WO2015098653A1 - 自動車部品及び自動車部品の製造方法 - Google Patents
自動車部品及び自動車部品の製造方法 Download PDFInfo
- Publication number
- WO2015098653A1 WO2015098653A1 PCT/JP2014/083420 JP2014083420W WO2015098653A1 WO 2015098653 A1 WO2015098653 A1 WO 2015098653A1 JP 2014083420 W JP2014083420 W JP 2014083420W WO 2015098653 A1 WO2015098653 A1 WO 2015098653A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- layer
- coating
- zno
- steel sheet
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 239000010410 layer Substances 0.000 claims abstract description 136
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 115
- 239000010959 steel Substances 0.000 claims abstract description 115
- 239000011248 coating agent Substances 0.000 claims abstract description 107
- 238000000576 coating method Methods 0.000 claims abstract description 107
- 229910018084 Al-Fe Inorganic materials 0.000 claims abstract description 40
- 229910018192 Al—Fe Inorganic materials 0.000 claims abstract description 40
- 238000007731 hot pressing Methods 0.000 claims abstract description 39
- 238000004070 electrodeposition Methods 0.000 claims abstract description 37
- 239000002345 surface coating layer Substances 0.000 claims abstract description 33
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 30
- 239000000126 substance Substances 0.000 claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 27
- 230000003746 surface roughness Effects 0.000 claims abstract description 23
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 claims abstract description 19
- 229910000165 zinc phosphate Inorganic materials 0.000 claims abstract description 19
- 238000009792 diffusion process Methods 0.000 claims abstract description 17
- 238000007747 plating Methods 0.000 claims description 106
- 238000000034 method Methods 0.000 claims description 81
- 239000013078 crystal Substances 0.000 claims description 36
- 238000010438 heat treatment Methods 0.000 claims description 36
- 239000002184 metal Substances 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000011701 zinc Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 7
- 229910019142 PO4 Inorganic materials 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 6
- 239000010452 phosphate Substances 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 abstract description 38
- 230000007797 corrosion Effects 0.000 abstract description 38
- 229910045601 alloy Inorganic materials 0.000 description 21
- 239000000956 alloy Substances 0.000 description 21
- 230000000694 effects Effects 0.000 description 17
- 230000008569 process Effects 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 230000000630 rising effect Effects 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 230000005496 eutectics Effects 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000005275 alloying Methods 0.000 description 6
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 238000011088 calibration curve Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 229910018125 Al-Si Inorganic materials 0.000 description 3
- 229910018520 Al—Si Inorganic materials 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 238000010422 painting Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 238000007739 conversion coating Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007591 painting process Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/88—Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/208—Deep-drawing by heating the blank or deep-drawing associated with heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0478—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
- C23C2/405—Plates of specific length
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/20—Pretreatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
Definitions
- the present invention relates to an automobile part and a method for producing the automobile part.
- a material having a high mechanical strength tends to have a low formability and a shape freezing property in a forming process such as a bending process, and when processing into a complicated shape, the process itself becomes difficult.
- a hot press method also called hot stamp method, hot press method, die quench method, press hardening
- a material to be formed is once heated to a high temperature (austenite region), pressed and formed on a steel sheet softened by heating, and then cooled.
- the material is once heated to a high temperature and softened, so that the material can be easily pressed, and further, the mechanical strength of the material is increased by the quenching effect by cooling after molding. Can be increased. Therefore, a molded product having both good shape freezing property and high mechanical strength can be obtained by this hot pressing.
- An example of a method for suppressing such a decrease in productivity is a method of coating a steel sheet.
- various materials such as organic materials and inorganic materials are used as the coating on the steel plate.
- zinc-based plated steel sheets that have a sacrificial anticorrosive action on steel sheets are widely used for automobile steel sheets and the like from the viewpoint of their anticorrosion performance and steel sheet production technology.
- the heating temperature (700-1000 ° C) in hot pressing is higher than the decomposition temperature of organic materials, the boiling point of Zn, etc., and when heated by hot pressing, the surface plating layer evaporates and the surface properties May cause significant deterioration of the material.
- a steel plate that performs hot pressing to be heated to a high temperature for example, a steel plate with an Al-based metal coating having a higher boiling point than that of an organic material coating or a Zn-based metal coating (that is, an Al-plated steel plate) ) Is desirable.
- Patent Document 1 listed below describes a method in which an Al-plated steel sheet obtained by applying an Al-based metal coating to steel having a predetermined steel component for hot pressing.
- the peeled Al-Fe alloy layer adheres to the mold, or the Al-Fe surface is rubbed strongly and adheres to the mold, and Al-Fe adheres and accumulates on the mold, resulting in a pressed product. Degrading the quality of For this reason, it is necessary to remove the Al—Fe alloy powder adhered to the mold during repair, which contributes to a decrease in productivity and an increase in cost.
- this Al—Fe alloy layer has low reactivity with a normal phosphating treatment, and it is difficult to form a chemical conversion coating (phosphate coating) which is a pretreatment for electrodeposition coating. Even if the chemical conversion coating does not adhere, the paint adhesion is good, and if the amount of Al plating attached is sufficient, the corrosion resistance after painting will also be good, but increasing the amount of adhesion is the mold adhesion described above Tend to deteriorate.
- phosphate coating phosphate coating
- Patent Document 2 discloses a technique for treating a surface of an Al-plated steel sheet with a wurtzite type compound.
- the hot lubricity and chemical conversion treatment are improved by such treatment. This technique is effective in improving lubricity, and an effect of improving post-coating corrosion resistance is recognized.
- Patent Document 3 among the crystal grains of the intermetallic compound phase mainly composed of Al—Fe formed on the surface of the steel sheet, crystals of the intermetallic compound phase containing 40% or more and 65% or less of Al. There is disclosed a technique for controlling the average slice length of grains and the thickness of the intermetallic compound phase and forming a lubricating film containing ZnO on the surface of the Al plating layer. In the following Patent Document 3, this technique can improve the post-coating corrosion resistance and the moldability during hot stamping.
- JP 2000-38640 A International Publication No. 2009/131233 International Publication No. 2012/137687
- Al-plated steel sheets plated with relatively high melting point Al are considered promising as members that require corrosion resistance, such as automobile steel sheets, and improvement proposals have also been made regarding the application of Al-plated steel sheets to hot pressing. Yes.
- the film thickness of the electrodeposition coating is premised on a relatively thick one of about 20 ⁇ m.
- electrodeposition coating is a technique in which a vehicle body is dipped and the film thickness has a great influence on the cost.
- thinning of electrodeposition coating has been progressing, and it is necessary to ensure characteristics even in thinner electrodeposition coating.
- Patent Document 1 there is no description about such electrodeposition coating, and in the above-mentioned Patent Document 2, the electrodeposition coating thickness is 20 ⁇ m.
- Patent Document 3 a value of 1 to 30 ⁇ m is described as a general electrodeposition coating thickness. When such a relatively thick electrodeposition coating is assumed, there is no problem in the conventional technique, but the situation changes when the film thickness of the electrodeposition coating is less than 15 ⁇ m.
- the maximum cross-sectional height Rt of about 20 ⁇ m indicates that a convex portion of about 10 ⁇ m can appear on the surface of the material.
- the film thickness of the electrodeposition coating is 14 ⁇ m, the present inventors have conceived that there is a site of about 4 ⁇ m locally, and such a site can preferentially corrode.
- the present invention has been made in view of the above problems, and an object of the present invention is to have excellent post-coating corrosion resistance even with a smaller electrodeposition coating thickness than in the past, and molding in hot pressing. It is an object of the present invention to provide an automobile part and a method for producing an automobile part that improve the productivity and productivity, and further improve the chemical conversion treatment property after hot press molding.
- the present inventors have intensively studied.
- the steel sheet has an intermetallic compound layer made of an Al—Fe intermetallic compound, and the surface of the intermetallic compound layer contains ZnO.
- the thickness of the electrodeposition coating film has been made by finding that it has sufficient post-coating corrosion resistance even if it is less than 15 ⁇ m, and further finding Al plating conditions and heating conditions for realizing the surface roughness.
- the gist of the present invention completed based on the above findings is as follows.
- the surface of the formed steel sheet has an intermetallic compound layer made of an Al—Fe intermetallic compound having a thickness of 10 ⁇ m or more and 50 ⁇ m or less, and the diffusion layer located closest to the steel sheet in the intermetallic compound layer
- the surface of the intermetallic compound layer has a surface coating layer including a coating containing ZnO and a zinc phosphate coating, and the surface roughness of the surface coating layer is JIS B0601.
- Rt The automobile part according to (1), wherein the maximum cross-sectional height Rt is 7 ⁇ m or more and 14 ⁇ m or less.
- (10) coating weight of the Al plating layer is less than one side per 30 g / m 2 or more 60 g / m 2, (6) automotive component according to any one of - (8).
- the plating adhesion of an Al plating layer having an average primary crystal diameter of 4 ⁇ m or more and 40 ⁇ m or less The amount is 30 g / m 2 or more and 110 g / m 2 or less per side, the ZnO amount is 0.3 g / m 2 or more and 3 g / m 2 or less in terms of metal Zn, and the heating rate in the heating process during hot pressing is A method for manufacturing an automobile part, wherein the temperature is 12 ° C./second or more, the ultimate plate temperature is 870 ° C. or more and 1100 ° C.
- an Al plated layer having an average primary crystal diameter of 4 ⁇ m or more and 40 ⁇ m or less coating weight was per one surface 30 g / m 2 or more 60 g / m less than 2, the amount of ZnO and 0.3 g / m 2 or more 3 g / m 2 or less of metal Zn terms, the temperature in the heating step in the hot press temperature
- the speed is 12 ° C / second or less
- the ultimate plate temperature is 850 ° C or more and 950 ° C or less
- the thickness of the electrodeposition coating film is 6 ⁇ m or more and less than 15 ⁇ m.
