[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015090306A1 - Verfahren zur bestimmung einer rotortemperatur eines elektromotors in einem hybridantrieb eines kraftfahrzeuges - Google Patents

Verfahren zur bestimmung einer rotortemperatur eines elektromotors in einem hybridantrieb eines kraftfahrzeuges Download PDF

Info

Publication number
WO2015090306A1
WO2015090306A1 PCT/DE2014/200646 DE2014200646W WO2015090306A1 WO 2015090306 A1 WO2015090306 A1 WO 2015090306A1 DE 2014200646 W DE2014200646 W DE 2014200646W WO 2015090306 A1 WO2015090306 A1 WO 2015090306A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
short
circuit
determined
torque
Prior art date
Application number
PCT/DE2014/200646
Other languages
English (en)
French (fr)
Inventor
Waldemar Funk
Martin Dilzer
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112014005705.3T priority Critical patent/DE112014005705A5/de
Publication of WO2015090306A1 publication Critical patent/WO2015090306A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/66Controlling or determining the temperature of the rotor
    • H02P29/662Controlling or determining the temperature of the rotor the rotor having permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a method for determining a rotor temperature of an electric motor in a hybrid drive of a motor vehicle, wherein a permanent magnet synchronous machine is preferably used as the electric motor, in which the rotor temperature is determined depending on a temperature-dependent machine parameter, the short circuit current at an active short circuit of a Electric motor energizing power electronics is determined.
  • Electric motors with rotor and stator are used according to the prior art to drive units or vehicles.
  • the stator is arranged in a surrounding jacket, which also serves to support and stabilize the stator. This results in heat loss among other things by induced electrical circulating currents in the electrically conductive elements of the electric motors. This leads to a heating of the rotor and the stator of the electric motor, which leads to a reduction in the performance of the electric motor.
  • the permanent-magnet-excited synchronous machine in order to determine the temperature-dependent machine parameters, the permanent-magnet-excited synchronous machine must be decoupled from the internal combustion engine and the output, which is possible only when the vehicle is stationary. Subsequently, the permanent magnet synchronous machine is accelerated to a defined speed at which an active short circuit is initiated.
  • the short-circuit current which occurs during this active short circuit provides information about the temperature-dependent machine parameter and thus also about the current rotor temperature.
  • This procedure has the disadvantage that the machine parameter changes during the drive of the motor vehicle and thus the operation of the electric motor due to different temperatures and therefore the current rotor temperature can not be reliably determined.
  • the invention is therefore based on the object of specifying a method for determining a rotor temperature of an electric motor in a hybrid drive of a motor vehicle, in which a current rotor temperature can be determined at any time.
  • the object is achieved in that the active short circuit is initiated during an active driving operation of the motor vehicle to the electric motor when it is in a regenerative operating mode.
  • the period during which the active short-circuit is active is only a few milliseconds. During this period, approximately the same regenerative torque acts as before the active short circuit. This makes it possible to perform the short circuit while driving the vehicle, without causing a noticeable to the driver torque change. This ensures that during operation of the hybrid drive the temperature-dependent engine parameters and thus the correct rotor temperature of the electric motor for further processing in the motor vehicle, preferably for adjusting the torque of the electric motor, is available.
  • a required regenerative torque of the electric motor is compared with a predetermined short-circuit torque at the current speed of the electric motor, wherein at approximately coincidence of the required regenerative torque with the short-circuit torque of the active short circuit is initiated.
  • This torque equality ensures that the driver does not feel any effects from the active short circuit.
  • the short-circuit torque is stored as a function of the rotational speed of the electric motor in a characteristic which is determined and stored once, preferably at a tape end test of a manufacturing process of the electric motor. Since this characteristic depicts an electric motor-specific characteristic, it only has to be determined once and contributes to ensuring that it can be read during operation of the electric motor. time can be used. As a result, the effort for determining the rotor temperature of the electric motor is reduced while driving the motor vehicle.
  • an electrical resistance of the electric motor is taken into account in the determination of the machine parameter, which is determined from the short-circuit current at a rotational speed of the electric motor which is smaller than a limiting rotational speed.
  • the temperature dependence of the electrical resistance is considered in the determination of the machine parameter.
  • the electrical resistance of the electric motor is determined from a measured or estimated from a temperature model stator winding temperature.
