WO2015064551A1 - Matrix composition for fiber-reinforced composite material, fiber-reinforced composite material, and method for producing fiber-reinforced composite material - Google Patents
Matrix composition for fiber-reinforced composite material, fiber-reinforced composite material, and method for producing fiber-reinforced composite material Download PDFInfo
- Publication number
- WO2015064551A1 WO2015064551A1 PCT/JP2014/078554 JP2014078554W WO2015064551A1 WO 2015064551 A1 WO2015064551 A1 WO 2015064551A1 JP 2014078554 W JP2014078554 W JP 2014078554W WO 2015064551 A1 WO2015064551 A1 WO 2015064551A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ring
- substituted
- carbon atoms
- chain
- carbon
- Prior art date
Links
- 0 CC*(C)CC(COC(*C(OCC(C*C)N=O)=O)=O)N=O Chemical compound CC*(C)CC(COC(*C(OCC(C*C)N=O)=O)=O)N=O 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
Definitions
- the present invention relates to a matrix composition for a fiber reinforced composite material containing an epoxy resin, a fiber reinforced composite material comprising a cured product of the matrix composition and a fibrous material, and a method for producing the fiber reinforced composite material.
- a fiber reinforced composite material composed of a reinforced fiber such as carbon fiber and a matrix is known to have excellent mechanical properties while being lightweight, and is used in a wide range of fields such as aircraft, automobiles, and leisure goods.
- a thermosetting resin in particular, an epoxy resin is used.
- an epoxy resin is used as the matrix of the fiber reinforced composite material.
- N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane (hereinafter also referred to as TGDDM) is heat resistant. It is widely used because it is particularly excellent.
- the fiber reinforced composite material obtained by using the matrix composition containing TGDDM has a problem of low toughness while exhibiting excellent heat resistance.
- Patent Documents 1 and 2 describe a method of adding a core-shell polymer to a matrix composition.
- the matrix composition containing the core-shell polymer may have problems such as high viscosity and poor adhesion to carbon fibers.
- Patent Document 2 also describes a method of adding an aliphatic epoxy resin having excellent toughness as another method.
- an aliphatic epoxy resin is added, although the toughness of the matrix composition is improved, there is a problem that the heat resistance is remarkably lowered.
- the conventional toughness improvement method has a problem that physical properties other than toughness are remarkably lowered in response to the demand for improvement in toughness. Therefore, it has been difficult to improve toughness without deteriorating physical properties such as heat resistance and adhesion to carbon fibers. In particular, it has been extremely difficult to obtain a matrix composition that is a fiber-reinforced composite material excellent in both heat resistance and toughness.
- the present invention is a matrix composition that can be suitably used for a fiber-reinforced composite material having excellent heat resistance and toughness, a fiber-reinforced composite material comprising a cured product of the matrix composition and a fibrous material, and It aims at providing the manufacturing method of a fiber reinforced composite material.
- a matrix composition containing an epoxy resin having a specific chemical structure can provide a fiber-reinforced composite material having excellent heat resistance and toughness, and completed the present invention.
- this invention relates to the matrix composition for fiber reinforced composite materials characterized by including the epoxy resin represented by following General formula (1).
- A is a divalent organic group containing a cyclic ether structure
- X represents a divalent organic group containing any one structure selected from the group consisting of the following general formulas (2) to (6) and (9);
- R 1 represents a single bond, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are heteroatoms) May be substituted, and some or all of the hydrogen atoms on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring is monocyclic, condensed or It may be a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted Good).
- ⁇ represents a single bond, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are heteroatoms) May be substituted, and some or all of the hydrogen atoms on the carbon
- R 2 represents a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are substituted with heteroatoms) Or a part or all of hydrogens on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring) And may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, and a part or all of hydrogen on the ring may be substituted).
- R 3 represents a single bond, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and a part of the carbon atoms are heteroatoms) May be substituted, and some or all of the hydrogen atoms on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring is monocyclic, condensed or It may be a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted Good).
- ⁇
- R 4 represents a single bond, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and a part of the carbon atoms are heteroatoms) May be substituted, and some or all of the hydrogen atoms on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring is monocyclic, condensed or It may be a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted Good).
- ⁇
- R 5 represents a single bond, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are heteroatoms) May be substituted, and some or all of the hydrogen atoms on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring is monocyclic, condensed or It may be a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted Good)
- Z 1 and Z 2 are each independently hydrogen or a structure represented by the following general formula (7) or the following general formula (8) (wherein at least one of Z 1 and Z 2 has the following general formula ( 7) or a structure represented by the following general formula (8). ;
- V is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are substituted with hetero atoms) Or a part or all of hydrogens on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring) And may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, and a part or all of hydrogen on the ring may be substituted).
- Show U is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, part of the carbon atoms may be substituted with a heteroatom, A part or all of hydrogens may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and a condensed ring and a spiro ring) And a part of the carbon atom may be substituted with a heteroatom, or part or all of the hydrogen on the ring may be substituted).
- Y is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of carbon atoms may be substituted with a heteroatom, A part or all of which may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and has both a condensed ring and a spiro ring) Or a part of the carbon atoms may be substituted with a heteroatom, or part or all of the hydrogen atoms on the ring may be substituted), or a chain carbonization having 1 to 20 carbon atoms.
- a group in which a carbonyl group is introduced into a hydrogen group or the above cyclic hydrocarbon group having 3 to 20 carbon atoms is shown. );
- W represents a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and a part of the carbon atoms may be substituted with a hetero atom) Or a part or all of hydrogen on the carbon chain may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, And a spiro ring, a part of the carbon atom may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted), or the carbon A group in which a carbonyl group is introduced into a chain hydrocarbon group having 1 to 20 carbon atoms or a cyclic hydrocarbon group having 3 to 20 carbon atoms; T is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched,
- R 6 represents a single bond, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and a part of the carbon atoms are heteroatoms) May be substituted, and some or all of the hydrogen atoms on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring is monocyclic, condensed or It may be a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted Good)
- Z 3 represents a structure represented by the following general formula (7) or the following general formula (8). ;
- V is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are substituted with hetero atoms) Or a part or all of hydrogens on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring) And may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, and a part or all of hydrogen on the ring may be substituted).
- Show U is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, part of the carbon atoms may be substituted with a heteroatom, A part or all of hydrogens may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and a condensed ring and a spiro ring) And a part of the carbon atom may be substituted with a heteroatom, or part or all of the hydrogen on the ring may be substituted).
- Y is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of carbon atoms may be substituted with a heteroatom, A part or all of which may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and has both a condensed ring and a spiro ring) Or a part of the carbon atoms may be substituted with a heteroatom, or part or all of the hydrogen atoms on the ring may be substituted), or a chain carbonization having 1 to 20 carbon atoms.
- a group in which a carbonyl group is introduced into a hydrogen group or the above cyclic hydrocarbon group having 3 to 20 carbon atoms is shown. );
- W represents a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and a part of the carbon atoms may be substituted with a hetero atom) Or a part or all of hydrogen on the carbon chain may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, And a spiro ring, part of the carbon atom may be substituted with a heteroatom, or part or all of the hydrogen on the ring may be substituted), or the carbon A group in which a carbonyl group is introduced into a chain hydrocarbon group having 1 to 20 carbon atoms or a cyclic hydrocarbon group having 3 to 20 carbon atoms; T is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of
- the content of the epoxy resin is preferably 45 to 99% by weight in the total solid content.
- the fiber reinforced composite material is preferably a carbon fiber reinforced composite material.
- the epoxy resin preferably has a number average molecular weight of 250 to 100,000.
- the fiber-reinforced composite material of the present invention is characterized by comprising a cured product of the matrix composition of the present invention and a fibrous material.
- the manufacturing method of the fiber reinforced composite material of this invention is characterized by including the following processes. (I) a step of impregnating the fibrous material with the matrix composition of the present invention; and (ii) a step of heat-treating the fibrous material impregnated with the matrix composition in the step (i).
- the fibrous material is preferably carbon fiber.
- the matrix composition of this invention contains the epoxy resin which has a specific structure, it can provide the fiber reinforced composite material excellent in heat resistance and toughness. Moreover, since the fiber reinforced composite material of this invention consists of the hardened
- the matrix composition for fiber-reinforced composite materials according to the present invention includes an epoxy resin represented by the following general formula (1).
- Epoxy resin is contained as a hardening component in the matrix composition of this invention, and is represented by following General formula (1).
- A represents a divalent organic group containing a cyclic ether structure.
- the divalent organic group containing a cyclic ether structure is not particularly limited, and examples thereof include divalent organic groups containing a cyclic ether structure represented by the following formulas (10) to (13), furan, tetrahydrofuran, and tetrahydropyran. , Divalent organic groups containing cyclic ether structures derived from dioxane, benzopyran, xanthene, oxazole-based compounds and the like.
- the “organic group” in the “divalent organic group containing a cyclic ether structure” means a group composed of hydrogen, carbon, and oxygen, and preferably has 2 to 20 carbon atoms, more preferably 2 carbon atoms. ⁇ 10.
- a in the general formula (1) is preferably a divalent organic group including a cyclic ether structure represented by any one of the formulas (10) to (13). Since these cyclic ether structures have two or more heterocycles in close proximity, when used in a matrix composition, a fiber-reinforced composite material with exceptional heat resistance and toughness can be obtained.
- examples of the substituent that can be substituted with hydrogen on the carbon chain or hydrogen on the ring include an alkyl group (methyl group, ethyl group, propyl group, isopropyl group, butyl group, C 1-20 alkyl group such as s-butyl group and t-butyl group), cycloalkyl group (C 3-10 cycloalkyl group such as cyclopentyl group, cyclohexyl group, etc.), cycloalkenyl group (cyclopentyl group, cyclohexyl group, etc.) C 3-10 cycloalkenyl group such as cell group), heterocyclic group (C 2-10 heterocyclic group containing a hetero atom such as oxygen atom, nitrogen atom and sulfur atom), aryl group [phenyl group, alkylphenyl group C 6-10 aryl groups such as (methylphenyl group (tolyl group), a dimethylphenyl group (
- X in the general formula (1) represents a divalent organic group including any one structure selected from the group consisting of the following general formulas (2) to (6) and (9).
- R 1 to R 6 are each a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, Some of the atoms may be substituted with heteroatoms, and some or all of the hydrogens on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein The ring may be a single ring, a condensed ring or a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, and a part of hydrogen on the ring Or all of them may be substituted), and R 1 and R 3 to R 6 may be a single bond.
- examples of the hetero atom that can be substituted with a part of the carbon atom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a boron atom, a selenium atom, and a tellurium atom.
- substituents that can replace hydrogen on the carbon chain or hydrogen on the ring include, for example, alkyl groups (methyl group, ethyl group, propyl group, isopropyl group, butyl group, s-butyl group, t-butyl group).
- C 1-20 alkyl group a cycloalkyl group (cyclopentyl etc., such as C 3-10 cycloalkyl groups such as cyclohexyl group), a cycloalkenyl group (cyclo Pentel group, C 3-10 cycloalkyl such as cyclohexylene cell group Alkenyl groups, etc.), heterocyclic groups (C 2-10 heterocyclic groups containing heteroatoms such as oxygen, nitrogen and sulfur atoms), aryl groups [phenyl groups, alkylphenyl groups (methylphenyl groups (tolyl groups), dimethylphenyl group C 6-10 aryl group (xylyl) or the like), etc.], an aralkyl group (benzyl group, C 6-10 aryl such as phenethyl group - 1-4 alkyl group), a methylene group, a vinyl group, a hydrocarbon group such as an allyl group, and a C 1-4 alkoxy group such as an alk
- Z 1 , Z 2 and Z 3 in the general formulas (6) and (9) are structures represented by the following general formula (7) or the following general formula (8), respectively. Furthermore, Z 1 and Z 2, which may be hydrogen, at least one of the Z 1, Z 2 is a structure represented by the following general formula (7) or the following general formula (8).
- V, U, Y, W and T in the general formulas (7) and (8) are each a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, Is optionally substituted with a heteroatom, and part or all of the hydrogen on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein The ring may be a single ring, a condensed ring or a spiro ring, may have both a condensed ring and a spiro ring, may have a carbon atom partially substituted with a heteroatom, and may be a hydrogen atom on the ring.
- U and V may be hydrogen
- Y and W may be a chain hydrocarbon group having 1 to 20 carbon atoms or a chain hydrocarbon group having 3 to 20 carbon atoms. It may be a group in which a carbonyl group is introduced into a cyclic hydrocarbon group.
- examples of the hetero atom that can be substituted with a part of the carbon atom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a boron atom, a selenium atom, and a tellurium atom.
- substituents that can replace hydrogen on the carbon chain or hydrogen on the ring include, for example, alkyl groups (methyl group, ethyl group, propyl group, isopropyl group, butyl group, s-butyl group, t-butyl group).
