[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015019981A1 - 押圧検出センサ - Google Patents

押圧検出センサ Download PDF

Info

Publication number
WO2015019981A1
WO2015019981A1 PCT/JP2014/070437 JP2014070437W WO2015019981A1 WO 2015019981 A1 WO2015019981 A1 WO 2015019981A1 JP 2014070437 W JP2014070437 W JP 2014070437W WO 2015019981 A1 WO2015019981 A1 WO 2015019981A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate member
piezoelectric
sensor
piezoelectric film
longitudinal direction
Prior art date
Application number
PCT/JP2014/070437
Other languages
English (en)
French (fr)
Inventor
河村秀樹
安藤正道
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201480040138.2A priority Critical patent/CN105378614B/zh
Priority to JP2015530869A priority patent/JP6126692B2/ja
Publication of WO2015019981A1 publication Critical patent/WO2015019981A1/ja
Priority to US15/004,133 priority patent/US10146352B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the present invention relates to a pressure detection sensor that detects a pressing force when an operation surface is pushed.
  • various operation detection sensors for detecting an operation on an operation surface by an operator have been devised.
  • the operation detection sensor there are a capacitance method, a thermal resistance method, a piezoelectric acoustic method, an infrared sensor method, and the like, but when detecting a pressing force on the operation surface, a separate pressure detection sensor is installed. There is a need.
  • Patent Document 1 describes a touch-type input device including a touch panel that is an operation detection sensor and a pressure-sensitive sensor that detects pressing of an operation surface.
  • the pressure-sensitive sensor is disposed on the lower surface (surface opposite to the operation surface) of the touch panel and has the same area as the touch panel.
  • the protective layer is arrange
  • Patent Document 2 describes an operation input device in which matrix electrodes are formed on both sides of a plate-like piezoelectric body.
  • an object of the present invention is to provide a pressure detection sensor that can more reliably detect the pressure force.
  • the press detection sensor of the present invention is characterized by the following configuration.
  • the pressure detection sensor includes a plate member whose one main surface serves as an operation surface, a flat film piezoelectric sensor, and a mounting member.
  • the mounting member is made of an adhesive.
  • the flat membrane-shaped piezoelectric sensor is mounted on the other main surface of the plate member and includes a piezoelectric film and detection electrodes formed on both main surfaces of the piezoelectric film.
  • the flat film-shaped piezoelectric sensor is mounted on the plate member by the mounting member.
  • a flat-film piezoelectric sensor has a shape having a longitudinal direction and a short direction, and the length in the longitudinal direction is 2.5 times or more the length in the short direction.
  • the piezoelectric film is effectively distorted and charges are generated by the distortion of the plate member that occurs when the operation surface of the plate member is pushed.
  • the elastic constant of a mounting member is 10 6 Pa or less.
  • This configuration can more reliably prevent the electric charge from becoming zero. As a result, the pressing force can be detected more reliably.
  • the plate member has a shape having a longitudinal direction and a short direction, and the piezoelectric sensor is arranged so that the short direction of the plate member is along the longitudinal direction of the piezoelectric sensor. It is preferable that it is attached to the member.
  • the plate member has a rectangular shape, for example.
  • the mounting position of the piezoelectric sensor is more preferably near one end in the longitudinal direction of the plate member.
  • the piezoelectric sensor is mounted at a position where it is easy to sense strain when the operation surface of the plate member is pressed. As a result, the pressing force can be detected more reliably.
  • the piezoelectric film used for the piezoelectric sensor contains polylactic acid.
  • FIG. 1 is a plan view and a side sectional view of a pressure detection sensor according to an embodiment of the present invention.
  • FIG. 1 shows a cross-sectional view along the line AA shown in the plan view.
  • the press detection sensor 1 includes a piezoelectric sensor 11, a plate member 20, and a mounting member 30.
  • the piezoelectric sensor 11 includes a piezoelectric film 110 and detection electrodes 111 and 112.
  • the piezoelectric film 110 is made of polylactic acid (PLA), more specifically L-type polylactic acid (PLLA), and has a width (length in the longitudinal direction) LLp and a width (length in the short direction) LSp. Consists of a short long flat membrane.
  • the piezoelectric film 110 has a long rectangular shape as described above, but may have a shape having a longitudinal direction and a short direction.
  • the piezoelectric film 110 may be an oval, an ellipse, a polygon such as a structure in which corners of a rectangle are chamfered, or a partially rounded shape.
  • the molecular orientation direction 900 of the piezoelectric film 110 forms 45 ° with respect to the longitudinal direction and the short direction of the piezoelectric film 110.
  • the uniaxial stretching direction of the piezoelectric film 110 forms approximately 45 ° with respect to the longitudinal direction and the short direction of the piezoelectric film.
  • the size of the piezoelectric film illustrated in the description of this embodiment is LLp: 60 mm and LSp: 6 mm, and the size of the plate member is LL: 80 mm and LS: 60 mm.
  • PLLA consists of a chiral polymer.
  • PLLA has a helical structure in the main chain.
  • molecules are oriented in a uniaxially stretched direction, and have piezoelectricity due to the orientation of the molecules.
  • the uniaxially-stretched PLLA generates electric charges when the piezoelectric film 110 is distorted.
  • the distortion generated in the piezoelectric film 110 is that the piezoelectric film 110 extends in a predetermined direction.
  • the amount of generated charge is determined by the amount of strain of the piezoelectric film 110.
  • the piezoelectric constant of uniaxially stretched PLLA belongs to a very high class among polymers.
  • the piezoelectric strain constant d 14 of PLLA can be as high as 10 to 20 pC / N by adjusting conditions such as stretching conditions, heat treatment conditions, and additive blending.
  • the stretching ratio of the piezoelectric film 110 is preferably about 3 to 8 times.
  • the same effect as that of uniaxial stretching can be obtained by varying the stretching ratio of each axis. For example, when a certain direction is taken as an X-axis, 8 times in that direction, and 2 times in the Y-axis direction perpendicular to that axis, the piezoelectric constant is about 4 times in the X-axis direction, Almost the same effect can be obtained.
  • a film that is simply uniaxially stretched easily tears along the direction of the stretch axis, and thus the strength can be increased somewhat by performing biaxial stretching as described above.