- the present invention has excellent post-coating corrosion resistance even with a smaller electrodeposition coating thickness than conventional ones, improves formability and productivity in hot pressing, and further hot presses. It is possible to provide an automobile part with improved chemical conversion properties after molding and a method for manufacturing the same.
- FIG. 2 is a cross-sectional photograph showing a cross-sectional structure of a typical Al plating layer. 2 is a cross-sectional photograph showing a typical Al—Fe layer and a diffusion layer. 1 is a perspective view showing the shape of a hat molded product manufactured in Example 1. FIG.
- the plated steel sheet according to an embodiment of the present invention has a layer structure of at least two layers on each of one side or both sides of the steel sheet. That is, an Al plating layer containing at least Al is formed on one side or both sides of the steel plate, and a surface film layer containing at least ZnO is further laminated on the Al plating layer.
- Steel sheet for example, has high mechanical strength (for example, various properties related to mechanical deformation and fracture such as tensile strength, yield point, elongation, drawing, hardness, impact value, fatigue strength, and creep strength) It is desirable to use a steel plate formed to have.
- An example of the components of the steel sheet that achieves high mechanical strength that can be used in one embodiment of the present invention is as follows.
- This steel sheet is, for example, mass%, C: 0.1% to 0.4%, Si: 0.01% to 0.6%, Mn: 0.5% to 3%, Ti: 0 .01% or more and 0.1% or less, B: 0.0001% or more and 0.1% or less, and the balance consists of Fe and impurities.
- C 0.1% to 0.4%
- C is added to ensure the desired mechanical strength.
- the C content is less than 0.1%, sufficient mechanical strength cannot be improved, and the effect of adding C becomes poor.
- the C content exceeds 0.4%, the steel sheet can be further hardened, but melt cracking tends to occur. Accordingly, the C content is desirably 0.1% or more and 0.4% or less in terms of mass%.
- the content of C is more preferably 0.15% or more and 0.35 or less.
- Si 0.01% to 0.6%
- Si is one of the strength improving elements for improving the mechanical strength and, like C, is added to ensure the target mechanical strength.
- Si content is less than 0.01%, it is difficult to exert the effect of improving the strength, and sufficient mechanical strength cannot be improved.
- Si is also an easily oxidizable element. Therefore, when the Si content is more than 0.6%, wettability may be reduced and non-plating may occur when performing molten Al plating. Therefore, the Si content is desirably 0.01% or more and 0.6% or less in terms of mass%. More preferably, the Si content is 0.01% or more and 0.45% or less.
- Mn is one of the strengthening elements that strengthens steel and is also one of the elements that enhances hardenability. Furthermore, Mn is an element effective for preventing hot brittleness due to S which is one of impurities. When the content of Mn is less than 0.5%, these effects cannot be obtained, and the above effects are exhibited with a content of 0.5% or more. On the other hand, when the Mn content is more than 3%, the residual ⁇ phase becomes too much and the strength may be lowered. Therefore, the Mn content is desirably 0.5% or more and 3% or less by mass%. The content of Mn is more preferably 0.8% or more and 3% or less.
- Ti is one of strength-enhancing elements and is an element that improves the heat resistance of the Al plating layer.
- the Ti content is less than 0.01%, the strength improving effect and the oxidation resistance improving effect cannot be obtained, and these effects are exhibited when the content is 0.01% or more.
- the Ti content is desirably 0.01% or more and 0.1% or less by mass. The Ti content is more preferably 0.01% or more and 0.07% or less.
- B has an effect of improving strength by acting during quenching.
- the B content is less than 0.0001%, such an effect of improving the strength is low.
- the B content is more than 0.1%, inclusions are formed, the steel sheet becomes brittle, and fatigue strength may be reduced. Therefore, the B content is desirably 0.0001% or more and 0.1% or less by mass%.
- the content of B is more desirably 0.0001% or more and 0.01% or less.
- Such steel sheets include, as optional elements other than the above, Cr: 0.01% to 0.5%, Al: 0.01% to 0.1%, N: 0.001% to 0.02%, In many cases, P: 0.001% or more and 0.05% or less, and S: 0.001% or more and 0.05% or less. Cr is effective in hardenability like Mn, and Al is applied as a deoxidizer. In addition, it cannot be overemphasized that not all the said arbitrary elements may be added to this steel plate.
- Such a steel sheet may contain inevitable impurities that are mixed in in other manufacturing processes.
- impurities can include, for example, Ni, Cu, Mo, O, and the like.
- the steel plate formed of such components is quenched by heating by a hot press method or the like, and can have a mechanical strength of about 1500 MPa or more. Although it is a steel plate having such a high mechanical strength, if it is processed by a hot pressing method, it can be formed easily because it can be pressed in a softened state by heating. Moreover, this steel plate can implement
- the Al plating layer is formed on one side or both sides of the steel plate.
- the Al plating layer may be formed on the surface of the steel sheet by, for example, a hot dipping method, but the method of forming the Al plating layer in the present invention is not limited to such an example.
- the plating component of the Al plating layer contains Al and often contains Si.
- Si as a plating component, it is possible to control the Al—Fe alloy layer generated during the coating of the hot dipped metal.
- the Si content is less than 3%, the Al—Fe alloy layer grows thick at the stage of applying Al plating, and promotes cracking of the plating layer during processing, which may adversely affect corrosion resistance.
- the Si content exceeds 15%, the workability and corrosion resistance of the plating layer may be reduced. Therefore, it is desirable that Si is contained in a content of 3% to 15% by mass.
- the Al plating bath As an element other than Si in the Al plating bath, 2 to 4% of Fe eluted from the equipment and steel strip in the bath is present. In addition to Si and Fe, elements such as Mg, Ca, Sr and Li can be contained in the Al plating bath in an amount of about 0.01 to 1%.
- the Al plating layer formed of such components can prevent corrosion of the steel sheet. Moreover, when processing a steel plate by a hot pressing method, it is possible to prevent the generation of scale (iron oxide) generated by oxidation of the surface of the steel plate heated to a high temperature. Therefore, by forming such an Al plating layer, the process of removing the scale, the surface cleaning process, the surface treatment process, and the like can be omitted, and the productivity can be improved. Also, since the Al plating layer has a higher boiling point than plating coating with organic materials or plating coating with other metal materials (for example, Zn-based), it can be processed at a high temperature when forming by a hot press method. This makes it possible to further improve the formability in hot pressing and to easily process.
- the average initial crystal diameter of the Al plating layer is 4 ⁇ m or more and 40 ⁇ m or less.
- the average primary crystal diameter of the Al plating layer can be measured by observing with an optical microscope after the cross-section polishing.
- the primary crystal is often Al, and the Al—Si eutectic (Al—Si eutectic) solidifies at the end of solidification. Therefore, the location of the eutectic part composed of the Al—Si eutectic can be specified, and the structure existing between the adjacent eutectic parts can be determined as the primary crystal part composed of the Al primary crystal.
- the average primary crystal diameter of the Al plating layer falls within such a range, a desired surface roughness is realized in the surface coating layer described later.
- FIG. 1 shows a cross-sectional structure of a typical Al plating layer.
- the position of the primary crystal part can be determined.
- a region surrounded by a dotted line is an initial crystal portion made of an Al primary crystal, and a region existing between adjacent primary crystal portions is a eutectic portion.
- the primary crystal diameter (diameter of the circle) is obtained by converting it into a circle having the same area as the ellipse representing the primary crystal part.
- five primary crystal diameters are measured for one visual field, and a total of ten measured values in two arbitrary visual fields are measured. The average of
- the average primary crystal diameter depends on the state of formation of the alloy (that is, the eutectic part) and the cooling rate after plating, and is practically difficult to be less than 4 ⁇ m. Therefore, the lower limit of the average primary crystal diameter is 4 ⁇ m or more. On the other hand, if the average primary crystal diameter is too large, it means that the plating composition is partially non-uniform, and the plating composition becomes partially non-uniform so that unevenness after heating tends to increase. Therefore, the upper limit of the average primary crystal diameter is set to 40 ⁇ m. The average primary crystal diameter is more desirably 4 ⁇ m or more and 30 ⁇ m or less.
- Deposition amount of the Al plating layer (1) may be less per side 30 g / m 2 or more 110g / m 2, (2) be less than per side 30 g / m 2 or more 60 g / m 2 good it, may be (3) per side 60 g / m 2 or more 110g / m 2 or less.
- the heating rate in the heating process in the hot pressing method, the maximum reached plate temperature, and the like are controlled according to the adhesion amount of the Al plating layer.
- the adhesion amount shown in (1) is more preferably 50 g / m 2 or more and 80 g / m 2 or less
- the adhesion amount shown in (2) is more preferably 35 g / m 2. above 55 g / m 2 or less
- the adhesion amount shown in the above (3) more preferably is 60 g / m 2 or more 90 g / m 2 or less.
- the adhesion amount of the Al plating layer can be measured by a known method such as fluorescent X-ray analysis. For example, using a sample with a known Al adhesion amount, a calibration curve indicating the relationship between the fluorescent X-ray intensity and the adhesion amount is prepared in advance, and the measurement result of the fluorescent X-ray intensity is calculated using the calibration curve. What is necessary is just to determine the adhesion amount of Al plating layer.
- the above-described Al-plated steel sheet is hot-formed into a part shape.
- the Al plating component and the steel plate component react to change into an Al—Fe-based intermetallic compound.
