WO2015087942A1 - 表面処理銅箔、銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法 - Google Patents
表面処理銅箔、銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法 Download PDFInfo
- Publication number
- WO2015087942A1 WO2015087942A1 PCT/JP2014/082766 JP2014082766W WO2015087942A1 WO 2015087942 A1 WO2015087942 A1 WO 2015087942A1 JP 2014082766 W JP2014082766 W JP 2014082766W WO 2015087942 A1 WO2015087942 A1 WO 2015087942A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper foil
- copper
- resin substrate
- insulating resin
- brightness
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/088—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/281—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/605—Surface topography of the layers, e.g. rough, dendritic or nodular layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/627—Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/382—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
- H05K3/384—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2311/00—Metals, their alloys or their compounds
- B32B2311/12—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0108—Transparent
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0154—Polyimide
Definitions
- the present invention relates to a surface-treated copper foil, a copper clad laminate, a printed wiring board, an electronic device, and a method for manufacturing a printed wiring board.
- FPCs flexible printed wiring boards
- the signal transmission speed has been increased, and impedance matching has become an important factor in FPC.
- a resin insulation layer for example, polyimide
- the demand for higher wiring density has further increased the number of FPC layers.
- processing such as bonding to a liquid crystal substrate and mounting of an IC chip is performed on the FPC, but the alignment at this time is the resin insulation remaining after etching the copper foil in the laminate of the copper foil and the resin insulating layer
- the visibility of the resin insulation layer is important because it is performed through a positioning pattern that is visible through the layer.
- a copper clad laminate that is a laminate of a copper foil and a resin insulating layer can be manufactured using a rolled copper foil having a roughened plating surface.
- This rolled copper foil usually uses tough pitch copper (oxygen content of 100 to 500 ppm by weight) or oxygen free copper (oxygen content of 10 ppm by weight or less) as a raw material, and after hot rolling these ingots, It is manufactured by repeating cold rolling and annealing to a thickness.
- Patent Document 1 a polyimide film and a low-roughness copper foil are laminated, and a light transmittance at a wavelength of 600 nm of the film after copper foil etching is 40% or more, a haze value.
- An invention relating to a copper clad laminate having (HAZE) of 30% or less and an adhesive strength of 500 N / m or more is disclosed.
- Patent Document 2 has an insulating layer in which a conductive layer made of electrolytic copper foil is laminated, and the light transmittance of the insulating layer in the etching region when the circuit is formed by etching the conductive layer is 50% or more.
- the electrolytic copper foil includes a rust-proofing layer made of a nickel-zinc alloy on an adhesive surface bonded to an insulating layer, and the surface roughness (Rz) of the adhesive surface ) Is 0.05 to 1.5 ⁇ m, and the specular gloss at an incident angle of 60 ° is 250 or more.
- Patent Document 3 discloses a method for treating a copper foil for a printed circuit, in which a cobalt-nickel alloy plating layer is formed on the surface of the copper foil after a roughening treatment by copper-cobalt-nickel alloy plating, and further zinc-nickel.
- An invention relating to a method for treating a copper foil for printed circuit, characterized by forming an alloy plating layer is disclosed.
- JP 2004-98659 A WO2003 / 096776 Japanese Patent No. 2849059
- Patent Document 1 a low-roughness copper foil obtained by improving adhesion with an organic treatment agent after blackening treatment or plating treatment is broken due to fatigue in applications where flexibility is required for a copper-clad laminate. May be inferior in resin transparency. Moreover, in patent document 2, the roughening process is not made and the adhesive strength of copper foil and resin is low and inadequate in uses other than the flexible printed wiring board for COF. Furthermore, although the processing method described in Patent Document 3 allows fine processing of Cu-Co-Ni on a copper foil, excellent visibility can be realized when the copper foil is observed through a resin. Not. The present invention provides a surface-treated copper foil that adheres well to a resin and realizes excellent visibility when observed through the resin.
- the inventors of the present invention have obtained a copper foil whose surface color difference is controlled to a predetermined range by surface treatment and photographed with a CCD camera through a polyimide substrate laminated from the treated surface side. Paying attention to the slope of the brightness curve near the end of the copper foil drawn in the observation point-brightness graph obtained from the image, controlling the slope of the brightness curve can determine the type of substrate resin film and the thickness of the substrate resin film. It was found that the resin transparency was good without being affected.
- a surface-treated copper foil in which surface treatment is performed on one surface and the other surface, and the surface-treated copper foil is formed from the one surface side.
- a copper clad laminate that is laminated with a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less before being laminated to the copper foil, the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide is 50 or more.
- This is a surface-treated copper foil having a ten-point average roughness Rz of 0.35 ⁇ m or more.
- Another aspect of the present invention is a surface-treated copper foil in which surface treatment is performed on one surface and the other surface, respectively, and the surface-treated copper foil is bonded to the copper foil from the one surface side.
- a copper-clad laminate constructed by laminating with a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide is 50 or more
- the brightness of each observation point was measured along the direction perpendicular to the direction in which the observed copper foil stretched for the image obtained by the photographing
- the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper foil to the portion without the copper foil are examples of the brightness curve generated from the end of the copper foil to the portion without the copper foil.
- the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and Bt is t1
- the lightness curve In the depth range from the intersection with Bt to 0.1 ⁇ B with respect to Bt the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and 0.1 ⁇ B is t2.
- the surface-treated copper foil has a TD ten-point average roughness Rz of 0.35 ⁇ m or more as measured by a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment.
- the average roughness Rz of TD measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.00. It is 35 ⁇ m or more.
- the arithmetic average roughness Ra of TD measured with a laser microscope whose wavelength of the laser beam on the surface of the copper foil subjected to the other surface treatment is 405 nm, 0.05 ⁇ m or more.
- the surface-treated copper foil is subjected to surface treatment on one surface and the other surface, and the surface-treated copper foil is bonded to the copper foil from the one surface side.
- a copper-clad laminate composed by laminating with a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less
- the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide is 50 or more
- the brightness of each observation point was measured along the direction perpendicular to the direction in which the observed copper foil stretched for the image obtained by the photographing
- the top average value Bt and the bottom average value of the brightness curve generated from the end of the copper foil to the portion without the copper foil
- the surface-treated copper foil is subjected to surface treatment on one surface and the other surface, and the surface-treated copper foil is bonded to the copper foil from the one surface side.
- a copper-clad laminate constituted by laminating with a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less
- the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide is 50 or more
- the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and 0.1 ⁇ B is t2.
- the surface-treated copper foil has an arithmetic average roughness Ra of TD of 0.05 ⁇ m or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment.
- the root mean square height Rq of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.08 ⁇ m or more.
- the surface-treated copper foil is subjected to surface treatment on one surface and the other surface, and the surface-treated copper foil is bonded to the copper foil from the one surface side.
- a copper-clad laminate composed by laminating with a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less
- the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide is 50 or more
- the brightness of each observation point was measured along the direction perpendicular to the direction in which the observed copper foil stretched for the image obtained by the photographing
- the surface-treated copper foil is subjected to surface treatment on one surface and the other surface, and the surface-treated copper foil is bonded to the copper foil from the one surface side.
- a copper-clad laminate constituted by laminating with a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less
- the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide is 50 or more
- the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and 0.1 ⁇ B is t2.
- the other surface-treated copper foil is a surface-treated copper foil having a root mean square height Rq of TD of 0.08 ⁇ m or more as measured with a laser microscope having a laser beam wavelength of 405 nm.
- the surface treatment of the other surface is a roughening treatment.
- a value indicating a position of an intersection closest to the copper foil among intersections of the lightness curve and Bt is defined as t1.
- a value indicating the position of the intersection closest to the copper foil among the intersections of the brightness curve and 0.1 ⁇ B was defined as t2.
- the following ⁇ B (PI) before pasting the surface-treated copper foil from the one surface side to the copper foil is 50 or more and 65 or less;
- the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide in the copper clad laminate formed by laminating is 53 or more.
- Sv defined by the formula (1) in the brightness curve is 3.5 or more.
- Sv defined by the formula (1) in the brightness curve is 3.9 or more.
- Sv defined by the formula (1) in the brightness curve is 5.0 or more.
- the ten-point average roughness Rz of TD measured with the contact-type roughness meter on the one surface is 0.20 to 0.64 ⁇ m
- the ratio A / B between the three-dimensional surface area A and the two-dimensional surface area B on the copper foil surface is 1.0 to 1.7.
- the TD ten-point average roughness Rz measured by the contact-type roughness meter on the one surface is 0.26 to 0.62 ⁇ m.
- the A / B is 1.0 to 1.6.
- the present invention is a copper clad laminate configured by laminating the surface-treated copper foil of the present invention and a resin substrate.
- the present invention is a printed wiring board using the surface-treated copper foil of the present invention.
- the present invention is an electronic device using at least one printed wiring board of the present invention.
- the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, and the copper circuit includes one surface on the insulating resin substrate side, A color difference ⁇ E * ab based on JIS Z8730 on the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit passes through the insulating resin substrate.
- an observation point-brightness graph prepared by measuring the lightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
- the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, and the copper circuit includes one surface on the insulating resin substrate side, A color difference ⁇ E * ab based on JIS Z8730 on the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit passes through the insulating resin substrate.
- an observation point-brightness graph prepared by measuring the lightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
- the value indicating the position of the intersection closest to the copper circuit among the intersections of the lightness curve and Bt is t1
- in the depth range from the intersection of the lightness curve and Bt to 0.1 ⁇ B with reference to Bt a
- the printed circuit board has a TD ten-point average roughness Rz of 0.35 ⁇ m or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper circuit subjected to the other surface treatment.
- the arithmetic average roughness Ra of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper circuit subjected to the other surface treatment is 0.00. It is 05 ⁇ m or more.
- the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, the copper circuit including one surface on the insulating resin substrate side.
- the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper circuit through the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate.
- An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
- Arithmetic average roughness Ra of the TD to the wavelength of the laser light is measured by a laser microscope is 405nm of other surface treatment copper circuit surface is a printed circuit board is 0.05 ⁇ m or more.
- the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, the copper circuit including one surface on the insulating resin substrate side.
- the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate.
- An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
- the value indicating the position of the intersection closest to the copper circuit among the intersections of the lightness curve and Bt is t1
- the depth range from the intersection of the lightness curve and Bt to 0.1 ⁇ B with reference to Bt
- Sv defined by the following equation (1) is 3.0 or more
- Sv ( ⁇ B ⁇ 0.1) / (t1-t2) (1)
- the printed circuit board has an arithmetic average roughness Ra of TD of 0.05 ⁇ m or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper circuit subjected to the other surface treatment.
- the root mean square height Rq of TD measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper circuit subjected to the other surface treatment is 0.08 ⁇ m or more.
- the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, the copper circuit including one surface on the insulating resin substrate side.
- the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper circuit through the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate.
- An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
- Root-mean-square height Rq of TD that the wavelength of the laser beam of the other surface treatment copper circuit surface is measured by a laser microscope is 405nm is a printed circuit board is at least 0.08 .mu.m.
- the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, the copper circuit including one surface on the insulating resin substrate side.
- the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate.
- An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
- the value indicating the position of the intersection closest to the copper circuit among the intersections of the lightness curve and Bt is t1
- the depth range from the intersection of the lightness curve and Bt to 0.1 ⁇ B with reference to Bt
- Sv defined by the following equation (1) is 3.0 or more
- Sv ( ⁇ B ⁇ 0.1) / (t1-t2) (1)
- the surface treatment of the other surface is a roughening treatment.
- the present invention is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards of the present invention.
- the present invention includes at least a step of connecting at least one printed wiring board of the present invention to another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention. This is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected.
- the present invention is an electronic device using one or more printed wiring boards to which at least one printed wiring board of the present invention is connected.
- the present invention is a surface-treated copper foil used for the printed wiring board of the present invention.
- the present invention provides a copper-clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, the copper foil having one surface on the insulating resin substrate side.
- the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper foil through the insulating resin substrate is 50 or more, and the copper foil of the copper-clad laminate Is etched into a line-shaped copper foil and then photographed with a CCD camera through the insulating resin substrate, the image obtained by the photographing is perpendicular to the direction in which the observed line-shaped copper foil extends.
- This is a copper clad laminate having a point average roughness Rz of 0.35 ⁇ m or more.
- the present invention provides a copper-clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, the copper foil having one surface on the insulating resin substrate side.
- the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper foil of the copper-clad laminate Is etched into a line-shaped copper foil and then photographed with a CCD camera through the insulating resin substrate, the image obtained by the photographing is perpendicular to the direction in which the observed line-shaped copper foil extends.
- the copper clad laminate of the present invention has an average roughness Rz of TD measured by a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment of 0.35 ⁇ m or more. is there.
- the arithmetic average roughness Ra of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0. .05 ⁇ m or more.