  • PLLA generates piezoelectricity by molecular orientation treatment such as stretching, and therefore does not need to be subjected to poling treatment like other polymers such as PVDF and piezoelectric ceramics. That is, the piezoelectricity of PLLA that does not belong to ferroelectrics is not expressed by the polarization of ions like ferroelectrics such as PVDF and PZT, but is derived from a helical structure that is a characteristic structure of molecules. is there. For this reason, the pyroelectricity generated in other ferroelectric piezoelectric materials does not occur in PLLA.
  • PVDF or the like shows a change in piezoelectric constant over time, and in some cases, the piezoelectric constant may be significantly reduced, but the piezoelectric constant of PLLA is extremely stable over time. Therefore, the output charge amount is not affected by the surrounding environment.
  • the detection electrode 111 is formed on substantially the entire surface of one flat surface (main surface) of the piezoelectric film 110.
  • the detection electrode 112 is formed on substantially the entire other flat surface (main surface) of the piezoelectric film 110.
  • the detection electrodes 111 and 112 are preferably organic electrodes mainly composed of polythiophene or polyaniline, or inorganic electrodes such as ITO, ZnO, silver nanowires, carbon nanotubes, and graphene. By using these materials, a highly translucent conductor pattern can be formed.
  • the plate member 20 has a rectangular shape having a length LL in one orthogonal direction (y direction) and a length LS in the other direction (x direction), and has a predetermined thickness.
  • the plate member 20 is made of a material having a certain degree of rigidity, and is formed of a glass flat plate, for example.
  • the plate member 20 includes one main surface 201 and the other main surface 202, and one end in the length LS direction of the plate member 20 is an end side 211, and the other end is an end side 212.
  • One end of the plate member 20 in the length LL direction is an end side 221, and the other end is an end side 222.
  • the plate member 20 is thus rectangular, but the substantially rectangular shape of the present invention includes, for example, a polygon such as a structure in which corners of a rectangle are chamfered, and a partially rounded shape.
  • the outer periphery of the plate member 20 is fixed by a frame body (not shown). Therefore, when the operation surface which is the one main surface is pushed in by the operator or the like, the plate member 20 is pushed in the direction perpendicular to the operation surface so that the displacement amount becomes smaller toward the outer periphery with the push position as the center. Bends in a displaced manner.
  • the piezoelectric sensor 11 including the piezoelectric film 110 is disposed at one end in the longitudinal direction of the plate member 20 (the y direction in FIG. 1), that is, near the end side 221. At this time, the piezoelectric sensor 11 is disposed on the plate member 20 so that the longitudinal direction of the piezoelectric sensor 11 is along the short direction of the plate member 20 (the x direction in FIG. 1).
  • the longitudinal direction of the piezoelectric sensor 11 and the short direction of the plate member 20 are preferably parallel.
  • the piezoelectric sensor 11 is arranged so that the flat plate surface of the piezoelectric sensor 11 and the main surface of the plate member 20 are parallel to each other.
  • the piezoelectric sensor 11 is disposed on the other main surface opposite to the operation surface of the plate member 20.
  • the piezoelectric sensor 11 is mounted on the plate member 20 via the mounting member 30. More specifically, the surface on the detection electrode 111 side of the piezoelectric sensor 11 is mounted on the other main surface of the plate member 20 via the mounting member 30. At this time, the mounting member 30 is provided on substantially the entire surface where the piezoelectric sensor 11 and the plate member 20 abut.
  • the piezoelectric sensor 11 since the piezoelectric sensor 11 is mounted on the plate member 20, the operation surface of the plate member 20 is pushed in, and the plate member 20 is bent as described above.
  • the piezoelectric film 110 is transmitted to the piezoelectric sensor 11 through the mounting member 30, and the piezoelectric film 110 of the piezoelectric sensor 11 extends in the longitudinal direction and the lateral direction.
  • the piezoelectric film 110 is distorted in the longitudinal direction and the lateral direction, and charges are generated according to the distortion.
  • This electric charge is taken out to an external detection circuit (not shown) by the detection electrodes 111 and 112 and can be detected as a voltage. At this time, the charge amount is determined by the strain amount of the piezoelectric film 110 as described above.
  • the amount of strain of the piezoelectric film 110 is determined by the amount of bending of the plate member 20 transmitted through the mounting member 30, and the amount of bending is determined by the pressing force on the operation surface. Therefore, by measuring the voltage value obtained from the detection electrodes 111 and 112 of the piezoelectric sensor 11, the pressing force on the operation surface can be detected.
  • the orientation direction 900 of the piezoelectric film 110 is approximately 45 ° with respect to the longitudinal direction and the lateral direction, the charges due to the longitudinal strain and the lateral strain of the piezoelectric film 110 are The polarity is reversed. Therefore, as described in the problem, depending on the push-in position, the generated charge due to the extension in the longitudinal direction and the generated charge due to the extension in the short direction largely cancel each other, and the generated charge becomes substantially zero. There is. However, by using the configuration of the present embodiment, it is possible to prevent the generated charge from becoming substantially zero due to such a pushing position.
  • an adhesive is used for the mounting member 30. More preferably, an adhesive having an elastic constant of 10 6 Pa or less is used for the mounting member 30.
  • the aspect ratio of the piezoelectric film 110 that is, the ratio of the length LSp in the short direction and the length LLp in the long direction (LLp / LSp) based on the length LSp in the short direction is 2.5 or more. To do.
  • FIG. 2 is a conceptual diagram showing how strain is transmitted when an adhesive is used for the mounting member.
  • 2A is a side view of the plate member 20 in the short direction (longitudinal direction of the piezoelectric sensor 11)
  • FIG. 2B is a side view of the plate member 20 (longitudinal direction of the piezoelectric sensor 11).
  • the plate member 20 When a pressing force is applied to the operation surface of the plate member 20, as shown in FIGS. 2A and 2B, the plate member 20 generates strain including a longitudinal strain FXL20 and a short-direction strain FXS20.
  • the piezoelectric film 110 of the piezoelectric sensor 11 mounted on the plate member 20 via the mounting member 30 is also distorted.
  • the strain FXL110 is generated in the piezoelectric film 110.
