[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015083932A1 - 발광 소자 및 이를 구비한 조명 장치 - Google Patents

발광 소자 및 이를 구비한 조명 장치 Download PDF

Info

Publication number
WO2015083932A1
WO2015083932A1 PCT/KR2014/009361 KR2014009361W WO2015083932A1 WO 2015083932 A1 WO2015083932 A1 WO 2015083932A1 KR 2014009361 W KR2014009361 W KR 2014009361W WO 2015083932 A1 WO2015083932 A1 WO 2015083932A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
light emitting
semiconductor
disposed
Prior art date
Application number
PCT/KR2014/009361
Other languages
English (en)
French (fr)
Inventor
정종필
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US15/101,844 priority Critical patent/US9647175B2/en
Publication of WO2015083932A1 publication Critical patent/WO2015083932A1/ko

Links

Images

Classifications

    • H01L33/325
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • H01L33/20
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L33/025
    • H01L33/22
    • H01L33/24
    • H01L33/007

Definitions

  • Embodiments relate to a light emitting device and a lighting device having the same.
  • III-V nitride semiconductors are spotlighted as core materials of light emitting devices such as light emitting diodes (LEDs) or laser diodes (LDs) due to their physical and chemical properties.
  • the III-V nitride semiconductor is usually made of a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • LEDs Light emitting diodes
  • LEDs are a type of semiconductor device that transmits and receives signals by converting electricity into infrared rays or light using characteristics of a compound semiconductor.
  • LEDs or LDs using such nitride semiconductor materials are widely used in light emitting devices for obtaining light, and have been applied to light sources of various products such as keypad light emitting units, display devices, electronic displays, and lighting devices of mobile phones.
  • the embodiment provides a light emitting device having pits of uniform size.
  • the embodiment provides a light emitting device capable of improving the light emitting efficiency of the active layer.
  • the light emitting device the first semiconductor layer; A second semiconductor layer disposed on the first semiconductor layer; An active layer disposed on the second semiconductor layer; And a third semiconductor layer disposed on the active layer, wherein the second semiconductor layer includes an AlGaN-based first nitride layer and a second nitride layer having a semiconductor different from the first nitride layer on the first nitride layer.
  • the first and second feet are disposed on the first and second semiconductor layers, and the density of the second feet disposed on the top surface of the first semiconductor layer is equal to that of the second feet disposed on the top surface of the second semiconductor layer.
  • the density of the first feet higher than the density and disposed on the upper surface of the second semiconductor layer is the same as the density of the first feet disposed on the upper surface of the first semiconductor layer.
  • Embodiments can reduce defects in the active layer.
  • Embodiments may provide the size of the pits uniformly.
  • Embodiments may remove pits that acted as non-emitting regions.
  • the embodiment can reduce the luminous efficiency decrease by blocking the pits acting as the non-emission area under the active layer.
  • the embodiment may block the pits acting as the non-light emitting regions at the bottom of the active layer, thereby suppressing the deterioration of the electrical characteristics.
  • the embodiment can provide a device that is highly resistant to elecrosatic discharge (ESD).
  • ESD elecrosatic discharge
  • the embodiment may have pits of uniform size, thereby improving the reliability of the light emitting device and the lighting apparatus having the same.
  • FIG. 1 is a side cross-sectional view of a light emitting device according to the first embodiment.
  • FIG. 2 is a partially enlarged view of FIG. 1.
  • FIG. 3 is a perspective view illustrating pits in a first semiconductor layer of the light emitting device of FIG. 1.
  • FIG. 4 is a perspective view illustrating a pit in a second semiconductor layer of the light emitting device of FIG. 1.
  • FIG. 5 is a side cross-sectional view of a light emitting device according to the second embodiment.
  • FIG. 6 is a diagram illustrating a first example in which an electrode is disposed in the light emitting device of FIG. 1.
  • FIG. 7 is a diagram illustrating a second example in which an electrode is disposed in the light emitting device of FIG. 1.
  • FIG. 8 is a diagram showing an atomic force microscopy (AFM) image of a light emitting device of a comparative example.
  • AFM atomic force microscopy
  • FIG. 9 is a view showing an atomic force microscopy (AFM) image of the light emitting device of the embodiment.
  • AFM atomic force microscopy
  • FIG 10 is a view showing a cathodoluminescence (CL) image in the light emitting device of the comparative example.
  • FIG. 11 is a view showing a cathodoluminescence (CL) image in the light emitting device of the embodiment.
  • FIG. 12 is a side cross-sectional view of a light emitting device package having the light emitting device of FIG. 6.
  • FIG. 13 is a diagram illustrating a display device having a light emitting device or a light emitting device package according to an exemplary embodiment.
  • FIG. 14 is a diagram illustrating another example of a display device having a light emitting device or a light emitting device package according to an exemplary embodiment.
  • 15 is a view showing a lighting device having a light emitting device or a light emitting device package according to the embodiment.
  • each layer (film), region, pattern, or structure is formed “on” or “under” a substrate, each layer (film), region, pad, or pattern.
  • each layer (film), region, pad, or pattern In the case where it is described as “to”, “on” and “under” include both “directly” or “indirectly” formed.
  • the criteria for the above / above or below of each layer will be described with reference to the drawings.
  • FIG. 1 is a perspective view illustrating a light emitting device according to a first embodiment
  • FIG. 2 is a partially enlarged view of FIG. 1
  • FIG. 3 is a perspective view showing a pit of a first semiconductor layer of the light emitting device of FIG. 1
  • FIG. 4 is It is a perspective view which shows the pit of the 2nd semiconductor layer of the light emitting element of FIG.
  • the light emitting device includes a substrate 111, a buffer layer 113 disposed on the substrate 111, a first semiconductor layer 115 disposed on the buffer layer 113, and the first light emitting device.
  • a plurality of pits 71, 72, and 73 on the first semiconductor layer 115, a second semiconductor layer 116 disposed on the first semiconductor layer 115, and a second semiconductor layer 116 disposed on the second semiconductor layer 116 An active layer 117, a third semiconductor layer 119 disposed on the active layer 117, and a fourth semiconductor layer 121 disposed on the third semiconductor layer 119.
  • the substrate 111 is a growth substrate for growing a semiconductor single crystal, for example, nitride single crystal, and includes sapphire (Al 2 O 3 ), SiC, Si, GaAs, GaN, ZnO, Si, GaP, InP, Ge, Ga 2 O 3 At least one of may be used.
  • the substrate 111 may be a translucent, insulating or conductive substrate.
  • the sapphire is a hexagonal Rhombic (Hexa-Rhombo R3c) symmetry crystals, the lattice constants in the c-axis and a-axis direction is 13.001 ⁇ and 4.758 ⁇ , C (0001) plane, A (1120) plane, R (1102) ) And the like.
  • the C (0001) plane is used as a substrate for growing a nitride semiconductor because it is relatively easy to grow a nitride thin film and stable at high temperatures.
  • the substrate 111 may have a thickness of 120 ⁇ m to 500 ⁇ m, and its refractive index may be formed of a material of 2.4 or less, for example, 2 or less.
  • the substrate 111 may have the same or different lengths of adjacent sides, and at least one side may have a length of 0.3 mm ⁇ 0.3 mm or more, or a size having a large area, for example, 1 mm ⁇ 1 mm or more.
  • the substrate 111 may be formed in a polygonal shape such as a rectangle and a hexagon, but is not limited thereto.
  • the buffer layer 113 is formed on the substrate 111 and may be formed of one layer or a plurality of layers by selectively using a group II to group VI compound semiconductor.
  • the buffer layer 113 is, for example, a semiconductor layer using a group III-V group compound semiconductor, for example, Al x In y Ga (1-xy) N composition formula (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + It may be formed of a compound semiconductor having y ⁇ 1), and typically, may include at least one of GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN.
  • the buffer layer 113 is mainly grown through the growth surface (0001) of the substrate 111, and when the potential is generated by the lattice constant, the potential is mostly propagated in the growth direction.
  • An undoped semiconductor layer may be further formed between the buffer layer 113 and the first semiconductor layer 115, and the undoped semiconductor layer may have lower conductivity than the n-type semiconductor layer. It may be formed of a low conductive layer. A potential may be generated in at least one of the buffer layer 113 and the undoped semiconductor layer.
  • the first semiconductor layer 115 may be formed on the buffer layer 113 or the semiconductor layer not doped with impurities, and may include a first conductive dopant.
  • the first conductive dopant may be an N-type dopant, and may include Si, Ge, Sn, Se, and Te.
  • the first semiconductor layer 115 may be formed of any one of group III-V group compound semiconductors such as GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN.
  • the first semiconductor layer 115 may form, for example, a semiconductor having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). .
  • the plurality of pits 71, 72, and 73 may be disposed in the first and second semiconductor layers 115 and 116.
  • the first semiconductor layer 115 includes a plurality of pits 71, 72, and 73 recessed recessed from an upper surface of the first semiconductor layer 115.
  • Each of the pits 71, 72, and 73 may have a V-shaped side cross section, and a planar shape may have a hexagonal shape. That is, each of the pits 71, 72, and 73 becomes larger as the thickness of the first semiconductor layer 115 increases.
  • the inclined surfaces of each of the pits 71, 72, and 73 may range from 35 degrees to 60 degrees.
  • Each of the pits 71, 72, and 73 may be connected to one or a plurality of electric potentials to be propagated.
  • the plurality of pits 71, 72, and 73 have a first depth 71 having a first depth from an upper surface of any one of the first and second semiconductor layers 115 and 116, and a depth smaller than the first feet 71. It includes a second foot 72 or a third foot 73 having. For example, a first pit 71 having a first depth D1 from an upper surface of the first semiconductor layer 115 and a first pit 71 from an upper surface of the first semiconductor layer 115. A second foot 72 and a third foot 73 having a small second depth D2 are included.
  • the first depth D1 has a depth of 15 nm or more from an upper surface of the first semiconductor layer 115, and may be formed, for example, in a range of 15 nm to 100 nm, and also has the same depth within the first depth D1 range. Or may have a different depth.
  • the second depth D2 has a depth of less than 15 nm from an upper surface of the first semiconductor layer 115, and may be formed, for example, between 2 nm and less than 15 nm.
  • the second and third feet 72 and 73 may have the same depth or different depths within the second depth D2.
  • the second feet 72 are in contact with or connected to the first feet 71 in the first semiconductor layer 115.
  • One or a plurality of second feet 72 may be connected in the area of the first feet 71.
  • the plurality of second feet 72 may be disposed to overlap the area of the first feet 71 in a vertical direction.
  • the width D3 of the merged pit may be larger than the width D4 of the first feet 71.
  • a plurality of bottom points 75 and 76 or vertices may be disposed apart from each other in the merged pit.
  • the inclined surface and the inclined surface may be connected to each other, or the inclined surface and the corner may be connected to each other.
  • the depth of the region where the first feet 71 and the second feet 72 are connected may be lower than the upper surface of the first semiconductor layer 115, for example, the first and second feet It may be located higher than the lower point 75, 76 or the position of the vertex of the 71, 72, and lower than the upper surface of the first semiconductor layer 115.
  • These merged pits are a collection of two or more pits, which appear to be long shaped defects when viewed from above.
  • first feet 71 having a first depth D1 may be provided in a merged pit shape, and a boundary portion between two bottom points of the merged pit may be provided. It may be disposed lower than the upper surface of the semiconductor layer 115, but is not limited thereto.
  • the third feet 73 may be formed at positions spaced apart from the first and second feet 71 and 72 in the first semiconductor layer 115.
  • the third foot 73 may have the same depth as the second foot 72 or may have a different depth.
  • the pits 71, 72, and 73 may be formed, and the pits 71, 72, and 73 may include one or a plurality of pits. It may be connected to potentials (not shown).
  • the pits 71, 72, and 73 may be formed by a mask pattern.
  • the first semiconductor layer 115 may have a thickness greater than that of the first depth D1.
  • the thickness of the first semiconductor layer 115 may be, for example, 50 nm or more, or may be formed to be 2 to 50 times the thickness of the first depth D1.
  • the first semiconductor layer 115 may be defined as a pit control layer or a defect control layer, but is not limited thereto.
  • the second semiconductor layer 116 may be formed on the first semiconductor layer 115.
  • the second semiconductor layer 116 includes a plurality of semiconductor layers, for example, a first nitride layer 61 and a second nitride layer 62.
  • the stacking period of the first nitride layer 61 and the second nitride layer 62 may be repeatedly stacked, for example, may be formed in 2 to 5 cycles.
  • the first nitride layer 61 may be in contact with the first semiconductor layer 115, or the second nitride layer 62 may be in contact with the first semiconductor layer 115.
  • the second semiconductor layer 116 includes a first conductive dopant, for example, an N-type dopant.
  • the first nitride layer 61 may be formed of a nitride semiconductor having aluminum (Al), for example, an AlGaN-based semiconductor such as AlGaN or InAlGaN.
  • Al aluminum
  • the composition ratio of aluminum in the first nitride layer 61 may range from 5% to 20%.
  • the aluminum composition ratio is in a range of 5% to 20%, and the composition ratio of indium (In) may be less than a composition ratio of, for example, 5% or less.
  • the first nitride layer 61 includes a first conductive dopant, for example, an N-type dopant.
  • the first nitride layer 61 may have a thickness in the range of 0.5 nm to 5 nm, for example, in the range of 0.5 nm to 2 nm, and a thickness smaller than the first depth D1 of the first foot 71. It may be formed to a thickness of three times or less.
  • the second nitride layer 62 may be formed of a nitride semiconductor different from the first nitride layer 61.
  • the second nitride layer 62 may be formed of InGaN or GaN.
  • the composition ratio of indium (In) may be formed to 7% or less.
  • the second nitride layer 62 may be formed in a thickness of 0.5 nm to 5 nm, for example, in a range of 0.5 nm to 2 nm.
  • the second nitride layer 62 may be formed to have a thickness smaller than the first depth D1 of the first foot 71, for example, one third or less.
  • the second nitride layer 62 may be formed to be the same thickness or thinner than the thickness of the first nitride layer 61.
  • the first nitride layer 61 When the first nitride layer 61 is grown on the first semiconductor layer 115, the first nitride layer 61 is formed on the first to third feet 71, 72, and 73, wherein the second and third feet 72 are formed. And 73) to fill up and grow. That is, the first nitride layer 61 fills a depth, that is, fills small pits, and thus, the second and third feet 72 and 73 are gradually formed in the second semiconductor layer 116. Can be.
  • the second nitride layer 62 Since the second nitride layer 62 is grown in a mode in which vertical growth is promoted, the second nitride layer 62 maintains the first to third feet 71, 72, and 73 present in the second nitride layer 62.
  • the first and second nitride layers 61 and 62 may have a thickness laminated on the first surface of the first semiconductor layer 115 on the first to third feet 71, 72, and 73. It can be formed thicker.
  • the cycle of the first nitride layer 61 and the second nitride layer 62 may be repeated. Since the plurality of first nitride layers 61 reduces the size of the pits having a relatively small size, for example, the second and third feet 72 and 73 step by step, the first nitride layer 61 at the upper portion is The second and third feet 72 and 73 can be removed. Second and third feet 72 and 73 are present in the first nitride layer 61 adjacent to the first semiconductor layer 115, and in the first nitride layer 61 adjacent to the active layer 119. The second and third feet 72 and 73 can be removed.