- Still another aspect of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, wherein the copper foil is one surface on the insulating resin substrate side.
- a color difference ⁇ E * ab based on JIS 87 Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper of the copper-clad laminate.
- Still another aspect of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, wherein the copper foil is one surface on the insulating resin substrate side.
- a color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper of the copper-clad laminate.
- the root mean square height Rq of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.08 ⁇ m or more.
- Still another aspect of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, wherein the copper foil is one surface on the insulating resin substrate side.
- a color difference ⁇ E * ab based on JIS 87 Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper of the copper-clad laminate.
- This is a copper clad laminate having an average square root height Rq of 0.08 ⁇ m or more.
- Still another aspect of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, wherein the copper foil is one surface on the insulating resin substrate side.
- a color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper of the copper-clad laminate.
- the surface treatment of the other surface is a roughening treatment.
- the present invention is a surface-treated copper foil used for the copper-clad laminate of the present invention.
- the present invention is a printed wiring board manufactured using the copper clad laminate of the present invention.
- the copper foil used in the present invention is useful for a copper foil or the like used by laminating a resin substrate to produce a laminate and forming a circuit by etching.
- the copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil.
- the surface of the copper foil to be bonded to the resin substrate in the present invention, this surface is also referred to as “one surface”) for the purpose of improving the peel strength of the copper foil after lamination.
- the surface of the copper foil may be subjected to a roughening treatment for performing fist-like electrodeposition.
- the electrolytic copper foil has irregularities at the time of manufacture, the irregularities can be further increased by enhancing the convex portions of the electrolytic copper foil by roughening treatment.
- this roughening treatment can be performed by alloy plating such as copper-cobalt-nickel alloy plating or copper-nickel-phosphorus alloy plating, preferably copper alloy plating.
- Ordinary copper plating or the like may be performed as a pretreatment before roughening, and ordinary copper plating or the like may be performed as a finishing treatment after roughening in order to prevent electrodeposits from dropping off.
- the copper foil used in the present invention may be applied with a heat-resistant plating layer or a rust-proof plating layer on one surface after roughening treatment on one surface or by omitting the roughening treatment.
- a treatment for omitting the roughening treatment and applying a heat-resistant plating layer or a rust-proof plating layer to the surface a plating treatment using a Ni—W plating bath under the following conditions can be used.
- the balance of the treatment liquid used in the present invention for electrolysis, surface treatment or plating is water unless otherwise specified.
- Plating bath composition Ni: 20-30 g / L, W: 15-40 mg / L pH: 3.0-4.0 Temperature: 35-45 ° C Current density D k : 1.7 to 2.3 A / dm 2 Plating time: 18 to 25 seconds
- the thickness of the copper foil used in the present invention is not particularly limited, but is, for example, 1 ⁇ m or more, 2 ⁇ m or more, 3 ⁇ m or more, 5 ⁇ m or more, for example, 3000 ⁇ m or less, 1500 ⁇ m or less, 800 ⁇ m. Below, it is 300 micrometers or less, 150 micrometers or less, 100 micrometers or less, 70 micrometers or less, 50 micrometers or less, and 40 micrometers or less.
- the copper foil according to the present invention includes a copper alloy containing one or more elements such as Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, V, B, and Co. Foil is also included. When the concentration of the above elements increases (for example, 10% by mass or more in total), the conductivity may decrease.
- the conductivity of the rolled copper foil is preferably 50% IACS or more, more preferably 60% IACS or more, and still more preferably 80% IACS or more.
- the rolled copper foil includes copper foil produced using tough pitch copper (JIS H3100 C1100) or oxygen-free copper (JIS H3100 C1020).
- Electrolytic copper foil used for this invention Moreover, the manufacturing conditions of the electrolytic copper foil used for this invention are shown below.
- Leveling agent 1 bis (3sulfopropyl) disulfide): 10 to 30 ppm
- Leveling agent 2 (amine compound) 10 to 30 ppm
- an amine compound having the following chemical formula can be used.
- R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.
- the copper-cobalt-nickel alloy plating as the roughening treatment is, as a result of electrolytic plating, an amount of adhesion of 15 to 40 mg / dm 2 of copper—100 to 3000 ⁇ g / dm 2 of cobalt—100 to 1500 ⁇ g / dm 2 of nickel. It can be carried out so as to form a ternary alloy layer. If the amount of deposited Co is less than 100 ⁇ g / dm 2 , the heat resistance may deteriorate and the etching property may deteriorate.
- the amount of Co deposition exceeds 3000 ⁇ g / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate. If the Ni adhesion amount is less than 100 ⁇ g / dm 2 , the heat resistance may deteriorate. On the other hand, when the Ni adhesion amount exceeds 1500 ⁇ g / dm 2 , the etching residue may increase.
- a preferable Co adhesion amount is 1000 to 2500 ⁇ g / dm 2
- a preferable nickel adhesion amount is 500 to 1200 ⁇ g / dm 2 .
- the etching stain means that Co remains without being dissolved when etched with copper chloride
- the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.
- the plating bath and plating conditions for forming such a ternary copper-cobalt-nickel alloy plating are as follows: Plating bath composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L pH: 1 to 4 Temperature: 30-50 ° C Current density D k : 20 to 30 A / dm 2 Plating time: 1-5 seconds
- Plating bath composition Cu 10-50 g / L, Ni 3-20 g / L, P1-10 g / L pH: 1 to 4 Temperature: 30-40 ° C Current density D k : 20 to 50 A / dm 2 Plating time: 0.5-3 seconds
- Plating bath composition Cu 5-20 g / L, Ni 5-20 g / L, Co 5-20 g / L, W 1-10 g / L pH: 1-5 Temperature: 30-50 ° C Current density D k : 20 to 50 A / dm 2 Plating time: 0.5-5 seconds
- Plating bath composition Cu 5-20 g / L, Ni 5-20 g / L, Mo 1-10 g / L, P 1-10 g / L pH: 1-5 Temperature: 20-50 ° C Current density D k : 20 to 50 A / dm 2 Plating time: 0.5-5 seconds
- each layer may be a plurality of layers such as two layers, three layers, and the order of stacking the layers may be any order, and the layers may be stacked alternately.
- a known heat-resistant layer can be used as the heat-resistant layer. Further, for example, the following surface treatment can be used.
- the heat-resistant layer and rust-proof layer known heat-resistant layers and rust-proof layers can be used.
- the heat-resistant layer and / or the anticorrosive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, tantalum
- it may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of iron, tantalum and the like.
- the heat-resistant layer and / or rust preventive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum.
- An oxide, nitride, or silicide containing one or more elements selected from the above may be included.
- the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy.
- the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer.
- the nickel-zinc alloy layer may contain 50 wt% to 99 wt% nickel and 50 wt% to 1 wt% zinc, excluding inevitable impurities.
- the total adhesion amount of zinc and nickel in the nickel-zinc alloy layer may be 5 to 1000 mg / m 2 , preferably 10 to 500 mg / m 2 , preferably 20 to 100 mg / m 2 .
- the amount of nickel deposited on the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , and 1 mg / m 2 to 50 mg / m 2 . More preferably.
- the heat-resistant layer and / or rust prevention layer is a layer containing a nickel-zinc alloy, the interface between the copper foil and the resin substrate is eroded by the desmear liquid when the inner wall of a through hole or via hole comes into contact with the desmear liquid. It is difficult to improve the adhesion between the copper foil and the resin substrate.
- the rust prevention layer may be a chromate treatment layer. A known chromate treatment layer can be used for the chromate treatment layer.
- the chromate-treated layer refers to a layer treated with a liquid containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate.
- Chromate treatment layer is any element such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic and titanium (metal, alloy, oxide, nitride, sulfide, etc.) May be included).
- Specific examples of the chromate treatment layer include a pure chromate treatment layer and a zinc chromate treatment layer.
- a chromate treatment layer treated with an anhydrous chromic acid or potassium dichromate aqueous solution is referred to as a pure chromate treatment layer.
- a chromate treatment layer treated with a treatment liquid containing chromic anhydride or potassium dichromate and zinc is referred to as a zinc chromate treatment layer.
- the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer with an adhesion amount of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and an adhesion amount of 1 mg / m 2.
- a tin layer of ⁇ 80 mg / m 2 , preferably 5 mg / m 2 ⁇ 40 mg / m 2 may be sequentially laminated.
- the nickel alloy layer may be nickel-molybdenum, nickel-zinc, nickel-molybdenum-cobalt. You may be comprised by any one of these.
- the heat-resistant layer and / or rust-preventing layer preferably has a total adhesion amount of nickel or nickel alloy and tin of 2 mg / m 2 to 150 mg / m 2 and 10 mg / m 2 to 70 mg / m 2 . It is more preferable.
- coating weight of cobalt 200 ⁇ 2000 ⁇ g / dm 2 of cobalt -50 ⁇ 700 [mu] g / dm 2 of nickel - can form a nickel alloy plating layer.
- This treatment can be regarded as a kind of rust prevention treatment in a broad sense.
- This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially lowered. If the amount of cobalt adhesion is less than 200 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. As another reason, if the amount of cobalt is small, the treated surface becomes reddish, which is not preferable.
- cobalt nickel cobalt -100 ⁇ 700 ⁇ g / dm 2 weight deposited on the roughened surface is 200 ⁇ 3000 ⁇ g / dm 2 - can form a nickel alloy plating layer.
- This treatment can be regarded as a kind of rust prevention treatment in a broad sense.
- This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially lowered. If the amount of cobalt adhesion is less than 200 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated.
- the treated surface becomes reddish, which is not preferable.
- the amount of cobalt deposition exceeds 3000 ⁇ g / dm 2 , it is not preferable when the influence of magnetism must be taken into account, and etching spots may occur, and acid resistance and chemical resistance may deteriorate.
- a preferable cobalt adhesion amount is 500 to 2500 ⁇ g / dm 2 .
- the nickel adhesion amount is less than 100 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated.
- nickel exceeds 1300 microgram / dm ⁇ 2 > alkali etching property will worsen.
- a preferable nickel adhesion amount is 200 to 1200 ⁇ g / dm 2 .
- Plating bath composition Co 1-20 g / L, Ni 1-20 g / L pH: 1.5 to 3.5 Temperature: 30-80 ° C Current density D k : 1.0 to 20.0 A / dm 2 Plating time: 0.5-4 seconds
- a zinc plating layer having an adhesion amount of 30 to 250 ⁇ g / dm 2 is further formed on the cobalt-nickel alloy plating. If the zinc adhesion amount is less than 30 ⁇ g / dm 2 , the heat deterioration rate improving effect may be lost. On the other hand, when the zinc adhesion amount exceeds 250 ⁇ g / dm 2 , the hydrochloric acid deterioration rate may be extremely deteriorated.
- the zinc coating weight is 30 ⁇ 240 ⁇ g / dm 2, more preferably 80 ⁇ 220 ⁇ g / dm 2.
- the galvanizing conditions are as follows: Plating bath composition: Zn 100 to 300 g / L pH: 3-4 Temperature: 50-60 ° C Current density Dk: 0.1 to 0.5 A / dm 2 Plating time: 1 to 3 seconds
- a zinc alloy plating layer such as zinc-nickel alloy plating may be formed in place of the zinc plating layer, and a rust prevention layer may be formed on the outermost surface by chromate treatment or application of a silane coupling agent. Good.
- a known weathering layer can be used as the weathering layer.
- a well-known silane coupling process layer can be used, for example, The silane coupling process layer formed using the following silanes can be used.
- a known silane coupling agent may be used.
- an amino silane coupling agent, an epoxy silane coupling agent, or a mercapto silane coupling agent may be used.
- Silane coupling agents include vinyltrimethoxysilane, vinylphenyltrimethoxylane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, and ⁇ -aminopropyl.
- Triethoxysilane N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, ⁇ -mercaptopropyltrimethoxysilane or the like may be used.
- the silane coupling treatment layer may be formed using a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
- a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
- you may use 2 or more types of such silane coupling agents in mixture.
- it is preferable to form using an amino-type silane coupling agent or an epoxy-type silane coupling agent.
- the amino silane coupling agent referred to here is N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl
- the silane coupling treatment layer is 0.05 mg / m 2 to 200 mg / m 2 , preferably 0.15 mg / m 2 to 20 mg / m 2 , preferably 0.3 mg / m 2 to 2.0 mg in terms of silicon atoms. / M 2 is desirable. In the case of the above-mentioned range, the adhesiveness between the base resin and the surface-treated copper foil can be further improved.
- the surface-treated copper foil of the present invention is a copper clad laminate in which the following ⁇ B (PI) before being laminated to the copper foil is laminated with a polyimide having a thickness of 50 or more and 65 or less, over the polyimide.
- the color difference ⁇ E * ab based on JIS Z8730 on the surface is controlled to 50 or more.
- the color difference ⁇ E * ab is more preferably 53 or more, 55 or more, and more preferably 60 or more.
