Examples of such a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like. Further, as such a transmission member, an engagement device that selectively transmits rotation and driving force, for example, a friction engagement device or a meshing engagement device may be included.
また、本願において、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。また、このような伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば摩擦係合装置や噛み合い式係合装置等が含まれていてもよい。 In the present application, the “rotary electric machine” is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that functions as both a motor and a generator as necessary.
Further, in the present application, “driving connection” refers to a state where two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or It is used as a concept including a state in which two rotating elements are connected so as to be able to transmit a driving force via one or more transmission members. Examples of such a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like. Further, as such a transmission member, an engagement device that selectively transmits rotation and driving force, for example, a friction engagement device or a meshing engagement device may be included.
上記の特徴構成によれば、変速装置の出力部材に設けられた変速出力ギヤは、カウンタ入力ギヤに噛み合い、回転電機のロータと一体回転する電機出力ギヤは、カウンタ入力ギヤに噛み合っている。また、カウンタ出力ギヤは、差動歯車機構の差動入力ギヤに噛み合っている。このように、回転電機の電機出力ギヤを、変速装置の変速出力ギヤが噛み合うカウンタ入力ギヤに噛み合うように構成することで、回転電機専用のカウンタギヤ機構などを設けることなく、回転電機を車輪に駆動連結させることができる。
また、上記の特徴構成によれば、回転電機の電機出力ギヤは、カウンタ入力ギヤより小径であり、カウンタ出力ギヤは、カウンタ入力ギヤより小径である。そのため、回転電機の回転は、電機出力ギヤ及びカウンタギヤ機構により所定の変速比(減速比)で減速されて、差動歯車機構に伝達される。よって、回転電機専用のカウンタギヤ機構などを設けることなく、回転電機の回転を少なくとも2段階に減速して車輪に伝達させることができる。
よって、回転電機を備えても、歯車機構などを設けることによるコストの増加を抑制できる。 According to the above characteristic configuration, the speed change output gear provided on the output member of the transmission meshes with the counter input gear, and the electric machine output gear that rotates integrally with the rotor of the rotating electric machine meshes with the counter input gear. The counter output gear meshes with the differential input gear of the differential gear mechanism. As described above, the electric machine output gear of the rotating electric machine is configured to mesh with the counter input gear that meshes with the transmission output gear of the transmission, so that the rotating electric machine can be used as a wheel without providing a counter gear mechanism dedicated to the rotating electric machine. Drive-coupled.
Moreover, according to said characteristic structure, the electric machine output gear of a rotary electric machine is smaller diameter than a counter input gear, and a counter output gear is smaller diameter than a counter input gear. Therefore, the rotation of the rotating electrical machine is decelerated at a predetermined speed ratio (reduction ratio) by the electrical machine output gear and the counter gear mechanism, and is transmitted to the differential gear mechanism. Therefore, the rotation of the rotating electrical machine can be reduced to at least two stages and transmitted to the wheels without providing a counter gear mechanism dedicated to the rotating electrical machine.
Therefore, even if a rotating electrical machine is provided, an increase in cost due to provision of a gear mechanism or the like can be suppressed.
また、上記の特徴構成によれば、回転電機の電機出力ギヤは、カウンタ入力ギヤより小径であり、カウンタ出力ギヤは、カウンタ入力ギヤより小径である。そのため、回転電機の回転は、電機出力ギヤ及びカウンタギヤ機構により所定の変速比(減速比)で減速されて、差動歯車機構に伝達される。よって、回転電機専用のカウンタギヤ機構などを設けることなく、回転電機の回転を少なくとも2段階に減速して車輪に伝達させることができる。
よって、回転電機を備えても、歯車機構などを設けることによるコストの増加を抑制できる。 According to the above characteristic configuration, the speed change output gear provided on the output member of the transmission meshes with the counter input gear, and the electric machine output gear that rotates integrally with the rotor of the rotating electric machine meshes with the counter input gear. The counter output gear meshes with the differential input gear of the differential gear mechanism. As described above, the electric machine output gear of the rotating electric machine is configured to mesh with the counter input gear that meshes with the transmission output gear of the transmission, so that the rotating electric machine can be used as a wheel without providing a counter gear mechanism dedicated to the rotating electric machine. Drive-coupled.
Moreover, according to said characteristic structure, the electric machine output gear of a rotary electric machine is smaller diameter than a counter input gear, and a counter output gear is smaller diameter than a counter input gear. Therefore, the rotation of the rotating electrical machine is decelerated at a predetermined speed ratio (reduction ratio) by the electrical machine output gear and the counter gear mechanism, and is transmitted to the differential gear mechanism. Therefore, the rotation of the rotating electrical machine can be reduced to at least two stages and transmitted to the wheels without providing a counter gear mechanism dedicated to the rotating electrical machine.
Therefore, even if a rotating electrical machine is provided, an increase in cost due to provision of a gear mechanism or the like can be suppressed.
前記ロータから前記差動入力ギヤまでの減速比は、前記出力部材から前記差動入力ギヤまでの減速比より大きいと好適である。
It is preferable that a reduction ratio from the rotor to the differential input gear is larger than a reduction ratio from the output member to the differential input gear.
変速装置より車輪側の動力伝達経路に駆動連結された回転電機は、変速装置を介して車輪側に駆動連結される内燃機関に比べて、減速比を大きくし難い。しかし、上記の構成によれば、ロータから差動入力ギヤまでの減速比は、出力部材から差動入力ギヤまでの減速比より大きくされている。よって、上記のように、回転電機の回転を少なくとも2段階に減速し車輪に伝達させることができる。
The rotating electrical machine that is drivingly connected to the wheel side power transmission path from the transmission is less likely to increase the reduction ratio than an internal combustion engine that is drivingly connected to the wheel side via the transmission. However, according to the above configuration, the reduction ratio from the rotor to the differential input gear is made larger than the reduction ratio from the output member to the differential input gear. Therefore, as described above, the rotation of the rotating electrical machine can be reduced to at least two stages and transmitted to the wheels.
前記回転電機は、当該回転電機の径方向に見て前記変速装置と重複する部分を有すると共に、当該回転電機の軸方向に見て前記カウンタギヤ機構と重複する部分を有するように配置されていると好適である。
The rotating electrical machine has a portion that overlaps with the transmission when viewed in the radial direction of the rotating electrical machine, and is disposed so as to have a portion that overlaps with the counter gear mechanism when viewed in the axial direction of the rotating electrical machine. It is preferable.
上記のように、変速装置の入力部材と出力部材とは、第1仮想軸上に配置されているので、変速装置は、全体として円柱状の空間に配置可能になる。また、カウンタ入力ギヤは、変速出力ギヤに噛み合うように配置されているので、変速装置の径方向外側にカウンタギヤ機構が配置される。変速装置の軸方向の長さは、カウンタギヤ機構の軸方向の長さよりも長くなることが多いので、変速装置の径方向外側にカウンタギヤ機構が配置されていない空間が生じる。上記の構成によれば、当該空間を有効利用するように、回転電機は、当該回転電機の径方向に見て変速装置と重複する部分を有すると共に、当該回転電機の軸方向に見てカウンタギヤ機構と重複する部分を有するように配置されている。よって、回転電機を備えても、車両用駆動装置の軸方向の長さが長くなることを抑制できると共に、車両用駆動装置の軸方向に直交する方向の長さが長くなることを抑制でき、車両用駆動装置が大型化することを抑制できる。
As described above, since the input member and the output member of the transmission are disposed on the first virtual axis, the transmission can be disposed in a cylindrical space as a whole. Further, since the counter input gear is arranged so as to mesh with the transmission output gear, the counter gear mechanism is arranged on the radially outer side of the transmission. Since the length of the transmission in the axial direction is often longer than the length of the counter gear mechanism in the axial direction, a space in which the counter gear mechanism is not disposed is formed outside the transmission in the radial direction. According to the above configuration, the rotating electrical machine has a portion that overlaps with the transmission device as viewed in the radial direction of the rotating electrical machine and uses the counter gear as viewed in the axial direction of the rotating electrical machine so as to effectively use the space. It arrange | positions so that it may have a part which overlaps with a mechanism. Therefore, even if a rotating electrical machine is provided, the length in the axial direction of the vehicle drive device can be suppressed, and the length in the direction orthogonal to the axial direction of the vehicle drive device can be suppressed. An increase in the size of the vehicle drive device can be suppressed.
前記変速装置は、構成部材として歯車機構と係合装置とを備え、前記構成部材が前記第1仮想軸の軸方向に並ぶ第一領域と第二領域とに分かれて配置され、前記第一領域と前記第二領域との間に前記変速出力ギヤが配置されていると好適である。
The transmission includes a gear mechanism and an engagement device as constituent members, and the constituent members are arranged separately in a first region and a second region arranged in the axial direction of the first virtual axis, and the first region It is preferable that the speed change output gear is disposed between the first region and the second region.
この構成によれば、変速装置の軸方向の第一領域と第二領域との間の中間領域に、変速出力ギヤが配置されるので、当該変速出力ギヤに噛み合うカウンタ入力ギヤは、中間領域における変速装置の径方向外側の空間に配置される。また、カウンタ入力ギヤに噛み合う電機出力ギヤも、中間領域における変速装置の径方向外側の空間に配置される。よって、カウンタ出力ギヤを、カウンタ入力ギヤが配置された中間領域の空間に対して、第一領域又は第二領域の空間に配置することができ、回転電機を、電機出力ギヤが配置された中間領域の空間に対して、第一領域及び第二領域の空間の内、カウンタ出力ギヤが配置されていない方に配置することができる。すなわち、回転電機及びカウンタギヤ機構(カウンタ出力ギヤ)を、第一領域及び第二領域における変速装置の径方向外側の空間に割り当て配置することができ、変速装置の径方向外側の空間を軸方向に有効利用することができる。よって、回転電機を備えても、車両用駆動装置の軸方向に直交する方向の長さが長くなることを抑制しつつ、車両用駆動装置の軸方向の長さが長くなることを抑制でき、車両用駆動装置が大型化することを抑制できる。
According to this configuration, since the transmission output gear is arranged in the intermediate region between the first region and the second region in the axial direction of the transmission, the counter input gear that meshes with the transmission output gear is in the intermediate region. It arrange | positions in the space of the radial direction outer side of a transmission. An electric machine output gear that meshes with the counter input gear is also arranged in a space radially outside the transmission in the intermediate region. Therefore, the counter output gear can be arranged in the space of the first region or the second region with respect to the space of the intermediate region in which the counter input gear is arranged, and the rotating electric machine can be arranged in the middle in which the electric machine output gear is arranged. With respect to the space of the region, the counter output gear can be disposed in the space of the first region and the second region where the counter output gear is not disposed. That is, the rotating electrical machine and the counter gear mechanism (counter output gear) can be allocated and arranged in the radially outer space of the transmission in the first region and the second region, and the radially outer space of the transmission is axially arranged. Can be used effectively. Therefore, even if a rotating electrical machine is provided, it is possible to suppress an increase in the axial length of the vehicle drive device while suppressing an increase in the length in the direction orthogonal to the axial direction of the vehicle drive device, An increase in the size of the vehicle drive device can be suppressed.
前記出力部材から前記差動入力ギヤまでの動力伝達経路中のいずれかの回転要素と一体回転するように設けられるパーキングギヤと、当該パーキングギヤに係合して当該パーキングギヤの回転を規制する係合部材と、を有するパーキングロック機構を更に備え、前記パーキングギヤは、前記第1仮想軸上に配置されていると好適である。
A parking gear provided to rotate integrally with any one of the rotating elements in the power transmission path from the output member to the differential input gear, and a mechanism for engaging the parking gear and restricting the rotation of the parking gear. It is preferable that a parking lock mechanism having a joint member is further provided, and the parking gear is disposed on the first virtual axis.
この構成によれば、パーキングギヤを、第2仮想軸上に配置された回転電機、及び第3仮想軸上に配置されたカウンタギヤ機構と干渉しないように配置することができるので、回転電機の配置の自由度を高めることができる。よって、回転電機を、上記のように、車両用駆動装置が大型化することを抑制できる配置が容易となる。
According to this configuration, the parking gear can be arranged so as not to interfere with the rotating electric machine arranged on the second virtual axis and the counter gear mechanism arranged on the third virtual axis. The degree of freedom of arrangement can be increased. Therefore, it becomes easy to arrange the rotating electrical machine to suppress the increase in the size of the vehicle drive device as described above.
前記変速装置は、前記入力部材の回転方向と前記出力部材の回転方向とが同じになる正転伝達状態と、これらの回転方向が逆になる逆転伝達状態とを変更可能に構成されていると好適である。
The transmission is configured to be able to change between a normal rotation transmission state in which the rotation direction of the input member and the rotation direction of the output member are the same, and a reverse rotation transmission state in which these rotation directions are reversed. Is preferred.
この構成によれば、車両用駆動装置は、変速装置の他に、回転方向を逆転させる装置を必要としないので、回転電機の配置の自由度が減少することを抑制できる。
According to this configuration, since the vehicle drive device does not require a device that reverses the rotation direction in addition to the transmission, it is possible to suppress a reduction in the degree of freedom in the arrangement of the rotating electrical machines.
本発明に係る車両用駆動装置1の実施形態について、図面を参照して説明する。図1は、本実施形態に係る車両用駆動装置1の概略構成を示すスケルトン図であり、図2は、図1におけるカウンタギヤ機構CG、回転電機MG、及び出力用差動歯車機構DFの部分を、軸方向展開断面図で表した図である。また、図3は、車両用駆動装置1の各構成要素の軸方向視(軸第二方向X2側から軸第一方向X1側に軸方向に見た場合)での配置を表した配置図である。
Embodiments of a vehicle drive device 1 according to the present invention will be described with reference to the drawings. FIG. 1 is a skeleton diagram showing a schematic configuration of a vehicle drive device 1 according to the present embodiment, and FIG. 2 shows parts of a counter gear mechanism CG, a rotating electrical machine MG, and an output differential gear mechanism DF in FIG. It is the figure which represented this with the axial direction expanded sectional view. FIG. 3 is an arrangement diagram showing the arrangement of each component of the vehicle drive device 1 when viewed in the axial direction (when viewed in the axial direction from the second axial direction X2 side to the first axial direction X1 side). is there.
本実施形態では、図1に示すように、車両用駆動装置1は、内燃機関ENGに駆動連結される変速入力軸Iの回転を変速して変速出力部材Oへ伝達する変速装置TMと、複数の車輪Wに駆動力を分配する出力用差動歯車機構DFと、変速出力部材Oの回転を減速して出力用差動歯車機構DFへ伝達するカウンタギヤ機構CGと、回転電機MGと、を備えている。本実施形態では、変速入力軸Iは、トルクコンバータTCを介して内燃機関ENGに駆動連結されている。
なお、変速入力軸Iが、本発明における「入力部材」に相当し、変速出力部材Oが、本発明における「出力部材」に相当し、出力用差動歯車機構DFが、「差動歯車機構」に相当する。 In the present embodiment, as shown in FIG. 1, thevehicle drive device 1 includes a plurality of transmission devices TM that change the speed of the transmission input shaft I that is drivingly connected to the internal combustion engine ENG and transmit the rotation to the transmission output member O. An output differential gear mechanism DF that distributes the driving force to the wheels W, a counter gear mechanism CG that decelerates the rotation of the speed change output member O and transmits it to the output differential gear mechanism DF, and a rotating electrical machine MG. I have. In the present embodiment, the transmission input shaft I is drivingly connected to the internal combustion engine ENG via the torque converter TC.
