WO2015093337A1 - 作業車両 - Google Patents
作業車両 Download PDFInfo
- Publication number
- WO2015093337A1 WO2015093337A1 PCT/JP2014/082457 JP2014082457W WO2015093337A1 WO 2015093337 A1 WO2015093337 A1 WO 2015093337A1 JP 2014082457 W JP2014082457 W JP 2014082457W WO 2015093337 A1 WO2015093337 A1 WO 2015093337A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotational speed
- speed
- deceleration
- acceleration
- requested
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2058—Electric or electro-mechanical or mechanical control devices of vehicle sub-units
- E02F9/2062—Control of propulsion units
- E02F9/2066—Control of propulsion units of the type combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/04—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0097—Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/10—Introducing corrections for particular operating conditions for acceleration
- F02D41/107—Introducing corrections for particular operating conditions for acceleration and deceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/12—Introducing corrections for particular operating conditions for deceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/38—Control of exclusively fluid gearing
- F16H61/40—Control of exclusively fluid gearing hydrostatic
- F16H61/42—Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/101—Engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/1012—Engine speed gradient
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/60—Input parameters for engine control said parameters being related to the driver demands or status
- F02D2200/602—Pedal position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0215—Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/14—Inputs being a function of torque or torque demand
- F16H59/18—Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/40—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
- F16H63/50—Signals to an engine or motor
Definitions
- the present invention relates to a work vehicle equipped with an HST (Hydro Static Transmission) travel drive device.
- HST Hydro Static Transmission
- a work vehicle including an HST travel drive device includes an operation amount detector that detects an operation amount of an accelerator pedal, a rotation speed detector that detects an actual rotation speed of a prime mover, and an operation A required speed calculation unit that calculates the required rotational speed of the prime mover based on the operation amount detected by the quantity detector, and a prime mover control unit that controls the actual rotational speed based on the required rotational speed calculated by the required speed calculation unit;
- the required speed calculation unit calculates the acceleration of the required rotational speed based on the difference between the required rotational speed and the actual rotational speed detected by the rotational speed detector when the required rotational speed is greater than a predetermined value.
- a required rotation speed is calculated based on the calculated acceleration.
- the required speed calculation unit is when the accelerator pedal is depressed and the actual rotational speed is greater than the required rotational speed.
- the requested rotation speed is calculated according to the first acceleration, and the difference between the requested rotation speed and the actual rotation speed is smaller than the first threshold value.
- the required speed calculation unit is a case where the accelerator pedal is depressed and the required rotational speed is smaller than a predetermined value.
- the required speed calculation unit is a case where the accelerator pedal is operated to return, and the required rotational speed is When the actual rotational speed is small and the difference between the requested rotational speed and the actual rotational speed is greater than the second threshold value, the requested rotational speed is calculated according to the first deceleration, and the difference between the requested rotational speed and the actual rotational speed is calculated.
- the second threshold value it is preferable to calculate the required rotational speed in accordance with a second deceleration smaller than the first deceleration.
- the requested speed calculation unit is the second when the accelerator pedal is operated to return and the requested rotational speed is smaller than the predetermined value. It is preferable to calculate the required rotational speed in accordance with a third deceleration larger than the deceleration.
- the present invention it is possible to provide a work vehicle that can suppress excessive acceleration at the time of start-up and occurrence of pitching, and can promptly shift from deceleration to acceleration.
- the side view of the wheel loader which is an example of a working vehicle.
- the flowchart which shows an example of the calculation process of the request
- the time chart which shows starting operation
- FIG. 1 is a side view of a wheel loader that is an example of a work vehicle according to an embodiment of the present invention.
- the wheel loader includes an arm 111, a bucket 112, a front vehicle body 110 having front wheels and the like, and a cab 121, a machine room 122, and a rear vehicle body 120 having rear wheels and the like.
- the arm 111 rotates up and down (up and down) by driving the arm cylinder 117
- the bucket 112 rotates up and down (cloud or dump) by driving the bucket cylinder 115.
- the front vehicle body 110 and the rear vehicle body 120 are pivotally connected to each other by a center pin 101, and the front vehicle body 110 is refracted left and right with respect to the rear vehicle body 120 by expansion and contraction of the steering cylinder 116.
- the engine 190 is provided in the machine room 122, and various operation members such as an accelerator pedal, an arm operation lever, and a bucket operation lever are provided in the operation room 121.
- the accelerator pedal is provided with a return spring, and is configured to return to the initial position when the accelerator pedal is released.
- FIG. 2 is a diagram showing a schematic configuration of the wheel loader.
- the wheel loader includes an HST travel drive device having a travel hydraulic circuit HC1, a front drive device having a work hydraulic circuit HC2, a controller 160, various operation members, various sensors, and the like.
- the engine 190 is connected to a traveling hydraulic pump 132 that serves as a hydraulic source for the traveling hydraulic circuit HC1, a charge pump 135, and a working hydraulic pump 136 that serves as a hydraulic source for the working hydraulic circuit HC2. Driven by engine 190.
- the traveling hydraulic circuit HC1 includes a variable displacement traveling hydraulic pump 132 directly connected to the engine 190 and a variable displacement traveling hydraulic motor 133 driven by pressure oil from the traveling hydraulic pump 132.
- the traveling hydraulic pump 132 and the traveling hydraulic motor 133 are configured by an HST circuit in which a closed circuit is connected by a pair of main lines LA and LB. In the HST circuit, when the accelerator pedal 192 is returned, a closing pressure is generated on the discharge side of the traveling hydraulic motor 133 and a large braking force is applied to the vehicle, so that the vehicle is decelerated.
- the pressure oil discharged from the charge pump 135 is guided to the tilt cylinder 180 via the cut-off valve 134, the electromagnetic proportional pressure reducing valve 139, and the forward / reverse switching valve 147.
- the cut-off valve 134 blocks the pressure oil supplied to the forward / reverse switching valve 147 by the circuit pressure of the traveling hydraulic circuit HC1.
- the electromagnetic proportional pressure reducing valve 139 is controlled by a signal from the controller 160 and controls the pressure of the pressure oil introduced to the tilting cylinder 180 via the forward / reverse switching valve 147.
- the forward / reverse switching valve 147 is operated by a signal from the controller 160.
- tank pressures act on the oil chambers 180a and 180b of the tilt cylinder 180, respectively.
- the pressures acting on the oil chambers 180a and 180b are equal to each other, and the piston 180c is in the neutral position. For this reason, the displacement volume of the traveling hydraulic pump 132 is zero, and the pump discharge amount is zero.
- the oil chamber 180a is supplied with pressure oil discharged from the charge pump 135 and decompressed by the electromagnetic proportional pressure reducing valve 139 and pressure-adjusted, and the oil chamber 180b is supplied to the oil chamber 180b.