  • the longitudinal direction of the plate member 20 and the longitudinal direction of the piezoelectric film 110 are orthogonal to each other, in other words, since the short direction of the piezoelectric film 110 is parallel to the longitudinal direction of the plate member 20, the strain FXL110 is It occurs along the short direction of the piezoelectric film 110.
  • the strain FXS 110 is generated in the piezoelectric film 110 in accordance with the short-direction strain FXS 20 of the plate member 20. Since the short direction of the plate member 20 and the short direction of the piezoelectric film 110 are orthogonal, in other words, the longitudinal direction of the piezoelectric film 110 is parallel to the short direction of the plate member 20, the strain FXS 110. Is generated along the longitudinal direction of the piezoelectric film 110.
  • the strain in each direction is transmitted through the mounting member 30, but since the mounting member 30 is an adhesive, that is, since the elastic constant is relatively low, the mounting member 30 expands and the strain is alleviated. Therefore, the magnitude of strain generated in the piezoelectric film 110 is smaller than the magnitude of strain generated in the plate member 20. At this time, the mounting member 30, which is a pressure-sensitive adhesive, stretches better toward the end portion and easily relieves strain.
  • a broken line arrow FXL110R shown in FIG. 2B shows a case where the piezoelectric sensor 11 is attached to the plate member 20 with an adhesive, that is, a case where the piezoelectric sensor 11 is fixed firmly to the plate member 20.
  • the strain FXL110 generated in the piezoelectric film 110 can be significantly reduced as compared with the case where the piezoelectric sensor 11 is firmly fixed to the plate member 20.
  • a broken-line arrow FXS110R shown in FIG. 2A indicates a case where the piezoelectric sensor 11 is attached to the plate member 20 with an adhesive, that is, a case where the piezoelectric sensor 11 is firmly fixed to the plate member 20.
  • the strain generated in the piezoelectric film 110 is slightly smaller than when the piezoelectric sensor 11 is firmly fixed to the plate member 20.
  • the FXL 110 is not greatly attenuated.
  • the strain FXL110 along the short direction of the piezoelectric film 110 is suppressed, and the electric charge generated in the strain FXL110 becomes extremely small.
  • the electric charge generated by the strain FXS 110 along the longitudinal direction of the piezoelectric film 110 is hardly reduced. Therefore, the charge generated by the strain FXS 110 is not offset by the charge generated by the strain FXL 110.
  • FIG. 3 shows the magnitude of strain generated in the piezoelectric sensor (strain along the longitudinal direction of the piezoelectric sensor (short direction of the plate member)) when the longitudinal length of the piezoelectric sensor (piezoelectric film) is changed.
  • the broken line in FIG. 3 indicates the strain of the plate member 20. It can be confirmed that the shorter the length of the piezoelectric sensor, the greater the relaxation effect of the pressure-sensitive adhesive, making it difficult for the strain on the plate member surface to be transmitted to the piezoelectric film. For the same reason, the relaxation effect is greater in the short direction than in the longitudinal direction.
  • FIGS. 4A and 4B are diagrams illustrating changes in sensor output depending on the pressing position
  • FIG. 4A is a diagram illustrating the pressing position
  • FIG. 4B is a dependency of the sensor output on the elastic constant and the pressing position.
  • FIG. 4B the solid line indicates the case where the pressure-sensitive adhesive having the configuration of the present embodiment is used, more specifically, the case where the pressure-sensitive adhesive having an elastic constant of 0.1 MPa is used.
  • a broken line indicates a case where an adhesive is used, more specifically, a case where an adhesive having an elastic constant of 1.0 GPa is used.
  • the pressing position is moved along the longitudinal direction of the plate member 20.
  • the center in the short direction is set as the pressing position at any position in the longitudinal direction.
  • the sensor output becomes 0 when the characteristic position close to the piezoelectric sensor 11 becomes the pressing position. That is, the electric charge generated by the piezoelectric film 110 becomes zero. If the piezoelectric film 110 side is further pressed from this point, the sensor output becomes a negative value, and if the opposite side from the piezoelectric film 110 is pressed from this point, the sensor output becomes a positive value. That is, the sensor output is reversed between positive and negative depending on the pressed position.
  • the sensor output can be obtained as a positive value regardless of the pressing position, and the pressing force to the plate member 20 can be reliably detected. it can.
  • FIG. 5 is a diagram showing changes in sensor output depending on the aspect ratio of the piezoelectric film
  • FIG. 5A is a diagram for explaining the aspect ratio and the pressing position of the piezoelectric film (piezoelectric sensor).
  • B) is a diagram showing the dependency of the sensor output on the aspect ratio and the pressed position.
  • samples 11r1 and 11r2 in which the aspect ratio of the piezoelectric sensor 11 is changed are prepared.
  • the aspect ratio of the piezoelectric sensor 11 is 10
  • the aspect ratio of the sample 11r1 is 2.5
  • the aspect ratio of the sample 11r2 is 1.
  • the sensor output can be obtained as a positive value regardless of the pressed position.
  • the sensor output becomes 0 depending on the pressed position, and the position The sensor output is reversed with reference to.
  • the sensor output can be obtained as a positive value regardless of the pressed position.
  • the pressing force applied to the operation surface can be reliably detected by using the pressure detection sensor having the configuration of the present embodiment.
  • the plate member is provided with one piezoelectric sensor, but a plurality of piezoelectric sensors may be arranged on the plate member.
  • the plate member is rectangular, any of a mode in which a plurality of plates are arranged on the same side, a mode in which the plates are arranged on adjacent sides, a mode in which the plates are arranged on opposite sides, and a mode in which the plates are arranged on all sides may be used. What is necessary is just to determine arrangement
  • the orientation direction 900 of the piezoelectric film 110 is 45 ° with respect to the longitudinal direction and the short direction of the piezoelectric film 110 is shown, but it may be about 45 °.
  • the angle formed by the orientation direction 900 and the longitudinal direction of the piezoelectric film 110 may be 30 ° to 60 ° or the like.
  • the pressing force can be detected with higher sensitivity than other angles.
  • the mounting position of the piezoelectric sensor is more preferably near one end in the longitudinal direction of the plate member, but may be another position.
  • the piezoelectric sensor having no translucency can be obtained by setting the mounting position of the piezoelectric sensor near one end in the longitudinal direction of the plate member. Can also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