The transmission input shaft I corresponds to the “input member” in the present invention, the transmission output member O corresponds to the “output member” in the present invention, and the output differential gear mechanism DF includes the “differential gear mechanism”. Is equivalent to.
なお、変速入力軸Iが、本発明における「入力部材」に相当し、変速出力部材Oが、本発明における「出力部材」に相当し、出力用差動歯車機構DFが、「差動歯車機構」に相当する。 In the present embodiment, as shown in FIG. 1, the
The transmission input shaft I corresponds to the “input member” in the present invention, the transmission output member O corresponds to the “output member” in the present invention, and the output differential gear mechanism DF includes the “differential gear mechanism”. Is equivalent to.
変速装置TMは、変速比を変更可能であって、当該変速比に応じて変速入力軸Iのトルクを変換して変速出力部材Oに伝達するように構成されている。
変速装置TMの変速入力軸Iと変速出力部材Oとが第1仮想軸A1上に配置されている。回転電機MGは、第2仮想軸A2上に配置されている。カウンタギヤ機構CGは、第3仮想軸A3上に配置されている。
カウンタギヤ機構CGは、カウンタ入力ギヤGCiと当該カウンタ入力ギヤGCiより小径のカウンタ出力ギヤGCoとが一体回転するように構成されている。
変速出力部材Oに設けられた変速出力ギヤGToは、カウンタ入力ギヤGCiに噛み合っている。回転電機MGのロータRoと一体回転する電機出力ギヤGMoは、カウンタ入力ギヤGCiに噛み合うと共に、カウンタ入力ギヤGCiより小径である。出力用差動歯車機構DFに設けられた差動入力ギヤGDiは、カウンタ出力ギヤGCoに噛み合っている。
以下、本実施形態に係る車両用駆動装置1について、詳細に説明する。 The transmission TM can change the transmission ratio, and is configured to convert the torque of the transmission input shaft I and transmit it to the transmission output member O in accordance with the transmission ratio.
The transmission input shaft I and the transmission output member O of the transmission apparatus TM are disposed on the first virtual axis A1. The rotating electrical machine MG is disposed on the second virtual axis A2. The counter gear mechanism CG is disposed on the third virtual axis A3.
The counter gear mechanism CG is configured such that a counter input gear GCi and a counter output gear GCo having a smaller diameter than the counter input gear GCi rotate integrally.
A speed change output gear GTo provided on the speed change output member O meshes with the counter input gear GCi. The electric machine output gear GMo that rotates integrally with the rotor Ro of the rotary electric machine MG meshes with the counter input gear GCi and has a smaller diameter than the counter input gear GCi. The differential input gear GDi provided in the output differential gear mechanism DF meshes with the counter output gear GCo.
Hereinafter, thevehicle drive device 1 according to the present embodiment will be described in detail.
変速装置TMの変速入力軸Iと変速出力部材Oとが第1仮想軸A1上に配置されている。回転電機MGは、第2仮想軸A2上に配置されている。カウンタギヤ機構CGは、第3仮想軸A3上に配置されている。
カウンタギヤ機構CGは、カウンタ入力ギヤGCiと当該カウンタ入力ギヤGCiより小径のカウンタ出力ギヤGCoとが一体回転するように構成されている。
変速出力部材Oに設けられた変速出力ギヤGToは、カウンタ入力ギヤGCiに噛み合っている。回転電機MGのロータRoと一体回転する電機出力ギヤGMoは、カウンタ入力ギヤGCiに噛み合うと共に、カウンタ入力ギヤGCiより小径である。出力用差動歯車機構DFに設けられた差動入力ギヤGDiは、カウンタ出力ギヤGCoに噛み合っている。
以下、本実施形態に係る車両用駆動装置1について、詳細に説明する。 The transmission TM can change the transmission ratio, and is configured to convert the torque of the transmission input shaft I and transmit it to the transmission output member O in accordance with the transmission ratio.
The transmission input shaft I and the transmission output member O of the transmission apparatus TM are disposed on the first virtual axis A1. The rotating electrical machine MG is disposed on the second virtual axis A2. The counter gear mechanism CG is disposed on the third virtual axis A3.
The counter gear mechanism CG is configured such that a counter input gear GCi and a counter output gear GCo having a smaller diameter than the counter input gear GCi rotate integrally.
A speed change output gear GTo provided on the speed change output member O meshes with the counter input gear GCi. The electric machine output gear GMo that rotates integrally with the rotor Ro of the rotary electric machine MG meshes with the counter input gear GCi and has a smaller diameter than the counter input gear GCi. The differential input gear GDi provided in the output differential gear mechanism DF meshes with the counter output gear GCo.
Hereinafter, the
1.車両用駆動装置1及び内燃機関ENGの概略構成
本実施形態では、図1及び図2に示すように、第1仮想軸A1、第2仮想軸A2、及び第3仮想軸A3は、互いに平行に配置されている。よって、軸方向は、これらの仮想軸で共通した軸方向となる。軸方向において車両用駆動装置1から内燃機関ENGに向かう方向(図1、図2における右側)を軸第一方向X1と規定し、その反対方向である内燃機関ENGから車両用駆動装置1に向かう方向(図1、図2における左側)を、軸第二方向X2と規定している。 1. In this embodiment, as shown in FIGS. 1 and 2, the first virtual axis A1, the second virtual axis A2, and the third virtual axis A3 are parallel to each other. Has been placed. Therefore, the axial direction is an axial direction common to these virtual axes. A direction (right side in FIGS. 1 and 2) from thevehicle drive device 1 to the internal combustion engine ENG in the axial direction is defined as an axial first direction X1, and from the internal combustion engine ENG, which is the opposite direction, to the vehicle drive device 1. The direction (left side in FIGS. 1 and 2) is defined as the second axial direction X2.
本実施形態では、図1及び図2に示すように、第1仮想軸A1、第2仮想軸A2、及び第3仮想軸A3は、互いに平行に配置されている。よって、軸方向は、これらの仮想軸で共通した軸方向となる。軸方向において車両用駆動装置1から内燃機関ENGに向かう方向(図1、図2における右側)を軸第一方向X1と規定し、その反対方向である内燃機関ENGから車両用駆動装置1に向かう方向(図1、図2における左側)を、軸第二方向X2と規定している。 1. In this embodiment, as shown in FIGS. 1 and 2, the first virtual axis A1, the second virtual axis A2, and the third virtual axis A3 are parallel to each other. Has been placed. Therefore, the axial direction is an axial direction common to these virtual axes. A direction (right side in FIGS. 1 and 2) from the
図1に示すように、ハイブリッド車両は、車両の駆動力源として内燃機関ENG及び回転電機MGを備えている。ハイブリッド車両は、変速装置TMを備えており、当該変速装置TMにより、変速入力軸Iに伝達された内燃機関ENGの回転速度を変速すると共にトルクを変換して変速出力部材Oに伝達する。
As shown in FIG. 1, the hybrid vehicle includes an internal combustion engine ENG and a rotating electrical machine MG as a driving force source for the vehicle. The hybrid vehicle includes a transmission TM, and the transmission TM shifts the rotational speed of the internal combustion engine ENG transmitted to the transmission input shaft I and converts the torque to the transmission output member O.
<内燃機関ENG>
内燃機関ENGは、燃料の燃焼により駆動される熱機関であり、例えば、ガソリンエンジンやディーゼルエンジンなどの公知の各種内燃機関を用いることができる。本例では、内燃機関ENGのクランクシャフト等の内燃機関出力軸が、トルクコンバータTCに駆動連結された動力入力軸Ipに駆動連結される。
内燃機関ENGの内燃機関出力軸は、第1仮想軸A1上に配置される。 <Internal combustion engine ENG>
The internal combustion engine ENG is a heat engine that is driven by the combustion of fuel. For example, various known internal combustion engines such as a gasoline engine and a diesel engine can be used. In this example, an internal combustion engine output shaft such as a crankshaft of the internal combustion engine ENG is drivingly connected to a power input shaft Ip that is drivingly connected to the torque converter TC.
The output shaft of the internal combustion engine ENG is arranged on the first virtual axis A1.
内燃機関ENGは、燃料の燃焼により駆動される熱機関であり、例えば、ガソリンエンジンやディーゼルエンジンなどの公知の各種内燃機関を用いることができる。本例では、内燃機関ENGのクランクシャフト等の内燃機関出力軸が、トルクコンバータTCに駆動連結された動力入力軸Ipに駆動連結される。
内燃機関ENGの内燃機関出力軸は、第1仮想軸A1上に配置される。 <Internal combustion engine ENG>
The internal combustion engine ENG is a heat engine that is driven by the combustion of fuel. For example, various known internal combustion engines such as a gasoline engine and a diesel engine can be used. In this example, an internal combustion engine output shaft such as a crankshaft of the internal combustion engine ENG is drivingly connected to a power input shaft Ip that is drivingly connected to the torque converter TC.
The output shaft of the internal combustion engine ENG is arranged on the first virtual axis A1.
<ケースCS>
図2に示すように、車両用駆動装置1を構成するトルクコンバータTC、変速装置TM、カウンタギヤ機構CG、回転電機MG、及び出力用差動歯車機構DFは、ケースCS内に収容されている。ケースCSは、車両用駆動装置1の外側を覆うように形成された外壁を備えている。また、ケースCSは、トルクコンバータTC、変速装置TM、カウンタギヤ機構CG、回転電機MG、及び出力用差動歯車機構DFのそれぞれを、支持するため又は隔離するため、部分的又は全体的に覆った隔壁を備えている。 <Case CS>
As shown in FIG. 2, the torque converter TC, the transmission TM, the counter gear mechanism CG, the rotating electrical machine MG, and the output differential gear mechanism DF constituting thevehicle drive device 1 are accommodated in the case CS. . The case CS includes an outer wall formed to cover the outside of the vehicle drive device 1. In addition, the case CS partially or entirely covers the torque converter TC, the transmission TM, the counter gear mechanism CG, the rotating electrical machine MG, and the output differential gear mechanism DF in order to support or isolate each. Provided with a partition wall.
図2に示すように、車両用駆動装置1を構成するトルクコンバータTC、変速装置TM、カウンタギヤ機構CG、回転電機MG、及び出力用差動歯車機構DFは、ケースCS内に収容されている。ケースCSは、車両用駆動装置1の外側を覆うように形成された外壁を備えている。また、ケースCSは、トルクコンバータTC、変速装置TM、カウンタギヤ機構CG、回転電機MG、及び出力用差動歯車機構DFのそれぞれを、支持するため又は隔離するため、部分的又は全体的に覆った隔壁を備えている。 <Case CS>
As shown in FIG. 2, the torque converter TC, the transmission TM, the counter gear mechanism CG, the rotating electrical machine MG, and the output differential gear mechanism DF constituting the
<トルクコンバータTC>
図1に示すように、トルクコンバータTCは、動力入力軸Ipに伝達された内燃機関ENGの回転駆動力を、内部に充填された作動油を介して、変速装置TM側に伝達する動力伝達装置である。このトルクコンバータTCは、動力入力軸Ipに駆動連結された入力側回転部材としてのポンプインペラTCaと、変速入力軸Iに駆動連結された出力側回転部材としてのタービンランナTCbと、これらの間に設けられ、ワンウェイクラッチを備えたステータTCcと、を備えている。そして、トルクコンバータTCは、内部に充填された作動油を介して、駆動側のポンプインペラTCaと従動側のタービンランナTCbとの間で駆動力の伝達を行う。オイルポンプOPは、ポンプインペラTCaと一体回転するように駆動連結されており、動力入力軸Ipと一体回転する構成となっている。
動力入力軸Ip及びトルクコンバータTCは、第1仮想軸A1上に配置されている。 <Torque converter TC>
As shown in FIG. 1, the torque converter TC transmits the rotational driving force of the internal combustion engine ENG transmitted to the power input shaft Ip to the transmission device TM side via hydraulic oil filled therein. It is. The torque converter TC includes a pump impeller TCa as an input side rotating member drivingly connected to the power input shaft Ip, a turbine runner TCb as an output side rotating member drivingly connected to the transmission input shaft I, and a gap between them. And a stator TCc provided with a one-way clutch. The torque converter TC transmits driving force between the driving-side pump impeller TCa and the driven-side turbine runner TCb via hydraulic oil filled therein. The oil pump OP is drivingly coupled so as to rotate integrally with the pump impeller TCa, and is configured to rotate integrally with the power input shaft Ip.
The power input shaft Ip and the torque converter TC are disposed on the first virtual axis A1.
図1に示すように、トルクコンバータTCは、動力入力軸Ipに伝達された内燃機関ENGの回転駆動力を、内部に充填された作動油を介して、変速装置TM側に伝達する動力伝達装置である。このトルクコンバータTCは、動力入力軸Ipに駆動連結された入力側回転部材としてのポンプインペラTCaと、変速入力軸Iに駆動連結された出力側回転部材としてのタービンランナTCbと、これらの間に設けられ、ワンウェイクラッチを備えたステータTCcと、を備えている。そして、トルクコンバータTCは、内部に充填された作動油を介して、駆動側のポンプインペラTCaと従動側のタービンランナTCbとの間で駆動力の伝達を行う。オイルポンプOPは、ポンプインペラTCaと一体回転するように駆動連結されており、動力入力軸Ipと一体回転する構成となっている。
動力入力軸Ip及びトルクコンバータTCは、第1仮想軸A1上に配置されている。 <Torque converter TC>
As shown in FIG. 1, the torque converter TC transmits the rotational driving force of the internal combustion engine ENG transmitted to the power input shaft Ip to the transmission device TM side via hydraulic oil filled therein. It is. The torque converter TC includes a pump impeller TCa as an input side rotating member drivingly connected to the power input shaft Ip, a turbine runner TCb as an output side rotating member drivingly connected to the transmission input shaft I, and a gap between them. And a stator TCc provided with a one-way clutch. The torque converter TC transmits driving force between the driving-side pump impeller TCa and the driven-side turbine runner TCb via hydraulic oil filled therein. The oil pump OP is drivingly coupled so as to rotate integrally with the pump impeller TCa, and is configured to rotate integrally with the power input shaft Ip.
The power input shaft Ip and the torque converter TC are disposed on the first virtual axis A1.
トルクコンバータTCは、ロックアップ用の係合装置として、ロックアップクラッチLCを備えている。このロックアップクラッチLCは、ポンプインペラTCaとタービンランナTCbとの間の回転差(滑り)をなくして伝達効率を高めるために、ポンプインペラTCaとタービンランナTCbとを一体回転させるように連結するクラッチである。したがって、トルクコンバータTCは、ロックアップクラッチLCが係合すると、作動油を介さずに、内燃機関ENGの駆動力を変速入力軸Iに伝達する。また、トルクコンバータTCは、ダンパDPを備えている。
The torque converter TC is provided with a lockup clutch LC as an engagement device for lockup. This lock-up clutch LC is a clutch that connects the pump impeller TCa and the turbine runner TCb so as to rotate together to eliminate the rotational difference (slip) between the pump impeller TCa and the turbine runner TCb and increase the transmission efficiency. It is. Therefore, when the lockup clutch LC is engaged, the torque converter TC transmits the driving force of the internal combustion engine ENG to the transmission input shaft I without passing through the hydraulic oil. Further, the torque converter TC includes a damper DP.