- Tank pressure is applied.
- the piston 180c of the tilting cylinder 180 is displaced in the right direction in the drawing according to the pressure of the pressure oil supplied to the oil chamber 180a.
- the amount of pump tilt of the traveling hydraulic pump 132 increases, and the pressure oil from the traveling hydraulic pump 132 is guided to the traveling hydraulic motor 133 via the main line LA, and the traveling hydraulic motor 133 rotates forward.
- the vehicle moves forward.
- the oil chamber 180b is supplied with pressure oil discharged from the charge pump 135 and decompressed by the electromagnetic proportional pressure reducing valve 139 and pressure-adjusted, and the oil chamber 180a is supplied to the oil chamber 180a.
- Tank pressure is applied.
- the piston 180c of the tilting cylinder 180 is displaced in the left direction in the drawing according to the pressure of the pressure oil supplied to the oil chamber 180b.
- the amount of pump tilt of the traveling hydraulic pump 132 increases, and the pressure oil from the traveling hydraulic pump 132 is guided to the traveling hydraulic motor 133 via the main line LB, and the traveling hydraulic motor 133 reverses, The vehicle moves backward.
- the pressure oil from the charge pump 135 passes through the check valve in the overload relief valve 143, is guided to the main lines LA and LB, and is replenished to the traveling hydraulic circuit HC1.
- the upstream pressure of the electromagnetic proportional pressure reducing valve 139 is limited by the charge relief valve 142.
- the higher pressure of the main pipelines LA and LB acts on the aforementioned cut-off valve 134 via the shuttle valve 146.
- the cut-off valve 134 is opened when the acting pressure exceeds a preset pressure, and the pressure supplied to the oil chambers 180a and 180b of the tilt cylinder 180 is used as the tank pressure, and the piston of the tilt cylinder 180 is used. Set 180c to the neutral position.
- the discharge amount of the traveling hydraulic pump 132 becomes zero, and the higher pressure of the main lines LA and LB is limited to the set pressure of the cutoff valve 134.
- the pressure is limited by the overload relief valve 143.
- the controller 160 and the engine controller 191 each include an arithmetic processing unit having a CPU and a storage device such as a ROM and a RAM, and other peripheral circuits.
- the controller 160 is a control device that controls each part of the wheel loader
- the engine controller 191 is a control device that controls the fuel injection device.
- the controller 160 receives a signal from the forward / reverse switching lever 195.
- the controller 160 controls the forward / reverse switching valve 147 based on a forward, reverse or neutral instruction signal from the forward / reverse switching lever 195.
- a forward instruction signal is input from the forward / reverse switching lever 195
- the controller 160 sets the forward mode and controls the forward / reverse switching valve 147 to switch to the A side.
- a reverse instruction signal is input from the forward / reverse switching lever 195
- the controller 160 sets the reverse mode and controls the forward / reverse switching valve 147 to switch to the B side.
- the neutral signal is input from the forward / reverse switching lever 195, the controller 160 sets the neutral mode and controls the forward / reverse switching valve 147 to switch to the neutral position.
- the rotation of the traveling hydraulic motor 133 is changed by the transmission 130, and the rotation after the transmission is transmitted to the tire 113 through the propeller shaft and the axle, and the vehicle runs.
- the transmission 130 can be switched to one of two speed stages, low and high, by operating a high / low selection switch (not shown).
- the controller 160 includes a signal from an operation amount detector 192a for detecting the pedal operation amount (pedal stroke or pedal angle) of the accelerator pedal 192, and pressures for detecting pressures (traveling load pressures) of the main lines LA and LB, respectively. Signals from the detectors 151a and 151b are input, respectively.
- the engine controller 191 receives a signal from an engine rotation speed sensor 181 that detects an actual rotation speed of the engine 190 (hereinafter referred to as an actual engine rotation speed Na).
- the acceleration and deceleration of the requested engine rotation speed are calculated based on the requested engine rotation speed and the actual engine rotation speed, and the rotation speed of the engine 190 is controlled. Details will be described below.
- the requested engine speed Nr is a target speed requested from the controller 160 and the engine controller 191 to the engine 190, and is calculated as described later.
- the controller 160 functionally includes an instruction speed setting unit 160a, a pedal operation determination unit 160b, a condition determination unit 160c, an acceleration / deceleration setting unit 160d, a requested speed setting unit 160e, and an instruction speed arrival determination unit 160f. ing.
- FIG. 3 is a diagram showing the relationship between the pedal operation amount L of the accelerator pedal 192 and the command engine rotation speed Nt.
- a characteristic table Ta of the indicated engine rotation speed Nt corresponding to the pedal operation amount L of the accelerator pedal 192 is stored in a lookup format. Note that the pedal operation amount L indicated by the horizontal axis indicates the maximum depression operation state as 100% and the non-operation state in which no depression operation is performed as 0%.
- This instruction engine rotation speed Nt is a value directly requested by the operator, and is a target engine rotation speed command value requested from the operator to the controller 160.
- the command engine rotational speed Nt becomes a low idle rotational speed NL (for example, 800 rpm).
- the instruction engine rotation speed Nt increases as the pedal operation amount L increases.
- the accelerator pedal 192 is depressed to the maximum, that is, when the pedal operation amount L of the accelerator pedal 192 is 100%, the instruction engine rotation is increased.
- the speed Nt is a rated rotational speed Nmax (for example, 2450 rpm).
- the instruction speed setting unit 160a shown in FIG. 2 refers to the table Ta (see FIG. 3), sets the instruction engine rotation speed Nt based on the pedal operation amount L detected by the operation amount detector 192a, and stores it. Store in the device.
- the pedal operation determination unit 160b determines whether the accelerator pedal 192 is depressed or returned.
- the pedal operation determination unit 160b determines whether or not the instruction engine rotation speed Nt set in accordance with the current pedal operation amount L of the accelerator pedal 192 is equal to or higher than the requested engine rotation speed Nr calculated one control period before. judge.
- the pedal operation determination unit 160b determines that the accelerator pedal 192 is depressed, and sets the operation mode of the accelerator pedal 192 to “stepping operation mode”. To "".
- the pedal operation determination unit 160b determines that the accelerator pedal 192 is operated to return, and sets the operation mode of the accelerator pedal 192 to “return operation mode”. To "".
- the condition determining unit 160c Based on the operation mode of the accelerator pedal 192, the magnitude of the required engine rotational speed Nr, and the difference between the required engine rotational speed Nr and the actual engine rotational speed Na, the condition determining unit 160c has a high acceleration condition, a low acceleration condition, It is determined whether the high deceleration condition and the reduction speed condition are satisfied.
- the high acceleration condition is a condition for increasing the acceleration at the required engine rotational speed Nr
- the low acceleration condition is a condition for decreasing the acceleration at the required engine rotational speed Nr.