  • a temperature sensor which is provided for measuring the temperature of the stator winding, or the temperature model, which is considered for estimating the temperature of the stator winding, used to draw conclusions about the electrical resistance.
  • the machine parameter which is determined from the short-circuit current at a speed of the electric motor which is greater than the limit speed, directly proportional to the short-circuit current.
  • a magnetic flux of the permanent magnets of the rotor of the electric motor is used as the machine parameter.
  • the magnetic flux of the permanent magnets of the rotor which decreases with increasing temperature from the room temperature and vice versa, the actual state of the rotor of the electric motor is reflected under the influence of temperature.
  • This temperature dependence of the magnetic flux of the permanent magnets is a significant influencing factor on the torque calculation. Since the permanent magnets are located on the rotor, a direct relationship between the temperature behavior of the magnetic flux of the permanent magnets and the current temperature of the rotor is established.
  • the rotor temperature determined from the machine parameter is used to adjust the torque of the electric motor to provide a to achieve better coupling adaptations.
  • the clutch adaptations in the drive train of a hybrid vehicle increase the safety and also the ride comfort of the hybrid vehicle, since a high torque accuracy is ensured.
  • Fig. 2 course of a short circuit current of a permanent magnet synchronous machine in dependence on the speed of the synchronous machine.
  • hybrid vehicle means the combination of an internal combustion engine and an electric motor and the associated energy storage, such as fuel tank and battery.
  • a clutch is arranged between the internal combustion engine and the electric motor, which allows an activation or deactivation of the internal combustion engine for driving by the electric motor.
  • the electric motor used in this case has temperature-dependent machine parameters, such as the magnetic flux of the permanent magnet of the rotor of the electric motor on. Due to the spatial relationship between the permanent magnets and the rotor of the electric motor can be concluded from the magnetic flux of the permanent magnets on the rotor temperature of the electric motor.
  • the hybrid vehicle In order to determine the magnetic flux of the permanent magnets of the rotor, the hybrid vehicle is put into an active short circuit during the active driving operation. This takes place during a generator operating mode of the electric motor. If the hybrid drive is in the mode of load point shift, in particular the load point increase, in which the engine torque is compensated for by the torque of the electric motor, or in the mode of recuperation, the method is applied.
  • the currently set by a control torque of the electric motor is constantly compared with a stored short-circuit torque.
  • This short Final torque is stored in a characteristic curve according to FIG. 1, which represents the relationship between the short-circuit torque M K and a rotational speed ⁇ of the electric motor. This characteristic curve is measured once prior to delivery of the electric motor in a band end test of the manufacturing process, which is also referred to as end-off-line testing, and stored in the electric motor.
  • the active short circuit is initiated.
  • the active short circuit is caused by a defined combination of the switching states of the circuit breaker in the, the electric motor energizing power electronics.
  • Such power electronics comprises in a three-phase electric motor, such as a permanent magnet synchronous machine, six power switches, which are arranged in a so-called triple half-bridge for controlling the electric motor.
  • To set the active short circuit all upper circuit breakers or alternatively all lower circuit breakers are closed.
  • the short-circuit current I k sets in, which has a direct proportionality to the magnetic flux ⁇ ⁇ of the permanent magnets of the rotor of the electric motor. in which:
  • R electrical resistance of the electric motor
  • the electrical resistance R If the electric motor operates at low rotational speeds ⁇ , the electrical resistance R according to equation 1 must be considered for the calculation of the magnetic flux ⁇ ⁇ .
  • the short-circuit current I K which occurs during the active short-circuit has a direct proportionality to the magnetic flux ⁇ ⁇ .
  • the presented strategy can also be used with active deceleration of the internal combustion engine to standstill by the permanent magnet synchronous machine.
  • the short-circuit torque of the permanent-magnet-excited synchronous machine is used directly.
  • the use of the strategy during circuit phases is possible.
  • the short-circuit torque of the permanent-magnet synchronous machine is used to equalize the engine speed to the transmission input speed during the synchronization phases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Bestimmung einer Rotortemperatur eines Elektromotors in einem Hybridantrieb eines Kraftfahrzeuges, wobei als Elektromotor vorzugsweise eine permanentmagneterregte Synchronmaschine verwendetwird, bei welchem die Rotortemperatur in Abhängigkeit eines temperaturabhängigen Maschinenparameters bestimmt wird, der aus einem Kurzschlussstrom bei einem aktiven Kurzschluss einer, den Elektromotor bestromenden Leistungselektronik ermittelt wird. Bei einem Verfahren, bei welchem unabhängig vom Betriebszustand des Kraftfahrzeuges die tatsächliche Rotortemperatur ermittelt wird, wird der aktive Kurzschluss während eines aktiven Fahrbetriebes des Kraftfahrzeuges in einem generatorischen Betriebsmodus des Elektromotors eingestellt.