  • the first feet 71 are present in the first nitride layer 61 adjacent to the active layer 119.
  • An area overlapping in a vertical direction with the second feet 72 disposed on the first semiconductor layer 115 among the upper surfaces of the second semiconductor layer 118 may be formed as a flat surface.
  • An area of the upper surface of the second semiconductor layer 117 that is disposed on the first semiconductor layer 115 and overlaps with the plurality of second feet 72 merged in the first foot 71 in the vertical direction is a flat surface.
  • a region overlapping in the vertical direction with the third feet 73 disposed on the first semiconductor layer 115 among the upper surfaces of the second semiconductor layer 118 may be formed as a flat surface.
  • the areas overlapping the second and third feet 72 and 73 in the vertical direction are formed in a flat surface, so that not only small pits that can propagate to the active layer 119 but also existing in the merged pit areas are present. I can get rid of small size feet. Accordingly, the internal quantum efficiency of the active layer 119 can be improved.
  • Periods of the first and second nitride layers 61 and 62 may be stacked in two to five periods, and any one of the first and second nitride layers 61 and 62 may be further formed. It is not limited.
  • the second and third feet 72 and 73 in the second semiconductor layer 116 By removing the second and third feet 72 and 73 in the second semiconductor layer 116, only pits of uniform size may be provided.
  • the merged pit becomes an individual pit so that an area by the merged pit, for example, an area such as a valley, a low point, or a vertex in each pit, is formed. Can be reduced. This is because the second feet 72 and the third feet 73 existing under the second semiconductor layer 116 are removed toward the upper portion, and thus the second feet 72 are disposed on the upper portion of the second semiconductor layer 116. ) And the areas corresponding to the third feet 73 may be provided as flat surfaces. Accordingly, as shown in FIG.
  • the first feet 71 or the first feet 71 having a uniform size may be exposed on the surface of the second semiconductor layer 116.
  • the uniformly sized first feet 71 include pits having a depth of at least 15 nm, and the pits removed include pits having a depth of less than 15 nm.
  • the pit density of the entire upper surface of the second semiconductor layer 116 is smaller than the pit density of the entire lower surface of the second semiconductor layer 116.
  • the density of the second feet 72 or the third feet 73 on the bottom surface of the second semiconductor layer 116 or the top surface of the first semiconductor layer 115 may be the top surface of the second semiconductor layer 116. It is higher than the density of the second feet 72 or the third feet 73, for example 70% or more, for example, may be formed as a high difference of 80% or more.
  • the density of the first feet 71 of the second semiconductor layer 116 is equal to the density of the first feet 71 of the lower surface of the second semiconductor layer 116 or the upper surface of the first semiconductor layer 115. Have the same density.
  • a first cladding layer may be formed between the second semiconductor layer 116 and the active layer 117.
  • the first cladding layer may be formed of a GaN-based semiconductor, and the band gap may be wider than the band gap of the active layer 117.
  • the first cladding layer serves to constrain the carrier and may include an N-type dopant.
  • a super lattice structure in which different semiconductor layers are alternately stacked may be formed between the second semiconductor layer 116 and the active layer 117, and the super lattice structure may reduce lattice defects.
  • Each layer of the super lattice structure may be stacked to a thickness of several orders of magnitude or more.
  • the active layer 117 is formed on the second semiconductor layer 116, and the first feet 71 are disposed.
  • the first feet 71 having a uniform size are disposed in the active layer 117. Due to the removal of the third and second feet 73 and 72, the non-light emitting area in the active layer 117 can be reduced. In addition, the crystal quality of the active layer 117 may be increased.
  • the density of the pits smaller than the first feet 71, for example, the second or third feet is the density of the second or third feet in the first semiconductor layer 115. Can be lower.
  • the density of the second or third feet in the active layer 117 may be lower than, for example, 80% or more than the density of the second or third feet in the first semiconductor layer 115.
  • the active layer 117 may optionally include a single quantum well, a multiple quantum well (MQW), a quantum wire structure or a quantum dot structure, and may include a period of the well layer and the barrier layer.
  • the well layer includes a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), and the barrier layer is In x Al y Ga 1 It may include a composition formula of -xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the period of the well layer / barrier layer may be formed in one or more cycles using, for example, a stacked structure of InGaN / GaN, GaN / AlGaN, InGaN / AlGaN, InGaN / InGaN, InGaN / InAlGaN, GaN / InAlGaN.
  • the barrier layer may be formed of a semiconductor material having a band gap wider than that of the well layer.
  • the third semiconductor layer 119 is formed on the active layer 117.
  • the third semiconductor layer 119 may be formed of any one of semiconductors doped with a second conductive dopant, for example, compound semiconductors such as GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN.
  • the third semiconductor layer 119 is, for example, a p-type semiconductor having a semiconductor having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the second conductive dopant may be a p-type dopant, and may include Mg, Zn, Ca, Sr, and Ba.
  • the third semiconductor layer 119 may be formed of an electron blocking layer, and may be formed of, for example, P-AlGaN or P-InAlGaN.
  • the third semiconductor layer 119 may suppress propagation of pits of the active layer 117. When the pits are exposed on the surface of the semiconductor device, electrostatic discharge (ESD) may be affected. Thus, it can be formed in a horizontal growth mode that removes the pits. A portion of the pit existing in the active layer 117 may propagate in the third semiconductor layer 119, but is not limited thereto.
  • the third semiconductor layer 119 may include a superlattice structure, and the superlattice structure may include an InGaN / GaN superlattice structure or an AlGaN / GaN superlattice structure.
  • the superlattice structure of the third semiconductor layer 119 may abnormally diffuse the current included in the voltage to protect the active layer 117.
  • the fourth semiconductor layer 121 may form a semiconductor different from the third semiconductor layer 119 on the third semiconductor layer 119 and include a second conductive dopant.
  • the fourth semiconductor layer 121 may be formed of any one of compound semiconductors such as GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN.
  • the fourth semiconductor layer 121 is a p-type semiconductor having a semiconductor having a composition formula of, for example, In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). Layers, such as P-GaN or P-InGaN.
  • the second conductive dopant is a p-type dopant and may include Mg, Zn, Ca, Sr, and Ba.
  • the fourth semiconductor layer 121 may be formed so that the pits are not exposed by blocking the pits.
  • first and second semiconductor layers 115 and 116 may be implemented as p-type semiconductor layers, and the third and fourth semiconductor layers 119 and 121 may be implemented as n-type semiconductor layers.
  • a semiconductor layer having a polarity opposite to that of the second conductive type may be formed on the fourth semiconductor layer 121.
  • the light emitting device may be defined as a light emitting structure in which the n-type semiconductor layers 115 and 116, the active layer 117, and the p-type semiconductor layers 119 and 121 are stacked. It can be implemented in any one of the structure, pnp junction structure.
  • p is a p-type semiconductor layer
  • n is an n-type semiconductor layer
  • the uppermost layer of the light emitting structure will be described as a fourth semiconductor layer 121, that is, a second conductive semiconductor layer.
  • FIGS. 8 and 9 show AFM images of the light emitting device shown in FIG. 8, the light emitting device of the comparative example shown in FIG. 8 has a structure viewed from a layer without a second semiconductor layer, and the pits P1 are viewed from the top surface of the device. Defect regions A1 such as a plurality of valleys connected to each other appear, and the valley regions serve as non-light emitting regions. Therefore, overall light extraction efficiency can be reduced.
  • the coupling region such as the valley is almost removed and the pits P1 are disposed apart from each other. Accordingly, the light extraction efficiency of the light emitting device of the embodiment can be improved compared to the light emitting device of the comparative example.
  • the size of the AFM images of FIGS. 8 and 9 is 10 ⁇ m ⁇ 10 ⁇ m.
  • the second semiconductor layer 116 having the first and second nitride layers 61 and 62, shown in FIG. 1, may be formed between the active layer 117 and the third semiconductor layer 119 or the first semiconductor layer 119.
  • the semiconductor layer 119 may be further disposed on at least one of the regions between the third semiconductor layer 119 and the fourth semiconductor layer 121.
  • FIG. 5 is a side cross-sectional view illustrating a light emitting device according to a second embodiment.
  • description of the first embodiment will be referred to for the same parts as those of the first embodiment.
  • the light emitting device may include a substrate 111 having a plurality of convex portions 112, a buffer layer 113, a first semiconductor layer 115, a second semiconductor layer 116, an active layer 117, and a second light emitting device.
  • the laminated structure of the third semiconductor layer 119 and the fourth semiconductor layer 121 is included.
  • the substrate 111 may use a light transmissive, insulating or conductive substrate, for example, sapphire (Al 2 O 3 ), SiC, Si, GaAs, GaN, ZnO, Si, GaP, InP, Ge, Ga 2 O 3 At least one may be used.
  • the substrate 111 may have a thickness of 120 ⁇ m to 500 ⁇ m, and its refractive index may be formed of a material of 2.4 or less, for example, 2 or less.
  • the C surface of the sapphire substrate is relatively easy to grow a nitride thin film and is mainly used as a nitride growth substrate because it is stable at high temperatures.
  • the substrate 111 includes a plurality of convex portions 112.
  • the plurality of convex parts 112 protrude from the substrate 111 in the direction of the active layer 117, and the shape may be a hemispherical shape, a convex dome lens shape, or a convex lens shape in a three-dimensional shape.
  • the other shape of the convex portion 112 may include a polygonal shape that is a three-dimensional structure, but is not limited thereto.
  • the plurality of convex portions 112 may be arranged to be spaced apart from each other, and when viewed from above, may be arranged in a grid form or a matrix form or a stripe form.
  • the interval between the plurality of convex portions 112 may be formed at regular intervals, or may be formed at irregular intervals or at random intervals, but is not limited thereto.
  • the plurality of convex parts 112 may convert a critical angle of incident light, thereby improving light extraction efficiency.
  • the width at the bottom of the convex portion 112 and the ratio of the interval between the convex portions may be about 1: 1 to 4: 2, the width of the convex portion 112 includes a range of 3 ⁇ m ⁇ 0.5 ⁇ m
  • the interval between the convex portions may include, for example, a range of 2 ⁇ m ⁇ 0.5 ⁇ m, and the height of each convex portion may be formed in a range of 0.8 ⁇ m to 2.5 ⁇ m.
  • the buffer layer 113 may be disposed on a flat upper surface of the substrate 111 and may also contact a curved surface of the convex portion 112. Although not shown, a portion of the buffer layer 113 may be disposed on a vertex of the convex portion 112, but the present invention is not limited thereto.
  • a first semiconductor layer 115 is formed on the buffer layer 113, and the first semiconductor layer 115 is joined on the convex portion 112.
  • an electric potential 51 may be formed in an area overlapping the convex portion 112, and propagated in an upper surface direction of the first semiconductor layer 115, and each electric potential 51 may be formed in the first feet 71.
  • Connected with Dislocations 51 disposed on the convex portion 112 may be merged with, but not limited to, dislocations generated in a region other than the convex portion 112.
  • the plurality of pits 71, 72, and 73 disposed on the first semiconductor layer 115 include a first foot 71, a second foot 72, and a third foot 73.
  • the second and third feet 72 and 73 of the first to third feet 71, 72, and 73 are formed of the first nitride layer 61 and the second nitride layer 62 of the second semiconductor layer 116. It can be removed by the laminated structure of). Accordingly, the first feet 71 or the pits having a uniform size may be exposed on the surface of the second semiconductor layer 116.
  • the uniformly sized pits include pits having a depth of at least 15 nm and the pits removed include pits having a depth of less than 15 nm.
  • FIG. 6 is a structure in which an electrode is disposed in the light emitting device of FIG. 1.
  • the light emitting device 101 includes a substrate 111, first and second semiconductor layers 115 and 116, an active layer 117, third and fourth semiconductor layers 119 and 121, and a fourth semiconductor layer ( 121, a first electrode 153 disposed on at least one of the current diffusion layer 151, the first and second semiconductor layers 115 and 116, and a second electrode 155 disposed on the current diffusion layer 151. It includes.
  • the current diffusion layer 141 covers 70% or more of the entire area of the upper surface of the fourth semiconductor layer 121 and diffuses and supplies current.
  • the current spreading layer 151 may include a metal or a transparent metal.
  • the current diffusion layer 151 may be formed of, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IAZO), indium gallium zinc oxide (IGZO), or indium IGTO (IGTO). gallium tin oxide (AZO), aluminum zinc oxide (AZO), antimony tin oxide (ATO), gallium zinc oxide (GZO), ZnO, IrOx, RuOx, NiO and the like, and may be formed in at least one layer.
  • the current spreading layer 151 may be formed as a reflective electrode layer, and the material may be selectively formed among, for example, Al, Ag, Pd, Rh, Pt, Ir, and two or more of these alloys.
  • the second electrode 155 may be formed on the fourth semiconductor layer 121 and / or the current diffusion layer 151 and may include an electrode pad.
  • the second electrode 155 may further have a current spreading pattern having an arm structure or a finger structure.
  • the second electrode 155 may be made of a non-translucent metal having the characteristics of ohmic contact, adhesive layer, and bonding layer, but is not limited thereto.
  • the second electrode 155 may be formed to 40% or less, for example, 20% or less of the upper surface area of the fourth semiconductor layer 121, but is not limited thereto.
  • the first electrode 153 is disposed on at least one of the first and second semiconductor layers 115 and 116.
  • the first electrode 153 and the second electrode 155 are Ti, Ru, Rh, Ir, Mg, Zn, Al, In, Ta, Pd, Co, Ni, Si, Ge, Ag, Au and Au It can be chosen from the optional alloys.
  • An insulating layer (not shown) may be further formed on the surfaces of the semiconductor layers 113, 115, 116, 117 and 121, and the insulating layer may prevent an interlayer short between the semiconductor layers and prevent moisture penetration.
  • FIG. 7 is a diagram illustrating another electrode arrangement example of the light emitting device of FIG. 1. Description of some components of FIG. 7 will be described with reference to FIGS. 1 and 6.
  • the light emitting device 102 includes a first electrode 181 at an upper portion of the first semiconductor layer 115 and a second electrode 170 at a lower portion thereof.
  • the substrate 111 and the buffer layer 113 of FIG. 1 may be removed by physical or / and chemical methods.
  • the first semiconductor layer 115 includes a conductive semiconductor layer, for example, an n-type semiconductor layer.
  • the removal method of the substrate 111 may be removed by a physical method (eg, laser lift off) or / and a chemical method (eg, wet etching), and may also remove other buffer layers to expose the first semiconductor layer 115. give. Isolation is performed in the direction in which the substrate 111 is removed to form a first electrode 181 on the first semiconductor layer 115.
  • the first electrode 181 may be disposed in different regions, and may be formed with an arm pattern or a bridge pattern, but is not limited thereto. Some regions of the first electrode 181 may be used as pads to which wires (not shown) are bonded.
  • the second electrode 170 is disposed under the fourth semiconductor layer 121.
  • the second electrode 170 may include a plurality of conductive layers.