- an alloyed plating layer has a complicated structure.
- the alloyed plating layer often has a structure in which five layers are laminated.
- the plated layer composed of a plurality of alloyed layers is also referred to as an “intermetallic compound layer”.
- the thickness of the diffusion layer closest to the steel plate of the Al—Fe layer is 10 ⁇ m or less.
- a typical Al—Fe layer and diffusion layer are shown in FIG.
- Such cross-sectional structure can be obtained by performing nital etching after cross-sectional polishing.
- the intermetallic compound layer according to the embodiment of the present invention has a structure in which five layers a to e as illustrated in FIG. 2 are laminated, and the d layer and the e layer are combined. Together, it is defined as “diffusion layer”.
- the number of intermetallic compound layers is not limited to the five layers illustrated in FIG. 2, and the intermetallic compound layer has a number of layers other than five. Even if it is a case, the 1st layer and the 2nd layer from the steel plate side of the intermetallic compound layer should just be handled as a diffusion layer.
- the thickness of this diffusion layer is 10 ⁇ m or less. The reason for this thickness is that spot weldability depends on this thickness. If the diffusion layer exceeds 10 ⁇ m, dust tends to be generated, and the appropriate welding current range is narrowed.
- the lower limit of the thickness of the diffusion layer is not particularly limited, but such a diffusion layer is usually 1 ⁇ m or more, and practically 1 ⁇ m is the lower limit.
- the surface coating layer is laminated on the surface of the Al plating layer as described above.
- This surface coating layer contains at least ZnO.
- a surface film layer can be formed by applying a suspension obtained by suspending ZnO fine particles in an aqueous solution to the Al plating layer using a roll coater or the like. This surface film layer has the effect of improving the lubricity in hot pressing and the reactivity with the chemical conversion solution.
- an organic binder component can be contained.
- the organic binder include water-soluble resins such as polyurethane resins, polyester resins, acrylic resins, and silane coupling agents.
- oxides other than ZnO it is also possible to contain SiO 2 or TiO 2, Al 2 O 3 or the like.
- Examples of the method for applying the suspension include a method in which a suspension containing ZnO as described above is mixed with a predetermined organic binder and applied to the surface of the Al plating layer, or application by powder coating. The method etc. are mentioned.
- the particle diameter (average particle diameter) of ZnO is not particularly limited.
- the diameter is preferably about 50 nm to 1000 nm, and more preferably 50 nm to 400 nm.
- the definition of the particle size of ZnO is defined as the particle size after hot pressing.
- the particle size after passing through the process of quenching in a mold after being held in a furnace at 900 ° C. for 5 to 6 minutes is determined by observing with a scanning electron microscope (Scanning Electron Microscope: SEM) or the like. .
- SEM scanning Electron Microscope
- the adhesion amount of the coating containing ZnO is not particularly limited, it is preferably 0.3 g / m 2 or more and 3 g / m 2 or less in terms of metal Zn per one side of the steel sheet.
- the adhesion amount of ZnO is 0.3 g / m 2 or more in terms of metal Zn, the effect of improving lubrication can be effectively exhibited.
- the adhesion amount of ZnO is more than 3 g / m 2 in terms of metal Zn, the thickness of the Al plating layer and the surface coating layer becomes too thick and the weldability is lowered.
- ZnO is desirably 0.3 g / m 2 or more and 3 g / m 2 or less in terms of metal Zn in the surface coating layer on one side.
- the adhesion amount of ZnO is 0.5 g / m 2 or more and 1.5 g / m 2 or less.
- the adhesion amount of ZnO is 0.5 g / m 2 or more and 1.5 g / m 2 or less, lubricity during hot pressing can be ensured, and weldability and paint adhesion are also improved.
- components other than ZnO and a binder for example, compounds such as Mg, Ca, Ba, Zr, P, B, V, and Si can be included in the surface coating layer.
- a baking / drying method after coating for example, a hot air furnace, an induction heating furnace, a near-infrared furnace or the like may be used, or a combination of these methods may be used. Further, depending on the type of binder used for coating, instead of baking and drying after coating, for example, a curing process using ultraviolet rays, electron beams, or the like may be performed.
- the baking temperature after coating is often about 60 to 200 ° C.
- the method of forming the surface coating layer is not limited to these examples, and can be formed by various methods.
- the adhesion before heating after application to the Al plating is slightly low, and there is a concern that it may be partially peeled when rubbed with a strong force.
- the zinc phosphate film will be described.
- immersion type chemical conversion treatment is performed before electrodeposition coating.
- This chemical conversion treatment is performed using a chemical conversion treatment solution containing a known phosphate.
- zinc in the coating containing ZnO reacts with the phosphate contained in the chemical conversion treatment solution, so that the zinc phosphate coating is formed on the surface of the steel sheet on which the Al plating layer and the surface coating layer are formed. Is formed.
- This zinc phosphate coating improves adhesion to the coating and contributes to post-coating corrosion resistance.
- the alloyed Al—Fe surface is covered with a strong Al oxide film, and the reactivity with the chemical conversion solution is low.
- a technique for improving the reactivity with such a chemical conversion treatment solution is described in Patent Document 2 described above.
- the zinc phosphate film (chemical conversion treatment film) is the same as that of Patent Document 2 described above, and by attaching a film containing ZnO, the reactivity between the Al-plated steel sheet and the chemical conversion treatment liquid is achieved. Is improved, and a zinc phosphate film is also formed.
- the amount of zinc phosphate coating is almost governed by the content of ZnO.
- the amount of ZnO in the coating containing ZnO is 0.3 g / m 2 or more and 3 g / m 2 or less per side in terms of metallic Zn, zinc phosphate the degree per side 0.6 g / m 2 or more 3 g / m 2 or less as a coating amount.
- a zinc phosphate coating is formed on the surface of the surface coating layer, and it is difficult for a part to separate both the surface coating layer and the zinc phosphate coating.
- the part has a total thickness of the surface coating layer and the zinc phosphate coating, and when the ZnO amount is 0.3 g / m 2 or more and 3 g / m 2 or less per side in terms of metal Zn, the surface coating layer and phosphoric acid are used.
- the total thickness of the zinc film is about 0.5 ⁇ m to 3 ⁇ m.
- the ZnO amount and the zinc phosphate coating amount of the surface coating layer can be measured by a known analysis method such as a fluorescent X-ray analysis method.
- a calibration curve showing the relationship between the fluorescent X-ray intensity and the adhesion amount is prepared in advance using a sample with a known Zn adhesion amount or phosphorus adhesion amount, and the calibration curve is used to obtain a fluorescence X-ray. What is necessary is just to determine the amount of ZnO and the amount of zinc phosphate film from the measurement result of strength.
- the plated steel sheet according to this embodiment which can be suitably used as a raw material for automobile parts according to the embodiment of the present invention, has been described.
- the plated steel sheet formed in this way is particularly useful when processing by a hot pressing method. Therefore, the case where the plated steel plate which has the said structure is processed by the hot press method is demonstrated here.
- the hot pressing method first, the plated steel sheet as described above is heated to a high temperature to soften the plated steel sheet. Then, the softened plated steel sheet is pressed and formed, and then the formed plated steel sheet is cooled. Thus, the subsequent press work can be easily performed by once softening the plated steel sheet. Moreover, the plated steel sheet having the above components can be hardened by heating and cooling to achieve a high mechanical strength of about 1500 MPa or more.
- the plated steel sheet according to the present embodiment is heated by a hot pressing method.
- a heating method such as infrared heating can be adopted in addition to a normal electric furnace and a radiant tube furnace.
- the Al-plated steel sheet melts at a melting point or higher when heated, and at the same time changes into an Al—Fe alloy layer (ie, the above-mentioned intermetallic compound layer) centering on Al—Fe by mutual diffusion with Fe.
- the melting point of the Al—Fe alloy layer is high and is about 1150 ° C.
- a desirable surface state for the final product is a state in which the surface is alloyed and the Fe concentration in the alloy layer is not high.
- the Al-plated steel sheet on which the coating (that is, the surface coating layer) containing ZnO is formed by hot pressing the surface roughness after forming is important. From the viewpoint of controlling the surface roughness of the Al—Fe alloy layer after alloying, it is important to control three factors: the amount of Al plating deposition, the rate of temperature rise, and the ultimate plate temperature.
- the factor that has a particularly large influence is the temperature rising rate, and by raising the temperature at a temperature rising rate of 12 ° C./second or more, the surface roughness can be reduced regardless of the amount of Al plating deposited and the ultimate plate temperature. .
- the temperature increase rate at this time is an average temperature increase rate from 50 ° C. to (final plate temperature ⁇ 30 ° C.).
- the Al plating adhesion amount is set to 30 g / m 2 or more and 110 g / m 2 or less.
- the amount of Al plating adhesion is more desirably 50 g / m 2 or more and 80 g / m 2 or less.
- the upper limit of the rate of temperature increase is not particularly defined, it is difficult to obtain a rate of temperature increase of more than 300 ° C./second even when a method such as energization heating is used.
- the rate of temperature increase in such a temperature increase pattern is desirably 12 ° C./second or more and 150 ° C./second or less.
- the ultimate plate temperature does not affect the surface roughness, but the ultimate plate temperature is set to 870 ° C. or higher and 1100 ° C. or lower. If the ultimate plate temperature is less than 870 ° C., alloying may not be completed completely, and if the ultimate plate temperature exceeds 1100 ° C., alloying may proceed too much, resulting in poor corrosion resistance. There is sex.
- the rate of temperature rise is less than 12 ° C./second
- the surface roughness varies depending on the amount of deposited Al plating and the ultimate plate temperature. The surface roughness tends to be smaller when the amount of Al plating attached is smaller. Therefore, in such heating pattern, Al coating weight, and per side 30 g / m 2 or more 60 g / m less than 2.