Description

Verfahren zur Bestimmung einer Rotortemperatur eines Elektromotors in einem Hy- bridantrieb eines Kraftfahrzeuges
Die Erfindung betrifft ein Verfahren zur Bestimmung einer Rotortemperatur eines Elektromotors in einem Hybridantrieb eines Kraftfahrzeuges, wobei als Elektromotor vorzugsweise eine permanentmagneterregte Synchronmaschine verwendet wird, bei welchem die Rotortemperatur in Abhängigkeit eines temperaturabhängigen Maschinenparameters bestimmt wird, der aus einem Kurzschlussstrom bei einem aktiven Kurzschluss einer, den Elektromotor bestrom- enden Leistungselektronik ermittelt wird.
Elektromotoren mit Rotor und Stator dienen gemäß dem Stand der Technik dem Antrieb von Aggregaten oder Fahrzeugen. Der Stator ist dabei in einem umgebenden Mantel angeordnet, welcher auch zum Halt und zur Stabilisierung des Stators dient. Dabei entsteht Verlustwärme unter anderem durch induzierte elektrische Kreisströme in den elektrisch leitenden Elementen der Elektromotoren. Dies führt zu einer Erwärmung von Rotor und Stator des Elektromotors, was zu einer Reduzierung der Leistungsfähigkeit des Elektromotors führt.
Insbesondere bei Hybridfahrzeugen bestehen hohe Anforderungen hinsichtlich Sicherheit, Fahrkomfort und Kupplungsadaption, insbesondere der Kupplung, welche den Verbrennungsmotor mit dem Elektromotor verbindet. Um diesen hohen Anforderungen gerecht zu werden, muss das bei Hybridfahrzeugen einzustellende Drehmoment des Elektromotors genau bestimmt werden. Das abgegebene Drehmoment eines als permanentmagneterregten Synchronmaschine ausgebildeten Elektromotors ist aber im verbauten Zustand in einem Hybridfahrzeug nur aufwendig messbar, weshalb es aus Maschinenparametern der permanentmagneterregten Synchronmaschine berechnet wird.
Es ist bekannt, dass zur Ermittlung der temperaturabhängigen Maschinenparameter die permanentmagneterregte Synchronmaschine von dem Verbrennungsmotor und dem Abtrieb abgekoppelt sein muss, was ausschließlich im Fahrzeugstillstand möglich ist. Anschließend wird die permanentmagneterregte Synchronmaschine auf eine definierte Drehzahl beschleunigt, bei der ein aktiver Kurzschluss eingeleitet wird. Der sich bei diesem aktiven Kurzschluss einstellende Kurzschlussstrom gibt eine Information über den temperaturabhängigen Maschinenparameter und somit auch über die aktuelle Rotortemperatur. Diese Verfahrensweise hat den Nachteil, dass der Maschinenparameter sich während der Fahrt des Kraftfahrzeuges und somit des Betriebes des Elektromotors aufgrund unterschiedlicher Temperaturen ändert und daher die aktuelle Rotortemperatur nicht zuverlässig bestimmt werden kann.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Bestimmung einer Rotortemperatur eines Elektromotors in einem Hybridantrieb eines Kraftfahrzeuges anzugeben, bei welchem eine aktuelle Rotortemperatur jederzeit ermittelt werden kann.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass der aktive Kurzschluss während eines aktiven Fahrbetriebes des Kraftfahrzeuges an dem Elektromotor eingeleitet wird, wenn dieser sich in einem generatorischen Betriebsmodus befindet. Der Zeitraum, in dem der aktive Kurzschluss aktiv ist, beträgt dabei nur wenige Millisekunden. In diesem Zeitraum wirkt näherungsweise das gleiche generatorische Drehmoment wie vor dem aktiven Kurzschluss. Dadurch ist es möglich, den Kurzschluss während der Fahrt des Fahrzeuges durchzuführen, ohne eine für den Fahrer spürbare Drehmomentänderung zu verursachen. Somit wird sichergestellt, dass während des Betriebes des Hybridantriebes der temperaturabhängige Maschinenparameter und somit die richtige Rotortemperatur des Elektromotors zur weiteren Verarbeitung im Kraftfahrzeug, vorzugsweise zur Anpassung des Drehmomentes des Elektromotors, zur Verfügung steht.
Vorteilhafterweise wird im Modus einer Lastpunktverschiebung oder Rekuperation des Hybridantriebes ein gefordertes generatorisches Drehmoment des Elektromotors mit einem vorgegebenen Kurzschlussdrehmoment bei aktueller Drehzahl des Elektromotors verglichen, wobei bei annähernder Übereinstimmung des geforderten generatorischen Drehmomentes mit dem Kurzschlussdrehmoment der aktive Kurzschluss eingeleitet wird. Durch diese Drehmomentengleichheit wird gewährleistet, dass der Fahrer keinerlei Auswirkungen von dem aktiven Kurzschluss spürt.