<変速装置TM>
変速装置TMは、所定の変速比で変速入力軸Iの回転を変速して変速出力部材Oへ伝達すると共に、所定の変速比に応じて変速入力軸Iのトルクを変換して変速出力部材Oに伝達するように構成されている。ここで、変速比は変更可能である。
本実施形態では、変速装置TMは、変速比の異なる複数の変速段を有する有段の自動変速装置である。変速装置TMは、これら複数の変速段を形成するため、遊星歯車機構等の歯車機構及び摩擦係合装置などの係合装置を備えている。変速装置TMは、各変速段の変速比で、変速入力軸Iの回転速度を変速するとともに変速入力軸Iのトルクを変換して、変速出力部材Oへ伝達する。変速装置TMから変速出力部材Oへ伝達されたトルクは、カウンタギヤ機構CG及び出力用差動歯車機構DFを介して左右二つの車軸AXに分配されて伝達され、各車軸AXに駆動連結された車輪Wに伝達される。ここで、変速比は、変速装置TMにおいて各変速段が形成された場合の、変速出力部材Oの回転速度に対する変速入力軸Iの回転速度の比であり、本願では変速入力軸Iの回転速度を変速出力部材Oの回転速度で除算した値である。すなわち、変速入力軸Iの回転速度を変速比で除算した回転速度が、変速出力部材Oの回転速度になる。また、変速入力軸Iから変速装置TMに伝達されるトルクに、変速比を乗算したトルクが、変速装置TMから変速出力部材Oに伝達されるトルクになる。 <Transmission device TM>
The transmission TM shifts the rotation of the transmission input shaft I at a predetermined transmission ratio and transmits it to the transmission output member O, and converts the torque of the transmission input shaft I according to the predetermined transmission ratio to change the transmission output member O. Is configured to communicate. Here, the gear ratio can be changed.
In the present embodiment, the transmission apparatus TM is a stepped automatic transmission apparatus having a plurality of shift stages having different speed ratios. The transmission apparatus TM includes a gear mechanism such as a planetary gear mechanism and an engagement device such as a friction engagement device in order to form the plurality of gear speeds. The transmission TM shifts the rotational speed of the transmission input shaft I at the gear ratio of each gear stage, converts the torque of the transmission input shaft I, and transmits it to the transmission output member O. Torque transmitted from the transmission TM to the transmission output member O is distributed and transmitted to the two left and right axles AX via the counter gear mechanism CG and the output differential gear mechanism DF, and is connected to each axle AX. It is transmitted to the wheel W. Here, the transmission gear ratio is the ratio of the rotational speed of the transmission input shaft I to the rotational speed of the transmission output member O when each gear stage is formed in the transmission apparatus TM. Is divided by the rotational speed of the speed change output member O. That is, the rotational speed obtained by dividing the rotational speed of the transmission input shaft I by the transmission ratio becomes the rotational speed of the transmission output member O. Further, torque obtained by multiplying the torque transmitted from the transmission input shaft I to the transmission TM by the transmission ratio becomes the torque transmitted from the transmission TM to the transmission output member O.
変速装置TMは、所定の変速比で変速入力軸Iの回転を変速して変速出力部材Oへ伝達すると共に、所定の変速比に応じて変速入力軸Iのトルクを変換して変速出力部材Oに伝達するように構成されている。ここで、変速比は変更可能である。
本実施形態では、変速装置TMは、変速比の異なる複数の変速段を有する有段の自動変速装置である。変速装置TMは、これら複数の変速段を形成するため、遊星歯車機構等の歯車機構及び摩擦係合装置などの係合装置を備えている。変速装置TMは、各変速段の変速比で、変速入力軸Iの回転速度を変速するとともに変速入力軸Iのトルクを変換して、変速出力部材Oへ伝達する。変速装置TMから変速出力部材Oへ伝達されたトルクは、カウンタギヤ機構CG及び出力用差動歯車機構DFを介して左右二つの車軸AXに分配されて伝達され、各車軸AXに駆動連結された車輪Wに伝達される。ここで、変速比は、変速装置TMにおいて各変速段が形成された場合の、変速出力部材Oの回転速度に対する変速入力軸Iの回転速度の比であり、本願では変速入力軸Iの回転速度を変速出力部材Oの回転速度で除算した値である。すなわち、変速入力軸Iの回転速度を変速比で除算した回転速度が、変速出力部材Oの回転速度になる。また、変速入力軸Iから変速装置TMに伝達されるトルクに、変速比を乗算したトルクが、変速装置TMから変速出力部材Oに伝達されるトルクになる。 <Transmission device TM>
The transmission TM shifts the rotation of the transmission input shaft I at a predetermined transmission ratio and transmits it to the transmission output member O, and converts the torque of the transmission input shaft I according to the predetermined transmission ratio to change the transmission output member O. Is configured to communicate. Here, the gear ratio can be changed.
In the present embodiment, the transmission apparatus TM is a stepped automatic transmission apparatus having a plurality of shift stages having different speed ratios. The transmission apparatus TM includes a gear mechanism such as a planetary gear mechanism and an engagement device such as a friction engagement device in order to form the plurality of gear speeds. The transmission TM shifts the rotational speed of the transmission input shaft I at the gear ratio of each gear stage, converts the torque of the transmission input shaft I, and transmits it to the transmission output member O. Torque transmitted from the transmission TM to the transmission output member O is distributed and transmitted to the two left and right axles AX via the counter gear mechanism CG and the output differential gear mechanism DF, and is connected to each axle AX. It is transmitted to the wheel W. Here, the transmission gear ratio is the ratio of the rotational speed of the transmission input shaft I to the rotational speed of the transmission output member O when each gear stage is formed in the transmission apparatus TM. Is divided by the rotational speed of the speed change output member O. That is, the rotational speed obtained by dividing the rotational speed of the transmission input shaft I by the transmission ratio becomes the rotational speed of the transmission output member O. Further, torque obtained by multiplying the torque transmitted from the transmission input shaft I to the transmission TM by the transmission ratio becomes the torque transmitted from the transmission TM to the transmission output member O.
本実施形態では、変速装置TMは変速比(減速比)の異なる4つの変速段(第一段1st、第二段2nd、第三段3rd、第四段4th)を前進段として備えている。これらの変速段を構成するため、変速装置TMは、遊星歯車機構PLGを備えてなる歯車機構と、6つの係合装置C1、C2、C3、B1、B2、F1と、を備えて構成されている。ワンウェイクラッチF1を除くこれら複数の係合装置C1、B1・・・の係合及び解放を制御して、遊星歯車機構PLGの各回転要素の回転状態を切り替え、複数の係合装置C1、B1・・・を選択的に係合することにより、4つの変速段が切り替えられる。なお、変速装置TMは、上記4つの変速段のほかに、一段の後進段Revも備えている。
In this embodiment, the transmission apparatus TM includes four shift speeds (first speed 1st, second speed 2nd, third speed 3rd, and fourth speed 4th) having different speed ratios (reduction ratios) as forward speeds. In order to configure these shift speeds, the transmission TM includes a gear mechanism including a planetary gear mechanism PLG and six engagement devices C1, C2, C3, B1, B2, and F1. Yes. The engagement and disengagement of the plurality of engagement devices C1, B1,... Excluding the one-way clutch F1 are controlled to switch the rotation state of each rotation element of the planetary gear mechanism PLG, and the plurality of engagement devices C1, B1,. ... Are selectively engaged to switch the four shift speeds. Note that the transmission apparatus TM includes a reverse gear Rev in addition to the above four gears.
本実施形態においては、遊星歯車機構PLGは、変速入力軸Iと同軸上に配置されたラビニヨ型の遊星歯車機構とされている。すなわち、遊星歯車機構は、第一サンギヤS1及び第二サンギヤS2の二つのサンギヤと、リングギヤRと、第二サンギヤS2及びリングギヤRの双方に噛み合うロングピニオンギヤP1並びにロングピニオンギヤP1及び第一サンギヤS1に噛み合うショートピニオンギヤP2を支持する共通のキャリアCAと、の四つの回転要素を有して構成されている。
In the present embodiment, the planetary gear mechanism PLG is a Ravigneaux type planetary gear mechanism arranged coaxially with the transmission input shaft I. That is, the planetary gear mechanism includes two sun gears, a first sun gear S1 and a second sun gear S2, a ring gear R, a long pinion gear P1, a long pinion gear P1, and a first sun gear S1 that mesh with both the second sun gear S2 and the ring gear R. It has four rotating elements, which are a common carrier CA that supports the meshing short pinion gear P2.
遊星歯車機構PLGの第二サンギヤS2は、第三クラッチC3を介して変速入力軸Iと選択的に一体回転するように駆動連結される。キャリアCAは、第二クラッチC2を介して変速入力軸Iと選択的に一体回転するように駆動連結されるとともに、第二ブレーキB2又はワンウェイクラッチF1を介して非回転部材としてのケースCSに選択的に固定される。リングギヤRは、変速出力部材Oと一体回転するように駆動連結されている。第一サンギヤS1は、第一クラッチC1を介して変速入力軸Iと選択的に一体回転するように駆動連結される。
The second sun gear S2 of the planetary gear mechanism PLG is drive-coupled to selectively rotate integrally with the transmission input shaft I via the third clutch C3. The carrier CA is drive-coupled to selectively rotate integrally with the transmission input shaft I via the second clutch C2, and is selected as a case CS as a non-rotating member via the second brake B2 or the one-way clutch F1. Fixed. The ring gear R is drivingly connected so as to rotate integrally with the transmission output member O. The first sun gear S1 is drivably coupled to the transmission input shaft I via the first clutch C1 so as to selectively rotate integrally.
本実施形態では、ワンウェイクラッチF1を除く各係合装置C1、C2、C3、B1、B2は、いずれも摩擦係合装置とされている。具体的には、これらは油圧により動作する多板式クラッチや多板式ブレーキにより構成されている。これらの係合装置C1、C2、C3、B1、B2は、油圧制御装置から供給される油圧により、係合の状態が制御される。
In the present embodiment, each of the engagement devices C1, C2, C3, B1, and B2 except the one-way clutch F1 is a friction engagement device. Specifically, these are constituted by a multi-plate clutch or a multi-plate brake operated by hydraulic pressure. The engagement states of these engagement devices C1, C2, C3, B1, and B2 are controlled by the hydraulic pressure supplied from the hydraulic control device.
次に、変速装置TMにより実現される4つの変速段について説明する。図4は、各変速段での複数の係合装置C1、B1・・・の作動状態を示す作動表である。この図において、「○」は各係合装置が係合状態にあることを示しており、「無印」は、各係合装置が解放状態にあることを示している。「(○)」は、エンジンブレーキを行う場合などにおいて、係合装置が係合状態にされることを示している。また、「△」は、一方向に回転する(キャリアCAが正方向に回転する)場合には解放した状態となり、他方向に回転する(キャリアCAが負方向に回転する)場合には係合した状態となることを示している。
Next, the four shift speeds realized by the transmission TM will be described. FIG. 4 is an operation table showing operation states of the plurality of engagement devices C1, B1,. In this figure, “◯” indicates that each engaging device is in an engaged state, and “no mark” indicates that each engaging device is in a released state. “(◯)” indicates that the engagement device is brought into an engaged state when engine braking is performed. “△” indicates a released state when rotating in one direction (the carrier CA rotates in the positive direction) and engaging when rotating in the other direction (the carrier CA rotates in the negative direction). It shows that it will be in the state.
図5は、変速装置TMの速度線図である。この速度線図において、縦軸は、各回転要素の回転速度に対応している。すなわち、縦軸に対応して記載している「0」は回転速度がゼロであることを示しており、上側が正回転(回転速度が正)、下側が負回転(回転速度が負)である。そして、並列配置された複数本の縦線のそれぞれが、遊星歯車機構PLGの各回転要素に対応している。すなわち、各縦線の上側に記載されている「S1」、「R」、「CA」、「S2」はそれぞれ遊星歯車機構PLGの第一サンギヤS1、リングギヤR、キャリアCA、第二サンギヤS2に対応している。また、並列配置された複数本の縦線間の間隔は、遊星歯車機構PLGのギヤ比λ(サンギヤとリングギヤとの歯数比=〔サンギヤの歯数〕/〔リングギヤの歯数〕)に基づいて定まっている。
FIG. 5 is a speed diagram of the transmission TM. In this velocity diagram, the vertical axis corresponds to the rotational speed of each rotating element. That is, “0” described corresponding to the vertical axis indicates that the rotation speed is zero, the upper side is positive rotation (rotation speed is positive), and the lower side is negative rotation (rotation speed is negative). is there. Each of the plurality of vertical lines arranged in parallel corresponds to each rotating element of the planetary gear mechanism PLG. That is, “S1”, “R”, “CA”, and “S2” described above each vertical line are respectively connected to the first sun gear S1, the ring gear R, the carrier CA, and the second sun gear S2 of the planetary gear mechanism PLG. It corresponds. The interval between the plurality of vertical lines arranged in parallel is based on the gear ratio λ of the planetary gear mechanism PLG (the gear ratio between the sun gear and the ring gear = [the number of teeth of the sun gear] / [the number of teeth of the ring gear]). It is determined.
また、「●」は、各回転要素に連結された係合装置が、直結係合状態にあることを示している。それぞれの「●」に隣接して記載された「C1」、「C2」、「C3」、「B1」、「B2」、「F1」は、直結係合状態にされた係合装置を示している。「☆」は、変速出力部材Oに連結される回転要素(遊星歯車機構PLGのリングギヤR)の回転速度の状態を示している。なお、それぞれの「☆」に隣接して記載された「1st」、「2nd」、「3rd」、「4th」、及び「Rev」は、形成される変速段を示している。
In addition, “●” indicates that the engaging device connected to each rotating element is in a directly connected state. “C1”, “C2”, “C3”, “B1”, “B2”, and “F1” written adjacent to each “●” indicate the engagement devices in the direct engagement state. Yes. “☆” indicates the state of the rotational speed of the rotating element (ring gear R of the planetary gear mechanism PLG) connected to the transmission output member O. Note that “1st”, “2nd”, “3rd”, “4th”, and “Rev”, which are described adjacent to each “☆”, indicate the shift speeds that are formed.
図4及び図5に示すように、第一段1stは、第一クラッチC1の係合とワンウェイクラッチF1とが協働して実現される。すなわち、第一クラッチC1が係合した状態で、変速入力軸Iの回転駆動力が第一サンギヤS1に伝達されると、ワンウェイクラッチF1が係合した状態となってケースCSに固定される。そして、第一サンギヤS1の回転駆動力がギヤ比λ1に基づいて減速されて変速出力部材Oに伝達される。
As shown in FIGS. 4 and 5, the first stage 1st is realized by the engagement of the first clutch C1 and the one-way clutch F1. That is, when the rotational driving force of the transmission input shaft I is transmitted to the first sun gear S1 with the first clutch C1 engaged, the one-way clutch F1 is engaged and fixed to the case CS. Then, the rotational driving force of the first sun gear S1 is decelerated based on the gear ratio λ1 and transmitted to the transmission output member O.