- the ultimate plate temperature is set to 850 ° C. or more and 950 ° C. or less. At this time, it is difficult to obtain corrosion resistance when the Al plating adhesion amount is less than 30 g / m 2 .
- the ultimate plate temperature is less than 850 ° C, the hardness after quenching may be insufficient, and if the ultimate plate temperature exceeds 950 ° C, the diffusion of Al-Fe proceeds too much, and the corrosion resistance also decreases. To do.
- a lower limit of the temperature rising rate is not particularly set, but economical rationality is remarkably lacking at a temperature rising rate of less than 1 ° C./second regardless of the amount of plating.
- the amount of Al plating adhesion is desirably 35 g / m 2 or more and 55 g / m 2 or less
- the ultimate plate temperature is desirably 850 ° C. or more and 900 ° C. or less
- the temperature rising rate Is desirably 4 ° C./second or more and 12 ° C./second or less.
- the rate of temperature rise is less than 12 ° C./second and the amount of Al plating is large, the surface roughness tends to increase, so it is important to strictly control the ultimate plate temperature.
- the higher the ultimate plate temperature the smaller the surface roughness. Therefore, in such a temperature rising pattern, when the Al plating adhesion amount is 60 g / m 2 or more and 110 g / m 2 or less per side, it is important that the ultimate plate temperature is 920 ° C. or more and 970 ° C. or less.
- the Al plating adhesion amount exceeds 110 g / m 2 per side, the Al plating that is too thick tends to peel off during molding and may adhere to the mold, and if the ultimate plate temperature is less than 920 ° C., the surface Since the roughness tends to increase, the corrosion resistance of the thin electrodeposition coating film cannot be maintained.
- the amount of Al plating adhesion is more desirably 60 g / m 2 or more and 90 g / m 2 or less.
- the rate of temperature rise economic rationality is remarkably lacking at a rate of temperature rise of less than 1 ° C./second regardless of the amount of plating.
- the ultimate plate temperature is desirably 940 ° C. or higher and 970 ° C. or lower, and the temperature rising rate is desirably 4 ° C./second or higher and 12 ° C./second or lower.
- the thickness of the Al—Fe alloy layer as a hot-pressed part (that is, the thickness of the intermetallic compound layer) is approximately 10 ⁇ m or more and 50 ⁇ m or less. It becomes. Therefore, it is desirable that the thickness of the Al—Fe alloy layer be in this region.
- the embodiment of the present invention provides a part having good post-coating corrosion resistance when the electrodeposition coating thickness is less than 15 ⁇ m, and as described above, controls the surface roughness to a certain value or less.
- the maximum cross-sectional height: Rt defined in JIS B0601 (2001) JIS B0601 (2001) is a standard corresponding to ISO 4287) shall be used.
- the maximum section height Rt is defined as the sum of the maximum peak height and the maximum valley depth of the roughness curve at the evaluation length, and generally corresponds to the difference between the maximum value and the minimum value of the roughness curve.
- the value of the maximum cross-sectional height Rt of the surface coating layer is 3 ⁇ m or more and 20 ⁇ m or less. Since it is practically impossible to set the maximum cross-sectional height Rt to less than 3 ⁇ m, the lower limit is set to this value. Further, when the maximum cross-sectional height Rt exceeds 20 ⁇ m, the upper limit is set to 20 ⁇ m because corrosion occurs starting from a thin portion of the electrodeposition coating film due to unevenness.
- the value of the maximum cross-sectional height Rt of the surface coating layer is more preferably 7 ⁇ m or more and 14 ⁇ m or less.
- the plated steel plate used for the automotive component according to the embodiment of the present invention and the hot pressing method for the plated steel plate have been described.
- the automobile part formed using the plated steel sheet according to the present embodiment has a surface coating layer containing ZnO, zinc phosphate, and the like, thereby realizing, for example, high lubricity and chemical conversion treatment as described above. Is improved.
- the automotive part according to the embodiment of the present invention is manufactured.
- This automotive part has an intermetallic compound layer made of an Al—Fe intermetallic compound having a thickness of 10 ⁇ m or more and 50 ⁇ m or less on the surface of a formed steel plate (steel plate as a base material).
- the thickness of the diffusion layer located closest to the steel plate is 10 ⁇ m or less.
- the surface of the intermetallic compound layer has a surface coating layer including a coating containing ZnO and a zinc phosphate coating, and the surface roughness of the surface coating layer is the maximum cross-sectional height defined in JIS B0601 (2001).
- Rt is 3 ⁇ m or more and 20 ⁇ m or less. Furthermore, the surface of the surface coating layer has an electrodeposition coating film having a thickness of 6 ⁇ m or more and less than 15 ⁇ m. Such automotive parts have a high mechanical strength of, for example, about 1500 MPa or more.
- the electrodeposition coating film formed on the surface of the surface coating layer is not particularly limited, and a known electrodeposition coating film can be formed by a known method.
- the thickness of the electrodeposition coating film is desirably 8 ⁇ m or more and 14 ⁇ m or less.
- the surface roughness of the surface coating layer is 3 ⁇ m or more and 20 ⁇ m or less at the maximum cross-sectional height Rt, which is an extremely flat surface. Even if it is made extremely thin, excellent effects such as excellent post-coating corrosion resistance, excellent moldability and productivity in hot press forming, and excellent chemical conversion processability after hot press forming can be stably achieved. It can be realized.
- the automotive part according to the embodiment of the present invention will be described in more detail with reference to examples.
- the Example shown below is an example of the automotive component which concerns on embodiment of this invention, Comprising: The automotive component which concerns on embodiment of this invention is not limited to the following example.
- Example 1 In this example, a cold-rolled steel sheet having a steel component shown in Table 1 (sheet thickness: 1.2 mm) was used, and this cold-rolled steel sheet was Al-plated. The annealing temperature at this time was about 800 degreeC. Moreover, the Al plating bath contained Si: 9% and, in addition, contained about 2% Fe eluted from the steel strip.
- the adhesion amount after plating is adjusted to a range of 20 g / m 2 or more and 120 g / m 2 or less per side by gas wiping method, and after cooling, ZnO having a diameter of about 50 nm and an acrylic system with 20% of ZnO amount
- the suspension containing the binder was applied with a roll coater and baked at about 80 ° C.
- the adhesion amount was in the range of 0.1 g / m 2 or more and 4 g / m 2 or less as the amount of metal Zn.
- the average initial crystal diameter was adjusted by changing the plating adhesion amount and the cooling rate.
- the average primary crystal diameter was calculated by the above method by observing the cross section of the structure with an optical microscope.
- This plated steel sheet was hot stamped under the following conditions. Two heating methods were used. One is a method of inserting into an atmospheric furnace maintained at a constant temperature, and the other is a method using a two-zone far-infrared heating furnace. Regarding the latter, one zone was held at 1150 ° C. and the other zone was held at 900 ° C., and after heating to 800 ° C. in a 1150 ° C. furnace, it was moved to a 900 ° C. furnace. The plate temperature was measured by welding a thermocouple, and the average temperature increase rate from 50 ° C. to (final plate temperature ⁇ 30) ° C. was measured.
- FIG. 3 shows the molding shape and the cutout part at this time.
- the cut specimen was subjected to a chemical conversion treatment with a conversion treatment solution (PB-SX35) manufactured by Nippon Parkerizing Co., Ltd., which is a chemical conversion treatment solution containing phosphate, and then an electrodeposition paint (Powernics 110) manufactured by Nippon Paint Co., Ltd. ) Was applied aiming at 5 ⁇ m to 20 ⁇ m and baked at 170 ° C.
- PB-SX35 conversion treatment solution manufactured by Nippon Parkerizing Co., Ltd.
- the post-painting corrosion resistance evaluation was performed by the method prescribed in JASO M609 established by the Automotive Engineering Association.
- the coating was not subjected to wrinkles and only the end face was sealed for the test.
- the corrosion state after 180 cycles (60 days) of the corrosion test was observed and rated as follows.
- As a comparative material an alloyed hot-dip galvanized steel sheet having a single side of 45 g / m 2 was also cold-formed and evaluated in the same manner, and was evaluated as “Good”.
- the surface roughness (Rt) of the sample up to the chemical conversion treatment was measured based on JIS B0601 (2001). Further, after the cross-sectional examination, the thickness of the diffusion layer was determined by etching with 3% nital and observing with an optical microscope.
- a 1.4 mmt flat plate was heated under the same heat treatment conditions as in the hat forming test, and the mold was quenched.
- an appropriate current range was evaluated with a single-phase AC power source (60 Hz), a pressure of 400 kgf (1 kgf is about 9.8 N), and 12 cycles.
- the lower limit was 4 ⁇ (t) 0.5 (t is the thickness), and the upper limit was evaluated as the occurrence of dust and evaluated according to the following criteria.
- ⁇ Appropriate 1.5 kA or more ⁇ : Appropriate less than 1.5 kA
- Table 2 summarizes the results obtained.
- the amount of plating adhesion and the amount of ZnO are both shown as the amount of adhesion per side.
- the ZnO amount is an amount as metal Zn.
- a film containing ZnO and a film containing zinc phosphate were formed as the surface film layer.