押圧検出センサ(1)は、長尺状の圧電センサ(11)、矩形の板部材(20)、および装着部材(30)を備える。圧電センサ(11)は、板部材(20)の長手方向の端部付近に、装着部材(30)を介して装着されている。圧電センサ(11)は、圧電センサ(11)の長手方向が板部材(20)の短手方向と平行になるように、板部材(20)に装着されている。装着部材(30)は、粘着剤からなり、より好ましくは弾性定数が10Pa以下の粘着剤からなる。圧電センサ(11)は、アスペクト比が2.5以上の形状からなる。

Description

押圧検出センサ
 本発明は、操作面が押し込まれた際の押圧力を検出する押圧検出センサに関する。
 従来、操作者による操作面への操作を検出する操作検出センサが各種考案されている。操作検出センサとしては、静電容量方式、熱抵抗方式、圧電音響方式、赤外線センサ方式等があるが、操作面に対する押圧力を検出する場合には、これらとは別の押圧検出センサを設置する必要がある。
 特許文献1には、操作検出センサであるタッチパネル、操作面の押し込みを検出する感圧センサを備えるタッチ式入力装置が記載されている。特許文献1のタッチ式入力装置では、感圧センサは、タッチパネルの下側の面(操作面と反対側の面)に配置されており、タッチパネルと同じ面積からなる。また、特許文献1のタッチ式入力装置では、タッチパネルの操作面側に保護層が配置されている。
 特許文献2には、平板状の圧電体の両面にマトリックス状の電極を形成した操作入力装置が記載されている。
特開平5-61592号公報 特開2006-163618号公報
 しかしながら、上述の各従来技術の構成では、次に示すような課題が生じる。
 特許文献1に記載のタッチ式入力装置では、操作者による操作面への押し込みは、保護膜およびタッチパネルを介して感圧センサで検知される。したがって、押圧力を確実に検出できない場合がある。さらに、当該タッチ式入力装置を携帯端末の装着する際、一般的にはガラス等からなる剛性を有する部材を操作面に装着する。この場合には、より一層、押圧力を確実に検出しにくくなってしまう。
 また、特許文献2に記載の操作入力装置では、線状電極からなるマトリックス状の電極で、押し込みによって発生する電荷を検出するため、押圧力を確実に検出できない場合がある。さらに、当該操作入力装置を携帯端末の装着する際にも、一般的にはガラス等からなる所定の剛性を有する部材を操作面に装着する。この場合には、特許文献1に記載の操作入力装置と同様に、より一層、押圧力を確実に検出しにくくなってしまう。
 したがって、本発明の目的は、押圧力をより確実に検出できる押圧検出センサを提供することにある。
 この発明の押圧検出センサは、次の構成を特徴としている。押圧検出センサは、一方主面が操作面となる板部材、平膜状の圧電センサ、装着部材を備える。装着部材は粘着剤からなる。平膜状の圧電センサは、板部材の他方主面に装着されており、圧電性フィルムおよび該圧電性フィルムの両主面に形成された検出用電極を含む構成からなる。平膜状の圧電センサは、装着部材により板部材に装着される。平膜状の圧電センサは長手方向と短手方向を有する形状であり、長手方向の長さが短手方向の長さの2.5倍以上である。
 この構成では、板部材の操作面が押し込まれた際に生じる板部材のひずみにより、圧電性フィルムが効果的にひずみ、電荷を発生する。この際、本構成を用いることで、電荷が0になる押圧位置が存在せず、押圧によって圧電性フィルムが発生する電荷を確実に検出することができる。
 また、この発明の押圧検出センサでは、装着部材の弾性定数は10Pa以下であることが好ましい。
 この構成では、電荷が0になることを、より確実に防ぐことができる。これにより、より確実に押圧力を検出することができる。
 また、この発明の押圧検出センサでは、板部材は長手方向と短手方向とを有する形状であり、圧電センサは、該圧電センサの長手方向に対して板部材の短手方向が沿うように板部材に装着されていることが好ましい。なお、板部材の形状は、例えば矩形状である。また、圧電センサの装着位置は、板部材の長手方向の一方端付近であることがより好ましい。
 この構成では、板部材の操作面が押圧された際のひずみを感知しやすい位置に圧電センサが装着される。これにより、より確実に押圧力を検出することができる。
 また、この発明の押圧検出センサでは、圧電センサに用いられる圧電性フィルムは、ポリ乳酸を含むことが好ましい。
 この構成では、板部材の操作面が押圧された際のひずみによって、ポリ乳酸の圧電歪み定数d14による電荷が生じる。ポリ乳酸は面方向の伸縮により電荷を生じるので、板部材のひずみからの押圧力の検出精度を高くすることができる。
 この発明によれば、操作面への押圧力を確実に検出することができる。
本発明の実施形態に係る押圧検出センサの平面図および側面断面図である。 装着部材に粘着剤を用いた場合のひずみの伝わり方を示す概念図である。 圧電センサ(圧電性フィルム)の長手方向の長さを変化させた場合における、圧電センサが生じるひずみの大きさの変化を示す図である。 押圧位置によるセンサ出力の変化を示す図である。 圧電性フィルムのアスペクト比によるセンサ出力の変化を示す図である。
 本発明の実施形態に係る押圧検出センサについて、図を参照して説明する。図1は、本発明の実施形態に係る押圧検出センサの平面図および側面断面図である。図1では平面図に示すA-A断面図を示している。
 押圧検出センサ1は、圧電センサ11、板部材20、および装着部材30を備える。圧電センサ11は、圧電性フィルム110、検出用電極111,112を備える。
 圧電性フィルム110は、ポリ乳酸(PLA)、より具体的にはL型ポリ乳酸(PLLA)からなり、長さ(長手方向の長さ)LLpに対して幅(短手方向の長さ)LSpが短い長尺状の平膜からなる。なお、圧電性フィルム110は、このように長尺状の矩形であるが、長手方向と短手方向を有する形状であればよい。例えば、圧電性フィルム110は、長円形、楕円形、矩形の角部を面取りしたような構造等の多角形や部分的に丸みを帯びた形状であってもよい。
 圧電性フィルム110の分子の配向方向900は、圧電性フィルム110の長手方向および短手方向に対して45°を成す。言い換えれば、圧電性フィルム110の一軸延伸方向は、圧電性フィルムの長手方向および短手方向に対して略45°を成す。
 なお、本実施形態の説明で例示している圧電性フィルムのサイズはLLp:60mm、LSp:6mmであり、板部材のサイズはLL:80mm、LS:60mmである。
 ここで、圧電性フィルム110を形成するPLLAの特性について説明する。
 PLLAはキラル高分子からなる。PLLAは、主鎖が螺旋構造を有する。PLLAは、一軸延伸された方向に分子が配向し、当該分子の配向によって圧電性を有する。そして、一軸延伸されたPLLAは、圧電性フィルム110にひずみが生じることで、電荷を発生する。ここで、圧電性フィルム110に生じるひずみとは、圧電性フィルム110が所定方向に伸長することである。この際、発生する電荷量は、圧電性フィルム110のひずみ量によって決まる。一軸延伸されたPLLAの圧電定数は、高分子中で非常に高い部類に属する。例えば、PLLAの圧電歪み定数d14は、延伸条件、熱処理条件、添加物の配合等の条件を整えることにより10~20pC/Nという高い値が得られる。