- C 1-20 alkyl group a cycloalkyl group (cyclopentyl etc., such as C 3-10 cycloalkyl groups such as cyclohexyl group), a cycloalkenyl group (cyclo Pentel group, C 3-10 cycloalkyl such as cyclohexylene cell group Alkenyl groups, etc.), heterocyclic groups (C 2-10 heterocyclic groups containing heteroatoms such as oxygen, nitrogen and sulfur atoms), aryl groups [phenyl groups, alkylphenyl groups (methylphenyl groups (tolyl groups), dimethylphenyl group C 6-10 aryl group (xylyl) or the like), etc.], an aralkyl group (benzyl group, C 6-10 aryl such as phenethyl group - 1-4 alkyl group), a methylene group, a vinyl group, a hydrocarbon group such as an allyl group, and a C 1-4 alkoxy group such as an alk
- n degree of polymerization
- n is 0 to 200.
- n is preferably 0 to 20, and more preferably 0 to 10.
- n is an average value of the entire resin.
- the number average molecular weight of the epoxy resin represented by the general formula (1) used as a raw material in the matrix composition of the present invention is not particularly limited, but is preferably 250 to 100,000, more preferably 300 to 15,000. Preferably, it is 300 to 1500. If the number average molecular weight is less than 250, the crosslinking density may be too high when cured, and if it exceeds 100,000, a sufficient crosslinking density cannot be obtained when cured. Physical properties such as hardness and chemical resistance may be insufficient.
- the number average molecular weight means a value calculated by gel permeation chromatography (hereinafter also referred to as GPC) measurement.
- the epoxy equivalent of the epoxy resin represented by the general formula (1) is not particularly limited, but is preferably 125 to 50000 g / eq, and more preferably 150 to 7500 g / eq. If the epoxy equivalent is less than 125 g / eq, it may become brittle even if the crosslinking density becomes excessively high when cured, and if it exceeds 50000 g / eq, a sufficient crosslinking density is obtained when cured. This is because the physical properties such as surface hardness and chemical resistance may be insufficient.
- the epoxy equivalent is calculated according to JIS K7236.
- the content of the epoxy resin represented by the general formula (1) is not particularly limited, but is preferably 45 to 99% by weight in the total solid content in the matrix composition, More preferably, it is 50 to 97% by weight. If it is less than 45% by weight, it may become brittle when cured due to excessively high crosslink density, and if it exceeds 99% by weight, sufficient crosslink density cannot be obtained when cured, and surface hardness , Physical properties such as chemical resistance tend to be insufficient.
- the matrix composition of the present invention may contain other optional components in addition to the epoxy resin represented by the general formula (1).
- other optional components include a curing agent, a curing catalyst, a solvent, a filler, a modifier, a flame retardant, and the like.
- curing agent means what crosslinks itself when a matrix composition hardens
- the curing catalyst refers to a catalyst that promotes a crosslinking reaction, although the matrix composition does not crosslink itself when it is cured.
- the curing agent is not particularly limited, and examples thereof include phenol novolak resins, amine compounds (for example, 4,4-diaminodiphenyl sulfone), modified polyamines, amino resins, polyaminoamide resins, imidazole compounds, carboxylic acids, acid anhydrides.
- the equivalent ratio of the functional group in the curing agent to the epoxy group in the epoxy resin represented by the general formula (1) is not particularly limited, but in the range of 0.5 to 2.0. Preferably, it is in the range of 0.8 to 1.5.
- the equivalence ratio is outside the range of 0.5 to 2.0, unreacted epoxy groups or functional groups remain in the cured product even after curing, resulting in poor curing, reduced physical properties, reduced reliability of the cured product (for example, , Deterioration over time).
- the curing catalyst is not particularly limited.
- tertiary amines such as benzyldimethylamine, quaternary ammonium salts such as tetramethylammonium chloride, triphenylphosphine, trioctylphosphine, tricyclohexylphosphine, tris (2 , 6-dimethoxyphenyl) phosphine, etc., ethyltriphenylphosphonium bromide, phosphonium salts such as tetraphenylphosphonium / tetraphenylborate, phosphine complexes such as triphenylphosphine / triphenylborane, 2-methylimidazole, 2- Examples thereof include imidazoles such as ethyl-4-methylimidazole and boron trifluoride complexes.
- These curing catalysts may be used independently and may use 2 or more types together.
- the content is not particularly limited, but is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin represented by the general formula (1), 0.5 to More preferably, it is 2 parts by weight. If the content of the curing catalyst is less than 0.1 parts by weight, curing may be poor. If the content exceeds 5 parts by weight, the self-polymerization reaction of the epoxy group proceeds or the curing catalyst functions as a curing agent. This is because a cured product having desired physical properties may not be obtained.
- some of the curing agents described above may function as a curing catalyst depending on the content thereof, and some of the curing catalysts described above may serve as curing agents depending on the content.
- the curing agent or the curing catalyst is an optional component in the matrix composition of the present invention, the curing agent which can function as a curing catalyst or the curing catalyst which can function as a curing agent Even if is used, the content is not particularly limited.
- the solvent is not particularly limited.
- alcohols such as methanol and ethanol
- ethers such as tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, and diethylene glycol.
- Glycol ethers such as monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol monobutyl ether, and alkylene glycols such as methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, propylene glycol methyl ether acetate, and 3-methoxybutyl-1-acetate
- Cole monoalkyl ether acetates aromatic hydrocarbons such as toluene and xylene, ketones such as methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone and 4-hydroxy-4-methyl-2-pentanone, 2-hydroxypropion Ethyl acetate, methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethy
- the solvent When the solvent is contained, its content is not particularly limited, but it is preferably 0 to 70% by weight in the matrix composition.
- Conductive fillers such as metals, such as silicas, such as crystalline silica and amorphous silica, powder, flakes, or fibers, carbon black, carbon fiber, carbon nanotube, and graphene , Antimony oxide, magnesium hydroxide, aluminum hydroxide, zinc borate, molybdate compound, tin oxide compound, phosphorus filler, zirconium filler, iron oxide, cuprous oxide, flame retardant filler such as layered clay, titanium Examples thereof include conductive fillers such as barium oxide and lead zirconate titanate, and heat resistance improving fillers such as organic-inorganic hybrids by an alkoxide sol-gel method. These fillers may be used independently and may use 2 or more types together.
- the filler When the filler is contained, its content is not particularly limited, but it is preferably 0.005 to 50% by weight in the matrix composition.
- the modifier is not particularly limited, and examples thereof include acrylonitrile-butadiene rubber and silicone powder. These modifiers may be used alone or in combination of two or more.
- the modifier when the modifier is contained, its content is not particularly limited, but is preferably 0.005 to 50% by weight in the matrix composition.
- a flame retardant for example, a halogen compound, a phosphorus compound, an inorganic compound etc. are mentioned. These flame retardants may be used alone or in combination of two or more.
- the content thereof is not particularly limited, but is preferably 0.005 to 50% by weight in the matrix composition.
- the matrix composition of the present invention is used as a base material (matrix) of a fiber reinforced composite material, and includes an epoxy resin having a specific structure, and thus is suitable for a fiber reinforced composite material having excellent heat resistance and toughness. Can be used.
- the fiber reinforced composite material of the present invention is a fiber reinforced composite material comprising a cured product of the matrix composition of the present invention and a fibrous material.
- the fibrous material is used as a reinforcing material in the fiber-reinforced composite material of the present invention.
- synthetic resin fibers such as carbon fiber, glass fiber, and an aromatic polyamide-type resin fiber, etc.
- These fibrous materials may be used alone or in combination of two or more. In these, it is preferable to use carbon fiber.
- the reason is that the fiber-reinforced composite material can remarkably enjoy the effect that it has excellent heat resistance and toughness, and the carbon fiber is lighter than other fibrous materials. It is because it can use suitably for various uses, such as these.
- the property of the fibrous material is not particularly limited.
- the content of the fibrous material in the fiber-reinforced composite material of the present invention is not particularly limited, but is preferably 10 to 70% by volume, and more preferably 30 to 60% by volume.
- the content is less than 10% by volume, the surface of the fiber reinforced composite material tends to be uneven, and warping and undulation tend to increase.
- the content exceeds 70% by volume, the matrix composition is sufficiently added to the fibrous material. Impregnation may not be possible.
- the fiber-reinforced composite material of the present invention can be manufactured, for example, by the method for manufacturing the fiber-reinforced composite material of the present invention described later.
- the fiber-reinforced composite material of the present invention is composed of the matrix composition of the present invention and a fibrous material, it is excellent in heat resistance and toughness.
- the manufacturing method of the fiber reinforced composite material of this invention is characterized by including the following processes. (I) a step of impregnating the fibrous material with the matrix composition of the present invention; and (ii) a step of heat-treating the fibrous material impregnated with the matrix composition in step (i).
- the method for impregnating the fibrous material with the matrix composition of the present invention is not particularly limited.
- the fibrous material is contacted with the matrix composition of the present invention coated on a release paper or the like.
- a method of impregnating a fibrous material with the matrix composition of the present invention, placing a fiber base material or preform made of a fibrous material in a mold, and injecting the matrix composition into the mold The method of impregnating a fibrous material with the matrix composition of the present invention can be mentioned.
- step (ii) the fibrous material impregnated with the matrix composition in step (i) is heat-treated.
- the fibrous material impregnated with the matrix composition in the step (i) may be semi-cured by a drying treatment to form a prepreg, and then completely cured by a heat treatment. Alternatively, it may be completely cured by a single heat treatment.
- the conditions for the drying treatment are not particularly limited. For example, conditions for drying treatment at 50 to 200 ° C. for 0.5 to 10 hours can be employed.
- the conditions for the heat treatment are not particularly limited. For example, conditions for heat treatment at 150 to 230 ° C. for 0.5 to 10 hours can be employed.
- the fibrous material is preferably carbon fiber. This is because a fiber-reinforced composite material that is particularly excellent in heat resistance and toughness can be produced.
- the fiber reinforced composite material of the present invention can be suitably produced.
- the epoxy equivalent was 163 g / eq, and the number average molecular weight Mn was 310 based on the analysis by GPC.
- the epoxy equivalent was measured according to JIS K7236. The molecular weight measurement by GPC was performed using high performance liquid chromatography (HPLC) (Waters 2695, manufactured by Waters).
- the solid was transferred to a flask and dried at 80 ° C. for 1 hour on a rotary evaporator to obtain 314 g of a mixture of isosorbide polyurethane resin A.
- the epoxy equivalent was 325 g / eq
- the number average molecular weight Mn was 1770 from the analysis by GPC.
- the solid material was transferred to a flask and dried on a rotary evaporator at 80 ° C. for 1 hour to obtain 293 g of a mixture of isosorbide polyurethane resin B.
- the epoxy equivalent was 207 g / eq
- the number average molecular weight Mn was 406 from the analysis by GPC.
- the reaction mixture was filtered to obtain 651 g of a mixture of isosorbide-modified polyester resin A.
- the epoxy equivalent was 461 g / eq, and the number average molecular weight Mn was 1130 from the analysis by GPC.
- the reaction mixture was filtered to obtain 640 g of a mixture of isosorbide-modified polyester resin B.
- the epoxy equivalent was 482 g / eq, and the number average molecular weight Mn was 1014 from the analysis by GPC.
- the reaction mixture was filtered to obtain 598 g of a mixture of isosorbide-modified polyester resin C.
- the epoxy equivalent was 434 g / eq, and the number average molecular weight Mn was 852 from the analysis by GPC.
- the reaction mixture was filtered to obtain 556 g of a mixture of isosorbide-modified polyester polyether resin B.
- the epoxy equivalent was 418 g / eq, and the number average molecular weight Mn was 824 from the analysis by GPC.
- the obtained residue was filtered to obtain 172 g of N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane.
- the epoxy equivalent was 110 g / eq
- the number average molecular weight Mn was 453 from the analysis by GPC.
- Examples 1 to 14, Comparative Examples 1 and 2 The epoxy resin or 1,6-hexanediol diglycidyl ether (manufactured by Nagase ChemteX Corporation, Denacol EX-212) manufactured in Production Examples 1 to 15 and a curing agent were mixed at a weight ratio shown in Table 1 below.
- a matrix composition was obtained.
- the obtained matrix composition was heated at 120 ° C. to obtain a uniform liquid, and then applied onto release paper.
- the carbon fiber was impregnated with the matrix composition by covering the coated matrix composition with carbon fibers that were aligned in one direction from above. The volume content of carbon fiber was adjusted to 50 ⁇ 1%.
- the carbon fiber impregnated with the matrix composition was dried at 150 ° C.
- Example 1 to 14 and Comparative Examples 1 and 2 the physical properties of the fiber reinforced composite materials were evaluated by the following methods.
- Tg Glass transition temperature
- the fiber reinforced composite materials obtained in Examples 1 to 14 and Comparative Examples 1 and 2 were cut into a size of 50 mm in length, 10 mm in width, and 2 mm in thickness to obtain a test piece, in accordance with JIS K7244. It was measured.
- the fiber-reinforced composite materials obtained in the flexural modulus examples 1 to 14 and comparative examples 1 and 2 were cut into a size of 100 mm in length, 15 mm in width, and 2 mm in thickness to obtain a test piece, which was applied to JIS K7074. Measured in conformity.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Epoxy Resins (AREA)
Abstract
The purpose of the present invention is to provide: a matrix composition which can be used suitably for a fiber-reinforced composite material having excellent heat resistance and toughness; a fiber-reinforced composite material which comprises a cured product of the matrix composition and a fibrous material; and a method for producing the fiber-reinforced composite material.