- the high deceleration condition is a condition for increasing the deceleration of the required engine speed Nr, that is, increasing the absolute value of the negative acceleration.
- the reduced speed condition is a condition for decreasing the deceleration of the required engine speed Nr, that is, negative This is a condition for reducing the absolute value of acceleration.
- the condition determination unit 160c determines whether or not the requested engine speed Nr is equal to or less than a predetermined value N0.
- the predetermined value N0 is a value larger than the low idle rotation speed NL, for example, 1000 rpm, and is stored in advance in the storage device.
- condition determination unit 160c establishes the high acceleration condition and the low acceleration condition is not satisfied. It is determined that it is established.
- the condition determination unit 160c establishes the high deceleration condition and the reduction speed condition is not satisfied. It is determined that it is established.
- the condition determining unit 160c determines the required engine speed from the actual engine speed Na. Nr is subtracted, and it is determined whether or not the subtracted value (Na ⁇ Nr) is larger than the threshold value N1. When the subtracted value (Na ⁇ Nr) is larger than the threshold value N1 (Na ⁇ Nr> N1), the condition determination unit 160c determines that the high acceleration condition is satisfied and the low acceleration condition is not satisfied.
- the condition determination unit 160c determines that the high acceleration condition is not satisfied and the low acceleration condition is satisfied.
- the threshold value N1 is, for example, 200 rpm, and is stored in advance in the storage device.
- the condition determining unit 160c determines the actual engine speed from the required engine speed Nr. Na is subtracted, and it is determined whether or not the subtracted value (Nr ⁇ Na) is equal to or greater than the threshold value N2.
- the condition determination unit 160c determines that the high deceleration condition is satisfied and the reduction speed condition is not satisfied.
- the condition determining unit 160c determines that the high deceleration condition is not satisfied and the reduced speed condition is satisfied.
- the threshold value N2 is 200 rpm, for example, and is stored in advance in the storage device.
- the acceleration / deceleration setting unit 160d sets the acceleration Ra of the requested engine speed Nr to Rah when it is determined that the high acceleration condition is satisfied. When it is determined that the low acceleration condition is satisfied, the acceleration / deceleration setting unit 160d sets the acceleration Ra of the requested engine rotation speed Nr to Ras smaller than Rah (Ras ⁇ Rah).
- the acceleration Ra refers to an increase rate of the required engine rotation speed Nr [rpm] per unit time with a unit time of 10 [ms].
- the acceleration / deceleration setting unit 160d sets the deceleration Rd of the requested engine speed Nr to Rdh when it is determined that the high deceleration condition is satisfied. When it is determined that the reduction speed condition is satisfied, the acceleration / deceleration setting unit 160d sets the deceleration Rd of the required engine rotation speed Nr to Rds smaller than Rdh (Rds ⁇ Rdh).
- a large deceleration is synonymous with a small negative acceleration, that is, a large absolute value of the negative acceleration.
- the requested speed setting unit 160e calculates the requested engine rotation speed Nr based on the acceleration Ra or the deceleration Rd set by the acceleration / deceleration setting unit 160d.
- the controller 160 adds a predetermined increased rotation speed to the required engine rotation speed Nr calculated and stored in the storage device every one control cycle 10 [ms] and stored in the storage device.
- a new required engine speed Nr is obtained by subtracting a predetermined reduction speed.
- the engine speed Nr is calculated.
- the engine speed Nr is calculated.
- the acceleration / deceleration setting unit 160d obtains a new required engine rotational speed Nr by adding the increased rotational speed ⁇ to the required engine rotational speed Nr calculated one control cycle (10 ms) before, and obtains a required engine rotational speed Nr.
- the rotational speed Nr is updated to a newly obtained value.
- the engine speed Nr is calculated.
- the engine speed Nr is calculated.
- the acceleration / deceleration setting unit 160d obtains a new required engine rotational speed Nr by subtracting the deceleration rotational speed ⁇ from the required engine rotational speed Nr calculated one control cycle (10 ms) before, and obtains the required engine of the storage device.
- the rotational speed Nr is updated to a newly obtained value.
- the required engine speed Nr is calculated as follows when the stepping operation mode is set and when the return operation mode is set.
- the setting processing of the required engine speed Nr in the above (i) to (iv) is repeatedly executed at a control cycle of 10 [ms]. That is, the required engine speed Nr is calculated every control cycle 10 [ms], and the data of the required engine speed Nr stored in the storage device is updated.
- the command speed arrival determination unit 160f calculates the absolute value (
- the command speed arrival determination unit 160f It is determined that the engine rotation speed Nr has reached the instruction engine rotation speed Nt corresponding to the pedal operation amount L of the accelerator pedal 192.
- the command speed arrival determination unit 160f It is determined that the rotational speed Nr has not reached the instruction engine rotational speed Nt corresponding to the pedal operation amount L of the accelerator pedal 192.
- the threshold value ⁇ N0 is, for example, 200 rpm, and is stored in advance in the storage device.
- the requested speed setting unit 160e calculates a new requested engine speed Nr. Then, the data of the required engine speed Nr of the storage device is updated. When it is determined that the requested engine speed Nr has reached the instruction engine speed Nt corresponding to the pedal operation amount L of the accelerator pedal 192, the requested speed setting unit 160e calculates a new requested engine speed Nr. Do not perform the process.
- the controller 160 outputs a requested engine speed signal corresponding to the calculated requested engine speed Nr to the engine controller 191.
- the engine controller 191 compares the actual engine rotational speed Na detected by the engine rotational speed sensor 181 with the requested engine rotational speed Nr from the controller 160 so that the actual engine rotational speed Na approaches the requested engine rotational speed Nr.
- the fuel injection device (not shown) is controlled.
- the controller 160 is connected to a regulator 144 that controls the motor tilt angle of the traveling hydraulic motor 133.
- the regulator 144 is an electric regulator including an electromagnetic switching valve, an electromagnetic proportional valve, and the like.
- the regulator 144 is driven by a control current from the controller 160 output via the signal line 144a.
- the tilt control lever 140 is driven, and the motor tilt angle is changed.
- the minimum value of the motor tilt angle is mechanically limited by bringing the tilt control lever 140 into contact with the stopper 145.
- the regulator 144 is not energized, the tilt control lever 140 comes into contact with the stopper 145 and the motor tilt angle is kept at the minimum value.
- the control current output to the regulator 144 increases, the motor tilt angle also increases.
- FIG. 4 is a flowchart illustrating an example of a calculation process of the requested engine rotation speed executed by the controller 160.
- the process shown in this flowchart is started by turning on an ignition switch (not shown), and after performing an initial setting (not shown), every predetermined control cycle (as described above, every 10 [ms] in the present embodiment).
- the processing after step S101 is repeatedly executed by the controller 160.