  • the second electrode 170 may include a contact layer 165, a reflective layer 167, a bonding layer 169, and a conductive support member 173.
  • the contact layer 165 may be a transparent conductive material or a metal material, for example, a low conductive material such as ITO, IZO, IZTO, IAZO, IGZO, IGTO, AZO, ATO, or a metal of Ni or Ag.
  • a reflective layer 167 is formed below the contact layer 165, and the reflective layer 167 is composed of Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, and a combination thereof. It may be formed into a structure including at least one layer of a material selected from the group. A portion of the reflective layer 167 may be contacted under the fourth semiconductor layer 121, ohmic contact with a metal, or ohmic contact with a low conductive material such as ITO, but is not limited thereto.
  • a bonding layer 169 is formed below the reflective layer 167, and the bonding layer 169 may be used as a barrier metal or a bonding metal, and the material may be, for example, Ti, Au, Sn, Ni, Cr, And at least one of Ga, In, Bi, Cu, Ag, and Ta and an optional alloy.
  • a conductive support member 173 is formed under the bonding layer 169, and the conductive support member 173 may be a metal or a carrier substrate, for example, copper (Cu-copper), gold (Au-gold), or nickel. (Ni-nickel), molybdenum (Mo), copper-tungsten (Cu-W), and a carrier wafer (eg, Si, Ge, GaAs, ZnO, SiC, etc.).
  • the conductive support member 173 may be implemented as a conductive sheet.
  • a light extracting structure 59 such as roughness may be formed on the top surface of the first semiconductor layer 115.
  • An insulating layer (not shown) may be formed on the surfaces of the semiconductor layers 113, 115, 116, 117, 119 and 121, and the insulating layer may be further formed on the light extraction structure 59.
  • the current blocking layer 161 is disposed in a region corresponding to the first electrode 181 among the regions between the second electrode 170 and the fourth semiconductor layer 121, and the second electrode 170 is separated from the second electrode 170.
  • the protective layer 163 may be disposed at an outer circumference of the region between the fourth semiconductor layers 121.
  • the current blocking layer 161 and the protective layer 163 may be formed of an insulating material or a transparent conductive material, but are not limited thereto.
  • the current blocking layer 161 and the protective layer 163 may be formed of the same material or different materials, but are not limited thereto.
  • FIG. 12 is a view illustrating a light emitting device package having the light emitting device of FIG. 6.
  • the light emitting device package 200 may include a body 221, a first lead electrode 211 and a second lead electrode 213 at least partially disposed on the body 221, and the body ( The light emitting device 241 electrically connected to the first lead electrode 211 and the second lead electrode 213 on the 221, and a molding member covering the light emitting device 241 on the body 221. 231.
  • the body 221 may be formed including a silicon material, a synthetic resin material, or a metal material.
  • the body 221 may have a cavity 225 therein and a surface inclined with respect to the cavity bottom around the cavity 225 when viewed from above.
  • the first lead electrode 211 and the second lead electrode 213 may be electrically separated from each other, and may be formed to penetrate the inside of the body 221. That is, some of the first lead electrode 211 and the second lead electrode 213 may be disposed inside the cavity 225, and other portions of the first lead electrode 211 and the second lead electrode 213 may be disposed outside the body 221.
  • the first lead electrode 211 and the second lead electrode 213 may supply power to the light emitting device 241, and may reflect light generated from the light emitting device 241 to increase light efficiency. It may also function to discharge the heat generated by the light emitting device 241 to the outside.
  • the first and second lead electrodes 211 and 213 may be formed of a metal material and separated by the gap portion 223.
  • the light emitting device 241 may be installed on the body 221 or on the first lead electrode 211 or / and the second lead electrode 213.
  • the light emitting device 221 may be connected to the first lead electrode 211 by a first wire 242, and may be connected to the second lead electrode 213 by a second wire 243, but is not limited thereto.
  • the molding member 231 may surround the light emitting device 241 to protect the light emitting device 241.
  • the molding member 231 may include a phosphor, and the wavelength of light emitted from the light emitting element 241 may be changed by the phosphor.
  • the light emitting device or the light emitting device package according to the embodiment may be applied to a lighting system.
  • the lighting system includes a structure in which a plurality of light emitting devices or light emitting device packages are arranged, and includes a display device shown in FIGS. 13 and 14 and a lighting device shown in FIG. 15. Etc. may be included.
  • FIG. 13 is an exploded perspective view of a display device according to an exemplary embodiment.
  • the display device 1000 includes a light guide plate 1041, a light emitting module 1031 that provides light to the light guide plate 1041, a reflective member 1022 under the light guide plate 1041, and A bottom cover 1011 that houses an optical sheet 1051 on the light guide plate 1041, a display panel 1061 on the optical sheet 1051, the light guide plate 1041, a light emitting module 1031, and a reflective member 1022. ), But is not limited thereto.
  • the bottom cover 1011, the reflective sheet 1022, the light guide plate 1041, and the optical sheet 1051 may be defined as a light unit 1050.
  • the light guide plate 1041 serves to diffuse the light provided from the light emitting module 1031 to make a surface light source.
  • the light guide plate 1041 is made of a transparent material, for example, acrylic resin-based such as polymethyl metaacrylate (PMMA), polyethylene terephthlate (PET), polycarbonate (PC), cycloolefin copolymer (COC), and polyethylene naphthalate (PEN). It may include one of the resins.
  • the light emitting module 1031 is disposed on at least one side of the light guide plate 1041 to provide light to at least one side of the light guide plate 1041, and ultimately serves as a light source of the display device.
  • the light emitting module 1031 may include at least one, and may provide light directly or indirectly at one side of the light guide plate 1041.
  • the light emitting module 1031 may include a board 1033 and a light emitting device package 200 according to the above-described embodiment, and the light emitting device package 200 may be arranged on the board 1033 at predetermined intervals. have.
  • the board may be a printed circuit board, but is not limited thereto.
  • the board 1033 may include a metal core PCB (MCPCB, Metal Core PCB), flexible PCB (FPCB, Flexible PCB) and the like, but is not limited thereto.
  • MCPCB Metal Core PCB
  • FPCB Flexible PCB
  • the plurality of light emitting device packages 200 may be mounted on the board 1033 such that an emission surface on which light is emitted is spaced apart from the light guide plate 1041 by a predetermined distance, but is not limited thereto.
  • the light emitting device package 200 may directly or indirectly provide light to a light incident portion, which is one side of the light guide plate 1041, but is not limited thereto.
  • the reflective member 1022 may be disposed under the light guide plate 1041.
  • the reflective member 1022 may improve the luminance of the display panel 1061 by reflecting light incident on the lower surface of the light guide plate 1041 to the display panel 1061.
  • the reflective member 1022 may be formed of, for example, PET, PC, or PVC resin, but is not limited thereto.
  • the reflective member 1022 may be an upper surface of the bottom cover 1011, but is not limited thereto.
  • the bottom cover 1011 may accommodate the light guide plate 1041, the light emitting module 1031, the reflective member 1022, and the like. To this end, the bottom cover 1011 may be provided with an accommodating part 1012 having a box shape having an upper surface opened thereto, but is not limited thereto. The bottom cover 1011 may be combined with a top cover (not shown), but is not limited thereto.
  • the bottom cover 1011 may be formed of a metal material or a resin material, and may be manufactured using a process such as press molding or extrusion molding.
  • the bottom cover 1011 may include a metal or non-metal material having good thermal conductivity, but is not limited thereto.
  • the display panel 1061 is, for example, an LCD panel, and includes a first and second substrates of transparent materials facing each other, and a liquid crystal layer interposed between the first and second substrates.
  • a polarizer may be attached to at least one surface of the display panel 1061, but the polarizer is not limited thereto.
  • the display panel 1061 displays information by transmitting or blocking light provided from the light emitting module 1031.
  • the display device 1000 may be applied to various display devices such as portable terminals, monitors of notebook computers, monitors of laptop computers, and televisions.
  • the optical sheet 1051 is disposed between the display panel 1061 and the light guide plate 1041 and includes at least one light transmitting sheet.
  • the optical sheet 1051 may include, for example, at least one of a sheet such as a diffusion sheet, horizontal and vertical prism sheets, a brightness enhanced sheet, and the like.
  • the diffusion sheet diffuses incident light
  • the horizontal or vertical prism sheet focuses incident light onto the display panel 1061
  • the brightness enhancement sheet reuses the lost light to improve luminance. Let it be.
  • a protective sheet may be disposed on the display panel 1061, but is not limited thereto.
  • the light guide plate 1041 and the optical sheet 1051 may be included as an optical member on the optical path of the light emitting module 1031, but are not limited thereto.
  • FIG. 14 is a diagram illustrating a display device having a light emitting device package according to an exemplary embodiment.
  • the display device 1100 includes a bottom cover 1152, a board 1120 on which the light emitting device package 200 disclosed above is arranged, an optical member 1154, and a display panel 1155. .
  • the board 1120 and the light emitting device package 200 may be defined as a light emitting module 1160.
  • the bottom cover 1152, the at least one light emitting module 1160, and the optical member 1154 may be defined as a light unit (not shown).
  • the bottom cover 1152 may include an accommodating part 1153, but is not limited thereto.
  • the optical member 1154 may include at least one of a lens, a light guide plate, a diffusion sheet, horizontal and vertical prism sheets, and a brightness enhancement sheet.
  • the light guide plate may be made of a PC material or a poly methy methacrylate (PMMA) material, and the light guide plate may be removed.
  • the diffusion sheet diffuses the incident light, and the horizontal and vertical prism sheets focus the incident light onto the display panel 1155, and the brightness enhancement sheet reuses the lost light to improve the brightness. .
  • the optical member 1154 is disposed on the light emitting module 1160 and performs surface light source, diffusion, condensing, etc. of the light emitted from the light emitting module 1060.
  • a plurality of boards 1120 may be disposed in the bottom cover 1152, and a light emitting device package 200 or a light emitting device (ie, an LED chip) may be arrayed on the plurality of boards 1120. .
  • 15 is a view illustrating a lighting device having a light emitting device package according to an embodiment.
  • the lighting apparatus may include a cover 2100, a light source module 2200, a heat sink 2400, a power supply 2600, an inner case 2700, and a socket 2800. Can be.
  • the lighting apparatus according to the embodiment may further include any one or more of the member 2300 and the holder 2500.
  • the light source module 2200 may include a light emitting device according to an embodiment.
  • the cover 2100 may have a shape of a bulb or hemisphere, may be hollow, and may be provided in an open shape.
  • the cover 2100 may be optically coupled to the light source module 2200.
  • the cover 2100 may diffuse, scatter or excite the light provided from the light source module 2200.
  • the cover 2100 may be a kind of optical member.
  • the cover 2100 may be coupled to the heat sink 2400.
  • the cover 2100 may have a coupling part coupled to the heat sink 2400.
  • An inner surface of the cover 2100 may be coated with a milky paint.
  • the milky paint may include a diffuser to diffuse light.
  • the surface roughness of the inner surface of the cover 2100 may be greater than the surface roughness of the outer surface of the cover 2100. This is for the light from the light source module 2200 to be sufficiently scattered and diffused to be emitted to the outside.
  • the cover 2100 may be made of glass, plastic, polypropylene (PP), polyethylene (PE), polycarbonate (PC), or the like.
  • polycarbonate is excellent in light resistance, heat resistance, and strength.
  • the cover 2100 may be transparent and opaque so that the light source module 2200 is visible from the outside.
  • the cover 2100 may be formed through blow molding.
  • the light source module 2200 may be disposed on one surface of the heat sink 2400. Thus, heat from the light source module 2200 is conducted to the heat sink 2400.
  • the light source module 2200 may include a light source unit 2210, a connection plate 2230, and a connector 2250.
  • the member 2300 is disposed on an upper surface of the heat dissipator 2400, and has a plurality of light source parts 2210 and guide grooves 2310 into which the connector 2250 is inserted.
  • the guide groove 2310 corresponds to the board and the connector 2250 of the light source unit 2210.
  • the surface of the member 2300 may be coated or coated with a light reflective material.
  • the surface of the member 2300 may be coated or coated with a white paint.
  • the member 2300 is reflected on the inner surface of the cover 2100 to reflect the light returned to the light source module 2200 side again toward the cover 2100. Therefore, it is possible to improve the light efficiency of the lighting apparatus according to the embodiment.
  • the member 2300 may be made of an insulating material, for example.
  • the connection plate 2230 of the light source module 2200 may include an electrically conductive material. Therefore, electrical contact may be made between the radiator 2400 and the connection plate 2230.
  • the member 2300 may be formed of an insulating material to block an electrical short between the connection plate 2230 and the radiator 2400.
  • the radiator 2400 receives heat from the light source module 2200 and heat from the power supply unit 2600 to radiate heat.
  • the holder 2500 may block the accommodating groove 2719 of the insulating portion 2710 of the inner case 2700. Therefore, the power supply unit 2600 accommodated in the insulating unit 2710 of the inner case 2700 is sealed.
  • the holder 2500 has a guide protrusion 2510.
  • the guide protrusion 2510 may include a hole through which the protrusion 2610 of the power supply unit 2600 passes.
  • the power supply unit 2600 processes or converts an electrical signal provided from the outside to provide the light source module 2200.
  • the power supply unit 2600 is accommodated in the accommodating groove 2725 of the inner case 2700, and is sealed in the inner case 2700 by the holder 2500.
  • the power supply unit 2600 may include a protrusion 2610, a guide unit 2630, a base 2650, and a protrusion 2670.
  • the guide part 2630 has a shape protruding outward from one side of the base 2650.
  • the guide part 2630 may be inserted into the holder 2500.
  • a plurality of parts may be disposed on one surface of the base 2650.
  • the plurality of components may include, for example, a DC converter for converting AC power provided from an external power source into DC power, a driving chip for controlling the driving of the light source module 2200, and an ESD for protecting the light source module 2200. (ElectroStatic discharge) protection element and the like, but may not be limited thereto.
  • the protrusion 2670 has a shape protruding to the outside from the other side of the base 2650.
  • the protrusion 2670 is inserted into the connection part 2750 of the inner case 2700 and receives an electrical signal from the outside.
  • the protrusion 2670 may be provided to be the same as or smaller than the width of the connection portion 2750 of the inner case 2700.
  • Each end of the “+ wire” and the “ ⁇ wire” may be electrically connected to the protrusion 2670, and the other end of the “+ wire” and the “ ⁇ wire” may be electrically connected to the socket 2800.
  • the inner case 2700 may include a molding unit together with the power supply unit 2600 therein.
  • the molding part is a part where the molding liquid is hardened, so that the power supply part 2600 can be fixed inside the inner case 2700.
  • the embodiment can improve the reliability of the light emitting device.
  • the light emitting device of the embodiment may be applied to lighting devices such as a lighting lamp, an indoor lamp, an outdoor lamp, an indicator lamp, and a conductive lamp using the LED.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)

Abstract

실시 예는 발광 소자 및 이를 구비한 조명 장치에 관한 것이다. 실시 예에 개시된 발광소자는, 제1반도체층; 상기 제1반도체층 위에 배치된 제2반도체층; 상기 제2반도체층 위에 배치된 활성층; 및 상기 활성층 위에 배치된 제3반도체층을 포함하며, 상기 제2반도체층은 AlGaN계 제1질화물층 및 상기 제1질화물층 위에 상기 제1질화물층과 다른 반도체를 갖는 제2질화물층을 포함하며, 상기 제1 및 제2반도체층 중 어느 하나의 상면으로부터 제1깊이를 갖는 제1피트 및 상기 제1피트의 제1깊이보다 작은 깊이를 갖고 상기 제1피트에 연결된 제2피트를 포함하며, 상기 제1 및 제2피트는 상기 제1 및 제2반도체층에 배치되며, 상기 제1반도체층의 상면에 배치된 제2피트의 밀도는 상기 제2반도체층의 상면에 배치된 제2피트의 밀도보다 높고, 상기 제2반도체층의 상면에 배치된 제1피트의 밀도는 상기 제1반도체층의 상면에 배치된 제1피트의 밀도와 동일하다.

Description

발광 소자 및 이를 구비한 조명 장치
실시 예는 발광 소자 및 이를 구비한 조명 장치에 관한 것이다.
Ⅲ-Ⅴ족 질화물 반도체(group Ⅲ-Ⅴ nitride semiconductor)는 물리적, 화학적 특성으로 인해 발광 다이오드(LED) 또는 레이저 다이오드(LD) 등의 발광 소자의 핵심 소재로 각광을 받고 있다. Ⅲ-Ⅴ족 질화물 반도체는 통상 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질로 이루어져 있다.
발광 다이오드(Light Emitting Diode: LED)는 화합물 반도체의 특성을 이용하여 전기를 적외선 또는 빛으로 변환시켜서 신호를 주고 받거나, 광원으로 사용되는 반도체 소자의 일종이다.
이러한 질화물 반도체 재료를 이용한 LED 혹은 LD는 광을 얻기 위한 발광 소자에 많이 사용되고 있으며, 핸드폰의 키 패드 발광부, 표시 장치, 전광판, 조명 장치 등 각종 제품의 광원으로 응용되고 있다.
실시 예는 균일한 크기의 피트들을 갖는 발광 소자를 제공한다.
실시 예는 활성층에서의 발광 효율을 개선시켜 줄 수 있는 발광 소자를 제공한다.
실시 예에 따른 발광소자는, 제1반도체층; 상기 제1반도체층 위에 배치된 제2반도체층; 상기 제2반도체층 위에 배치된 활성층; 및 상기 활성층 위에 배치된 제3반도체층을 포함하며, 상기 제2반도체층은 AlGaN계 제1질화물층 및 상기 제1질화물층 위에 상기 제1질화물층과 다른 반도체를 갖는 제2질화물층을 포함하며, 상기 제1 및 제2반도체층 중 어느 하나의 상면으로부터 제1깊이를 갖는 제1피트 및 상기 제1피트의 제1깊이보다 작은 깊이를 갖고 상기 제1피트에 연결된 제2피트를 포함하며, 상기 제1 및 제2피트는 상기 제1 및 제2반도체층에 배치되며, 상기 제1반도체층의 상면에 배치된 제2피트의 밀도는 상기 제2반도체층의 상면에 배치된 제2피트의 밀도보다 높고, 상기 제2반도체층의 상면에 배치된 제1피트의 밀도는 상기 제1반도체층의 상면에 배치된 제1피트의 밀도와 동일하다.
실시 예는 활성층에서의 결함을 줄여줄 수 있다.
실시 예는 피트들의 크기를 균일하게 제공할 수 있다.
실시 예는 비발광 영역으로 작용된 피트들을 제거할 수 있다.
실시 예는 활성층의 하부에서 비발광 영역으로 작용된 피트들을 차단하여 발광효율 저하를 감소시켜 줄 수 있다.
실시 예는 활성층의 하부에서 비발광 영역으로 작용된 피트들을 차단하여, 전기적인 특성의 저하를 억제할 수 있다.
실시 예는 정전압 방출(ESD: elecrosatic discharge)에 대한 내성이 강한 소자를 제공할 수 있다.
실시 예는 균일한 크기의 피트들을 구비하여, 발광 소자 및 이를 구비한 조명 장치의 신뢰성을 개선시켜 줄 수 있다.
도 1은 제1실시 예에 따른 발광소자의 측 단면도이다.
도 2는 도 1의 부분 확대도이다.
도 3은 도 1의 발광 소자의 제1반도체층에서의 피트를 나타낸 사시도이다.
도 4는 도 1의 발광 소자의 제2반도체층에서의 피트를 나타낸 사시도이다.
도 5는 제2실시 예에 따른 발광 소자의 측 단면도이다.
도 6은 도 1의 발광 소자에 전극을 배치한 제1예를 나타낸 도면이다.
도 7은 도 1의 발광 소자에 전극을 배치한 제2예를 나타낸 도면이다.
도 8은 비교 예의 발광 소자에서의 AFM(Atomic force microscopy) 이미지를 나타낸 도면이다.
도 9는 실시 예의 발광 소자에서의 AFM(Atomic force microscopy) 이미지를 나타낸 도면이다.
도 10은 비교 예의 발광 소자에서의 CL(cathodoluminescence) 이미지를 나타낸 도면이다.
도 11은 실시 예의 발광 소자에서의 CL(cathodoluminescence) 이미지를 나타낸 도면이다.
도 12는 도 6의 발광 소자를 갖는 발광 소자 패키지의 측 단면도이다.
도 13은 실시 예에 따른 발광 소자 또는 발광 소자 패키지를 갖는 표시장치를 나타낸 도면이다.
도 14는 실시 예에 따른 발광 소자 또는 발광 소자 패키지를 갖는 표시장치의 다른 예를 나타낸 도면이다.
도 15는 실시 예에 따른 발광 소자 또는 발광 소자 패키지를 갖는 조명장치를 나타낸 도면이다.
실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on)"와 "아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
이하, 첨부된 도면을 참조하여 설명하면 다음과 같다.
도 1은 제1실시 예에 따른 발광소자를 나타낸 사시도이며, 도 2는 도 1의 부분 확대도이며, 도 3은 도 1의 발광 소자의 제1반도체층의 피트를 나타낸 사시도이고, 도 4는 도 1의 발광 소자의 제2반도체층의 피트를 나타낸 사시도이다.
도 1 내지 도 4를 참조하면, 발광 소자는 기판(111), 상기 기판(111) 상에 배치된 버퍼층(113), 상기 버퍼층(113) 상에 배치된 제1반도체층(115), 상기 제1반도체층(115)에 복수의 피트(71,72,73), 상기 제1반도체층(115) 상에 배치된 제2반도체층(116), 상기 제2반도체층(116) 상에 배치된 활성층(117), 상기 활성층(117) 상에 배치된 제3반도체층(119), 및 상기 제3반도체층(119) 상에 배치된 제4반도체층(121)을 포함한다.
상기 기판(111)은 반도체 단결정, 예컨대 질화물 단결정 성장을 위한 성장용 기판으로서, 사파이어(Al2O3), SiC, Si, GaAs, GaN, ZnO, Si, GaP, InP, Ge, Ga2O3 중 적어도 하나를 이용할 수 있다. 상기 기판(111)은 투광성, 절연성 또는 도전성 기판일 수 있다. 상기 사파이어는 육각 룸보형(Hexa-Rhombo R3c) 대칭성을 갖는 결정체로서, c축 및 a축 방향의 격자 상수가 13.001Å과 4.758Å이며, C(0001)면, A(1120)면, R(1102)면 등을 갖는다. 이 경우, 상기 C(0001) 면은 비교적 질화물 박막의 성장이 용이하며, 고온에서 안정하기 때문에 질화물 반도체의 성장용 기판으로 주도 사용된다.
상기 기판(111)의 두께는 120㎛~500㎛ 범위를 포함하며, 그 굴절률은 2.4 이하 예컨대, 2 이하의 물질로 형성될 수 있다.
상기 기판(111)은 인접한 변들의 길이가 서로 동일하거나 다를 수 있으며, 적어도 한 변의 길이는 0.3mm×0.3mm 이상이거나, 대면적 예컨대, 1mm×1mm 또는 그 이상의 면적을 갖는 크기로 제공될 수 있다. 상기 기판(111)은 위에서 볼 때, 사각형, 육각형과 같은 다각형 형상으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 버퍼층(113)은 상기 기판(111) 상에 형성되며, II족 내지 VI족 화합물 반도체를 선택적으로 이용하여 한 층 또는 복수의 층으로 형성될 수 있다. 상기 버퍼층(113)은 예컨대, III족-V족 화합물 반도체를 이용한 반도체층 예컨대, AlxInyGa(1-x-y)N 조성식(0≤x≤1, 0≤y≤1, 0≤x+y≤1)을 갖는 화합물 반도체로 형성될 수 있으며, 대표적으로, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN 중 적어도 하나를 포함할 수 있다. 상기 버퍼층(113)은 기판(111)의 성장면(0001)을 통해 주로 성장이 되고, 격자 상수에 의해 전위가 발생되면 상기 전위는 대부분 성장 방향으로 전파된다.
상기 버퍼층(113)과 상기 제1반도체층(115) 사이에는 불순물이 도핑되지 않는 반도체층(undoped semiconductor layer)이 더 형성될 수 있으며, 이러한 언도프드 반도체층은 n형 반도체층보다 낮은 전도성을 갖는 저 전도층으로 형성될 수 있다. 상기 버퍼층(113) 및 언도프드 반도체층 중 적어도 한 층에는 전위가 발생될 수 있다.
상기 제1반도체층(115)은 상기 버퍼층(113) 또는 상기 불순물이 도핑되지 않는 반도체층 위에 형성될 수 있으며, 제1도전형 도펀트를 포함할 수 있다. 상기 제1도전형 도펀트는 N형 도펀트일 수 있으며, Si, Ge, Sn, Se, Te를 포함한다. 상기 제1반도체층(115)은 III족-V족 화합물 반도체 예컨대, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN와 같은 화합물 반도체 중 어느 하나로 이루어질 수 있다. 상기 제1반도체층(115)은 예컨대 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체를 형성될 수 있다.
복수의 피트(71,72,73)는 제1 및 제2반도체층(115,116)에 배치될 수 있다. 예를 들면, 상기 제1반도체층(115)은 상기 제1반도체층(115)의 상면으로부터 오목하게 리세스된 복수의 피트(71,72,73)를 포함한다. 상기 각 피트(71,72,73)는 측 단면이 V형상으로 형성되며, 평면 형상이 육각 형상으로 형성될 수 있다. 즉, 상기 각 피트(71,72,73)는 상기 제1반도체층(115)의 두께가 증가함에 따라 더 커지게 된다. 상기 각 피트(71,72,73)의 경사 면은 35도 내지 60도의 범위를 가질 수 있다. 상기 각 피트(71,72,73)에는 전파되는 하나 또는 복수의 전위들이 연결될 수 있다.
상기 복수의 피트(71,72,73)는 제1 및 제2반도체층(115,116) 중 어느 하나의 상면으로부터 제1깊이를 갖는 제1피트(71), 상기 제1피트(71)보다 작은 깊이를 갖는 제2피트(72) 또는 제3피트(73)를 포함한다. 예를 들면, 상기 제1반도체층(115)의 상면으로부터 제1깊이(D1)를 갖는 제1피트(71)와, 상기 제1반도체층(115)의 상면으로부터 상기 제1피트(71)보다 작은 제2깊이(D2)를 갖는 제2피트(72) 및 제3피트(73)를 포함한다. 상기 제1깊이(D1)는 상기 제1반도체층(115)의 상면으로부터 15nm 이상의 깊이를 가지며, 예컨대 15nm 내지 100nm 범위로 형성될 수 있으며, 또한 상기 제1깊이(D1) 범위 내에서 서로 동일한 깊이이거나 다른 깊이를 가질 수 있다. 상기 제2깊이(D2)는 상기 제1반도체층(115)의 상면으로부터 15nm 미만의 깊이를 가지며, 예컨대 2nm 이상 15nm 미만으로 형성될 수 있다. 또한 제2 및 제3피트(72,73)는 제2깊이(D2) 범위 내에서 서로 동일한 깊이이거나 서로 다른 깊이일 수 있다.
도 3 및 도 4를 참조하면, 상기 제1반도체층(115) 내에서 제2피트(72)는 상기 제1피트(71)와 접촉하거나 연결된다. 상기 제2피트(72)는 하나 또는 복수개가 상기 제1피트(71)의 영역 내에 연결될 수 있다. 상기 제2피트(72)는 복수개가 상기 제1피트(71)의 영역과 수직 방향으로 오버랩되게 배치될 수 있다. 상기 제2피트(72)와 상기 제1피트(71)가 병합된 경우, 상기 병합된 피트의 너비(D3)는 상기 제1피트(71)의 너비(D4)보다는 크게 형성될 수 있다. 또한 병합된 피트 내에는 복수의 저점(75,76) 또는 꼭지점이 서로 이격되어 배치될 수 있다. 상기 제1피트(71)와 상기 제2피트(72)는 경사 면과 경사면이 서로 연결되거나, 경사면과 모서리가 서로 연결될 수 있다. 또한 상기 제1피트(71)와 상기 제2피트(72)가 연결되는 영역의 깊이는 상기 제1반도체층(115)의 상면보다 낮은 위치에 있을 수 있으며, 예컨대 상기 제1 및 제2피트(71,72)의 저점(75,76) 또는 꼭지점의 위치보다 높게 위치하고, 상기 제1반도체층(115)의 상면보다 낮게 위치할 수 있다. 이러한 병합 피트들은 2개 이상의 피트들의 집합으로서, 위에서 볼 때 길이가 긴 형상의 결함으로 나타난다.
또한 제1반도체층(115) 내에는 제1깊이(D1)를 갖는 제1피트(71)들이 병합된 피트 형태로 제공될 수 있으며, 상기 병합된 피트의 두 저점 사이의 경계 부분이 상기 제1반도체층(115)의 상면보다 낮게 배치될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1반도체층(115) 내에서 제3피트(73)는 상기 제1 및 제2피트(71,72)와 이격된 위치에 형성될 수 있다. 상기 제3피트(73)는 상기 제2피트(72)와 동일한 깊이를 갖거나 다른 깊이를 가질 수 있다. 상기 제1반도체층(115)은 500도 내지 1000도 범위에서 성장할 경우, 상기 피트들(71,72,73)이 형성될 수 있고, 상기 피트들(71,72,73)은 하나 또는 복수의 전위(미도시)들과 연결될 수 있다. 또한 상기 피트들(71,72,73)은 마스크 패턴에 의해 형성될 수 있다.