- the upper limit of the color difference ⁇ E * ab is not particularly limited, but is, for example, 90 or less, 88 or less, or 87 or less, or 85 or less, or 75 or less, or 70 or less.
- the color difference ⁇ E * ab is measured by a color difference meter, and is a comprehensive index shown using the L * a * b color system based on JIS Z8730, taking into account black / white / red / green / yellow / blue. Yes, ⁇ L: black and white, ⁇ a: red-green, ⁇ b: yellow-blue, represented by the following formula;
- the surface-treated copper foil of the present invention may be a non-roughened copper foil or a roughened copper foil in which roughened particles are formed on one surface of the copper foil.
- the TD ten-point average roughness Rz measured in (1) is preferably 0.20 to 0.64 ⁇ m.
- the ten-point average roughness Rz of TD measured with a contact-type roughness meter is less than 0.20 ⁇ m on one surface of the copper foil, the copper foil surface may be insufficiently roughened, and the resin There is a possibility that a problem of insufficient adhesion may occur.
- the ten-point average roughness Rz of TD measured with a contact roughness meter is greater than 0.64 ⁇ m on one surface of the copper foil, the unevenness of the resin surface after removing the copper foil by etching is large. As a result, there may be a problem that the transparency of the resin becomes poor.
- the ten-point average roughness Rz of TD measured with a contact-type roughness meter on one surface of the copper foil is more preferably 0.26 to 0.62 ⁇ m, still more preferably 0.40 to 0.55 ⁇ m.
- the roughness (Rz) and glossiness of TD measured with a contact-type roughness meter on one surface of the copper foil before the surface treatment are controlled.
- the surface roughness (Rz) of TD measured with a contact-type roughness meter on one surface of the copper foil before the surface treatment is 0.20 to 0.55 ⁇ m, preferably 0.20 to 0.00. 42 ⁇ m.
- Such a copper foil is produced by adjusting the oil film equivalent of the rolling oil (high gloss rolling), or by chemical polishing such as chemical etching or electrolytic polishing in a phosphoric acid solution.
- the surface roughness (Rz) on the one surface of the copper foil after a process is carried out by making the surface roughness (Rz) and glossiness of TD in the one surface of the copper foil before a process into the said range.
- the surface area can be easily controlled.
- the copper foil before the surface treatment has a TD 60-degree glossiness of 300 to 910% on one surface, more preferably 500 to 810%, and more preferably 500 to 710%. If the 60 degree glossiness of MD on one surface of the copper foil before the surface treatment is less than 300%, the transparency of the resin may be poorer than the case of 300% or more, and if it exceeds 910% This may cause a problem that it is difficult to manufacture.
- the high gloss rolling can be performed by setting the oil film equivalent defined by the following formula to 13000 to 24000 or less.
- Oil film equivalent ⁇ (rolling oil viscosity [cSt]) ⁇ (sheet feeding speed [mpm] + roll peripheral speed [mpm]) ⁇ / ⁇ (roll biting angle [rad]) ⁇ (yield stress of material [kg / mm 2 ]) ⁇
- the rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
- a known method such as using a low-viscosity rolling oil or slowing the sheet passing speed may be used.
- Chemical polishing is performed with an etching solution such as sulfuric acid-hydrogen peroxide-water system or ammonia-hydrogen peroxide-water system at a lower concentration than usual and for a long time.
- the surface-treated copper foil of the present invention is obtained by laminating a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less before being laminated to the copper foil from one surface side, and then photographing the copper foil with a CCD camera through the polyimide
- the edge of the copper foil was prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper foil stretched.
- a value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and Bt is defined as t1, and 0.1 ⁇ B based on Bt from the intersection of the lightness curve and Bt.
- Sv defined by the following equation (1) is 3 when the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and 0.1 ⁇ B in the depth range up to 0.0 or more is preferable.
- Sv ( ⁇ B ⁇ 0.1) / (t1-t2) (1)
- FIG. 1A and FIG. 1B are schematic views that define Bt and Bb when the width of the copper foil is about 0.3 mm.
- a V-shaped brightness curve as shown in FIG. 1A and a brightness curve having a bottom as shown in FIG. 1B are obtained. is there.
- the “top average value Bt of the lightness curve” is the average value of lightness when measured at 5 locations (total 10 locations on both sides) at 30 ⁇ m intervals from the positions 50 ⁇ m away from the end positions on both sides of the copper foil.
- the “bottom average value Bb of the lightness curve” indicates the minimum value of lightness at the tip of the V-shaped valley when the lightness curve is V-shaped as shown in FIG. When it has the bottom of (b), the value of the center part of about 0.3 mm is shown.
- the mark width may be about 0.2 mm, 0.16 mm, or 0.1 mm.
- top average value Bt of the lightness curve is 5 points at 30 ⁇ m intervals from a position 100 ⁇ m apart, a position 300 ⁇ m apart, or a position 500 ⁇ m apart from the end positions on both sides of the mark (total 10 on both sides). Location) It may be the average value of brightness when measured.
- FIG. 2 shows a schematic diagram defining t1, t2, and Sv.
- T1 (pixel ⁇ 0.1) indicates an intersection closest to the copper foil among the intersections of the lightness curve and Bt.
- T2 (pixel ⁇ 0.1)” is a distance between the intersection of the lightness curve and Bt and the depth of 0.1 ⁇ B from the intersection of Bt to 0.1 ⁇ B. Indicates the closest intersection.
- Sv grade / pixel ⁇ 0.1
- One pixel on the horizontal axis corresponds to a length of 10 ⁇ m.
- Sv measures the both sides of copper foil, and employ
- the brightness is high where there is no copper foil, but the brightness decreases as soon as the end of the copper foil is reached. If the visibility when viewed through the polyimide substrate is good, such a lowered state of brightness is clearly observed. On the other hand, if the visibility when viewed through the polyimide substrate is poor, the brightness does not suddenly drop from “high” to “low” at the end of the copper foil, but the state of decline is moderate and the brightness is low. The state of decline becomes unclear.
- the present invention is based on such knowledge, and the surface-treated copper foil of the present invention is a polyimide having a ⁇ B (PI) of 50 or more and 65 or less before being bonded to the copper foil from the surface side where the surface treatment is performed.
- PI ⁇ B
- the brightness of each observation point was measured along the direction perpendicular to the direction in which the observed copper foil stretched for the image obtained by photographing.
- the Sv value is controlled to 3.0 or more.
- the discriminating power of the copper foil through the polyimide by the CCD camera is improved without being affected by the type and thickness of the substrate resin. For this reason, good visibility when observing from a polyimide substrate is obtained, and positioning accuracy such as marking with a copper foil is improved when a predetermined treatment is performed on a polyimide substrate in an electronic substrate manufacturing process, thereby yield. The effect of improving is obtained.
- Sv is preferably 3.5 or more, more preferably 3.9 or more, more preferably 4.5 or more, more preferably 5.0 or more, and more preferably 5.5 or more.
- the upper limit of Sv is not particularly limited, but is, for example, 15 or less and 10 or less. According to such a configuration, the boundary between the copper foil and the non-copper foil becomes clearer, the positioning accuracy is improved, the error due to the copper foil image recognition is reduced, and the alignment can be performed more accurately. become.
- the surface-treated copper foil on both surfaces of the polyimide the copper foil on both surfaces is removed by etching, and only the copper foil on one surface is formed into a circuit shape. If the visibility obtained by observation is good, such a surface-treated copper foil has good visibility obtained by laminating it on polyimide and then observing through polyimide.
- the ratio A / B between the three-dimensional surface area A and the two-dimensional surface area B on one surface of the copper foil greatly affects the transparency of the resin. That is, if the surface roughness Rz is the same, the smaller the ratio A / B, the better the transparency of the resin. For this reason, in the surface-treated copper foil of the present invention, the ratio A / B is preferably 1.0 to 1.7, and more preferably 1.0 to 1.6.
- the ratio A / B between the three-dimensional surface area A and the two-dimensional surface area B of the roughened particles on the surface treated surface is, for example, when the surface is roughened, and the surface area A of the roughened particles, It can also be referred to as the ratio A / B with the area B obtained when the copper foil is viewed in plan from the copper foil surface side.
- the surface state such as particle morphology, formation density, and surface roughness is determined, and the surface roughness Rz, glossiness and copper foil are determined.
- the surface area ratio A / B of the surface can be controlled.
- the surface-treated copper foil of the present invention is also subjected to a surface treatment on the surface of the copper foil opposite to the surface to be bonded to the resin substrate (in the present invention, this surface is also referred to as “the other surface”).
- the surface-treated copper foil is bonded to the resin substrate from one surface side, generally, the resin substrate / surface-treated copper foil / protective film is laminated in this order, and heat and pressure are applied from the protective film side by a laminating roll. to paste together.
- the protective film adheres to the surface (the other surface) opposite to the resin substrate side of the surface-treated copper foil (it does not slip between the surface-treated copper foil and the protective film). There is.
- the other surface of the surface-treated copper foil of the present invention is surface-treated, and by increasing the contact area between the copper foil and the protective film, the copper foil during the lamination process with the resin substrate is used.
- the problem that a protective film sticks can be suppressed favorably.
- the surface-treated copper foil of the present invention has, on one side, a TD ten-point average roughness Rz measured by a laser microscope having a laser beam wavelength of 405 nm on the other surface-treated copper foil surface of 0.35 ⁇ m. That's it. With such a configuration, by further increasing the contact area between the copper foil and the protective film, the problem of the protective film sticking to the copper foil during the lamination process with the resin substrate is better suppressed. be able to.
- the surface-treated copper foil of the present invention has a TD ten-point average roughness Rz of 0.40 ⁇ m or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment.
- the upper limit of the TD ten-point average roughness Rz of the surface-treated copper foil of the present invention measured with a laser microscope having a laser beam wavelength of 405 nm on the other surface-treated copper foil surface must be specifically limited. Is typically 4.0 ⁇ m or less, more typically 3.0 ⁇ m or less, more typically 2.5 ⁇ m or less, and more typically 2.0 ⁇ m or less. .
- the arithmetic average roughness Ra of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.05 ⁇ m. That's it.
- the arithmetic average roughness Ra of TD measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.08 ⁇ m or more. More preferably, it is still more preferably 0.10 ⁇ m or more, still more preferably 0.20 ⁇ m or more, and still more preferably 0.30 ⁇ m or more.
- the upper limit of the arithmetic average roughness Ra of TD measured with the laser microscope whose wavelength of the laser beam of the surface-treated copper foil of the present invention on the other surface-treated copper foil is 405 nm needs to be specifically limited. None, but typically 0.80 ⁇ m or less, more typically 0.65 ⁇ m or less, more typically 0.50 ⁇ m or less, and more typically 0.40 ⁇ m or less.
- the root mean square height Rq of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the other surface-treated copper foil is 0.00. It is 08 ⁇ m or more. With such a configuration, by further increasing the contact area between the copper foil and the protective film, the problem of the protective film sticking to the copper foil during the lamination process with the resin substrate is better suppressed. be able to.
- the root mean square height Rq of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the other copper foil is 0.10 ⁇ m or more.
- the upper limit of the root mean square height Rq of TD measured with the laser microscope whose wavelength of the laser beam of the surface treated copper foil of the present invention is 405 nm is particularly limited. Although not required, it is typically 0.80 ⁇ m or less, more typically 0.60 ⁇ m or less, more typically 0.50 ⁇ m or less, and more typically 0.40 ⁇ m or less. is there.
- the other surface treatment in the surface-treated copper foil of the present invention is not particularly limited and may be a roughening treatment, omitting the roughening treatment, and heat resistant by plating (plating that is not normal plating or roughening plating).
- the process which provides a layer or a rust prevention layer may be sufficient.
- the roughening treatment may be performed using a plating solution containing copper sulfate and an aqueous sulfuric acid solution, or the roughening treatment may be performed using a plating solution comprising copper sulfate and an aqueous sulfuric acid solution. Alloy plating such as copper-cobalt-nickel alloy plating, copper-nickel-phosphorus alloy plating, nickel-zinc alloy plating may be used.
- the copper alloy plating bath for example, a plating bath containing one or more elements other than copper and copper, more preferably any selected from the group consisting of copper and cobalt, nickel, arsenic, tungsten, chromium, zinc, phosphorus, manganese and molybdenum It is preferable to use a plating bath containing at least one kind.
- the other surface treatment in the surface-treated copper foil of the present invention may be a surface treatment other than the above roughening treatment and plating treatment.
- a surface treatment for forming irregularities on the other surface a surface treatment by electropolishing may be performed.
- unevenness can be formed on the other surface of the copper foil by electropolishing the other surface of the copper foil in a solution composed of copper sulfate and an aqueous sulfuric acid solution.
- electropolishing aims at smoothing, but the other surface treatment of the present invention forms concavities and convexities by electropolishing.
- the method for forming the irregularities by electrolytic polishing may be performed by a known technique.
- Examples of known techniques of electropolishing for forming the unevenness include the methods described in JP-A-2005-240132, JP-A-2010-059547, and JP-A-2010-047842.
- Treatment solution Cu: 20 g / L, H 2 SO 4 : 100 g / L, temperature: 50 ° C.
- -Electropolishing current 15 A / dm 2 -Electropolishing time: 15 seconds etc. are mentioned.
- the unevenness may be formed by mechanically polishing the other surface. Mechanical polishing may be performed by a known technique.
- you may provide a heat-resistant layer, a rust prevention layer, and a weather resistant layer after the other surface treatment in the surface-treated copper foil of this invention.
- the heat-resistant layer, the rust-proof layer, and the weather-resistant layer may be the method described in the above description or experimental example, or may be a known technique.
- the laminate can be produced by bonding the surface-treated copper foil of the present invention to an insulating resin substrate from one surface side.
- the insulating resin substrate is not particularly limited as long as it has characteristics applicable to a printed wiring board or the like.
- a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy Resin, glass cloth / paper composite base material epoxy resin, glass cloth / glass nonwoven fabric composite base material epoxy resin and glass cloth base material epoxy resin, etc. polyester film, polyimide film, liquid crystal polymer (LCP) film for FPC, Teflon (registered trademark) film or the like can be used.
- a prepreg is prepared by impregnating a base material such as a glass cloth with a resin and curing the resin to a semi-cured state. It can be carried out by superposing a copper foil on the prepreg from the opposite surface of the coating layer and heating and pressing.
- FPC it is laminated on a copper foil under high temperature and high pressure without using an adhesive on a substrate such as a polyimide film, or a polyimide precursor is applied, dried, cured, etc.
- a laminated board can be manufactured by performing.
- the thickness of the polyimide base resin is not particularly limited, but generally 25 ⁇ m or 50 ⁇ m can be mentioned.
- the laminate of the present invention can be used for various printed wiring boards (PWB) and is not particularly limited.
- PWB printed wiring boards
- the single-sided PWB, the double-sided PWB, and the multilayer PWB 3
- rigid PWB, flexible PWB (FPC), and rigid flex PWB from the viewpoint of the type of insulating substrate material.
- the electronic device of the present invention can be manufactured using such a printed wiring board.
- the printed wiring board of the present invention is a printed wiring board having an insulating resin substrate and a copper circuit provided on the insulating resin substrate, and the copper circuit is connected to one surface on the insulating resin substrate side.
- the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate with a CCD camera.
- the printed wiring board can be positioned more accurately.
- the printed wiring board of the present invention is a printed wiring board having an insulating resin substrate and a copper circuit provided on the insulating resin substrate, and the copper circuit is connected to one surface on the insulating resin substrate side.
- the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate.
- An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
- the copper clad laminate of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, the copper foil being one of the insulating resin substrates.
- the surface of the copper foil over the insulating resin substrate, the color difference ⁇ E * ab based on JIS Z8730 is 50 or more, and the copper foil of the copper-clad laminate is Then, after forming a line-shaped copper foil by etching and taking a picture with a CCD camera through an insulating resin substrate, the image obtained by the shooting is along a direction perpendicular to the direction in which the observed line-shaped copper foil extends.
- the surface-treated copper foil of the present invention can be used for the copper foil of the copper clad laminate of the present invention. When a printed wiring board is manufactured using such a copper-clad laminate, the printed wiring board can be positioned more accurately.
- the copper clad laminate of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, the copper foil being one of the insulating resin substrates.
- a color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the surface of the copper-clad laminate has the surface and the other surface subjected to surface treatment.
- the top of the lightness curve generated from the end of the line-shaped copper foil to the portion without the line-shaped copper foil Average value Bt
- Is the position of the intersection closest to the line-shaped copper foil among the intersections of the lightness curve and 0.1 ⁇ B in the depth range from the intersection of the lightness curve and Bt to 0.1 ⁇ B with reference to Bt Sv defined by the following formula (1) is 3.0 or more when a value indicating the value is t2.
- the surface-treated copper foil of the present invention can be used for the copper foil of the copper clad laminate of the present invention. When a printed wiring board is manufactured using such a copper-clad laminate, the printed wiring board can be positioned more accurately.
- Sv ( ⁇ B ⁇ 0.1) / (t1-t2) (1)
- the surface of the copper circuit or copper foil opposite to the surface to be bonded to the resin substrate (the other surface) is also subjected to surface treatment.
- surface treatment When passing a printed wiring board or copper-clad laminate through a roll-to-roll production line, between the transport roll in the production line and the surface opposite to the resin substrate side of the printed wiring board or copper-clad laminate The problem of sticking (cannot slip) may occur. When such a problem arises, wrinkles and streaks occur on the other surface of the copper circuit or copper foil.
- the other surface of the printed wiring board or the copper clad laminate of the present invention is surface-treated, and by increasing the contact area between the copper circuit or the copper foil and the protective film, it is conveyed in the production line.
- the problem of sticking to the roll can be satisfactorily suppressed.
- the adhesion between the other surface, the dry film, and the coverlay is improved, the weather resistance of the printed wiring board or the copper clad laminate is improved.
- a laminate of metal and resin is prepared.
- the form of the laminate of the metal and the resin is not particularly limited as long as it is configured by bonding the metal to the resin.
- copper or the like is used on at least one surface of a resin such as polyimide, which is used to electrically connect the main body substrate and the attached circuit board, and the circuit board.
- a resin such as polyimide
- the laminate is a laminate in which the wiring end portions of the flexible printed circuit board and the main body substrate are bonded together by pressure bonding, or the wiring edge portions of the flexible printed circuit board and the circuit board are bonded together by pressure bonding. It becomes a laminated body.
- the laminate has a mark formed of a part of the metal wiring and a separate material. The position of the mark is not particularly limited as long as it can be photographed by photographing means such as a CCD camera through the resin constituting the laminate.
- the above-mentioned mark is photographed by the photographing means through the resin, and the image obtained by the photographing is observed for each observation point along the direction perpendicular to the direction in which the observed mark extends.
- Is measured to produce an observation point-lightness graph, and a difference ⁇ B ( ⁇ B Bt ⁇ Bb) between a top average value Bt and a bottom average value Bb of a lightness curve generated from an end portion of the mark to a portion without the mark. )
- Is used to detect the position of the mark and the laminate of the metal and the resin is positioned based on the detected position of the mark.
- the position of the mark may be detected using only the Sv value, and the laminate of the metal and the resin may be positioned based on the detected position of the mark.
- the position of the mark may be detected using both the value and the laminate of the metal and the resin may be positioned based on the detected position of the mark.
- the boundary between the mark and the non-mark portion becomes clearer, the positioning accuracy is improved, the error due to the mark image recognition is reduced, and the alignment can be performed more accurately.
- the apparatus for detecting the position can determine that the mark is present at the position.
- the device for detecting the position can determine that the mark is present at the position when ⁇ B is 40 or more and Sv is 3.0 or more.
- the printed wiring board can be positioned more accurately.
- the copper foil may have been subjected to a surface treatment.
- soldering connection through an anisotropic conductive film (Anisotropic Conductive Film, ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used.
- the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which components are mounted.
- a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards according to the present invention, and at least one printed wiring board according to the present invention.
- One printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention can be connected, and an electronic apparatus can be manufactured using such a printed wiring board.
- “copper circuit” includes copper wiring.
- the positioning method according to the embodiment of the present invention may include a step of moving a laminated body (including a laminated body of copper and resin and a printed wiring board).
- a laminated body including a laminated body of copper and resin and a printed wiring board.
- it may be moved by a conveyor such as a belt conveyor or a chain conveyor, may be moved by a moving device equipped with an arm mechanism, or may be moved by floating a laminate using gas.
- the moving device may be moved by a moving means, such as a moving device or moving means (including a roller or a bearing) that moves a laminated body by rotating an object such as a substantially cylindrical shape, a moving device or moving means that uses hydraulic pressure as a power source, Moving devices and moving means powered by air pressure, moving devices and moving means powered by motors, gantry moving linear guide stages, gantry moving air guide stages, stacked linear guide stages, linear motor drive stages, etc. It may be moved by a moving device or moving means having a stage. Moreover, you may perform the movement process by a well-known moving means.
- the positioning method according to the embodiment of the present invention may be used for a surface mounter or a chip mounter.
- the printed wiring board which has the circuit provided on the resin board and the said resin board may be sufficient as the laminated body of the said metal and resin positioned in this invention. In that case, the mark may be the circuit.
- positioning includes “detecting the position of a mark or an object”.
- alignment includes “after detecting the position of a mark or object, moving the mark or object to a predetermined position based on the detected position”.
- each copper foil was prepared, and one surface was plated under the conditions described in Tables 2 and 3 as a roughening treatment.
- Rolld copper foil was manufactured as follows. A predetermined copper ingot was manufactured and hot-rolled, and then annealing and cold rolling of a continuous annealing line at 300 to 800 ° C. were repeated to obtain a rolled sheet having a thickness of 1 to 2 mm. This rolled sheet was annealed in a continuous annealing line at 300 to 800 ° C. and recrystallized, and finally cold-rolled to the thickness shown in Table 1 to obtain a copper foil.
- “Tough pitch copper” in Table 1 indicates tough pitch copper standardized in JIS H3100 C1100.
- Oxygen-free copper in Table 1 represents oxygen-free copper standardized in JIS H3100 C1020.
- Ppm of the additive element described in Table 1 indicates mass ppm. For example, “Tough pitch copper + Ag 180 ppm” in the type column of the metal foil (before surface treatment) in Table 1 means that 180 mass ppm of Ag is added to the tough pitch copper.
- Electrolyte composition (copper: 100 g / L, sulfuric acid: 100 g / L, chlorine: 50 ppm, leveling agent 1 (bis (3sulfopropyl) disulfide): 10-30 ppm, leveling agent 2 (amine compound): 10-30 ppm) ⁇
- Electrolyte temperature 50-60 °C ⁇
- Current density 70 to 100 A / dm 2
- Electrolysis time 1 minute
- Electrolytic solution linear velocity 4 m / sec
- the following amine compounds were used as amine compounds.
- R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.
- the electrolytic copper foil change the measurement position in the direction (TD) perpendicular to the traveling direction of the electrolytic copper foil in the electrolytic copper foil manufacturing apparatus, and perform the measurement 10 times for each value. Asked. In addition, the surface roughness (Rz) was calculated
- the other surface after the surface treatment of each Example and a comparative example it is preferable to measure the surface roughness using a non-contact type method. Specifically, the state of the other surface after the surface treatment of each example and comparative example is evaluated by the roughness value measured with a laser microscope. This is because the state of the surface can be evaluated in more detail. About the other surface of the surface-treated copper foil, surface roughness (ten-point average roughness) Rz was measured based on JIS B0601 1994 with an Olympus laser microscope OLS4000.
- the evaluation length is 258 ⁇ m
- the cut-off value is zero
- the rolled copper foil is measured in the direction (TD) perpendicular to the rolling direction or electrolytic copper
- the value was calculated
- the measurement environment temperature of the surface roughness Rz with a laser microscope was 23 to 25 ° C.
- Rz was arbitrarily measured at 10 locations, and the average value at 10 locations of Rz was defined as the value of surface roughness (10-point average roughness) Rz. Further, the wavelength of the laser beam of the laser microscope used for the measurement was 405 nm.
- the root mean square height Rq of the surface was measured based on JIS B0601 2001 with the Olympus laser microscope OLS4000.
- the evaluation length is 258 ⁇ m
- the cut-off value is zero
- the rolled copper foil is measured in the direction (TD) perpendicular to the rolling direction or electrolytic copper
- the value was calculated
- the measurement environment temperature of the root mean square height Rq of the surface with a laser microscope was 23 to 25 ° C.
- Rq was measured arbitrarily at 10 locations, and the average value at 10 locations of the Rq was taken as the value of the root mean square height Rq.
- the wavelength of the laser beam of the laser microscope used for the measurement was 405 nm.
- the surface roughness Ra of the other surface of the copper foil after the surface treatment of each example and comparative example was measured with an Olympus laser microscope OLS4000 in accordance with JIS B0601-1994.
- the evaluation length is 258 ⁇ m
- the cut-off value is zero
- the rolled copper foil is measured in the direction (TD) perpendicular to the rolling direction.
- the value was calculated
- the measurement environment temperature of the arithmetic average roughness Ra of the surface with a laser microscope was set to 23 to 25 ° C. Ra was measured arbitrarily at 10 locations, and the average value of 10 locations of Ra was used as the value of arithmetic average roughness Ra. Further, the wavelength of the laser beam of the laser microscope used for the measurement was 405 nm.
- ⁇ E * ab was measured based on the following formula using the L * a * b color system, ⁇ L: black and white, ⁇ a: reddish green, ⁇ b: yellow blue.
- the color difference ⁇ E * ab is defined as zero for white and 90 for black;
- Kaneka-made polyimide film with a thickness of 25 ⁇ m or 50 ⁇ m [PIXEO (polyimide type: FRS), polyimide film with adhesive layer for copper-clad laminate, PMDA (pyromellitic anhydride) -based polyimide film (PMDA-ODA (4,4′-diaminodiphenyl ether) based polyimide film)] was used.
- the polyimide film that bonds the surface of the surface-treated copper foil for each test example is It is the same as the polyimide film used in the evaluation of “lightness curve inclination”. And all the copper foil of one side was removed by the etching. Further, the copper foil on the other surface was etched to form a line having a width of 0.3 mm. Thereafter, a white paper was laid on the back of the 0.3 mm wide line-shaped copper foil, and was photographed with a CCD camera (line CCD camera of 8192 pixels) through the polyimide film, and an image obtained by photographing was observed.
- CCD camera line CCD camera of 8192 pixels
- FIG. 3 is a schematic diagram showing the configuration of the photographing apparatus used at this time and the measurement method of the brightness curve.
- the polyimide having a thickness of 25 ⁇ m or 50 ⁇ m used for the evaluation of the slope of the lightness curve was a polyimide having a ⁇ B (PI) of 50 or more and 65 or less with respect to the polyimide before being bonded to the copper foil.
- ⁇ B (PI) for the polyimide before being bonded to the copper foil, instead of a 0.3 mm wide line-shaped copper foil, a 0.3 mm wide line-shaped black mark is used on a blank sheet. ⁇ B (PI) was measured using the printed material (printed material printed with a line-shaped black mark).
- ⁇ B, t1, t2, and Sv were measured with the following photographing apparatus.
- One pixel on the horizontal axis corresponds to a length of 10 ⁇ m.
- white glossy paper having a gloss level of 43.0 ⁇ 2 was used for the “white paper” laid on the “back surface of a 0.3 mm wide lined copper foil”.
- the above-mentioned “printed matter printed with a line-shaped black mark” is printed on white glossy paper having a glossiness of 43.0 ⁇ 2 according to JIS P8208 (1998) (a copy of the dust measurement chart of FIG.
- the photographing device is a CCD camera, a white paper on which a polyimide substrate laminated with a sample copper foil is placed (the polyimide substrate laminated with a copper foil is placed with the surface opposite to the surface having a line-shaped copper foil facing the CCD camera. ), An illumination power source for irradiating light to the imaging part of the polyimide substrate, a copper foil to be imaged, and a transporter (not shown) for transporting the polyimide substrate onto the stage.
- the main specifications of the camera are as follows: ⁇ Photographing device: Sheet inspection device Mujken manufactured by Nireco Corporation Line CCD camera: 8192 pixels (160 MHz), 1024 gradation digital (10 bits) ⁇ Power supply for lighting: High-frequency lighting power supply (power supply unit x 2) ⁇ Illumination: fluorescent lamp (30W, model name: FPL27EX-D, twin fluorescent lamp)
- a line for ⁇ B (PI) measurement a line indicated by an arrow drawn on the contaminant of FIG. 5 of 0.7 mm 2 was used.
- the width of the line is 0.3 mm.
- the line CCD camera field of view is arranged in a dotted line in FIG.
- the signal is confirmed at 256 gradations on the full scale, and the place where the black mark of the printed matter does not exist (on the white glossy paper above) without placing the polyimide film (polyimide substrate) to be measured.
- the lens aperture was adjusted so that the peak gradation signal of 230 ⁇ 5 falls within the range (when a portion outside the mark printed on the contaminants is measured with a CCD camera from the transparent film side).
- the camera scan time (the time when the camera shutter is open and the time when light is captured) is fixed at 250 ⁇ s, and the lens aperture is adjusted so that it falls within the above gradation.
- 0 means “black”
- lightness 255 means “white”
- the gray level from “black” to “white” Is divided into 256 gradations for display.
- peel strength (adhesive strength);
- the normal peel strength was measured with a tensile tester Autograph 100, and the normal peel strength of 0.7 N / mm or more could be used for laminated substrates.
- the sample which bonded together the polyimide film and the surface treatment surface which is one surface of the surface treatment copper foil which concerns on the experiment example of this invention was used for the measurement of this peel strength.
- the peel strength was measured with a copper foil thickness of 18 ⁇ m. About the copper foil whose thickness is less than 18 micrometers, copper plating was performed and copper foil thickness was 18 micrometers. Moreover, when thickness was larger than 18 micrometers, it etched and copper foil thickness was 18 micrometers.
- FIG. 4 the SEM observation photograph on the copper foil surface of (a) Comparative example 1 and (b) Example 1 in the case of said Rz evaluation is shown, respectively. Further, in Examples 1 to 9, the width of the mark made of a copper foil formed into a line having a width of 0.3 mm and the mark of the contaminants were changed from 0.3 mm to 0.16 mm (the area of the contaminant sheet was 0.5 mm 2). In the same manner, ⁇ B (PI), Sv value, and ⁇ B value were measured by changing to the third mark (mark indicated by the arrow in FIG. 6) from the side closest to the description of 0.5. The (PI), Sv value, and ⁇ B value were the same as when the mark width was 0.3 mm.
- a position 50 ⁇ m away from the end positions on both sides of the mark is defined as a position 100 ⁇ m apart, a position 300 ⁇ m apart, and a position 500 ⁇ m apart. From this position, the same ⁇ B (PI), Sv value and ⁇ B value were measured by changing to the average value of the brightness when measured at 5 locations (total 10 locations on both sides) at 30 ⁇ m intervals.
- ⁇ B (PI), Sv value, and ⁇ B value are average values of brightness when measured at 5 locations at a distance of 30 ⁇ m from a position 50 ⁇ m away from the end positions on both sides of the mark (total 10 locations on both sides). The value was the same as ⁇ B (PI), Sv value, and ⁇ B value in the case of “top average value Bt”.
- Example 8 the glossy surface of the copper foil (the surface on the side in contact with the drum during the production of the electrolytic copper foil) is subjected to electrolytic polishing and / or chemical polishing, whereby the TD roughness Rz and glossiness are obtained.
- a predetermined surface treatment or formation of an intermediate layer or the like was performed.
- the surface treatment such as roughening treatment is performed on both surfaces of the copper foil
- the surface treatment may be performed on both surfaces simultaneously, or the surface treatment may be separately performed on one surface and the other surface.
- the ten-point average roughness Rz of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the roughening treatment in each example was 0.35 ⁇ m or more.
- arithmetic mean roughness Ra of TD measured with the laser microscope whose wavelength of the laser beam of the roughened copper foil surface of each Example was 405 nm was all 0.05 micrometer or more.
- the root mean square height Rq of TD measured with the laser microscope whose wavelength of the laser beam of the roughened copper foil surface of each Example was 405 nm was 0.08 micrometer or more in all.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Laminated Bodies (AREA)
- Electroplating Methods And Accessories (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
また、特許文献2には、電解銅箔による導体層を積層された絶縁層を有し、当該導体層をエッチングして回路形成した際のエッチング領域における絶縁層の光透過性が50%以上であるチップオンフレキ(COF)用フレキシブルプリント配線板において、前記電解銅箔は、絶縁層に接着される接着面にニッケル-亜鉛合金による防錆処理層を備え、該接着面の表面粗度(Rz)は0.05~1.5μmであるとともに入射角60°における鏡面光沢度が250以上であることを特徴とするCOF用フレキシブルプリント配線板に係る発明が開示されている。
また、特許文献3には、印刷回路用銅箔の処理方法において、銅箔の表面に銅-コバルト-ニッケル合金めっきによる粗化処理後、コバルト-ニッケル合金めっき層を形成し、更に亜鉛-ニッケル合金めっき層を形成することを特徴とする印刷回路用銅箔の処理方法に係る発明が開示されている。
また、特許文献2では、粗化処理がなされておらず、COF用フレキシブルプリント配線板以外の用途においては銅箔と樹脂との密着強度が低く不十分である。
さらに、特許文献3に記載の処理方法では、銅箔へのCu-Co-Niによる微細処理は可能であったが、当該銅箔を樹脂越しに観察した際に、優れた視認性を実現できていない。
本発明は、樹脂と良好に接着し、且つ、樹脂越しに観察した際に、優れた視認性を実現する表面処理銅箔を提供する。
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である表面処理銅箔である。