また、第一段1stは、エンジンブレーキなどを行うときに、第一クラッチC1の係合と第二ブレーキB2の係合とが協働しても実現される。第一クラッチC1が係合すると、変速入力軸Iの回転駆動力が第一サンギヤS1に伝達される。また、第二ブレーキB2が係合すると、キャリアCAがケースCSに固定される。そして、第一サンギヤS1の回転駆動力がギヤ比λ1に基づいて減速されて変速出力部材Oに伝達される。
Also, the first stage 1st is realized even when the engagement of the first clutch C1 and the engagement of the second brake B2 cooperate when performing engine braking or the like. When the first clutch C1 is engaged, the rotational driving force of the transmission input shaft I is transmitted to the first sun gear S1. Further, when the second brake B2 is engaged, the carrier CA is fixed to the case CS. Then, the rotational driving force of the first sun gear S1 is decelerated based on the gear ratio λ1 and transmitted to the transmission output member O.
第二段2ndは、第一クラッチC1の係合と第一ブレーキB1の係合とが協働して実現される。すなわち、第一クラッチC1が係合すると、変速入力軸Iの回転駆動力が第一サンギヤS1に伝達される。また、第一ブレーキB1が係合すると、第二サンギヤS2がケースCSに固定される。そして、第一サンギヤS1の回転駆動力がギヤ比λ1及びλ2に基づいて減速されて変速出力部材Oに伝達される。
The second stage 2nd is realized by cooperation of the engagement of the first clutch C1 and the engagement of the first brake B1. That is, when the first clutch C1 is engaged, the rotational driving force of the transmission input shaft I is transmitted to the first sun gear S1. Further, when the first brake B1 is engaged, the second sun gear S2 is fixed to the case CS. Then, the rotational driving force of the first sun gear S1 is decelerated based on the gear ratios λ1 and λ2 and transmitted to the transmission output member O.
第三段3rdは、第一クラッチC1の係合と第二クラッチC2の係合とが協働して実現される。すなわち、第一クラッチC1が係合すると、変速入力軸Iの回転駆動力が第一サンギヤS1に伝達される。また、第二クラッチC2が係合すると、変速入力軸Iの回転駆動力が第二サンギヤS2に伝達される。そして、第二サンギヤS2と第一サンギヤS1とが同速度で回転することで、変速入力軸Iの回転駆動力がそのまま変速出力部材Oに伝達される。
The third stage 3rd is realized by the cooperation of the first clutch C1 and the engagement of the second clutch C2. That is, when the first clutch C1 is engaged, the rotational driving force of the transmission input shaft I is transmitted to the first sun gear S1. When the second clutch C2 is engaged, the rotational driving force of the transmission input shaft I is transmitted to the second sun gear S2. Then, the second sun gear S2 and the first sun gear S1 rotate at the same speed, so that the rotational driving force of the transmission input shaft I is transmitted to the transmission output member O as it is.
第四段4thは、第二クラッチC2の係合と第一ブレーキB1の係合とが協働して実現される。すなわち、第二クラッチC2が係合すると、変速入力軸Iの回転駆動力がキャリアCAに伝達される。また、第一ブレーキB1が係合すると、第二サンギヤS2がケースCSに固定される。そして、キャリアCAの回転駆動力がギヤ比λ2に基づいて増速されて変速出力部材Oに伝達される。
The fourth stage 4th is realized by the cooperation of the second clutch C2 and the engagement of the first brake B1. That is, when the second clutch C2 is engaged, the rotational driving force of the transmission input shaft I is transmitted to the carrier CA. Further, when the first brake B1 is engaged, the second sun gear S2 is fixed to the case CS. Then, the rotational driving force of the carrier CA is increased based on the gear ratio λ2 and transmitted to the transmission output member O.
これらの前進段は、変速入力軸Iと変速出力部材Oとの間の変速比(減速比)が大きい順に、第一段1st、第二段2nd、第三段3rd、及び第四段4thとなっている。
These forward speeds are, in descending order of the speed ratio (reduction ratio) between the speed change input shaft I and the speed change output member O, the first speed 1st, the second speed 2nd, the third speed 3rd, and the fourth speed 4th. It has become.
後進段Revは、第三クラッチC3の係合と第二ブレーキB2の係合とが協働して実現される。すなわち、第三クラッチC3が係合すると、変速入力軸Iの回転駆動力が第二サンギヤS2に伝達される。また、第二ブレーキB2が係合すると、キャリアCAがケースCSに固定される。そして、第二サンギヤS2の回転駆動力がギヤ比λ2に基づいて減速されるとともに回転方向が逆転されて変速出力部材Oに伝達される。
The reverse speed Rev is realized by the engagement of the third clutch C3 and the engagement of the second brake B2. That is, when the third clutch C3 is engaged, the rotational driving force of the transmission input shaft I is transmitted to the second sun gear S2. Further, when the second brake B2 is engaged, the carrier CA is fixed to the case CS. Then, the rotational driving force of the second sun gear S2 is decelerated based on the gear ratio λ2, and the rotational direction is reversed and transmitted to the transmission output member O.
このように、変速装置TMは、前進段1st、2nd・・・と後進段Revとを変更可能に備えることにより、変速入力軸Iの回転方向と変速出力部材Oの回転方向とが同じになる正転伝達状態と、これらの回転方向が逆になる逆転伝達状態とを変更可能に構成されている。
As described above, the transmission apparatus TM includes the forward gears 1st, 2nd,... And the reverse gear Rev so that the rotational direction of the transmission input shaft I is the same as the rotational direction of the transmission output member O. The forward rotation transmission state and the reverse rotation transmission state in which these rotation directions are reversed can be changed.
<回転電機MG>
図1に示すように、回転電機MGは、ケースCSに固定されたステータStと、当該ステータStの径方向内側に回転自在に支持されたロータRoと、を有している。ロータRoは、ロータ軸SRを介して電機出力ギヤGMoと一体回転するように駆動連結されている。回転電機MGは、第2仮想軸A2上に配置されている。 <Rotary electric machine MG>
As illustrated in FIG. 1, the rotating electrical machine MG includes a stator St fixed to the case CS and a rotor Ro that is rotatably supported on the radially inner side of the stator St. The rotor Ro is drivably coupled to the electric machine output gear GMo via the rotor shaft SR. The rotating electrical machine MG is disposed on the second virtual axis A2.
図1に示すように、回転電機MGは、ケースCSに固定されたステータStと、当該ステータStの径方向内側に回転自在に支持されたロータRoと、を有している。ロータRoは、ロータ軸SRを介して電機出力ギヤGMoと一体回転するように駆動連結されている。回転電機MGは、第2仮想軸A2上に配置されている。 <Rotary electric machine MG>
As illustrated in FIG. 1, the rotating electrical machine MG includes a stator St fixed to the case CS and a rotor Ro that is rotatably supported on the radially inner side of the stator St. The rotor Ro is drivably coupled to the electric machine output gear GMo via the rotor shaft SR. The rotating electrical machine MG is disposed on the second virtual axis A2.
図2に示すように、ロータ軸SRは、軸受を介して回転可能な状態でケースCSに支持されている。図2に示す例では、ロータ軸SRは、ロータRoを支持するロータ支持軸SR1と、電機出力ギヤGMoを支持する出力ギヤ支持軸SR2と、から構成されている。そして、ロータ支持軸SR1の軸第一方向X1の端部の内周面が、出力ギヤ支持軸SR2の軸第二方向X2側の端部の外周面とスプライン嵌合されており、ロータ支持軸SR1と出力ギヤ支持軸SR2とが一体回転するように構成されている。
ロータ支持軸SR1の軸方向両側の端部、及び出力ギヤ支持軸SR2の軸方向両側の端部は、それぞれ軸受を介して回転可能な状態でケースCSに支持されている。出力ギヤ支持軸SR2の外周面には、電機出力ギヤGMoが形成されている。 As shown in FIG. 2, the rotor shaft SR is supported by the case CS so as to be rotatable via a bearing. In the example illustrated in FIG. 2, the rotor shaft SR includes a rotor support shaft SR1 that supports the rotor Ro, and an output gear support shaft SR2 that supports the electric machine output gear GMo. The inner peripheral surface of the end portion in the first shaft direction X1 of the rotor support shaft SR1 is spline-fitted with the outer peripheral surface of the end portion on the second shaft direction X2 side of the output gear support shaft SR2, and the rotor support shaft SR1 and output gear support shaft SR2 are configured to rotate integrally.
Ends on both sides in the axial direction of the rotor support shaft SR1 and ends on both sides in the axial direction of the output gear support shaft SR2 are supported by the case CS so as to be rotatable via bearings. An electric machine output gear GMo is formed on the outer peripheral surface of the output gear support shaft SR2.
ロータ支持軸SR1の軸方向両側の端部、及び出力ギヤ支持軸SR2の軸方向両側の端部は、それぞれ軸受を介して回転可能な状態でケースCSに支持されている。出力ギヤ支持軸SR2の外周面には、電機出力ギヤGMoが形成されている。 As shown in FIG. 2, the rotor shaft SR is supported by the case CS so as to be rotatable via a bearing. In the example illustrated in FIG. 2, the rotor shaft SR includes a rotor support shaft SR1 that supports the rotor Ro, and an output gear support shaft SR2 that supports the electric machine output gear GMo. The inner peripheral surface of the end portion in the first shaft direction X1 of the rotor support shaft SR1 is spline-fitted with the outer peripheral surface of the end portion on the second shaft direction X2 side of the output gear support shaft SR2, and the rotor support shaft SR1 and output gear support shaft SR2 are configured to rotate integrally.
Ends on both sides in the axial direction of the rotor support shaft SR1 and ends on both sides in the axial direction of the output gear support shaft SR2 are supported by the case CS so as to be rotatable via bearings. An electric machine output gear GMo is formed on the outer peripheral surface of the output gear support shaft SR2.
回転電機MGは、直流交流変換を行うインバータを介して蓄電装置としてのバッテリに電気的に接続されている。そして、回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能と、を果たすことが可能とされている。すなわち、回転電機MGは、インバータを介してバッテリからの電力供給を受けて力行し、或いは内燃機関ENGや車輪Wから伝達される回転駆動力により発電し、発電された電力は、インバータを介してバッテリに蓄電される。
Rotating electrical machine MG is electrically connected to a battery as a power storage device via an inverter that performs DC / AC conversion. The rotating electrical machine MG can perform a function as a motor (electric motor) that generates power upon receiving power supply and a function as a generator (generator) that generates power upon receiving power supply. It is possible. That is, the rotating electrical machine MG is powered by receiving power supply from the battery via the inverter, or generates power by the rotational driving force transmitted from the internal combustion engine ENG or the wheel W, and the generated power is transmitted via the inverter. It is stored in the battery.
<カウンタギヤ機構CG>
図1に示すように、カウンタギヤ機構CGは、変速出力部材Oの回転を減速して出力用差動歯車機構DFへ伝達する。カウンタギヤ機構CGは、カウンタ入力ギヤGCiと、当該カウンタ入力ギヤGCiより小径のカウンタ出力ギヤGCoとがカウンタ軸SCにより連結されて一体回転するように構成されている。図2に示すように、カウンタ軸SCの軸方向両側の端部は、軸受を介して回転可能な状態でケースCSに支持されている。カウンタギヤ機構CGは、第3仮想軸A3上に配置されている。
カウンタ入力ギヤGCiは、変速出力部材Oに設けられた変速出力ギヤGToに噛み合っている。また、カウンタ入力ギヤGCiは、変速出力ギヤGToとは周方向の異なる位置で、回転電機MGのロータRoと一体回転する電機出力ギヤGMoに噛み合っている(図3参照)。カウンタ出力ギヤGCoは、出力用差動歯車機構DFに設けられた差動入力ギヤGDiに噛み合っている。 <Counter gear mechanism CG>
As shown in FIG. 1, the counter gear mechanism CG decelerates the rotation of the speed change output member O and transmits it to the output differential gear mechanism DF. The counter gear mechanism CG is configured such that a counter input gear GCi and a counter output gear GCo having a smaller diameter than the counter input gear GCi are connected by a counter shaft SC and rotate integrally. As shown in FIG. 2, both ends of the counter shaft SC in the axial direction are supported by the case CS in a rotatable state via bearings. The counter gear mechanism CG is disposed on the third virtual axis A3.
The counter input gear GCi meshes with a transmission output gear GTo provided on the transmission output member O. Further, the counter input gear GCi meshes with the electric machine output gear GMo that rotates integrally with the rotor Ro of the rotary electric machine MG at a position different from the transmission output gear GTo in the circumferential direction (see FIG. 3). The counter output gear GCo meshes with a differential input gear GDi provided in the output differential gear mechanism DF.
図1に示すように、カウンタギヤ機構CGは、変速出力部材Oの回転を減速して出力用差動歯車機構DFへ伝達する。カウンタギヤ機構CGは、カウンタ入力ギヤGCiと、当該カウンタ入力ギヤGCiより小径のカウンタ出力ギヤGCoとがカウンタ軸SCにより連結されて一体回転するように構成されている。図2に示すように、カウンタ軸SCの軸方向両側の端部は、軸受を介して回転可能な状態でケースCSに支持されている。カウンタギヤ機構CGは、第3仮想軸A3上に配置されている。
カウンタ入力ギヤGCiは、変速出力部材Oに設けられた変速出力ギヤGToに噛み合っている。また、カウンタ入力ギヤGCiは、変速出力ギヤGToとは周方向の異なる位置で、回転電機MGのロータRoと一体回転する電機出力ギヤGMoに噛み合っている(図3参照)。カウンタ出力ギヤGCoは、出力用差動歯車機構DFに設けられた差動入力ギヤGDiに噛み合っている。 <Counter gear mechanism CG>
As shown in FIG. 1, the counter gear mechanism CG decelerates the rotation of the speed change output member O and transmits it to the output differential gear mechanism DF. The counter gear mechanism CG is configured such that a counter input gear GCi and a counter output gear GCo having a smaller diameter than the counter input gear GCi are connected by a counter shaft SC and rotate integrally. As shown in FIG. 2, both ends of the counter shaft SC in the axial direction are supported by the case CS in a rotatable state via bearings. The counter gear mechanism CG is disposed on the third virtual axis A3.
The counter input gear GCi meshes with a transmission output gear GTo provided on the transmission output member O. Further, the counter input gear GCi meshes with the electric machine output gear GMo that rotates integrally with the rotor Ro of the rotary electric machine MG at a position different from the transmission output gear GTo in the circumferential direction (see FIG. 3). The counter output gear GCo meshes with a differential input gear GDi provided in the output differential gear mechanism DF.
<出力用差動歯車機構DF>
出力用差動歯車機構DFは、差動入力ギヤGDiを有し、当該差動入力ギヤGDiに伝達されるトルクを複数の車輪Wに分配して伝達する。本例では、出力用差動歯車機構DFは、互いに噛み合う複数の傘歯車DF1、DF2を用いた差動歯車機構とされており、差動入力ギヤGDiに伝達されるトルクを分配して、それぞれ車軸AXを介して左右2つの車輪Wに伝達する。出力用差動歯車機構DFは、第4仮想軸A4上に配置されている。第4仮想軸A4は、第1仮想軸A1、第2仮想軸A2、及び第3仮想軸A3と平行に配置されている。 <Output differential gear mechanism DF>
The output differential gear mechanism DF has a differential input gear GDi, and distributes torque transmitted to the differential input gear GDi to the plurality of wheels W for transmission. In this example, the output differential gear mechanism DF is a differential gear mechanism using a plurality of bevel gears DF1 and DF2 meshing with each other, and distributes torque transmitted to the differential input gear GDi, This is transmitted to the left and right wheels W via the axle AX. The output differential gear mechanism DF is disposed on the fourth virtual axis A4. The fourth virtual axis A4 is arranged in parallel with the first virtual axis A1, the second virtual axis A2, and the third virtual axis A3.