The matrix composition for a fiber-reinforced composite material according to the present invention is characterized by containing an epoxy resin represented by general formula (1).
[In general formula (1), A represents a bivalent organic group containing a cyclic ether structure.]
Description
本発明は、エポキシ樹脂を含む繊維強化複合材用マトリックス組成物、当該マトリックス組成物の硬化物と繊維質材料とからなる繊維強化複合材、及び、当該繊維強化複合材の製造方法に関する。
The present invention relates to a matrix composition for a fiber reinforced composite material containing an epoxy resin, a fiber reinforced composite material comprising a cured product of the matrix composition and a fibrous material, and a method for producing the fiber reinforced composite material.
従来、炭素繊維等の強化繊維とマトリックスとからなる繊維強化複合材は、軽量でありながら優れた機械物性を有することが知られており、航空機、自動車、レジャー用品等の幅広い分野において利用されている。繊維強化複合材のマトリックスとしては、熱硬化性樹脂、特に、エポキシ樹脂が用いられており、その中でもN,N,N’,N’-テトラグリシジルジアミノジフェニルメタン(以下、TGDDMともいう)が耐熱性に特に優れることから広く使用されている。しかしながら、TGDDMを含有するマトリックス組成物を用いて得られた繊維強化複合材は、優れた耐熱性を示す一方で、靱性が低いという問題があった。
Conventionally, a fiber reinforced composite material composed of a reinforced fiber such as carbon fiber and a matrix is known to have excellent mechanical properties while being lightweight, and is used in a wide range of fields such as aircraft, automobiles, and leisure goods. Yes. As the matrix of the fiber reinforced composite material, a thermosetting resin, in particular, an epoxy resin is used. Among them, N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane (hereinafter also referred to as TGDDM) is heat resistant. It is widely used because it is particularly excellent. However, the fiber reinforced composite material obtained by using the matrix composition containing TGDDM has a problem of low toughness while exhibiting excellent heat resistance.
このような繊維強化複合材の靱性を改善する方法として、特許文献1及び2には、コアシェルポリマーをマトリックス組成物に添加する方法が記載されている。しかしながら、コアシェルポリマーを含有するマトリックス組成物は、粘度が高く、炭素繊維に対する接着性に劣る等の問題が生じることがあった。また、特許文献2には、他の方法として優れた靱性を有する脂肪族エポキシ樹脂を添加する方法も記載されている。しかしながら、このような脂肪族エポキシ樹脂を添加した場合、マトリックス組成物の靱性は向上するものの、耐熱性が著しく低下するという問題があった。
As a method for improving the toughness of such a fiber reinforced composite material, Patent Documents 1 and 2 describe a method of adding a core-shell polymer to a matrix composition. However, the matrix composition containing the core-shell polymer may have problems such as high viscosity and poor adhesion to carbon fibers. Patent Document 2 also describes a method of adding an aliphatic epoxy resin having excellent toughness as another method. However, when such an aliphatic epoxy resin is added, although the toughness of the matrix composition is improved, there is a problem that the heat resistance is remarkably lowered.
このように、繊維強化複合材のマトリックスとして耐熱性に優れるTGDDMを用いた場合において、靱性の向上という要求に対し、従来の靱性改善方法では、靱性以外の物性が著しく低下するという問題があり、そのため、耐熱性や、炭素繊維に対する接着性等の物性を低下させることなく靱性を向上させることは困難であった。特に、耐熱性と靱性との双方に優れた繊維強化複合材となるマトリックス組成物を得ることは極めて困難であった。
As described above, when TGDDM having excellent heat resistance is used as the matrix of the fiber reinforced composite material, the conventional toughness improvement method has a problem that physical properties other than toughness are remarkably lowered in response to the demand for improvement in toughness. Therefore, it has been difficult to improve toughness without deteriorating physical properties such as heat resistance and adhesion to carbon fibers. In particular, it has been extremely difficult to obtain a matrix composition that is a fiber-reinforced composite material excellent in both heat resistance and toughness.
本発明は、耐熱性及び靱性に優れた繊維強化複合材に好適に用いることができるマトリックス組成物、また、当該マトリックス組成物の硬化物と繊維質材料とからなる繊維強化複合材、及び、当該繊維強化複合材の製造方法を提供することを目的とする。
The present invention is a matrix composition that can be suitably used for a fiber-reinforced composite material having excellent heat resistance and toughness, a fiber-reinforced composite material comprising a cured product of the matrix composition and a fibrous material, and It aims at providing the manufacturing method of a fiber reinforced composite material.
本発明者らは、鋭意検討の結果、特定の化学構造を有するエポキシ樹脂を含むマトリックス組成物が、耐熱性及び靱性に優れた繊維強化複合材を提供できることを見出し、本発明を完成した。
As a result of intensive studies, the present inventors have found that a matrix composition containing an epoxy resin having a specific chemical structure can provide a fiber-reinforced composite material having excellent heat resistance and toughness, and completed the present invention.
即ち、本発明は、下記一般式(1)で表されるエポキシ樹脂を含むことを特徴とする、繊維強化複合材用マトリックス組成物に関する。
That is, this invention relates to the matrix composition for fiber reinforced composite materials characterized by including the epoxy resin represented by following General formula (1).
[一般式(1)中、Aは、環状エーテル構造を含む2価の有機基であり;
Xは、下記一般式(2)~(6)及び(9)からなる群より選択されるいずれか1つの構造を含む2価の有機基を示し; [In General Formula (1), A is a divalent organic group containing a cyclic ether structure;
X represents a divalent organic group containing any one structure selected from the group consisting of the following general formulas (2) to (6) and (9);
Xは、下記一般式(2)~(6)及び(9)からなる群より選択されるいずれか1つの構造を含む2価の有機基を示し; [In General Formula (1), A is a divalent organic group containing a cyclic ether structure;
X represents a divalent organic group containing any one structure selected from the group consisting of the following general formulas (2) to (6) and (9);
{一般式(2)中、R1は、単結合、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示す。};
{In General Formula (2), R 1 represents a single bond, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are heteroatoms) May be substituted, and some or all of the hydrogen atoms on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring is monocyclic, condensed or It may be a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted Good). };
{一般式(3)中、R2は、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示す。};
{In General Formula (3), R 2 represents a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are substituted with heteroatoms) Or a part or all of hydrogens on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring) And may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, and a part or all of hydrogen on the ring may be substituted). Show. };
{一般式(4)中、R3は、単結合、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示す。};
{In General Formula (4), R 3 represents a single bond, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and a part of the carbon atoms are heteroatoms) May be substituted, and some or all of the hydrogen atoms on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring is monocyclic, condensed or It may be a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted Good). };
{一般式(5)中、R4は、単結合、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示す。};
{In General Formula (5), R 4 represents a single bond, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and a part of the carbon atoms are heteroatoms) May be substituted, and some or all of the hydrogen atoms on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring is monocyclic, condensed or It may be a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted Good). };
{一般式(6)中、R5は、単結合、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示し;
Z1及びZ2は、それぞれ独立して、水素又は下記一般式(7)若しくは下記一般式(8)で表される構造(ここで、Z1、Z2のうち少なくとも一方は下記一般式(7)又は下記一般式(8)で表される構造である)を示す。; {In General Formula (6), R 5 represents a single bond, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are heteroatoms) May be substituted, and some or all of the hydrogen atoms on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring is monocyclic, condensed or It may be a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted Good)
Z 1 and Z 2 are each independently hydrogen or a structure represented by the following general formula (7) or the following general formula (8) (wherein at least one of Z 1 and Z 2 has the following general formula ( 7) or a structure represented by the following general formula (8). ;
Z1及びZ2は、それぞれ独立して、水素又は下記一般式(7)若しくは下記一般式(8)で表される構造(ここで、Z1、Z2のうち少なくとも一方は下記一般式(7)又は下記一般式(8)で表される構造である)を示す。; {In General Formula (6), R 5 represents a single bond, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are heteroatoms) May be substituted, and some or all of the hydrogen atoms on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring is monocyclic, condensed or It may be a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted Good)
Z 1 and Z 2 are each independently hydrogen or a structure represented by the following general formula (7) or the following general formula (8) (wherein at least one of Z 1 and Z 2 has the following general formula ( 7) or a structure represented by the following general formula (8). ;
(一般式(7)中、Vは水素、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示し、
Uは水素、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示し、
Yは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)、又は、上記炭素数1~20の鎖状炭化水素基若しくは上記炭素数3~20の環状炭化水素基にカルボニル基が導入された基を示す。); (In the general formula (7), V is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are substituted with hetero atoms) Or a part or all of hydrogens on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring) And may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, and a part or all of hydrogen on the ring may be substituted). Show
U is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, part of the carbon atoms may be substituted with a heteroatom, A part or all of hydrogens may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and a condensed ring and a spiro ring) And a part of the carbon atom may be substituted with a heteroatom, or part or all of the hydrogen on the ring may be substituted).
Y is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of carbon atoms may be substituted with a heteroatom, A part or all of which may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and has both a condensed ring and a spiro ring) Or a part of the carbon atoms may be substituted with a heteroatom, or part or all of the hydrogen atoms on the ring may be substituted), or a chain carbonization having 1 to 20 carbon atoms. A group in which a carbonyl group is introduced into a hydrogen group or the above cyclic hydrocarbon group having 3 to 20 carbon atoms is shown. );
Uは水素、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示し、
Yは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)、又は、上記炭素数1~20の鎖状炭化水素基若しくは上記炭素数3~20の環状炭化水素基にカルボニル基が導入された基を示す。); (In the general formula (7), V is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are substituted with hetero atoms) Or a part or all of hydrogens on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring) And may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, and a part or all of hydrogen on the ring may be substituted). Show
U is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, part of the carbon atoms may be substituted with a heteroatom, A part or all of hydrogens may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and a condensed ring and a spiro ring) And a part of the carbon atom may be substituted with a heteroatom, or part or all of the hydrogen on the ring may be substituted).
Y is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of carbon atoms may be substituted with a heteroatom, A part or all of which may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and has both a condensed ring and a spiro ring) Or a part of the carbon atoms may be substituted with a heteroatom, or part or all of the hydrogen atoms on the ring may be substituted), or a chain carbonization having 1 to 20 carbon atoms. A group in which a carbonyl group is introduced into a hydrogen group or the above cyclic hydrocarbon group having 3 to 20 carbon atoms is shown. );
(一般式(8)中、Wは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)、又は、上記炭素数1~20の鎖状炭化水素基若しくは上記炭素数3~20の環状炭化水素基にカルボニル基が導入された基を示し、
Tは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示す。)}; (In the general formula (8), W represents a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and a part of the carbon atoms may be substituted with a hetero atom) Or a part or all of hydrogen on the carbon chain may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, And a spiro ring, a part of the carbon atom may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted), or the carbon A group in which a carbonyl group is introduced into a chain hydrocarbon group having 1 to 20 carbon atoms or a cyclic hydrocarbon group having 3 to 20 carbon atoms;
T is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of the carbon atom may be substituted with a hetero atom, A part or all of them may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and both a condensed ring and a spiro ring) Or a part of the carbon atom may be substituted with a heteroatom, and a part or all of the hydrogen on the ring may be substituted). )};
Tは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示す。)}; (In the general formula (8), W represents a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and a part of the carbon atoms may be substituted with a hetero atom) Or a part or all of hydrogen on the carbon chain may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, And a spiro ring, a part of the carbon atom may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted), or the carbon A group in which a carbonyl group is introduced into a chain hydrocarbon group having 1 to 20 carbon atoms or a cyclic hydrocarbon group having 3 to 20 carbon atoms;
T is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of the carbon atom may be substituted with a hetero atom, A part or all of them may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and both a condensed ring and a spiro ring) Or a part of the carbon atom may be substituted with a heteroatom, and a part or all of the hydrogen on the ring may be substituted). )};
{一般式(9)中、R6は、単結合、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示し;
Z3は下記一般式(7)又は下記一般式(8)で表される構造を示す。; {In General Formula (9), R 6 represents a single bond, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and a part of the carbon atoms are heteroatoms) May be substituted, and some or all of the hydrogen atoms on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring is monocyclic, condensed or It may be a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted Good)
Z 3 represents a structure represented by the following general formula (7) or the following general formula (8). ;
Z3は下記一般式(7)又は下記一般式(8)で表される構造を示す。; {In General Formula (9), R 6 represents a single bond, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and a part of the carbon atoms are heteroatoms) May be substituted, and some or all of the hydrogen atoms on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring is monocyclic, condensed or It may be a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, or a part or all of hydrogen on the ring may be substituted Good)
Z 3 represents a structure represented by the following general formula (7) or the following general formula (8). ;
(一般式(7)中、Vは水素、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示し、
Uは水素、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示し、
Yは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)、又は、上記炭素数1~20の鎖状炭化水素基若しくは上記炭素数3~20の環状炭化水素基にカルボニル基が導入された基を示す。); (In the general formula (7), V is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are substituted with hetero atoms) Or a part or all of hydrogens on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring) And may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, and a part or all of hydrogen on the ring may be substituted). Show
U is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, part of the carbon atoms may be substituted with a heteroatom, A part or all of hydrogens may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and a condensed ring and a spiro ring) And a part of the carbon atom may be substituted with a heteroatom, or part or all of the hydrogen on the ring may be substituted).
Y is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of carbon atoms may be substituted with a heteroatom, A part or all of which may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and has both a condensed ring and a spiro ring) Or a part of the carbon atoms may be substituted with a heteroatom, or part or all of the hydrogen atoms on the ring may be substituted), or a chain carbonization having 1 to 20 carbon atoms. A group in which a carbonyl group is introduced into a hydrogen group or the above cyclic hydrocarbon group having 3 to 20 carbon atoms is shown. );
Uは水素、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示し、
Yは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)、又は、上記炭素数1~20の鎖状炭化水素基若しくは上記炭素数3~20の環状炭化水素基にカルボニル基が導入された基を示す。); (In the general formula (7), V is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and some of the carbon atoms are substituted with hetero atoms) Or a part or all of hydrogens on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring) And may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, and a part or all of hydrogen on the ring may be substituted). Show
U is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, part of the carbon atoms may be substituted with a heteroatom, A part or all of hydrogens may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and a condensed ring and a spiro ring) And a part of the carbon atom may be substituted with a heteroatom, or part or all of the hydrogen on the ring may be substituted).
Y is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of carbon atoms may be substituted with a heteroatom, A part or all of which may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and has both a condensed ring and a spiro ring) Or a part of the carbon atoms may be substituted with a heteroatom, or part or all of the hydrogen atoms on the ring may be substituted), or a chain carbonization having 1 to 20 carbon atoms. A group in which a carbonyl group is introduced into a hydrogen group or the above cyclic hydrocarbon group having 3 to 20 carbon atoms is shown. );
(一般式(8)中、Wは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい) 、又は、上記炭素数1~20の鎖状炭化水素基若しくは上記炭素数3~20の環状炭化水素基にカルボニル基が導入された基を示し、
Tは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示す。)};
nは、0から200を示す。] (In the general formula (8), W represents a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and a part of the carbon atoms may be substituted with a hetero atom) Or a part or all of hydrogen on the carbon chain may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, And a spiro ring, part of the carbon atom may be substituted with a heteroatom, or part or all of the hydrogen on the ring may be substituted), or the carbon A group in which a carbonyl group is introduced into a chain hydrocarbon group having 1 to 20 carbon atoms or a cyclic hydrocarbon group having 3 to 20 carbon atoms;
T is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of the carbon atom may be substituted with a hetero atom, A part or all of them may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and both a condensed ring and a spiro ring) Or a part of the carbon atom may be substituted with a heteroatom, and a part or all of the hydrogen on the ring may be substituted). )};
n represents 0 to 200. ]
Tは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示す。)};
nは、0から200を示す。] (In the general formula (8), W represents a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, and a part of the carbon atoms may be substituted with a hetero atom) Or a part or all of hydrogen on the carbon chain may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, And a spiro ring, part of the carbon atom may be substituted with a heteroatom, or part or all of the hydrogen on the ring may be substituted), or the carbon A group in which a carbonyl group is introduced into a chain hydrocarbon group having 1 to 20 carbon atoms or a cyclic hydrocarbon group having 3 to 20 carbon atoms;
T is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of the carbon atom may be substituted with a hetero atom, A part or all of them may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and both a condensed ring and a spiro ring) Or a part of the carbon atom may be substituted with a heteroatom, and a part or all of the hydrogen on the ring may be substituted). )};
n represents 0 to 200. ]
本発明のマトリックス組成物において、上記エポキシ樹脂の含有量が、全固形分中に45~99重量%であることが好ましい。
In the matrix composition of the present invention, the content of the epoxy resin is preferably 45 to 99% by weight in the total solid content.
本発明のマトリックス組成物において、上記繊維強化複合材は炭素繊維強化複合材であることが好ましい。
In the matrix composition of the present invention, the fiber reinforced composite material is preferably a carbon fiber reinforced composite material.
本発明のマトリックス組成物において、上記エポキシ樹脂が、数平均分子量が250~100000であることが好ましい。
In the matrix composition of the present invention, the epoxy resin preferably has a number average molecular weight of 250 to 100,000.
本発明の繊維強化複合材は、本発明のマトリックス組成物の硬化物と、繊維質材料とからなることを特徴とする。
The fiber-reinforced composite material of the present invention is characterized by comprising a cured product of the matrix composition of the present invention and a fibrous material.
本発明の繊維強化複合材の製造方法は、以下の工程を含むことを特徴とする。
(i)本発明のマトリックス組成物を繊維質材料に含浸する工程;及び
(ii)上記工程(i)においてマトリックス組成物を含浸させた繊維質材料を加熱処理する工程。 The manufacturing method of the fiber reinforced composite material of this invention is characterized by including the following processes.
(I) a step of impregnating the fibrous material with the matrix composition of the present invention; and (ii) a step of heat-treating the fibrous material impregnated with the matrix composition in the step (i).
(i)本発明のマトリックス組成物を繊維質材料に含浸する工程;及び
(ii)上記工程(i)においてマトリックス組成物を含浸させた繊維質材料を加熱処理する工程。 The manufacturing method of the fiber reinforced composite material of this invention is characterized by including the following processes.
(I) a step of impregnating the fibrous material with the matrix composition of the present invention; and (ii) a step of heat-treating the fibrous material impregnated with the matrix composition in the step (i).
本発明の繊維強化複合材の製造方法において、上記繊維質材料は炭素繊維であることが好ましい。
In the method for producing a fiber-reinforced composite material of the present invention, the fibrous material is preferably carbon fiber.
本発明のマトリックス組成物は、特定の構造を有するエポキシ樹脂を含むため、耐熱性及び靱性に優れた繊維強化複合材を提供することができる。また、本発明の繊維強化複合材は、本発明のマトリックス組成物の硬化物と繊維質材料とからなるため、耐熱性及び靱性に優れる。さらに、本発明の繊維強化複合材の製造方法によれば、本発明の繊維強化複合材を好適に製造することができる。
Since the matrix composition of this invention contains the epoxy resin which has a specific structure, it can provide the fiber reinforced composite material excellent in heat resistance and toughness. Moreover, since the fiber reinforced composite material of this invention consists of the hardened | cured material and fibrous material of the matrix composition of this invention, it is excellent in heat resistance and toughness. Furthermore, according to the manufacturing method of the fiber reinforced composite material of the present invention, the fiber reinforced composite material of the present invention can be preferably manufactured.
<<マトリックス組成物>>
まず、本発明のマトリックス組成物について説明する。
本発明の繊維強化複合材用マトリックス組成物は、下記一般式(1)で表されるエポキシ樹脂を含むことを特徴とする。
<< Matrix composition >>
First, the matrix composition of the present invention will be described.
The matrix composition for fiber-reinforced composite materials according to the present invention includes an epoxy resin represented by the following general formula (1).
まず、本発明のマトリックス組成物について説明する。
本発明の繊維強化複合材用マトリックス組成物は、下記一般式(1)で表されるエポキシ樹脂を含むことを特徴とする。
First, the matrix composition of the present invention will be described.
The matrix composition for fiber-reinforced composite materials according to the present invention includes an epoxy resin represented by the following general formula (1).
<エポキシ樹脂>
上記エポキシ樹脂は、本発明のマトリックス組成物に硬化成分として含まれるものであり、下記一般式(1)で表される。 <Epoxy resin>
The said epoxy resin is contained as a hardening component in the matrix composition of this invention, and is represented by following General formula (1).
上記エポキシ樹脂は、本発明のマトリックス組成物に硬化成分として含まれるものであり、下記一般式(1)で表される。 <Epoxy resin>
The said epoxy resin is contained as a hardening component in the matrix composition of this invention, and is represented by following General formula (1).
一般式(1)において、Aは、環状エーテル構造を含む2価の有機基を表す。環状エーテル構造を含む2価の有機基としては、特に限定されないが、例えば、下記式(10)~(13)で表される環状エーテル構造を含む2価の有機基、フラン、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ベンゾピラン、キサンテン、オキサゾール系化合物等に由来する環状エーテル構造を含む2価の有機基が挙げられる。ここで、「環状エーテル構造を含む2価の有機基」における「有機基」とは、水素、炭素、酸素から構成される基を意味し、炭素数は好ましくは2~20、より好ましくは2~10である。
In the general formula (1), A represents a divalent organic group containing a cyclic ether structure. The divalent organic group containing a cyclic ether structure is not particularly limited, and examples thereof include divalent organic groups containing a cyclic ether structure represented by the following formulas (10) to (13), furan, tetrahydrofuran, and tetrahydropyran. , Divalent organic groups containing cyclic ether structures derived from dioxane, benzopyran, xanthene, oxazole-based compounds and the like. Here, the “organic group” in the “divalent organic group containing a cyclic ether structure” means a group composed of hydrogen, carbon, and oxygen, and preferably has 2 to 20 carbon atoms, more preferably 2 carbon atoms. ~ 10.
上記エポキシ樹脂において、一般式(1)におけるAは、式(10)~(13)のいずれかで表される環状エーテル構造を含む2価の有機基であることが好ましい。これらの環状エーテル構造は2つ以上の複素環を近接する位置に有するため、マトリックス組成物に使用すると、耐熱性と靭性に格別優れた繊維強化複合材が得られる。
In the epoxy resin, A in the general formula (1) is preferably a divalent organic group including a cyclic ether structure represented by any one of the formulas (10) to (13). Since these cyclic ether structures have two or more heterocycles in close proximity, when used in a matrix composition, a fiber-reinforced composite material with exceptional heat resistance and toughness can be obtained.
式(10)~(13)において、炭素鎖上の水素や、環上の水素と置換し得る置換基としては、例えば、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基等のC1-20アルキル基等)、シクロアルキル基(シクロペンチル基、シクロヘキシル基等のC3-10シクロアルキル基等)、シクロアルケニル基(シクロペンテル基、シクロヘキセル基等のC3-10シクロアルケニル基等)、複素環基(酸素原子、窒素原子、硫黄原子といったヘテロ原子を含むC2-10複素環基等)、アリール基[フェニル基、アルキルフェニル基(メチルフェニル基(トリル基)、ジメチルフェニル基(キシリル基)等)等のC6-10アリール基等]、アラルキル基(ベンジル基、フェネチル基等のC6-10アリール-C1-4アルキル基等)、メチレン基、ビニル基、アリル基等の炭化水素基、アルコキシ基(メトキシ基等のC1-4アルコキシ基等)、ヒドロキシル基、ヒドロキシ(ポリ)アルキレンオキシ基(ヒドロキシ(ポリ)C2-4アルキレンオキシ基等)、アシル基(アセチル基等のC1-6アシル基等)、オキシ基、チオキシ基、ホスフィノ基、ハロゲノ基(フルオロ基、クロロ基等)、アミノ基、イミノ基、N-オキシド基、ニトロ基、シアノ基等が挙げられる。なお、炭素鎖上の水素や環上の水素は、その一部が置換されていてもよいし、全てが置換されていてもよい。
In the formulas (10) to (13), examples of the substituent that can be substituted with hydrogen on the carbon chain or hydrogen on the ring include an alkyl group (methyl group, ethyl group, propyl group, isopropyl group, butyl group, C 1-20 alkyl group such as s-butyl group and t-butyl group), cycloalkyl group (C 3-10 cycloalkyl group such as cyclopentyl group, cyclohexyl group, etc.), cycloalkenyl group (cyclopentyl group, cyclohexyl group, etc.) C 3-10 cycloalkenyl group such as cell group), heterocyclic group (C 2-10 heterocyclic group containing a hetero atom such as oxygen atom, nitrogen atom and sulfur atom), aryl group [phenyl group, alkylphenyl group C 6-10 aryl groups such as (methylphenyl group (tolyl group), a dimethylphenyl group (xylyl) or the like), etc.], an aralkyl group (benzyl group, phenethyl C 6-10 aryl -C 1-4 alkyl group, etc.) etc., a methylene group, a vinyl group, a hydrocarbon group such as an allyl group, and a C 1-4 alkoxy group such as an alkoxy group (methoxy group), a hydroxyl group, Hydroxy (poly) alkyleneoxy group (hydroxy (poly) C 2-4 alkyleneoxy group etc.), acyl group (C 1-6 acyl group such as acetyl group), oxy group, thioxy group, phosphino group, halogeno group ( Fluoro group, chloro group, etc.), amino group, imino group, N-oxide group, nitro group, cyano group and the like. In addition, the hydrogen on the carbon chain or the hydrogen on the ring may be partially substituted, or all may be substituted.
一般式(1)におけるXは、下記一般式(2)~(6)及び(9)からなる群より選択されるいずれか1つの構造を含む2価の有機基を示す。
X in the general formula (1) represents a divalent organic group including any one structure selected from the group consisting of the following general formulas (2) to (6) and (9).