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である表面処理銅箔である。
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である表面処理銅箔である。
Sv=(ΔB×0.1)/(t1-t2) (1)
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上であるプリント配線板である。
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上であるプリント配線板である。
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上であるプリント配線板である。
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である銅張積層板である。
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である銅張積層板である。
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である銅張積層板である。
本発明において使用する銅箔は、樹脂基板に積層させて積層体を作製し、エッチングにより回路を形成することで使用される銅箔等に有用である。
本発明において使用する銅箔は、電解銅箔或いは圧延銅箔いずれでも良い。通常、銅箔の、樹脂基板と接着する面(本発明では、当該面を「一方の表面」とも呼ぶ)には積層後の銅箔の引き剥し強さを向上させることを目的として、脱脂後の銅箔の表面にふしこぶ状の電着を行う粗化処理が施されてもよい。電解銅箔は製造時点で凹凸を有しているが、粗化処理により電解銅箔の凸部を増強して凹凸を一層大きくすることができる。本発明においては、この粗化処理は銅-コバルト-ニッケル合金めっきや銅-ニッケル-りん合金めっき等の合金めっき好ましくは銅合金めっきにより行うことができる。粗化前の前処理として通常の銅めっき等が行われることがあり、粗化後の仕上げ処理として電着物の脱落を防止するために通常の銅めっき等が行なわれることもある。
本発明において使用する銅箔は、一方の表面において、粗化処理を行った後、又は、粗化処理を省略して、耐熱めっき層や防錆めっき層を表面に施されていてもよい。粗化処理を省略して、耐熱めっき層や防錆めっき層を表面に施す処理として、下記条件のNi-Wめっき浴によるめっき処理を用いることができる。なお、本発明に用いられる、電解、表面処理又はめっき等に用いられる処理液の残部は特に明記しない限り水である。
pH:3.0~4.0
温度:35~45℃
電流密度Dk:1.7~2.3A/dm2
めっき時間:18~25秒
なお、本発明において使用する銅箔の厚みは特に限定する必要は無いが、例えば1μm以上、2μm以上、3μm以上、5μm以上であり、例えば3000μm以下、1500μm以下、800μm以下、300μm以下、150μm以下、100μm以下、70μm以下、50μm以下、40μm以下である。
<電解液組成>
銅:90~110g/L
硫酸:90~110g/L
塩素:50~100ppm
レベリング剤1(ビス(3スルホプロピル)ジスルフィド):10~30ppm
レベリング剤2(アミン化合物):10~30ppm
上記のアミン化合物には以下の化学式のアミン化合物を用いることができる。
電流密度:70~100A/dm2
電解液温度:50~60℃
電解液線速:3~5m/sec
電解時間:0.5~10分間
めっき浴組成:Cu10~20g/L、Co1~10g/L、Ni1~10g/L
pH:1~4
温度:30~50℃
電流密度Dk:20~30A/dm2
めっき時間:1~5秒
めっき浴組成:Cu10~50g/L、Ni3~20g/L、P1~10g/L
pH:1~4
温度:30~40℃
電流密度Dk:20~50A/dm2
めっき時間:0.5~3秒
めっき浴組成:Cu5~20g/L、Ni5~20g/L、Co5~20g/L、W1~10g/L
pH:1~5
温度:30~50℃
電流密度Dk:20~50A/dm2
めっき時間:0.5~5秒
めっき浴組成:Cu5~20g/L、Ni5~20g/L、Mo1~10g/L、P1~10g/L
pH:1~5
温度:20~50℃
電流密度Dk:20~50A/dm2
めっき時間:0.5~5秒
耐熱層、防錆層としては公知の耐熱層、防錆層を用いることができる。例えば、耐熱層および/または防錆層はニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素を含む層であってもよく、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素からなる金属層または合金層であってもよい。また、耐熱層および/または防錆層はニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素を含む酸化物、窒化物、珪化物を含んでもよい。また、耐熱層および/または防錆層はニッケル-亜鉛合金を含む層であってもよい。また、耐熱層および/または防錆層はニッケル-亜鉛合金層であってもよい。前記ニッケル-亜鉛合金層は、不可避不純物を除き、ニッケルを50wt%~99wt%、亜鉛を50wt%~1wt%含有するものであってもよい。前記ニッケル-亜鉛合金層の亜鉛及びニッケルの合計付着量が5~1000mg/m2、好ましくは10~500mg/m2、好ましくは20~100mg/m2であってもよい。また、前記ニッケル-亜鉛合金を含む層または前記ニッケル-亜鉛合金層のニッケルの付着量と亜鉛の付着量との比(=ニッケルの付着量/亜鉛の付着量)が1.5~10であることが好ましい。また、前記ニッケル-亜鉛合金を含む層または前記ニッケル-亜鉛合金層のニッケルの付着量は0.5mg/m2~500mg/m2であることが好ましく、1mg/m2~50mg/m2であることがより好ましい。耐熱層および/または防錆層がニッケル-亜鉛合金を含む層である場合、スルーホールやビアホール等の内壁部がデスミア液と接触したときに銅箔と樹脂基板との界面がデスミア液に浸食されにくく、銅箔と樹脂基板との密着性が向上する。防錆層はクロメート処理層であってもよい。クロメート処理層には公知のクロメート処理層を用いることが出来る。例えばクロメート処理層とは無水クロム酸、クロム酸、二クロム酸、クロム酸塩または二クロム酸塩を含む液で処理された層のことをいう。クロメート処理層はコバルト、鉄、ニッケル、モリブデン、亜鉛、タンタル、銅、アルミニウム、リン、タングステン、錫、砒素およびチタン等の元素(金属、合金、酸化物、窒化物、硫化物等どのような形態でもよい)を含んでもよい。クロメート処理層の具体例としては、純クロメート処理層や亜鉛クロメート処理層等が挙げられる。本発明においては、無水クロム酸または二クロム酸カリウム水溶液で処理したクロメート処理層を純クロメート処理層という。また、本発明においては無水クロム酸または二クロム酸カリウムおよび亜鉛を含む処理液で処理したクロメート処理層を亜鉛クロメート処理層という。
めっき浴組成:Co1~20g/L、Ni1~20g/L
pH:1.5~3.5
温度:30~80℃
電流密度Dk:1.0~20.0A/dm2
めっき時間:0.5~4秒
めっき浴組成:Zn100~300g/L
pH:3~4
温度:50~60℃
電流密度Dk:0.1~0.5A/dm2
めっき時間:1~3秒
シランカップリング処理に用いられるシランカップリング剤には公知のシランカップリング剤を用いてよく、例えばアミノ系シランカップリング剤又はエポキシ系シランカップリング剤、メルカプト系シランカップリング剤を用いてよい。また、シランカップリング剤にはビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ‐メタクリロキシプロピルトリメトキシシラン、γ‐グリシドキシプロピルトリメトキシシラン、4‐グリシジルブチルトリメトキシシラン、γ‐アミノプロピルトリエトキシシラン、N‐β(アミノエチル)γ‐アミノプロピルトリメトキシシラン、N‐3‐(4‐(3‐アミノプロポキシ)プトキシ)プロピル‐3‐アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ‐メルカプトプロピルトリメトキシシラン等を用いてもよい。
本発明の表面処理銅箔は、一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上に制御されている。このような構成により、背面とのコントラストが鮮明となり、当該銅箔をポリイミド基板越しに観察した際の視認性が高くなる。この結果、当該銅箔を回路形成に使用した場合等において、当該ポリイミド基板を透過して視認される位置決めパターンを介して行うICチップ搭載時の位置合わせ等が容易となる。当該色差ΔE*abが50未満であると、背面とのコントラストが不鮮明になる可能性が生じる。当該色差ΔE*abは、より好ましくは53以上、55以上、より好ましくは60以上である。色差ΔE*abの上限は特に限定する必要はないが、例えば90以下、88以下、あるいは87以下、あるいは85以下、あるいは75以下、あるいは70以下である。
ここで、色差ΔE*abは、色差計で測定され、黒/白/赤/緑/黄/青を加味し、JIS Z8730に基づくL*a*b表色系を用いて示される総合指標であり、ΔL:白黒、Δa:赤緑、Δb:黄青として、下記式で表される;
本発明の表面処理銅箔は、銅箔の一方の表面において、無粗化処理銅箔でも、粗化粒子が形成された粗化処理銅箔でもよく、粗化処理表面の接触式粗さ計で測定したTDの十点平均粗さRzが0.20~0.64μmであるのが好ましい。このような構成により、ピール強度が高くなって樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性が高くなる。この結果、当該樹脂を透過して視認される位置決めパターンを介して行うICチップ搭載時の位置合わせ等が容易となる。銅箔の一方の表面において、接触式粗さ計で測定したTDの十点平均粗さRzが0.20μm未満であると、銅箔表面の粗化処理が不十分であるおそれがあり、樹脂と十分に接着できないという問題が生じるおそれがある。一方、銅箔の一方の表面において、接触式粗さ計で測定したTDの十点平均粗さRzが0.64μm超であると、銅箔をエッチングで除去した後の樹脂表面の凹凸が大きくなるおそれがあり、その結果樹脂の透明性が不良となる問題が生じるおそれがある。銅箔の一方の表面の接触式粗さ計で測定したTDの十点平均粗さRzは、0.26~0.62μmがより好ましく、0.40~0.55μmが更により好ましい。
なお、高光沢圧延は以下の式で規定される油膜当量を13000~24000以下とすることで行うことが出来る。
油膜当量={(圧延油粘度[cSt])×(通板速度[mpm]+ロール周速度[mpm])}/{(ロールの噛み込み角[rad])×(材料の降伏応力[kg/mm2])}
圧延油粘度[cSt]は40℃での動粘度である。
油膜当量を13000~24000とするためには、低粘度の圧延油を用いたり、通板速度を遅くしたりする等、公知の方法を用いればよい。
化学研磨は硫酸-過酸化水素-水系またはアンモニア-過酸化水素-水系等のエッチング液で、通常よりも濃度を低くして、長時間かけて行う。
本発明の表面処理銅箔は、一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドを積層させた後、銅箔をポリイミド越しにCCDカメラで撮影したとき、撮影によって得られた画像について、観察された銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、銅箔の端部から銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となる。
また、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となるのが好ましい。
Sv=(ΔB×0.1)/(t1-t2) (1)
図1(a)及び図1(b)に、銅箔の幅を約0.3mmとした場合のBt及びBbを定義する模式図を示す。銅箔の幅を約0.3mmとした場合、図1(a)に示すようにV型の明度曲線となる場合と、図1(b)に示すように底部を有する明度曲線となる場合がある。いずれの場合も「明度曲線のトップ平均値Bt」は、銅箔の両側の端部位置から50μm離れた位置から30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値を示す。一方、「明度曲線のボトム平均値Bb」は、明度曲線が図1(a)に示すようにV型となる場合は、このV字の谷の先端部における明度の最低値を示し、図1(b)の底部を有する場合は、約0.3mmの中心部の値を示す。なお、マークの幅は、0.2mm、0.16mm、0.1mm程度としてもよい。さらに、「明度曲線のトップ平均値Bt」は、マークの両側の端部位置から100μm離れた位置、300μm離れた位置、或いは、500μm離れた位置から、それぞれ30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値としてもよい。
なお、表面処理銅箔をポリイミドの両表面に積層させた後、両表面の銅箔をエッチングで除去して一方の表面の銅箔のみ回路状に成形し、当該回路状の銅箔をポリイミド越しに観察して得られる視認性が良好であれば、そのような表面処理銅箔は、ポリイミドに積層させた後、ポイリミド越しに観察して得られる視認性が良好となる。
銅箔の一方の表面の三次元表面積Aと二次元表面積Bとの比A/Bは、上述の樹脂の透明性に大いに影響を及ぼす。すなわち、表面粗さRzが同じであれば、比A/Bが小さい銅箔ほど、上述の樹脂の透明性が良好となる。このため、本発明の表面処理銅箔は、当該比A/Bが1.0~1.7であるのが好ましく、1.0~1.6であるのがより好ましい。ここで、表面処理側の表面の粗化粒子の三次元表面積Aと二次元表面積Bとの比A/Bは、例えば当該表面が粗化処理されている場合、粗化粒子の表面積Aと、銅箔を銅箔表面側から平面視したときに得られる面積Bとの比A/Bとも云うことができる。
例えば、硫酸銅と硫酸水溶液を含むめっき液を用いて粗化処理を行ってもよく、また硫酸銅と硫酸水溶液から成るめっき液を用いて粗化処理を行ってもよい。銅-コバルト-ニッケル合金めっきや銅-ニッケル-りん合金めっき、ニッケル-亜鉛合金めっき等の合金めっきでもよい。また、好ましくは銅合金めっきにより行うことができる。銅合金めっき浴としては例えば銅と銅以外の元素を一種以上含むめっき浴、より好ましくは銅とコバルト、ニッケル、砒素、タングステン、クロム、亜鉛、リン、マンガンおよびモリブデンからなる群から選択されたいずれか1種以上とを含むめっき浴を用いることが好ましい。
他方の表面に凹凸を形成するための表面処理としては、電解研磨による表面処理を行ってもよい。例えば、硫酸銅と硫酸水溶液から成る溶液中で、銅箔の他方の表面を電解研磨することにより、銅箔の他方の表面に凹凸を形成させることができる。一般に電解研磨は平滑化を目的とするが、本発明の他方の表面処理では電解研磨により凹凸を形成するので、通常とは逆の考え方である。電解研磨により凹凸を形成する方法は公知の技術で行っても良い。前記凹凸を形成するための電解研磨の公知の技術の例としては特開2005-240132、特開2010-059547、特開2010-047842に記載の方法が挙げられる。電解研磨で凹凸を形成させる処理の具体的な条件としては、例えば、
・処理溶液:Cu:20g/L、H2SO4:100g/L、温度:50℃
・電解研磨電流:15A/dm2
・電解研磨時間:15秒
などが挙げられる。
なお、本発明の表面処理銅箔における他方の表面処理後に、耐熱層や防錆層や耐候性層を設けても良い。耐熱層や防錆層および耐候性層は、上記記載や実験例記載の方法でもよいし、公知の技術の方法でもよい。
ポリイミド基材樹脂の厚みは特に制限を受けるものではないが、一般的に25μmや50μmが挙げられる。
Sv=(ΔB×0.1)/(t1-t2) (1)
上記本発明の銅張積層板の銅箔は、本発明の表面処理銅箔を用いることができる。
このような銅張積層板を用いてプリント配線板を製造すると、プリント配線板の位置決めをより正確に行うことが出来る。
上記本発明の銅張積層板の銅箔は、本発明の表面処理銅箔を用いることができる。
このような銅張積層板を用いてプリント配線板を製造すると、プリント配線板の位置決めをより正確に行うことが出来る。
Sv=(ΔB×0.1)/(t1-t2) (1)
本発明の金属と樹脂との積層体の位置決めをする方法について説明する。まず、金属と樹脂との積層体を準備する。金属と樹脂との積層体としては、樹脂に金属を貼り合わせて構成されているものであれば、特に形態は限定されない。本発明の金属と樹脂との積層体の具体例としては、本体基板と付属の回路基板と、それらを電気的に接続するために用いられる、ポリイミド等の樹脂の少なくとも一方の表面に銅等の金属配線が形成されたフレキシブルプリント基板とで構成される電子機器において、フレキシブルプリント基板を正確に位置決めして当該本体基板及び付属の回路基板の配線端部に圧着させて作製される積層体が挙げられる。すなわち、この場合であれば、積層体は、フレキシブルプリント基板及び本体基板の配線端部が圧着により貼り合わせられた積層体、或いは、フレキシブルプリント基板及び回路基板の配線端部が圧着により貼り合わせられた積層体となる。積層体は、当該金属配線の一部や別途材料で形成したマークを有している。マークの位置については、当該積層体を構成する樹脂越しにCCDカメラ等の撮影手段で撮影可能な位置であれば特に限定されない。
なお、本発明の実施の形態に係る位置決め方法は表面実装機やチップマウンターに用いてもよい。
また、本発明において位置決めされる前記金属と樹脂との積層体が、樹脂板及び前記樹脂板の上に設けられた回路を有するプリント配線板であってもよい。また、その場合、前記マークが前記回路であってもよい。
・電解液組成(銅:100g/L、硫酸:100g/L、塩素:50ppm、レベリング剤1(ビス(3スルホプロピル)ジスルフィド):10~30ppm、レベリング剤2(アミン化合物):10~30ppm)
・電解液温度:50~60℃
・電流密度:70~100A/dm2
・電解時間:1分
・電解液線速:4m/秒
なお、アミン化合物には以下のアミン化合物を用いた。
(上記化学式中、R1及びR2はヒドロキシアルキル基、エーテル基、アリール基、芳香族置換アルキル基、不飽和炭化水素基、アルキル基からなる一群から選ばれるものである。)
また、比較例5については上記実施例2と同様の表面処理を行い、比較例6については上記実施例6と同様の表面処理を行った。
・表面処理条件
めっき液浴例
Cu:15g/L、Co:9g/L、Ni:9g/L
pH:3
温度:38℃
電流密度:25A/dm2
めっき時間:1秒
・表面粗さ(Rz)の測定;
各実施例、比較例の表面処理後の銅箔について、株式会社小阪研究所製接触式粗さ計Surfcorder SE-3Cを使用してJIS B0601-1994に準拠して十点平均粗さを一方の表面について測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.25mm、送り速さ0.1mm/秒の条件で、圧延銅箔については圧延方向と垂直な方向(TD)に測定位置を変えて、または、電解銅箔については電解銅箔の製造装置における電解銅箔の進行方向と垂直な方向(TD)に測定位置を変えて、それぞれ10回行い、10回の測定での値を求めた。
なお、表面処理前の銅箔についても、同様にして表面粗さ(Rz)を求めておいた。
表面処理銅箔の他方の表面について、オリンパス社製レーザー顕微鏡OLS4000にて、表面粗さ(十点平均粗さ)RzをJIS B0601 1994に準拠して測定した。対物レンズ50倍を使用して、銅箔表面の観察において評価長さ258μm、カットオフ値ゼロの条件で、圧延銅箔については圧延方向と垂直な方向(TD)の測定で、または、電解銅箔については電解銅箔の製造装置における電解銅箔の進行方向と垂直な方向(TD)の測定で、それぞれ値を求めた。なお、レーザー顕微鏡による表面粗さRzの測定環境温度は23~25℃とした。Rzを任意に10箇所測定し、そのRzの10箇所の平均値を表面粗さ(十点平均粗さ)Rzの値とした。また、測定に用いたレーザー顕微鏡のレーザー光の波長は405nmとした。
各実施例、比較例の銅箔の他方の表面について、オリンパス社製レーザー顕微鏡OLS4000にて、銅箔表面の二乗平均平方根高さRqをJIS B0601 2001に準拠して測定した。対物レンズ50倍を使用して、銅箔表面の観察において評価長さ258μm、カットオフ値ゼロの条件で、圧延銅箔については圧延方向と垂直な方向(TD)の測定で、または、電解銅箔については電解銅箔の製造装置における電解銅箔の進行方向と垂直な方向(TD)の測定で、それぞれ値を求めた。なお、レーザー顕微鏡による表面の二乗平均平方根高さRqの測定環境温度は23~25℃とした。Rqを任意に10箇所測定し、そのRqの10箇所の平均値を二乗平均平方根高さRqの値とした。また、測定に用いたレーザー顕微鏡のレーザー光の波長は405nmとした。
各実施例、比較例の表面処理後の銅箔の他方の表面について、表面粗さRaを、JIS B0601-1994に準拠して、オリンパス社製レーザー顕微鏡OLS4000にて測定した。対物レンズ50倍を使用して、銅箔表面の観察において評価長さ258μm、カットオフ値ゼロの条件で、圧延銅箔については圧延方向と垂直な方向(TD)の測定で、また、電解銅箔については電解銅箔の製造装置における電解銅箔の進行方向と垂直な方向(TD)の測定で、それぞれ値を求めた。なお、レーザー顕微鏡による表面の算術平均粗さRaの測定環境温度は23~25℃とした。Raを任意に10箇所測定し、そのRaの10箇所の平均値を算術平均粗さRaの値とした。また、測定に用いたレーザー顕微鏡のレーザー光の波長は405nmとした。
表面処理銅箔と、銅箔に張り合わせ前のΔB(PI)が50以上65以下であるポリイミドフィルム(カネカ製厚み25μmまたは50μm)とを積層して構成した銅張積層板における、ポリイミドフィルム越しの表面のJIS Z8730に基づく色差ΔE*abを測定した。色差ΔE*abの測定は、HunterLab社製色差計MiniScan XE Plusを使用して、JIS Z8730に準拠して行った。なお、前述の色差計では、白色板の測定値をΔE*ab=0、黒い袋で覆って暗闇で測定したときの測定値をΔE*ab=90として、色差を校正する。ΔE*abは、L*a*b表色系を用い、ΔL:白黒、Δa:赤緑、Δb:黄青として、下記式に基づいて測定した。ここで色差ΔE*abは白色をゼロ、黒色を90で定義される;
銅箔の一方の表面の表面積はレーザー顕微鏡による測定法を使用した。各実施例、比較例の表面処理後の銅箔の一方の表面について、オリンパス社製レーザー顕微鏡OLS4000を用いて処理表面の倍率20倍における647μm×646μm相当面積B(実データでは417,953μm2)における三次元表面積Aを測定して、三次元表面積A÷二次元表面積B=面積比(A/B)とする手法により設定を行った。なお、レーザー顕微鏡による三次元表面積Aの測定環境温度は23~25℃とした。
JIS Z8741に準拠した日本電色工業株式会社製光沢度計ハンディーグロスメーターPG-1を使用し、圧延銅箔については、圧延方向(圧延時の銅箔の進行方向、すなわち幅方向)に直角な方向(TD)の入射角60度で表面処理前の一方の表面について測定した。また、電解銅箔については、電解処理時の銅箔運搬方向に直角な方向(すなわち幅方向)(TD)の入射角60度で表面処理前の表面(マット面)について測定した。
作製した銅箔を一方の表面側からポリイミドフィルムに向けてポリイミドフィルムの両面に積層した。
ここで、上記ポリイミドフィルムについては、カネカ製厚み25μmまたは50μmのポリイミドフィルム〔PIXEO(ポリイミドタイプ:FRS)、銅張積層板用接着層付ポリイミドフィルム、PMDA(ピロメリット酸無水物)系のポリイミドフィルム(PMDA-ODA(4、4’-ジアミノジフェニルエーテル)系のポリイミドフィルム)〕を使用した。
なお、後述の「視認性(樹脂透明性)」、「ピール強度(接着強度)」、及び、「歩留まり」の評価において、各試験例に関する表面処理銅箔の表面を貼り合わせるポリイミドフィルムは、当該「明度曲線の傾き」の評価において使用したポリイミドフィルムと同様のものである。
そして、一方の面の銅箔を全てエッチングにより除去した。また、他方の面の銅箔をエッチングして幅0.3mmのライン状にした。その後、幅0.3mmのライン状にした銅箔の背面に白紙を敷き、当該ポリイミドフィルム越しにCCDカメラ(8192画素のラインCCDカメラ)で撮影し、撮影によって得られた画像について、観察された銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、マークの端部からマークがない部分にかけて生じる明度曲線からΔB及びt1、t2、Svを測定した。このとき用いた撮影装置の構成及び明度曲線の測定方法を表す模式図を図3に示す。なお、明度曲線の傾きの評価に用いた厚さ25μmまたは50μmのポリイミドは、銅箔に張り合わせ前のポリイミドについてのΔB(PI)が50以上65以下であるポリイミドを用いた。なお、当該銅箔に張り合わせ前のポリイミドについてのΔB(PI)の測定の際には幅0.3mmのライン状の銅箔の代わりに、幅0.3mmのライン状の黒色の印を白紙に印刷したもの(ライン状の黒色マークを印刷した印刷物)を用いて、ΔB(PI)の測定を行った。
また、上記「幅0.3mmのライン状にした銅箔の背面」に敷いた「白紙」には光沢度43.0±2の白色の光沢紙を用いた。
上記「ライン状の黒色マークを印刷した印刷物」は、光沢度43.0±2の白色の光沢紙上にJIS P8208(1998)(図1 きょう雑物計測図表のコピー)及びJIS P8145(2011)(附属書JA(規定)目視法異物比較チャート 図JA.1-目視法異物比較チャートのコピー)のいずれにも採用されている図6に示す透明フィルムに各種の線等が印刷されたきょう雑物(夾雑物)(株式会社朝陽会製 品名:「きょう雑物測定図表-フルサイズ判」 品番:JQA160-20151-1(独立行政法人国立印刷局で製造された))を載せたものを使用した。
上記光沢紙の光沢度は、JIS Z8741に準拠した日本電色工業株式会社製光沢度計ハンディーグロスメーターPG-1を使用し、入射角60度で測定した。
・撮影装置:株式会社ニレコ製シート検査装置Mujiken
・ラインCCDカメラ:8192画素(160MHz)、1024階調ディジタル(10ビット)
・照明用電源:高周波点灯電源(電源ユニット×2)
・照明:蛍光灯(30W、形名:FPL27EX-D、ツイン蛍光灯)
ラインCCDカメラによる撮影では、フルスケール256階調にて信号を確認し、測定対象のポリイミドフィルム(ポリイミド基板)を置かない状態で、印刷物の黒色マークが存在しない箇所(上記白色の光沢紙の上に上記透明フィルムを載せ、透明フィルム側から夾雑物に印刷されているマーク外の箇所をCCDカメラで測定した場合)のピーク階調信号が230±5に収まるようにレンズ絞りを調整した。カメラスキャンタイム(カメラのシャッターが開いている時間、光を取り込む時間)は250μ秒固定とし、上記階調以内に収まるようにレンズ絞りを調整した。
なお、図3に示された明度について、0は「黒」を意味し、明度255は「白」を意味し、「黒」から「白」までの灰色の程度(白黒の濃淡、グレースケール)を256階調に分割して表示している。
銅箔を一方の表面側からポリイミドフィルムの両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作成した。得られた樹脂層の一面に印刷物(直径6cmの黒色の円)を貼り付け、反対面から樹脂層越しに印刷物の視認性を判定した。印刷物の黒色の円の輪郭が円周の90%以上の長さにおいてはっきりしたものを「◎」、黒色の円の輪郭が円周の80%以上90%未満の長さにおいてはっきりしたものを「○」(以上合格)、黒色の円の輪郭が円周の0~80%未満の長さにおいてはっきりしたもの及び輪郭が崩れたものを「×」(不合格)と評価した。
IPC-TM-650に準拠し、引張り試験機オートグラフ100で常態ピール強度を測定し、上記常態ピール強度が0.7N/mm以上を積層基板用途に使用できるものとした。なお、本ピール強度の測定にはポリイミドフィルムと本発明の実験例に係る表面処理銅箔の一方の表面である表面処理面とを貼り合わせたサンプルを用いた。なお、ピール強度の測定は銅箔厚みを18μmとして測定を行った。厚みが18μmに満たない銅箔については銅めっきを行って銅箔厚みを18μmとした。また、厚みが18μmよりも大きい場合にはエッチングを行って銅箔厚みを18μmとした。
銅箔の一方の表面側からポリイミドフィルムの両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)して、L/Sが30μm/30μmの回路幅のFPCを作成した。その後、20μm×20μm角のマークをポリイミド越しにCCDカメラで検出することを試みた。10回中9回以上検出できた場合には「◎」、7~8回検出できた場合には「○」、6回検出できた場合には「△」、5回以下検出できた場合には「×」とした。
なお、プリント配線板または銅張積層板においては、樹脂を溶かして除去することで、銅回路または銅箔表面について、前述の(1)表面粗さ(Rz)、(3)銅箔表面の面積比(A/B)を測定することができる。
厚さ25μmのポリイミド樹脂の両表面に、それぞれ実施例、比較例の表面処理銅箔を、一方の表面側から積層し、さらに、各表面処理銅箔の他方の表面側へ厚さ125μmの保護フィルム(ポリイミド製)を積層させた状態、すなわち、保護フィルム/表面処理銅箔/ポリイミド樹脂/表面処理銅箔/保護フィルムの5層とした状態で、両方の保護フィルムの外側からラミネートロールを用いて熱と圧力をかけながら貼り合わせ加工(ラミネート加工)を行い、ポリイミド樹脂の両面に表面処理銅箔を貼り合わせた。続いて、両表面の保護フィルムを剥がした後、表面処理銅箔の他方の表面を目視観察し、シワ又はスジの有無を確認し、シワ又はスジが全く発生しないときを◎、銅箔長さ5mあたりにシワ又はスジが1箇所だけ観察されるときを○、銅箔5mあたりシワ又はスジが2箇所以上観察されるときを×と評価した。
上記各試験の条件及び評価を表1~4に示す。
実施例1~9は、いずれもポリイミド越しの色差ΔE*abが50以上であり、且つ、ΔBが40以上であり、視認性が良好であった。また、他方の表面に表面処理が形成されているため、両面ラミネート工法における銅箔の当該他方の表面にシワやスジの発生が良好に抑制されていた。
比較例1~4は、ポリイミド越しの色差ΔE*abが50未満、または、ΔBが40未満であり、視認性が不良であった。
また、比較例1~4及び比較例5及び6は、他方の表面に表面処理が形成されていないため、両面ラミネート工法における銅箔の当該他方の表面に生じるシワやスジの発生が抑制できなかった。
また、上記実施例1~9において、幅0.3mmのライン状にした銅箔であるマーク並びに夾雑物のマークの幅を0.3mmから0.16mm(夾雑物のシートの面積0.5mm2の0.5の記載に近いほうから3番目のマーク(図6の矢印が指すマーク))に変更して同様のΔB(PI)、Sv値およびΔB値の測定を行ったが、いずれもΔB(PI)、Sv値およびΔB値はマークの幅を0.3mmとした場合と同じ値となった。
さらに、上記実施例1~9において、「明度曲線のトップ平均値Bt」について、マークの両側の端部位置から50μm離れた位置を、100μm離れた位置、300μm離れた位置、500μm離れた位置として、当該位置から、それぞれ30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値に変更して同様のΔB(PI)、Sv値およびΔB値の測定を行ったが、いずれもΔB(PI)、Sv値およびΔB値は、マークの両側の端部位置から50μm離れた位置から30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値を「明度曲線のトップ平均値Bt」とした場合のΔB(PI)、Sv値およびΔB値と同じ値となった。
銅箔の両面に粗化処理等の表面処理を行う場合、両面に同時に表面処理をしてもよく、一方の面と、他方の面とに、それぞれ別々に表面処理を行ってもよい。なお、両面に同時に表面処理を行う場合には、銅箔の両面側にアノードを設けた、表面処理装置(めっき装置)を用いて表面処理を行うと良い。なお、本実施例では、同時に両面に表面処理を行った。
Claims (45)
- 一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、
表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、
前記銅箔を一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である表面処理銅箔。 - 一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、
表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、
前記銅箔を、一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である表面処理銅箔。 - 前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である請求項1又は2に記載の表面処理銅箔。
- 一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、
表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、
前記銅箔を一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である表面処理銅箔。 - 一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、
表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、
前記銅箔を、一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である表面処理銅箔。 - 前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である請求項1~5のいずれか一項に記載の表面処理銅箔。
- 一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、
表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、
前記銅箔を一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である表面処理銅箔。 - 一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、
表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、
前記銅箔を、一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である表面処理銅箔。 - 前記他方の表面の表面処理が粗化処理である請求項1~8のいずれか一項に記載の表面処理銅箔。
- 前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となる請求項1、3、4、6、7及び9のいずれか一項に記載の表面処理銅箔。
Sv=(ΔB×0.1)/(t1-t2) (1) - 前記表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが53以上となる請求項1~10のいずれか一項に記載の表面処理銅箔。
- 前記明度曲線における(1)式で定義されるSvが3.5以上となる請求項2、3、5、6、8~11のいずれか一項に記載の表面処理銅箔。
- 前記明度曲線における(1)式で定義されるSvが3.9以上となる請求項12に記載の表面処理銅箔。
- 前記明度曲線における(1)式で定義されるSvが5.0以上となる請求項13に記載の表面処理銅箔。
- 前記一方の表面の接触式粗さ計で測定したTDの十点平均粗さRzが0.20~0.64μmであり、前記銅箔表面の三次元表面積Aと二次元表面積Bとの比A/Bが1.0~1.7である請求項1~14のいずれか一項に記載の表面処理銅箔。
- 前記一方の表面の接触式粗さ計で測定したTDの十点平均粗さRzが0.26~0.62μmである請求項15に記載の表面処理銅箔。
- 前記A/Bが1.0~1.6である請求項15又は16に記載の表面処理銅箔。
- 請求項1~17のいずれか一項に記載の表面処理銅箔と樹脂基板とを積層して構成した銅張積層板。
- 請求項1~17のいずれか一項に記載の表面処理銅箔を用いたプリント配線板。
- 請求項19に記載のプリント配線板を少なくとも1つ用いた電子機器。
- 絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、
前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上であるプリント配線板。 - 絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、