出力用差動歯車機構DFは、差動入力ギヤGDiを有し、当該差動入力ギヤGDiに伝達されるトルクを複数の車輪Wに分配して伝達する。本例では、出力用差動歯車機構DFは、互いに噛み合う複数の傘歯車DF1、DF2を用いた差動歯車機構とされており、差動入力ギヤGDiに伝達されるトルクを分配して、それぞれ車軸AXを介して左右2つの車輪Wに伝達する。出力用差動歯車機構DFは、第4仮想軸A4上に配置されている。第4仮想軸A4は、第1仮想軸A1、第2仮想軸A2、及び第3仮想軸A3と平行に配置されている。 <Output differential gear mechanism DF>
The output differential gear mechanism DF has a differential input gear GDi, and distributes torque transmitted to the differential input gear GDi to the plurality of wheels W for transmission. In this example, the output differential gear mechanism DF is a differential gear mechanism using a plurality of bevel gears DF1 and DF2 meshing with each other, and distributes torque transmitted to the differential input gear GDi, This is transmitted to the left and right wheels W via the axle AX. The output differential gear mechanism DF is disposed on the fourth virtual axis A4. The fourth virtual axis A4 is arranged in parallel with the first virtual axis A1, the second virtual axis A2, and the third virtual axis A3.
本実施形態では、出力用差動歯車機構DFは、差動入力ギヤGDiと一体回転する差動キャリアDF4を備えている。差動キャリアDF4内には、各車軸AXとそれぞれ一体回転する一対のサイドギヤDF2と、当該2つのサイドギヤDF2をつなぐと共に差動キャリアDF4と共に回転する一対のピニオンギヤDF1と、が収容されている。
In the present embodiment, the output differential gear mechanism DF includes a differential carrier DF4 that rotates integrally with the differential input gear GDi. In the differential carrier DF4, a pair of side gears DF2 that rotate integrally with the respective axles AX, and a pair of pinion gears DF1 that connect the two side gears DF2 and rotate together with the differential carrier DF4 are accommodated.
差動キャリアDF4は、差動キャリアDF4と一体回転するピニオン回転軸DF3を備えており、ピニオンギヤDF1は、ピニオン回転軸DF3周りに自転可能に支持されている。各ピニオンギヤDF1は、左右二つのサイドギヤDF2の双方と噛み合っている。差動キャリアDF4が回転すると、差動キャリアDF4と共に回転するピニオンギヤDF1を介して、左右二つのサイドギヤDF2が回転し、各サイドギヤDF2に駆動連結された各車軸AXが回転する。そして、各車軸AXが回転すると、各車軸AXに駆動連結された各車輪Wが回転する。なお、各ピニオンギヤDF1は、ピニオン回転軸DF3周りに回転することにより、左右二つのサイドギヤDF2を差動動作させる。
The differential carrier DF4 includes a pinion rotation shaft DF3 that rotates integrally with the differential carrier DF4, and the pinion gear DF1 is supported so as to be capable of rotating about the pinion rotation shaft DF3. Each pinion gear DF1 meshes with both the left and right two side gears DF2. When the differential carrier DF4 rotates, the left and right side gears DF2 rotate via the pinion gear DF1 that rotates together with the differential carrier DF4, and each axle AX that is drivingly connected to each side gear DF2 rotates. When each axle AX rotates, each wheel W that is drivingly connected to each axle AX rotates. Each pinion gear DF1 rotates around the pinion rotation axis DF3 to differentially operate the left and right side gears DF2.
2.車両用駆動装置1の詳細構成
次に、本実施形態に係る車両用駆動装置1の詳細構成について説明する。
図1から図3に示すように、変速装置TMの変速出力部材Oに設けられた変速出力ギヤGToは、カウンタ入力ギヤGCiに噛み合っている。また、回転電機MGのロータRoと一体回転する電機出力ギヤGMoは、カウンタ入力ギヤGCiに噛み合っている。カウンタ出力ギヤGCoは、出力用差動歯車機構DFの差動入力ギヤGDiに噛み合っている。このように、回転電機MGの電機出力ギヤGMoを、変速装置TMの変速出力ギヤGToが噛み合うカウンタ入力ギヤGCiに噛み合うように構成することで、回転電機MG専用のカウンタギヤ機構などを設けることなく、回転電機MGを車輪Wに駆動連結させることができる。 2. Detailed Configuration ofVehicle Drive Device 1 Next, a detailed configuration of the vehicle drive device 1 according to the present embodiment will be described.
As shown in FIGS. 1 to 3, the transmission output gear GTo provided on the transmission output member O of the transmission TM is engaged with the counter input gear GCi. Further, the electric machine output gear GMo that rotates integrally with the rotor Ro of the rotary electric machine MG is engaged with the counter input gear GCi. The counter output gear GCo meshes with the differential input gear GDi of the output differential gear mechanism DF. In this way, the electric machine output gear GMo of the rotating electric machine MG is configured to mesh with the counter input gear GCi that meshes with the transmission output gear GTo of the transmission apparatus TM, so that a counter gear mechanism dedicated to the rotating electric machine MG is not provided. The rotating electrical machine MG can be drivingly connected to the wheel W.
次に、本実施形態に係る車両用駆動装置1の詳細構成について説明する。
図1から図3に示すように、変速装置TMの変速出力部材Oに設けられた変速出力ギヤGToは、カウンタ入力ギヤGCiに噛み合っている。また、回転電機MGのロータRoと一体回転する電機出力ギヤGMoは、カウンタ入力ギヤGCiに噛み合っている。カウンタ出力ギヤGCoは、出力用差動歯車機構DFの差動入力ギヤGDiに噛み合っている。このように、回転電機MGの電機出力ギヤGMoを、変速装置TMの変速出力ギヤGToが噛み合うカウンタ入力ギヤGCiに噛み合うように構成することで、回転電機MG専用のカウンタギヤ機構などを設けることなく、回転電機MGを車輪Wに駆動連結させることができる。 2. Detailed Configuration of
As shown in FIGS. 1 to 3, the transmission output gear GTo provided on the transmission output member O of the transmission TM is engaged with the counter input gear GCi. Further, the electric machine output gear GMo that rotates integrally with the rotor Ro of the rotary electric machine MG is engaged with the counter input gear GCi. The counter output gear GCo meshes with the differential input gear GDi of the output differential gear mechanism DF. In this way, the electric machine output gear GMo of the rotating electric machine MG is configured to mesh with the counter input gear GCi that meshes with the transmission output gear GTo of the transmission apparatus TM, so that a counter gear mechanism dedicated to the rotating electric machine MG is not provided. The rotating electrical machine MG can be drivingly connected to the wheel W.
また、回転電機MGの電機出力ギヤGMoは、カウンタ入力ギヤGCiより小径であり、カウンタ出力ギヤGCoは、カウンタ入力ギヤGCiより小径である。そのため、回転電機MGの回転は、電機出力ギヤGMo及びカウンタギヤ機構CGにより所定の変速比(減速比)で減速されて、出力用差動歯車機構DFに伝達される。よって、回転電機MG専用のカウンタギヤ機構などを設けることなく、回転電機MGの回転を2段階に減速して車輪Wに伝達させることができる。
Also, the electric machine output gear GMo of the rotating electric machine MG has a smaller diameter than the counter input gear GCi, and the counter output gear GCo has a smaller diameter than the counter input gear GCi. Therefore, the rotation of the rotating electrical machine MG is decelerated at a predetermined speed ratio (reduction ratio) by the electrical machine output gear GMo and the counter gear mechanism CG, and is transmitted to the output differential gear mechanism DF. Therefore, the rotation of the rotating electrical machine MG can be decelerated in two stages and transmitted to the wheels W without providing a counter gear mechanism dedicated to the rotating electrical machine MG.
変速装置TMより車輪W側の動力伝達経路に駆動連結された回転電機MGは、変速装置TMを介して車輪W側に駆動連結される内燃機関ENGに比べて、減速比を大きくし難い。しかし、本実施形態では、図1及び図2に示すように、電機出力ギヤGMoは、変速装置TMの変速出力ギヤGToより小径とされており、ロータRoから差動入力ギヤGDiまでの減速比は、変速出力部材Oから差動入力ギヤGDiまでの減速比より大きくされている。よって、内燃機関ENGから車輪Wまでの減速比とのバランスを取って、回転電機MGの回転を2段階に減速し車輪Wに伝達させることができる。
The rotating electrical machine MG that is drivingly connected to the power transmission path on the wheel W side from the transmission TM is less likely to increase the reduction ratio than the internal combustion engine ENG that is drivingly connected to the wheel W side via the transmission TM. However, in the present embodiment, as shown in FIGS. 1 and 2, the electric machine output gear GMo has a smaller diameter than the transmission output gear GTo of the transmission apparatus TM, and the reduction ratio from the rotor Ro to the differential input gear GDi. Is greater than the reduction ratio from the transmission output member O to the differential input gear GDi. Therefore, it is possible to balance the reduction ratio from the internal combustion engine ENG to the wheel W and to reduce the rotation of the rotating electrical machine MG in two stages and transmit it to the wheel W.
変速装置TMの変速入力軸Iと変速出力部材Oとは、第1仮想軸A1上に配置されている。そのため、変速装置TMを構成する歯車機構や係合装置も、第1仮想軸A1上に配置されている。そのため、変速装置TMの歯車機構や係合装置は、第1仮想軸A1周りに配置され、変速装置TMは、全体として軸方向に平行な円柱状の空間に配置可能になっている。また、カウンタ入力ギヤGCiは、変速出力ギヤGToに噛み合うように配置されているので、変速装置TMの径方向外側にカウンタギヤ機構CGが配置される。しかし、変速装置TMの軸方向長さは長く、カウンタギヤ機構CGの軸方向長さよりも短いので、変速装置TMの径方向外側にカウンタギヤ機構CGが配置されていない空間が生じる。よって、当該空間を有効利用するように、回転電機MGは、当該回転電機MGの径方向に見て変速装置TMと重複する部分を有すると共に、当該回転電機MGの軸方向に見てカウンタギヤ機構CGと重複する部分を有するように配置されている(図3参照)。よって、回転電機MGを備えても、車両用駆動装置1の軸方向の長さが長くなることを抑制できると共に、車両用駆動装置1の軸方向に直交する方向の長さが長くなることを抑制できる。
The transmission input shaft I and the transmission output member O of the transmission device TM are disposed on the first virtual axis A1. For this reason, the gear mechanism and the engagement device that constitute the transmission TM are also arranged on the first virtual axis A1. Therefore, the gear mechanism and the engagement device of the transmission device TM are arranged around the first virtual axis A1, and the transmission device TM can be arranged in a cylindrical space parallel to the axial direction as a whole. Further, since the counter input gear GCi is disposed so as to mesh with the transmission output gear GTo, the counter gear mechanism CG is disposed on the radially outer side of the transmission apparatus TM. However, since the axial length of the transmission device TM is long and shorter than the axial length of the counter gear mechanism CG, a space in which the counter gear mechanism CG is not arranged is formed outside the transmission device TM in the radial direction. Therefore, the rotating electrical machine MG has a portion that overlaps with the transmission device TM when viewed in the radial direction of the rotating electrical machine MG, and the counter gear mechanism when viewed in the axial direction of the rotating electrical machine MG so as to effectively use the space. It arrange | positions so that it may have a part which overlaps with CG (refer FIG. 3). Therefore, even if the rotating electrical machine MG is provided, it is possible to prevent the length of the vehicle drive device 1 from increasing in the axial direction and to increase the length of the vehicle drive device 1 in the direction orthogonal to the axial direction. Can be suppressed.
図1に示すように、変速装置TMは、構成部材として歯車機構及び係合装置を備え、少なくとも変速出力ギヤGToを除く構成部材が第1仮想軸A1の軸方向に並ぶ第一領域D1と第二領域D2とに分かれて配置され、第一領域D1と第二領域D2との間の中間領域DMに変速出力ギヤGToが配置される。
本実施形態では、中間領域DMに対して軸第一方向X1側に設定した領域を第一領域D1とし、中間領域DMに対して軸第二方向X2側に設定した領域を第二領域D2とする。第一領域D1に、構成部材としての第二クラッチC2が配置され、第二領域D2に、構成部材としての遊星歯車機構PLG、第一クラッチC1、第三クラッチC3、第一ブレーキB1、第二ブレーキB2、及びワンウェイクラッチF1が配置されている。中間領域DMに、構成部材としての変速出力ギヤGTo及び変速出力部材Oが配置されている。 As shown in FIG. 1, the transmission TM includes a gear mechanism and an engagement device as components, and at least the components excluding the gear shift output gear GTo are arranged in the first region D1 and the first region D1 aligned in the axial direction of the first virtual axis A1. The transmission output gear GTo is disposed in an intermediate region DM between the first region D1 and the second region D2.
In the present embodiment, a region set on the first axial direction X1 side with respect to the intermediate region DM is referred to as a first region D1, and a region set on the second axial direction X2 side with respect to the intermediate region DM is referred to as a second region D2. To do. A second clutch C2 as a component is disposed in the first region D1, and a planetary gear mechanism PLG, a first clutch C1, a third clutch C3, a first brake B1, and a second as components are disposed in the second region D2. A brake B2 and a one-way clutch F1 are arranged. A shift output gear GTo and a shift output member O as constituent members are arranged in the intermediate region DM.
本実施形態では、中間領域DMに対して軸第一方向X1側に設定した領域を第一領域D1とし、中間領域DMに対して軸第二方向X2側に設定した領域を第二領域D2とする。第一領域D1に、構成部材としての第二クラッチC2が配置され、第二領域D2に、構成部材としての遊星歯車機構PLG、第一クラッチC1、第三クラッチC3、第一ブレーキB1、第二ブレーキB2、及びワンウェイクラッチF1が配置されている。中間領域DMに、構成部材としての変速出力ギヤGTo及び変速出力部材Oが配置されている。 As shown in FIG. 1, the transmission TM includes a gear mechanism and an engagement device as components, and at least the components excluding the gear shift output gear GTo are arranged in the first region D1 and the first region D1 aligned in the axial direction of the first virtual axis A1. The transmission output gear GTo is disposed in an intermediate region DM between the first region D1 and the second region D2.
In the present embodiment, a region set on the first axial direction X1 side with respect to the intermediate region DM is referred to as a first region D1, and a region set on the second axial direction X2 side with respect to the intermediate region DM is referred to as a second region D2. To do. A second clutch C2 as a component is disposed in the first region D1, and a planetary gear mechanism PLG, a first clutch C1, a third clutch C3, a first brake B1, and a second as components are disposed in the second region D2. A brake B2 and a one-way clutch F1 are arranged. A shift output gear GTo and a shift output member O as constituent members are arranged in the intermediate region DM.