- the lubricity is good and the workability is improved, so that it is possible to perform complicated press work compared to the conventional one. Furthermore, it is possible to save labor for maintenance and inspection of hot presses, and to improve productivity. It has been confirmed that the processed product after hot pressing also has good chemical conversion treatment, so that the coating and corrosion resistance of the final product are also improved. From the above, it is convinced that the application range of the hot press of Al plated steel is expanded by the present invention, and the applicability of the Al plated steel material to automobiles and industrial machines which are end uses is increased.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Coating With Molten Metal (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Chemical Treatment Of Metals (AREA)
- Heat Treatment Of Articles (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
上記知見に基づき完成された本発明の要旨は、以下のとおりである。
(2)前記最大断面高さRtは、7μm以上14μm以下である、(1)に記載の自動車部品。
(3)前記ZnOの平均粒径は、直径50nm以上1000nm以下である、(1)又は(2)に記載の自動車部品。
(4)前記ZnOの含有量は、金属Zn換算で、片面当たり0.3g/m2以上3g/m2以下である、(1)~(3)の何れか1項に記載の自動車部品。
(5)前記ZnOの含有量は、金属Zn換算で、片面当たり0.5g/m2以上1.5g/m2以下である、(1)~(4)の何れか1項に記載の自動車部品。
(6)前記鋼板は、母材となる鋼板の表面にAlめっき層が形成された、Alめっき鋼板である、(1)~(5)の何れか1項に記載の自動車部品。
(7)前記Alめっき層の平均初晶径は、4μm以上40μm以下である、(6)に記載の自動車部品。
(8)前記Alめっき層の平均初晶径は、4μm以上30μm以下である、(6)又は(7)に記載の自動車部品。
(9)前記Alめっき層の付着量は、片面当たり30g/m2以上110g/m2以下である、(6)~(8)の何れか1項に記載の自動車部品。
(10)前記Alめっき層の付着量は、片面当たり30g/m2以上60g/m2未満である、(6)~(8)の何れか1項に記載の自動車部品。
(11)前記Alめっき層の付着量は、片面当たり60g/m2以上110g/m2以下である、(6)~(8)の何れか1項に記載の自動車部品。
(12)ZnOを含有する皮膜を表面に有するAlめっき鋼板を使用し、熱間プレス工法を用いて自動車部品を製造するに際し、平均初晶径が4μm以上40μm以下であるAlめっき層のめっき付着量を片面あたり30g/m2以上110g/m2以下とし、ZnO量を金属Zn換算で0.3g/m2以上3g/m2以下とし、熱間プレスの際の加熱工程における昇温速度を12℃/秒以上とし、到達板温を870℃以上1100℃以下とし、電着塗膜の厚みを6μm以上15μm未満とする、自動車部品の製造方法。
(13)前記Alめっき層の付着量は、片面当たり50g/m2以上80g/m2以下である、(12)に記載の自動車部品の製造方法。
(14)ZnOを含有する皮膜を表面に有するAlめっき鋼板を使用し、熱間プレス工法を用いて高強度自動車部品を製造するに際し、平均初晶径が4μm以上40μm以下であるAlめっき層のめっき付着量を片面あたり30g/m2以上60g/m2未満とし、ZnO量を金属Zn換算で0.3g/m2以上3g/m2以下とし、熱間プレスの際の加熱工程における昇温速度を12℃/秒以下とし、到達板温を850℃以上950℃以下とし、電着塗膜の厚みを6μm以上15μm未満とする、自動車部品の製造方法。
(15)前記Alめっき層の付着量は、片面当たり35g/m2以上55g/m2以下である、(14)に記載の自動車部品の製造方法。
(16)ZnOを含有する皮膜を表面に有するAlめっき鋼板を使用し、熱間プレス工法を用いて高強度自動車部品を製造するに際し、平均初晶径が4μm以上40μm以下であるAlめっき層のめっき付着量を片面あたり60g/m2以上110g/m2以下とし、ZnO量を金属Zn換算で0.3g/m2以上3g/m2以下とし、熱間プレスの際の加熱工程における昇温速度を12℃/秒以下とし、到達板温を920℃以上970℃以下とし、電着塗膜の厚みを6μm以上15μm未満とする、自動車部品の製造方法。
(17)前記Alめっき層の付着量は、片面当たり60g/m2以上90g/m2以下である、(16)に記載の自動車部品の製造方法。
(18)前記ZnOの含有量は、金属Zn換算で、片面当たり0.5g/m2以上1.5g/m2以下である、(12)~(17)の何れか1項に記載の自動車部品の製造方法。
(19)前記Alめっき層の平均初晶径は、4μm以上30μm以下である、(12)~(18)の何れか1項に記載の自動車部品の製造方法。
(20)熱間プレス加工に先立ち、前記Alめっき鋼板に対して、リン酸塩を含む化成処理液を利用した化成処理を施す、(12)~(19)の何れか1つに記載の自動車部品の製造方法。
本発明の一実施形態に係るめっき鋼板について説明する。
本実施形態に係るめっき鋼板は、鋼板上の片面又は両面のそれぞれの面に、少なくとも2層の層構造を有する。つまり、鋼板の片面又は両面には、少なくともAlを含有するAlめっき層が形成され、そのAlめっき層上に、少なくともZnOを含有する表面皮膜層が更に積層される。
鋼板としては、例えば、高い機械的強度(例えば、引張強さ・降伏点・伸び・絞り・硬さ・衝撃値・疲れ強さ・クリープ強さなどの機械的な変形及び破壊に関する諸性質を意味する。)を有するように形成された鋼板を使用することが望ましい。本発明の一実施形態に使用されうる高い機械的強度を実現する鋼板の成分の一例は、以下の通りである。
Cは、目的とする機械的強度を確保するために添加される。Cの含有量が0.1%未満の場合には、十分な機械的強度の向上が得られず、Cを添加する効果が乏しくなる。一方、Cの含有量が0.4%超過の場合には、鋼板を更に硬化させることができるものの、溶融割れが生じやすくなる。従って、Cの含有量は、質量%で0.1%以上0.4%以下であることが望ましい。Cの含有量は、更に望ましくは、0.15%以上0.35以下である。
Siは、機械的強度を向上させる強度向上元素の一つであり、Cと同様に、目的とする機械的強度を確保するために添加される。Siの含有量が0.01%未満の場合には、強度向上効果を発揮しにくく、十分な機械的強度の向上が得られない。一方、Siは、易酸化性元素でもある。よって、Siの含有量が0.6%超過の場合には、溶融Alめっきを行う際に、濡れ性が低下し、不めっきが生じる可能性がある。従って、Siの含有量は、質量%で0.01%以上0.6%以下であることが望ましい。Siの含有量は、更に望ましくは、0.01%以上0.45%以下である。
Mnは、鋼を強化させる強化元素の1つであり、焼入れ性を高める元素の1つでもある。更に、Mnは、不純物の1つであるSによる熱間脆性を防止するのにも有効な元素である。Mnの含有量が0.5%未満の場合には、これらの効果が得られず、0.5%以上の含有量で上記効果が発揮される。一方、Mnの含有量が3%超過の場合には、残留γ相が多くなり過ぎて強度が低下する可能性がある。従って、Mnの含有量は、質量%で0.5%以上3%以下であることが望ましい。Mnの含有量は、更に望ましくは、0.8%以上3%以下である。
Tiは、強度強化元素の1つであり、Alめっき層の耐熱性を向上させる元素でもある。Tiの含有量が0.01%未満の場合には、強度向上効果や耐酸化性向上効果が得られず、0.01%以上の含有量でこれらの効果が発揮される。一方、Tiは、あまり添加され過ぎると、例えば、炭化物や窒化物を形成して、鋼を軟質化させる可能性がある。特に、Tiの含有量が0.1%超過の場合には、目的とする機械的強度を得られない可能性が高い。従って、Tiの含有量は、質量%で0.01%以上0.1%以下であることが望ましい。Tiの含有量は、更に望ましくは、0.01%以上0.07%以下である。
Bは、焼入れ時に作用して強度を向上させる効果を有する。Bの含有量が0.0001%未満の場合には、このような強度向上効果が低い。一方、Bの含有量が0.1%超過の場合には、介在物を形成して鋼板が脆化し、疲労強度を低下させる可能性がある。従って、Bの含有量は、質量%で0.0001%以上0.1%以下であることが望ましい。Bの含有量は、更に望ましくは、0.0001%以上0.01%以下である。
かかる鋼板は、上記以外の任意元素として、Cr:0.01%以上0.5%以下、Al:0.01%以上0.1%以下、N:0.001%以上0.02%以下、P:0.001%以上0.05%以下、S:0.001%以上0.05%以下程度を含有することが多い。Crは、Mnと同様焼入性に効果があり、Alは、脱酸剤として適用される。なお、かかる鋼板には、上記任意元素の全てが添加されていなくともよいことは言うまでもない。
また、かかる鋼板は、その他の製造工程などで混入してしまう不可避的な不純物を含んでもよい。かかる不純物としては、例えば、Ni、Cu、Mo、O等がありうる。
Alめっき層は、上述の通り、鋼板の片面又は両面に形成される。このAlめっき層は、例えば溶融めっき法により鋼板の表面に形成されてもよいが、本発明におけるAlめっき層の形成方法は、かかる例に限定されるものではない。
表面皮膜層は、上記のようなAlめっき層の表面に積層される。この表面皮膜層は、少なくとも、ZnOを含有するものとする。ZnOの微粒子を水溶液中に懸濁させた液を用いて、かかる懸濁液をロールコーター等でAlめっき層上に塗布することで、表面皮膜層を形成することができる。この表面皮膜層は、熱間プレスにおける潤滑性や、化成処理液との反応性を改善する効果がある。
通常の自動車の塗装工程において、電着塗装の前に浸漬型の化成処理が行われている。この化成処理は、公知のリン酸塩を含む化成処理液を用いて実施されるものである。この化成処理によって、ZnOを含む皮膜中の亜鉛と化成処理液に含まれるリン酸塩とが反応することで、Alめっき層及び表面皮膜層の形成されている鋼板の表面に、リン酸亜鉛皮膜が形成される。このリン酸亜鉛皮膜は、塗膜との密着性を改善すると共に、塗装後耐食性にも寄与する。例えば上記特許文献1に示すような従来のAlめっき鋼板の場合、合金化したAl-Fe表面は強固なAlの酸化皮膜で覆われており、化成処理液との反応性が低かった。かかる化成処理液との反応性を改善した技術が、上記特許文献2に記載されている。本発明の実施形態においても、リン酸亜鉛皮膜(化成処理皮膜)については上記特許文献2と同様であり、ZnOを含有する皮膜を付着させることで、Alめっき鋼板と化成処理液との反応性が改善され、リン酸亜鉛皮膜も形成されるようになる。
以上、本発明の実施形態に係る自動車部品の原材料として好適に利用可能な、本実施形態に係るめっき鋼板について説明した。このように形成されるめっき鋼板は、特に熱間プレス方法による加工を施す場合に有用である。従って、ここでは、上記構成を有するめっき鋼板が熱間プレス方法により加工される場合について説明する。
以上、本発明の実施形態に係る自動車部品に用いられるめっき鋼板及びめっき鋼板の熱間プレス方法について説明した。本実施形態に係るめっき鋼板を用いて形成された自動車部品は、ZnO及びリン酸亜鉛等を含有する表面皮膜層を有することにより、上述の通り、例えば、高い潤滑性を実現し、化成処理性が改善される。
以上説明したようなAlめっき鋼板に対して、以上説明したような熱間プレス加工を行うことにより、本発明の実施形態に係る自動車用部品が製造される。この自動車用部品は、成形された鋼板(母材となる鋼板)の表面に、厚みが10μm以上50μm以下のAl-Fe金属間化合物からなる金属間化合物層を有し、この金属間化合物層の中の最も鋼板側に位置する拡散層の厚みが、10μm以下となっている。また、金属間化合物層の表面には、ZnOを含有する皮膜及びリン酸亜鉛皮膜を含む表面皮膜層を有し、この表面皮膜層の表面粗さが、JIS B0601(2001)に定める最大断面高さ:Rtとして、3μm以上20μm以下となっている。更に、上記表面皮膜層の表面には、厚みが6μm以上15μm未満の電着塗膜を有している。かかる自動車用部品は、例えば約1500MPa以上という高い機械的強度を有する。