 なお、圧電性フィルム110の延伸倍率は3~8倍程度が好適である。延伸後に熱処理を施すことにより、ポリ乳酸の延びきり鎖結晶の結晶化が促進され圧電定数が向上する。尚、二軸延伸した場合はそれぞれの軸の延伸倍率を異ならせることによって一軸延伸と同様の効果を得ることが出来る。例えばある方向をX軸としてその方向に8倍、その軸に直交するY軸方向に2倍の延伸を施した場合、圧電定数に関してはおよそX軸方向に4倍の一軸延伸を施した場合とほぼ同等の効果が得られる。単純に一軸延伸したフィルムは延伸軸方向に沿って裂け易いため、前述したような二軸延伸を行うことにより幾分強度を増すことができる。
 また、PLLAは、延伸等による分子の配向処理で圧電性を生じるので、PVDF等の他のポリマーや圧電セラミックスのように、ポーリング処理を行う必要がない。すなわち、強誘電体に属さないPLLAの圧電性は、PVDFやPZT等の強誘電体のようにイオンの分極によって発現するものではなく、分子の特徴的な構造である螺旋構造に由来するものである。このため、PLLAには、他の強誘電性の圧電体で生じる焦電性が生じない。さらに、PVDF等は経時的に圧電定数の変動が見られ、場合によっては圧電定数が著しく低下する場合があるが、PLLAの圧電定数は経時的に極めて安定している。したがって、出力電荷量が周囲環境に影響されない。
 検出用電極111は、圧電性フィルム110の一方の平板面(主面)の略全面に形成されている。検出用電極112は、圧電性フィルム110の他方の平板面(主面)の略全面に形成されている。検出用電極111,112は、ポリチオフェンやポリアニリンを主成分とする有機電極、ITO、ZnO、銀ナノワイヤ、カーボンナノチューブ、グラフェン等の無機電極のいずれかを用いるのが好適である。これらの材料を用いることで、透光性の高い導体パターンを形成できる。
 板部材20は、直交する一方向(y方向)の長さLL、他方向(x方向)の長さLSの矩形状からなり、所定の厚みを有する。板部材20は、ある程度の剛性を有する材料からなり、例えばガラスの平板によって形成されている。板部材20は、一方主面201と他方主面202とを備え、板部材20の長さLS方向の一方端が端辺211であり、他方端が端辺212である。板部材20の長さLL方向の一方端が端辺221であり、他方端が端辺222である。なお、板部材20は、このように矩形であるが、本願発明の略矩形とは、例えば矩形の角部を面取りしたような構造等の多角形や部分的に丸みを帯びた形状も含む。
 板部材20は、図示しない枠体等によって、外周辺が固定されている。したがって、板部材20は、一方主面である操作面が操作者等によって押し込まれると、押し込み位置を中心として外周に近づくほど変位量が小さくなるようにして、操作面に直交する方向へ押し込み位置が変位する形で撓む。
 圧電性フィルム110を含む圧電センサ11は、板部材20の長手方向(図1のy方向)の一方端すなわち端辺221付近に配置されている。この際、圧電センサ11は、当該圧電センサ11の長手方向が板部材20の短手方向(図1のx方向)に沿うように、板部材20に配置される。ここで、沿うように配置されているという態様は、圧電センサ11の長手方向と板部材20の短手方向とが平行である態様だけでなく、若干平行では態様も含む。ただし、圧電センサ11の長手方向と板部材20の短手方向とが平行であることが好ましい。また、圧電センサ11は、当該圧電センサ11の平板面と板部材20の主面とが平行になるように配置される。圧電センサ11は、板部材20の操作面と反対側の他方主面に配置される。
 圧電センサ11は、装着部材30を介して板部材20に装着される。より具体的には、圧電センサ11の検出用電極111側の面が装着部材30を介して板部材20の他方主面に装着されている。この際、装着部材30は、圧電センサ11と板部材20が当接する略全面に設けられている。
 このような構成では、圧電センサ11が板部材20に装着されているので、板部材20の操作面が押し込まれ、上述のように板部材20が撓むことで、この板部材20の撓みは、装着部材30を介して圧電センサ11に伝わり、圧電センサ11の圧電性フィルム110が長手方向および短手方向に伸長する。これにより、圧電性フィルム110には、長手方向および短手方向にひずみが生じ、当該ひずみに応じて電荷を発生する。この電荷は、検出用電極111,112によって外部の検出回路(図示せず)へ取り出され、電圧として検出することができる。この際、電荷量は上述のように圧電性フィルム110のひずみ量によって決まる。さらに、圧電性フィルム110のひずみ量は、装着部材30を介して伝わる板部材20の撓み量によって決まり、当該撓み量は操作面の押圧力によって決まる。したがって、圧電センサ11の検出用電極111,112から得られる電圧値を計測することで、操作面への押圧力を検出することができる。
 ここで、上述のように、圧電性フィルム110の配向方向900が長手方向および短手方向に対して略45°の場合、圧電性フィルム110の長手方向のひずみと短手方向のひずみによる電荷は極性が逆となる。したがって、課題にも記載したように、押し込み位置によっては、長手方向の伸長による発生電荷と、短手方向の伸長による発生電荷とが大きく相殺してしまい、発生電荷が略0になってしまうことがある。しかしながら、本実施形態の構成を用いることで、このような押し込み位置によって発生電荷が略0になってしまうことを防止できる。
 具体的には、装着部材30に、粘着剤を用いる。より好ましくは、装着部材30に、弾性定数が10Pa以下の粘着剤を用いる。
 また、圧電性フィルム110のアスペクト比、すなわち短手方向の長さLSpを基準とした短手方向の長さLSpと長手方向の長さLLpとの比(LLp/LSp)を2.5以上とする。
 図2は、装着部材に粘着剤を用いた場合のひずみの伝わり方を示す概念図である。図2(A)は、板部材20の短手方向(圧電センサ11の長手方向)の側面図であり、図2(B)は、板部材20の長手方向(圧電センサ11の短手方向)の側面図である。なお、図2では、撓んでいる状態の図示を省略している。
 板部材20の操作面に押圧力が加わると、図2(A),(B)に示すように、板部材20は、長手方向ひずみFXL20および短手方向ひずみFXS20を含むひずみが発生する。
 板部材20がひずむと、装着部材30を介して板部材20に装着されている圧電センサ11の圧電性フィルム110もひずむ。板部材20の長手方向ひずみFXL20に応じて、圧電性フィルム110にはひずみFXL110が発生する。板部材20の長手方向と圧電性フィルム110の長手方向は直交している、言い換えれば、板部材20の長手方向に対して圧電性フィルム110の短手方向は平行であるので、ひずみFXL110は、圧電性フィルム110の短手方向に沿って発生する。
 また、板部材20の短手方向ひずみFXS20に応じて、圧電性フィルム110にはひずみFXS110が発生する。板部材20の短手方向と圧電性フィルム110の短手方向は直交している、言い換えれば、板部材20の短手方向に対して圧電性フィルム110の長手方向は平行であるので、ひずみFXS110は、圧電性フィルム110の長手方向に沿って発生する。
 各方向のひずみは装着部材30を介して伝わるが、装着部材30が粘着剤であるので、すなわち弾性定数が比較的低いため、装着部材30が伸長し、ひずみが緩和される。したがって、圧電性フィルム110で生じるひずみの大きさは、板部材20で生じたひずみの大きさよりも小さくなる。この際、粘着剤である装着部材30は、端部ほどよく伸長し、ひずみを緩和しやすい。