一般式(2)~(6)及び(9)における、R1~R6はそれぞれ、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)であり、更には、R1及びR3~R6は、単結合であってもよい。
In the general formulas (2) to (6) and (9), R 1 to R 6 are each a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, Some of the atoms may be substituted with heteroatoms, and some or all of the hydrogens on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein The ring may be a single ring, a condensed ring or a spiro ring, may have both a condensed ring and a spiro ring, a part of carbon atoms may be substituted with a heteroatom, and a part of hydrogen on the ring Or all of them may be substituted), and R 1 and R 3 to R 6 may be a single bond.
ここで、炭素原子の一部と置換し得るヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ホウ素原子、セレン原子、テルル原子等が挙げられる。
また、炭素鎖上の水素や環上の水素と置換し得る置換基としては、例えば、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基等のC1-20アルキル基等)、シクロアルキル基(シクロペンチル基、シクロヘキシル基等のC3-10シクロアルキル基等)、シクロアルケニル基(シクロペンテル基、シクロヘキセル基等のC3-10シクロアルケニル基等)、複素環基(酸素原子、窒素原子、硫黄原子といったヘテロ原子を含むC2-10複素環基等)、アリール基[フェニル基、アルキルフェニル基(メチルフェニル基(トリル基)、ジメチルフェニル基(キシリル基)等)等のC6-10アリール基等]、アラルキル基(ベンジル基、フェネチル基等のC6-10アリール-C1-4アルキル基等)、メチレン基、ビニル基、アリル基等の炭化水素基、アルコキシ基(メトキシ基等のC1-4アルコキシ基等)、ヒドロキシル基、ヒドロキシ(ポリ)アルキレンオキシ基(ヒドロキシ(ポリ)C2-4アルキレンオキシ基等)、アシル基(アセチル基等のC1-6アシル基等)、オキシ基、チオキシ基、ホスフィノ基、ハロゲノ基(フルオロ基、クロロ基等)、アミノ基、イミノ基、N-オキシド基、ニトロ基、シアノ基等が挙げられる。なお、炭素鎖上の水素や環上の水素は、その一部が置換されていてもよいし、全てが置換されていてもよい。 Here, examples of the hetero atom that can be substituted with a part of the carbon atom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a boron atom, a selenium atom, and a tellurium atom.
Examples of the substituent that can replace hydrogen on the carbon chain or hydrogen on the ring include, for example, alkyl groups (methyl group, ethyl group, propyl group, isopropyl group, butyl group, s-butyl group, t-butyl group). C 1-20 alkyl group), a cycloalkyl group (cyclopentyl etc., such as C 3-10 cycloalkyl groups such as cyclohexyl group), a cycloalkenyl group (cyclo Pentel group, C 3-10 cycloalkyl such as cyclohexylene cell group Alkenyl groups, etc.), heterocyclic groups (C 2-10 heterocyclic groups containing heteroatoms such as oxygen, nitrogen and sulfur atoms), aryl groups [phenyl groups, alkylphenyl groups (methylphenyl groups (tolyl groups), dimethylphenyl group C 6-10 aryl group (xylyl) or the like), etc.], an aralkyl group (benzyl group, C 6-10 aryl such as phenethyl group - 1-4 alkyl group), a methylene group, a vinyl group, a hydrocarbon group such as an allyl group, and a C 1-4 alkoxy group such as an alkoxy group (methoxy group), a hydroxyl group, a hydroxy (poly) alkyleneoxy group (hydroxy (Poly) C 2-4 alkyleneoxy group, etc.), acyl group (C 1-6 acyl group such as acetyl group), oxy group, thioxy group, phosphino group, halogeno group (fluoro group, chloro group etc.), amino group Group, imino group, N-oxide group, nitro group, cyano group and the like. In addition, the hydrogen on the carbon chain or the hydrogen on the ring may be partially substituted, or all may be substituted.
また、炭素鎖上の水素や環上の水素と置換し得る置換基としては、例えば、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基等のC1-20アルキル基等)、シクロアルキル基(シクロペンチル基、シクロヘキシル基等のC3-10シクロアルキル基等)、シクロアルケニル基(シクロペンテル基、シクロヘキセル基等のC3-10シクロアルケニル基等)、複素環基(酸素原子、窒素原子、硫黄原子といったヘテロ原子を含むC2-10複素環基等)、アリール基[フェニル基、アルキルフェニル基(メチルフェニル基(トリル基)、ジメチルフェニル基(キシリル基)等)等のC6-10アリール基等]、アラルキル基(ベンジル基、フェネチル基等のC6-10アリール-C1-4アルキル基等)、メチレン基、ビニル基、アリル基等の炭化水素基、アルコキシ基(メトキシ基等のC1-4アルコキシ基等)、ヒドロキシル基、ヒドロキシ(ポリ)アルキレンオキシ基(ヒドロキシ(ポリ)C2-4アルキレンオキシ基等)、アシル基(アセチル基等のC1-6アシル基等)、オキシ基、チオキシ基、ホスフィノ基、ハロゲノ基(フルオロ基、クロロ基等)、アミノ基、イミノ基、N-オキシド基、ニトロ基、シアノ基等が挙げられる。なお、炭素鎖上の水素や環上の水素は、その一部が置換されていてもよいし、全てが置換されていてもよい。 Here, examples of the hetero atom that can be substituted with a part of the carbon atom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a boron atom, a selenium atom, and a tellurium atom.
Examples of the substituent that can replace hydrogen on the carbon chain or hydrogen on the ring include, for example, alkyl groups (methyl group, ethyl group, propyl group, isopropyl group, butyl group, s-butyl group, t-butyl group). C 1-20 alkyl group), a cycloalkyl group (cyclopentyl etc., such as C 3-10 cycloalkyl groups such as cyclohexyl group), a cycloalkenyl group (cyclo Pentel group, C 3-10 cycloalkyl such as cyclohexylene cell group Alkenyl groups, etc.), heterocyclic groups (C 2-10 heterocyclic groups containing heteroatoms such as oxygen, nitrogen and sulfur atoms), aryl groups [phenyl groups, alkylphenyl groups (methylphenyl groups (tolyl groups), dimethylphenyl group C 6-10 aryl group (xylyl) or the like), etc.], an aralkyl group (benzyl group, C 6-10 aryl such as phenethyl group - 1-4 alkyl group), a methylene group, a vinyl group, a hydrocarbon group such as an allyl group, and a C 1-4 alkoxy group such as an alkoxy group (methoxy group), a hydroxyl group, a hydroxy (poly) alkyleneoxy group (hydroxy (Poly) C 2-4 alkyleneoxy group, etc.), acyl group (C 1-6 acyl group such as acetyl group), oxy group, thioxy group, phosphino group, halogeno group (fluoro group, chloro group etc.), amino group Group, imino group, N-oxide group, nitro group, cyano group and the like. In addition, the hydrogen on the carbon chain or the hydrogen on the ring may be partially substituted, or all may be substituted.
一般式(6)、(9)におけるZ1、Z2及びZ3はそれぞれ、下記一般式(7)又は下記一般式(8)で表される構造である。更に、Z1及びZ2は、水素であってもよいが、Z1、Z2のうち少なくとも一方は下記一般式(7)又は下記一般式(8)で表される構造である。
Z 1 , Z 2 and Z 3 in the general formulas (6) and (9) are structures represented by the following general formula (7) or the following general formula (8), respectively. Furthermore, Z 1 and Z 2, which may be hydrogen, at least one of the Z 1, Z 2 is a structure represented by the following general formula (7) or the following general formula (8).
一般式(7)、(8)におけるV、U、Y、W及びTはそれぞれ、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はへテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がへテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示し、更には、U及びVは水素でも良く、Y及びWは、上記炭素数1~20の鎖状炭化水素基若しくは上記炭素数3~20の環状炭化水素基にカルボニル基が導入された基であっても良い。
V, U, Y, W and T in the general formulas (7) and (8) are each a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, Is optionally substituted with a heteroatom, and part or all of the hydrogen on the carbon chain may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein The ring may be a single ring, a condensed ring or a spiro ring, may have both a condensed ring and a spiro ring, may have a carbon atom partially substituted with a heteroatom, and may be a hydrogen atom on the ring. Part or all may be substituted), U and V may be hydrogen, and Y and W may be a chain hydrocarbon group having 1 to 20 carbon atoms or a chain hydrocarbon group having 3 to 20 carbon atoms. It may be a group in which a carbonyl group is introduced into a cyclic hydrocarbon group.
ここで、炭素原子の一部と置換し得るヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ホウ素原子、セレン原子、テルル原子等が挙げられる。
また、炭素鎖上の水素や環上の水素と置換し得る置換基としては、例えば、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基等のC1-20アルキル基等)、シクロアルキル基(シクロペンチル基、シクロヘキシル基等のC3-10シクロアルキル基等)、シクロアルケニル基(シクロペンテル基、シクロヘキセル基等のC3-10シクロアルケニル基等)、複素環基(酸素原子、窒素原子、硫黄原子といったヘテロ原子を含むC2-10複素環基等)、アリール基[フェニル基、アルキルフェニル基(メチルフェニル基(トリル基)、ジメチルフェニル基(キシリル基)等)等のC6-10アリール基等]、アラルキル基(ベンジル基、フェネチル基等のC6-10アリール-C1-4アルキル基等)、メチレン基、ビニル基、アリル基等の炭化水素基、アルコキシ基(メトキシ基等のC1-4アルコキシ基等)、ヒドロキシル基、ヒドロキシ(ポリ)アルキレンオキシ基(ヒドロキシ(ポリ)C2-4アルキレンオキシ基等)、アシル基(アセチル基等のC1-6アシル基等)、オキシ基、チオキシ基、ホスフィノ基、ハロゲノ基(フルオロ基、クロロ基等)、アミノ基、イミノ基、N-オキシド基、ニトロ基、シアノ基等が挙げられる。なお、炭素鎖上の水素や環上の水素は、その一部が置換されていてもよいし、全てが置換されていてもよい。 Here, examples of the hetero atom that can be substituted with a part of the carbon atom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a boron atom, a selenium atom, and a tellurium atom.
Examples of the substituent that can replace hydrogen on the carbon chain or hydrogen on the ring include, for example, alkyl groups (methyl group, ethyl group, propyl group, isopropyl group, butyl group, s-butyl group, t-butyl group). C 1-20 alkyl group), a cycloalkyl group (cyclopentyl etc., such as C 3-10 cycloalkyl groups such as cyclohexyl group), a cycloalkenyl group (cyclo Pentel group, C 3-10 cycloalkyl such as cyclohexylene cell group Alkenyl groups, etc.), heterocyclic groups (C 2-10 heterocyclic groups containing heteroatoms such as oxygen, nitrogen and sulfur atoms), aryl groups [phenyl groups, alkylphenyl groups (methylphenyl groups (tolyl groups), dimethylphenyl group C 6-10 aryl group (xylyl) or the like), etc.], an aralkyl group (benzyl group, C 6-10 aryl such as phenethyl group - 1-4 alkyl group), a methylene group, a vinyl group, a hydrocarbon group such as an allyl group, and a C 1-4 alkoxy group such as an alkoxy group (methoxy group), a hydroxyl group, a hydroxy (poly) alkyleneoxy group (hydroxy (Poly) C 2-4 alkyleneoxy group, etc.), acyl group (C 1-6 acyl group such as acetyl group), oxy group, thioxy group, phosphino group, halogeno group (fluoro group, chloro group etc.), amino group Group, imino group, N-oxide group, nitro group, cyano group and the like. In addition, the hydrogen on the carbon chain or the hydrogen on the ring may be partially substituted, or all may be substituted.
また、炭素鎖上の水素や環上の水素と置換し得る置換基としては、例えば、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基等のC1-20アルキル基等)、シクロアルキル基(シクロペンチル基、シクロヘキシル基等のC3-10シクロアルキル基等)、シクロアルケニル基(シクロペンテル基、シクロヘキセル基等のC3-10シクロアルケニル基等)、複素環基(酸素原子、窒素原子、硫黄原子といったヘテロ原子を含むC2-10複素環基等)、アリール基[フェニル基、アルキルフェニル基(メチルフェニル基(トリル基)、ジメチルフェニル基(キシリル基)等)等のC6-10アリール基等]、アラルキル基(ベンジル基、フェネチル基等のC6-10アリール-C1-4アルキル基等)、メチレン基、ビニル基、アリル基等の炭化水素基、アルコキシ基(メトキシ基等のC1-4アルコキシ基等)、ヒドロキシル基、ヒドロキシ(ポリ)アルキレンオキシ基(ヒドロキシ(ポリ)C2-4アルキレンオキシ基等)、アシル基(アセチル基等のC1-6アシル基等)、オキシ基、チオキシ基、ホスフィノ基、ハロゲノ基(フルオロ基、クロロ基等)、アミノ基、イミノ基、N-オキシド基、ニトロ基、シアノ基等が挙げられる。なお、炭素鎖上の水素や環上の水素は、その一部が置換されていてもよいし、全てが置換されていてもよい。 Here, examples of the hetero atom that can be substituted with a part of the carbon atom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a boron atom, a selenium atom, and a tellurium atom.
Examples of the substituent that can replace hydrogen on the carbon chain or hydrogen on the ring include, for example, alkyl groups (methyl group, ethyl group, propyl group, isopropyl group, butyl group, s-butyl group, t-butyl group). C 1-20 alkyl group), a cycloalkyl group (cyclopentyl etc., such as C 3-10 cycloalkyl groups such as cyclohexyl group), a cycloalkenyl group (cyclo Pentel group, C 3-10 cycloalkyl such as cyclohexylene cell group Alkenyl groups, etc.), heterocyclic groups (C 2-10 heterocyclic groups containing heteroatoms such as oxygen, nitrogen and sulfur atoms), aryl groups [phenyl groups, alkylphenyl groups (methylphenyl groups (tolyl groups), dimethylphenyl group C 6-10 aryl group (xylyl) or the like), etc.], an aralkyl group (benzyl group, C 6-10 aryl such as phenethyl group - 1-4 alkyl group), a methylene group, a vinyl group, a hydrocarbon group such as an allyl group, and a C 1-4 alkoxy group such as an alkoxy group (methoxy group), a hydroxyl group, a hydroxy (poly) alkyleneoxy group (hydroxy (Poly) C 2-4 alkyleneoxy group, etc.), acyl group (C 1-6 acyl group such as acetyl group), oxy group, thioxy group, phosphino group, halogeno group (fluoro group, chloro group etc.), amino group Group, imino group, N-oxide group, nitro group, cyano group and the like. In addition, the hydrogen on the carbon chain or the hydrogen on the ring may be partially substituted, or all may be substituted.
一般式(1)において、n(重合度)は、0~200である。nは、0~20であることが好ましく、0~10であることがより好ましい。
なお、一般式(1)で表されるエポキシ樹脂において、nは、当該樹脂全体の平均値である。 In the general formula (1), n (degree of polymerization) is 0 to 200. n is preferably 0 to 20, and more preferably 0 to 10.
In the epoxy resin represented by the general formula (1), n is an average value of the entire resin.
なお、一般式(1)で表されるエポキシ樹脂において、nは、当該樹脂全体の平均値である。 In the general formula (1), n (degree of polymerization) is 0 to 200. n is preferably 0 to 20, and more preferably 0 to 10.
In the epoxy resin represented by the general formula (1), n is an average value of the entire resin.
本発明のマトリックス組成物において、一般式(1)で表されるエポキシ樹脂としては、1種のみを単独で使用しても良いし、2種以上を併用しても良い。
In the matrix composition of this invention, as an epoxy resin represented by General formula (1), only 1 type may be used independently and 2 or more types may be used together.
本願発明のマトリックス組成物に原料として使用する一般式(1)で表されるエポキシ樹脂の数平均分子量は、特に限定されないが、250~100000であることが好ましく、300~15000であることがより好ましく、300~1500であることがさらに好ましい。数平均分子量が250未満であると、硬化させた際に過度に架橋密度が高くなることでもろくなることがあり、100000を超えると、硬化させた際に充分な架橋密度が得られず、表面硬度、耐薬品性等の物性が不充分となることがある。
The number average molecular weight of the epoxy resin represented by the general formula (1) used as a raw material in the matrix composition of the present invention is not particularly limited, but is preferably 250 to 100,000, more preferably 300 to 15,000. Preferably, it is 300 to 1500. If the number average molecular weight is less than 250, the crosslinking density may be too high when cured, and if it exceeds 100,000, a sufficient crosslinking density cannot be obtained when cured. Physical properties such as hardness and chemical resistance may be insufficient.
本明細書において、数平均分子量とは、ゲルパーミエーションクロマトグラフィー(以下、GPCともいう)測定により算出したものをいう。
In the present specification, the number average molecular weight means a value calculated by gel permeation chromatography (hereinafter also referred to as GPC) measurement.
一般式(1)で表されるエポキシ樹脂のエポキシ当量は、特に限定されないが、125~50000g/eqであることが好ましく、150~7500g/eqであることがより好ましい。エポキシ当量が125g/eq未満であると、硬化させた際に過度に架橋密度が高くなることでもろくなることがあり、50000g/eqを超えると、硬化させた際に充分な架橋密度が得られず、表面硬度、耐薬品性等の物性が不充分となることがあるからである。上記エポキシ当量は、JIS K7236に準拠して算出する。
The epoxy equivalent of the epoxy resin represented by the general formula (1) is not particularly limited, but is preferably 125 to 50000 g / eq, and more preferably 150 to 7500 g / eq. If the epoxy equivalent is less than 125 g / eq, it may become brittle even if the crosslinking density becomes excessively high when cured, and if it exceeds 50000 g / eq, a sufficient crosslinking density is obtained when cured. This is because the physical properties such as surface hardness and chemical resistance may be insufficient. The epoxy equivalent is calculated according to JIS K7236.
本発明のマトリックス組成物において、一般式(1)で表されるエポキシ樹脂の含有量は、特に限定されないが、マトリックス組成物中の全固形分中に45~99重量%であることが好ましく、50~97重量%であることがより好ましい。45重量%未満では、過度に架橋密度が高くなることで、硬化させた際にもろくなることがあり、99重量%を超えると、硬化させた際に充分な架橋密度が得られず、表面硬度、耐薬品性等の物性が不充分となる傾向がある。
In the matrix composition of the present invention, the content of the epoxy resin represented by the general formula (1) is not particularly limited, but is preferably 45 to 99% by weight in the total solid content in the matrix composition, More preferably, it is 50 to 97% by weight. If it is less than 45% by weight, it may become brittle when cured due to excessively high crosslink density, and if it exceeds 99% by weight, sufficient crosslink density cannot be obtained when cured, and surface hardness , Physical properties such as chemical resistance tend to be insufficient.
<任意成分>
本発明のマトリックス組成物は、一般式(1)で表されるエポキシ樹脂の他に、他の任意成分を含有していても良い。他の任意成分としては、例えば、硬化剤、硬化触媒、溶剤、フィラー、改質剤、難燃剤等が挙げられる。 <Optional component>
The matrix composition of the present invention may contain other optional components in addition to the epoxy resin represented by the general formula (1). Examples of other optional components include a curing agent, a curing catalyst, a solvent, a filler, a modifier, a flame retardant, and the like.
本発明のマトリックス組成物は、一般式(1)で表されるエポキシ樹脂の他に、他の任意成分を含有していても良い。他の任意成分としては、例えば、硬化剤、硬化触媒、溶剤、フィラー、改質剤、難燃剤等が挙げられる。 <Optional component>
The matrix composition of the present invention may contain other optional components in addition to the epoxy resin represented by the general formula (1). Examples of other optional components include a curing agent, a curing catalyst, a solvent, a filler, a modifier, a flame retardant, and the like.
本明細書において、硬化剤とは、マトリックス組成物が硬化する際にそれ自体が架橋するものをいう。また、本明細書において、硬化触媒とは、マトリックス組成物が硬化する際にはそれ自体架橋することはないが、架橋反応を促進するものをいう。
In this specification, a hardening | curing agent means what crosslinks itself when a matrix composition hardens | cures. In the present specification, the curing catalyst refers to a catalyst that promotes a crosslinking reaction, although the matrix composition does not crosslink itself when it is cured.
硬化剤としては特に限定されず、例えば、フェノールノボラック樹脂、アミン化合物類(例えば、4,4-ジアミノジフェニルスルホン等)、変性ポリアミン類、アミノ樹脂、ポリアミノアミド樹脂、イミダゾール化合物、カルボン酸類、酸無水化合物、フェノール類、第4級アンモニウム塩類、メチロール基含有化合物類、ブロックイソシアネート類、メルカプタン類、トリフル酸(Triflic acid)塩類、三弗化硼素エーテル錯化合物類、三弗化硼素、光又は熱により酸を発生するジアゾニウム塩類、スルホニウム塩類、ヨードニウム塩類、ベンゾチアゾリウム塩類、アンモニウム塩類、ホスホニウム塩類等が挙げられる。これらの硬化剤は、単独で用いても良いし、2種以上を併用しても良い。
The curing agent is not particularly limited, and examples thereof include phenol novolak resins, amine compounds (for example, 4,4-diaminodiphenyl sulfone), modified polyamines, amino resins, polyaminoamide resins, imidazole compounds, carboxylic acids, acid anhydrides. Compounds, phenols, quaternary ammonium salts, methylol group-containing compounds, blocked isocyanates, mercaptans, triflic acid salts, boron trifluoride ether complex compounds, boron trifluoride, light or heat Examples thereof include diazonium salts, sulfonium salts, iodonium salts, benzothiazolium salts, ammonium salts, and phosphonium salts that generate an acid. These curing agents may be used alone or in combination of two or more.
硬化剤を含有する場合、一般式(1)で表されるエポキシ樹脂中のエポキシ基に対する、硬化剤中の官能基の当量比は、特に限定されないが、0.5~2.0の範囲であることが好ましく、0.8~1.5の範囲であることがより好ましい。当量比が0.5~2.0の範囲を外れた場合、硬化後も未反応のエポキシ基又は官能基が硬化物中に残留し、硬化不良や物性低下、硬化物の信頼性低下(例えば、経時での劣化)の原因となる場合がある。
When the curing agent is contained, the equivalent ratio of the functional group in the curing agent to the epoxy group in the epoxy resin represented by the general formula (1) is not particularly limited, but in the range of 0.5 to 2.0. Preferably, it is in the range of 0.8 to 1.5. When the equivalence ratio is outside the range of 0.5 to 2.0, unreacted epoxy groups or functional groups remain in the cured product even after curing, resulting in poor curing, reduced physical properties, reduced reliability of the cured product (for example, , Deterioration over time).
硬化触媒としては、特に限定されず、例えば、ベンジルジメチルアミン等の第3級アミン類、テトラメチルアンモニウムクロライド等の第4級アンモニウム塩類、トリフェニルホスフィン、トリオクチルホスフィン、トリシクロヘキシルホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン等のホスフィン類、エチルトリフェニルホスホニウムブロマイド、テトラフェニルホスホニウム・テトラフェニルボレート等のホスホニウム塩類、トリフェニルホスフィン・トリフェニルボラン等のホスフィン錯体類、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類、三フッ化ホウ素錯体等が挙げられる。これらの硬化触媒は、単独で用いても良いし、2種以上を併用しても良い。
The curing catalyst is not particularly limited. For example, tertiary amines such as benzyldimethylamine, quaternary ammonium salts such as tetramethylammonium chloride, triphenylphosphine, trioctylphosphine, tricyclohexylphosphine, tris (2 , 6-dimethoxyphenyl) phosphine, etc., ethyltriphenylphosphonium bromide, phosphonium salts such as tetraphenylphosphonium / tetraphenylborate, phosphine complexes such as triphenylphosphine / triphenylborane, 2-methylimidazole, 2- Examples thereof include imidazoles such as ethyl-4-methylimidazole and boron trifluoride complexes. These curing catalysts may be used independently and may use 2 or more types together.
硬化触媒を含有する場合、その含有量は特に限定されないが、一般式(1)で表されるエポキシ樹脂100重量部に対して0.1~5重量部であることが好ましく、0.5~2重量部であることがより好ましい。硬化触媒の含有量が0.1重量部未満であると、硬化不良となることがあり、5重量部を超えると、エポキシ基の自己重合反応が進行したり、硬化触媒が硬化剤として機能して所望の物性の硬化物を得ることができないことがあるからである。
When the curing catalyst is contained, the content is not particularly limited, but is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin represented by the general formula (1), 0.5 to More preferably, it is 2 parts by weight. If the content of the curing catalyst is less than 0.1 parts by weight, curing may be poor. If the content exceeds 5 parts by weight, the self-polymerization reaction of the epoxy group proceeds or the curing catalyst functions as a curing agent. This is because a cured product having desired physical properties may not be obtained.
なお、上述した硬化剤の中には、その含有量によっては、硬化触媒として機能し得るものが含まれており、また、上述した硬化触媒の中には、その含有量によっては、硬化剤として機能し得るものも含まれているが、本発明のマトリックス組成物において硬化剤又は硬化触媒はいずれも任意成分であるため、硬化触媒として機能し得る硬化剤や、硬化剤として機能し得る硬化触媒を用いる場合であっても、その含有量は特に限定されない。
In addition, some of the curing agents described above may function as a curing catalyst depending on the content thereof, and some of the curing catalysts described above may serve as curing agents depending on the content. Although there are those which can function, since the curing agent or the curing catalyst is an optional component in the matrix composition of the present invention, the curing agent which can function as a curing catalyst or the curing catalyst which can function as a curing agent Even if is used, the content is not particularly limited.
溶剤としては、特に限定されないが、例えば、メタノール、エタノール等のアルコール類、テトラヒドロフラン等のエーテル類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノブチルエーテル等のグリコールエーテル類、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、プロピレングリコールメチルエーテルアセテート、3-メトキシブチル-1-アセテート等のアルキレングリコールモノアルキルエーテルアセテート類、トルエン、キシレン等の芳香族炭化水素類、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン類、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル等のエステル類が挙げられる。これらの溶剤は、単独で用いても良いし、2種以上を併用しても良い。
The solvent is not particularly limited. For example, alcohols such as methanol and ethanol, ethers such as tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, and diethylene glycol. Glycol ethers such as monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol monobutyl ether, and alkylene glycols such as methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, propylene glycol methyl ether acetate, and 3-methoxybutyl-1-acetate Cole monoalkyl ether acetates, aromatic hydrocarbons such as toluene and xylene, ketones such as methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone and 4-hydroxy-4-methyl-2-pentanone, 2-hydroxypropion Ethyl acetate, methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-2-methylbutanoate, methyl 3-methoxypropionate, Examples thereof include esters such as ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl acetate, butyl acetate, methyl lactate and ethyl lactate. These solvents may be used alone or in combination of two or more.