In einer Ausgestaltung ist das Kurzschlussdrehmoment in Abhängigkeit von der Drehzahl des Elektromotors in einer Kennlinie abgelegt, welche einmalig, vorzugsweise bei einer Bandende-Prüfung eines Herstellungsprozesses des Elektromotors, ermittelt und abgespeichert wird. Da diese Kennlinie eine elektromotorspezifische Eigenschaft abbildet, muss diese nur einmal ermittelt werden und trägt dazu bei, dass sie während des Betriebes des Elektromotors jeder- zeit benutzt werden kann. Dadurch wird der Aufwand zur Ermittlung der Rotortemperatur des Elektromotors während der Fahrt des Kraftfahrzeuges reduziert.
In einer Variante wird bei der Bestimmung des Maschinenparameters, der aus dem Kurzschlussstrom bei einer Drehzahl des Elektromotors, welche kleiner als eine Grenzdrehzahl ist, ermittelt wird, ein elektrischer Widerstand des Elektromotors berücksichtigt. Dadurch wird die Temperaturabhängigkeit des elektrischen Widerstandes bei der Bestimmung des Maschinenparameters mit betrachtet.
Vorteilhafterweise wird der elektrische Widerstand des Elektromotors aus einer gemessenen oder aus einem Temperaturmodell geschätzten Statorwicklungstemperatur ermittelt. Dabei wird ein Temperatursensor, der zur Messung der Temperatur der Statorwicklung vorhanden ist, oder das Temperaturmodell, welches zur Schätzung der Temperatur der Statorwicklung betrachtet wird, benutzt, um Rückschlüsse auf den elektrischen Widerstand zu ziehen.
In einer Alternative ist der Maschinenparameter, der aus dem Kurzschlussstrom bei einer Drehzahl des Elektromotors, welche größer als die Grenzdrehzahl ist, ermittelt wird, direkt proportional zum Kurzschlussstrom. Durch die Vernachlässigung des Einflusses des elektrischen Widerstandes bei hohen Drehzahlen wird die Berechnung des Maschinenparameters vereinfacht.
In einer Ausgestaltung wird als Maschinenparameter ein magnetischer Fluss der Permanentmagneten des Rotors des Elektromotors verwendet. Durch die Berücksichtigung des magnetischen Flusses der Permanentmagnete des Rotors, welcher bei zunehmender Temperatur ausgehend von der Raumtemperatur abnimmt und umgekehrt, wird der tatsächliche Zustand des Rotors des Elektromotors unter Temperatureinfluss widergespiegelt. Diese Temperaturabhängigkeit des magnetischen Flusses der Permanentmagnete ist ein wesentlicher Einflussfaktor auf die Drehmomentberechnung. Da sich die Permanentmagnete auf dem Rotor befinden, ist ein direkter Zusammenhang zwischen dem Temperaturverhalten des magnetischen Flusses der Permanentmagnete und der aktuellen Temperatur des Rotors hergestellt.
In einer weiteren Ausführungsform wird die aus dem Maschinenparameter bestimmte Rotortemperatur zur Anpassung des Drehmomentes des Elektromotors verwendet, um eine Ver- besserung der Kupplungsadaptionen zu erreichen. Die Kupplungsadaptionen im Antriebsstrang eines Hybridfahrzeuges erhöhen die Sicherheit und auch den Fahrkomfort des Hybridfahrzeuges, da eine hohe Drehmomentgenauigkeit gewährleistet wird.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigen:
Fig. 1 eine Kennlinie eines Kurzschlussdrehmomentes einer permanentmagneterregten Synchronmaschine in Abhängigkeit von einer Drehzahl der Synchronmaschine,
Fig. 2 Verlauf eines Kurzschlussstromes einer permanentmagneterregten Synchronmaschine in Abhängigkeit von der Drehzahl der Synchronmaschine.
Im gegenwärtigen Sprachgebrach bezeichnet der Begriff Hybridfahrzeug die Kombination aus einem Verbrennungsmotor und einem Elektromotor und den zugehörigen Energiespeichern, wie Kraftstofftank und Batterie. Dabei ist zwischen dem Verbrennungsmotor und dem Elektromotor eine Kupplung angeordnet, welche ein Zu- bzw. Abschalten des Verbrennungsmotors zum Antrieb durch den Elektromotor ermöglicht. Der verwendete Elektromotor weist dabei temperaturabhängige Maschinenparameter, wie beispielsweise den magnetischen Fluss der Permanentmagneten des Rotors des Elektromotors, auf. Aufgrund der räumlichen Zuordnung zwischen den Permanentmagneten und dem Rotor des Elektromotors lässt sich aus dem magnetischen Fluss der Permanentmagnete auf die Rotortemperatur des Elektromotors schließen.