 したがって、圧電性フィルム110の短手方向は、装着部材30の長さも短いので、端部の緩和効果が大きく、板部材20の長手方向ひずみFXL20を大きく緩和する。したがって、圧電性フィルム110の短手方向に沿ったひずみFXL110は小さくなる。例えば、図2(B)に示す破線矢印FXL110Rは圧電センサ11を接着剤で板部材20に装着した場合、すなわち、圧電センサ11を板部材20に硬く固定した場合を示す。図2(B)に示すように、装着部材30に粘着剤を用いることで、圧電センサ11を板部材20に硬く固定した場合よりも、圧電性フィルム110に生じるひずみFXL110を大幅に小さくできる。
 一方、圧電性フィルム110の長手方向は、装着部材30の長さが長いので、端部の緩和効果が小さく、板部材20の短手方向ひずみFXS20の緩和効果が小さい。したがって、圧電性フィルム110の長手方向に沿ったひずみFXS110は板部材20で生じた短手方向ひずみFXS20の大きさから若干小さくなっただけである。例えば、図2(A)に示す破線矢印FXS110Rは圧電センサ11を接着剤で板部材20に装着した場合、すなわち、圧電センサ11を板部材20に硬く固定した場合を示す。図2(A)に示すように、装着部材30に粘着剤を用いた場合には、圧電センサ11を板部材20に硬く固定した場合よりは、若干小さくなるものの、圧電性フィルム110に生じるひずみFXL110は大きく減衰されない。
 これにより、圧電性フィルム110の短手方向に沿ったひずみFXL110が抑圧され、当該ひずみFXL110で発生する電荷は極小さくなる。一方、圧電性フィルム110の長手方向に沿ったひずみFXS110によって発生する電荷は殆ど小さくならない。したがって、ひずみFXS110によって発生する電荷は、ひずみFXL110で発生する電荷によって相殺されない。
 図3は、圧電センサ(圧電性フィルム)の長手方向の長さを変化させた場合における、圧電センサに生じるひずみ(圧電センサの長手方向(板部材の短手方向)に沿ったひずみ)の大きさを示す図である。なお、図3において、X軸については、図1のOの位置をx=0として正の方向のみを示している(左右対称のためX軸の負の部分は省略している)。図3の破線は板部材20のひずみを示している。圧電センサの長さが短くなるほど、粘着剤の緩和効果が大きくなり、板部材表面のひずみが圧電フィルムに伝わりにくくなっていることが確認できる。長手方向よりも短手方向の方が緩和効果が大きいのは同じ理由による。
 図4は、押圧位置によるセンサ出力の変化を示す図であり、図4(A)は押圧位置を説明する図であり、図4(B)はセンサ出力の弾性定数および押圧位置への依存性を示す図である。図4(B)において、実線は本実施形態の構成である粘着剤を用いた場合、より具体的には、弾性定数が0.1MPaの粘着剤を用いた場合を示す。破線は接着剤を用いた場合、より具体的には、弾性定数が1.0GPaの接着剤を用いた場合を示す。
 図4(A)に示すように、押圧位置を、板部材20の長手方向に沿って移動させる。この際、長手方向のどの位置でも短手方向の中心を押圧位置とする。図4(B)に示すように、接着剤を用いた場合、圧電センサ11に近い特性位置が押圧位置になると、センサ出力が0になる。すなわち、圧電性フィルム110が発生する電荷が0になってしまう。そして、この点からさらに圧電性フィルム110側を押圧するとセンサ出力は負値になり、この点から圧電性フィルム110と反対側を押圧するとセンサ出力は正値になる。すなわち、押圧位置によって、センサ出力が正負反転してしまう。
 一方、図4(B)に示すように、本実施形態の構成のように粘着剤を用いた場合、押圧位置によっては、接着剤を用いた場合よりも絶対値は小さくなるものの、センサ出力は常に正値となる。
 このように、本実施形態に示すように装着部材30に粘着剤を用いることで、押圧位置によることなくセンサ出力を正値で得られ、板部材20への押圧力を確実に検出することができる。
 なお、図4では、弾性定数が0.1MPaの場合と1.0GPaの場合の特性のみを示したが、弾性定数が0.1MPa~1.0GPaの場合には、これらの特性曲線の間の特性が得られる。そして、弾性定数が1.0MPa以下であれば、押圧位置によることなくセンサ出力が正値になる特性が得られた。したがって、粘着剤としては、1.0×10Pa以下のものを用いることが好ましい。
 次に、圧電性フィルムのアスペクト比について説明する。アスペクト比は、圧電性フィルムの短手方向の長さLSpを基準にして、長手方向の長さLLpを短手方向の長さLSpで除算した値(LLp/LSp)によって与えられる。図5は、圧電性フィルムのアスペクト比によるセンサ出力の変化を示す図であり、図5(A)は圧電性フィルム(圧電センサ)のアスペクト比および押圧位置を説明する図であり、図5(B)はセンサ出力のアスペクト比および押圧位置への依存性を示す図である。図5(B)は圧電センサの面積を同じにしてアスペクト比を変えた時の実験結果であり、またy=0を基準として面積が左右対称になるように配置した場合の実験結果である。
 図5(A)に示すように、圧電センサ11のアスペクト比を換えたサンプル11r1,11r2を用意する。圧電センサ11のアスペクト比は10であり、サンプル11r1のアスペクト比は2.5であり、サンプル11r2のアスペクト比は1である。
 図5(B)に示すように、圧電センサ11およびサンプル11r1では、押圧位置によることなくセンサ出力を正値で得られるが、サンプル11r2では、押圧位置によってはセンサ出力が0になり、当該位置を基準にセンサ出力が反転してしまう。
 このように、圧電センサ(圧電性フィルム)のアスペクト比を2.5以上にすることで、押圧位置によることなくセンサ出力を正値で得られる。
 以上のように、本実施形態の構成からなる押圧検出センサを用いることで、操作面への押圧力を確実に検出することができる。
 なお、上述の説明では、板部材に圧電センサを1つ装着したものについて示してきたが、板部材に圧電センサを複数配置してもよい。板部材が矩形の場合、同じ辺に複数配置する態様、隣り合う辺に配置する態様、対向する辺に配置する態様、すべての辺に配置する態様のいずれを用いてもよく、仕様に応じて適宜配置を決定すればよい。
 また、上述の説明では、圧電性フィルム110の配向方向900が圧電性フィルム110の長手方向および短手方向に対して45°となる例を示したが、略45°であればよい。例えば、配向方向900と圧電性フィルム110の長手方向との成す角が、30°~60°等であってもよい。ただし、配向方向900と圧電性フィルム110の長手方向との成す角が45°であることにより、他の角度よりも感度よく、押圧力を検出することができる。
 また、圧電センサの装着位置は、板部材の長手方向の一方端付近であることがより好ましいが、他の位置であってもよい。ただし、板部材の端部付近が外部から視認できない構造の電子機器であれば、圧電センサの装着位置を板部材の長手方向の一方端付近にすることで、透光性を有さない圧電センサも用いることができる。
1:押圧検出センサ
11:圧電センサ
11r1,11r2:サンプル
20:板部材
30:装着部材
110:圧電性フィルム
111,112:検出用電極
201:一方主面
202:他方主面
211,212,221,222:端辺
900:配向方向