- FIG. 5A is a flowchart showing the processing contents in the stepping operation mode (step S110) of FIG. 4
- FIG. 5B is a flowchart showing the processing contents in the return operation mode (step S160) of FIG.
- step S101 the controller 160 detects the operation amount L detected by the operation amount detector 192a, the actual engine rotation speed Na detected by the engine rotation speed sensor 181 and one control cycle (10 ms) before being stored in the storage device.
- the information of the requested engine speed Nr calculated in step i.e., the previous value of the requested engine speed) is acquired, and the process proceeds to step S103.
- the requested engine speed Nr at the initial setting when the accelerator pedal 192 is not operated is set to, for example, 800 rpm, and the instruction engine for the operation amount L detected by the operation amount detector 192a of the accelerator pedal 192 at this time is set.
- the rotational speed Nt is also set to 800 rpm. That is, in the initial state where the accelerator pedal 192 is not operated immediately after the engine is started, the indicated engine rotational speed Nt and the requested engine rotational speed Nr are equal.
- step S103 the controller 160 refers to the table Ta (see FIG. 3) stored in the storage device, sets the instruction engine rotation speed Nt based on the pedal operation amount L of the accelerator pedal 192, and proceeds to step S105. move on.
- step S105 the controller 160 determines whether or not the absolute value of the difference between the indicated engine speed Nt set in step S103 and the requested engine speed Nr acquired in step S101 is smaller than a threshold value ⁇ N0. If an affirmative determination is made in step S105, the process returns to step S101, and if a negative determination is made, the process proceeds to step S107. For example, when the accelerator pedal 192 is depressed to the maximum in order to start traveling from the initial state where the accelerator pedal 192 is not operated, the indicated engine rotation speed Nt is instantaneously Nmax.
- step S105 is denied. Further, affirmation in step S105 means that the required engine speed Nr has reached the command engine speed Nt, and the new required engine speed Nr is not calculated as described above.
- step S107 the controller 160 determines whether or not the instruction engine rotation speed Nt set in step S103 is equal to or higher than the requested engine rotation speed Nr acquired in step S101. If an affirmative determination is made in step S107, the controller 160 sets the operation mode to the stepping operation mode and proceeds to step S110. If a negative determination is made, the controller 160 sets the operation mode to the return operation mode and proceeds to step S160. That is, the controller 160 generates a large difference of the threshold value ⁇ N0 or more between the command engine rotation speed Nt and the request engine rotation speed Nr, and the command engine rotation speed Nt becomes equal to or more than the request engine rotation speed Nr. Then, the process shifts to the stepping operation mode to calculate a new required engine speed Nr.
- controller 160 performs a return operation in a state where a large difference of the threshold value ⁇ N0 or more occurs between the command engine rotation speed Nt and the request engine rotation speed Nr and the command engine rotation speed Nt is smaller than the request engine rotation speed Nr.
- the mode is changed to a new required engine speed Nr.
- step S110 the controller 160 executes a process of calculating a new required engine speed Nr in the stepping operation mode.
- the controller 160 determines whether or not the requested engine speed Nr is equal to or less than a predetermined value N0. If an affirmative determination is made in step S115, that is, if it is determined that the high acceleration condition is satisfied and the low acceleration condition is not satisfied, the process proceeds to step S130, and if the determination is negative, the process proceeds to step S120.
- step S120 the controller 160 determines whether or not the value obtained by subtracting the required engine speed Nr from the actual engine speed Na is larger than the threshold value N1. If an affirmative determination is made in step S120, that is, if it is determined that the high acceleration condition is satisfied and the low acceleration condition is not satisfied, the process proceeds to step S130. If a negative determination is made in step S120, that is, if it is determined that the high acceleration condition is not satisfied and the low acceleration condition is satisfied, the process proceeds to step S135.
- step S140 the controller 160 obtains a value obtained by adding the increased engine speed ⁇ to the previous request engine speed Nr as a new requested engine speed Nr, stores the value in the storage device, and requests engine speed in the stepping operation mode. The calculation process of the speed Nr is terminated, and the process returns to step S101.
- step S160 the controller 160 executes a process of calculating a new required engine speed Nr in the return operation mode.
- step S165 the controller 160 determines whether or not the requested engine speed Nr is equal to or less than a predetermined value N0. If an affirmative determination is made in step S165, that is, if it is determined that the high deceleration condition is satisfied and the reduction speed condition is not satisfied, the process proceeds to step S180, and if the determination is negative, the process proceeds to step S170.
- step S170 the controller 160 determines whether or not the value obtained by subtracting the actual engine rotational speed Na from the requested engine rotational speed Nr is equal to or greater than the threshold value N2. If an affirmative determination is made in step S170, that is, if it is determined that the high deceleration condition is satisfied and the reduction speed condition is not satisfied, the process proceeds to step S180. If a negative determination is made in step S170, that is, if it is determined that the high deceleration condition is not satisfied and the reduced speed condition is satisfied, the process proceeds to step S185.
- step S190 the controller 160 obtains a value obtained by subtracting the reduced rotation speed ⁇ from the previous request engine speed Nr as a new required engine speed Nr, stores it in the storage device, and requests the requested engine speed in the return operation mode. The calculation process of the speed Nr is terminated, and the process returns to step S101.
- the main operation of the work vehicle according to the present embodiment will be described with reference to the time chart of FIG. From time t0 to time t1, the accelerator pedal 192 is not operated, that is, the accelerator pedal 192 is completely released, and the command engine speed Nt, the requested engine speed Nr, and the actual engine speed Na are equal, The low idle rotation speed NL is set. At this time, the vehicle is in a stopped state.
- the absolute value of the difference between the command engine speed Nt and the requested engine speed Nr becomes ⁇ N0 or more (No in step S105, Yes in step S107, and proceeds to step S110), and the requested engine speed. Nr increases so as to approach the command engine speed Nt.
- the required engine speed Nr is larger than the predetermined value N0 (No in step S115), and the required engine speed Nr is higher than the actual engine speed Na (No in step S120). )
- the requested engine speed Nr reaches the command engine speed Nt (Yes in step S105), and the requested engine speed Nr is maintained at the command engine speed Nt from time t5 to time t7.
- the actual engine rotation speed Na changes following the increase in the required engine rotation speed Nr.
- the actual engine speed Na reaches the rated speed Nmax at time t7.
- the required engine speed Nr is increased at a high acceleration Rah until the required engine speed Nr reaches a predetermined value N0 from the low idle speed NL. Thereby, since the torque required for starting can be obtained quickly, the starting timing can be advanced. Thereafter, when the required engine rotation speed Nr exceeds the predetermined value N0, the speed is increased at a low acceleration Ras, so that excessive acceleration that makes it feel like the vehicle jumps out to the operator is prevented. That is, according to the present embodiment, it is possible to suppress the occurrence of excessive acceleration that causes a feeling of popping out to the operator immediately after starting, and to quickly bring the vehicle out of the stop state in response to depression of the accelerator pedal 192. It is possible to shift to a running state.