前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅回路に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅回路に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上であるプリント配線板。 - 前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である請求項21又は22に記載のプリント配線板。
- 絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、
前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上であるプリント配線板。 - 絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、
前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅回路に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅回路に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上であるプリント配線板。 - 前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である請求項21~25のいずれか一項に記載のプリント配線板。
- 絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、
前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上であるプリント配線板。 - 絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、
前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅回路に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅回路に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上であるプリント配線板。 - 前記他方の表面の表面処理が粗化処理である請求項21~28のいずれか一項に記載のプリント配線板。
- 請求項21~29のいずれか一項に記載のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造する方法。
- 請求項21~29のいずれか一項に記載のプリント配線板を少なくとも1つと、もう一つの請求項21~29のいずれか一項に記載のプリント配線板又請求項21~29のいずれか一項に記載のプリント配線板に該当しないプリント配線板とを接続する工程を少なくとも含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法。
- 請求項21~29のいずれか一項に記載のプリント配線板が少なくとも1つ接続したプリント配線板を1つ以上用いた電子機器。
- 請求項21~29のいずれか一項に記載のプリント配線板に用いられている表面処理銅箔。
- 絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、
前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である銅張積層板。 - 絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、
前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である銅張積層板。 - 前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である請求項34又は35に記載の銅張積層板。
- 絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、
前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である銅張積層板。 - 絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、
前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である銅張積層板。 - 前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である請求項34~38のいずれか一項に記載の銅張積層板。
- 絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、
前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である銅張積層板。 - 絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、
前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
Sv=(ΔB×0.1)/(t1-t2) (1)
前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である銅張積層板。 - 前記他方の表面の表面処理が粗化処理である請求項34~41のいずれか一項に記載の銅張積層板。
- 請求項34~42のいずれか一項に記載の銅張積層板に用いられている表面処理銅箔。
- 請求項34~42のいずれか一項に記載の銅張積層板を用いて製造したプリント配線板。
- 請求項44に記載のプリント配線板を用いた電子機器。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480067242.0A CN105980609B (zh) | 2013-12-10 | 2014-12-10 | 表面处理铜箔、覆铜积层板、印刷配线板、电子机器及印刷配线板的制造方法 |
KR1020167015615A KR101944166B1 (ko) | 2013-12-10 | 2014-12-10 | 표면 처리 동박, 구리 피복 적층판, 프린트 배선판, 전자 기기 및 프린트 배선판의 제조 방법 |
MYPI2016702133A MY183375A (en) | 2013-12-10 | 2014-12-10 | Surface treated copper foil, copper clad laminate, printed wiring board, electronic apparatus and method for manufacturing printed wiring board |
JP2015520739A JP5819571B1 (ja) | 2013-12-10 | 2014-12-10 | 表面処理銅箔、銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法 |
PH12016501130A PH12016501130A1 (en) | 2013-12-10 | 2016-06-10 | Surface treated copper foil, copper clad laminate, printed wiring board, electronic apparatus and method for manufacturing printed wiring board |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013255472 | 2013-12-10 | ||
JP2013-255472 | 2013-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015087942A1 true WO2015087942A1 (ja) | 2015-06-18 |
Family
ID=53371241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/082766 WO2015087942A1 (ja) | 2013-12-10 | 2014-12-10 | 表面処理銅箔、銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法 |
Country Status (7)
Country | Link |
---|---|
JP (1) | JP5819571B1 (ja) |
KR (1) | KR101944166B1 (ja) |
CN (1) | CN105980609B (ja) |
MY (1) | MY183375A (ja) |
PH (1) | PH12016501130A1 (ja) |
TW (1) | TWI573500B (ja) |
WO (1) | WO2015087942A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112805414A (zh) * | 2018-09-28 | 2021-05-14 | 古河电气工业株式会社 | 表面处理铜箔、以及使用该表面处理铜箔的覆铜板及电路基板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0987889A (ja) * | 1995-09-28 | 1997-03-31 | Nikko Gould Foil Kk | 印刷回路用銅箔の処理方法 |
JP2011240625A (ja) * | 2010-05-19 | 2011-12-01 | Jx Nippon Mining & Metals Corp | 銅張積層板 |
JP2012211351A (ja) * | 2011-03-30 | 2012-11-01 | Jx Nippon Mining & Metals Corp | 電解銅箔及び電解銅箔の製造方法 |
JP2012212529A (ja) * | 2011-03-30 | 2012-11-01 | Jx Nippon Mining & Metals Corp | 二次電池負極集電体用電解銅箔及びその製造方法 |
JP2012224941A (ja) * | 2011-03-23 | 2012-11-15 | Jx Nippon Mining & Metals Corp | 銅箔及びそれを用いた銅張積層板 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100632861B1 (ko) | 2002-05-13 | 2006-10-13 | 미쓰이 긴조꾸 고교 가부시키가이샤 | 칩온 필름용 플렉시블 프린트배선판 |
JP2004098659A (ja) | 2002-07-19 | 2004-04-02 | Ube Ind Ltd | 銅張積層板及びその製造方法 |
JP3977790B2 (ja) * | 2003-09-01 | 2007-09-19 | 古河サーキットフォイル株式会社 | キャリア付き極薄銅箔の製造方法、及び該製造方法で製造された極薄銅箔、該極薄銅箔を使用したプリント配線板、多層プリント配線板、チップオンフィルム用配線基板 |
MY150825A (en) * | 2008-11-25 | 2014-02-28 | Jx Nippon Mining & Metals Corp | Copper foil for printed circuit |
TWI503062B (zh) | 2012-05-21 | 2015-10-01 | Jx Nippon Mining & Metals Corp | Surface treatment of copper foil and the use of its laminated board, printed wiring board, electronic equipment and manufacturing printed wiring board method |
-
2014
- 2014-12-10 WO PCT/JP2014/082766 patent/WO2015087942A1/ja active Application Filing
- 2014-12-10 KR KR1020167015615A patent/KR101944166B1/ko active IP Right Grant
- 2014-12-10 TW TW103143259A patent/TWI573500B/zh active
- 2014-12-10 CN CN201480067242.0A patent/CN105980609B/zh active Active
- 2014-12-10 JP JP2015520739A patent/JP5819571B1/ja active Active
- 2014-12-10 MY MYPI2016702133A patent/MY183375A/en unknown
-
2016
- 2016-06-10 PH PH12016501130A patent/PH12016501130A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0987889A (ja) * | 1995-09-28 | 1997-03-31 | Nikko Gould Foil Kk | 印刷回路用銅箔の処理方法 |
JP2011240625A (ja) * | 2010-05-19 | 2011-12-01 | Jx Nippon Mining & Metals Corp | 銅張積層板 |
JP2012224941A (ja) * | 2011-03-23 | 2012-11-15 | Jx Nippon Mining & Metals Corp | 銅箔及びそれを用いた銅張積層板 |
JP2012211351A (ja) * | 2011-03-30 | 2012-11-01 | Jx Nippon Mining & Metals Corp | 電解銅箔及び電解銅箔の製造方法 |
JP2012212529A (ja) * | 2011-03-30 | 2012-11-01 | Jx Nippon Mining & Metals Corp | 二次電池負極集電体用電解銅箔及びその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112805414A (zh) * | 2018-09-28 | 2021-05-14 | 古河电气工业株式会社 | 表面处理铜箔、以及使用该表面处理铜箔的覆铜板及电路基板 |
CN112805414B (zh) * | 2018-09-28 | 2022-06-24 | 古河电气工业株式会社 | 表面处理铜箔、以及使用该表面处理铜箔的覆铜板及电路基板 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015087942A1 (ja) | 2017-03-16 |
JP5819571B1 (ja) | 2015-11-24 |
CN105980609A (zh) | 2016-09-28 |
TW201532485A (zh) | 2015-08-16 |
PH12016501130A1 (en) | 2016-07-18 |
TWI573500B (zh) | 2017-03-01 |
KR20160086378A (ko) | 2016-07-19 |
CN105980609B (zh) | 2018-08-07 |
KR101944166B1 (ko) | 2019-01-30 |
MY183375A (en) | 2021-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5362898B1 (ja) | 表面処理銅箔及びそれを用いた積層板、プリント配線板並びに銅張積層板 | |
JP5819569B1 (ja) | 表面処理銅箔、銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法 | |
JP5362924B1 (ja) | 表面処理銅箔及びそれを用いた積層板 | |
JP6393126B2 (ja) | 表面処理圧延銅箔、積層板、プリント配線板、電子機器及びプリント配線板の製造方法 | |
JP5362921B1 (ja) | 表面処理銅箔及びそれを用いた積層板 | |
JP5417538B1 (ja) | 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法 | |
JP5475897B1 (ja) | 表面処理銅箔及びそれを用いた積層板、銅箔、プリント配線板、電子機器、並びに、プリント配線板の製造方法 | |
JP5362899B1 (ja) | 表面処理銅箔及びそれを用いた積層板 | |
JP5855244B2 (ja) | 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器及びプリント配線板を製造する方法 | |
JP5432357B1 (ja) | 表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器 | |
JP5362922B1 (ja) | 表面処理銅箔及びそれを用いた積層板 | |
JP2014065974A (ja) | 表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器 | |
WO2014073696A1 (ja) | 表面処理銅箔及びそれを用いた積層板 | |
JP5819571B1 (ja) | 表面処理銅箔、銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法 | |
JP6081883B2 (ja) | 銅箔及びそれを用いた積層板、電子機器の製造方法、並びに、プリント配線板の製造方法 | |
JP2014148747A (ja) | 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015520739 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14868859 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12016501130 Country of ref document: PH |
|
ENP | Entry into the national phase |
Ref document number: 20167015615 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14868859 Country of ref document: EP Kind code of ref document: A1 |