Claims (4)

  1.  一方主面が操作面となる板部材と、
     前記板部材の他方主面に装着されており、圧電性フィルムおよび該圧電性フィルムの両主面に形成された検出用電極を含む平膜状の圧電センサと、
     前記平膜状の圧電センサを前記板部材に装着する装着部材と、を備え、
     前記装着部材は粘着材からなり、
     前記平膜状の圧電センサは長手方向と短手方向を有する形状であり、長手方向の長さが短手方向の長さの2.5倍以上である、
     押圧検出センサ。
  2.  前記装着部材の弾性定数は10Pa以下である、
     請求項1に記載の押圧検出センサ。
  3.  前記板部材は長手方向と短手方向とを有する形状であり、
     前記平膜状の圧電センサは、該平膜状の圧電センサの長手方向に対して前記板部材の短手方向が沿うように、前記板部材に装着されている、
     請求項1または請求項2に記載の押圧検出センサ。
  4.  前記圧電フィルムはポリ乳酸を含む、
     請求項1乃至請求項3のいずれかに記載の押圧検出センサ。
PCT/JP2014/070437 2013-08-06 2014-08-04 押圧検出センサ WO2015019981A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480040138.2A CN105378614B (zh) 2013-08-06 2014-08-04 按压检测传感器
JP2015530869A JP6126692B2 (ja) 2013-08-06 2014-08-04 押圧検出センサ
US15/004,133 US10146352B2 (en) 2013-08-06 2016-01-22 Pressure-detecting sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013163148 2013-08-06
JP2013-163148 2013-08-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/004,133 Continuation US10146352B2 (en) 2013-08-06 2016-01-22 Pressure-detecting sensor

Publications (1)

Publication Number Publication Date
WO2015019981A1 true WO2015019981A1 (ja) 2015-02-12

Family

ID=52461314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070437 WO2015019981A1 (ja) 2013-08-06 2014-08-04 押圧検出センサ

Country Status (4)