- the absolute value of the difference between the command engine speed Nt and the requested engine speed Nr is ⁇ N0 or more (No in step S105, No in step S107 and the process proceeds to step S160), and the requested engine speed. Nr decreases so as to approach the instruction engine rotation speed Nt.
- the required engine speed Nr is larger than the predetermined value N0 (No in step S165), and the actual engine speed Na is higher than the required engine speed Nr (No in step S170).
- the actual engine rotational speed Na decreases following the decrease in the required engine rotational speed Nr.
- step S110 Since the accelerator pedal 192 is depressed to the maximum from time t8 to time t11 (Yes in step S107, the process proceeds to step S110), the required engine speed Nr increases so as to approach the instruction engine speed Nt. As shown in the figure, when the accelerator pedal 192 is depressed during deceleration, the actual engine rotational speed Na is greater than the required engine rotational speed Nr at the time t8 when the accelerator pedal 192 is depressed.
- the actual engine rotation speed Na changes following the increase in the required engine rotation speed Nr.
- the deceleration of the actual engine speed Na decreases from time t8, and the actual engine speed Na changes from deceleration to acceleration at time t10 and starts to increase.
- the required engine speed Nr increases at a high acceleration Rah from the start of the pedal depression operation (time t8), and increases at a low acceleration Ras from the time t9. For this reason, the decrease (overshoot) of the actual engine rotation speed Na is suppressed, and immediately after the stepping operation, the engine shifts from deceleration to acceleration, and then is smoothly accelerated.
- the speed When accelerating from the middle of deceleration, if the difference between the actual engine speed Na and the required engine speed Nr is large, the speed is increased at a high acceleration Rah. Thereby, the timing of the transition from deceleration to acceleration can be advanced. Thereafter, when the difference between the actual engine rotational speed Na and the required engine rotational speed Nr becomes small, the speed increases with a low acceleration Ras, and therefore, the occurrence of pitching in which the vehicle swings in the front-rear direction is suppressed. That is, according to the present embodiment, it is possible to suppress the occurrence of pitching when shifting from the deceleration state to the acceleration state, and to quickly shift from the deceleration state to the acceleration state in response to depression of the accelerator pedal 192. That is, the traction force can be increased quickly.
- step S160 Since the accelerator pedal 192 is completely released from time t11 to time t15 (No in step S107, the process proceeds to step S160), the required engine speed Nr decreases so as to approach the instruction engine speed Nt. As shown in the drawing, when the accelerator pedal 192 is released in the middle of acceleration, the required engine speed Nr is higher than the actual engine speed Na at the time t11 when the accelerator pedal 192 is released.
- the actual engine speed Na changes following the decrease in the required engine speed Nr.
- the acceleration of the actual engine rotation speed Na decreases from the time t11, and the actual engine rotation speed Na changes from acceleration to deceleration at the time t13 and starts to decrease.
- the required engine rotation speed Nr decreases at the high deceleration Rdh from the start (time t11) of the pedal release operation (return operation), and decreases at the low deceleration Rds from the time t12. For this reason, the increase (overshoot) of the actual engine rotation speed Na is suppressed, and immediately after the pedal is released, the engine shifts from acceleration to deceleration, and then smoothly decelerates.
- the present embodiment it is possible to suppress the occurrence of pitching when shifting from the acceleration state to the deceleration state, and quickly from the acceleration state to the deceleration state according to the release (return operation) of the accelerator pedal 192. That is, the traction force can be quickly reduced.
- the required engine speed Nr is decreased at a low deceleration Rds (time t12 to time t14) until the predetermined value N0 is reached, and when it becomes smaller than the predetermined value N0, the required engine speed is increased at a high deceleration Rdh. Since the speed Nr is decreased (time t14 to time t15), the fuel consumption can be reduced.
- the acceleration Ra of the required engine speed Nr based on the difference between the required engine speed Nr and the actual engine speed Na in other words, unit time (for example, The increased rotation speed per 10 ms) is calculated.
- unit time for example, The increased rotation speed per 10 ms
- the difference between the actual engine speed Na and the required engine speed Nr is a threshold value.
- the required engine speed Nr is calculated according to the acceleration Rah.
- the required engine speed Nr is calculated according to the acceleration Ras smaller than the acceleration Rah. The engine speed Nr is calculated.
- the required engine speed Nr is calculated according to the acceleration Rah that is greater than the acceleration Ras.
- the vehicle can be promptly shifted from the stopped state to the traveling state.
- the actual engine speed Na is smaller than the requested engine speed Nr. Therefore, when the requested engine speed Nr is greater than a predetermined value N0, the requested engine speed Nr is calculated according to the acceleration Ras. Is done. For this reason, at the time of starting, it is possible to suppress the occurrence of excessive acceleration that causes a feeling of popping out for the operator.
- the difference between the required engine speed Nr and the actual engine speed Na is a threshold value.
- the requested engine speed Nr is calculated according to the deceleration Rdh.
- the deceleration Rd is smaller than the deceleration Rdh. Accordingly, the required engine speed Nr is calculated.
- the required engine speed Nr is calculated according to the deceleration Rdh larger than the deceleration Rds. .
- the required engine speed Nr is reduced at a high deceleration Rdh, so that fuel consumption can be reduced.
- the required engine speed Nr is an acceleration Ra (hereinafter referred to as Ra1) having a predetermined value N0 or less, and the required engine speed Nr is a predetermined value N0.
- the acceleration Ra (hereinafter referred to as Ra2) when the value obtained by subtracting the required engine rotation speed Nr from the actual engine rotation speed Na is larger than the threshold value N1 is Rah, but the present invention is not limited to this.
- the acceleration Ra1 and the acceleration Ra2 can be set to different values.
- the deceleration Rd (hereinafter referred to as Rd1) when the required engine speed Nr is equal to or less than a predetermined value N0 and the required engine speed Nr are
- the deceleration Rd (hereinafter referred to as Rd2) when the value obtained by subtracting the actual engine rotation speed Na from the required engine rotation speed Nr is equal to or greater than the threshold value N2 is set to Rdh. It is not limited.
- the deceleration Rd1 and the deceleration Rd2 can be set to different values.
- Modification 4 In the above-described embodiment, the example in which the engine 190 is employed as the prime mover for driving the traveling hydraulic pump 132 and the like has been described, but the present invention is not limited to this.
- An electric motor may be employed as a prime mover, and the traveling hydraulic pump 132 or the like may be driven by the electric motor.
- the wheel loader has been described as an example of the work vehicle.