そのため、図示の例では、中間領域DMは、変速装置TMの軸方向長さにおいて、軸第一方向X1側に寄って配置されている。すなわち、第二領域D2の軸方向長さは、第一領域D1の軸方向長さよりも長くされており、第二領域D2における変速装置TMの径方向外側の空間は、第一領域D1における変速装置TMの径方向外側の空間よりも、軸方向に広くされている。そのため、第二領域D2の径方向外側の空間には、後述するように、カウンタ出力ギヤGCoより軸方向長さが長い回転電機MGを配置可能であり、第一領域D1の径方向外側の空間には、後述するように、比較的に軸方向長さが短いカウンタ出力ギヤGCoを無駄な空間が生じることなく配置可能である。
Therefore, in the illustrated example, the intermediate region DM is disposed closer to the first axial direction X1 side in the axial length of the transmission device TM. In other words, the axial length of the second region D2 is longer than the axial length of the first region D1, and the space outside the radial direction of the transmission device TM in the second region D2 is the speed change in the first region D1. It is made wider in the axial direction than the space on the radially outer side of the device TM. Therefore, as will be described later, a rotating electrical machine MG having a longer axial length than the counter output gear GCo can be disposed in the space outside the second region D2 in the radial direction, and the space outside the first region D1 in the radial direction. As will be described later, the counter output gear GCo having a relatively short axial length can be disposed without generating a useless space.
中間領域DMに配置された変速出力ギヤGToには、カウンタ入力ギヤGCiが噛み合っており、カウンタ入力ギヤGCiは、中間領域DMにおける変速装置TMの径方向外側の空間に配置されている。カウンタ出力ギヤGCoは、カウンタ入力ギヤGCiの軸第一方向X1側に配置されており、第一領域D1における変速装置TMの径方向外側の空間に配置されている。そのため、第二領域D2における変速装置TMの径方向外側の空間には、カウンタギヤ機構CGのギヤGCi、GCoが配置されておらず、回転電機MGを配置する空間が確保されている。
The counter output gear GCi meshes with the speed change output gear GTo disposed in the intermediate region DM, and the counter input gear GCi is disposed in a space radially outside the transmission device TM in the intermediate region DM. The counter output gear GCo is disposed on the first axial direction X1 side of the counter input gear GCi, and is disposed in a space radially outward of the transmission apparatus TM in the first region D1. Therefore, in the space outside the radial direction of the transmission TM in the second region D2, the gears GCi and GCo of the counter gear mechanism CG are not arranged, and a space for arranging the rotating electrical machine MG is secured.
本実施形態では、回転電機MGは、第二領域D2における変速装置TMの径方向外側の空間に配置されている。回転電機MG又は変速装置TMの径方向に見て、回転電機MGのロータRo及びステータStの全体は、変速装置TMの第二領域D2の部分と重複するように配置されている。回転電機MGと変速装置TMの第二領域D2の部分とは、図2に示すように、ケースCSの壁を介して、径方向に隣接して配置されている。
In the present embodiment, the rotating electrical machine MG is disposed in a radially outer space of the transmission apparatus TM in the second region D2. When viewed in the radial direction of the rotating electrical machine MG or the transmission TM, the entire rotor Ro and stator St of the rotating electrical machine MG are arranged so as to overlap with a portion of the second region D2 of the transmission TM. As shown in FIG. 2, the rotating electrical machine MG and the portion of the second region D2 of the transmission apparatus TM are disposed adjacent to each other in the radial direction via the wall of the case CS.
また、回転電機MGは、カウンタギヤ機構CG(カウンタ入力ギヤGCi)の軸第二方向X2側の空間に配置されている。回転電機MGとカウンタギヤ機構CGとは、図2に示すように、ケースCSの壁を介して、軸方向に隣接して配置されている。
The rotating electrical machine MG is disposed in the space on the side in the second axial direction X2 of the counter gear mechanism CG (counter input gear GCi). As shown in FIG. 2, the rotating electrical machine MG and the counter gear mechanism CG are disposed adjacent to each other in the axial direction via the wall of the case CS.
図3に示すように、回転電機MG又はカウンタギヤ機構CGの軸方向に見て、回転電機MGは、カウンタ入力ギヤGCi及びカウンタ出力ギヤGCoの一部(全体の1/4以上(本例では約1/3))と重複する部分を有するように配置されている。これは、電機出力ギヤGMoがカウンタ入力ギヤGCiより小径とされており、回転電機MGをカウンタギヤ機構CGが配置された第3仮想軸A3に近づけて配置することができるためである。
As shown in FIG. 3, when viewed in the axial direction of the rotating electrical machine MG or the counter gear mechanism CG, the rotating electrical machine MG is a part of the counter input gear GCi and the counter output gear GCo (1/4 or more of the total (in this example, About 1/3)). This is because the electric machine output gear GMo has a smaller diameter than the counter input gear GCi, and the rotating electric machine MG can be arranged close to the third virtual axis A3 on which the counter gear mechanism CG is arranged.
また、図1及び図2に示すように、カウンタ出力ギヤGCoは、カウンタ入力ギヤGCiに対して軸第一方向X1側に配置されており、回転電機MGは、カウンタ入力ギヤGCiに対して軸第二方向X2側に配置されているので、回転電機MGの電機出力ギヤGMoを、カウンタ入力ギヤGCiに噛み合わせることができている。また、回転電機MGのロータRoと電機出力ギヤGMoとの軸方向の間隔を短くできており、ロータ軸SRの強度を確保し易くなっている。
Further, as shown in FIGS. 1 and 2, the counter output gear GCo is disposed on the side of the first axis direction X1 with respect to the counter input gear GCi, and the rotating electrical machine MG has a shaft with respect to the counter input gear GCi. Since it is arranged on the second direction X2 side, the electric machine output gear GMo of the rotary electric machine MG can be meshed with the counter input gear GCi. Further, the axial interval between the rotor Ro of the rotating electrical machine MG and the electrical machine output gear GMo can be shortened, and the strength of the rotor shaft SR can be easily secured.
図3に示すように、第1仮想軸A1、第2仮想軸A2、及び第4仮想軸A4は、軸方向視で、これらの仮想軸を結ぶ線が三角形を形成するように配置されている。
各仮想軸A1、A2、A4上に配置された変速装置TM、回転電機MG、及び出力用差動歯車機構DFは、軸方向視で、外形が各仮想軸を中心とした円形状になっており、軸方向視で互いに隣接するように配置されているため、軸方向視でそれらの間の隙間を最小限にすることができている。 As shown in FIG. 3, the first virtual axis A1, the second virtual axis A2, and the fourth virtual axis A4 are arranged such that a line connecting these virtual axes forms a triangle when viewed in the axial direction. .
The transmission TM, the rotating electrical machine MG, and the output differential gear mechanism DF arranged on the virtual axes A1, A2, and A4 have a circular shape with the virtual center as the center when viewed in the axial direction. Since they are arranged adjacent to each other when viewed in the axial direction, the gap between them can be minimized when viewed in the axial direction.
各仮想軸A1、A2、A4上に配置された変速装置TM、回転電機MG、及び出力用差動歯車機構DFは、軸方向視で、外形が各仮想軸を中心とした円形状になっており、軸方向視で互いに隣接するように配置されているため、軸方向視でそれらの間の隙間を最小限にすることができている。 As shown in FIG. 3, the first virtual axis A1, the second virtual axis A2, and the fourth virtual axis A4 are arranged such that a line connecting these virtual axes forms a triangle when viewed in the axial direction. .
The transmission TM, the rotating electrical machine MG, and the output differential gear mechanism DF arranged on the virtual axes A1, A2, and A4 have a circular shape with the virtual center as the center when viewed in the axial direction. Since they are arranged adjacent to each other when viewed in the axial direction, the gap between them can be minimized when viewed in the axial direction.
第3仮想軸A3は、軸方向視で、仮想軸A1、A2、A4により構成される三角形の内部に配置されている。第3仮想軸A3に対応するカウンタギヤ機構CGは、軸方向視で、互いに隣接するように配置されている変速装置TM、回転電機MG、及び出力用差動歯車機構DFのそれぞれと重複するように配置されており、軸方向視で変速装置TM、回転電機MG、及び出力用差動歯車機構DFの間に、カウンタギヤ機構CGを配置するための隙間を設けることなくカウンタギヤ機構CGを配置することができている。
よって、車両用駆動装置1の各構成要素を、互いに近接させて配置して、車両用駆動装置1の全体の外形を小型化することができる。 The third virtual axis A3 is arranged inside a triangle formed by the virtual axes A1, A2, and A4 when viewed in the axial direction. The counter gear mechanism CG corresponding to the third virtual axis A3 overlaps with each of the transmission TM, the rotating electrical machine MG, and the output differential gear mechanism DF that are arranged adjacent to each other in the axial direction. The counter gear mechanism CG is arranged without providing a gap for arranging the counter gear mechanism CG between the transmission device TM, the rotating electrical machine MG, and the output differential gear mechanism DF as viewed in the axial direction. Have been able to.
Therefore, the components of thevehicle drive device 1 can be arranged close to each other to reduce the overall outer shape of the vehicle drive device 1.
よって、車両用駆動装置1の各構成要素を、互いに近接させて配置して、車両用駆動装置1の全体の外形を小型化することができる。 The third virtual axis A3 is arranged inside a triangle formed by the virtual axes A1, A2, and A4 when viewed in the axial direction. The counter gear mechanism CG corresponding to the third virtual axis A3 overlaps with each of the transmission TM, the rotating electrical machine MG, and the output differential gear mechanism DF that are arranged adjacent to each other in the axial direction. The counter gear mechanism CG is arranged without providing a gap for arranging the counter gear mechanism CG between the transmission device TM, the rotating electrical machine MG, and the output differential gear mechanism DF as viewed in the axial direction. Have been able to.
Therefore, the components of the
<パーキングロック機構PR>
車両用駆動装置1は、パーキングロック機構PRを備えている。パーキングロック機構PRは、パーキングギヤPGと、パーキングギヤPGに係合して当該パーキングギヤPGの回転を規制する係合部材PSと、を有している。パーキングギヤPGは、変速出力部材Oから差動入力ギヤGDiまでの動力伝達経路中のいずれかの回転要素と一体回転するように設けられる。本実施形態では、パーキングギヤPGは、図1及び図2に示すように、第1仮想軸A1上に配置され、変速出力部材Oと一体回転するように設けられている。よって、パーキングギヤPGを、第2仮想軸A2上に配置された回転電機MG、及び第3仮想軸A3上に配置されたカウンタギヤ機構CGと干渉しないように配置することができるので、回転電機MGの配置の自由度を高めることができる。 <Parking lock mechanism PR>
Thevehicle drive device 1 includes a parking lock mechanism PR. The parking lock mechanism PR includes a parking gear PG and an engagement member PS that engages with the parking gear PG and restricts the rotation of the parking gear PG. The parking gear PG is provided so as to rotate integrally with any of the rotating elements in the power transmission path from the speed change output member O to the differential input gear GDi. In the present embodiment, the parking gear PG is disposed on the first virtual axis A1 and provided to rotate integrally with the speed change output member O, as shown in FIGS. Therefore, the parking gear PG can be disposed so as not to interfere with the rotating electrical machine MG disposed on the second virtual axis A2 and the counter gear mechanism CG disposed on the third virtual axis A3. The degree of freedom of MG arrangement can be increased.
車両用駆動装置1は、パーキングロック機構PRを備えている。パーキングロック機構PRは、パーキングギヤPGと、パーキングギヤPGに係合して当該パーキングギヤPGの回転を規制する係合部材PSと、を有している。パーキングギヤPGは、変速出力部材Oから差動入力ギヤGDiまでの動力伝達経路中のいずれかの回転要素と一体回転するように設けられる。本実施形態では、パーキングギヤPGは、図1及び図2に示すように、第1仮想軸A1上に配置され、変速出力部材Oと一体回転するように設けられている。よって、パーキングギヤPGを、第2仮想軸A2上に配置された回転電機MG、及び第3仮想軸A3上に配置されたカウンタギヤ機構CGと干渉しないように配置することができるので、回転電機MGの配置の自由度を高めることができる。 <Parking lock mechanism PR>
The
パーキングギヤPGは、変速出力ギヤGToより小径とされ、変速出力ギヤGToよりも軸第一方向X1側に配置されている。
また、図3に示すように、係合部材PSは、ケースCSに固定された揺動支点PS1を中心に揺動可能であり、係合部材PSには爪部PS2が一体的に形成されている。不図示のカム機構等により係合部材PSは所定の可動範囲内で揺動する。パーキングギヤPGに爪部PS2が噛み合ってこれらが係合した状態では、パーキングロック機構PRは変速出力部材Oの回転を強制停止させる。一方、パーキングギヤPGに爪部PS2が噛み合わずにこれらが係合解除された状態では、パーキングロック機構PRは変速出力部材Oの回転を許容する。 The parking gear PG has a smaller diameter than the speed change output gear GTo, and is disposed closer to the shaft first direction X1 than the speed change output gear GTo.
Further, as shown in FIG. 3, the engaging member PS can swing around a swinging fulcrum PS1 fixed to the case CS, and a claw portion PS2 is integrally formed on the engaging member PS. Yes. The engagement member PS is swung within a predetermined movable range by a cam mechanism (not shown) or the like. In a state in which the pawl portion PS2 is engaged with the parking gear PG and these are engaged, the parking lock mechanism PR forcibly stops the rotation of the transmission output member O. On the other hand, the parking lock mechanism PR allows the transmission output member O to rotate in a state in which the pawl portion PS2 does not mesh with the parking gear PG and is disengaged.
また、図3に示すように、係合部材PSは、ケースCSに固定された揺動支点PS1を中心に揺動可能であり、係合部材PSには爪部PS2が一体的に形成されている。不図示のカム機構等により係合部材PSは所定の可動範囲内で揺動する。パーキングギヤPGに爪部PS2が噛み合ってこれらが係合した状態では、パーキングロック機構PRは変速出力部材Oの回転を強制停止させる。一方、パーキングギヤPGに爪部PS2が噛み合わずにこれらが係合解除された状態では、パーキングロック機構PRは変速出力部材Oの回転を許容する。 The parking gear PG has a smaller diameter than the speed change output gear GTo, and is disposed closer to the shaft first direction X1 than the speed change output gear GTo.
Further, as shown in FIG. 3, the engaging member PS can swing around a swinging fulcrum PS1 fixed to the case CS, and a claw portion PS2 is integrally formed on the engaging member PS. Yes. The engagement member PS is swung within a predetermined movable range by a cam mechanism (not shown) or the like. In a state in which the pawl portion PS2 is engaged with the parking gear PG and these are engaged, the parking lock mechanism PR forcibly stops the rotation of the transmission output member O. On the other hand, the parking lock mechanism PR allows the transmission output member O to rotate in a state in which the pawl portion PS2 does not mesh with the parking gear PG and is disengaged.
係合部材PSは、変速出力ギヤGToがカウンタ入力ギヤGCiに噛み合う第1仮想軸A1の周方向の位置とは異なる周方向の位置に配置されている。例えば、係合部材PSは、変速出力ギヤGToの噛み合い位置と、90度以上異なる周方向の位置(本例では、180度異なる周方向の位置)に配置される。このように配置することより、パーキングロック機構PRは、カウンタギヤ機構CGや回転電機MGと干渉することがないので、カウンタギヤ機構CGや回転電機MGの配置の自由度を高めることができる。
The engaging member PS is disposed at a circumferential position different from the circumferential position of the first virtual axis A1 where the transmission output gear GTo meshes with the counter input gear GCi. For example, the engaging member PS is disposed at a circumferential position that is 90 degrees or more different from the meshing position of the transmission output gear GTo (in this example, a circumferential position that is 180 degrees different). By arranging in this way, the parking lock mechanism PR does not interfere with the counter gear mechanism CG and the rotating electrical machine MG, so that the degree of freedom of arrangement of the counter gear mechanism CG and the rotating electrical machine MG can be increased.
〔その他の実施形態〕
最後に、本発明のその他の実施形態について説明する。なお、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。 [Other Embodiments]
Finally, other embodiments of the present invention will be described. Note that the configuration of each embodiment described below is not limited to being applied independently, and can be applied in combination with the configuration of other embodiments as long as no contradiction arises.
最後に、本発明のその他の実施形態について説明する。なお、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。 [Other Embodiments]
Finally, other embodiments of the present invention will be described. Note that the configuration of each embodiment described below is not limited to being applied independently, and can be applied in combination with the configuration of other embodiments as long as no contradiction arises.
(1)上記の実施形態においては、変速装置TMは、ラビニヨ型の遊星歯車機構PLGと、6つの係合装置C1、C2、C3、B1、B2、F1と、を備えて構成されている場合を例に説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速装置TMは、変速入力軸Iと変速出力部材Oとが第1仮想軸A1上に配置されていればダブルピニオン型の遊星歯車機構など任意の歯車機構が備えられてもよく、また任意の数の歯車機構が備えられてもよく、任意の数の係合装置が備えられてもよい。
この場合でも、変速装置TMは、歯車機構及び係合装置が第1仮想軸A1の軸方向に並ぶ第一領域D1と第二領域D2とに分かれて配置され、第一領域D1と第二領域D2との間の中間領域DMに変速出力ギヤGToが配置されると好適である。 (1) In the above embodiment, the transmission TM is configured to include a Ravigneaux planetary gear mechanism PLG and six engagement devices C1, C2, C3, B1, B2, and F1. Was described as an example. However, the embodiment of the present invention is not limited to this. That is, the transmission apparatus TM may be provided with an arbitrary gear mechanism such as a double pinion type planetary gear mechanism as long as the transmission input shaft I and the transmission output member O are disposed on the first virtual axis A1. Any number of gear mechanisms may be provided, and any number of engagement devices may be provided.
Even in this case, the speed change device TM is arranged by dividing the gear mechanism and the engagement device into the first region D1 and the second region D2 arranged in the axial direction of the first virtual axis A1, and the first region D1 and the second region It is preferable that the speed change output gear GTo is disposed in the intermediate region DM between D2.
この場合でも、変速装置TMは、歯車機構及び係合装置が第1仮想軸A1の軸方向に並ぶ第一領域D1と第二領域D2とに分かれて配置され、第一領域D1と第二領域D2との間の中間領域DMに変速出力ギヤGToが配置されると好適である。 (1) In the above embodiment, the transmission TM is configured to include a Ravigneaux planetary gear mechanism PLG and six engagement devices C1, C2, C3, B1, B2, and F1. Was described as an example. However, the embodiment of the present invention is not limited to this. That is, the transmission apparatus TM may be provided with an arbitrary gear mechanism such as a double pinion type planetary gear mechanism as long as the transmission input shaft I and the transmission output member O are disposed on the first virtual axis A1. Any number of gear mechanisms may be provided, and any number of engagement devices may be provided.
Even in this case, the speed change device TM is arranged by dividing the gear mechanism and the engagement device into the first region D1 and the second region D2 arranged in the axial direction of the first virtual axis A1, and the first region D1 and the second region It is preferable that the speed change output gear GTo is disposed in the intermediate region DM between D2.
(2)上記の実施形態においては、1つのカウンタ入力ギヤGCiが設けられている場合を例に説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速出力ギヤGToに噛み合う第1のカウンタ入力ギヤGCiと、電機出力ギヤGMoに噛み合う第2のカウンタ入力ギヤGCiとの2つのカウンタ入力ギヤGCiが設けられてもよい。
この場合でも、第1及び第2のカウンタ入力ギヤGCiは、カウンタ出力ギヤGCoよりも大径とされ、回転電機MGの電機出力ギヤGMoは、第2のカウンタ入力ギヤGCiより小径とされる。また、ロータRoから差動入力ギヤGDiまでの減速比は、変速出力部材Oから差動入力ギヤGDiまでの減速比より大きくされる。
また、第2のカウンタ入力ギヤGCiは、第1のカウンタ入力ギヤGCiの軸第二方向X2側に配置され、カウンタ出力ギヤGCoは、第1のカウンタ入力ギヤGCiの軸第一方向X1側に配置される。 (2) In the above embodiment, the case where one counter input gear GCi is provided has been described as an example. However, the embodiment of the present invention is not limited to this. That is, two counter input gears GCi may be provided, that is, a first counter input gear GCi that meshes with the transmission output gear GTo and a second counter input gear GCi that meshes with the electric machine output gear GMo.
Even in this case, the first and second counter input gears GCi have a larger diameter than the counter output gear GCo, and the electric machine output gear GMo of the rotating electric machine MG has a smaller diameter than the second counter input gear GCi. Further, the reduction ratio from the rotor Ro to the differential input gear GDi is made larger than the reduction ratio from the transmission output member O to the differential input gear GDi.
The second counter input gear GCi is disposed on the second axial direction X2 side of the first counter input gear GCi, and the counter output gear GCo is disposed on the first axial direction X1 side of the first counter input gear GCi. Be placed.
この場合でも、第1及び第2のカウンタ入力ギヤGCiは、カウンタ出力ギヤGCoよりも大径とされ、回転電機MGの電機出力ギヤGMoは、第2のカウンタ入力ギヤGCiより小径とされる。また、ロータRoから差動入力ギヤGDiまでの減速比は、変速出力部材Oから差動入力ギヤGDiまでの減速比より大きくされる。
また、第2のカウンタ入力ギヤGCiは、第1のカウンタ入力ギヤGCiの軸第二方向X2側に配置され、カウンタ出力ギヤGCoは、第1のカウンタ入力ギヤGCiの軸第一方向X1側に配置される。 (2) In the above embodiment, the case where one counter input gear GCi is provided has been described as an example. However, the embodiment of the present invention is not limited to this. That is, two counter input gears GCi may be provided, that is, a first counter input gear GCi that meshes with the transmission output gear GTo and a second counter input gear GCi that meshes with the electric machine output gear GMo.
Even in this case, the first and second counter input gears GCi have a larger diameter than the counter output gear GCo, and the electric machine output gear GMo of the rotating electric machine MG has a smaller diameter than the second counter input gear GCi. Further, the reduction ratio from the rotor Ro to the differential input gear GDi is made larger than the reduction ratio from the transmission output member O to the differential input gear GDi.
The second counter input gear GCi is disposed on the second axial direction X2 side of the first counter input gear GCi, and the counter output gear GCo is disposed on the first axial direction X1 side of the first counter input gear GCi. Be placed.
(3)上記の実施形態においては、ロータRoから差動入力ギヤGDiまでの減速比は、変速出力部材Oから差動入力ギヤGDiまでの減速比より大きくされている場合を例に説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、ロータRoから差動入力ギヤGDiまでの減速比は、変速出力部材Oから差動入力ギヤGDiまでの減速比より小さくされていてもよい。
(3) In the above embodiment, the case where the reduction ratio from the rotor Ro to the differential input gear GDi is greater than the reduction ratio from the transmission output member O to the differential input gear GDi has been described as an example. However, the embodiment of the present invention is not limited to this. That is, the reduction ratio from the rotor Ro to the differential input gear GDi may be smaller than the reduction ratio from the transmission output member O to the differential input gear GDi.
(4)上記の実施形態においては、変速装置TMは、構成部材として歯車機構及び係合装置を備え、構成部材が第1仮想軸A1の軸方向に並ぶ第一領域D1と第二領域D2とに分かれて配置され、第一領域D1と第二領域D2との間の中間領域DMに変速出力ギヤGToが配置されている場合を例に説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速装置TMの歯車機構及び係合装置が、第一領域D1と第二領域D2とに分かれて配置されておらず、変速装置TMの軸第一方向X1側の端部の領域、又は軸第二方向X2側の端部の領域に変速出力ギヤGToが配置されていてもよい。
変速装置TMの軸第一方向X1側の端部の領域に変速出力ギヤGToが配置される場合では、回転電機MGは、変速出力ギヤGToに噛み合うカウンタ入力ギヤGCiに対して軸第二方向X2側であって、変速装置TMの径方向外側の空間に配置される。カウンタ出力ギヤGCoは、カウンタ入力ギヤGCiに対して軸第一方向X1側に配置されてもよいし、カウンタ入力ギヤGCiに対して軸第二方向X2側であって回転電機MGに対して軸第一方向X1側に配置されてもよい。
変速装置TMの軸第二方向X2側の端部の領域に変速出力ギヤGToが配置される場合では、回転電機MGは、変速出力ギヤGToに噛み合うカウンタ入力ギヤGCiに対して軸第一方向X1側であって、変速装置TMの径方向外側の空間に配置される。カウンタ出力ギヤGCoは、カウンタ入力ギヤGCiに対して軸第二方向X2側に配置されてもよいし、カウンタ入力ギヤGCiに対して軸第一方向X1側であって回転電機MGに対して軸第二方向X2側に配置されてもよい。 (4) In the above embodiment, the transmission TM includes a gear mechanism and an engagement device as constituent members, and the constituent members are arranged in the axial direction of the first virtual axis A1 in the first region D1 and the second region D2. The case where the transmission output gear GTo is disposed in the intermediate region DM between the first region D1 and the second region D2 has been described as an example. However, the embodiment of the present invention is not limited to this. That is, the gear mechanism and the engaging device of the transmission TM are not arranged separately in the first region D1 and the second region D2, and the region of the end portion of the transmission TM on the first axial direction X1 side, or The speed change output gear GTo may be disposed in the end region on the second axial direction X2 side.
In the case where the transmission output gear GTo is disposed in the region of the end portion of the transmission apparatus TM on the first shaft direction X1 side, the rotating electrical machine MG is in the second shaft direction X2 with respect to the counter input gear GCi meshing with the transmission output gear GTo. It is the side and is arrange | positioned in the space of the radial direction outer side of transmission TM. The counter output gear GCo may be arranged on the first shaft direction X1 side with respect to the counter input gear GCi, or on the second shaft direction X2 side with respect to the counter input gear GCi and with respect to the rotating electrical machine MG. You may arrange | position at the 1st direction X1 side.
In the case where the transmission output gear GTo is disposed in the region of the end portion of the transmission apparatus TM on the second shaft direction X2 side, the rotating electrical machine MG is in the first shaft direction X1 with respect to the counter input gear GCi meshing with the transmission output gear GTo. It is the side and is arrange | positioned in the space of the radial direction outer side of transmission TM. The counter output gear GCo may be arranged on the second shaft direction X2 side with respect to the counter input gear GCi, or on the first shaft direction X1 side with respect to the counter input gear GCi and with respect to the rotating electrical machine MG. You may arrange | position at the 2nd direction X2 side.
変速装置TMの軸第一方向X1側の端部の領域に変速出力ギヤGToが配置される場合では、回転電機MGは、変速出力ギヤGToに噛み合うカウンタ入力ギヤGCiに対して軸第二方向X2側であって、変速装置TMの径方向外側の空間に配置される。カウンタ出力ギヤGCoは、カウンタ入力ギヤGCiに対して軸第一方向X1側に配置されてもよいし、カウンタ入力ギヤGCiに対して軸第二方向X2側であって回転電機MGに対して軸第一方向X1側に配置されてもよい。
変速装置TMの軸第二方向X2側の端部の領域に変速出力ギヤGToが配置される場合では、回転電機MGは、変速出力ギヤGToに噛み合うカウンタ入力ギヤGCiに対して軸第一方向X1側であって、変速装置TMの径方向外側の空間に配置される。カウンタ出力ギヤGCoは、カウンタ入力ギヤGCiに対して軸第二方向X2側に配置されてもよいし、カウンタ入力ギヤGCiに対して軸第一方向X1側であって回転電機MGに対して軸第二方向X2側に配置されてもよい。 (4) In the above embodiment, the transmission TM includes a gear mechanism and an engagement device as constituent members, and the constituent members are arranged in the axial direction of the first virtual axis A1 in the first region D1 and the second region D2. The case where the transmission output gear GTo is disposed in the intermediate region DM between the first region D1 and the second region D2 has been described as an example. However, the embodiment of the present invention is not limited to this. That is, the gear mechanism and the engaging device of the transmission TM are not arranged separately in the first region D1 and the second region D2, and the region of the end portion of the transmission TM on the first axial direction X1 side, or The speed change output gear GTo may be disposed in the end region on the second axial direction X2 side.
In the case where the transmission output gear GTo is disposed in the region of the end portion of the transmission apparatus TM on the first shaft direction X1 side, the rotating electrical machine MG is in the second shaft direction X2 with respect to the counter input gear GCi meshing with the transmission output gear GTo. It is the side and is arrange | positioned in the space of the radial direction outer side of transmission TM. The counter output gear GCo may be arranged on the first shaft direction X1 side with respect to the counter input gear GCi, or on the second shaft direction X2 side with respect to the counter input gear GCi and with respect to the rotating electrical machine MG. You may arrange | position at the 1st direction X1 side.
In the case where the transmission output gear GTo is disposed in the region of the end portion of the transmission apparatus TM on the second shaft direction X2 side, the rotating electrical machine MG is in the first shaft direction X1 with respect to the counter input gear GCi meshing with the transmission output gear GTo. It is the side and is arrange | positioned in the space of the radial direction outer side of transmission TM. The counter output gear GCo may be arranged on the second shaft direction X2 side with respect to the counter input gear GCi, or on the first shaft direction X1 side with respect to the counter input gear GCi and with respect to the rotating electrical machine MG. You may arrange | position at the 2nd direction X2 side.
本発明は、内燃機関に駆動連結される入力部材の回転を変速して出力部材へ伝達する変速装置と、複数の車輪に駆動力を分配する差動歯車機構と、前記出力部材の回転を減速して前記差動歯車機構へ伝達するカウンタギヤ機構と、回転電機と、を備えた車両用駆動装置に好適に利用することができる。
The present invention relates to a transmission that shifts the rotation of an input member that is drivingly connected to an internal combustion engine and transmits it to an output member, a differential gear mechanism that distributes driving force to a plurality of wheels, and a reduction in the rotation of the output member Thus, the present invention can be suitably used for a vehicle drive device including a counter gear mechanism that transmits to the differential gear mechanism and a rotating electrical machine.