Country Link
US (1) US10146352B2 (ja)
JP (1) JP6126692B2 (ja)
CN (1) CN105378614B (ja)
WO (1) WO2015019981A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015194446A1 (ja) * 2014-06-20 2017-04-20 株式会社村田製作所 タッチパネル、および入力操作端末
JP2018133368A (ja) * 2017-02-13 2018-08-23 株式会社Kri 圧電ポリマー膜及びその製造方法並びに感圧センサ、アクチュエータ及びインターフェースデバイス
WO2021261548A1 (ja) * 2020-06-26 2021-12-30 株式会社村田製作所 圧電センサ及び電子機器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804213B2 (ja) * 2013-01-18 2015-11-04 株式会社村田製作所 変位検出センサおよび操作入力装置
JPWO2015041195A1 (ja) * 2013-09-17 2017-03-02 株式会社村田製作所 押圧センサ
WO2019244594A1 (ja) * 2018-06-20 2019-12-26 株式会社村田製作所 押圧センサ及び押圧検出装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125408A1 (ja) * 2010-04-09 2011-10-13 株式会社村田製作所 タッチパネルおよびタッチパネルを備える入出力装置
JP2011222679A (ja) * 2010-04-07 2011-11-04 Daikin Ind Ltd 透明圧電シート
JP2012158135A (ja) * 2011-02-02 2012-08-23 Toyobo Co Ltd 積層体
JP2012194972A (ja) * 2011-03-02 2012-10-11 Kyocera Corp 電子機器及び電子機器の製造方法
JP2012203895A (ja) * 2011-03-28 2012-10-22 Taiyo Yuden Co Ltd タッチパネル装置及び電子機器
JP2013043372A (ja) * 2011-08-24 2013-03-04 Nitto Denko Corp 透明導電性フィルムおよびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093885A (en) * 1976-03-19 1978-06-06 Ampex Corporation Transducer assembly vibration sensor
JP2744536B2 (ja) * 1991-10-04 1998-04-28 株式会社テック インクジェットプリンタヘッド及びその製造方法
JPH04357037A (ja) * 1991-03-19 1992-12-10 Tokyo Electric Co Ltd インクジェットプリンタヘッド
JPH0561592A (ja) 1991-09-04 1993-03-12 Yamaha Corp タツチ入力装置
US5765046A (en) * 1994-08-31 1998-06-09 Nikon Corporation Piezoelectric vibration angular velocity meter and camera using the same
JP3394658B2 (ja) * 1996-08-30 2003-04-07 理化学研究所 圧電性物質の弾性率の制御方法及び制御装置
JP3311633B2 (ja) * 1997-04-04 2002-08-05 日本碍子株式会社 センサユニット
JP2006163618A (ja) 2004-12-03 2006-06-22 Seiko Epson Corp 検出装置、入力装置及び電子機器
JP5473905B2 (ja) * 2008-05-12 2014-04-16 学校法人 関西大学 圧電素子および音響機器
US8906284B2 (en) * 2008-05-28 2014-12-09 The University Of Massachusetts Wrinkled adhesive surfaces and methods for the preparation thereof
EP2442213B1 (en) * 2009-06-11 2022-05-18 Murata Manufacturing Co., Ltd. Touch screen and touch-type input device
JP5445065B2 (ja) * 2009-11-25 2014-03-19 セイコーエプソン株式会社 剪断力検出素子、触覚センサー、および把持装置
JP5445196B2 (ja) * 2010-02-10 2014-03-19 セイコーエプソン株式会社 応力検出素子、触覚センサー、および把持装置
EP2696163B1 (en) 2011-04-08 2018-05-23 Murata Manufacturing Co., Ltd. Displacement sensor, displacement detecting apparatus, and operation device
JP5706271B2 (ja) 2011-08-24 2015-04-22 日東電工株式会社 透明導電性フィルムの製造方法
JP5926950B2 (ja) * 2011-12-22 2016-05-25 京セラ株式会社 電子機器
JP5804213B2 (ja) * 2013-01-18 2015-11-04 株式会社村田製作所 変位検出センサおよび操作入力装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222679A (ja) * 2010-04-07 2011-11-04 Daikin Ind Ltd 透明圧電シート
WO2011125408A1 (ja) * 2010-04-09 2011-10-13 株式会社村田製作所 タッチパネルおよびタッチパネルを備える入出力装置
JP2012158135A (ja) * 2011-02-02 2012-08-23 Toyobo Co Ltd 積層体
JP2012194972A (ja) * 2011-03-02 2012-10-11 Kyocera Corp 電子機器及び電子機器の製造方法
JP2012203895A (ja) * 2011-03-28 2012-10-22 Taiyo Yuden Co Ltd タッチパネル装置及び電子機器
JP2013043372A (ja) * 2011-08-24 2013-03-04 Nitto Denko Corp 透明導電性フィルムおよびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015194446A1 (ja) * 2014-06-20 2017-04-20 株式会社村田製作所 タッチパネル、および入力操作端末
JP2018133368A (ja) * 2017-02-13 2018-08-23 株式会社Kri 圧電ポリマー膜及びその製造方法並びに感圧センサ、アクチュエータ及びインターフェースデバイス
WO2021261548A1 (ja) * 2020-06-26 2021-12-30 株式会社村田製作所 圧電センサ及び電子機器

Also Published As

Publication number Publication date
JPWO2015019981A1 (ja) 2017-03-02
JP6126692B2 (ja) 2017-05-10
CN105378614A (zh) 2016-03-02
CN105378614B (zh) 2019-05-21
US20160154514A1 (en) 2016-06-02
US10146352B2 (en) 2018-12-04

Similar Documents

Publication Publication Date Title
JP6126692B2 (ja) 押圧検出センサ
JP5871111B1 (ja) タッチパネルおよび電子機器
JP6065950B2 (ja) タッチセンサ
JP5860980B2 (ja) 押圧センサ付き表示パネル、および押圧入力機能付き電子機器
JP6179635B2 (ja) タッチセンサ
US9946388B2 (en) Touch sensor with improved pressure sensing characteristics
WO2013157508A1 (ja) 押圧力センサ
JP5950053B2 (ja) 押圧検出センサ
JP6041978B2 (ja) 変位センサ、押込量検出センサ、およびタッチ式入力装置
JP6156587B2 (ja) タッチ式入力装置、電子機器
JP6828796B2 (ja) 電子機器
JP6465211B2 (ja) 押圧センサ、入力装置
JP5804213B2 (ja) 変位検出センサおよび操作入力装置
JP6123614B2 (ja) 押圧検出センサ、タッチ式入力装置
JP5939319B2 (ja) 押圧センサ付き表示パネル、および押圧入力機能付き電子機器
JP6197962B2 (ja) タッチ式入力装置及びタッチ入力検出方法
WO2017051865A1 (ja) タッチパネル、タッチ式入力装置
WO2016098652A1 (ja) 押圧検知装置
WO2015093383A1 (ja) 圧電センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14833702

Country of ref document: EP

Kind code of ref document: A1