- the present invention is not limited to this, for example, wheel excavator, forklift, telehandler, lift truck, etc. It may be a working vehicle.
- the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Control Of Fluid Gearings (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Operation Control Of Excavators (AREA)
Abstract
Description
本発明の第2の態様によると、第1の態様の作業車両において、要求速度演算部は、アクセルペダルが踏み込み操作されている場合であって、要求回転速度に対して実回転速度が大きいときにおいて、実回転速度と要求回転速度との差が第1閾値よりも大きいときには、第1加速度にしたがって要求回転速度を演算し、要求回転速度と実回転速度との差が第1閾値よりも小さいときには、第1加速度よりも小さい第2加速度にしたがって要求回転速度を演算することが好ましい。
本発明の第3の態様によると、第2の態様の作業車両において、要求速度演算部は、アクセルペダルが踏み込み操作されている場合であって、要求回転速度が所定値よりも小さいときには、第2加速度よりも大きい第3加速度にしたがって要求回転速度を演算することが好ましい。
本発明の第4の態様によると、第1ないし3のいずれか一の態様の作業車両において、要求速度演算部は、アクセルペダルが戻し操作されている場合であって、要求回転速度に対して実回転速度が小さいときにおいて、要求回転速度と実回転速度との差が第2閾値よりも大きいときには、第1減速度にしたがって要求回転速度を演算し、要求回転速度と実回転速度との差が第2閾値よりも小さいときには、第1減速度よりも小さい第2減速度にしたがって要求回転速度を演算することが好ましい。
本発明の第5の態様によると、第4の態様の作業車両において、要求速度演算部は、アクセルペダルが戻し操作されている場合であって、要求回転速度が所定値よりも小さいときには第2減速度よりも大きい第3減速度にしたがって要求回転速度を演算することが好ましい。
図1は、本発明の実施の形態に係る作業車両の一例であるホイールローダの側面図である。ホイールローダは、アーム111、バケット112、および、前輪等を有する前部車体110と、運転室121、機械室122、および、後輪等を有する後部車体120とで構成される。
前後進切換弁147がB側に切り換えられると、油室180bには、チャージポンプ135から吐出され、電磁比例減圧弁139によって減圧されて圧力調整された圧油が供給され、油室180aにはタンク圧が作用する。その結果、傾転シリンダ180のピストン180cは、油室180bに供給された圧油の圧力に応じて図示左方向に変位する。これにより走行用油圧ポンプ132のポンプ傾転量が増加し、走行用油圧ポンプ132からの圧油は主管路LBを介して走行用油圧モータ133に導かれ、走行用油圧モータ133が逆転し、車両が後進する。
なお、要求エンジン回転速度Nrは、コントローラ160およびエンジンコントローラ191からエンジン190に対して要求する目標回転速度であり、後述のように演算される。
この指示エンジン回転速度Ntは、オペレータから直接要求される値であり、オペレータからコントローラ160に対して要求する目標のエンジン回転速度指令値である。
(i)高加速条件が成立している場合、要求速度設定部160eは、1制御周期前に演算された要求エンジン回転速度Nrに増回転速度α=αh=100[rpm]を加算した値を新たな要求エンジン回転速度Nrとして設定する。
(ii)低加速条件が成立している場合、要求速度設定部160eは、1制御周期前に演算された要求エンジン回転速度Nrに増回転速度α=αs=14[rpm]を加算した値を新たな要求エンジン回転速度Nrとして設定する。
(iii)高減速条件が成立している場合、要求速度設定部160eは、1制御周期前に演算された要求エンジン回転速度Nrから減回転速度β=βh=100[rpm]を減算した値を新たな要求エンジン回転速度Nrとして設定する。
(iv)低減速条件が成立している場合、要求速度設定部160eは、1制御周期前に演算された要求エンジン回転速度Nrから減回転速度β=βs=14[rpm]を減算した値を新たな要求エンジン回転速度Nrとして設定する。
たとえばアクセルペダル192を操作していない初期の状態から走行を開始するためにアクセルペダル192を最大に踏み込むと、指示エンジン回転速度Ntは、瞬時にNmaxとなるが、その状態では、未だ新たな要求エンジン回転速度Nrが演算されていないため、要求エンジン回転速度Nrは、初期状態のNL(800rpm)であり、指示エンジン回転速度Ntと要求エンジン回転速度Nrとには、閾値ΔN0以上の差が生じステップS105は否定される。また、ステップS105の肯定は、要求エンジン回転速度Nrが指示エンジン回転速度Ntに到達していることを意味し、前述のように新たな要求エンジン回転速度Nrの演算は行なわれない。
時点t1から時点t7にかけてアクセルペダル192が最大に踏み込まれると、指示エンジン回転速度Ntが踏込量100%に対応する定格回転速度Nmaxに設定される(Nt=Nmax)。
時点t7から時点t8にかけてアクセルペダル192が完全に解放された非操作状態になると、指示エンジン回転速度Ntが踏込量0%に対応するローアイドル回転速度NLに設定される(Nt=NL)。
時点t8から時点t11にかけてアクセルペダル192が再び最大に踏み込まれると、指示エンジン回転速度Ntが踏込量100%に対応する定格回転速度Nmaxに設定される(Nt=Nmax)。
時点t11でアクセルペダル192が完全に解放された非操作状態になると、指示エンジン回転速度Ntが踏込量0%に対応するローアイドル回転速度NLに設定される(Nt=NL)。
(1)要求エンジン回転速度Nrが所定値N0よりも大きいときには、要求エンジン回転速度Nrと実エンジン回転速度Naとの差に基づいて要求エンジン回転速度Nrの加速度Ra、換言すれば単位時間(たとえば10ms)あたりの増回転速度を演算するようにした。これにより、発進時の飛び出し現象や、ピッチングの発生を抑制することができ、減速から加速への移行を速やかに行うことができる、すなわち速やかに牽引力を増大させることができる。車両の乗り心地を良好なものとすることができるため、オペレータの負担を低減することができる。さらに、作業効率の向上を図ることもできる。
(変形例1)
上述した実施の形態では、要求エンジン回転速度Nrと実エンジン回転速度Naとの差に基づいて要求エンジン回転速度Nrの加速度および減速度を演算するようにしたが、本発明はこれに限定されない。本発明は、要求エンジン回転速度Nrの加速度のみを演算する構成とすることができる。
上述した実施の形態では、アクセルペダル192が踏み込み操作されている場合において、要求エンジン回転速度Nrが所定値N0以下の加速度Ra(以下、Ra1と記す)と、要求エンジン回転速度Nrが所定値N0よりも大きく、実エンジン回転速度Naから要求エンジン回転速度Nrを減算した値が閾値N1よりも大きいときの加速度Ra(以下、Ra2と記す)を共にRahとしたが本発明はこれに限定されない。加速度Ra1と加速度Ra2は互いに異なる値に設定することができる。
上述した実施の形態では、アクセルペダル192が戻し操作されている場合において、要求エンジン回転速度Nrが所定値N0以下のときの減速度Rd(以下、Rd1と記す)と、要求エンジン回転速度Nrが所定値N0よりも大きく、要求エンジン回転速度Nrから実エンジン回転速度Naを減算した値が閾値N2以上のときの減速度Rd(以下、Rd2と記す)を共にRdhとしたが本発明はこれに限定されない。減速度Rd1と減速度Rd2は互いに異なる値に設定することができる。
上述した実施の形態では、閾値N1と閾値N2とが同じ値(たとえば、200rpm)に設定されている場合について説明したが、本発明はこれに限定されない。閾値N1と閾値N2は互いに異なる値に設定することができる。
上述した実施の形態では、走行用油圧ポンプ132等を駆動する原動機としてエンジン190を採用した例について説明したが、本発明はこれに限定されない。電動機を原動機として採用し、電動機によって走行用油圧ポンプ132等を駆動するようにしてもよい。
上述した実施の形態では、アクセルペダル192のペダル操作量Lの増加に対して、指示エンジン回転速度Ntが直線的に上昇する例について説明したが、本発明はこれに限定されない。ペダル操作量Lの増加に対して、指示エンジン回転速度Ntを曲線的に上昇させてもよいし、段階的に上昇させてもよい。