Zur Bestimmung des magnetischen Flusses der Permanentmagneten des Rotors wird das Hybridfahrzeug während des aktiven Fahrbetriebes in einen aktiven Kurzschluss versetzt. Dies erfolgt während eines generatorischen Betriebsmodus des Elektromotors. Befindet sich der Hybridantrieb im Modus der Lastpunktverschiebung, insbesondere der Lastpunktanhe- bung, bei dem das Verbrennungsmotordrehmoment durch das Drehmoment des Elektromotors generatorisch ausgeglichen wird, oder im Modus der Rekuperation, wird das Verfahren angewandt. Dabei wird das aktuell durch eine Regelung eingestellte Drehmoment des Elektromotors ständig mit einem hinterlegten Kurzschlussdrehmoment verglichen. Dieses Kurz- schlussdrehmoment ist in einer Kennlinie gemäß Fig. 1 abgelegt, welche den Zusammenhang zwischen den Kurzschlussdrehmoment MK und einer Drehzahl ω des Elektromotors darstellt. Diese Kennlinie wird einmalig vor Auslieferung des Elektromotors in einer Bandende-Prüfung des Herstellungsprozess, welche auch als End-Off-Line-Prüfung bezeichnet wird, gemessen und im Elektromotor abgespeichert.
Stimmen das geforderte Drehmoment M des Elektromotors und das Kurzschlussdrehmoment Mk bei der aktuellen Drehzahl ω näherungsweise überein, wird der aktive Kurzschluss eingeleitet. Der aktive Kurzschluss wird dabei durch eine definierte Kombination der Schaltzustände der Leistungsschalter in der, den Elektromotor bestromenden Leistungselektronik hervorgerufen. Eine solche Leistungselektronik umfasst bei einem Dreiphasenelektromotor, wie einer permanentmagneterregten Synchronmaschine, sechs Leistungsschalter, die in einer sogenannten dreifachen Halbbrücke zur Ansteuerung des Elektromotors angeordnet sind. Um den aktiven Kurzschluss einzustellen, werden alle oberen Leistungsschalter oder alternativ alle unteren Leistungsschalter geschlossen. Dadurch stellt sich der Kurzschlussstrom lK ein, der eine direkte Proportionalität zum magnetischen Fluss ΨΡΜ der Permanentmagneten des Rotors des Elektromotors aufweist.
Figure imgf000006_0001
wobei:
R = elektrischer Widerstand des Elektromotors
ω = Drehzahl des Elektromotors
L = Induktivität des Elektromotors
lK = Kurzschlussstrom
darstellen.
Arbeitet der Elektromotor bei niedrigen Drehzahlen ω, muss der elektrische Widerstand R gemäß Gleichung 1 für die Berechnung des magnetischen Flusses ΨΡΜ ΙΠ Betracht gezogen werden. Die Größe des elektrischen Widerstands R verändert sich ebenfalls mit der Temperatur, weshalb im niedrigen Drehzahlbereich der Widerstand R mit Hilfe einer gemessenen/geschätzten Statorwicklungstemperatur ermittelt wird. Oberhalb einer Grenzdrehzahl ω9Γβηζ kann der Einfluss des elektrischen Widerstands R vernachlässigt werden (Fig. 2), woraus sich ΨΡΜ = L*l κ (2) ergibt.
Wie aus Gleichung 2 hervorgeht, weist der sich während des aktiven Kurzschlusses einstellende Kurzschlussstrom lK eine direkte Proportionalität zum magnetischen Fluss ΨΡΜ auf.
Ist der tatsächliche magnetische Fluss ΨΡΜ der Permanentmagnete bekannt, lässt sich auf die aktuelle Rotortemperatur des Elektromotors schließen und somit ein während der Regelung des Elektromotors berechnetes Drehmoment MEM des Elektromotors anpassen.
Figure imgf000007_0001
wobei
P Polpaare der Dauermagneten
iq, id Gleichstromkomponenten des Wechselstroms
Lq, l_d Induktivitätskomponenten
darstellen.
Die vorgestellte Strategie lässt sich ebenfalls bei aktivem Verzögern des Verbrennungsmotors bis zum Stillstand durch die permanentmagneterregte Synchronmaschine einsetzen. Zum Verzögern des Verbrennungsmotors wird direkt das Kurzschlussmoment der permanentmagneterregten Synchronmaschine genutzt. Analog dazu ist der Einsatz der Strategie während Schaltungsphasen möglich. Bei Zughochschaltungen wird das Kurzschlussmoment der permanenterregten Synchronmaschine genutzt, um während der Synchronisationsphasen die Verbrennungsmotordrehzahl an die Getriebeeingangsdrehzahl anzugleichen.

Claims

Patentansprüche
Verfahren zur Bestimmung einer Rotortemperatur eines Elektromotors in einem Hybridantrieb eines Kraftfahrzeuges, wobei als Elektromotor vorzugsweise eine permanentmagneterregte Synchronmaschine verwendet wird, bei welchem die Rotortemperatur in Abhängigkeit eines temperaturabhängigen Maschinenparameters bestimmt wird, der aus einem Kurzschlussstrom bei einem aktiven Kurzschluss einer, den Elektromotor bestromenden Leistungselektronik ermittelt wird, dadurch gekennzeichnet, dass der aktive Kurzschluss während eines aktiven Fahrbetriebes des Kraftfahrzeuges in einem generatorischen Betriebsmodus des Elektromotors eingestellt wird.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass im Modus einer Lastpunktverschiebung oder Rekuperation des Hybridantriebes ein gefordertes generatorisches Drehmoment des Elektromotors mit einem vorgegebenen Kurzschlussdrehmoment verglichen wird, wobei bei annähernder Übereinstimmung des geforderten Drehmomentes mit dem Kurzschlussdrehmoment der aktive Kurzschluss eingeleitet wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Kurzschlussdrehmoment in Abhängigkeit von der Drehzahl des Elektromotors in einer Kennlinie abgelegt ist, welche einmalig, vorzugsweise bei einer Bandende-Prüfung eines Herstellungsprozesses des Elektromotors, ermittelt und abgespeichert wird.
4. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass bei der Bestimmung des Maschinenparameters, der aus dem Kurzschlussstrom bei einer Drehzahl des Elektromotors, welche kleiner als eine Grenzdrehzahl ist, ermittelt wird, ein elektrischer Widerstand des Elektromotors berücksichtigt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der elektrische Widerstand des Elektromotors aus einer gemessenen oder geschätzten Statorwicklungstemperatur ermittelt wird.
6. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass der Maschinenparameter, der aus dem Kurzschlussstrom bei einer Drehzahl des Elektromotors, welche größer als eine Grenzdrehzahl ist, ermittelt wird, direkt proportional zum Kurzschlussstrom ist.
7. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Maschinenparameter ein magnetischer Fluss der Permanentmagneten eines Rotors des Elektromotors verwendet wird.
8. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aus dem Maschinenparameter bestimmt Motortemperatur zur Anpassung des Drehmomentes des Elektromotors, um eine Verbesserung der Kupplungsadaption zu erreichen.
PCT/DE2014/200646 2013-12-16 2014-11-19 Verfahren zur bestimmung einer rotortemperatur eines elektromotors in einem hybridantrieb eines kraftfahrzeuges WO2015090306A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112014005705.3T DE112014005705A5 (de) 2013-12-16 2014-11-19 Verfahren zur Bestimmung einer Rotortemperatur eines Elektromotors in einem Hybridantrieb eines Kraftfahrzeuges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013226055.5 2013-12-16
DE102013226055 2013-12-16