1 :車両用駆動装置
A1 :第1仮想軸
A2 :第2仮想軸
A3 :第3仮想軸
A4 :第4仮想軸
CG :カウンタギヤ機構
CS :ケース
D1 :第一領域
D2 :第二領域
DM :中間領域
DF :出力用差動歯車機構(差動歯車機構)
ENG :内燃機関
GCi :カウンタ入力ギヤ
GCo :カウンタ出力ギヤ
GDi :差動入力ギヤ
GMo :電機出力ギヤ
GTo :変速出力ギヤ
I :変速入力軸(入力部材)
Ip :動力入力軸
LC :ロックアップクラッチ
MG :回転電機
O :変速出力部材(出力部材)
PLG :遊星歯車機構
PG :パーキングギヤ
PR :パーキングロック機構
PS :係合部材
Ro :ロータ
SC :カウンタ軸
SR :ロータ軸
TC :トルクコンバータ
TM :変速装置
W :車輪
X1 :軸第一方向
X2 :軸第二方向 1: Vehicle drive device A1: 1st virtual axis A2: 2nd virtual axis A3: 3rd virtual axis A4: 4th virtual axis CG: Counter gear mechanism CS: Case D1: 1st area | region D2: 2nd area | region DM: Middle region DF: differential gear mechanism for output (differential gear mechanism)
ENG: Internal combustion engine GCi: Counter input gear GCo: Counter output gear GDi: Differential input gear GMo: Electric output gear GTo: Shift output gear I: Shift input shaft (input member)
Ip: Power input shaft LC: Lock-up clutch MG: Rotating electric machine O: Shifting output member (output member)
PLG: planetary gear mechanism PG: parking gear PR: parking lock mechanism PS: engagement member Ro: rotor SC: counter shaft SR: rotor shaft TC: torque converter TM: transmission device W: wheel X1: shaft first direction X2: shaft Second direction
A1 :第1仮想軸
A2 :第2仮想軸
A3 :第3仮想軸
A4 :第4仮想軸
CG :カウンタギヤ機構
CS :ケース
D1 :第一領域
D2 :第二領域
DM :中間領域
DF :出力用差動歯車機構(差動歯車機構)
ENG :内燃機関
GCi :カウンタ入力ギヤ
GCo :カウンタ出力ギヤ
GDi :差動入力ギヤ
GMo :電機出力ギヤ
GTo :変速出力ギヤ
I :変速入力軸(入力部材)
Ip :動力入力軸
LC :ロックアップクラッチ
MG :回転電機
O :変速出力部材(出力部材)
PLG :遊星歯車機構
PG :パーキングギヤ
PR :パーキングロック機構
PS :係合部材
Ro :ロータ
SC :カウンタ軸
SR :ロータ軸
TC :トルクコンバータ
TM :変速装置
W :車輪
X1 :軸第一方向
X2 :軸第二方向 1: Vehicle drive device A1: 1st virtual axis A2: 2nd virtual axis A3: 3rd virtual axis A4: 4th virtual axis CG: Counter gear mechanism CS: Case D1: 1st area | region D2: 2nd area | region DM: Middle region DF: differential gear mechanism for output (differential gear mechanism)
ENG: Internal combustion engine GCi: Counter input gear GCo: Counter output gear GDi: Differential input gear GMo: Electric output gear GTo: Shift output gear I: Shift input shaft (input member)
Ip: Power input shaft LC: Lock-up clutch MG: Rotating electric machine O: Shifting output member (output member)
PLG: planetary gear mechanism PG: parking gear PR: parking lock mechanism PS: engagement member Ro: rotor SC: counter shaft SR: rotor shaft TC: torque converter TM: transmission device W: wheel X1: shaft first direction X2: shaft Second direction
Claims (6)
- 内燃機関に駆動連結される入力部材の回転を変速して出力部材へ伝達する変速装置と、複数の車輪に駆動力を分配する差動歯車機構と、前記出力部材の回転を減速して前記差動歯車機構へ伝達するカウンタギヤ機構と、回転電機と、を備えた車両用駆動装置であって、
前記変速装置は、変速比を変更可能であって、当該変速比に応じて前記入力部材のトルクを変換して前記出力部材に伝達するように構成され、
前記変速装置の前記入力部材と前記出力部材とが第1仮想軸上に配置され、
前記回転電機は、第2仮想軸上に配置され、
前記カウンタギヤ機構は、第3仮想軸上に配置されていると共に、カウンタ入力ギヤと当該カウンタ入力ギヤより小径のカウンタ出力ギヤとが一体回転するように構成され、
前記出力部材に設けられた変速出力ギヤは、前記カウンタ入力ギヤに噛み合い、
前記回転電機のロータと一体回転する電機出力ギヤは、前記カウンタ入力ギヤに噛み合うと共に、前記カウンタ入力ギヤより小径であり、
前記差動歯車機構に設けられた差動入力ギヤは、前記カウンタ出力ギヤに噛み合っている車両用駆動装置。 A transmission for shifting the rotation of an input member drivingly connected to an internal combustion engine and transmitting it to an output member, a differential gear mechanism for distributing driving force to a plurality of wheels, and reducing the rotation of the output member to reduce the difference A vehicle drive device comprising a counter gear mechanism that transmits to a dynamic gear mechanism, and a rotating electrical machine,
The speed change device is configured to change a speed change ratio, convert torque of the input member according to the speed change ratio, and transmit the torque to the output member.
The input member and the output member of the transmission are disposed on a first virtual axis;
The rotating electrical machine is disposed on a second virtual axis;
The counter gear mechanism is arranged on the third virtual axis, and is configured such that the counter input gear and the counter output gear having a smaller diameter than the counter input gear rotate integrally.
A speed change output gear provided on the output member meshes with the counter input gear,
The electric output gear that rotates integrally with the rotor of the rotating electric machine meshes with the counter input gear and has a smaller diameter than the counter input gear,
A differential drive gear provided in the differential gear mechanism is a vehicle drive device that meshes with the counter output gear. - 前記ロータから前記差動入力ギヤまでの減速比は、前記出力部材から前記差動入力ギヤまでの減速比より大きい請求項1の車両用駆動装置。 The vehicle drive device according to claim 1, wherein a reduction ratio from the rotor to the differential input gear is larger than a reduction ratio from the output member to the differential input gear.
- 前記回転電機は、当該回転電機の径方向に見て前記変速装置と重複する部分を有すると共に、当該回転電機の軸方向に見て前記カウンタギヤ機構と重複する部分を有するように配置されている請求項1又は2に記載の車両用駆動装置。 The rotating electrical machine has a portion that overlaps with the transmission when viewed in the radial direction of the rotating electrical machine, and is disposed so as to have a portion that overlaps with the counter gear mechanism when viewed in the axial direction of the rotating electrical machine. The vehicle drive device according to claim 1 or 2.
- 前記変速装置は、構成部材として歯車機構と係合装置とを備え、前記構成部材が前記第1仮想軸の軸方向に並ぶ第一領域と第二領域とに分かれて配置され、前記第一領域と前記第二領域との間に前記変速出力ギヤが配置されている請求項1から3のいずれか一項に記載の車両用駆動装置。 The transmission includes a gear mechanism and an engagement device as constituent members, and the constituent members are arranged separately in a first region and a second region arranged in the axial direction of the first virtual axis, and the first region 4. The vehicle drive device according to claim 1, wherein the shift output gear is disposed between the first region and the second region. 5.
- 前記出力部材から前記差動入力ギヤまでの動力伝達経路中のいずれかの回転要素と一体回転するように設けられるパーキングギヤと、当該パーキングギヤに係合して当該パーキングギヤの回転を規制する係合部材と、を有するパーキングロック機構を更に備え、前記パーキングギヤは、前記第1仮想軸上に配置されている請求項1から4のいずれか一項に記載の車両用駆動装置。 A parking gear provided to rotate integrally with any one of the rotating elements in the power transmission path from the output member to the differential input gear, and a mechanism for engaging the parking gear and restricting the rotation of the parking gear. The vehicle drive device according to any one of claims 1 to 4, further comprising a parking lock mechanism having a joint member, wherein the parking gear is disposed on the first virtual axis.
- 前記変速装置は、前記入力部材の回転方向と前記出力部材の回転方向とが同じになる正転伝達状態と、これらの回転方向が逆になる逆転伝達状態とを変更可能に構成されている請求項1から5のいずれか一項に記載の車両用駆動装置。 The transmission is configured to be able to change between a normal rotation transmission state in which the rotation direction of the input member and the rotation direction of the output member are the same, and a reverse rotation transmission state in which the rotation directions are opposite. Item 6. The vehicle drive device according to any one of Items 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480036242.4A CN105339200A (en) | 2013-08-12 | 2014-07-28 | Drive device for vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013167571A JP6197469B2 (en) | 2013-08-12 | 2013-08-12 | Vehicle drive device |
JP2013-167571 | 2013-08-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015022853A1 true WO2015022853A1 (en) | 2015-02-19 |
Family
ID=52468240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/069784 WO2015022853A1 (en) | 2013-08-12 | 2014-07-28 | Drive device for vehicle |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6197469B2 (en) |
CN (1) | CN105339200A (en) |
WO (1) | WO2015022853A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109521127A (en) * | 2018-12-25 | 2019-03-26 | 广州广电计量检测股份有限公司 | A kind of qualitative and quantitative analysis method carrying out Odor Evaluations to single odoring substance |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017142060A1 (en) * | 2016-02-18 | 2017-08-24 | アイシン・エィ・ダブリュ株式会社 | Power transmission device |
JP2017171258A (en) * | 2016-03-25 | 2017-09-28 | アイシン・エィ・ダブリュ株式会社 | Hybrid drive device |
US10035414B1 (en) * | 2017-01-18 | 2018-07-31 | GM Global Technology Operations LLC | Automatically-shiftable hybrid transaxle |
JP7151967B2 (en) * | 2018-05-31 | 2022-10-12 | 日本電産シンポ株式会社 | Driving device and vehicle equipped with it |
CN108662112A (en) * | 2018-06-29 | 2018-10-16 | 刘勇 | A kind of automobile on-slip box of tricks of configuration isolator |
JP2020022344A (en) * | 2018-07-18 | 2020-02-06 | アイシン・エィ・ダブリュ株式会社 | Cooling structure of rotary electric machine and vehicle drive device |
DE102018128654A1 (en) * | 2018-11-15 | 2020-05-20 | Schaeffler Technologies AG & Co. KG | Hybrid drive train with a second electric machine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0781443A (en) * | 1993-09-20 | 1995-03-28 | Aqueous Res:Kk | Driving device for hybrid type vehicle |
JPH09107601A (en) * | 1995-10-06 | 1997-04-22 | Aqueous Res:Kk | Hybrid vehicle |
JP2000043591A (en) * | 1998-07-29 | 2000-02-15 | Mazda Motor Corp | Electric motor disposing structure of hybrid vehicle |
JP2012076576A (en) * | 2010-09-30 | 2012-04-19 | Aisin Aw Co Ltd | Hybrid driving device |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003191762A (en) * | 2001-12-28 | 2003-07-09 | Honda Motor Co Ltd | Vehicle driving device |
JP4492329B2 (en) * | 2004-12-07 | 2010-06-30 | アイシン・エィ・ダブリュ株式会社 | Automatic transmission |
JP4667078B2 (en) * | 2005-03-07 | 2011-04-06 | トヨタ自動車株式会社 | Vehicle drive device |
WO2009055870A1 (en) * | 2007-11-01 | 2009-05-07 | Nt Consulting International Pty Limited | Transmission |
US8262527B2 (en) * | 2008-09-12 | 2012-09-11 | Aisin Aw Co., Ltd. | Transmission apparatus and vehicle having the same |
JP2010096281A (en) * | 2008-10-16 | 2010-04-30 | Aisin Aw Co Ltd | Range shifting device |
KR101265425B1 (en) * | 2008-12-19 | 2013-05-16 | 아이신에이더블류 가부시키가이샤 | Shift-by-wire device and transmission device using same |
JP5195449B2 (en) * | 2009-01-19 | 2013-05-08 | アイシン・エィ・ダブリュ株式会社 | Power transmission device and vehicle equipped with the same |
JP5177162B2 (en) * | 2010-03-30 | 2013-04-03 | アイシン・エィ・ダブリュ株式会社 | Control device for automatic transmission |
JP5359968B2 (en) * | 2010-03-31 | 2013-12-04 | アイシン・エィ・ダブリュ株式会社 | Power transmission device, control method therefor, and lock-up clutch device |
JP5622050B2 (en) * | 2011-04-18 | 2014-11-12 | アイシン・エィ・ダブリュ株式会社 | Vehicle drive device |
JP5834688B2 (en) * | 2011-09-22 | 2015-12-24 | トヨタ自動車株式会社 | Vehicle drive device |
JP6064325B2 (en) * | 2012-01-18 | 2017-01-25 | トヨタ自動車株式会社 | Control device for hybrid vehicle |
JP5908310B2 (en) * | 2012-03-09 | 2016-04-26 | 本田技研工業株式会社 | Power transmission device |
-
2013
- 2013-08-12 JP JP2013167571A patent/JP6197469B2/en not_active Expired - Fee Related
-
2014
- 2014-07-28 WO PCT/JP2014/069784 patent/WO2015022853A1/en active Application Filing
- 2014-07-28 CN CN201480036242.4A patent/CN105339200A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0781443A (en) * | 1993-09-20 | 1995-03-28 | Aqueous Res:Kk | Driving device for hybrid type vehicle |
JPH09107601A (en) * | 1995-10-06 | 1997-04-22 | Aqueous Res:Kk | Hybrid vehicle |
JP2000043591A (en) * | 1998-07-29 | 2000-02-15 | Mazda Motor Corp | Electric motor disposing structure of hybrid vehicle |
JP2012076576A (en) * | 2010-09-30 | 2012-04-19 | Aisin Aw Co Ltd | Hybrid driving device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109521127A (en) * | 2018-12-25 | 2019-03-26 | 广州广电计量检测股份有限公司 | A kind of qualitative and quantitative analysis method carrying out Odor Evaluations to single odoring substance |
CN109521127B (en) * | 2018-12-25 | 2021-11-26 | 广州广电计量检测股份有限公司 | Qualitative and quantitative analysis method for evaluating odor of single odor substance |
Also Published As
Publication number | Publication date |
---|---|
JP2015036268A (en) | 2015-02-23 |
CN105339200A (en) | 2016-02-17 |
JP6197469B2 (en) | 2017-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6197469B2 (en) | Vehicle drive device | |
US9579966B2 (en) | Hybrid powertrain for a motor vehicle, hybrid vehicle, and use thereof | |
US9644715B2 (en) | Transmission and a method for operating same | |
JP5811267B2 (en) | Vehicle drive device | |
JP2009067212A (en) | Hybrid drive device | |
JP6020401B2 (en) | Hybrid drive unit | |
US9493062B2 (en) | Vehicle drive device | |
KR102394572B1 (en) | Power transmission apparatus for vehicle | |
JP5437226B2 (en) | Hybrid drive device | |
JP5783365B2 (en) | Oil pump drive | |
JP2009248825A (en) | Hybrid drive unit | |
JP5477471B2 (en) | Vehicle drive device | |
JP5182398B2 (en) | Hybrid drive device | |
JP4321470B2 (en) | Hybrid drive device | |
JP2009036231A (en) | Transmission device | |
JP2018118616A (en) | Vehicle drive device | |
WO2018079842A1 (en) | Vehicle drive device | |
WO2018079844A1 (en) | Drive transmission device for vehicle | |
WO2018181557A1 (en) | Vehicle drive device | |
JP2015047946A (en) | Vehicle drive unit | |
JP2022125649A (en) | Vehicle drive device | |
JP2012228143A (en) | Electric vehicle driving device | |
JP5552417B2 (en) | Automatic transmission | |
JP4930267B2 (en) | Hybrid vehicle drive system | |
JP2012228144A (en) | Electric vehicle driving device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480036242.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14836417 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14836417 Country of ref document: EP Kind code of ref document: A1 |