日本国特許出願2013年第259022号(2013年12月16日出願)
Claims (9)
- HST走行駆動装置を備えた作業車両であって、
アクセルペダル(192)の操作量を検出する操作量検出器(192a)と、
原動機(190)の実回転速度を検出する回転速度検出器(181)と、
前記操作量検出器により検出された操作量に基づいて前記原動機の要求回転速度を演算する要求速度演算部(160)と、
前記要求速度演算部で演算された要求回転速度に基づいて前記実回転速度を制御する原動機制御部(160,191)とを備え、
前記要求速度演算部(160,160c,160d,160e)は、前記要求回転速度が所定値よりも大きいときには、前記要求回転速度と前記回転速度検出器で検出された実回転速度との差に基づいて前記要求回転速度の加速度を演算し、この演算された前記加速度に基づいて前記要求回転速度を演算する作業車両。 - 請求項1に記載の作業車両において、
前記要求速度演算部(160,160b,160c,160d,160e)は、前記アクセルペダルが踏み込み操作されている場合であって、前記要求回転速度に対して前記実回転速度が大きいときにおいて、前記実回転速度と前記要求回転速度との差が第1閾値よりも大きいときには、第1加速度にしたがって要求回転速度を演算し、前記要求回転速度と前記実回転速度との差が前記第1閾値よりも小さいときには、前記第1加速度よりも小さい第2加速度にしたがって要求回転速度を演算する作業車両。 - 請求項2に記載の作業車両において、
前記要求速度演算部(160,160b,160c,160d,160e)は、前記アクセルペダルが踏み込み操作されている場合であって、前記要求回転速度が前記所定値よりも小さいときには、前記第2加速度よりも大きい第3加速度にしたがって要求回転速度を演算する作業車両。 - 請求項1に記載の作業車両において、
前記要求速度演算部(160,160b,160c,160d,160e)は、前記アクセルペダルが戻し操作されている場合であって、前記要求回転速度に対して前記実回転速度が小さいときにおいて、前記要求回転速度と前記実回転速度との差が第2閾値よりも大きいときには、第1減速度にしたがって要求回転速度を演算し、前記要求回転速度と前記実回転速度との差が前記第2閾値よりも小さいときには、前記第1減速度よりも小さい第2減速度にしたがって要求回転速度を演算する作業車両。 - 請求項2に記載の作業車両において、
前記要求速度演算部(160,160b,160c,160d,160e)は、前記アクセルペダルが戻し操作されている場合であって、前記要求回転速度に対して前記実回転速度が小さいときにおいて、前記要求回転速度と前記実回転速度との差が第2閾値よりも大きいときには、第1減速度にしたがって要求回転速度を演算し、前記要求回転速度と前記実回転速度との差が前記第2閾値よりも小さいときには、前記第1減速度よりも小さい第2減速度にしたがって要求回転速度を演算する作業車両。 - 請求項3に記載の作業車両において、
前記要求速度演算部(160,160b,160c,160d,160e)は、前記アクセルペダルが戻し操作されている場合であって、前記要求回転速度に対して前記実回転速度が小さいときにおいて、前記要求回転速度と前記実回転速度との差が第2閾値よりも大きいときには、第1減速度にしたがって要求回転速度を演算し、前記要求回転速度と前記実回転速度との差が前記第2閾値よりも小さいときには、前記第1減速度よりも小さい第2減速度にしたがって要求回転速度を演算する作業車両。 - 請求項4に記載の作業車両において、
前記要求速度演算部(160,160b,160c,160d,160e)は、前記アクセルペダルが戻し操作されている場合であって、前記要求回転速度が前記所定値よりも小さいときには前記第2減速度よりも大きい第3減速度にしたがって要求回転速度を演算する作業車両。 - 請求項5に記載の作業車両において、
前記要求速度演算部(160,160b,160c,160d,160e)は、前記アクセルペダルが戻し操作されている場合であって、前記要求回転速度が前記所定値よりも小さいときには前記第2減速度よりも大きい第3減速度にしたがって要求回転速度を演算する作業車両。 - 請求項6に記載の作業車両において、
前記要求速度演算部(160,160b,160c,160d,160e)は、前記アクセルペダルが戻し操作されている場合であって、前記要求回転速度が前記所定値よりも小さいときには前記第2減速度よりも大きい第3減速度にしたがって要求回転速度を演算する作業車両。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/914,342 US9683349B2 (en) | 2013-12-16 | 2014-12-08 | Work vehicle |
EP14872314.1A EP3085938B1 (en) | 2013-12-16 | 2014-12-08 | Industrial vehicle |
CN201480046674.3A CN105531470B (zh) | 2013-12-16 | 2014-12-08 | 作业车辆 |
KR1020167004803A KR101731991B1 (ko) | 2013-12-16 | 2014-12-08 | 작업 차량 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-259022 | 2013-12-16 | ||
JP2013259022A JP6126981B2 (ja) | 2013-12-16 | 2013-12-16 | 作業車両 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093337A1 true WO2015093337A1 (ja) | 2015-06-25 |
Family
ID=53402686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/082457 WO2015093337A1 (ja) | 2013-12-16 | 2014-12-08 | 作業車両 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9683349B2 (ja) |
EP (1) | EP3085938B1 (ja) |
JP (1) | JP6126981B2 (ja) |
KR (1) | KR101731991B1 (ja) |
CN (1) | CN105531470B (ja) |
WO (1) | WO2015093337A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6485333B2 (ja) * | 2015-11-18 | 2019-03-20 | 株式会社ダイフク | 物品移載装置及び物品搬送設備 |
WO2018061469A1 (ja) * | 2016-09-28 | 2018-04-05 | 日立オートモティブシステムズ株式会社 | 車両制御装置 |
DE102017212921A1 (de) * | 2017-07-27 | 2019-01-31 | Robert Bosch Gmbh | Hydromaschine mit verstellbarem Verdrängungsvolumen, Getriebeanordnung mit der Hydromaschine, und Verfahren zur Steuerung der Getriebeanordnung |
JP6736597B2 (ja) * | 2018-03-28 | 2020-08-05 | 日立建機株式会社 | ホイールローダ |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003252592A (ja) * | 2002-03-01 | 2003-09-10 | Nippon Yusoki Co Ltd | フォークリフトの制御装置及び制御方法 |
JP2005180259A (ja) * | 2003-12-18 | 2005-07-07 | Hitachi Constr Mach Co Ltd | 油圧建設機械の制御装置 |
JP2012057502A (ja) | 2010-09-06 | 2012-03-22 | Komatsu Ltd | 油圧駆動式の車両、およびその制御方法と装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6088259A (ja) * | 1983-10-19 | 1985-05-18 | Toyota Motor Corp | 車両用無段変速機の制御方法 |