Publications (1)

Publication Number Publication Date
WO2015090306A1 true WO2015090306A1 (de) 2015-06-25

Family

ID=52278321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/200646 WO2015090306A1 (de) 2013-12-16 2014-11-19 Verfahren zur bestimmung einer rotortemperatur eines elektromotors in einem hybridantrieb eines kraftfahrzeuges

Country Status (2)

Country Link
DE (1) DE112014005705A5 (de)
WO (1) WO2015090306A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014016452A1 (de) * 2014-11-06 2016-05-12 Audi Ag Verfahren zum Ermitteln einer Wicklungstemperatur einer elektrischen Maschine
CN107696868A (zh) * 2017-09-29 2018-02-16 北京新能源汽车股份有限公司 电动汽车超速故障的处理方法、装置及车载设备
DE102018103831A1 (de) 2017-12-15 2019-06-19 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur adaptiven rotororientierten Regelung und Drehmomentschätzung einer permanentmagneterregten Synchronmaschine auf Basis von Schätzungen des magnetischen Flusses im stationären Zustand
CN112003529A (zh) * 2020-08-14 2020-11-27 中车青岛四方车辆研究所有限公司 通用的永磁同步电机磁链离线辨识方法及系统
DE102019119711A1 (de) * 2019-07-22 2021-01-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betrieb einer elektrischen Maschine, elektrische Maschine, Kraftfahrzeug
CN112666457A (zh) * 2019-09-30 2021-04-16 奥迪股份公司 用于电动车辆的、包括制动力矩补偿的动力装置诊断
DE102020112940A1 (de) 2020-05-13 2021-11-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben einer Synchronmaschine
CN115473475A (zh) * 2022-08-11 2022-12-13 日照东方电机有限公司 一种基于永磁电机与减速机的一体双驱控制方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280141A (ja) * 2005-03-30 2006-10-12 Honda Motor Co Ltd ハイブリッド車両用モータの定数検出装置およびハイブリッド車両用モータの制御装置
US20080036415A1 (en) * 2006-08-09 2008-02-14 Honda Motor Co., Ltd. Controller for motor
WO2009021911A1 (de) * 2007-08-16 2009-02-19 Zf Friedrichshafen Ag Verfahren zur durchführung einer zugkraftunterbrochenen schaltung bei einen parallelen hybridfahrzeug
DE102008001807A1 (de) * 2008-05-15 2009-11-19 Robert Bosch Gmbh Verfahren und Anordnung zur Bestimmung der Rotortemperatur eines Elektromotors eines Hybridfahrzeuges

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280141A (ja) * 2005-03-30 2006-10-12 Honda Motor Co Ltd ハイブリッド車両用モータの定数検出装置およびハイブリッド車両用モータの制御装置
US20080036415A1 (en) * 2006-08-09 2008-02-14 Honda Motor Co., Ltd. Controller for motor
WO2009021911A1 (de) * 2007-08-16 2009-02-19 Zf Friedrichshafen Ag Verfahren zur durchführung einer zugkraftunterbrochenen schaltung bei einen parallelen hybridfahrzeug
DE102008001807A1 (de) * 2008-05-15 2009-11-19 Robert Bosch Gmbh Verfahren und Anordnung zur Bestimmung der Rotortemperatur eines Elektromotors eines Hybridfahrzeuges

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014016452A1 (de) * 2014-11-06 2016-05-12 Audi Ag Verfahren zum Ermitteln einer Wicklungstemperatur einer elektrischen Maschine
DE102014016452B4 (de) 2014-11-06 2019-03-28 Audi Ag Verfahren zum Ermitteln einer Statorwicklungstemperatur einer elektrischen Maschine
US10295414B2 (en) 2014-11-06 2019-05-21 Audi Ag Method for determining a coil temperature of an electric machine
CN107696868A (zh) * 2017-09-29 2018-02-16 北京新能源汽车股份有限公司 电动汽车超速故障的处理方法、装置及车载设备
DE102018103831A1 (de) 2017-12-15 2019-06-19 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur adaptiven rotororientierten Regelung und Drehmomentschätzung einer permanentmagneterregten Synchronmaschine auf Basis von Schätzungen des magnetischen Flusses im stationären Zustand
DE102019119711A1 (de) * 2019-07-22 2021-01-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betrieb einer elektrischen Maschine, elektrische Maschine, Kraftfahrzeug
CN112666457A (zh) * 2019-09-30 2021-04-16 奥迪股份公司 用于电动车辆的、包括制动力矩补偿的动力装置诊断
DE102020112940A1 (de) 2020-05-13 2021-11-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben einer Synchronmaschine
CN112003529A (zh) * 2020-08-14 2020-11-27 中车青岛四方车辆研究所有限公司 通用的永磁同步电机磁链离线辨识方法及系统
CN115473475A (zh) * 2022-08-11 2022-12-13 日照东方电机有限公司 一种基于永磁电机与减速机的一体双驱控制方法及系统