상기 제1반도체층(115)의 두께는 상기 제1깊이(D1)보다 두껍게 형성될 수 있다. 상기 제1반도체층(115)의 두께는 예컨대 50nm 이상으로 형성되거나, 상기 제1깊이(D1)의 2배 내지 50배의 두께로 형성될 수 있다. 상기 제1반도체층(115)은 피트 제어층 또는 결함 제어층으로 정의될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제2반도체층(116)은 상기 제1반도체층(115) 위에 형성될 수 있다. 상기 제2반도체층(116)은 복수의 반도체층 예컨대, 제1질화물층(61)과 제2질화물층(62)을 포함한다. 상기 제1질화물층(61)과 상기 제2질화물층(62)의 적층 주기는 반복적으로 적층될 수 있으며, 예컨대 2 내지 5주기로 형성될 수 있다. 상기 제1반도체층(115) 위에는 제1질화물층(61)이 접촉되거나, 상기 제2질화물층(62)이 접촉될 수 있다. 상기 제2반도체층(116)은 제1도전형 도펀트 예컨대, N형 도펀트를 포함한다.
상기 제1질화물층(61)은 알루미늄(Al)을 갖는 질화물 반도체 예컨대, AlGaN 또는 InAlGaN와 같은 AlGaN계 반도체로 형성될 수 있다. 상기 상기 제1질화물층(61) 내의 알루미늄의 조성비는 5% 내지 20% 범위일 수 있다. 상기 제1질화물층(61)이 InAlGaN인 경우, 알루미늄 조성비는 5% 내지 20% 범위이며, 인듐(In)의 조성비는 상기 알루미늄의 조성비보다 작은 조성비 예컨대, 5% 이하로 형성될 수 있다. 상기 제1질화물층(61)은 제1도전형 도펀트 예컨대, N형 도펀트를 포함한다. 상기 제1질화물층(61)은 0.5nm 내지 5nm 범위의 두께 예컨대, 0.5nm 내지 2nm 범위로 형성될 수 있으며, 상기 제1피트(71)의 제1깊이(D1)보다 작은 두께 예컨대, 1/3배 이하의 두께로 형성될 수 있다.
상기 제2질화물층(62)은 상기 제1질화물층(61)과 다른 질화물 반도체로 형성될 수 있다. 상기 제2질화물층(62)은 InGaN 또는 GaN으로 형성될 수 있다. 상기 제2질화물층(62)이 InGaN인 경우, 인듐(In)의 조성비는 7% 이하로 형성될 수 있다.
상기 제2질화물층(62)은 0.5nm 내지 5nm 범위의 두께 예컨대, 0.5nm 내지 2nm 범위로 형성될 수 있다. 상기 제2질화물층(62)은 제1피트(71)의 제1깊이(D1)보다 작은 두께 예컨대, 1/3배 이하의 두께로 형성될 수 있다. 상기 제2질화물층(62)은 상기 제1질화물층(61)의 두께와 동일한 두께이거나 더 얇은 두께로 형성될 수 있다.
상기 제1질화물층(61)은 상기 제1반도체층(115) 위에 성장될 때, 상기 제1 내지 제3피트(71,72,73) 상에 형성되며, 이때 제2 및 제3피트(72,73)의 일부를 메워 성장하게 된다. 즉, 상기 제1질화물층(61)은 깊이 즉, 크기가 작은 피트들을 메워 성장함으로써, 상기 제2반도체층(116) 내에서 제2 및 제3피트(72,73)는 점차 작은 크기로 형성될 수 있다.
상기 제2질화물층(62)은 수직 성장이 촉진되는 모드로 성장되므로, 상기 제2질화물층(62) 내에 존재하는 제1내지 제3피트(71,72,73)들을 유지시켜 준다. 여기서, 상기 제1 및 제2질화물층(61,62)은 상기 제1반도체층(115)의 상면 위에 적층되는 두께가 상기 제1 내지 제3피트(71,72,73) 상에 적층되는 두께보다 두껍게 형성될 수 있다.
상기 제1질화물층(61)과 상기 제2질화물층(62)의 주기를 반복하여 형성할 수 있다. 상기 복수의 제1질화물층(61)은 상대적으로 작은 크기의 피트들 예컨대, 제2 및 제3피트(72,73)의 사이즈를 단계적으로 줄여 주게 되므로 상부의 제1질화물층(61)에는 상기 제2 및 제3피트(72,73)이 제거될 수 있다. 상기 제1반도체층(115)에 인접한 제1질화물층(61)에는 제2 및 제3피트(72,73)가 존재하게 되며, 상기 활성층(119)에 인접한 제1질화물층(61)에는 상기 제2 및 제3피트(72,73)은 제거될 수 있다. 상기 활성층(119)에 인접한 제1질화물층(61)에는 상대적으로 큰 크기의 피트들 예컨대, 제1피트(71)들이 존재하게 된다. 상기 제2반도체층(118)의 상면 중에서 상기 제1반도체층(115)에 배치된 제2피트(72)와 수직 방향으로 오버랩되는 영역은 평탄 면으로 형성될 수 있다. 상기 제2반도체층(117)의 상면 중에서 상기 제1반도체층(115)에 배치되며 제1피트(71)에 병합된 복수의 제2피트(72)와 수직 방향으로 오버랩되는 영역은 평탄한 면으로 형성될 수 있다.또한 상기 제2반도체층(118)의 상면 중에서 상기 제1반도체층(115)에 배치된 제3피트(73)와 수직 방향으로 오버랩되는 영역은 평탄 면으로 형성될 수 있다. 이러한 제2 및 제3피트(72,73)와 수직 방향으로 오버랩되는 영역이 평탄한 면으로 형성됨으로써, 상기 활성층(119)으로 전파될 수 있는 작은 크기의 피트뿐만 아니라, 병합된 피트 영역에 존재하는 작은 사이즈의 피트를 제거해 줄 수 있다. 이에 따라 활성층(119)의 내부 양자 효율을 개선시켜 줄 수 있다.
상기 제1 및 제2질화물층(61,62)의 주기는 2내지 5주기로 적층될 수 있으며, 상기 제1 및 제2질화물층(61,62) 중 어느 하나는 더 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제2반도체층(116)내에서 제2 및 제3피트(72,73)를 제거함으로써, 균일한 크기의 피트들만 제공할 수 있다. 또한 상기 제1피트(71)에 연결된 제2피트(72)가 제거됨으로써, 상기 병합된 피트가 개별 피트로 되므로 병합 피트에 의한 영역 예컨대, 각 피트 내에서의 골짜기나 저점 또는 꼭지점과 같은 영역이 줄어들 수 있다. 이는 제2반도체층(116)의 하부에 존재하는 제2피트(72) 및 제3피트(73)가 상부로 갈수록 제거됨으로써, 상기 제2반도체층(116)의 상부에는 상기 제2피트(72) 및 제3피트(73)에 대응되는 영역이 평탄한 면으로 제공될 수 있다. 이에 따라 도 4와 같이, 상기 제2반도체층(116)의 표면에는 제1피트(71) 또는 균일한 크기를 갖는 제1피트(71)들이 노출될 수 있다. 상기 균일한 크기의 제1피트(71)들은 15nm 이상의 깊이를 갖는 피트들을 포함하며, 상기 제거되는 피트들은 15nm 미만의 깊이를 갖는 피트들을 포함한다.
상기 제2반도체층(116)의 상면 전체의 피트 밀도는 상기 제2반도체층(116)의 하면 전체의 피트 밀도보다 작게 된다. 예컨대, 상기 제2반도체층(116)의 하면 또는 제1반도체층(115)의 상면에서의 제2피트(72) 또는 제3피트(73)의 밀도는 상기 제2반도체층(116)의 상면의 제2피트(72) 또는 제3피트(73)의 밀도보다 높으며, 예컨대 70% 이상 예컨대, 80% 이상의 차이로 높게 형성될 수 있다. 또한 상기 제2반도체층(116)의 제1피트(71)의 밀도는 상기 상기 제2반도체층(116)의 하면 또는 제1반도체층(115)의 상면의 제1피트(71)의 밀도와 동일한 밀도를 갖는다.
상기 제2반도체층(116)과 상기 활성층(117) 사이에는 제1클래드층이 형성될 수 있다. 상기 제1클래드층은 GaN계 반도체로 형성될 수 있으며, 그 밴드 갭은 상기 활성층(117)의 밴드 갭보다 넓게 형성될 수 있다. 이러한 제1클래드층은 캐리어를 구속시켜 주는 역할을 하며, N형 도펀트를 포함할 수 있다.
상기 제2반도체층(116)과 활성층(117) 사이에는 서로 다른 반도체층들이 교대로 적층된 초 격자 구조가 형성될 수 있으며, 이러한 초격자 구조는 격자 결함을 감소시켜 줄 수 있다. 상기 초 격자 구조의 각 층은 수 Å 이상의 두께로 적층될 수 있다.
상기 활성층(117)은 제2반도체층(116) 위에 형성되며, 상기 제1피트(71)들이 배치된다. 상기 활성층(117) 내에는 균일한 크기의 제1피트(71)가 배치된다. 상기 제3피트(73)와 제2피트(72)의 제거로 인해 상기 활성층(117) 내에서의 비 발광 영역은 줄여줄 수 있다. 또한 상기 활성층(117)의 결정 품질은 높여줄 수 있다. 상기 활성층(117) 내에서 상기 제1피트(71)보다 작은 크기의 피트 예컨대, 제2피트 또는 제3피트의 밀도는 상기 제1반도체층(115)에서의 제2피트 또는 제3피트의 밀도보다 낮을 수 있다. 상기 활성층(117) 내에서의 제2 또는 제3피트의 밀도는 상기 제1반도체층(115) 내에서의 제2 또는 제3피트의 밀도보다 예컨대, 80% 이상의 차이로 낮을 수 있다.
상기 활성층(117)은 단일 양자 우물, 다중 양자 우물(MQW), 양자 선(quantum wire) 구조 또는 양자 점(quantum dot) 구조를 선택적으로 포함하며, 우물층과 장벽층의 주기를 포함한다. 상기 우물층은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 포함하며, 상기 장벽층은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 포함할 수 있다. 상기 우물층/장벽층의 주기는 예컨대, InGaN/GaN, GaN/AlGaN, InGaN/AlGaN, InGaN/InGaN, InGaN/InAlGaN, GaN/InAlGaN의 적층 구조를 이용하여 1주기 이상으로 형성될 수 있다. 상기 장벽층은 상기 우물층의 밴드 갭보다 넓은 밴드 갭을 가지는 반도체 물질로 형성될 수 있다.
상기 활성층(117) 위에는 제3반도체층(119)이 형성된다. 상기 제3반도체층(119)은 제2도전형 도펀트가 도핑된 반도체 예컨대, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN와 같은 화합물 반도체 중 어느 하나로 이루어질 수 있다. 상기 제3반도체층(119)은 예컨대 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체를 갖는 p형 반도체층으로 형성될 수 있으며, 상기 제2도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba을 포함할 수 있다.
상기 제3반도체층(119)은 전자 블록킹층으로 형성될 수 있으며, 예컨대 P-AlGaN 또는 P-InAlGaN으로 형성될 수 있다. 상기 제3반도체층(119)은 상기 활성층(117)의 피트들이 전파되는 것을 억제할 수 있다. 상기 피트들이 반도체 소자의 표면에 노출될 경우, ESD(Electrostatic Discharge)에 영향을 줄 수 있다. 따라서, 피트들을 제거하는 수평 성장 모드로 형성할 수 있다. 상기 제3반도체층(119)에는 상기 활성층(117)에 존재하는 피트의 일부가 전파될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제3반도체층(119)은 초격자 구조를 포함할 수 있으며, 상기 초격자 구조는 InGaN/GaN 초격자 구조 또는 AlGaN/GaN 초격자 구조를 포함할 수 있다. 상기 제3반도체층(119)의 초격자 구조는 비 정상적으로 전압에 포함된 전류를 확산시켜 주어, 활성층(117)을 보호할 수 있다.
상기 제4반도체층(121)은 상기 제3반도체층(119) 위에 상기 제3반도체층(119)과 다른 반도체를 형성될 수 있으며 제2도전형 도펀트를 포함한다. 상기 제4반도체층(121)은 GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN와 같은 화합물 반도체 중 어느 하나로 이루어질 수 있다. 상기 제4반도체층(121)은 예컨대 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체를 갖는 p형 반도체층, 예컨대 P-GaN 또는 P-InGaN으로 형성될 수 있다. 상기 제2도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba을 포함할 수 있다. 상기 제4반도체층(121)은 상기 피트들을 차단하여 피트들이 노출되지 않게 형성될 수 있다.
또한 다른 예로서, 상기 제1 및 제2반도체층(115,116)은 p형 반도체층, 상기 제3 및 제4반도체층(119,121)은 n형 반도체층으로 구현될 수 있다. 상기 제4반도체층(121) 위에는 상기 제2도전형과 반대의 극성을 갖는 반도체층이 형성할 수도 있다.
상기 발광소자는 n형 반도체층(115,116), 활성층(117) 및 p형 반도체층(119,121)의 적층 구조를 발광 구조물로 정의될 수 있으며, 상기 발광 구조물은 n-p 접합 구조, p-n 접합 구조, n-p-n 접합 구조, p-n-p 접합 구조 중 어느 한 구조로 구현할 수 있다. 여기서, 상기 p는 p형 반도체층이며, 상기 n은 n형 반도체층이며, 상기 -은 p형 반도체층과 n형 반도체층이 직접 접촉되거나 간접 접촉된 구조를 포함한다. 이하, 설명의 편의를 위해, 발광 구조물의 최 상층은 제4반도체층(121) 즉, 제2도전형의 반도체층으로 설명하기로 한다.
여기서, 도 8 및 도 9에 도시된 발광 소자의 AFM 이미지를 보면, 도 8에 도시된 비교 예의 발광 소자는 제2반도체층이 없는 층에서 바라본 구조로서, 소자의 탑면에서 보면 피트(P1)들이 연결되는 다수의 골짜기와 같은 결함 영역(A1)이 나타나며, 이러한 골짜기 영역은 비 발광 영역으로 작용하게 된다. 따라서, 전체적인 광 추출 효율을 저하시킬 수 있다. 도 9에 도시된 실시 예의 발광 소자는, 도 8과 비교할 때 골짜기와 같은 결합 영역이 거의 제거되며 피트(P1)들이 서로 떨어져 배치된 상태이다. 이에 따라 비교 예의 발광 소자에 비해 실시 예의 발광 소자의 광 추출 효율은 개선될 수 있다. 도 8 및 도 9의 AFM 이미지의 크기는 10㎛×10㎛ 크기를 나타낸 도면이다.
도 10 및 도 11에 도시된 발광 소자의 CL 이미지를 보면, 도 10에 도시된 비교 예의 CL 이미지에는 피트(P1)들이 연결되는 결함 영역(A2)이 존재하게 되며, 이러한 결함 영역(A2)에 의해 광 추출 효율은 저하된다. 도 11에 도시된 실시 예의 CL 이미지는 피트들이(P1)이 서로 이격되며 피트(P1)들이 연결되는 결함 영역이 비교 예에 비해 현저하게 감소됨을 알 수 있으며, 이러한 실시 예의 발광 소자의 광 추출 효율은 비교 예에 비해 개선될 수 있다.
다른 예로서, 도 1에 도시된, 상기 제1 및 제2질화물층(61,62)를 갖는 제2반도체층(116)은 상기 활성층(117)과 제3반도체층(119) 사이 또는 상기 제3반도체층(119)와 상기 제4반도체층(121) 사이의 영역 중 적어도 하나에 더 배치될 수 있다.
도 5는 제2실시 예에 따른 발광 소자를 나타낸 측 단면도이다. 제2실시 예를 설명함에 있어서, 제1실시 예와 동일한 부분에 대해서는 제1실시 예의 설명을 참조하기로 한다.
도 5를 참조하면, 발광 소자는 복수의 볼록부(112)를 갖는 기판(111), 버퍼층(113), 제1반도체층(115), 제2반도체층(116), 활성층(117), 제3반도체층(119) 및 제4반도체층(121)의 적층 구조를 포함한다.
상기 기판(111)은 투광성, 절연성 또는 도전성 기판을 이용할 수 있으며, 예컨대, 사파이어(Al2O3), SiC, Si, GaAs, GaN, ZnO, Si, GaP, InP, Ge, Ga2O3 중 적어도 하나를 이용할 수 있다. 상기 기판(111)의 두께는 120㎛~500㎛ 범위를 포함하며, 그 굴절률은 2.4 이하 예컨대, 2 이하의 물질로 형성될 수 있다. 사파이어 기판의 C면은 비교적 질화물 박막의 성장이 용이하며, 고온에서 안정하기 때문에 질화물 성장용 기판으로 주로 사용된다.
상기 기판(111)은 복수의 볼록부(112)를 포함한다. 상기 복수의 볼록부(112)는 상기 기판(111)에서 활성층(117) 방향으로 돌출되며, 그 형상은 반구형 형상, 볼록한 돔형 렌즈 형상, 또는 볼록 렌즈 형상이 3차원 형상으로 형성될 수 있다. 상기 볼록부(112)의 다른 형상은 3차원 구조물인 다각형 형상을 포함할 수 있으며, 이에 대해 한정하지는 않는다.
상기 복수의 볼록부(112)는 복수개가 서로 이격되어 배치되며, 위에서 볼 때, 격자 형태 또는 매트릭스 형태 또는 스트라이프 형태로 배열될 수 있다. 상기 복수의 볼록부(112) 간의 간격은 일정한 주기로 형성되거나, 불규칙한 간격 또는 랜덤한 간격으로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 상기 복수의 볼록부(112)는 입사되는 광의 임계각을 변환시켜 주어, 광 추출 효율을 개선시켜 줄 수 있다.
상기 볼록부(112)의 가장 하부에 너비와, 상기 볼록부들 사이의 간격의 비율은 1:1~4:2 정도일 수 있으며, 상기 볼록부(112)의 너비는 3㎛±0.5㎛ 범위를 포함하며, 상기 볼록부들 사이의 간격은 예컨대, 2㎛±0.5㎛ 범위를 포함하며, 상기 각 볼록부의 높이는 0.8㎛~2.5㎛ 범위로 형성될 수 있다.
상기 버퍼층(113)은 상기 기판(111)의 평탄한 상면 위에 배치되며, 상기 볼록부(112)의 곡면에도 접촉될 수 있다. 상기 버퍼층(113)의 일부는 도시하지 않았지만, 상기 볼록부(112)의 정점 위에도 배치될 수 있으며, 이에 대해 한정하지는 않는다.
상기 버퍼층(113) 위에 제1반도체층(115)이 형성되며, 상기 제1반도체층(115)은 상기 볼록부(112)의 위에서 합쳐지게 된다. 이때 상기 볼록부(112)와 오버랩되는 영역에는 전위(51)가 형성될 수 있으며, 상기 제1반도체층(115)의 상면 방향으로 전파되며, 각 전위(51)들은 제1피트들(71)과 연결된다. 상기 볼록부(112) 상에 배치된 전위들(51)은 상기 볼록부(112)가 아닌 영역에서 생성된 전위들(미도시)과 병합될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1반도체층(115) 상에 배치된 복수의 피트(71,72,73)는 제1피트(71), 제2피트(72) 및 제3피트(73)를 포함한다. 상기 제1내지 제3피트(71,72,73) 중 제2 및 제3피트(72,73)는 상기 제2반도체층(116)의 제1질화물층(61)/제2질화물층(62)의 적층 구조에 의해 제거될 수 있다. 이에 따라 상기 제2반도체층(116)의 표면에는 제1피트(71) 또는 균일한 크기를 갖는 피트들이 노출될 수 있다. 상기 균일한 크기의 피트들은 15nm 이상의 깊이를 갖는 피트들을 포함하며, 상기 제거되는 피트들은 15nm 미만의 깊이를 갖는 피트들을 포함한다.
도 6은 도 1의 발광 소자에 전극을 배치한 구조이다.
도 6을 참조하면, 발광 소자(101)는 기판(111), 제1 및 제2반도체층(115,116), 활성층(117), 제3 및 제4반도체층(119,121), 상기 제4반도체층(121) 위에 전류 확산층(151), 상기 제1 및 제2반도체층(115,116) 중 적어도 하나의 위에 배치된 제1전극(153), 및 상기 전류 확산층(151) 위에 배치된 제2전극(155)을 포함한다.
상기 전류 확산층(141)은 상기 제4반도체층(121)의 상면 전 영역의 70% 이상을 커버하며, 전류를 확산시켜 공급하게 된다. 상기 전류 확산층(151)은 금속 또는 투명한 금속을 포함할 수 있다. 상기 전류 확산층(151)은 예컨대, ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), ZnO, IrOx, RuOx, NiO 등 중에서 선택되며, 적어도 한 층으로 형성될 수 있다. 상기 전류 확산층(151)은 반사 전극층으로 형성될 수 있으며, 그 물질은 예컨대, Al, Ag, Pd, Rh, Pt, Ir 및 이들 중 2이상의 합금 중에서 선택적으로 형성될 수 있다.
상기 제2전극(155)은 상기 제4반도체층(121) 및/또는 상기 전류 확산층(151) 위에 형성될 수 있으며, 전극 패드를 포함할 수 있다. 상기 제2전극(155)은 암(arm) 구조 또는 핑거(finger) 구조의 전류 확산 패턴이 더 형성될 수 있다. 상기 제2전극(155)은 오믹 접촉, 접착층, 본딩층의 특성을 갖는 금속으로 비 투광성으로 이루어질 수 있으며, 이에 대해 한정하지는 않는다.
상기 제2전극(155)은 상기 제4반도체층(121)의 상면 면적의 40% 이하 예컨대, 20% 이하로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1전극(153)은 제1 및 제2반도체층(115,116) 중 적어도 하나의 위에 배치된다. 상기 제1전극(153)과 상기 제2전극(155)은 Ti, Ru, Rh, Ir, Mg, Zn, Al, In, Ta, Pd, Co, Ni, Si, Ge, Ag 및 Au와 이들의 선택적인 합금 중에서 선택될 수 있다.
상기 반도체층들(113,115,116,117,121)의 표면에는 절연층(미도시)이 더 형성될 수 있으며, 상기 절연층은 반도체층들 간의 층간 쇼트(short)를 방지하고, 습기 침투를 방지할 수 있다.
도 7은 도 1의 발광 소자의 다른 전극 배치 예를 나타낸 도면이다. 도 7의 일부 구성 요소의 설명은 도 1 및 도 6의 설명을 참조하기로 한다.
도 7을 참조하면, 발광 소자(102)는 제1반도체층(115)의 상부에 제1전극(181) 및 하부에 제2전극(170)을 포함한다.
도 1의 기판(111) 및 버퍼층(113)은 물리적 또는/및 화학적 방법으로 제거할 수 있다. 상기 제1반도체층(115)은 도전형 반도체층 예컨대, n형 반도체층을 포함한다. 상기 기판(111)의 제거 방법은 물리적 방법(예: Laser lift off) 또는/및 화학적 방법(습식 에칭 등)으로 제거할 수 있으며, 다른 버퍼층도 제거하여 상기 제1반도체층(115)을 노출시켜 준다. 상기 기판(111)이 제거된 방향을 통해 아이솔레이션 에칭을 수행하여, 상기 제1반도체층(115) 상에 제1전극(181)을 형성하게 된다. 상기 제1전극(181)은 서로 다른 영역에 배치될 수 있으며, 암(arm) 패턴 또는 브리지 패턴을 갖고 형성될 수 있으며, 이에 대해 한정하지는 않는다. 상기 제1전극(181)의 일부 영역은 와이어(미도시)가 본딩되는 패드로 사용될 수 있다.
상기 제4반도체층(121) 아래에 제2전극(170)이 배치된다. 상기 제2전극(170)은 복수의 전도층을 포함할 수 있으며, 예컨대 접촉층(165), 반사층(167), 본딩층(169) 및 전도성 지지부재(173)를 포함한다.
상기 접촉층(165)은 투과성 전도물질 또는 금속 물질로서, 예컨대 ITO, IZO, IZTO, IAZO, IGZO, IGTO, AZO, ATO와 같은 저 전도성 물질이거나 Ni, Ag의 금속을 이용할 수 있다. 상기 접촉층(165) 아래에 반사층(167)이 형성되며, 상기 반사층(167)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 및 그 조합으로 구성된 그룹으로부터 선택된 물질로 이루어진 적어도 하나의 층을 포함하는 구조로 형성될 수 있다. 상기 반사층(167)의 일부는 상기 제4반도체층(121) 아래에 접촉될 수 있으며, 금속으로 오믹 접촉하거나 ITO와 같은 저 전도 물질로 오믹 접촉할 수 있으며, 이에 대해 한정하지는 않는다.
상기 반사층(167) 아래에는 본딩층(169)이 형성되며, 상기 본딩층(169)은 베리어 금속 또는 본딩 금속으로 사용될 수 있으며, 그 물질은 예를 들어, Ti, Au, Sn, Ni, Cr, Ga, In, Bi, Cu, Ag 및 Ta와 선택적인 합금 중에서 적어도 하나를 포함할 수 있다.
상기 본딩층(169) 아래에는 전도성 지지 부재(173)가 형성되며, 상기 전도성 지지 부재(173)는 금속 또는 캐리어 기판일 수 있으며, 예컨대 구리(Cu-copper), 금(Au-gold), 니켈(Ni-nickel), 몰리브덴(Mo), 구리-텅스텐(Cu-W), 캐리어 웨이퍼(예: Si, Ge, GaAs, ZnO, SiC 등)와 같은 전도성 물질로 형성될 수 있다. 상기 전도성 지지부재(173)는 다른 예로서, 전도성 시트로 구현될 수 있다.
상기 제1반도체층(115)의 상면에는 러프니스와 같은 광 추출 구조(59)가 형성될 수 있다. 상기 반도체층들(113,115,116,117,119,121)의 표면에는 절연층(미도시)이 형성될 수 있으며, 상기 절연층은 상기 광 추출 구조(59) 위에 더 형성될 수 있다.
상기 제2전극(170)과 상기 제4반도체층(121) 사이의 영역 중 상기 제1전극(181)과 대응되는 영역에는 전류 블록킹층(161)이 배치되며, 상기 제2전극(170)과 상기 제4반도체층(121) 사이의 영역 중 외측 둘레에는 보호층(163)이 배치될 수 있다. 상기 전류 블록킹층(161)과 상기 보호층(163)은 절연 물질 또는 투명한 전도성 물질로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 상기 전류 블록킹층(161)과 상기 보호층(163)은 동일한 물질이거나 다른 물질로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
<발광 소자 패키지>
도 12은 도 6의 발광 소자를 갖는 발광소자 패키지를 나타낸 도면이다.
도 12를 참조하면, 발광소자 패키지(200)는 몸체(221)와, 상기 몸체(221)에 적어도 일부가 배치된 제1 리드전극(211) 및 제2 리드전극(213)과, 상기 몸체(221) 상에 상기 제1 리드전극(211) 및 제2 리드전극(213)과 전기적으로 연결되는 상기 발광 소자(241)와, 상기 몸체(221) 상에 상기 발광 소자(241)를 덮는 몰딩부재(231)를 포함한다.
상기 몸체(221)는 실리콘 재질, 합성수지 재질, 또는 금속 재질을 포함하여 형성될 수 있다. 상기 몸체(221)는 위에서 볼 때 내부에 캐비티(cavity)(225) 및 상기 캐비티(225)의 둘레에는 캐비티 바닥에 대해 경사진 면으로 형성될 수 있다.
상기 제1 리드전극(211) 및 상기 제2 리드전극(213)은 서로 전기적으로 분리되며, 상기 몸체(221) 내부를 관통하도록 형성될 수 있다. 즉, 상기 제1 리드전극(211) 및 상기 제2 리드전극(213)은 일부는 상기 캐비티(225) 내부에 배치되고, 다른 부분은 상기 몸체(221)의 외부에 배치될 수 있다.
상기 제1 리드전극(211) 및 제2 리드전극(213)은 상기 발광 소자(241)에 전원을 공급하고, 상기 발광 소자(241)에서 발생된 빛을 반사시켜 광 효율을 증가시킬 수 있으며, 상기 발광 소자(241)에서 발생된 열을 외부로 배출시키는 기능을 할 수도 있다. 상기 제1 및 제2리드 전극(211,213)은 금속 재질로 형성될 수 있으며, 간극부(223)에 의해 분리된다.
상기 발광 소자(241)는 상기 몸체(221) 상에 설치되거나 상기 제1 리드전극(211) 또는/및 제2 리드전극(213) 상에 설치될 수 있다.
상기 발광 소자(221)는 제1와이어(242)로 상기 제1 리드전극(211)과 연결되며, 제2와이어(243)로 제2 리드전극(213)과 연결될 수 있으며, 이에 한정되지 않는다.
상기 몰딩부재(231)는 상기 발광 소자(241)를 포위하여 상기 발광 소자(241)를 보호할 수 있다. 또한, 상기 몰딩부재(231)에는 형광체가 포함되고, 이러한 형광체에 의해 상기 발광 소자(241)에서 방출된 광의 파장이 변화될 수 있다.
<조명 시스템>
실시예에 따른 발광 소자 또는 발광 소자 패키지는 조명 시스템에 적용될 수 있다. 상기 조명 시스템은 복수의 발광 소자 또는 발광 소자 패키지가 어레이된 구조를 포함하며, 도 13 및 도 14에 도시된 표시 장치, 도 15에 도시된 조명 장치를 포함하고, 조명등, 신호등, 차량 전조등, 전광판 등이 포함될 수 있다.
도 13은 실시 예에 따른 표시 장치의 분해 사시도이다.
도 13을 참조하면, 표시 장치(1000)는 도광판(1041)과, 상기 도광판(1041)에 빛을 제공하는 발광 모듈(1031)와, 상기 도광판(1041) 아래에 반사 부재(1022)와, 상기 도광판(1041) 위에 광학 시트(1051)와, 상기 광학 시트(1051) 위에 표시 패널(1061)과, 상기 도광판(1041), 발광 모듈(1031) 및 반사 부재(1022)를 수납하는 바텀 커버(1011)를 포함할 수 있으나, 이에 한정되지 않는다.
상기 바텀 커버(1011), 반사시트(1022), 도광판(1041), 광학 시트(1051)는 라이트 유닛(1050)으로 정의될 수 있다.
상기 도광판(1041)은 상기 발광 모듈(1031)로부터 제공된 빛을 확산시켜 면광원화 시키는 역할을 한다. 상기 도광판(1041)은 투명한 재질로 이루어지며, 예를 들어, PMMA(polymethyl metaacrylate)와 같은 아크릴 수지 계열, PET(polyethylene terephthlate), PC(poly carbonate), COC(cycloolefin copolymer) 및 PEN(polyethylene naphthalate) 수지 중 하나를 포함할 수 있다.
상기 발광모듈(1031)은 상기 도광판(1041)의 적어도 일 측면에 배치되어 상기 도광판(1041)의 적어도 일 측면에 빛을 제공하며, 궁극적으로는 표시 장치의 광원으로써 작용하게 된다.
상기 발광모듈(1031)은 적어도 하나를 포함하며, 상기 도광판(1041)의 일 측면에서 직접 또는 간접적으로 광을 제공할 수 있다. 상기 발광 모듈(1031)은 보드(1033)과 상기에 개시된 실시 예에 따른 발광 소자 패키지(200)를 포함하며, 상기 발광 소자 패키지(200)는 상기 보드(1033) 상에 소정 간격으로 어레이될 수 있다. 상기 보드는 인쇄회로기판(printed circuit board)일 수 있지만, 이에 한정하지 않는다. 또한 상기 보드(1033)은 메탈 코어 PCB(MCPCB, Metal Core PCB), 연성 PCB(FPCB, Flexible PCB) 등을 포함할 수도 있으며, 이에 대해 한정하지는 않는다. 상기 발광 소자 패키지(200)는 상기 바텀 커버(1011)의 측면 또는 방열 플레이트 상에 탑재될 경우, 상기 보드(1033)는 제거될 수 있다. 상기 방열 플레이트의 일부는 상기 바텀 커버(1011)의 상면에 접촉될 수 있다. 따라서, 발광 소자 패키지(200)에서 발생된 열은 방열 플레이트를 경유하여 바텀 커버(1011)로 방출될 수 있다.
상기 복수의 발광 소자 패키지(200)는 상기 보드(1033) 상에 빛이 방출되는 출사면이 상기 도광판(1041)과 소정 거리 이격되도록 탑재될 수 있으며, 이에 대해 한정하지는 않는다. 상기 발광 소자 패키지(200)는 상기 도광판(1041)의 일측면인 입광부에 광을 직접 또는 간접적으로 제공할 수 있으며, 이에 대해 한정하지는 않는다.
상기 도광판(1041) 아래에는 상기 반사 부재(1022)가 배치될 수 있다. 상기 반사 부재(1022)는 상기 도광판(1041)의 하면으로 입사된 빛을 반사시켜 상기 표시 패널(1061)로 공급함으로써, 상기 표시 패널(1061)의 휘도를 향상시킬 수 있다. 상기 반사 부재(1022)는 예를 들어, PET, PC, PVC 레진 등으로 형성될 수 있으나, 이에 대해 한정하지는 않는다. 상기 반사 부재(1022)는 상기 바텀 커버(1011)의 상면일 수 있으며, 이에 대해 한정하지는 않는다.
상기 바텀 커버(1011)는 상기 도광판(1041), 발광모듈(1031) 및 반사 부재(1022) 등을 수납할 수 있다. 이를 위해, 상기 바텀 커버(1011)는 상면이 개구된 박스(box) 형상을 갖는 수납부(1012)가 구비될 수 있으며, 이에 대해 한정하지는 않는다. 상기 바텀 커버(1011)는 탑 커버(미도시)와 결합될 수 있으며, 이에 대해 한정하지는 않는다.
상기 바텀 커버(1011)는 금속 재질 또는 수지 재질로 형성될 수 있으며, 프레스 성형 또는 압출 성형 등의 공정을 이용하여 제조될 수 있다. 또한 상기 바텀 커버(1011)는 열 전도성이 좋은 금속 또는 비 금속 재료를 포함할 수 있으며, 이에 대해 한정하지는 않는다.
상기 표시 패널(1061)은 예컨대, LCD 패널로서, 서로 대향되는 투명한 재질의 제 1 및 제 2기판, 그리고 제 1 및 제 2기판 사이에 개재된 액정층을 포함한다. 상기 표시 패널(1061)의 적어도 일면에는 편광판이 부착될 수 있으며, 이러한 편광판의 부착 구조로 한정하지는 않는다. 상기 표시 패널(1061)은 상기 발광 모듈(1031)로부터 제공된 광을 투과 또는 차단시켜 정보를 표시하게 된다. 이러한 표시 장치(1000)는 각 종 휴대 단말기, 노트북 컴퓨터의 모니터, 랩탑 컴퓨터의 모니터, 텔레비전과 같은 영상 표시 장치에 적용될 수 있다.
상기 광학 시트(1051)는 상기 표시 패널(1061)과 상기 도광판(1041) 사이에 배치되며, 적어도 한 장 이상의 투광성 시트를 포함한다. 상기 광학 시트(1051)는 예컨대 확산 시트(diffusion sheet), 수평 및 수직 프리즘 시트(horizontal/vertical prism sheet), 및 휘도 강화 시트(brightness enhanced sheet) 등과 같은 시트 중에서 적어도 하나를 포함할 수 있다. 상기 확산 시트는 입사되는 광을 확산시켜 주고, 상기 수평 또는/및 수직 프리즘 시트는 입사되는 광을 상기 표시 패널(1061)로 집광시켜 주며, 상기 휘도 강화 시트는 손실되는 광을 재사용하여 휘도를 향상시켜 준다. 또한 상기 표시 패널(1061) 위에는 보호 시트가 배치될 수 있으며, 이에 대해 한정하지는 않는다.
상기 발광 모듈(1031)의 광 경로 상에는 광학 부재로서, 상기 도광판(1041), 및 광학 시트(1051)를 포함할 수 있으며, 이에 대해 한정하지는 않는다.
도 14는 실시 예에 따른 발광소자 패키지를 갖는 표시 장치를 나타낸 도면이다.
도 14를 참조하면, 표시 장치(1100)는 바텀 커버(1152), 상기에 개시된 발광소자 패키지(200)가 어레이된 보드(1120), 광학 부재(1154), 및 표시 패널(1155)을 포함한다.
상기 보드(1120)과 상기 발광소자 패키지(200)는 발광 모듈(1160)로 정의될 수 있다. 상기 바텀 커버(1152), 적어도 하나의 발광 모듈(1160), 광학 부재(1154)는 라이트 유닛(미도시)으로 정의될 수 있다.
상기 바텀 커버(1152)에는 수납부(1153)를 구비할 수 있으며, 이에 대해 한정하지는 않는다.
상기 광학 부재(1154)는 렌즈, 도광판, 확산 시트, 수평 및 수직 프리즘 시트, 및 휘도 강화 시트 등에서 적어도 하나를 포함할 수 있다. 상기 도광판은 PC 재질 또는 PMMA(Poly methy methacrylate) 재질로 이루어질 수 있으며, 이러한 도광판은 제거될 수 있다. 상기 확산 시트는 입사되는 광을 확산시켜 주고, 상기 수평 및 수직 프리즘 시트는 입사되는 광을 상기 표시 패널(1155)으로 집광시켜 주며, 상기 휘도 강화 시트는 손실되는 광을 재사용하여 휘도를 향상시켜 준다.
상기 광학 부재(1154)는 상기 발광 모듈(1160) 위에 배치되며, 상기 발광 모듈(1060)로부터 방출된 광을 면 광원하거나, 확산, 집광 등을 수행하게 된다.
상기 바텀 커버(1152) 내에는 복수의 보드(1120)가 배치될 수 있으며, 상기 복수의 보드(1120) 상에는 실시 예의 발광소자 패키지(200) 또는 발광소자(즉, LED 칩)가 어레이될 수 있다.
도 15는 실시 예에 따른 발광 소자 패키지를 갖는 조명 장치를 나타낸 도면이다.
도 15를 참조하면, 실시 예에 따른 조명 장치는 커버(2100), 광원 모듈(2200), 방열체(2400), 전원 제공부(2600), 내부 케이스(2700), 소켓(2800)을 포함할 수 있다. 또한, 실시 예에 따른 조명 장치는 부재(2300)와 홀더(2500) 중 어느 하나 이상을 더 포함할 수 있다. 상기 광원 모듈(2200)은 실시 예에 따른 발광소자를 포함할 수 있다.
예컨대, 상기 커버(2100)는 벌브(bulb) 또는 반구의 형상을 가지며, 속이 비어 있고, 일 부분이 개구된 형상으로 제공될 수 있다. 상기 커버(2100)는 상기 광원 모듈(2200)과 광학적으로 결합될 수 있다. 예를 들어, 상기 커버(2100)는 상기 광원 모듈(2200)로부터 제공되는 빛을 확산, 산란 또는 여기 시킬 수 있다. 상기 커버(2100)는 일종의 광학 부재일 수 있다. 상기 커버(2100)는 상기 방열체(2400)와 결합될 수 있다. 상기 커버(2100)는 상기 방열체(2400)와 결합하는 결합부를 가질 수 있다.
상기 커버(2100)의 내면에는 유백색 도료가 코팅될 수 있다. 유백색의 도료는 빛을 확산시키는 확산재를 포함할 수 있다. 상기 커버(2100)의 내면의 표면 거칠기는 상기 커버(2100)의 외면의 표면 거칠기보다 크게 형성될 수 있다. 이는 상기 광원 모듈(2200)로부터의 빛이 충분히 산란 및 확산되어 외부로 방출시키기 위함이다.
상기 커버(2100)의 재질은 유리(glass), 플라스틱, 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리카보네이트(PC) 등일 수 있다. 여기서, 폴리카보네이트는 내광성, 내열성, 강도가 뛰어나다. 상기 커버(2100)는 외부에서 상기 광원 모듈(2200)이 보이도록 투명할 수 있고, 불투명할 수 있다. 상기 커버(2100)는 블로우(blow) 성형을 통해 형성될 수 있다.
상기 광원 모듈(2200)은 상기 방열체(2400)의 일 면에 배치될 수 있다. 따라서, 상기 광원 모듈(2200)로부터의 열은 상기 방열체(2400)로 전도된다. 상기 광원 모듈(2200)은 광원부(2210), 연결 플레이트(2230), 커넥터(2250)를 포함할 수 있다.
상기 부재(2300)는 상기 방열체(2400)의 상면 위에 배치되고, 복수의 광원부(2210)들과 커넥터(2250)이 삽입되는 가이드홈(2310)들을 갖는다. 상기 가이드홈(2310)은 상기 광원부(2210)의 기판 및 커넥터(2250)와 대응된다.
상기 부재(2300)의 표면은 빛 반사 물질로 도포 또는 코팅된 것일 수 있다. 예를 들면, 상기 부재(2300)의 표면은 백색의 도료로 도포 또는 코팅된 것일 수 있다. 이러한 상기 부재(2300)는 상기 커버(2100)의 내면에 반사되어 상기 광원 모듈(2200)측 방향으로 되돌아오는 빛을 다시 상기 커버(2100) 방향으로 반사한다. 따라서, 실시 예에 따른 조명 장치의 광 효율을 향상시킬 수 있다.
상기 부재(2300)는 예로서 절연 물질로 이루어질 수 있다. 상기 광원 모듈(2200)의 연결 플레이트(2230)는 전기 전도성의 물질을 포함할 수 있다. 따라서, 상기 방열체(2400)와 상기 연결 플레이트(2230) 사이에 전기적인 접촉이 이루어질 수 있다. 상기 부재(2300)는 절연 물질로 구성되어 상기 연결 플레이트(2230)와 상기 방열체(2400)의 전기적 단락을 차단할 수 있다. 상기 방열체(2400)는 상기 광원 모듈(2200)로부터의 열과 상기 전원 제공부(2600)로부터의 열을 전달받아 방열한다.
상기 홀더(2500)는 내부 케이스(2700)의 절연부(2710)의 수납홈(2719)을 막는다. 따라서, 상기 내부 케이스(2700)의 상기 절연부(2710)에 수납되는 상기 전원 제공부(2600)는 밀폐된다. 상기 홀더(2500)는 가이드 돌출부(2510)를 갖는다. 상기 가이드 돌출부(2510)는 상기 전원 제공부(2600)의 돌출부(2610)가 관통하는 홀을 구비할 수 있다.
상기 전원 제공부(2600)는 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 상기 광원 모듈(2200)로 제공한다. 상기 전원 제공부(2600)는 상기 내부 케이스(2700)의 수납홈(2719)에 수납되고, 상기 홀더(2500)에 의해 상기 내부 케이스(2700)의 내부에 밀폐된다.
상기 전원 제공부(2600)는 돌출부(2610), 가이드부(2630), 베이스(2650), 돌출부(2670)를 포함할 수 있다.
상기 가이드부(2630)는 상기 베이스(2650)의 일 측에서 외부로 돌출된 형상을 갖는다. 상기 가이드부(2630)는 상기 홀더(2500)에 삽입될 수 있다. 상기 베이스(2650)의 일 면 위에 다수의 부품이 배치될 수 있다. 다수의 부품은 예를 들어, 외부 전원으로부터 제공되는 교류 전원을 직류 전원으로 변환하는 직류변환장치, 상기 광원 모듈(2200)의 구동을 제어하는 구동칩, 상기 광원 모듈(2200)을 보호하기 위한 ESD(ElectroStatic discharge) 보호 소자 등을 포함할 수 있으나 이에 대해 한정하지는 않는다.
상기 돌출부(2670)는 상기 베이스(2650)의 다른 일 측에서 외부로 돌출된 형상을 갖는다. 상기 돌출부(2670)는 상기 내부 케이스(2700)의 연결부(2750) 내부에 삽입되고, 외부로부터의 전기적 신호를 제공받는다. 예컨대, 상기 돌출부(2670)는 상기 내부 케이스(2700)의 연결부(2750)의 폭과 같거나 작게 제공될 수 있다. 상기 돌출부(2670)에는 "+ 전선"과 "- 전선"의 각 일 단이 전기적으로 연결되고, "+ 전선"과 "- 전선"의 다른 일 단은 소켓(2800)에 전기적으로 연결될 수 있다.
상기 내부 케이스(2700)는 내부에 상기 전원 제공부(2600)와 함께 몰딩부를 포함할 수 있다. 몰딩부는 몰딩 액체가 굳어진 부분으로서, 상기 전원 제공부(2600)가 상기 내부 케이스(2700) 내부에 고정될 수 있도록 한다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시 예는 발광 소자의 신뢰성을 개선시켜 줄 수 있다.
실시 예의 발광 소자는 LED를 이용한 조명등, 실내등, 실외등, 지시등 및 전도등과 같은 조명 장치에 적용될 수 있다.