DE3636463A1 (de) * | 1986-10-25 | 1988-05-05 | Daimler Benz Ag | Verfahren und vorrichtung zur steuerung des stufenlos veraenderlichen uebersetzungsverhaeltnisses eines kegelscheibenumschlingungsgetriebes in einem kraftfahrzeug |
JP2000097056A (ja) * | 1998-09-16 | 2000-04-04 | Sumitomo Constr Mach Co Ltd | 建設機械のエンジン回転数制御装置 |
JP2000248976A (ja) * | 1999-02-26 | 2000-09-12 | Komatsu Forklift Co Ltd | 油圧駆動車の加減速制御装置 |
US6042502A (en) * | 1999-04-08 | 2000-03-28 | Caterpillar Inc. | Method and apparatus for generating velocity commands in response to rapid changes in operator inputs |
JP2006007819A (ja) * | 2004-06-22 | 2006-01-12 | Kanzaki Kokyukoki Mfg Co Ltd | 作業車両の速度制御方法 |
JP4609390B2 (ja) * | 2005-09-30 | 2011-01-12 | 株式会社豊田自動織機 | フォークリフトの走行制御装置 |
JP4793134B2 (ja) * | 2005-09-30 | 2011-10-12 | 株式会社豊田自動織機 | フォークリフトの走行制御装置 |
JP5125048B2 (ja) * | 2006-09-29 | 2013-01-23 | コベルコ建機株式会社 | 作業機械の旋回制御装置 |
JP5247025B2 (ja) * | 2006-12-28 | 2013-07-24 | 日立建機株式会社 | 油圧式走行車両の走行制御装置 |
US8322481B2 (en) * | 2006-12-28 | 2012-12-04 | Hitachi Construction Machinery Co., Ltd. | Traveling control apparatus for hydraulic traveling vehicle |
JP5508324B2 (ja) * | 2011-03-18 | 2014-05-28 | 日立建機株式会社 | 作業車両の駆動制御装置 |
-
2013
- 2013-12-16 JP JP2013259022A patent/JP6126981B2/ja active Active
-
2014
- 2014-12-08 WO PCT/JP2014/082457 patent/WO2015093337A1/ja active Application Filing
- 2014-12-08 KR KR1020167004803A patent/KR101731991B1/ko active IP Right Grant
- 2014-12-08 EP EP14872314.1A patent/EP3085938B1/en active Active
- 2014-12-08 CN CN201480046674.3A patent/CN105531470B/zh active Active
- 2014-12-08 US US14/914,342 patent/US9683349B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003252592A (ja) * | 2002-03-01 | 2003-09-10 | Nippon Yusoki Co Ltd | フォークリフトの制御装置及び制御方法 |
JP2005180259A (ja) * | 2003-12-18 | 2005-07-07 | Hitachi Constr Mach Co Ltd | 油圧建設機械の制御装置 |
JP2012057502A (ja) | 2010-09-06 | 2012-03-22 | Komatsu Ltd | 油圧駆動式の車両、およびその制御方法と装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6126981B2 (ja) | 2017-05-10 |
EP3085938A1 (en) | 2016-10-26 |
EP3085938A4 (en) | 2017-08-16 |
US20160201294A1 (en) | 2016-07-14 |
CN105531470B (zh) | 2018-08-24 |
US9683349B2 (en) | 2017-06-20 |
KR101731991B1 (ko) | 2017-05-02 |
EP3085938B1 (en) | 2018-10-24 |
JP2015113823A (ja) | 2015-06-22 |
CN105531470A (zh) | 2016-04-27 |
KR20160033787A (ko) | 2016-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5113946B1 (ja) | 作業車両及び作業車両の制御方法 | |
JP5835721B2 (ja) | 油圧機械式作業機械を動作させる駆動制御方法及びシステム | |
JP5192601B1 (ja) | 作業車両及び作業車両の制御方法 | |
JP2005106170A (ja) | 油圧駆動車両の走行制御装置および油圧駆動車両 | |
KR101942852B1 (ko) | 작업 차량 | |
WO2015093337A1 (ja) | 作業車両 | |
JP6658190B2 (ja) | 車速制御装置 | |
JP4440116B2 (ja) | 油圧駆動車両 | |
WO2020195727A1 (ja) | 作業機械、及び作業機械の制御方法 | |
JP5341041B2 (ja) | 油圧駆動式の車両、およびその制御方法と装置 | |
EP2055992B1 (en) | Travel control device for hydraulically driven vehicle | |
JP2013204738A (ja) | 作業車両及び作業車両の制御方法 | |
WO2015097912A1 (ja) | フォークリフト及びフォークリフトの制御方法 | |
JP4589649B2 (ja) | ホイールローダのクラッチ制御装置およびホイールローダ | |
JP2015071976A (ja) | 作業車両 | |
JP4069795B2 (ja) | 油圧走行駆動装置 | |
JP4432832B2 (ja) | 産業車両の速度制御装置、産業車両、及び産業車両の速度制御方法 | |
JP2015113710A (ja) | 作業車両のエンジン制御装置 | |
JP2014109329A (ja) | 油圧駆動車両の制御方法及び制御装置 | |
JP2005307760A (ja) | 車両の駆動力制御装置 | |
JP2011001985A (ja) | 作業車両の走行制御装置および作業車両 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480046674.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14872314 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167004803 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014872314 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14914342 Country of ref document: US Ref document number: 2014872314 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |