[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015083627A1 - Fiber structure - Google Patents

Fiber structure Download PDF

Info

Publication number
WO2015083627A1
WO2015083627A1 PCT/JP2014/081494 JP2014081494W WO2015083627A1 WO 2015083627 A1 WO2015083627 A1 WO 2015083627A1 JP 2014081494 W JP2014081494 W JP 2014081494W WO 2015083627 A1 WO2015083627 A1 WO 2015083627A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
silicone
fiber
fiber structure
hydrocarbon
Prior art date
Application number
PCT/JP2014/081494
Other languages
French (fr)
Japanese (ja)
Inventor
柄澤留美
池山正己
竹田恵司
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53273390&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015083627(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014559974A priority Critical patent/JP6447136B2/en
Publication of WO2015083627A1 publication Critical patent/WO2015083627A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/02Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with hydrocarbons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/355Heterocyclic compounds having six-membered heterocyclic rings
    • D06M13/358Triazines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6433Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing carboxylic groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/65Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing epoxy groups

Definitions

  • the present invention relates to a fiber structure having water repellency.
  • fluorine-based water repellents may affect living environment and living organisms, such as perfluorooctanoic acid (hereinafter referred to as “PFOA”), perfluorooctanesulfonic acid (hereinafter referred to as “PFOS”). And the like, and there has been a demand for a fiber product using a fluorine-based water repellent that does not contain the substance or has as little content as possible.
  • PFOA perfluorooctanoic acid
  • PFOS perfluorooctanesulfonic acid
  • Patent Document 2 A fiber structure characterized in that a mixture of a fluorine-based water repellent and a water repellent compound not containing fluorine element is fixed on the fiber surface, and the concentration of PFOA and / or PFOS is extremely low.
  • Patent Document 3 As a water-repellent treatment that does not use a fluorine-based water repellent, a water-repellent fabric treated with a water repellent treatment agent composed of an organopolysiloxane having a reactive group at the molecular chain end has been proposed (Patent Document 3).
  • Patent Document 3 the water repellency is low, and even if only silicone is applied, the washing durability is low, and the slip between the threads is large, and there is a problem that the seam opens during use and wearing. .
  • a silicone synthetic resin is applied to a woven fabric in which polyamide synthetic fibers having a fineness of 5 to 30 dtex are arranged and the number of intersections between warps and wefts is 23,000 to 70000 pieces / (2.54 cm square).
  • An applied thin fabric has been proposed (Patent Document 4).
  • the silicone described in Patent Document 4 suppresses the stress at the time of tearing by sliding the thread, and there is no description regarding water repellency in the document.
  • a hydrocarbon-based water repellent is a non-fluorine-based polymer containing an acrylic ester or methacrylic ester having 12 or more ester moieties as a monomer unit.
  • a water-repellent fiber product in which a water-repellent agent is adhered to a fiber product (Patent Document 5).
  • Patent Document 5 if the amount of the water repellent applied to the fiber and the amount of the crosslinking agent used are not suitable, sufficient water repellency for washing durability cannot be obtained, and the texture is hard when fixed to the fiber surface alone.
  • the present condition is that the rough feeling of the texture is remarkably manifested.
  • the present invention is intended to provide a fiber structure that does not require an elemental fluorine compound and exhibits excellent water repellency and washing durability in consideration of environmental problems.
  • the present invention comprises the following fiber structure.
  • a resin film containing a hydrocarbon compound, a silicone compound and a melamine compound is fixed to the fiber surface, and the total amount of the silicone compound is 1 to 50% by mass relative to the hydrocarbon-containing compound.
  • a certain fiber structure there exist the following fiber structures.
  • the silicone compound is at least one selected from amino-modified silicone, epoxy-modified silicone, carboxy-modified silicone, methyl hydrogen silicone, and dimethyl silicone.
  • the hydrocarbon compound is at least one selected from aliphatic hydrocarbons having 12 or more carbon atoms and polyolefins.
  • the hydrocarbon compound is at least one selected from aliphatic carboxylic acids having 12 or more carbon atoms and esterified products thereof.
  • the hydrocarbon compound is a polymer of acrylic acid ester or methacrylic acid ester having 12 or more carbon atoms in a hydrocarbon group present via an ester bond.
  • the resin film further contains a urethane compound.
  • the fiber form is any one of a woven fabric, a knitted fabric, a nonwoven fabric, and a string.
  • the water repellency after 10 home washings is 3 or more.
  • the present invention comprises the following method for producing a fiber structure.
  • a method for producing a fiber structure comprising a step of bringing a coating composition containing a hydrocarbon group-containing compound, a silicone-based compound, and a melamine compound into contact with a fiber and attaching them to the surface of the fiber.
  • the manufacturing method of the said fiber structure there exists the manufacturing method of the following fiber structures.
  • the silicone compound is at least one selected from amino-modified silicone, epoxy-modified silicone, carboxy-modified silicone, methyl hydrogen silicone, and dimethyl silicone.
  • the hydrocarbon compound is at least one selected from aliphatic hydrocarbons having 12 or more carbon atoms and polyolefins.
  • the hydrocarbon compound is at least one selected from aliphatic carboxylic acids having 12 or more carbon atoms and esterified products thereof.
  • the word “sticking” means a state of being physically or chemically bonded. In this state, the treatment agent does not easily fall off due to washing or the like.
  • Neoseed NR-90 (manufactured by Nikka Chemical Co., Ltd.), NR-158 (manufactured by Nikka Chemical Co., Ltd.), TH-44 (manufactured by Nikka Chemical Co., Ltd.) , PW-182 (manufactured by Daiwa Chemical Co., Ltd.) Fobor RSH (manufactured by Huntsman Japan Co., Ltd.), palladium ECO-500 (manufactured by Ohara Paradium Chemical Co., Ltd.), NX018 (manufactured by Nanotex Co., Ltd.), etc. Specifically, the following are exemplified.
  • Aliphatic hydrocarbons For example, paraffinic hydrocarbons and olefinic hydrocarbons. The number of carbons is preferably 12 or more.
  • Aliphatic carboxylic acid may be saturated or unsaturated, and preferably has 12 or more carbon atoms. It may be an esterified product of an aliphatic carboxylic acid.
  • Polyolefin For example, polyethylene, polypropylene, ethylene-propylene copolymer.
  • Polyacrylic acid ester and polymethacrylic acid ester The hydrocarbon group present via an ester bond preferably has 12 or more carbon atoms. On the other hand, the carbon number is preferably 24 or less.
  • This hydrocarbon group may be linear or branched, may be saturated or unsaturated, and has an alicyclic or aromatic ring. You may do it. Among these, those that are linear are preferable, and those that are linear alkyl groups are more preferable.
  • the acrylic ester or methacrylic acid monomer in the polymer is preferably 80 to 100% by mass with respect to the total amount of monomer units constituting the polymer. Moreover, it is preferable that the weight average molecular weight of this polymer is 500,000 or more. It may be a copolymer of acrylic acid ester and methacrylic acid ester.
  • the silicone compound is polysiloxane and usually has a dimethylsiloxane structural unit.
  • Polydimethylsiloxane is one in which dimethylsiloxane structural units are connected. This is also called dimethyl silicone.
  • Examples of the amino-modified silicone include those having a structure in which an amino group is bonded to an organic group directly bonded to a silicon atom.
  • the organic group may be an alkylene group or a divalent aromatic group. An alkylene group having 2 or more carbon atoms is preferred. As the divalent aromatic group, those having 6 or more carbon atoms are preferred.
  • the amino group may be a primary amino group, a secondary amino group, or a tertiary amino group. Examples of the organic group to which the amino group is bonded include the following.
  • 2-aminoethyl group N-methyl-2-aminoethyl group, N, N-dimethyl-2-aminoethyl group, N-ethyl-2-aminoethyl group, N, N-diethyl-2-aminoethyl group, N, N-methylethyl-2-aminoethyl group, 3-aminopropyl group, N-methyl-3-aminopropyl group, N, N-dimethyl-3-aminopropyl group, N-ethyl-3-aminopropyl group N, N-diethyl-3-aminopropyl group, N, N-methylethyl-3-aminopropyl group.
  • These functional groups may be in the side chain of the polysiloxane or at the terminal.
  • Examples of the epoxy-modified silicone include those having a structure in which an epoxy group is bonded to an organic group directly bonded to a silicon atom.
  • the organic group may be an alkylene group or a divalent aromatic group. Such a form is usually bonded to the organic group in the form of glycidyl ether.
  • Examples of such a functional group include a 3-glycidoxypropyl group and a 2-glycidoxyethyl group. These functional groups may be in the side chain of the polysiloxane or at the terminal.
  • Examples of the carboxy-modified silicone include those having a structure in which a carboxy group is bonded to an organic group directly connected to a silicon atom.
  • the organic group may be an alkylene group or a divalent aromatic group.
  • An alkylene group having 2 or more carbon atoms is preferred.
  • As the divalent aromatic group those having 6 or more carbon atoms are preferred.
  • Examples of such a functional group include a 3-carboxypropyl group and a 2-carboxyethyl group. These functional groups may be in the side chain of the polysiloxane or at the terminal.
  • Methyl hydrogen silicone is one in which a part of the side chain of polydiorganosiloxane is replaced with hydrogen and a hydrogen atom is directly connected to a silicon atom.
  • a catalyst may be used to improve the reactivity.
  • zinc, tin, manganese, cobalt and iron based catalysts can be used.
  • These catalysts are preferably organic acid metal salts, and the organic acid is preferably a fatty acid. From the viewpoint of safety, zinc stearate or the like can be used.
  • the catalyst is preferably used in an amount of 10 to 40% with respect to methyl hydrogen silicone since the effect is easily exhibited.
  • Two or more kinds of amino-modified, epoxy-modified silicone, carboxy-modified silicone and methylhydrogen silicone may be mixed. Both are silicones having a reactive group, and are preferably silicones having film-forming properties.
  • the film-forming property refers to forming a solid film rather than oil or gel after each silicone is adhered to the fiber surface in an emulsion state.
  • the silicone compound is preferably mixed in a proportion of 0.1 to 50% by mass with respect to the hydrocarbon compound.
  • any of the following compounds is essential, but the total of amino-modified, epoxy-modified silicone, carboxy-modified silicone, dimethylsilicone and methylhydrogensilicone is preferably 0.1 to 50% by mass. The ratio is more preferably 0.8 to 16% by mass. Thereby, durability can be further improved.
  • a resin that is brittle with only a hydrocarbon-based compound becomes flexible by containing such silicone, and durability is improved by being fixed to the fiber surface.
  • the hydrocarbon group-containing compound is fixed at a ratio of 0.2 to 1.2% by mass with respect to the fiber mass. If the amount is small, the ratio of covering the fiber surface tends to be small, and sufficient water repellency tends to be hardly obtained. Moreover, even if it is too much, the increased water repellency does not necessarily improve.
  • the silicone compound is preferably 0.5 to 50% by mass with respect to the hydrocarbon compound, and if it is less than 0.5% by mass, the effect of improving washing durability is small, and if it exceeds 50% by mass, Is unfavorable because it inhibits water repellency and also increases the slipperiness of the yarn surface.
  • the coating composition further contains a melamine compound.
  • the amount is preferably 15 to 100% by mass relative to the hydrocarbon group-containing compound.
  • a resin film By forming a resin film from a composition containing a melamine compound, it is considered that the orientation of the methyl group that develops the water repellency of hydrocarbon groups and silicone proceeds, and in addition to improving the water repellency immediately after processing, Adhesion with fibers is improved and washing durability is improved.
  • the melamine compound include trimethylol melamine and hexamethylol melamine.
  • An organic amine catalyst may be added to the melamine compound.
  • the coating composition preferably contains a urethane compound.
  • the resin film contains a urethane compound.
  • the urethane compound is preferably a urethane compound obtained by reacting an isocyanate group.
  • an organic compound having two or more isocyanate groups in the molecule examples include tolylene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, triphenyl triisocyanate, xylene diisocyanate, dichloromethane methane diisocyanate, and the like.
  • compounds that can regenerate isocyanate groups by heating to 70 to 200 ° C. such as trimethylolpropane tolylene diisocyanate adduct and frucrine tolylene diisocyanate adduct.
  • examples of such compounds include polyfunctional blocked isocyanate group-containing compounds obtained by reacting an isocyanate compound with phenol, malonic acid diethyl ester, methyl ethyl ketoxime, sodium bisulfite, ⁇ -caprolactam, and the like.
  • the urethane compound adheres to the fiber. If the amount is too small, the effect as a binder may not be sufficiently exhibited. If the amount is too large, the texture as a fiber structure is impaired, and in addition to becoming hard, water repellency tends to be lowered. From the standpoint of water repellency after processing and durability to washing, 0.02 to 0.08% by mass is more preferable.
  • the resin film of the fiber structure of the present invention may contain a temporary antistatic agent.
  • a temporary antistatic agent it is preferable to use a material that does not hinder water repellency.
  • Temporary antistatic agents include anionic surfactants such as higher alcohol sulfates, sulfated oils, sulfonates, phosphate esters, cations such as amine salt types, quaternary ammonium salts, and imidazoline type quaternary salts.
  • Surfactants, non-ionic surfactants such as polyethylene glycol type and polyhydric alcohol ester type, amphoteric surfactants such as imidazoline type quaternary salt, alanine type and betaine type, and polymer compound types mentioned above. At least one kind of electropolymer, polyalkylamine and the like can be used.
  • an antistatic agent when contained, slippage between yarns and yarns may be increased.
  • an antistatic agent composed of an organic salt of guanidine hydrochloride is preferable from the viewpoint of preventing slippage and inhibiting water repellency. .
  • Antistatic agent exerts its effect when contained in an amount of 0.02 to 0.1% by mass with respect to the fiber structure, and has little inhibition of water repellency.
  • the resin film of the present invention may contain fine particles.
  • a preferred particle size is 10 ⁇ m or less.
  • the particles may be either inorganic fine particles or organic fine particles, and may be mixed.
  • inorganic fine particles examples include aluminum oxide, silicon dioxide, titanium oxide, kaolin, bentonite, talc, calcium carbonate, calcium silicate, magnesium oxide and the like, and these can be used alone or in combination of two or more. It is preferably used as an aqueous dispersion. Of these, silicon dioxide can be preferably used.
  • the particle diameter of such particles is preferably 5 to 500 nm, more preferably 10 to 100 nm.
  • organic fine particles examples include particles made of acrylic resin, olefin resin, and melamine resin. Furthermore, composite particles obtained by coating the surface of organic particles with silica or alumina can also be used.
  • the particle diameter of the particles is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 6 ⁇ m.
  • the particle diameter referred to in the present invention is a value obtained by observing the fiber structure with a scanning electron microscope (SEM) and measuring the particle size.
  • soot particles has the effect of suppressing slippage between the yarns caused by the silicone compound and hydrocarbon compound adhering to the fiber surface.
  • the fiber structure is immersed in an emulsion solution, which is a film composition mixed with the compound, and then fixed in a spread state.
  • an emulsion solution which is a film composition mixed with the compound
  • a method of squeezing with pressure and drying at a high temperature is exemplified.
  • a pad dry cure method in which the substrate is dried at 80 to 140 ° C. and then heat-treated at a temperature of 160 to 200 ° C., or a pad steam method in an atmosphere containing steam at 100 to 200 ° C. is preferable.
  • the coating composition may be contacted with the fiber and then calendered. Further, a cold calender without applying a temperature or a temperature of 130 to 200 ° C. may be applied. In these processes, the linear pressure is preferably 250 to 20000 N / cm. By performing calendering, it is possible to obtain an effect of further suppressing slippage between fibers.
  • the resin film of the present invention can suppress the seam shift by using a melamine compound in combination, and the effect is improved by using inorganic particles in combination.
  • the fiber structure of the present invention preferably has a seam misalignment of 3 mm or less at a load of 49 N when measured by JIS L 1096 “General Textile Test Method” (revised in 1999) by the sliding resistance method B method.
  • a silicone compound is further added. It is preferable that the hydrocarbon group-containing compound and the melamine compound to be preferably added are attached.
  • the adhesion of the silicone-based compound and the hydrocarbon group-containing compound to be laminated improves the durability by fixing the compound having an anionic group on the fiber surface.
  • Such a sulfone group-containing compound preferably has an affinity for the amino group of a polyamide fiber having a sulfone group in the molecular structure, such as a salt of an ⁇ -olefin sulfonate, a sulfonate of a phenol formalin resin, or isophthalic acid.
  • a salt of an ⁇ -olefin sulfonate, a sulfonate of a phenol formalin resin, or isophthalic acid examples include dimethyl sulfonic acid sodium salt. More preferred is a salt of an ⁇ -olefin sulfonate having an average carbon number of 12 to 30.
  • the polyhydric phenol compound of the present invention include natural tannins and synthetic tannins represented by sulfonated phenol formalin resins such as novolac type and resol type.
  • the method for fixing the sulfone group-containing compound and the polyhydric phenol compound to the fiber is not particularly limited, but preferably an aqueous solution containing the sulfone group-containing compound or polyhydric phenol compound (hereinafter referred to as “previous”). It is preferable to immerse the fiber structure in a “treatment liquid”.
  • the sulfone group-containing compound and the polyhydric phenol compound are preferably 1 to 10% by mass, more preferably about 2 to 5% by mass, based on the fiber. When the amount is small, the effect of further improving durability is not exhibited. When the amount is large, the texture of the fiber structure tends to be hard.
  • the pH of the pretreatment liquid is adjusted to 2 to 6.
  • an acid such as acetic acid, maleic acid, hydrochloric acid, sulfuric acid, formic acid may be used, and there is no particular limitation.
  • the bath ratio (mass ratio) between the fiber structure of the present invention and the pretreatment liquid is not particularly limited, but is preferably in the range of 10 to 50 of the pretreatment liquid with respect to the fiber structure 1.
  • the pretreatment temperature is preferably 40 to 100 ° C, more preferably 50 to 90 ° C, and the treatment time is preferably 10 to 60 minutes.
  • the silicone compound, the hydrocarbon group-containing compound, and the melamine compound are laminated and fixed by the pad dry cure method described above or the pad steam method after washing with hot water and drying.
  • the fiber used in the present invention is preferably a synthetic fiber.
  • Aromatic polyester fibers such as polyethylene terephthalate, polypropylene terephthalate and polybutylene terephthalate, aromatic polyester fibers in which aromatic polyester is copolymerized with third components such as isophthalic acid, isophthalic acid sulfonate, adipic acid and polyethylene glycol, poly Polyester fibers composed of aliphatic polyester fibers represented by lactic acid and a mixture of the above-mentioned polyesters; polyamide fibers such as nylon 6 and nylon 66; acrylic fibers represented by polyacrylonitrile; polyethylene Polyolefin fiber such as polypropylene and polypropylene, and polyvinyl chloride fiber are preferably used.
  • a polyurethane elastic fiber may be combined with these fibers.
  • semi-synthetic fibers such as acetate and rayon, and natural fibers such as cotton, hemp, silk and wool may be used.
  • these fibers can be used singly or as a mixture of two or more.
  • fibers mainly composed of polyester fibers and polyamide fibers are preferably used.
  • the fiber structure of the present invention includes fabrics such as woven fabrics, knitted fabrics and nonwoven fabrics using the above-mentioned fibers, or string-like materials, and fabrics are preferred for the purpose of exhibiting a water repellent effect.
  • the fiber structure of the present invention exhibits excellent water repellency and flexible texture, it is particularly suitable for clothing and bedding called outerwear, specifically, down linings, coats, blousons, windbreakers, blouses, and dress shirts. , Skirts, slacks, gloves, hats, futon sides, futon covers, curtains or tents, etc., and are suitably used for textile products such as clothing and non-clothing products.
  • applications for high water repellency include downsides and windbreakers.
  • a high-density fabric using ultrafine fibers is preferred because down-out and windbreakability are required. It is.
  • the total fineness is 5 to 55 dtex and the single fiber fineness is 0.4 to 2.2 dtex.
  • a preferred range is 5 to 55 dtex, more preferably 7 to 44 dtex.
  • the single fiber fineness of the fibers is preferably 0.4 to 2.2 dtex. If the single fiber fineness is too small, a soft texture can be obtained, but the single yarn breaks and pilling tends to occur during wearing. On the other hand, if the single fiber yarn fineness is too large, the texture becomes hard and the windproof performance tends to be lowered.
  • the single fiber fineness is a value obtained by dividing the total fineness by the number of filaments.
  • Water repellency Evaluation was made by the spray test method according to the method prescribed in JIS L 1092 “Test method for waterproofness of textile products” (amended in 1998), and the grade was determined. For example, when the water repellency is 4th or more and less than 5th, it is classified as 4-5.
  • Test fabric 1 Nylon 6 yarn of 22 decitex and 20 filaments is used for both warp and weft, width: 165, 0 cm, warp yarn density: 185 yarns / 2.54 cm, weft yarn density: 155 yarns / 2.54 cm, and air jet Weaved in the room.
  • the obtained raw machine was scoured with an open soaper (90 ° C.), then intermediately set with a pin tenter (180 ° C. ⁇ 40 seconds), and dyed beige with a liquid dyeing machine.
  • the same liquid flow dyeing machine was used, and the bath ratio was adjusted to 1:20 with the processing liquid shown below, from room temperature to 80 ° C. at 2 ° C./min.
  • the temperature was raised and the treated fabric was treated in a bath for 30 minutes. Next, after the temperature was lowered to 50 ° C., the liquid was sequentially discharged, and the fabric was washed with water, dehydrated, and then dried at 140 ° C. using a pin tenter.
  • the chemicals used in Examples 2 to 11 and Comparative Examples 1 to 8 are as described below.
  • Nylon fix 501 (Senka Co., Ltd., smoked polyphenol-based condensate): 5% owf.
  • Test fabric 2 Use 33 decitex, 72 filament polyethylene terephthalate yarn for both warp and weft yarns, width: 165, 0 cm, warp yarn density: 175 yarns / 2.54 cm, weft yarn density: 149 yarns / 2.54 cm, and air jet Weaved with.
  • the obtained raw machine was scoured with an open soaper (90 ° C.), then set with a pin tenter (180 ° C. ⁇ 40 seconds), dyed beige with a liquid dyeing machine, and dried.
  • the obtained fabric was used as a test base fabric 2.
  • Examples 1 to 11, Comparative Examples 1 to 8 After immersing the test base cloth 1 in the emulsion solution shown in Table 1 and squeezing it with a mangle, it is dried at 130 ° C. for 2 minutes using a pin tenter, and then subjected to a dry heat treatment at 170 ° C. for 1 minute at a certain width using the pin tenter. went. The mangle squeezing rate was 40%.
  • Example 12 to 14 Comparative Examples 9 to 11
  • the test fabric 2 was used.
  • Example 13 and 14 as a pretreatment, after dyeing, the same flow dyeing machine was used to adjust the bath ratio to 1:20 with the processing liquid shown below, and the temperature was raised from room temperature to 80 ° C. at 2 ° C./min for 30 minutes. Treated in bath. Next, after the temperature was lowered to 50 ° C., the waste liquid, washed with water, and dehydrated were dried at 140 ° C. using a pin tenter. The obtained fabric was used.
  • the drugs used in Example 13 are as described below. Nylon Fix 501 (Senka Co., Ltd.
  • Example 14 Polyhydric phenol condensate: 5% owf
  • the drugs used in Example 14 are as described below.
  • Mena 25 (Maroise Chemical Co., Ltd. aromatic sulfonic acid derivative): 5% owf
  • Table 1 shows the results of measuring the water repellency and sliding resistance of the test base fabrics obtained in Examples 1 to 14 and Comparative Examples 1 to 11 after 10 washes in the initial stage.
  • Examples 1 to 11 exhibit high water repellency of 4th grade or higher in the initial stage and washing durability of 3rd grade or higher after 10 washings. Moreover, the slip-proof resistance was 3 mm or less, and a water-repellent fiber structure having good physical properties was obtained.
  • Comparative Examples 1, 2 and 4 were low in water repellency from the beginning and very low from the viewpoint of washing durability. In Comparative Examples 5 and 7, although the initial water repellency is high, the washing durability is low. In Comparative Example 7, the water repellency is high both in the initial stage and after the washing, but the slip resistance is over 3 mm. When worn as a sewing product, the seam misalignment was large and the quality was poor.
  • Tests 12 to 14 using the test base fabric 2 also show high water repellency of grade 4 or higher in the initial stage and washing durability of grade 3 or higher even after 10 washings.
  • Comparative Examples 9 and 10 had high initial water repellency but low washing durability
  • Comparative Example 11 had low water repellency from the beginning.
  • Example 10 was observed with a SEM (scanning electron microscope S-3500N (manufactured by Hitachi, Ltd.)) at a magnification of 5000, and it was confirmed that particles of 40 to 50 nm adhered.
  • SEM scanning electron microscope S-3500N (manufactured by Hitachi, Ltd.)
  • the water repellency showed a high durability of grade 3 or higher even after 10 home washings.
  • Example 11 was observed using a SEM (scanning electron microscope S-3500N (manufactured by Hitachi, Ltd.)) at a magnification of 5000, and it was confirmed that particles having a particle diameter of 3 to 4 ⁇ m were adhered.
  • SEM scanning electron microscope S-3500N (manufactured by Hitachi, Ltd.)
  • Such particles act as an anti-slip effect on the yarn, and the slip resistance tends to be low.
  • the fiber structure of the present invention has high water repellency, it can be used for clothing and textile materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

The present invention addresses the problem of providing a fiber structure that shows excellent water repellency and laundering resistance. As a means for accomplishing the present invention, provided is a water-repellent fiber structure in which a resin film which includes a hydrocarbon compound, silicone compound, and melamine compound adheres to a fiber surface, and the total amount of the silicone compound is 1 to 50 mass% in terms of the hydrocarbon-containing compound. The hydrocarbon compound is preferably polyolefin and an aliphatic hydrocarbon having 12 or more carbons, an aliphatic carboxylic acid having 12 or more carbons and an ester thereof, or a (meth)acrylic acid ester present via ester bonds and having 12 or more carbons in hydrocarbon groups. Moreover, the silicone compound is preferably selected from an amino-modified silicone, an epoxy-modified silicone, a carboxy-modified silicone, a methyl hydrodiene silicone, and a dimethyl silicone.

Description

繊維構造物Fiber structure
  本発明は撥水性を有する繊維構造物に関する。 The present invention relates to a fiber structure having water repellency.
  従来、撥水性を高めた繊維構造物を得るためには、繊維表面にフッ素系撥水剤を固着させる手段が一般的であり、種々の技術が提案されてきた。 Conventionally, in order to obtain a fiber structure with improved water repellency, means for fixing a fluorinated water repellent to the fiber surface is generally used, and various techniques have been proposed.
  昨今、フッ素系撥水剤の中には生活環境、生物に影響を及ぼす可能性のある化合物、例えばパーフルオロオクタン酸(以降「PFOA」という。)、パーフルオロオクタンスルホン酸(以降「PFOS」という。)等が含まれていることが判明しており、該物質を含まないか、あるいはできるだけ含有量の少ないフッ素系撥水剤を使用した繊維製品が要望されている。 In recent years, some of the fluorine-based water repellents may affect living environment and living organisms, such as perfluorooctanoic acid (hereinafter referred to as “PFOA”), perfluorooctanesulfonic acid (hereinafter referred to as “PFOS”). And the like, and there has been a demand for a fiber product using a fluorine-based water repellent that does not contain the substance or has as little content as possible.
  さらに、環境対策の中でゴミの焼却処理によるダイオキシン類の発生が深刻な問題となっており, 塩素以外のハロゲン化ダイオキシンの毒性も少しずつ明らかとなっている。 In addition, the generation of dioxins due to incineration of garbage has become a serious problem as an environmental measure, and the toxicity of halogenated dioxins other than chlorine has been gradually revealed.
  そのため, フッ素に代わる素材やこれまでとは異なる方法で撥水性を付与する技術の検討が必要となってきた。 For this reason, it has become necessary to examine materials that can substitute for fluorine and technologies that impart water repellency using different methods.
   このような環境配慮型の撥水加工として、まずはPFOAを含まないようにする対策が進められている。撥水撥油性の耐久性に優れ、かつ、撥水撥油性布帛の製造工程でのPFOAの排水など環境への放出や、撥水撥油性布帛からのPFOAの発生を抑えることのできる撥水撥油性布帛を提供する試みが行われている。繊維布帛にPFOA非含有のフッ素系撥水剤と架橋剤を付与する方法が開示されている(特許文献1)。また繊維表面にフッ素系撥水剤とフッ素元素を含まない撥水性化合物の混合物が固着しているものであり、PFOAおよび/またはPFOSの濃度が極めて低いものであることを特徴とする繊維構造物などが提案されている(特許文献2)。 対 策 As such an environmentally-friendly water repellent treatment, first, measures are taken to prevent the inclusion of PFOA. Water- and oil-repellent durability and water-repellent and water-repellent properties that can suppress the release of PFOA to the environment, such as drainage, and the generation of PFOA from water- and oil-repellent fabrics in the manufacturing process of water- and oil-repellent fabrics. Attempts have been made to provide oily fabrics. A method of applying a PFOA-free fluorine-based water repellent and a crosslinking agent to a fiber fabric is disclosed (Patent Document 1). A fiber structure characterized in that a mixture of a fluorine-based water repellent and a water repellent compound not containing fluorine element is fixed on the fiber surface, and the concentration of PFOA and / or PFOS is extremely low. Have been proposed (Patent Document 2).
  これらの技術は環境を配慮しているとはいえ、フッ素を含有する撥水剤を使用しており、環境への負荷の存在は否定しきれない。 い え Although these technologies are environmentally friendly, they use fluorine-containing water repellents, and the existence of environmental loads cannot be denied.
   フッ素系撥水剤を使用しない撥水加工としては分子鎖末端に反応基を持つオルガノポリシロキサンからなる撥水処理剤により処理してなる撥水性布帛が提案されている(特許文献3)。しかしながら、撥水性能は低い上にシリコーンだけを付与しても洗濯耐久性は低い上に、糸-糸間の滑りが大きく、使用中、着用中に縫い目が開いたりするなどの問題があった。 As a water-repellent treatment that does not use a fluorine-based water repellent, a water-repellent fabric treated with a water repellent treatment agent composed of an organopolysiloxane having a reactive group at the molecular chain end has been proposed (Patent Document 3). However, the water repellency is low, and even if only silicone is applied, the washing durability is low, and the slip between the threads is large, and there is a problem that the seam opens during use and wearing. .
  撥水性を目的とするものではないが、繊度が5~30dtexのポリアミド系合成繊維が配置され経糸と緯糸による交点の数が23000~70000個/(2.54cm平方)の織物にシリコーン樹脂加工が施されている薄地織物が提案されている(特許文献4)。 Although not intended for water repellency, a silicone synthetic resin is applied to a woven fabric in which polyamide synthetic fibers having a fineness of 5 to 30 dtex are arranged and the number of intersections between warps and wefts is 23,000 to 70000 pieces / (2.54 cm square). An applied thin fabric has been proposed (Patent Document 4).
  これは細繊度でかつ高密度の織物が引裂強力が弱いということを改善する目的でシリコーン樹脂を付与したもるものである。特許文献4に記載されているシリコーンは、糸と糸を滑らせて引裂き時の応力を抑制するものであって、当該文献に撥水性に関する記載はない。 This is a silicone resin added for the purpose of improving the fact that a fine fabric with high fineness and weak tear strength. The silicone described in Patent Document 4 suppresses the stress at the time of tearing by sliding the thread, and there is no description regarding water repellency in the document.
  その他、フッ素系撥水剤を使用しない撥水加工としては炭化水素系撥水剤としてエステル部分の炭素数が12以上のアクリル酸エステルまたはメタクリル酸エステルを単量体単位として含む非フッ素系ポリマーからなる撥水剤を繊維製品に付着させた撥水性繊維製品が提案されている(特許文献5)。  しかしながら、繊維への撥水剤の付与量および架橋剤の使用量が適性でないと、撥水性の十分な洗濯耐久性が得られない上に、単独で繊維表面に固着させた場合は風合いが硬く、極細繊維の薄地布帛などに使用した場合は風合いの粗硬感が顕著に現れ好ましくないのが現状である。 In addition, as a water-repellent process that does not use a fluorine-based water repellent, a hydrocarbon-based water repellent is a non-fluorine-based polymer containing an acrylic ester or methacrylic ester having 12 or more ester moieties as a monomer unit. There has been proposed a water-repellent fiber product in which a water-repellent agent is adhered to a fiber product (Patent Document 5). However, if the amount of the water repellent applied to the fiber and the amount of the crosslinking agent used are not suitable, sufficient water repellency for washing durability cannot be obtained, and the texture is hard when fixed to the fiber surface alone. However, when used in a thin fabric of ultrafine fibers, the present condition is that the rough feeling of the texture is remarkably manifested.
特開2011-214216号公報JP 2011-214216 A 特開2007-247091号公報JP 2007-247091 A 特開2002-114972号公報JP 2002-114972 A 特開2012-122188号公報JP 2012-122188 A 特開2006-328624号公報JP 2006-328624 A
  本発明は、上記の問題点に鑑み、環境問題に配慮し、フッ素元素化合物を必須とせず、優れた撥水性と洗濯耐久性を示す繊維構造物を提供せんとするものである。 鑑 み In view of the above-mentioned problems, the present invention is intended to provide a fiber structure that does not require an elemental fluorine compound and exhibits excellent water repellency and washing durability in consideration of environmental problems.
   上記課題を解決するため本発明は以下の繊維構造物からなる。
(1)炭化水素系化合物、シリコーン系化合物およびメラミン化合物を含有する樹脂皮膜が繊維表面に固着しており、該シリコーン系化合物の合計量が該炭化水素含有化合物に対して1~50質量%である繊維構造物。
そして、上記繊維構造物の好ましい態様として、以下の繊維構造物がある。
(2)該シリコーン系化合物がアミノ変性シリコーン、エポキシ変性シリコーン、カルボキシ変性シリコーン、メチルハイドロジェンシリコーンおよびジメチルシリコーンから選ばれる1種以上である前記繊維構造物。
(3)該炭化水素系化合物が、炭素数12以上の脂肪族炭化水素およびポリオレフィンから選ばれる1種以上である前記いずれかの繊維構造物。
(4)該炭化水素系化合物が、炭素数12以上の脂肪族カルボン酸およびそのエステル化物から選ばれる1種以上である前記いずれかの繊維構造物。
(5)該炭化水素系化合物が、エステル結合を介して存在する炭化水素基の炭素数が12以上のアクリル酸エステルまたはメタクリル酸エステルの重合体である前記いずれかの繊維構造物。
(6)該樹脂皮膜がさらにウレタン化合物を含有する前記いずれかの繊維構造物。
(7)繊維の形態が織物、編物、不織布および紐状のいずれかである前記いずれかの繊維構造物。
(8)家庭洗濯10回後の撥水度が3級以上である前記いずれかの繊維構造物。
In order to solve the above problems, the present invention comprises the following fiber structure.
(1) A resin film containing a hydrocarbon compound, a silicone compound and a melamine compound is fixed to the fiber surface, and the total amount of the silicone compound is 1 to 50% by mass relative to the hydrocarbon-containing compound. A certain fiber structure.
And as a preferable aspect of the said fiber structure, there exist the following fiber structures.
(2) The fiber structure, wherein the silicone compound is at least one selected from amino-modified silicone, epoxy-modified silicone, carboxy-modified silicone, methyl hydrogen silicone, and dimethyl silicone.
(3) The fiber structure according to any one of the above, wherein the hydrocarbon compound is at least one selected from aliphatic hydrocarbons having 12 or more carbon atoms and polyolefins.
(4) The fiber structure according to any one of the above, wherein the hydrocarbon compound is at least one selected from aliphatic carboxylic acids having 12 or more carbon atoms and esterified products thereof.
(5) The fiber structure according to any one of the above, wherein the hydrocarbon compound is a polymer of acrylic acid ester or methacrylic acid ester having 12 or more carbon atoms in a hydrocarbon group present via an ester bond.
(6) The fiber structure according to any one of the above, wherein the resin film further contains a urethane compound.
(7) The fiber structure according to any one of the above, wherein the fiber form is any one of a woven fabric, a knitted fabric, a nonwoven fabric, and a string.
(8) The fiber structure according to any one of the above, wherein the water repellency after 10 home washings is 3 or more.
 上記課題を解決するため、本発明は以下の繊維構造物の製造方法からなる。
(9)繊維に、炭化水素基含有化合物、シリコーン系化合物およびメラミン化合物を含有する皮膜用組成物を接触させ、これらを繊維の表面に付着させる工程を有する繊維構造物の製造方法。
In order to solve the above problems, the present invention comprises the following method for producing a fiber structure.
(9) A method for producing a fiber structure, comprising a step of bringing a coating composition containing a hydrocarbon group-containing compound, a silicone-based compound, and a melamine compound into contact with a fiber and attaching them to the surface of the fiber.
 そして、上記繊維構造物の製造方法の好ましい態様として、以下の繊維構造物の製造方法がある。
(10)該シリコーン系化合物がアミノ変性シリコーン、エポキシ変性シリコーン、カルボキシ変性シリコーン、メチルハイドロジェンシリコーンおよびジメチルシリコーンから選ばれた1種以上である前記繊維構造物の製造方法。
(11)該炭化水素系化合物が、炭素数12以上の脂肪族炭化水素およびポリオレフィンから選ばれる1種以上である前記いずれかの繊維構造物の製造方法。
(12)該炭化水素系化合物が、炭素数12以上の脂肪族カルボン酸およびそのエステル化物から選ばれる1種以上である前記いずれかの繊維構造物の製造方法。
(13)該炭化水素系化合物が、エステル結合を介して存在する炭化水素基の炭素数が12以上のアクリル酸エステルまたはメタクリル酸エステルの重合体を必須成分であるとして含有する前記いずれかの繊維構造物の製造方法。
(14)繊維に炭化水素基含有化合物、シリコーン系化合物およびメラミン化合物を含有する皮膜用組成物を接触させる前に、繊維にアニオン基を有する化合物を付着する工程を有する前記いずれかの繊維構造物の製造方法。
(15)アニオン基を有する化合物がスルホン基含有化合物および多価フェノール系化合物から選ばれた少なくとも1種である前記繊維構造物の製造方法。
(16)炭化水素基含有化合物、シリコーン系化合物およびメラミン化合物を含有する組成物を繊維に付着させる工程の後、カレンダー加工工程を行う前記いずれかに記載の繊維構造物の製造方法。
And as a preferable aspect of the manufacturing method of the said fiber structure, there exists the manufacturing method of the following fiber structures.
(10) The method for producing a fiber structure, wherein the silicone compound is at least one selected from amino-modified silicone, epoxy-modified silicone, carboxy-modified silicone, methyl hydrogen silicone, and dimethyl silicone.
(11) The method for producing any one of the fiber structures, wherein the hydrocarbon compound is at least one selected from aliphatic hydrocarbons having 12 or more carbon atoms and polyolefins.
(12) The method for producing any one of the fiber structures, wherein the hydrocarbon compound is at least one selected from aliphatic carboxylic acids having 12 or more carbon atoms and esterified products thereof.
(13) The fiber according to any one of the above, wherein the hydrocarbon compound contains, as an essential component, an acrylic ester or methacrylic ester polymer in which the hydrocarbon group present via an ester bond has 12 or more carbon atoms. Manufacturing method of structure.
(14) Any of the fiber structures having a step of attaching a compound having an anion group to a fiber before bringing the composition for a film containing a hydrocarbon group-containing compound, a silicone-based compound and a melamine compound into contact with the fiber. Manufacturing method.
(15) The method for producing a fiber structure, wherein the compound having an anion group is at least one selected from a sulfone group-containing compound and a polyhydric phenol compound.
(16) The method for producing a fiber structure according to any one of the above, wherein the calendering step is performed after the step of attaching the composition containing the hydrocarbon group-containing compound, the silicone compound and the melamine compound to the fiber.
  本発明によれば、優れた撥水性を示す繊維構造物が得られる。 According to the present invention, a fiber structure exhibiting excellent water repellency can be obtained.
   本発明で固着という単語を定義するのであれば、物理的または化学的に結合している状態をいう。この状態では処理剤が洗濯などで容易には脱落しない。 で If the word “sticking” is defined in the present invention, it means a state of being physically or chemically bonded. In this state, the treatment agent does not easily fall off due to washing or the like.
  本発明の炭化水素基含有化合物としては、ネオシードNR-90(日華化学(株)製)、NR-158(日華化学(株)製)、TH-44(日華化学(株)製)、PW-182(大和化学(株)製)フォボール RSH(ハンツマン・ジャパン(株)製)、パラヂウムECO-500(大原パラヂウム化学(株)製)、NX018((株)ナノテックス製)などが挙げられるが、具体的には以下内容のものが例示される。
脂肪族炭化水素:例えばパラフィン系炭化水素、オレフィン系炭化水素。炭素数としては12以上が好ましい。
脂肪属カルボン酸:飽和、不飽和いずれであってもよく、炭素数としては12以上が好ましい。脂肪族カルボン酸のエステル化物であってもよい。
ポリオレフィン:例えばポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体。
ポリアクリル酸エステルおよびポリメタクリル酸エステル:エステル結合を介して存在する炭化水素基の炭素数は12以上であることが好ましい。一方炭素数は、24以下であることが好ましい。この炭化水素基は、直鎖状であっても分岐状であってもよく、飽和炭化水素であっても不飽和炭化水素であってもよく、更には脂環式又は芳香族の環状を有していてもよい。これらの中でも、直鎖状であるものが好ましく、直鎖状のアルキル基であるものがより好ましい。かかるポリマー中のアクリル酸エステルまたはメタクリル酸エステルを単量体は、ポリマーを構成する単量体単位の全量に対して80~100質量%であることが好ましい。また、かかるポリマーの重量平均分子量は50万以上であることが好ましい。アクリル酸エステルとメタクリル酸エステルとの共重合体であってもいい。
As the hydrocarbon group-containing compound of the present invention, Neoseed NR-90 (manufactured by Nikka Chemical Co., Ltd.), NR-158 (manufactured by Nikka Chemical Co., Ltd.), TH-44 (manufactured by Nikka Chemical Co., Ltd.) , PW-182 (manufactured by Daiwa Chemical Co., Ltd.) Fobor RSH (manufactured by Huntsman Japan Co., Ltd.), palladium ECO-500 (manufactured by Ohara Paradium Chemical Co., Ltd.), NX018 (manufactured by Nanotex Co., Ltd.), etc. Specifically, the following are exemplified.
Aliphatic hydrocarbons: For example, paraffinic hydrocarbons and olefinic hydrocarbons. The number of carbons is preferably 12 or more.
Aliphatic carboxylic acid: may be saturated or unsaturated, and preferably has 12 or more carbon atoms. It may be an esterified product of an aliphatic carboxylic acid.
Polyolefin: For example, polyethylene, polypropylene, ethylene-propylene copolymer.
Polyacrylic acid ester and polymethacrylic acid ester: The hydrocarbon group present via an ester bond preferably has 12 or more carbon atoms. On the other hand, the carbon number is preferably 24 or less. This hydrocarbon group may be linear or branched, may be saturated or unsaturated, and has an alicyclic or aromatic ring. You may do it. Among these, those that are linear are preferable, and those that are linear alkyl groups are more preferable. The acrylic ester or methacrylic acid monomer in the polymer is preferably 80 to 100% by mass with respect to the total amount of monomer units constituting the polymer. Moreover, it is preferable that the weight average molecular weight of this polymer is 500,000 or more. It may be a copolymer of acrylic acid ester and methacrylic acid ester.
 シリコーン系化合物とはポリシロキサンであり、通常はジメチルシロキサン構造単位を有する。ジメチルシロキサン構造単位がつながったものがポリジメチルシロキサンである。これをジメチルシリコーンともいう。前記シロキサン構造単位のメチル基がフェニル基に置換されたものや水素に置換されたもの、例えばメチルフェニルシロキサン構造単位やジフェニルシロキサン構造単位、メチルハイドロジェンシロキサン構造単位も使用できる。 The silicone compound is polysiloxane and usually has a dimethylsiloxane structural unit. Polydimethylsiloxane is one in which dimethylsiloxane structural units are connected. This is also called dimethyl silicone. Those in which the methyl group of the siloxane structural unit is substituted with a phenyl group or those substituted with hydrogen, for example, a methylphenylsiloxane structural unit, a diphenylsiloxane structural unit, or a methylhydrogensiloxane structural unit can also be used.
 アミノ変性シリコーンとしては、ケイ素原子に直結した有機基に、アミノ基が結合した構造を有するものがあげられる。有機基はアルキレン基、2価の芳香族基いずれであってもよい。アルキレン基としては炭素数2以上のものが好ましい。2価の芳香族基としては炭素数6以上のものが好ましい。アミノ基としては、1級アミノ基、2級アミノ基、3級アミノ基いずれであってもよい。アミノ基が結合した有機基としては以下のものが例示される。2-アミノエチル基、N-メチル-2-アミノエチル基、N,N-ジメチル-2-アミノエチル基、N-エチル-2-アミノエチル基、N,N-ジエチル-2-アミノエチル基、N,N-メチルエチル-2-アミノエチル基、3-アミノプロピル基、N-メチル-3-アミノプロピル基、N,N-ジメチル-3-アミノプロピル基、N-エチル-3-アミノプロピル基、N,N-ジエチル-3-アミノプロピル基、N,N-メチルエチル-3-アミノプロピル基。これらの官能基はポリシロキサンの側鎖にあっても、末端にあってもよい。 Examples of the amino-modified silicone include those having a structure in which an amino group is bonded to an organic group directly bonded to a silicon atom. The organic group may be an alkylene group or a divalent aromatic group. An alkylene group having 2 or more carbon atoms is preferred. As the divalent aromatic group, those having 6 or more carbon atoms are preferred. The amino group may be a primary amino group, a secondary amino group, or a tertiary amino group. Examples of the organic group to which the amino group is bonded include the following. 2-aminoethyl group, N-methyl-2-aminoethyl group, N, N-dimethyl-2-aminoethyl group, N-ethyl-2-aminoethyl group, N, N-diethyl-2-aminoethyl group, N, N-methylethyl-2-aminoethyl group, 3-aminopropyl group, N-methyl-3-aminopropyl group, N, N-dimethyl-3-aminopropyl group, N-ethyl-3-aminopropyl group N, N-diethyl-3-aminopropyl group, N, N-methylethyl-3-aminopropyl group. These functional groups may be in the side chain of the polysiloxane or at the terminal.
 エポキシ変性シリコーンとしてはケイ素原子に直結した有機基に、エポキシ基が結合した構造を有するものがあげられる。有機基はアルキレン基、2価の芳香族基いずれであってもよい。このようなかたちとしては前記有機基との間でグリシジルエーテルのかたちで結合するのが通常である。このような官能基としては3-グリシドキシプロピル基、2-グリシドキシエチル基が例示される。これらの官能基はポリシロキサンの側鎖にあっても、末端にあってもよい。 Examples of the epoxy-modified silicone include those having a structure in which an epoxy group is bonded to an organic group directly bonded to a silicon atom. The organic group may be an alkylene group or a divalent aromatic group. Such a form is usually bonded to the organic group in the form of glycidyl ether. Examples of such a functional group include a 3-glycidoxypropyl group and a 2-glycidoxyethyl group. These functional groups may be in the side chain of the polysiloxane or at the terminal.
 カルボキシ変性シリコーンとしてはケイ素原子に直結した有機基にカルボキシ基が結合した構造を有するものがあげられる。有機基はアルキレン基、2価の芳香族基いずれであってもよい。アルキレン基としては炭素数2以上のものが好ましい。2価の芳香族基としては炭素数6以上のものが好ましい。このような官能基としては3-カルボキシプロピル基、2-カルボキシエチル基が例示される。これらの官能基はポリシロキサンの側鎖にあっても、末端にあってもよい。 Examples of the carboxy-modified silicone include those having a structure in which a carboxy group is bonded to an organic group directly connected to a silicon atom. The organic group may be an alkylene group or a divalent aromatic group. An alkylene group having 2 or more carbon atoms is preferred. As the divalent aromatic group, those having 6 or more carbon atoms are preferred. Examples of such a functional group include a 3-carboxypropyl group and a 2-carboxyethyl group. These functional groups may be in the side chain of the polysiloxane or at the terminal.
 メチルハイドロジェンシリコーンとはポリジオルガノシロキサンの側鎖の一部が水素に置換され、水素原子がケイ素原子に直結したものである。メチルハイドロジェンシリコーンの使用にあたっては、反応性を向上させるために触媒を使用しても良い。例えば亜鉛、錫、マンガン、コバルトおよび鉄系の触媒を使用することができる。これらの触媒としては有機酸金属塩が好ましく、有機酸としては脂肪酸が好ましい。安全性の観点からはステアリン酸亜鉛などを使用することができる。触媒はメチルハイドロジェンシリコーンに対し10~40%使用すると効果を発揮しやすくなるので好ましい。 
アミノ変性、エポキシ変性シリコーン、カルボキシ変性シリコーンおよびメチルハイドロジェンシリコーンは2種以上が混合されていても良い。いずれも反応基を有するシリコーンであり、造膜性を有するシリコーンであることが好ましい。造膜性とは、該シリコーンを各々エマルジョン状態で繊維表面に付着させた後、オイル状やゲル状ではなく、固体状の膜を形成することを言う。
Methyl hydrogen silicone is one in which a part of the side chain of polydiorganosiloxane is replaced with hydrogen and a hydrogen atom is directly connected to a silicon atom. In using methyl hydrogen silicone, a catalyst may be used to improve the reactivity. For example, zinc, tin, manganese, cobalt and iron based catalysts can be used. These catalysts are preferably organic acid metal salts, and the organic acid is preferably a fatty acid. From the viewpoint of safety, zinc stearate or the like can be used. The catalyst is preferably used in an amount of 10 to 40% with respect to methyl hydrogen silicone since the effect is easily exhibited.
Two or more kinds of amino-modified, epoxy-modified silicone, carboxy-modified silicone and methylhydrogen silicone may be mixed. Both are silicones having a reactive group, and are preferably silicones having film-forming properties. The film-forming property refers to forming a solid film rather than oil or gel after each silicone is adhered to the fiber surface in an emulsion state.
 繊維への固着にあたっては、炭化水素系化合物、シリコーン系化合物およびメラミン化合物を含有する被膜用組成物を繊維に接触させることが好ましい。かような組成物ではかかるシリコーン系化合物は、炭化水素系化合物に対し0.1~50質量%の割合で混合されていることが好ましい。さらに、以下の化合物のいずれかが必須であるが、アミノ変性、エポキシ変性シリコーン、カルボキシ変性シリコーン、ジメチルシリコーンおよびメチルハイドロジェンシリコーンの合計が0.1~50質量%であることが好ましい。更に好ましくは0.8~16質量%の割合である。それにより更に耐久性を向上させることができる。炭化水素系化合物だけでは脆い樹脂が、かかるシリコーンを含有することで、柔軟になり、繊維表面に固着されたことにより耐久性が向上するものである。 In fixing to the fiber, it is preferable to contact the fiber with a coating composition containing a hydrocarbon compound, a silicone compound and a melamine compound. In such a composition, the silicone compound is preferably mixed in a proportion of 0.1 to 50% by mass with respect to the hydrocarbon compound. Further, any of the following compounds is essential, but the total of amino-modified, epoxy-modified silicone, carboxy-modified silicone, dimethylsilicone and methylhydrogensilicone is preferably 0.1 to 50% by mass. The ratio is more preferably 0.8 to 16% by mass. Thereby, durability can be further improved. A resin that is brittle with only a hydrocarbon-based compound becomes flexible by containing such silicone, and durability is improved by being fixed to the fiber surface.
 シリコーンが炭化水素系化合物に対し、少なすぎると被膜性向上効果が低下する傾向があり、多すぎると撥水性が低下する傾向がある。 When the amount of silicone is too small relative to the hydrocarbon compound, the effect of improving the film property tends to be lowered, and when too much, the water repellency tends to be lowered.
 また、本発明の繊維構造物の好ましい態様としては、炭化水素基含有化合物が繊維質量に対し0.2~1.2質量%の割合で固着しているものである。 
少ないと、繊維表面を被覆する割合が少なくなり十分な撥水性が得られにくい傾向がある。また多すぎても、多くなった分撥水性が必ずしも向上するものではない。
In a preferred embodiment of the fiber structure of the present invention, the hydrocarbon group-containing compound is fixed at a ratio of 0.2 to 1.2% by mass with respect to the fiber mass.
If the amount is small, the ratio of covering the fiber surface tends to be small, and sufficient water repellency tends to be hardly obtained. Moreover, even if it is too much, the increased water repellency does not necessarily improve.
 炭化水素系化合物に対しシリコーン系化合物は0.5~50質量%であることが好ましく、0.5質量%より少ないと洗濯耐久性を向上させる効果が少なく、また50質量%を越えるとシリコーンによっては撥水性を阻害し、また糸表面の滑り性が高くなり好ましくない。 The silicone compound is preferably 0.5 to 50% by mass with respect to the hydrocarbon compound, and if it is less than 0.5% by mass, the effect of improving washing durability is small, and if it exceeds 50% by mass, Is unfavorable because it inhibits water repellency and also increases the slipperiness of the yarn surface.
  本発明の好ましい態様として、皮膜用組成物はさらにメラミン化合物を含有する。その量は、炭化水素基含有化合物に対し15~100質量%が好ましい。 As a preferred embodiment of the present invention, the coating composition further contains a melamine compound. The amount is preferably 15 to 100% by mass relative to the hydrocarbon group-containing compound.
 メラミン化合物を含有する組成物から樹脂皮膜とすることにより炭化水素基およびシリコーンの撥水性を発現させるメチル基の配向が進むと考えられ、加工直後の撥水性が向上するのに加え、樹脂皮膜と繊維との密着性が向上し、洗濯耐久性が向上する。
メラミン化合物としては、トリメチロールメラミン、ヘキサメチロールメラミンなどである。メラミン化合物には有機アミン系触媒を添加しても良い。
By forming a resin film from a composition containing a melamine compound, it is considered that the orientation of the methyl group that develops the water repellency of hydrocarbon groups and silicone proceeds, and in addition to improving the water repellency immediately after processing, Adhesion with fibers is improved and washing durability is improved.
Examples of the melamine compound include trimethylol melamine and hexamethylol melamine. An organic amine catalyst may be added to the melamine compound.
 また被覆用組成物はウレタン化合物を含有することが好ましい。その結果樹脂皮膜はウレタン化合物を含有する。 The coating composition preferably contains a urethane compound. As a result, the resin film contains a urethane compound.
 該ウレタン化合物はイソシアネート基が反応して得られるウレタン化合物であることが好ましい。分子中に2個以上のイソシアネート基を有する有機化合物から得られるものであれば特に限定されるものではない。かようなイソシアネート基を有する有機化合物としては、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニールメタンジイソシアネート、水素添加ジフェニールメタンジイソシアネート、トリフェニールトリイソシアネート、キシレンジイソシアネート、ジクロヘキシルメタンジイソシアネート等が挙げられる。さらに、トリメチロールプロパントリレンジイソシアネートアダクト、フリセリントリレンジイソシアネートアダクトなど70~200℃に加熱することで、イソシアネート基を再生できるような化合物がある。このような化合物としては、イソシアネート化合物にフェノール、マロン酸ジエチルエステル、メチルエチルケトオキシム、重亜硫酸ソーダ、ε-カプロラクタムなどを反応させた多官能ブロックイソシアネート基含有化合物が例示される。 The urethane compound is preferably a urethane compound obtained by reacting an isocyanate group. There is no particular limitation as long as it is obtained from an organic compound having two or more isocyanate groups in the molecule. Examples of such an organic compound having an isocyanate group include tolylene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, triphenyl triisocyanate, xylene diisocyanate, dichloromethane methane diisocyanate, and the like. Further, there are compounds that can regenerate isocyanate groups by heating to 70 to 200 ° C., such as trimethylolpropane tolylene diisocyanate adduct and frucrine tolylene diisocyanate adduct. Examples of such compounds include polyfunctional blocked isocyanate group-containing compounds obtained by reacting an isocyanate compound with phenol, malonic acid diethyl ester, methyl ethyl ketoxime, sodium bisulfite, ε-caprolactam, and the like.
  かかるウレタン化合物は繊維に対し0.03~0.15質量%付着していることが好ましい。少ないとバインダーとしての効果を十分に発揮できない場合がり、また多すぎると繊維構造物としての風合いを損ね、また硬くなるのに加え、撥水性能が低下する傾向がある。加工上がりの撥水性と洗濯耐久性の観点からは0.02~0.08質量%がより好ましい。 It is preferable that 0.03 to 0.15% by mass of the urethane compound adheres to the fiber. If the amount is too small, the effect as a binder may not be sufficiently exhibited. If the amount is too large, the texture as a fiber structure is impaired, and in addition to becoming hard, water repellency tends to be lowered. From the standpoint of water repellency after processing and durability to washing, 0.02 to 0.08% by mass is more preferable.
  本発明の繊維構造物の樹脂皮膜は、一時帯電防止剤を含有しても差し支えない。一時帯電防止剤としては撥水性の性能を阻害しにくいものを使用するのがよい。一時帯電防止剤としては、高級アルコール硫酸エステル塩、硫酸化油、スルホン酸塩、燐酸エステル塩などのアニオン系界面活性剤、アミン塩型、第4級アンモニウム塩、イミダリン型4級塩などのカチオン系界面活性剤、ポリエチレングリコール型、多価アルコールエステル型などの非イオン系界面活性剤、イミダリン型4級塩、アラニン型、ベタイン型などの両性界面活性剤、高分子化合物タイプとしては前述した制電性重合体、ポリアルキルアミンなどを少なくとも1種使用することができる。 The resin film of the fiber structure of the present invention may contain a temporary antistatic agent. As the temporary antistatic agent, it is preferable to use a material that does not hinder water repellency. Temporary antistatic agents include anionic surfactants such as higher alcohol sulfates, sulfated oils, sulfonates, phosphate esters, cations such as amine salt types, quaternary ammonium salts, and imidazoline type quaternary salts. Surfactants, non-ionic surfactants such as polyethylene glycol type and polyhydric alcohol ester type, amphoteric surfactants such as imidazoline type quaternary salt, alanine type and betaine type, and polymer compound types mentioned above. At least one kind of electropolymer, polyalkylamine and the like can be used.
 一方、帯電防止剤を含有することで糸-糸間の滑りが大きくなる場合があり、好ましくは塩酸グアニジンの有機塩からなる帯電防止剤が滑り抑制と撥水性能を阻害しにくいという観点から好ましい。 On the other hand, when an antistatic agent is contained, slippage between yarns and yarns may be increased. Preferably, an antistatic agent composed of an organic salt of guanidine hydrochloride is preferable from the viewpoint of preventing slippage and inhibiting water repellency. .
  帯電防止剤は、繊維構造物に対し0.02~0.1質量%含有させることで効果を発揮し、撥水性への阻害も少ない。 Antistatic agent exerts its effect when contained in an amount of 0.02 to 0.1% by mass with respect to the fiber structure, and has little inhibition of water repellency.
 本発明の樹脂皮膜が微粒子を含有していても良い。好ましい粒子径は10μm以下のである。粒子は無機系微粒子、有機微粒子のいずれでもよく、また混在していても差し支えない。 The resin film of the present invention may contain fine particles. A preferred particle size is 10 μm or less. The particles may be either inorganic fine particles or organic fine particles, and may be mixed.
  無機微粒子としては、酸化アルミニウム、二酸化ケイ素、酸化チタン、カオリン、ベントナイト、タルク、炭酸カルシウム、珪酸カルシウム、酸化マグネシウム等が例示され、これらを単独あるいは2種以上を混合して使用することができ、水分散体として使用するのが好ましい。中でも二酸化ケイ素が好ましく使用できる。 Examples of the inorganic fine particles include aluminum oxide, silicon dioxide, titanium oxide, kaolin, bentonite, talc, calcium carbonate, calcium silicate, magnesium oxide and the like, and these can be used alone or in combination of two or more. It is preferably used as an aqueous dispersion. Of these, silicon dioxide can be preferably used.
 かかる粒子の粒子径は好ましくは5~500nmであり、より好ましくは10~100nmである。 The particle diameter of such particles is preferably 5 to 500 nm, more preferably 10 to 100 nm.
 有機微粒子としては、アクリル系樹脂、オレフィン系樹脂、メラミン系樹脂からなる粒子ななどが例示される。さらに有機系粒子の表面をシリカやアルミナで被覆した複合粒子も使用できる。 Examples of the organic fine particles include particles made of acrylic resin, olefin resin, and melamine resin. Furthermore, composite particles obtained by coating the surface of organic particles with silica or alumina can also be used.
 粒子の粒子径としては好ましくは0.01~10μmが好ましく、より好ましくは0.1~6μmである。 The particle diameter of the particles is preferably 0.01 to 10 μm, more preferably 0.1 to 6 μm.
  本発明でいう粒子径とは、該繊維構造物をSEM(走査型電子顕微鏡)で観察し、粒子の大きさを測定したものである。 粒子 The particle diameter referred to in the present invention is a value obtained by observing the fiber structure with a scanning electron microscope (SEM) and measuring the particle size.
  粒子を含有することにより、シリコーン系化合物および炭化水素系化合物が繊維表面に付着することによって生じる糸と糸と間の滑りを抑制する効果がある。 The inclusion of soot particles has the effect of suppressing slippage between the yarns caused by the silicone compound and hydrocarbon compound adhering to the fiber surface.
  また、粒子を含有することにより繊維表面に微細な凹凸が形成されるため、ロータスリーフ効果が得られる。また樹脂が均一に繊維表面に固着しやすくなり、繊維との密着性が向上することから更に高い撥水性と耐久性が得られるものである。 Moreover, since fine irregularities are formed on the fiber surface by containing particles, a lotus leaf effect is obtained. Further, since the resin is easily fixed uniformly on the fiber surface and the adhesion to the fiber is improved, higher water repellency and durability can be obtained.
 炭化水素基含有化合物およびシリコーン系化合物を含む樹脂を繊維表面に固着させる方法については、該化合物を混合した皮膜用組成物であるエマルジョン溶液に繊維構造物を浸漬した後、拡布の状態で一定の圧力で絞り、高い温度で乾燥する方法があげられる。80~140℃で乾燥し、その後160~200℃の温度で熱処理するパッド・ドライ・キュア法や、蒸気を含む100~200℃の雰囲気下でするパッド・スチーム法が好ましい。 Regarding the method for fixing the resin containing the hydrocarbon group-containing compound and the silicone compound to the fiber surface, the fiber structure is immersed in an emulsion solution, which is a film composition mixed with the compound, and then fixed in a spread state. A method of squeezing with pressure and drying at a high temperature is exemplified. A pad dry cure method in which the substrate is dried at 80 to 140 ° C. and then heat-treated at a temperature of 160 to 200 ° C., or a pad steam method in an atmosphere containing steam at 100 to 200 ° C. is preferable.
  また、本発明の繊維構造物の製造にあたっては、皮膜用組成物を繊維に接触させた後、カレンダー加工を行ってもよい。また温度をかけない冷カレンダーや130~200℃の温度をかけてもよい。これらの加工では、線圧250~20000N/cmとするのがよい。  カレンダー加工を行うことで、繊維同士間の滑りを更に抑える効果も得られる。 Also, in the production of the fiber structure of the present invention, the coating composition may be contacted with the fiber and then calendered. Further, a cold calender without applying a temperature or a temperature of 130 to 200 ° C. may be applied. In these processes, the linear pressure is preferably 250 to 20000 N / cm. By performing calendering, it is possible to obtain an effect of further suppressing slippage between fibers.
 通常、炭化水素系化合物やシリコーン系化合物を繊維表面に付与した場合、糸の表面の滑り性が高くなり、織物で縫製品を作った場合にミシンの縫い目が開いてしまう縫い目ずれという現象が発生する。 Normally, when a hydrocarbon compound or silicone compound is applied to the fiber surface, the surface of the thread becomes highly slippery, and when the sewing product is made of woven fabric, a phenomenon called seam misalignment that causes the seam of the sewing machine to open occurs. To do.
 本発明の樹脂皮膜はメラミン系化合物を併用することでかかる縫い目ずれを抑えることができ、更に無機粒子を併用することで、その効果は向上する。 The resin film of the present invention can suppress the seam shift by using a melamine compound in combination, and the effect is improved by using inorganic particles in combination.
 本発明の繊維構造物は縫い目ずれがJIS L 1096「一般織物試験方法」(1999年改正)滑脱抵抗法B法で測定した場合、49N荷重時に3mm以下となることが好ましい。 The fiber structure of the present invention preferably has a seam misalignment of 3 mm or less at a load of 49 N when measured by JIS L 1096 “General Textile Test Method” (revised in 1999) by the sliding resistance method B method.
 本発明の繊維構造物の好ましい実施形態として、繊維表面にアニオン基を有するスルホン基含有化合物、多価フェノール系化合物から選ばれた少なくとも1種を付着させる前処理を行った後、更にシリコーン系化合物、炭化水素基含有化合物および好ましく添加されるメラミン化合物が付着していることが好ましい。 As a preferred embodiment of the fiber structure of the present invention, after performing a pretreatment for adhering at least one selected from a sulfone group-containing compound having an anionic group and a polyhydric phenol compound on the fiber surface, a silicone compound is further added. It is preferable that the hydrocarbon group-containing compound and the melamine compound to be preferably added are attached.
 繊維表面にアニオン基を有する化合物が固着していることで、積層されるシリコーン系化合物および炭化水素基含有化合物の接着性が向上し、耐久性が向上すると考えられる。 It is considered that the adhesion of the silicone-based compound and the hydrocarbon group-containing compound to be laminated improves the durability by fixing the compound having an anionic group on the fiber surface.
  かかるスルホン基含有化合物としては、分子構造中にスルホン基を持つポリアミド系繊維のアミノ基に対し親和性のあるものがよく、例えばα-オレフィンスルホン化物の塩やフェノールホルマリン樹脂のスルホン化物、イソフタル酸ジメチルスルホン酸ナトリウム塩などが挙げられる。より好ましくは平均炭素数12~30であるα-オレフィンスルホン化物の塩である。また、本発明の多価フェノール系化合物としては、たとえば天然タンニンやノボラック型、レゾール型などのフェノールホルマリン樹脂のスルホン化物で代表される合成タンニンが挙げられる。 Such a sulfone group-containing compound preferably has an affinity for the amino group of a polyamide fiber having a sulfone group in the molecular structure, such as a salt of an α-olefin sulfonate, a sulfonate of a phenol formalin resin, or isophthalic acid. Examples include dimethyl sulfonic acid sodium salt. More preferred is a salt of an α-olefin sulfonate having an average carbon number of 12 to 30. Examples of the polyhydric phenol compound of the present invention include natural tannins and synthetic tannins represented by sulfonated phenol formalin resins such as novolac type and resol type.
 上記のスルホン基含有化合物、多価フェノール系化合物を繊維に固着させる方法としては特に限定されるものではないが、好ましくは該スルホン基含有化合物や多価フェノール系化合物を含有した水溶液(以下「前処理液」という。)に繊維構造物を浸漬処理するのが好ましい。スルホン基含有化合物、多価フェノール系化合物は繊維に対し、固形分で1~10質量%が好ましく、より好ましくは2~5質量%程度である。少ないと効果がさらなる耐久性向上効果が発揮されず、また多いと、繊維構造物の風合いが硬くなる傾向にある。上記の前処理液はpHを2~6に調整することが前記接着性および耐久性の向上効果を得るためには好ましい。pH調整には酢酸、マレイン酸、塩酸、硫酸、ギ酸などの酸を使用すればよく、特に限定されることはない。 The method for fixing the sulfone group-containing compound and the polyhydric phenol compound to the fiber is not particularly limited, but preferably an aqueous solution containing the sulfone group-containing compound or polyhydric phenol compound (hereinafter referred to as “previous”). It is preferable to immerse the fiber structure in a “treatment liquid”. The sulfone group-containing compound and the polyhydric phenol compound are preferably 1 to 10% by mass, more preferably about 2 to 5% by mass, based on the fiber. When the amount is small, the effect of further improving durability is not exhibited. When the amount is large, the texture of the fiber structure tends to be hard. In order to obtain the effect of improving the adhesiveness and durability, it is preferable to adjust the pH of the pretreatment liquid to 2 to 6. For pH adjustment, an acid such as acetic acid, maleic acid, hydrochloric acid, sulfuric acid, formic acid may be used, and there is no particular limitation.
  本発明の繊維構造物と前記前処理液との浴比(質量比)は特に限定されるものではないが、繊維構造物1に対し前処理液10~50の範囲が好ましい。 浴 The bath ratio (mass ratio) between the fiber structure of the present invention and the pretreatment liquid is not particularly limited, but is preferably in the range of 10 to 50 of the pretreatment liquid with respect to the fiber structure 1.
   前処理温度は40~100℃が好ましく、より好ましくは50~90℃であり処理時間は10~60分が好ましい。 The pretreatment temperature is preferably 40 to 100 ° C, more preferably 50 to 90 ° C, and the treatment time is preferably 10 to 60 minutes.
 かかる処理の後に湯洗いおよび乾燥後に上記に記載のパッド・ドライ・キュア法や、パッド・スチーム法でシリコーン系化合物、炭化水素基含有化合物、メラミン化合物を積層固着させるものである。 After such treatment, the silicone compound, the hydrocarbon group-containing compound, and the melamine compound are laminated and fixed by the pad dry cure method described above or the pad steam method after washing with hot water and drying.
 本発明で使用される繊維は合成繊維であることが好ましい。ポリエチレンテレフタレート、ポリプロピレンテレフタレートおよびポリブチレンテレフタレートなどの芳香族ポリエステル系繊維、芳香族ポリエステルに第三成分例えば、イソフタル酸、イソフタル酸スルホネート、アジピン酸およびポリエチレングリコールなどが共重合した芳香族ポリエステル系繊維、ポリ乳酸に代表される脂肪族ポリエステル系繊維および上に示したポリエステルの複数種の混合物からなるポリエステル系繊維;ナイロン6やナイロン66などのポリアミド系繊維;ポリアクリルニトリルに代表されるアクリル系繊維;ポリエチレンやポリプロピレンなどのポリオレフィン系繊維、ポリ塩化ビニル系繊維が好ましく使用される。これらの繊維と共にポリウレタン弾性繊維が複合されていても良い。 The fiber used in the present invention is preferably a synthetic fiber. Aromatic polyester fibers such as polyethylene terephthalate, polypropylene terephthalate and polybutylene terephthalate, aromatic polyester fibers in which aromatic polyester is copolymerized with third components such as isophthalic acid, isophthalic acid sulfonate, adipic acid and polyethylene glycol, poly Polyester fibers composed of aliphatic polyester fibers represented by lactic acid and a mixture of the above-mentioned polyesters; polyamide fibers such as nylon 6 and nylon 66; acrylic fibers represented by polyacrylonitrile; polyethylene Polyolefin fiber such as polypropylene and polypropylene, and polyvinyl chloride fiber are preferably used. A polyurethane elastic fiber may be combined with these fibers.
 また合成繊維の他にアセテートやレーヨンなどの半合成繊維、木綿、麻、絹および羊毛などの天然繊維を使用してもよい。本発明ではこれらの繊維を単独または2種以上の混合物として使用することができるが、ポリエステル系繊維、ポリアミド系繊維を主成分にした繊維が好ましく使用される。 In addition to synthetic fibers, semi-synthetic fibers such as acetate and rayon, and natural fibers such as cotton, hemp, silk and wool may be used. In the present invention, these fibers can be used singly or as a mixture of two or more. However, fibers mainly composed of polyester fibers and polyamide fibers are preferably used.
 本発明の繊維構造物には、前記繊維を使用してなる織物、編物または不織布などの布帛状物、あるいは紐状物などが含まれるが、好ましくは織物が撥水効果を示す目的として好ましい。 The fiber structure of the present invention includes fabrics such as woven fabrics, knitted fabrics and nonwoven fabrics using the above-mentioned fibers, or string-like materials, and fabrics are preferred for the purpose of exhibiting a water repellent effect.
 本発明の繊維構造物は、優れた撥水性と柔軟な風合いを示すことから特にアウターと呼ばれる衣服や寝装具、具体的には、ダウン用側地、コート、ブルゾン、ウインドブレーカー、ブラウス、ドレスシャツ、スカート、スラックス、手袋、帽子、布団側地、布団干しカバー、カーテンまたはテント類など、衣料用途品、非衣料用途品などの繊維製品用途に好適に使用されるものである。 Since the fiber structure of the present invention exhibits excellent water repellency and flexible texture, it is particularly suitable for clothing and bedding called outerwear, specifically, down linings, coats, blousons, windbreakers, blouses, and dress shirts. , Skirts, slacks, gloves, hats, futon sides, futon covers, curtains or tents, etc., and are suitably used for textile products such as clothing and non-clothing products.
 中でも高い撥水性を要求される用途としてダウン用側地やウインドブレーカーが挙げられるが、これら用途に対してはダウン抜けや防風性が必要とされることから極細繊維を使用した高密度織物が好適である。極細繊維を使用した高密度織物とするときは、総繊度が5~55デシテックスで、単繊維繊度が0.4~2.2デシテックスで構成されたものであることが好ましい。 Among them, applications for high water repellency include downsides and windbreakers. For these applications, a high-density fabric using ultrafine fibers is preferred because down-out and windbreakability are required. It is. When a high-density woven fabric using ultrafine fibers is used, it is preferable that the total fineness is 5 to 55 dtex and the single fiber fineness is 0.4 to 2.2 dtex.
 総繊度が小さい過ぎるものは強度が弱く着用時に破れが発生しやすくなり、かつ製紙糸時のケバや糸切れが発生し好ましくない。また、総繊度が大きすぎる場合には織物、製品の風合いが硬くなり着用快適性が失われる傾向がある。好まししい範囲は、5~55デシテックスで、さらに好ましくは7~44デシテックスである。 If the total fineness is too small, the strength is weak, and tearing is likely to occur when worn, and there is an undesirable result of scuffing and thread breakage during papermaking. On the other hand, if the total fineness is too large, the texture of the woven fabric or product tends to be hard and wear comfort tends to be lost. A preferred range is 5 to 55 dtex, more preferably 7 to 44 dtex.
 極細繊維を使用した高密度織物とする場合、繊維の単繊維繊度は0.4~2.2デシテックスであることが好ましい。単繊維繊度が小さすぎると、柔らかい風合いが得られるものの、着用中に単糸が切れやピリング等が発生しやすくなる。また単繊維糸繊度が大きすぎると、風合いが硬くなるほか、防風性能が低下する傾向がある。なお、単繊維繊度とは総繊度をフィラメント数で除した値である。 When a high-density woven fabric using ultrafine fibers is used, the single fiber fineness of the fibers is preferably 0.4 to 2.2 dtex. If the single fiber fineness is too small, a soft texture can be obtained, but the single yarn breaks and pilling tends to occur during wearing. On the other hand, if the single fiber yarn fineness is too large, the texture becomes hard and the windproof performance tends to be lowered. The single fiber fineness is a value obtained by dividing the total fineness by the number of filaments.
  以下、実施例により、本発明の繊維構造物について詳細に説明するが、本発明はこれらの実施例により限定されるものではない。評価は、次の方法で実施した。 Hereinafter, the fiber structure of the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. Evaluation was performed by the following method.
 (洗濯方法)
  JIS  L0217「繊維製品の取扱いに関する表示記号及びその表示方法」(1995)の付表1の103に規定されている方法を簡便法で洗濯するものである。具体的にはJIS C9606に規定する遠心式脱水装置付きの家庭用電気洗濯機に、浴比(質量比)1:30となるように40±2℃の水を入れ、弱アルカリ性合成洗剤を添加して溶解し、強条件で25分洗濯 した。次いで排水・脱水し、新たに浴比が1:30となるように水を入れ、10分間すすぎを行った。再び排水・脱水した後、新たに浴比が1:30となるように水を入れ、10分間すすぎを行い、排水・脱水した。この工程を洗濯5回分の洗濯として、これを2回繰り返したものを家庭洗濯10回の簡便法とした。そして、洗濯後は20℃×65%RHの環境下の室内につり干しし、乾燥した。
(Washing method)
The method prescribed in 103 of Attached Table 1 of JIS L0217 “Display Symbols and Handling Methods for Textile Products” (1995) is washed by a simple method. Specifically, water of 40 ± 2 ° C is added to a household electric washing machine with a centrifugal dehydrator specified in JIS C 9606 so that the bath ratio (mass ratio) is 1:30, and a weak alkaline synthetic detergent is added. It was dissolved and washed for 25 minutes under strong conditions. Next, drainage and dehydration were carried out, and water was newly added so that the bath ratio became 1:30, followed by rinsing for 10 minutes. After draining and dewatering again, water was newly added so that the bath ratio became 1:30, and rinsing was performed for 10 minutes to drain and dewater. This process was carried out for 5 washings, and this was repeated twice to make a simple method of 10 home washings. And after washing, it was hung in a room under an environment of 20 ° C. × 65% RH and dried.
 (撥水性)
  JIS L 1092「繊維製品の防水性試験方法」(1998年改正)に規定される方法でスプレー試験法により評価を行い級判定した。例えば4級以上5級未満の撥水性を示す場合は4-5級とする。
(Water repellency)
Evaluation was made by the spray test method according to the method prescribed in JIS L 1092 “Test method for waterproofness of textile products” (amended in 1998), and the grade was determined. For example, when the water repellency is 4th or more and less than 5th, it is classified as 4-5.
 (滑脱抵抗力)
  JIS L 1096「一般織物試験方法」(1999年改正)滑脱抵抗法B法により、初荷重49Nにより測定した。
(Slip resistance)
It was measured at an initial load of 49 N according to JIS L 1096 “General Textile Test Method” (revised in 1999) by the sliding resistance method B method.
 (試験用基布1)
  タテ糸、ヨコ糸ともに22デシテックス、20フィラメントのナイロン6糸を用い、幅:165、0cm、タテ糸密度:185本/2.54cm、ヨコ糸密度:155本/2.54cmで織物をエアージェットルームで製織した。
(Test fabric 1)
Nylon 6 yarn of 22 decitex and 20 filaments is used for both warp and weft, width: 165, 0 cm, warp yarn density: 185 yarns / 2.54 cm, weft yarn density: 155 yarns / 2.54 cm, and air jet Weaved in the room.
  得られた上記生機はオープンソーパーで精練し(90℃)、次いでピンテンターで中間セットし(180℃×40秒)、液流染色機でベージュに染色した、実施例1については、乾燥した布帛を使用し、実施例2~11、比較例1~8は同液流染色機を用いて、下記に示した加工液で浴比1:20に調整し、常温から80℃まで2℃/分で昇温し、30分間浴中で処布帛を処理した。次いで50℃まで降温した後、順に廃液し、そして布帛を水洗し、脱水した後にピンテンターを使用し140℃で乾燥した、得られた布帛を試験用基布1とした。
実施例2~11、比較例1~8に使用した薬剤は次に記載のものである。
The obtained raw machine was scoured with an open soaper (90 ° C.), then intermediately set with a pin tenter (180 ° C. × 40 seconds), and dyed beige with a liquid dyeing machine. In Examples 2 to 11 and Comparative Examples 1 to 8, the same liquid flow dyeing machine was used, and the bath ratio was adjusted to 1:20 with the processing liquid shown below, from room temperature to 80 ° C. at 2 ° C./min. The temperature was raised and the treated fabric was treated in a bath for 30 minutes. Next, after the temperature was lowered to 50 ° C., the liquid was sequentially discharged, and the fabric was washed with water, dehydrated, and then dried at 140 ° C. using a pin tenter.
The chemicals used in Examples 2 to 11 and Comparative Examples 1 to 8 are as described below.
 ナイロンフィックス501(センカ(株)  製  多価フェノール系縮合物):5%owf。 Nylon fix 501 (Senka Co., Ltd., smoked polyphenol-based condensate): 5% owf.
 (試験用基布2)
  タテ糸、ヨコ糸ともに33デシテックス、72フィラメントのポリエチレンテレフタレート糸を用い、幅:165、0cm、タテ糸密度:175本/2.54cm、ヨコ糸密度:149本/2.54cmで織物をエアージェットで製織した。
(Test fabric 2)
Use 33 decitex, 72 filament polyethylene terephthalate yarn for both warp and weft yarns, width: 165, 0 cm, warp yarn density: 175 yarns / 2.54 cm, weft yarn density: 149 yarns / 2.54 cm, and air jet Weaved with.
   得られた上記生機をオープンソーパーで精練し(90℃)、次いでピンテンターで中間セットし(180℃×40秒)、液流染色機でベージュに染色し、そして乾燥した。得られた布帛を試験用基布2とした。 The obtained raw machine was scoured with an open soaper (90 ° C.), then set with a pin tenter (180 ° C. × 40 seconds), dyed beige with a liquid dyeing machine, and dried. The obtained fabric was used as a test base fabric 2.
 (実施例1~11、比較例1~8)
  表1に記載のエマルジョン液に試験用基布1を浸漬しマングルで絞った後、ピンテンターを使用し130℃で2分間乾燥し、次いで同ピンテンターにより有り幅にて170℃で1分間乾熱処理を行った。マングルの絞り率は40%であった。
(Examples 1 to 11, Comparative Examples 1 to 8)
After immersing the test base cloth 1 in the emulsion solution shown in Table 1 and squeezing it with a mangle, it is dried at 130 ° C. for 2 minutes using a pin tenter, and then subjected to a dry heat treatment at 170 ° C. for 1 minute at a certain width using the pin tenter. went. The mangle squeezing rate was 40%.
 (実施例12~14、比較例9~11)
 実施例12~14、比較例9~11は試験用基布2を使用した。
実施例13、14は前処理として染色後に同液流染色機を用い下記に示した加工液で浴比1:20に調整し、常温から80℃まで2℃/分で昇温し、30分間浴中処理した。次いで50℃まで降温した後、廃液、水洗、脱水後にピンテンターを使用し140℃で乾燥した。得られた布帛を使用した。
実施例13に使用した薬剤は次に記載のものである。  
ナイロンフィックス501(センカ(株)  製  多価フェノール系縮合物):5%owf   
実施例14に使用した薬剤は次に記載のものである。
メナ25(明成化学工業(株)製  芳香族スルホン酸誘導体)  :  5%owf
マレイン酸   :  2g/L  。
(Examples 12 to 14, Comparative Examples 9 to 11)
In Examples 12 to 14 and Comparative Examples 9 to 11, the test fabric 2 was used.
In Examples 13 and 14, as a pretreatment, after dyeing, the same flow dyeing machine was used to adjust the bath ratio to 1:20 with the processing liquid shown below, and the temperature was raised from room temperature to 80 ° C. at 2 ° C./min for 30 minutes. Treated in bath. Next, after the temperature was lowered to 50 ° C., the waste liquid, washed with water, and dehydrated were dried at 140 ° C. using a pin tenter. The obtained fabric was used.
The drugs used in Example 13 are as described below.
Nylon Fix 501 (Senka Co., Ltd. polyhydric phenol condensate): 5% owf
The drugs used in Example 14 are as described below.
Mena 25 (Maroise Chemical Co., Ltd. aromatic sulfonic acid derivative): 5% owf
Maleic acid: 2 g / L.
  実施例1~14、比較例1~11で得られた試験用基布について、初期、洗濯10回後の撥水性能および滑脱抵抗力を測定した結果を表1に示す。 Table 1 shows the results of measuring the water repellency and sliding resistance of the test base fabrics obtained in Examples 1 to 14 and Comparative Examples 1 to 11 after 10 washes in the initial stage.
 実施例1~11については、初期4級以上の高い撥水性と洗濯10回後も3級以上の洗濯耐久性を示す。また、滑脱抵抗力も3mm以下であり、物性的にも良好な撥水性繊維構造物が得られた。一方、比較例1,2および4については初期から撥水性が低く、洗濯耐久性という観点からは非常に低いものであった。また、比較例5および7については初期撥水性は高いものの洗濯耐久性が低く、比較例7については、撥水性は初期、洗濯後ともに高い値を示すが、滑脱抵抗力が3mmを越えており、縫製品として着用した場合に縫い目の目ずれが大きく品位の悪いものであった。 Examples 1 to 11 exhibit high water repellency of 4th grade or higher in the initial stage and washing durability of 3rd grade or higher after 10 washings. Moreover, the slip-proof resistance was 3 mm or less, and a water-repellent fiber structure having good physical properties was obtained. On the other hand, Comparative Examples 1, 2 and 4 were low in water repellency from the beginning and very low from the viewpoint of washing durability. In Comparative Examples 5 and 7, although the initial water repellency is high, the washing durability is low. In Comparative Example 7, the water repellency is high both in the initial stage and after the washing, but the slip resistance is over 3 mm. When worn as a sewing product, the seam misalignment was large and the quality was poor.
 試験用基布2を使用した12~14についても初期4級以上の高い撥水性と洗濯10回後も3級以上の洗濯耐久性を示すものである。一方、比較例9、10は、初期撥水性は高いものの洗濯耐久性が低く、比較例11は初期から撥水性が低いものであった。   Tests 12 to 14 using the test base fabric 2 also show high water repellency of grade 4 or higher in the initial stage and washing durability of grade 3 or higher even after 10 washings. On the other hand, Comparative Examples 9 and 10 had high initial water repellency but low washing durability, and Comparative Example 11 had low water repellency from the beginning.
 また実施例10はSEM(走査電子顕微鏡 S-3500N((株)日立製作所製))で5000倍で観察し、40~50nmの粒子が付着していることが確認できた。 Further, Example 10 was observed with a SEM (scanning electron microscope S-3500N (manufactured by Hitachi, Ltd.)) at a magnification of 5000, and it was confirmed that particles of 40 to 50 nm adhered.
 撥水性は家庭洗濯10回後も3級以上の高い耐久性を示した。 The water repellency showed a high durability of grade 3 or higher even after 10 home washings.
 実施例11はSEM(走査電子顕微鏡 S-3500N((株)日立製作所製))を用いて、5000倍で観察し、粒径3~4μmの粒子が付着していることが確認できた。 Example 11 was observed using a SEM (scanning electron microscope S-3500N (manufactured by Hitachi, Ltd.)) at a magnification of 5000, and it was confirmed that particles having a particle diameter of 3 to 4 μm were adhered.
 かかる粒子が糸の滑り抑制効果として働き、滑脱抵抗力は低くなる傾向にある。     Such particles act as an anti-slip effect on the yarn, and the slip resistance tends to be low.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表中、「ライトテック」「アサヒガード」「スノーテックス」「オプトビーズ」「ベッカミン」は日本での登録商標。「ネオシード」は日本語文字での日本での登録商標。 In the table, "Light Tech", "Asahi Guard", "Snow Tech", "Opto Beads", and "Beccamin" are registered trademarks in Japan. “Neo Seed” is a registered trademark in Japan in Japanese characters.
  本発明の繊維構造物は高い撥水性を有しているので、衣料品、繊維資材に利用できる。 Since the fiber structure of the present invention has high water repellency, it can be used for clothing and textile materials.
 中でもダウンジャケットの側地など撥水性と柔軟な風合いに加え、ダウン抜け抑制などの物理的なコントロールが必要な用途に対し、好ましく利用することができる。 Above all, it can be preferably used for applications that require physical control such as down-out prevention in addition to water repellency and a soft texture such as the side of the down jacket.

Claims (16)

  1. 炭化水素系化合物、シリコーン系化合物およびメラミン化合物を含有する樹脂皮膜が繊維表面に固着しており、該シリコーン系化合物の合計量が該炭化水素含有化合物に対して1~50質量%である繊維構造物。 A fiber structure in which a resin film containing a hydrocarbon compound, a silicone compound and a melamine compound is fixed to the fiber surface, and the total amount of the silicone compound is 1 to 50% by mass with respect to the hydrocarbon-containing compound object.
  2. 該シリコーン系化合物がアミノ変性シリコーン、エポキシ変性シリコーン、カルボキシ変性シリコーン、メチルハイドロジェンシリコーンおよびジメチルシリコーンから選ばれる1種以上である請求項1記載の繊維構造物。 2. The fiber structure according to claim 1, wherein the silicone compound is at least one selected from amino-modified silicone, epoxy-modified silicone, carboxy-modified silicone, methyl hydrogen silicone, and dimethyl silicone.
  3. 該炭化水素系化合物が、炭素数12以上の脂肪族炭化水素およびポリオレフィンから選ばれる1種以上である請求項1または2記載の繊維構造物。 The fiber structure according to claim 1 or 2, wherein the hydrocarbon compound is one or more selected from aliphatic hydrocarbons having 12 or more carbon atoms and polyolefins.
  4. 該炭化水素系化合物が、炭素数12以上の脂肪族カルボン酸およびそのエステル化物から選ばれる1種以上である請求項1または2記載の繊維構造物。 The fiber structure according to claim 1 or 2, wherein the hydrocarbon compound is at least one selected from aliphatic carboxylic acids having 12 or more carbon atoms and esterified products thereof.
  5. 該炭化水素系化合物が、エステル結合を介して存在する炭化水素基の炭素数が12以上のアクリル酸エステルまたはメタクリル酸エステルの重合体である請求項1または2記載の繊維構造物。 3. The fiber structure according to claim 1 or 2, wherein the hydrocarbon compound is a polymer of an acrylate ester or a methacrylate ester having 12 or more carbon atoms in a hydrocarbon group present via an ester bond.
  6. 該樹脂皮膜がさらにウレタン化合物を含有する請求項1~5いずれかに記載の繊維構造物。 The fiber structure according to any one of claims 1 to 5, wherein the resin film further contains a urethane compound.
  7. 繊維の形態が織物、編物、不織布および紐状のいずれかである請求項1~6いずれかに記載の繊維構造物。 The fiber structure according to any one of claims 1 to 6, wherein the fiber form is any one of a woven fabric, a knitted fabric, a non-woven fabric, and a string.
  8. 家庭洗濯10回後の撥水度が3級以上である請求項1~7いずれかに記載の繊維構造物。 The fiber structure according to any one of claims 1 to 7, which has a water repellency of 3 or more after 10 home washings.
  9. 繊維に、炭化水素基含有化合物、シリコーン系化合物およびメラミン化合物を含有する皮膜用組成物を接触させ、これらを繊維の表面に付着させる工程を有する繊維構造物の製造方法。 The manufacturing method of the fiber structure which has the process which makes the composition for film | membrane containing a hydrocarbon group containing compound, a silicone type compound, and a melamine compound contact a fiber, and makes these adhere to the surface of a fiber.
  10. 該シリコーン系化合物がアミノ変性シリコーン、エポキシ変性シリコーン、カルボキシ変性シリコーン、メチルハイドロジェンシリコーンおよびジメチルシリコーンから選ばれた1種以上である請求項9記載の繊維構造物の製造方法。 The method for producing a fiber structure according to claim 9, wherein the silicone compound is at least one selected from amino-modified silicone, epoxy-modified silicone, carboxy-modified silicone, methyl hydrogen silicone, and dimethyl silicone.
  11. 該炭化水素系化合物が、炭素数12以上の脂肪族炭化水素およびポリオレフィンから選ばれる1種以上である請求項9または10記載の繊維構造物の製造方法。 The method for producing a fiber structure according to claim 9 or 10, wherein the hydrocarbon compound is at least one selected from aliphatic hydrocarbons having 12 or more carbon atoms and polyolefins.
  12. 該炭化水素系化合物が、炭素数12以上の脂肪族カルボン酸およびそのエステル化物から選ばれる1種以上である請求項9または10記載の繊維構造物の製造方法。 The method for producing a fiber structure according to claim 9 or 10, wherein the hydrocarbon compound is at least one selected from aliphatic carboxylic acids having 12 or more carbon atoms and esterified products thereof.
  13. 該炭化水素系化合物が、エステル結合を介して存在する炭化水素基の炭素数が12以上のアクリル酸エステルまたはメタクリル酸エステルの重合体を必須成分であるとして含有する請求項9または10記載の繊維構造物の製造方法。 The fiber according to claim 9 or 10, wherein the hydrocarbon-based compound contains, as an essential component, an acrylic ester or methacrylic ester polymer having a hydrocarbon group present through an ester bond and having 12 or more carbon atoms. Manufacturing method of structure.
  14. 繊維に炭化水素基含有化合物、シリコーン系化合物およびメラミン化合物を含有する皮膜用組成物を接触させる前に、繊維にアニオン基を有する化合物を付着する工程を有する請求項9~13いずれかに記載の繊維構造物の製造方法。 The method according to any one of claims 9 to 13, further comprising a step of attaching a compound having an anionic group to the fiber before bringing the coating composition containing the hydrocarbon group-containing compound, the silicone compound and the melamine compound into contact with the fiber. A method for producing a fiber structure.
  15. アニオン基を有する化合物がスルホン基含有化合物および多価フェノール系化合物から選ばれた少なくとも1種である請求項14に記載の繊維構造物の製造方法。 The method for producing a fiber structure according to claim 14, wherein the compound having an anion group is at least one selected from a sulfone group-containing compound and a polyhydric phenol compound.
  16. 炭化水素基含有化合物、シリコーン系化合物およびメラミン化合物を含有する組成物を繊維に付着させる工程の後、カレンダー加工工程を行う請求項9~15いずれかに記載の繊維構造物の製造方法。 The method for producing a fiber structure according to any one of claims 9 to 15, wherein a calendering step is performed after the step of adhering the composition containing the hydrocarbon group-containing compound, the silicone compound and the melamine compound to the fiber.
PCT/JP2014/081494 2013-12-02 2014-11-28 Fiber structure WO2015083627A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014559974A JP6447136B2 (en) 2013-12-02 2014-11-28 Fiber structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013248876 2013-12-02
JP2013-248876 2013-12-02

Publications (1)

Publication Number Publication Date
WO2015083627A1 true WO2015083627A1 (en) 2015-06-11

Family

ID=53273390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081494 WO2015083627A1 (en) 2013-12-02 2014-11-28 Fiber structure

Country Status (2)

Country Link
JP (1) JP6447136B2 (en)
WO (1) WO2015083627A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165056A (en) * 2014-03-03 2015-09-17 帝人フロンティア株式会社 Water-repellent fabric and method for manufacturing the same
JP2017155095A (en) * 2016-02-29 2017-09-07 日華化学株式会社 Water repellent assistant, non-fluorine-based water repellent composition and manufacturing method of water repellent fiber product
JP2017206775A (en) * 2016-05-16 2017-11-24 明成化学工業株式会社 Aqueous dispersion for water-repellent treatment of fiber product and method for producing the same, water-repellent finishing method and water-repellent fiber product
JP2017210704A (en) * 2016-05-27 2017-11-30 日華化学株式会社 Method for producing water-repellent fiber product
JP2018119250A (en) * 2017-01-27 2018-08-02 日華化学株式会社 Water-repellent agent composition, water-repellent fiber product and method for producing water-repellent fiber product
JP2018184692A (en) * 2017-04-27 2018-11-22 小松精練株式会社 Water-repellent fabric and method for producing the same
JP2019026965A (en) * 2017-07-31 2019-02-21 セーレン株式会社 Fiber structure and manufacturing method therefor
JP2019173185A (en) * 2018-03-27 2019-10-10 松本油脂製薬株式会社 Water repellent composition for fiber and application thereof
JP2020189980A (en) * 2020-07-27 2020-11-26 日華化学株式会社 Non-fluorine water repellent composition, and method for producing water-repellent fiber product
JP2021042488A (en) * 2019-09-09 2021-03-18 旭化成株式会社 Water-repellent fabric and method for producing the same
CN113710838A (en) * 2019-04-01 2021-11-26 美津浓株式会社 Swimming suit
US11326303B2 (en) 2015-06-05 2022-05-10 Cornell University Modified cellulosic compositions having increased hydrophobicity and processes for their production
WO2022138853A1 (en) * 2020-12-25 2022-06-30 ダイキン工業株式会社 Water-repellent organic fine particles having slip prevention effect
WO2023190760A1 (en) * 2022-03-30 2023-10-05 株式会社カネカ Water-repellent polyacrylonitrile-based artificial hair fiber, method for producing same, and head decoration product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122599A (en) * 1974-03-09 1975-09-26
JP2000212547A (en) * 1999-01-25 2000-08-02 Taiho Ind Co Ltd Water repellent soilproof agent
JP2005535801A (en) * 2001-12-19 2005-11-24 スリーエム イノベイティブ プロパティズ カンパニー Aqueous composition for making fibrous substrate water-repellent
JP2012122188A (en) * 2008-04-25 2012-06-28 Asahi Kasei Fibers Corp Thin woven fabric
JP2013209763A (en) * 2012-03-30 2013-10-10 Toray Ind Inc Fiber structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870773A (en) * 1981-10-21 1983-04-27 グンゼ株式会社 Special processing of knitted fabric
JPS6189374A (en) * 1984-10-05 1986-05-07 平岡織染株式会社 Production of water-proof sheet
JP2752450B2 (en) * 1989-08-08 1998-05-18 松本油脂製薬株式会社 Water repellent for binder fiber
JP3087105B2 (en) * 1995-04-20 2000-09-11 敏 瀧川 Coating agent consisting of silicone oil and polyalkyl methacrylate
JPH11302970A (en) * 1998-04-17 1999-11-02 Toray Ind Inc Production of water-repellent textile structural product
JP2006104617A (en) * 2004-10-06 2006-04-20 Toray Ind Inc Woven or knitted fabric
JP2006124866A (en) * 2004-10-28 2006-05-18 Ohara Palladium Kagaku Kk Fiber processing agent, fiber product given by using the same, and method for processing fiber cloths
JP4996875B2 (en) * 2005-04-28 2012-08-08 日華化学株式会社 Water repellent, water repellent processing method and water repellent fiber product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122599A (en) * 1974-03-09 1975-09-26
JP2000212547A (en) * 1999-01-25 2000-08-02 Taiho Ind Co Ltd Water repellent soilproof agent
JP2005535801A (en) * 2001-12-19 2005-11-24 スリーエム イノベイティブ プロパティズ カンパニー Aqueous composition for making fibrous substrate water-repellent
JP2012122188A (en) * 2008-04-25 2012-06-28 Asahi Kasei Fibers Corp Thin woven fabric
JP2013209763A (en) * 2012-03-30 2013-10-10 Toray Ind Inc Fiber structure

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165056A (en) * 2014-03-03 2015-09-17 帝人フロンティア株式会社 Water-repellent fabric and method for manufacturing the same
US11913164B2 (en) 2015-06-05 2024-02-27 Cornell University Modified cellulosic compositions having increased hydrophobicity and processes for their production
US11326303B2 (en) 2015-06-05 2022-05-10 Cornell University Modified cellulosic compositions having increased hydrophobicity and processes for their production
JP2017155095A (en) * 2016-02-29 2017-09-07 日華化学株式会社 Water repellent assistant, non-fluorine-based water repellent composition and manufacturing method of water repellent fiber product
JP2017206775A (en) * 2016-05-16 2017-11-24 明成化学工業株式会社 Aqueous dispersion for water-repellent treatment of fiber product and method for producing the same, water-repellent finishing method and water-repellent fiber product
JP2017210704A (en) * 2016-05-27 2017-11-30 日華化学株式会社 Method for producing water-repellent fiber product
CN107435245A (en) * 2016-05-27 2017-12-05 日华化学株式会社 The manufacture method of water proofing property fibre
CN107435245B (en) * 2016-05-27 2022-03-04 日华化学株式会社 Method for producing water-repellent fiber product
JP2018119250A (en) * 2017-01-27 2018-08-02 日華化学株式会社 Water-repellent agent composition, water-repellent fiber product and method for producing water-repellent fiber product
JP2018184692A (en) * 2017-04-27 2018-11-22 小松精練株式会社 Water-repellent fabric and method for producing the same
JP7009104B2 (en) 2017-07-31 2022-01-25 セーレン株式会社 Fiber structure and its manufacturing method
JP2019026965A (en) * 2017-07-31 2019-02-21 セーレン株式会社 Fiber structure and manufacturing method therefor
JP2019173185A (en) * 2018-03-27 2019-10-10 松本油脂製薬株式会社 Water repellent composition for fiber and application thereof
JP7146426B2 (en) 2018-03-27 2022-10-04 松本油脂製薬株式会社 Textile water repellent composition and use thereof
CN113710838A (en) * 2019-04-01 2021-11-26 美津浓株式会社 Swimming suit
JP2021042488A (en) * 2019-09-09 2021-03-18 旭化成株式会社 Water-repellent fabric and method for producing the same
JP7431270B2 (en) 2020-07-27 2024-02-14 日華化学株式会社 Water repellent aid, non-fluorine water repellent composition, and method for producing water repellent textile products
JP2020189980A (en) * 2020-07-27 2020-11-26 日華化学株式会社 Non-fluorine water repellent composition, and method for producing water-repellent fiber product
JP7039661B2 (en) 2020-07-27 2022-03-22 日華化学株式会社 Method for manufacturing non-fluorine-based water repellent composition and water-repellent fiber product
JP2022081600A (en) * 2020-07-27 2022-05-31 日華化学株式会社 Water repellent assistant, non-fluorine-based water repellent composition and manufacturing method of water repellent fiber product
WO2022138853A1 (en) * 2020-12-25 2022-06-30 ダイキン工業株式会社 Water-repellent organic fine particles having slip prevention effect
JP7288209B2 (en) 2020-12-25 2023-06-07 ダイキン工業株式会社 Water-repellent organic fine particles with anti-slip effect
JP2022103125A (en) * 2020-12-25 2022-07-07 ダイキン工業株式会社 Water-repellent organic fine particles having slip prevention effect
WO2023190760A1 (en) * 2022-03-30 2023-10-05 株式会社カネカ Water-repellent polyacrylonitrile-based artificial hair fiber, method for producing same, and head decoration product

Also Published As

Publication number Publication date
JP6447136B2 (en) 2019-01-09
JPWO2015083627A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6447136B2 (en) Fiber structure
JP2008542567A (en) Textile base material with layered finish structure
JP2018184692A (en) Water-repellent fabric and method for producing the same
JP2007247091A (en) Fiber structure
JP2010150693A (en) Fibrous structural material and method for producing the same
JPWO2017126358A1 (en) Fiber structure
JP2017145521A (en) Water repellent fabric and manufacturing method therefor
JP5087862B2 (en) Fiber structure
JP6931274B2 (en) Laminated fiber fabric and its manufacturing method
JP5958016B2 (en) Fiber structure
JP7544028B2 (en) Method for manufacturing water-repellent fiber structure, fiber structure and clothing
WO2017006849A1 (en) Stainproof fiber structure
JP2007247089A (en) Fiber structure
JP2008163471A (en) Fiber structure
JP2007247096A (en) Fluorine-based water repellent and fiber structure
JP4622530B2 (en) Pollen adhesion prevention fiber structure
JP2007247093A (en) Fiber structure
JP2014214388A (en) Thin woven fabric
JP5114946B2 (en) Fiber structure
JP2014198913A (en) Water-repellent cloth and production method thereof
JP2008163474A (en) Fiber structure
JP2008163473A (en) Fiber structure
JP2008163476A (en) Fiber structure
JP2007146313A (en) Fiber structure
JPS633078B2 (en)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014559974

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867068

Country of ref document: EP

Kind code of ref document: A1