Claims (18)

  1. 제1반도체층;
    상기 제1반도체층 위에 배치된 제2반도체층;
    상기 제2반도체층 위에 배치된 활성층; 및
    상기 활성층 위에 배치된 제3반도체층을 포함하며,
    상기 제2반도체층은 AlGaN계 제1질화물층 및 상기 제1질화물층 위에 상기 제1질화물층과 다른 반도체를 갖는 제2질화물층을 포함하며,
    상기 제1 및 제2반도체층 중 어느 하나의 상면으로부터 제1깊이를 갖는 제1피트 및 상기 제1피트의 제1깊이보다 작은 깊이를 갖고 상기 제1피트에 연결된 제2피트를 포함하며,
    상기 제1 및 제2피트는 상기 제1 및 제2반도체층에 배치되며,
    상기 제1반도체층의 상면에 배치된 제2피트의 밀도는 상기 제2반도체층의 상면에 배치된 제2피트의 밀도보다 높고,
    상기 제2반도체층의 상면에 배치된 제1피트의 밀도는 상기 제1반도체층의 상면에 배치된 제1피트의 밀도와 동일한 발광 소자.
  2. 제1항에 있어서,
    상기 제1질화물층은 AlGaN 또는 InAlGaN의 반도체를 포함하는 발광 소자.
  3. 제2항에 있어서,
    상기 제2질화물층은 GaN 또는 InGaN의 반도체를 포함하는 발광 소자.
  4. 제3항에 있어서,
    상기 제1반도체층은 상기 제1피트의 깊이보다 깊은 두께를 갖는 발광 소자.
  5. 제4항에 있어서,
    상기 제1질화물층은 상기 제1피트의 제1깊이의 1/3 이하의 두께를 갖는 발광 소자.
  6. 제5항에 있어서,
    상기 제2피트의 깊이는 15nm 미만의 깊이를 갖는 발광 소자.
  7. 제5항에 있어서,
    상기 제1질화물층의 알루미늄의 조성비는 5%~20% 범위를 포함하는 발광 소자.
  8. 제6항에 있어서,
    상기 제2질화물층은 InGaN 반도체이며,
    상기 제2질화물층의 인듐의 조성비는 7% 이하인 발광 소자.
  9. 제4항 내지 제8항 중 어느 한 항에 있어서,
    상기 제2질화물층의 두께는 상기 제1질화물층의 두께와 동일하거나 얇은 발광 소자.
  10. 제8항에 있어서,
    상기 제1 및 제2질화물층 각각의 두께는 0.5nm 내지 5nm 범위를 포함하는 발광 소자.
  11. 제4항 내지 제8항 중 어느 한 항에 있어서,
    상기 제1 및 제2질화물층의 주기는 2 내지 5주기를 포함하는 발광 소자.
  12. 제11항에 있어서,
    상기 제1 및 제2반도체층은 n형 도펀트를 포함하는 발광 소자.
  13. 제10항에 있어서,
    상기 활성층 내에서의 제2피트의 밀도는 상기 제1반도체층에서의 제2피트 밀도보다 낮은 발광 소자.
  14. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 제1반도체층에 배치된 제2피트는 복수개가 상기 제1피트에 연결되는 발광 소자.
  15. 제14항에 있어서,
    상기 복수의 제2피트의 일부는 상기 제1피트의 영역에 배치되는 발광 소자.
  16. 제14항에 있어서,
    상기 제2반도체층의 상면 중에서 상기 제1피트에 연결된 상기 복수의 제2피트와 수직 방향으로 오버랩되는 영역은 평탄한 면을 포함하는 발광 소자.
  17. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 제1 및 제2피트에 연결된 전위를 포함하는 발광 소자.
  18. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 제2반도체층의 상면 중에서 상기 제1반도체층 내에 배치된 상기 제2피트와 오버랩되는 영역은 평탄한 면으로 배치되는 발광 소자.
PCT/KR2014/009361 2013-12-05 2014-10-06 발광 소자 및 이를 구비한 조명 장치 WO2015083932A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/101,844 US9647175B2 (en) 2013-12-05 2014-10-06 Light emitting element and lighting device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130150702A KR102142709B1 (ko) 2013-12-05 2013-12-05 발광 소자 및 이를 구비한 조명 장치
KR10-2013-0150702 2013-12-05

Publications (1)

Publication Number Publication Date
WO2015083932A1 true WO2015083932A1 (ko) 2015-06-11

Family

ID=53273654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009361 WO2015083932A1 (ko) 2013-12-05 2014-10-06 발광 소자 및 이를 구비한 조명 장치

Country Status (3)

Country Link
US (1) US9647175B2 (ko)
KR (1) KR102142709B1 (ko)
WO (1) WO2015083932A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494992A (zh) * 2017-01-04 2019-11-22 Lg伊诺特有限公司 半导体器件以及包括该半导体器件的发光器件封装

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9722160B2 (en) * 2014-10-31 2017-08-01 Nichia Corporation Light emitting device and adaptive driving beam headlamp system
DE102015104700A1 (de) * 2015-03-27 2016-09-29 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
CN105355741B (zh) * 2015-11-02 2017-09-29 厦门市三安光电科技有限公司 一种led外延结构及制作方法
KR102569461B1 (ko) * 2015-11-30 2023-09-04 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 및 이를 포함하는 조명장치
KR102542228B1 (ko) * 2016-01-18 2023-06-14 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 질화물계 반도체층 및 그 성장 방법
JP6500239B2 (ja) * 2016-01-26 2019-04-17 豊田合成株式会社 Iii族窒化物半導体発光素子
US20190229230A1 (en) * 2016-05-02 2019-07-25 Sang Jeong An Template for growing group iii-nitride semiconductor layer, group iii-nitride semiconductor light emitting device, and manufacturing method therefor
TWI795293B (zh) * 2016-06-24 2023-03-01 美商克若密斯股份有限公司 工程基板結構
JP6666626B2 (ja) * 2017-01-31 2020-03-18 株式会社日立ハイテク 荷電粒子検出器及び荷電粒子線装置
CN112259655B (zh) * 2020-08-31 2021-08-06 华灿光电(浙江)有限公司 发光二极管外延片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110121357A1 (en) * 2009-11-25 2011-05-26 Steven Lester LED with Improved Injection Efficiency
US20120211870A1 (en) * 2011-02-17 2012-08-23 S.O.I.Tec Silicon On Insulator Technologies Iii-v semiconductor structures with diminished pit defects and methods for forming the same
US20120319126A1 (en) * 2009-12-30 2012-12-20 Osram Opto Semiconductors Gmbh Optoelectronic Semiconductor Chip and Method for Fabrication Thereof
US20130082273A1 (en) * 2011-09-29 2013-04-04 Bridgelux, Inc. P-type doping layers for use with light emitting devices
KR20130039169A (ko) * 2011-10-11 2013-04-19 엘지이노텍 주식회사 발광소자

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105865B2 (en) * 2001-09-19 2006-09-12 Sumitomo Electric Industries, Ltd. AlxInyGa1−x−yN mixture crystal substrate
US7535031B2 (en) 2005-09-13 2009-05-19 Philips Lumiled Lighting, Co. Llc Semiconductor light emitting device with lateral current injection in the light emitting region
KR101164026B1 (ko) 2007-07-12 2012-07-18 삼성전자주식회사 질화물계 반도체 발광소자 및 그 제조방법
KR20100093872A (ko) 2009-02-17 2010-08-26 삼성엘이디 주식회사 질화물 반도체 발광소자 및 그 제조방법
US8183577B2 (en) * 2009-06-30 2012-05-22 Koninklijke Philips Electronics N.V. Controlling pit formation in a III-nitride device
KR101683898B1 (ko) * 2010-06-21 2016-12-20 엘지이노텍 주식회사 발광 소자
US8110484B1 (en) * 2010-11-19 2012-02-07 Sumitomo Electric Industries, Ltd. Conductive nitride semiconductor substrate and method for producing the same
WO2013015472A1 (ko) 2011-07-28 2013-01-31 삼성전자주식회사 반도체 발광소자 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110121357A1 (en) * 2009-11-25 2011-05-26 Steven Lester LED with Improved Injection Efficiency
US20120319126A1 (en) * 2009-12-30 2012-12-20 Osram Opto Semiconductors Gmbh Optoelectronic Semiconductor Chip and Method for Fabrication Thereof
US20120211870A1 (en) * 2011-02-17 2012-08-23 S.O.I.Tec Silicon On Insulator Technologies Iii-v semiconductor structures with diminished pit defects and methods for forming the same
US20130082273A1 (en) * 2011-09-29 2013-04-04 Bridgelux, Inc. P-type doping layers for use with light emitting devices
KR20130039169A (ko) * 2011-10-11 2013-04-19 엘지이노텍 주식회사 발광소자

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494992A (zh) * 2017-01-04 2019-11-22 Lg伊诺特有限公司 半导体器件以及包括该半导体器件的发光器件封装
CN110494992B (zh) * 2017-01-04 2022-11-01 苏州立琻半导体有限公司 半导体器件以及包括该半导体器件的发光器件封装

Also Published As

Publication number Publication date
KR102142709B1 (ko) 2020-08-07
US9647175B2 (en) 2017-05-09
KR20150065412A (ko) 2015-06-15
US20160380155A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
WO2015083932A1 (ko) 발광 소자 및 이를 구비한 조명 장치
JP6210800B2 (ja) 発光素子
KR101886156B1 (ko) 발광소자
WO2013183901A1 (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
WO2017014580A1 (ko) 발광 소자 패키지
WO2015111814A1 (ko) 발광소자, 발광소자 패키지, 라이트 유닛
KR102131319B1 (ko) 발광 소자 및 이를 구비한 조명 장치
KR20140106946A (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
WO2013183878A1 (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
WO2014054891A1 (ko) 발광소자 및 발광소자 패키지
KR20140102812A (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
KR101843420B1 (ko) 발광소자, 발광 소자 제조방법 및 발광 소자 패키지
KR20140034472A (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
WO2013183876A1 (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
WO2017196022A1 (ko) 발광 소자
WO2017091051A1 (ko) 발광소자 패키지 및 조명 장치
WO2013183879A1 (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
WO2015137594A1 (ko) 발광소자
KR101896680B1 (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
KR102199998B1 (ko) 발광소자
WO2015152652A1 (ko) 발광소자 및 이를 구비한 조명 장치
KR102055794B1 (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
KR102053279B1 (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
KR101976470B1 (ko) 발광소자
KR101976466B1 (ko) 발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867155

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15101844

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867155

Country of ref document: EP

Kind code of ref document: A1