溶剤を含有する場合、その含有量は特に限定されないが、マトリックス組成物中に0~70重量%であることが好ましい。
When the solvent is contained, its content is not particularly limited, but it is preferably 0 to 70% by weight in the matrix composition.
フィラーとしては、特に限定されないが、例えば、結晶性シリカや非晶性シリカ等のシリカ類、粉末、フレーク又は繊維等の形状の金属やカーボンブラック、カーボン繊維、カーボンナノチューブ、グラフェン等の導電性フィラー類、酸化アンチモン、水酸化マグネシウム、水酸化アルミニウム、ホウ酸亜鉛、モリブデン酸化合物、酸化スズ化合物、リン系フィラー、ジルコニウム系フィラー、酸化鉄、亜酸化銅、層状クレイ等の難焼性フィラー、チタン酸バリウム、ジルコン酸チタン酸鉛等の導電性フィラー、アルコキシドゾル-ゲル法による有機-無機ハイブリット等の耐熱性改善フィラー等が挙げられる。
これらのフィラーは、単独で用いても良いし、2種以上を併用しても良い。 Although it does not specifically limit as a filler, For example, Conductive fillers, such as metals, such as silicas, such as crystalline silica and amorphous silica, powder, flakes, or fibers, carbon black, carbon fiber, carbon nanotube, and graphene , Antimony oxide, magnesium hydroxide, aluminum hydroxide, zinc borate, molybdate compound, tin oxide compound, phosphorus filler, zirconium filler, iron oxide, cuprous oxide, flame retardant filler such as layered clay, titanium Examples thereof include conductive fillers such as barium oxide and lead zirconate titanate, and heat resistance improving fillers such as organic-inorganic hybrids by an alkoxide sol-gel method.
These fillers may be used independently and may use 2 or more types together.
これらのフィラーは、単独で用いても良いし、2種以上を併用しても良い。 Although it does not specifically limit as a filler, For example, Conductive fillers, such as metals, such as silicas, such as crystalline silica and amorphous silica, powder, flakes, or fibers, carbon black, carbon fiber, carbon nanotube, and graphene , Antimony oxide, magnesium hydroxide, aluminum hydroxide, zinc borate, molybdate compound, tin oxide compound, phosphorus filler, zirconium filler, iron oxide, cuprous oxide, flame retardant filler such as layered clay, titanium Examples thereof include conductive fillers such as barium oxide and lead zirconate titanate, and heat resistance improving fillers such as organic-inorganic hybrids by an alkoxide sol-gel method.
These fillers may be used independently and may use 2 or more types together.
フィラーを含有する場合、その含有量は特に限定されないが、マトリックス組成物中に0.005~50重量%であることが好ましい。
When the filler is contained, its content is not particularly limited, but it is preferably 0.005 to 50% by weight in the matrix composition.
改質剤としては、特に限定されないが、例えば、アクリロニトリル-ブタジエンゴムやシリコーン系パウダー等が挙げられる。これらの改質剤は、単独で用いても良いし、2種以上を併用しても良い。
The modifier is not particularly limited, and examples thereof include acrylonitrile-butadiene rubber and silicone powder. These modifiers may be used alone or in combination of two or more.
改質剤を含有する場合、その含有量は特に限定されないが、マトリックス組成物中に0.005~50重量%であることが好ましい。
When the modifier is contained, its content is not particularly limited, but is preferably 0.005 to 50% by weight in the matrix composition.
難燃剤としては、特に限定されないが、例えば、ハロゲン化合物、リン化合物、無機化合物等が挙げられる。これらの難燃剤は、単独で用いてもよいし、2種以上を併用しても良い。
Although it does not specifically limit as a flame retardant, For example, a halogen compound, a phosphorus compound, an inorganic compound etc. are mentioned. These flame retardants may be used alone or in combination of two or more.
難燃剤を含有する場合、その含有量は特に限定されないが、マトリックス組成物中に0.005~50重量%であることが好ましい。
When the flame retardant is contained, the content thereof is not particularly limited, but is preferably 0.005 to 50% by weight in the matrix composition.
<用途>
本発明のマトリックス組成物は、繊維強化複合材の母材(マトリックス)として用いられるものであり、特定の構造を有するエポキシ樹脂を含むため、耐熱性及び靱性に優れた繊維強化複合材に好適に用いることができる。 <Application>
The matrix composition of the present invention is used as a base material (matrix) of a fiber reinforced composite material, and includes an epoxy resin having a specific structure, and thus is suitable for a fiber reinforced composite material having excellent heat resistance and toughness. Can be used.
本発明のマトリックス組成物は、繊維強化複合材の母材(マトリックス)として用いられるものであり、特定の構造を有するエポキシ樹脂を含むため、耐熱性及び靱性に優れた繊維強化複合材に好適に用いることができる。 <Application>
The matrix composition of the present invention is used as a base material (matrix) of a fiber reinforced composite material, and includes an epoxy resin having a specific structure, and thus is suitable for a fiber reinforced composite material having excellent heat resistance and toughness. Can be used.
<<繊維強化複合材>>
次に、本発明の繊維強化複合材について説明する。
本発明の繊維強化複合材は、本発明のマトリックス組成物の硬化物と、繊維質材料とからなる繊維強化複合材である。 << Fiber-reinforced composite >>
Next, the fiber reinforced composite material of the present invention will be described.
The fiber reinforced composite material of the present invention is a fiber reinforced composite material comprising a cured product of the matrix composition of the present invention and a fibrous material.
次に、本発明の繊維強化複合材について説明する。
本発明の繊維強化複合材は、本発明のマトリックス組成物の硬化物と、繊維質材料とからなる繊維強化複合材である。 << Fiber-reinforced composite >>
Next, the fiber reinforced composite material of the present invention will be described.
The fiber reinforced composite material of the present invention is a fiber reinforced composite material comprising a cured product of the matrix composition of the present invention and a fibrous material.
<繊維質材料>
上記繊維質材料は、本発明の繊維強化複合材において、強化材料として用いられる。
繊維質材料としては、特に限定されないが、例えば、炭素繊維、ガラス繊維、芳香族ポリアミド系樹脂繊維等の合成樹脂繊維等を用いることができる。これらの繊維質材料は、単独で用いても良いし、2種以上を併用しても良い。これらの中では、炭素繊維を用いることが好ましい。その理由は、繊維強化複合材が耐熱性及び靱性に優れるとの効果を顕著に享受することができると共に、炭素繊維が他の繊維質材料と比較して軽量であり、繊維強化複合材を航空機等の様々な用途に好適に用いることができるからである。 <Fibrous material>
The fibrous material is used as a reinforcing material in the fiber-reinforced composite material of the present invention.
Although it does not specifically limit as a fibrous material, For example, synthetic resin fibers, such as carbon fiber, glass fiber, and an aromatic polyamide-type resin fiber, etc. can be used. These fibrous materials may be used alone or in combination of two or more. In these, it is preferable to use carbon fiber. The reason is that the fiber-reinforced composite material can remarkably enjoy the effect that it has excellent heat resistance and toughness, and the carbon fiber is lighter than other fibrous materials. It is because it can use suitably for various uses, such as these.
上記繊維質材料は、本発明の繊維強化複合材において、強化材料として用いられる。
繊維質材料としては、特に限定されないが、例えば、炭素繊維、ガラス繊維、芳香族ポリアミド系樹脂繊維等の合成樹脂繊維等を用いることができる。これらの繊維質材料は、単独で用いても良いし、2種以上を併用しても良い。これらの中では、炭素繊維を用いることが好ましい。その理由は、繊維強化複合材が耐熱性及び靱性に優れるとの効果を顕著に享受することができると共に、炭素繊維が他の繊維質材料と比較して軽量であり、繊維強化複合材を航空機等の様々な用途に好適に用いることができるからである。 <Fibrous material>
The fibrous material is used as a reinforcing material in the fiber-reinforced composite material of the present invention.
Although it does not specifically limit as a fibrous material, For example, synthetic resin fibers, such as carbon fiber, glass fiber, and an aromatic polyamide-type resin fiber, etc. can be used. These fibrous materials may be used alone or in combination of two or more. In these, it is preferable to use carbon fiber. The reason is that the fiber-reinforced composite material can remarkably enjoy the effect that it has excellent heat resistance and toughness, and the carbon fiber is lighter than other fibrous materials. It is because it can use suitably for various uses, such as these.
繊維質材料の性状としては、特に限定されず、例えば、織物、編み物、一方向繊維基材(繊維束を一方向に並行に引き揃えた基材)、ステッチ基材(複数層の繊維基材を縫合した形態の基材)等のシート状基材等が挙げられる。
The property of the fibrous material is not particularly limited. For example, woven fabric, knitted fabric, unidirectional fiber substrate (substrate in which fiber bundles are aligned in parallel in one direction), stitch substrate (multiple layers of fiber substrate) And a sheet-like base material such as a base material in the form of stitched together.
本発明の繊維強化複合材における繊維質材料の含有量は、特に限定されないが、10~70体積%であることが好ましく、30~60体積%であることがより好ましい。含有量が10体積%未満であると、繊維強化複合材の表面が凹凸になったり、反りやうねりが大きくなる傾向にあり、70体積%を超えると、繊維質材料にマトリックス組成物を充分に含浸できないことがある。
The content of the fibrous material in the fiber-reinforced composite material of the present invention is not particularly limited, but is preferably 10 to 70% by volume, and more preferably 30 to 60% by volume. When the content is less than 10% by volume, the surface of the fiber reinforced composite material tends to be uneven, and warping and undulation tend to increase. When the content exceeds 70% by volume, the matrix composition is sufficiently added to the fibrous material. Impregnation may not be possible.
本発明の繊維強化複合材は、例えば、後述する本発明の繊維強化複合材の製造方法により製造することができる。
The fiber-reinforced composite material of the present invention can be manufactured, for example, by the method for manufacturing the fiber-reinforced composite material of the present invention described later.
本発明の繊維強化複合材は、本発明のマトリックス組成物と繊維質材料とからなるため、耐熱性及び靱性に優れる。
Since the fiber-reinforced composite material of the present invention is composed of the matrix composition of the present invention and a fibrous material, it is excellent in heat resistance and toughness.
<用途>
本発明の繊維強化複合材の用途としては、特に限定されないが、例えば、航空機、自動車、釣り具等のレジャー用品等が挙げられる。 <Application>
Although it does not specifically limit as a use of the fiber reinforced composite material of this invention, For example, leisure goods, such as an aircraft, a motor vehicle, a fishing tackle, etc. are mentioned.
本発明の繊維強化複合材の用途としては、特に限定されないが、例えば、航空機、自動車、釣り具等のレジャー用品等が挙げられる。 <Application>
Although it does not specifically limit as a use of the fiber reinforced composite material of this invention, For example, leisure goods, such as an aircraft, a motor vehicle, a fishing tackle, etc. are mentioned.
<<繊維強化複合材の製造方法>>
次に、本発明の繊維強化複合材の製造方法について説明する。
本発明の繊維強化複合材の製造方法は、以下の工程を含むことを特徴とする。
(i)本発明のマトリックス組成物を繊維質材料に含浸する工程;及び
(ii)工程(i)においてマトリックス組成物を含浸させた繊維質材料を加熱処理する工程。 << Production Method of Fiber Reinforced Composite >>
Next, the manufacturing method of the fiber reinforced composite material of this invention is demonstrated.
The manufacturing method of the fiber reinforced composite material of this invention is characterized by including the following processes.
(I) a step of impregnating the fibrous material with the matrix composition of the present invention; and (ii) a step of heat-treating the fibrous material impregnated with the matrix composition in step (i).
次に、本発明の繊維強化複合材の製造方法について説明する。
本発明の繊維強化複合材の製造方法は、以下の工程を含むことを特徴とする。
(i)本発明のマトリックス組成物を繊維質材料に含浸する工程;及び
(ii)工程(i)においてマトリックス組成物を含浸させた繊維質材料を加熱処理する工程。 << Production Method of Fiber Reinforced Composite >>
Next, the manufacturing method of the fiber reinforced composite material of this invention is demonstrated.
The manufacturing method of the fiber reinforced composite material of this invention is characterized by including the following processes.
(I) a step of impregnating the fibrous material with the matrix composition of the present invention; and (ii) a step of heat-treating the fibrous material impregnated with the matrix composition in step (i).