本実施例では、表1に示す鋼成分の冷延鋼板(板厚1.2mm)を使用して、この冷延鋼板をAlめっきした。このときの焼鈍温度は、約800℃であった。また、Alめっき浴はSi:9%を含有し、他に鋼帯から溶出するFeを約2%含有していた。めっき後の付着量をガスワイピング法で片面あたり20g/m2以上120g/m2以下の範囲に調整し、冷却後、直径が約50nmであるZnOと、ZnO量に対して20%のアクリル系のバインダーとが含有された懸濁液をロールコーターで塗布し、約80℃で焼きつけた。付着量は、金属Zn量として0.1g/m2以上4g/m2以下の範囲とした。また、めっき付着量及び冷却速度を変えることで、平均初晶径を調整した。平均初晶径は、組織の断面を光学顕微鏡で観察して、上記の方法により算出した。
○:赤錆、膨れ面積3%以下
△:赤錆、膨れ面積5%以下
×:赤錆、膨れ面積5%超
△:剥離小
×:剥離大
×:適正1.5kA未満
Claims (20)
- 成形された鋼板の表面に、厚みが10μm以上50μm以下のAl-Fe金属間化合物からなる金属間化合物層を有し、当該金属間化合物層の中の最も鋼板側に位置する拡散層の厚みが、10μm以下であり、
前記金属間化合物層の表面には、ZnOを含有する皮膜及びリン酸亜鉛皮膜を含む表面皮膜層を有し、当該表面皮膜層の表面粗さが、JIS B0601(2001)に定める最大断面高さ:Rtとして、3μm以上20μm以下であり、
前記表面皮膜層の表面に、厚みが6μm以上15μm未満の電着塗膜を有する、自動車部品。 - 前記最大断面高さRtは、7μm以上14μm以下である、請求項1に記載の自動車部品。
- 前記ZnOの平均粒径は、直径50nm以上1000nm以下である、請求項1又は2に記載の自動車部品。
- 前記ZnOの含有量は、金属Zn換算で、片面当たり0.3g/m2以上3g/m2以下である、請求項1~3の何れか1項に記載の自動車部品。
- 前記ZnOの含有量は、金属Zn換算で、片面当たり0.5g/m2以上1.5g/m2以下である、請求項1~4の何れか1項に記載の自動車部品。
- 前記鋼板は、母材となる鋼板の表面にAlめっき層が形成された、Alめっき鋼板である、請求項1~5の何れか1項に記載の自動車部品。
- 前記Alめっき層の平均初晶径は、4μm以上40μm以下である、請求項6に記載の自動車部品。
- 前記Alめっき層の平均初晶径は、4μm以上30μm以下である、請求項6又は7に記載の自動車部品。
- 前記Alめっき層の付着量は、片面当たり30g/m2以上110g/m2以下である、請求項6~8の何れか1項に記載の自動車部品。
- 前記Alめっき層の付着量は、片面当たり30g/m2以上60g/m2未満である、請求項6~8の何れか1項に記載の自動車部品。
- 前記Alめっき層の付着量は、片面当たり60g/m2以上110g/m2以下である、請求項6~8の何れか1項に記載の自動車部品。
- ZnOを含有する皮膜を表面に有するAlめっき鋼板を使用し、熱間プレス工法を用いて自動車部品を製造するに際し、
平均初晶径が4μm以上40μm以下であるAlめっき層のめっき付着量を片面あたり30g/m2以上110g/m2以下とし、ZnO量を金属Zn換算で0.3g/m2以上3g/m2以下とし、
熱間プレスの際の加熱工程における昇温速度を12℃/秒以上とし、到達板温を870℃以上1100℃以下とし、電着塗膜の厚みを6μm以上15μm未満とする、自動車部品の製造方法。 - 前記Alめっき層の付着量は、片面当たり50g/m2以上80g/m2以下である、請求項12に記載の自動車部品の製造方法。
- ZnOを含有する皮膜を表面に有するAlめっき鋼板を使用し、熱間プレス工法を用いて高強度自動車部品を製造するに際し、
平均初晶径が4μm以上40μm以下であるAlめっき層のめっき付着量を片面あたり30g/m2以上60g/m2未満とし、ZnO量を金属Znとして0.3g/m2以上3g/m2以下とし、
熱間プレスの際の加熱工程における昇温速度を12℃/秒未満とし、到達板温を850℃以上950℃以下とし、電着塗膜の厚みを6μm以上15μm未満とする、自動車部品の製造方法。 - 前記Alめっき層の付着量は、片面当たり35g/m2以上55g/m2以下である、請求項14に記載の自動車部品の製造方法。
- ZnOを含有する皮膜を表面に有するAlめっき鋼板を使用し、熱間プレス工法を用いて高強度自動車部品を製造するに際し、
平均初晶径が4μm40μm以下であるAlめっき層のめっき付着量を片面あたり60g/m2以上110g/m2以下とし、ZnO量を金属Znとして0.3g/m2以上3g/m2以下とし、
熱間プレスの際の加熱工程における昇温速度を12℃/秒未満とし、到達板温を920℃以上970℃以下とし、電着塗膜の厚みを6μm以上15μm未満とする、自動車部品の製造方法。 - 前記Alめっき層の付着量は、片面当たり60g/m2以上90g/m2以下である、請求項16に記載の自動車部品の製造方法。
- 前記ZnOの含有量は、金属Zn換算で、片面当たり0.5g/m2以上1.5g/m2以下である、請求項12~17の何れか1項に記載の自動車部品の製造方法。
- 前記Alめっき層の平均初晶径は、4μm以上30μm以下である、請求項12~18の何れか1項に記載の自動車部品の製造方法。
- 熱間プレス加工に先立ち、前記Alめっき鋼板に対して、リン酸塩を含む化成処理液を利用した化成処理を施す、請求項12~19の何れか1項に記載の自動車部品の製造方法。
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL14874377T PL3070187T3 (pl) | 2013-12-25 | 2014-12-17 | Element pojazdu o dużej wytrzymałości i sposób wytwarzania elementu pojazdu o dużej wytrzymałości |
EP14874377.6A EP3070187B1 (en) | 2013-12-25 | 2014-12-17 | High-strength automobile part and method for manufacturing a high-strength automobile part |
RU2016128897A RU2655421C2 (ru) | 2013-12-25 | 2014-12-17 | Высокопрочная деталь автомобиля с коррозионно-стойким покрытием и способ ее производства |
ES14874377T ES2762572T3 (es) | 2013-12-25 | 2014-12-17 | Pieza de automóvil de gran resistencia y método para fabricar una pieza de automóvil de gran resistencia |
CN201480068599.0A CN105829578B (zh) | 2013-12-25 | 2014-12-17 | 汽车部件以及汽车部件的制造方法 |
CA2933039A CA2933039C (en) | 2013-12-25 | 2014-12-17 | Automobile part and method for manufacturing automobile part |
KR1020167017988A KR101849480B1 (ko) | 2013-12-25 | 2014-12-17 | 자동차 부품 및 자동차 부품의 제조 방법 |
JP2015554782A JP6376140B2 (ja) | 2013-12-25 | 2014-12-17 | 自動車部品及び自動車部品の製造方法 |
MX2016007462A MX2016007462A (es) | 2013-12-25 | 2014-12-17 | Componente de vehiculo y metodo de fabricacion de componente de vehiculo. |
US15/106,136 US10232426B2 (en) | 2013-12-25 | 2014-12-17 | Automobile part and method for manufacturing automobile part |
BR112016013842-2A BR112016013842B1 (pt) | 2013-12-25 | 2014-12-17 | Parte de automóvel e método para fabricar parte de automóvel |
ZA2016/03964A ZA201603964B (en) | 2013-12-25 | 2016-06-10 | Vehicle component and vehicle component manufacturing method |
US16/265,672 US20190160519A1 (en) | 2013-12-25 | 2019-02-01 | Automobile part and method for manufacturing automobile part |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013267794 | 2013-12-25 | ||
JP2013-267794 | 2013-12-25 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/106,136 A-371-Of-International US10232426B2 (en) | 2013-12-25 | 2014-12-17 | Automobile part and method for manufacturing automobile part |
US16/265,672 Division US20190160519A1 (en) | 2013-12-25 | 2019-02-01 | Automobile part and method for manufacturing automobile part |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015098653A1 true WO2015098653A1 (ja) | 2015-07-02 |
Family
ID=53478517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083420 WO2015098653A1 (ja) | 2013-12-25 | 2014-12-17 | 自動車部品及び自動車部品の製造方法 |
Country Status (14)
Country | Link |
---|---|
US (2) | US10232426B2 (ja) |
EP (1) | EP3070187B1 (ja) |
JP (1) | JP6376140B2 (ja) |
KR (1) | KR101849480B1 (ja) |
CN (1) | CN105829578B (ja) |
BR (1) | BR112016013842B1 (ja) |
CA (1) | CA2933039C (ja) |
ES (1) | ES2762572T3 (ja) |
MX (1) | MX2016007462A (ja) |
PL (1) | PL3070187T3 (ja) |
RU (1) | RU2655421C2 (ja) |
TW (1) | TWI589733B (ja) |
WO (1) | WO2015098653A1 (ja) |
ZA (1) | ZA201603964B (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017066459A (ja) * | 2015-09-29 | 2017-04-06 | 新日鐵住金株式会社 | めっき鋼材 |
WO2017077514A1 (en) * | 2015-11-05 | 2017-05-11 | Phosfan Ltd. | Composite phosphate coatings |
JP2018513909A (ja) * | 2015-02-19 | 2018-05-31 | アルセロールミタル | アルミニウム系被膜および亜鉛被膜で被覆された板からのリン酸塩処理可能な部品の製造方法 |
CN108699665A (zh) * | 2016-02-08 | 2018-10-23 | 德国沙士基达板材有限公司 | 用于钢板或钢带的铝基涂层及其制造方法 |