Also Published As

Publication number Publication date
DE112014005705A5 (de) 2016-09-15

Similar Documents

Publication Publication Date Title
WO2015090306A1 (de) Verfahren zur bestimmung einer rotortemperatur eines elektromotors in einem hybridantrieb eines kraftfahrzeuges
EP2599215B1 (de) Verfahren und vorrichtung zur regelung fremderregter synchronmaschinen
DE112013000640T5 (de) Steuerungsvorrichtung und Steuerungsverfahren für einen Permanentmagnet-Motor
DE112012007006T5 (de) Motorsteuervorrichtung und Motorsteuerverfahren
DE112011105776T5 (de) Steuervorrichtung eines elektrisch angetriebenen Fahrzeugs
EP3513491B1 (de) Verfahren zur inbetriebnahme einer permanenterregte synchronmaschine und permanenterregte synchronmaschine
DE102014220208A1 (de) Steuervorrichtung für eine elektromaschine, fahrzeug und verfahren
DE102010043492A1 (de) Verfahren und Vorrichtung zur Regelung fremderregter Synchronmaschinen
DE102012215042A1 (de) Steuervorrichtung von elektrischer Rotationsmaschine
DE102016212852A1 (de) Ansteuervorrichtung für eine und Verfahren zum Ansteuern einer in einem Fahrzeug angeordneten Synchronmaschine
DE102014215536A1 (de) Bordnetzanordnung und Verfahren zum Betreiben eines Bordnetzes eines elektrisch antreibbaren Fortbewegungsmittels mit einer Brennstoffzelle
DE112013005317T5 (de) Verfahren und Vorrichtung zur Verringerung einer Drehmomentabweichung in Motorantriebssystemen
EP0690556B1 (de) Stillstandserkennung beim Wiederanlassen eines stromrichtergespeisten Drehstrommotors ohne Drehzahlgeber
EP2664059B1 (de) Verfahren und vorrichtung zum betrieb einer fremderregten elektrischen maschine
DE112021001533T5 (de) Motorsteuervorrichtung, elektromechanische einheit, elektrofahrzeugsystem und motorsteuerverfahren
DE102010021865B4 (de) Verfahren zum Regeln oder Abbremsen einer Synchronmaschine und eine umrichtergespeiste Synchronmaschine
DE112015006217B4 (de) Elektrofahrzeug-Steuereinrichtung
EP3686046B1 (de) Heizbetrieb eines elektrischen antriebssystems eines fahrzeugs
DE10118916A1 (de) Verfahren und Anordnung zur Bestimmung des Zustandes einer Batterie
WO2014206692A2 (de) Verfahren und vorrichtung zum betreiben einer asynchronmaschine, asynchronmaschine
EP3075593B1 (de) Verfahren zum entladen eines elektrischen energiespeichers eines kraftfahrzeugs
WO2015067593A1 (de) Verfahren und vorrichtung zum betreiben einer permanentangeregten synchronmaschine
DE112018007480T5 (de) Synchronmaschinen-Antriebssteuervorrichtung und mit einer Synchronmaschine ausgerüstetes Fahrzeug, das einer Antriebssteuerung durch die besagte Synchronmaschinen-Antriebssteuervorrichtung unterworfen ist
AT522117B1 (de) Verfahren zum Betreiben einer Antriebsvorrichtung, Antriebsvorrichtung sowie Kraftfahrzeug
DE102021116963B4 (de) Verfahren zur Drehmomentschätzung einer elektrischen Maschine, Steuereinheit zur Ausführung dieses Verfahrens und elektrischer Traktionsantrieb mit derartiger Steuereinheit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14821491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014005705

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112014005705

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14821491

Country of ref document: EP

Kind code of ref document: A1