JP6525124B1 (ja) * | 2017-12-05 | 2019-06-05 | 日本製鉄株式会社 | アルミ系めっき鋼板、アルミ系めっき鋼板の製造方法及び自動車用部品の製造方法 |
WO2019111931A1 (ja) * | 2017-12-05 | 2019-06-13 | 日本製鉄株式会社 | アルミ系めっき鋼板、アルミ系めっき鋼板の製造方法及び自動車用部品の製造方法 |
JP2020524211A (ja) * | 2018-04-28 | 2020-08-13 | 育材堂(▲蘇▼州)材料科技有限公司Ironovation Materials Technology Co., Ltd. | ホットスタンプ加工済コンポーネント、ホットスタンプ加工に使用されるプレ被覆スチールシートおよびホットスタンプ加工プロセス |
EP3250727B1 (de) | 2016-04-18 | 2021-07-07 | Salzgitter Flachstahl GmbH | Bauteil aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech und verfahren zur herstellung eines solchen bauteils |
US11142828B2 (en) | 2015-05-07 | 2021-10-12 | Phosfan Ltd. | Method for applying ultrafine phosphate conversion crystal coatings |
JP2023503151A (ja) * | 2019-11-29 | 2023-01-26 | 宝山鋼鉄股▲分▼有限公司 | 優れた塗装フィルム付着力を有する熱成形部品及びその製造方法 |
US11884998B2 (en) * | 2017-03-31 | 2024-01-30 | Nippon Steel Corporation | Surface treated steel sheet |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012024302A1 (de) * | 2012-12-12 | 2014-06-12 | Kiekert Aktiengesellschaft | Kraftfahrzeugtürschloss |
KR102255966B1 (ko) * | 2017-05-24 | 2021-05-25 | 도카로 가부시키가이샤 | 용융 금속 도금욕용 부재 |
MX2020003891A (es) * | 2017-09-28 | 2020-08-20 | Nippon Steel Corp | Lamina de acero recubierta, rollo de lamina de acero recubierta, metodo para producir articulo formado por prensado en caliente, y parte de automovil. |
CN117483561A (zh) * | 2018-08-08 | 2024-02-02 | 宝山钢铁股份有限公司 | 带铝硅合金镀层的热冲压部件的制造方法及热冲压部件 |
KR102180811B1 (ko) | 2018-12-03 | 2020-11-20 | 주식회사 포스코 | 수소취성에 대한 저항성이 우수한 열간 프레스 성형 부재 및 그 제조방법 |
DE102020201451A1 (de) * | 2020-02-06 | 2021-08-12 | Thyssenkrupp Steel Europe Ag | Stahlblech für die Warmumformung, Verfahren zur Herstellung eines warmumgeformten Stahlblechbauteils und warmumgeformtes Stahlblechbauteil |
CN113481451B (zh) * | 2021-06-07 | 2022-12-27 | 马鞍山钢铁股份有限公司 | 一种用于热成形的预涂覆钢板及其制备方法以及热成形钢构件及其应用 |
CN113340696B (zh) * | 2021-07-20 | 2023-05-12 | 中国航发成都发动机有限公司 | 一种热喷涂涂层有机封孔漆的金相检测方法 |
CN114985005B (zh) * | 2022-07-06 | 2023-11-21 | 华东理工大学 | 改性纤维素纳米晶、负载型金属催化剂及其制备方法和应用 |
KR102490195B1 (ko) | 2022-10-13 | 2023-01-19 | 렉스틸 주식회사 | 강판성형제품의 표면처리 방법 및 이를 이용한 강판성형제품 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1072641A (ja) * | 1996-07-01 | 1998-03-17 | Nippon Steel Corp | 溶接気密性、プレス加工性に優れた自動車燃料タンク用防錆鋼板 |
JP2000038640A (ja) | 1998-07-09 | 2000-02-08 | Sollac | 熱処理後の耐久性に優れた熱間圧延および冷間圧延被覆鋼板 |
JP2000328216A (ja) * | 1999-03-15 | 2000-11-28 | Nippon Steel Corp | 高耐食性めっき鋼板 |
JP2004339530A (ja) * | 2003-05-13 | 2004-12-02 | Nippon Steel Corp | 加工性に優れたMg含有めっき鋼材およびその製造方法 |
WO2009131233A1 (ja) | 2008-04-22 | 2009-10-29 | 新日本製鐵株式会社 | めっき鋼板及びめっき鋼板の熱間プレス方法 |
WO2012137687A1 (ja) | 2011-04-01 | 2012-10-11 | 新日本製鐵株式会社 | 塗装後耐食性に優れたホットスタンプ成形された高強度部品およびその製造方法 |
JP2013227620A (ja) * | 2012-04-25 | 2013-11-07 | Nippon Steel & Sumitomo Metal Corp | 熱間プレス用Al系めっき鋼板とその熱間プレス方法及び高強度自動車部品 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998000573A1 (fr) | 1996-07-01 | 1998-01-08 | Nippon Steel Corporation | Tole d'acier au carbone antirouille pour reservoir a carburant presentant une bonne etancheite aux gaz lors du soudage et de bonnes proprietes anticorrosion apres formage |
US6780256B2 (en) * | 1999-03-24 | 2004-08-24 | Bulk Chemicals, Inc. | Method of treating a metal surface with a no rinse zinc phosphate coating |
JP3783995B2 (ja) * | 1999-05-12 | 2006-06-07 | 日本パーカライジング株式会社 | マグネシウム合金の表面処理方法 |
RU2412278C2 (ru) | 2006-06-15 | 2011-02-20 | Ниппон Стил Корпорейшн | Стальной лист с покрытием |
JP5573195B2 (ja) | 2010-01-25 | 2014-08-20 | 新日鐵住金株式会社 | 昇温特性に優れた熱間プレス用Alめっき鋼板及びその製造方法 |
JP5692148B2 (ja) | 2012-04-18 | 2015-04-01 | 新日鐵住金株式会社 | 熱間プレス用Al系めっき鋼板及びその熱間プレス方法 |
-
2014
- 2014-12-17 MX MX2016007462A patent/MX2016007462A/es unknown
- 2014-12-17 JP JP2015554782A patent/JP6376140B2/ja active Active
- 2014-12-17 WO PCT/JP2014/083420 patent/WO2015098653A1/ja active Application Filing
- 2014-12-17 RU RU2016128897A patent/RU2655421C2/ru not_active IP Right Cessation
- 2014-12-17 KR KR1020167017988A patent/KR101849480B1/ko active IP Right Grant
- 2014-12-17 PL PL14874377T patent/PL3070187T3/pl unknown
- 2014-12-17 BR BR112016013842-2A patent/BR112016013842B1/pt active IP Right Grant
- 2014-12-17 US US15/106,136 patent/US10232426B2/en active Active
- 2014-12-17 EP EP14874377.6A patent/EP3070187B1/en active Active
- 2014-12-17 CN CN201480068599.0A patent/CN105829578B/zh active Active
- 2014-12-17 CA CA2933039A patent/CA2933039C/en active Active
- 2014-12-17 ES ES14874377T patent/ES2762572T3/es active Active
- 2014-12-22 TW TW103144766A patent/TWI589733B/zh not_active IP Right Cessation
-
2016
- 2016-06-10 ZA ZA2016/03964A patent/ZA201603964B/en unknown
-
2019
- 2019-02-01 US US16/265,672 patent/US20190160519A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1072641A (ja) * | 1996-07-01 | 1998-03-17 | Nippon Steel Corp | 溶接気密性、プレス加工性に優れた自動車燃料タンク用防錆鋼板 |
JP2000038640A (ja) | 1998-07-09 | 2000-02-08 | Sollac | 熱処理後の耐久性に優れた熱間圧延および冷間圧延被覆鋼板 |
JP2000328216A (ja) * | 1999-03-15 | 2000-11-28 | Nippon Steel Corp | 高耐食性めっき鋼板 |
JP2004339530A (ja) * | 2003-05-13 | 2004-12-02 | Nippon Steel Corp | 加工性に優れたMg含有めっき鋼材およびその製造方法 |
WO2009131233A1 (ja) | 2008-04-22 | 2009-10-29 | 新日本製鐵株式会社 | めっき鋼板及びめっき鋼板の熱間プレス方法 |
WO2012137687A1 (ja) | 2011-04-01 | 2012-10-11 | 新日本製鐵株式会社 | 塗装後耐食性に優れたホットスタンプ成形された高強度部品およびその製造方法 |
JP2013227620A (ja) * | 2012-04-25 | 2013-11-07 | Nippon Steel & Sumitomo Metal Corp | 熱間プレス用Al系めっき鋼板とその熱間プレス方法及び高強度自動車部品 |
Non-Patent Citations (1)
Title |
---|
YOSHIO KOJIMA: "Innovative Technology to Achieve High Throwing Power in Cationic Electrodeposition Paint", TECHNO-COSMOS, vol. 16, March 2003 (2003-03-01), pages 26 - 31, XP008184617 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018513909A (ja) * | 2015-02-19 | 2018-05-31 | アルセロールミタル | アルミニウム系被膜および亜鉛被膜で被覆された板からのリン酸塩処理可能な部品の製造方法 |
US11142828B2 (en) | 2015-05-07 | 2021-10-12 | Phosfan Ltd. | Method for applying ultrafine phosphate conversion crystal coatings |
JP2017066459A (ja) * | 2015-09-29 | 2017-04-06 | 新日鐵住金株式会社 | めっき鋼材 |
WO2017077514A1 (en) * | 2015-11-05 | 2017-05-11 | Phosfan Ltd. | Composite phosphate coatings |
CN108350580A (zh) * | 2015-11-05 | 2018-07-31 | 佛斯范有限公司 | 复合磷酸盐涂料 |
US11505868B2 (en) | 2015-11-05 | 2022-11-22 | Phosfan Ltd. | Composite phosphate coatings |
JP2018537581A (ja) * | 2015-11-05 | 2018-12-20 | フォスファン エルティーディー. | 複合リン酸塩コーティング |
JP7028452B2 (ja) | 2015-11-05 | 2022-03-02 | フォスファン エルティーディー. | 複合リン酸塩コーティング |
CN108699665A (zh) * | 2016-02-08 | 2018-10-23 | 德国沙士基达板材有限公司 | 用于钢板或钢带的铝基涂层及其制造方法 |
US10876195B2 (en) | 2016-02-08 | 2020-12-29 | Salzgitter Flachstahl Gmbh | Method for producing press-hardened components consisting of steel sheets or steel strips comprising an aluminium-based coating, and pressed-hardened component therefrom |
EP3250727B1 (de) | 2016-04-18 | 2021-07-07 | Salzgitter Flachstahl GmbH | Bauteil aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech und verfahren zur herstellung eines solchen bauteils |
EP3250727B2 (de) † | 2016-04-18 | 2024-01-17 | Salzgitter Flachstahl GmbH | Verfahren zur herstellung eines bauteils aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech |
US11339479B2 (en) | 2016-04-18 | 2022-05-24 | Salzgitter Flachstahl Gmbh | Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component |
US11884998B2 (en) * | 2017-03-31 | 2024-01-30 | Nippon Steel Corporation | Surface treated steel sheet |
WO2019111931A1 (ja) * | 2017-12-05 | 2019-06-13 | 日本製鉄株式会社 | アルミ系めっき鋼板、アルミ系めっき鋼板の製造方法及び自動車用部品の製造方法 |
JP6525124B1 (ja) * | 2017-12-05 | 2019-06-05 | 日本製鉄株式会社 | アルミ系めっき鋼板、アルミ系めっき鋼板の製造方法及び自動車用部品の製造方法 |
US11535916B2 (en) | 2017-12-05 | 2022-12-27 | Nippon Steel Corporation | Aluminum-based plated steel sheet, method of manufacturing aluminum-based plated steel sheet, and method of manufacturing component for vehicle |
JP2021185264A (ja) * | 2018-04-28 | 2021-12-09 | 育材堂(▲蘇▼州)材料科技有限公司Ironovation Materials Technology Co., Ltd. | ホットスタンプ加工済コンポーネント、及びホットスタンプ加工済コンポーネントを備える自動車 |
US11578382B2 (en) | 2018-04-28 | 2023-02-14 | Ironovation Materials Technology Co., Ltd. | Hot stamped component, precoated steel sheet used for hot stamping and hot stamping process |
JP7253837B2 (ja) | 2018-04-28 | 2023-04-07 | 育材堂(▲蘇▼州)材料科技有限公司 | ホットスタンプ加工済コンポーネントを製造する方法、及びホットスタンプ加工済コンポーネント |
US11667988B2 (en) | 2018-04-28 | 2023-06-06 | Ironovation Materials Technology Co., Ltd. | Hot stamped component, precoated steel sheet used for hot stamping and hot stamping process |
US11248276B2 (en) | 2018-04-28 | 2022-02-15 | Ironovation Materials Technology Co., Ltd. | Hot stamped component, precoated steel sheet used for hot stamping and hot stamping process |
JP2020524211A (ja) * | 2018-04-28 | 2020-08-13 | 育材堂(▲蘇▼州)材料科技有限公司Ironovation Materials Technology Co., Ltd. | ホットスタンプ加工済コンポーネント、ホットスタンプ加工に使用されるプレ被覆スチールシートおよびホットスタンプ加工プロセス |
JP2023503151A (ja) * | 2019-11-29 | 2023-01-26 | 宝山鋼鉄股▲分▼有限公司 | 優れた塗装フィルム付着力を有する熱成形部品及びその製造方法 |
JP7326612B2 (ja) | 2019-11-29 | 2023-08-15 | 宝山鋼鉄股▲分▼有限公司 | 優れた塗装フィルム付着力を有する熱成形部品及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
RU2016128897A (ru) | 2018-01-30 |
US20190160519A1 (en) | 2019-05-30 |
EP3070187B1 (en) | 2019-10-30 |
KR20160095078A (ko) | 2016-08-10 |
US20160318093A1 (en) | 2016-11-03 |
KR101849480B1 (ko) | 2018-04-16 |
ZA201603964B (en) | 2019-12-18 |
EP3070187A1 (en) | 2016-09-21 |
CA2933039A1 (en) | 2015-07-02 |
RU2655421C2 (ru) | 2018-05-28 |
PL3070187T3 (pl) | 2020-03-31 |
BR112016013842B1 (pt) | 2022-03-08 |
JPWO2015098653A1 (ja) | 2017-03-23 |
JP6376140B2 (ja) | 2018-08-22 |
ES2762572T3 (es) | 2020-05-25 |
TWI589733B (zh) | 2017-07-01 |
TW201529894A (zh) | 2015-08-01 |
US10232426B2 (en) | 2019-03-19 |
CN105829578B (zh) | 2018-01-16 |
CN105829578A (zh) | 2016-08-03 |
EP3070187A4 (en) | 2017-07-26 |
BR112016013842A2 (ja) | 2017-08-08 |
CA2933039C (en) | 2019-06-25 |
MX2016007462A (es) | 2016-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6376140B2 (ja) | 自動車部品及び自動車部品の製造方法 | |
JP6042445B2 (ja) | 熱間プレス用めっき鋼板、めっき鋼板の熱間プレス方法及び自動車部品 | |
KR101974182B1 (ko) | 열간 프레스용 도금 강판 및 도금 강판의 열간 프레스 방법 | |
JP5692148B2 (ja) | 熱間プレス用Al系めっき鋼板及びその熱間プレス方法 | |
JP6011732B2 (ja) | 熱間プレス用Alめっき鋼板及び熱間プレス用Alめっき鋼板の製造方法 | |
JP2013227620A (ja) | 熱間プレス用Al系めっき鋼板とその熱間プレス方法及び高強度自動車部品 | |
JPWO2019097729A1 (ja) | 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法 | |
CA3048362C (en) | Plated steel sheet for hot stamping, method of manufacturing plated steel sheet for hot stamping, method of manufacturing hot-stamped component, and method of manufacturing vehicle | |
JP6708310B2 (ja) | めっき鋼板、めっき鋼板コイル、熱間プレス成形品の製造方法、及び自動車部品 | |
TWI637069B (zh) | Surface treated steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14874377 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015554782 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2933039 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/007462 Country of ref document: MX |
|
REEP | Request for entry into the european phase |
Ref document number: 2014874377 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014874377 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15106136 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016013842 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20167017988 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201604643 Country of ref document: ID |
|
ENP | Entry into the national phase |
Ref document number: 2016128897 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016013842 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160615 |