工程(i)において、本発明のマトリックス組成物を繊維質材料に含浸する方法としては、特に限定されないが、例えば、離型紙等の上に塗布した本発明のマトリックス組成物に繊維質材料を接触させることにより、本発明のマトリックス組成物を繊維質材料に含浸する方法、繊維質材料からなる繊維基材又はプリフォームを成形型内に設置し、その成形型内にマトリックス組成物を注入することにより、本発明のマトリックス組成物を繊維質材料に含浸する方法等が挙げられる。
In the step (i), the method for impregnating the fibrous material with the matrix composition of the present invention is not particularly limited. For example, the fibrous material is contacted with the matrix composition of the present invention coated on a release paper or the like. A method of impregnating a fibrous material with the matrix composition of the present invention, placing a fiber base material or preform made of a fibrous material in a mold, and injecting the matrix composition into the mold The method of impregnating a fibrous material with the matrix composition of the present invention can be mentioned.
工程(ii)においては、工程(i)においてマトリックス組成物を含浸させた繊維質材料を加熱処理する。
工程(ii)においては、工程(i)においてマトリックス組成物を含浸させた繊維質材料を、乾燥処理により半硬化させてプリプレグとした後、加熱処理により完全に硬化させても良いし、プリプレグとすることなく、一度の加熱処理で完全に硬化させても良い。
乾燥処理の条件としては、特に限定されないが、例えば、50~200℃で0.5~10時間乾燥処理する条件等を採用することができる。
加熱処理の条件としては、特に限定されないが、例えば、150~230℃で0.5~10時間加熱処理する条件等を採用することができる。 In step (ii), the fibrous material impregnated with the matrix composition in step (i) is heat-treated.
In the step (ii), the fibrous material impregnated with the matrix composition in the step (i) may be semi-cured by a drying treatment to form a prepreg, and then completely cured by a heat treatment. Alternatively, it may be completely cured by a single heat treatment.
The conditions for the drying treatment are not particularly limited. For example, conditions for drying treatment at 50 to 200 ° C. for 0.5 to 10 hours can be employed.
The conditions for the heat treatment are not particularly limited. For example, conditions for heat treatment at 150 to 230 ° C. for 0.5 to 10 hours can be employed.
工程(ii)においては、工程(i)においてマトリックス組成物を含浸させた繊維質材料を、乾燥処理により半硬化させてプリプレグとした後、加熱処理により完全に硬化させても良いし、プリプレグとすることなく、一度の加熱処理で完全に硬化させても良い。
乾燥処理の条件としては、特に限定されないが、例えば、50~200℃で0.5~10時間乾燥処理する条件等を採用することができる。
加熱処理の条件としては、特に限定されないが、例えば、150~230℃で0.5~10時間加熱処理する条件等を採用することができる。 In step (ii), the fibrous material impregnated with the matrix composition in step (i) is heat-treated.
In the step (ii), the fibrous material impregnated with the matrix composition in the step (i) may be semi-cured by a drying treatment to form a prepreg, and then completely cured by a heat treatment. Alternatively, it may be completely cured by a single heat treatment.
The conditions for the drying treatment are not particularly limited. For example, conditions for drying treatment at 50 to 200 ° C. for 0.5 to 10 hours can be employed.
The conditions for the heat treatment are not particularly limited. For example, conditions for heat treatment at 150 to 230 ° C. for 0.5 to 10 hours can be employed.
本発明の繊維強化複合材の製造方法において、繊維質材料は、炭素繊維であることが好ましい。その理由は、耐熱性及び靱性に特に優れる繊維強化複合材を製造することができるためである。
In the method for producing a fiber-reinforced composite material of the present invention, the fibrous material is preferably carbon fiber. This is because a fiber-reinforced composite material that is particularly excellent in heat resistance and toughness can be produced.
本発明の繊維強化複合材の製造方法によれば、本発明の繊維強化複合材を好適に製造することができる。
According to the method for producing a fiber reinforced composite material of the present invention, the fiber reinforced composite material of the present invention can be suitably produced.
以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例のみに限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
<エポキシ樹脂の製造>
(製造例1)イソソルビドジグリシジルエーテルの製造
1Lのセパラブルフラスコにエピクロロヒドリン(760g)及びイソソルビド(100g)を室温下で仕込んだ。この混合物を激しくかき混ぜながら、50℃下で固形の水酸化ナトリウム(60g)を1時間かけて投入した後、そのままの温度で3時間かき混ぜた。反応後、水を投入して副生した塩を溶解することで、有機層と水層を分離した。有機層を純水(100g)で3回洗浄した後、過剰のエピクロロヒドリンを減圧除去した。得られた残渣をろ過して、イソソルビドジグリシジルエーテル168gを得た(一般式(1)において、n=0のエポキシ樹脂)。
得られたイソソルビドジグリシジルエーテルの分析値は、エポキシ当量が163g/eq、GPCでの分析より数平均分子量Mnが310であった。
ここで、エポキシ当量は、JIS K7236に準拠して測定した。GPCによる分子量測定は、高速液体クロマトグラフィー(HPLC)(Waters社製、Waters 2695)を用いて行った。カラムとしては、Waters社製Waters styragel(登録商標)HR 1 THFと、Waters styragel(登録商標)HR 0.5 THFとを1本ずつ直列に接続したものを使用した。移動相としてはテトラヒドロフランを使用し、移動相速度は1.00mL/分とした。カラム温度は40℃とし、検出器は示差屈折率計で実施し、ポリスチレン換算分子量として分子量を求めた。なお、下記製造例でのエポキシ当量の測定、及び、GPCによる分子量測定も同様の条件で行った。 <Manufacture of epoxy resin>
Production Example 1 Production of Isosorbide Diglycidyl Ether Epichlorohydrin (760 g) and isosorbide (100 g) were charged at room temperature into a 1 L separable flask. While stirring the mixture vigorously, solid sodium hydroxide (60 g) was added at 50 ° C. over 1 hour, and then stirred at the same temperature for 3 hours. After the reaction, water was added to dissolve the by-produced salt, thereby separating the organic layer and the aqueous layer. The organic layer was washed 3 times with pure water (100 g), and then excess epichlorohydrin was removed under reduced pressure. The obtained residue was filtered to obtain 168 g of isosorbide diglycidyl ether (in general formula (1), n = 0 epoxy resin).
As for the analytical value of the obtained isosorbide diglycidyl ether, the epoxy equivalent was 163 g / eq, and the number average molecular weight Mn was 310 based on the analysis by GPC.
Here, the epoxy equivalent was measured according to JIS K7236. The molecular weight measurement by GPC was performed using high performance liquid chromatography (HPLC) (Waters 2695, manufactured by Waters). As the column, a column in which Waters styrene (registered trademark) HR 1 THF and Waters stratagel (registered trademark) HR 0.5 THF manufactured by Waters were connected in series one by one was used. Tetrahydrofuran was used as the mobile phase, and the mobile phase speed was 1.00 mL / min. The column temperature was 40 ° C., the detector was a differential refractometer, and the molecular weight was determined as the molecular weight in terms of polystyrene. In addition, the measurement of the epoxy equivalent in the following manufacture example and the molecular weight measurement by GPC were also performed on the same conditions.
(製造例1)イソソルビドジグリシジルエーテルの製造
1Lのセパラブルフラスコにエピクロロヒドリン(760g)及びイソソルビド(100g)を室温下で仕込んだ。この混合物を激しくかき混ぜながら、50℃下で固形の水酸化ナトリウム(60g)を1時間かけて投入した後、そのままの温度で3時間かき混ぜた。反応後、水を投入して副生した塩を溶解することで、有機層と水層を分離した。有機層を純水(100g)で3回洗浄した後、過剰のエピクロロヒドリンを減圧除去した。得られた残渣をろ過して、イソソルビドジグリシジルエーテル168gを得た(一般式(1)において、n=0のエポキシ樹脂)。
得られたイソソルビドジグリシジルエーテルの分析値は、エポキシ当量が163g/eq、GPCでの分析より数平均分子量Mnが310であった。
ここで、エポキシ当量は、JIS K7236に準拠して測定した。GPCによる分子量測定は、高速液体クロマトグラフィー(HPLC)(Waters社製、Waters 2695)を用いて行った。カラムとしては、Waters社製Waters styragel(登録商標)HR 1 THFと、Waters styragel(登録商標)HR 0.5 THFとを1本ずつ直列に接続したものを使用した。移動相としてはテトラヒドロフランを使用し、移動相速度は1.00mL/分とした。カラム温度は40℃とし、検出器は示差屈折率計で実施し、ポリスチレン換算分子量として分子量を求めた。なお、下記製造例でのエポキシ当量の測定、及び、GPCによる分子量測定も同様の条件で行った。 <Manufacture of epoxy resin>
Production Example 1 Production of Isosorbide Diglycidyl Ether Epichlorohydrin (760 g) and isosorbide (100 g) were charged at room temperature into a 1 L separable flask. While stirring the mixture vigorously, solid sodium hydroxide (60 g) was added at 50 ° C. over 1 hour, and then stirred at the same temperature for 3 hours. After the reaction, water was added to dissolve the by-produced salt, thereby separating the organic layer and the aqueous layer. The organic layer was washed 3 times with pure water (100 g), and then excess epichlorohydrin was removed under reduced pressure. The obtained residue was filtered to obtain 168 g of isosorbide diglycidyl ether (in general formula (1), n = 0 epoxy resin).
As for the analytical value of the obtained isosorbide diglycidyl ether, the epoxy equivalent was 163 g / eq, and the number average molecular weight Mn was 310 based on the analysis by GPC.
Here, the epoxy equivalent was measured according to JIS K7236. The molecular weight measurement by GPC was performed using high performance liquid chromatography (HPLC) (Waters 2695, manufactured by Waters). As the column, a column in which Waters styrene (registered trademark) HR 1 THF and Waters stratagel (registered trademark) HR 0.5 THF manufactured by Waters were connected in series one by one was used. Tetrahydrofuran was used as the mobile phase, and the mobile phase speed was 1.00 mL / min. The column temperature was 40 ° C., the detector was a differential refractometer, and the molecular weight was determined as the molecular weight in terms of polystyrene. In addition, the measurement of the epoxy equivalent in the following manufacture example and the molecular weight measurement by GPC were also performed on the same conditions.
(製造例2)イソソルビドポリエステル樹脂Aの製造
1Lのセパラブルフラスコにイソソルビドジグリシジルエーテル(400g)、cis-4-シクロヘキセン-1,2-ジカルボン酸(124g)及びテトラメチルアンモニウムクロライド(3g)を室温下で仕込み、この混合物を80℃で3時間かき混ぜた。反応混合物をろ過して、イソソルビドポリエステル樹脂Aの混合物490gを得た。
得られたイソソルビドポリエステル樹脂Aの混合物全体の分析値は、エポキシ当量が460g/eq、GPCでの分析より数平均分子量Mnが1172であった。 Production Example 2 Production of Isosorbide Polyester Resin A A 1 L separable flask was charged with isosorbide diglycidyl ether (400 g), cis-4-cyclohexene-1,2-dicarboxylic acid (124 g) and tetramethylammonium chloride (3 g) at room temperature. The mixture was charged below and the mixture was stirred at 80 ° C. for 3 hours. The reaction mixture was filtered to obtain 490 g of a mixture of isosorbide polyester resin A.
As for the analytical value of the entire mixture of the obtained isosorbide polyester resin A, the epoxy equivalent was 460 g / eq, and the number average molecular weight Mn was 1172 from the analysis by GPC.
1Lのセパラブルフラスコにイソソルビドジグリシジルエーテル(400g)、cis-4-シクロヘキセン-1,2-ジカルボン酸(124g)及びテトラメチルアンモニウムクロライド(3g)を室温下で仕込み、この混合物を80℃で3時間かき混ぜた。反応混合物をろ過して、イソソルビドポリエステル樹脂Aの混合物490gを得た。
得られたイソソルビドポリエステル樹脂Aの混合物全体の分析値は、エポキシ当量が460g/eq、GPCでの分析より数平均分子量Mnが1172であった。 Production Example 2 Production of Isosorbide Polyester Resin A A 1 L separable flask was charged with isosorbide diglycidyl ether (400 g), cis-4-cyclohexene-1,2-dicarboxylic acid (124 g) and tetramethylammonium chloride (3 g) at room temperature. The mixture was charged below and the mixture was stirred at 80 ° C. for 3 hours. The reaction mixture was filtered to obtain 490 g of a mixture of isosorbide polyester resin A.
As for the analytical value of the entire mixture of the obtained isosorbide polyester resin A, the epoxy equivalent was 460 g / eq, and the number average molecular weight Mn was 1172 from the analysis by GPC.
(製造例3)イソソルビドポリエステル樹脂Bの製造
1Lのセパラブルフラスコにイソソルビドジグリシジルエーテル(400g)、cis-4-シクロヘキセン-1,2-ジカルボン酸(66g)及びテトラメチルアンモニウムクロライド(3g)を室温下で仕込み、この混合物を80℃で3時間かき混ぜた。反応混合物をろ過して、イソソルビドポリエステル樹脂Bの混合物436gを得た。
得られたイソソルビドポリエステル樹脂Bの混合物全体の分析値は、エポキシ当量が292g/eq、GPCでの分析より数平均分子量Mnが409であった。 Production Example 3 Production of Isosorbide Polyester Resin B In a 1 L separable flask, isosorbide diglycidyl ether (400 g), cis-4-cyclohexene-1,2-dicarboxylic acid (66 g) and tetramethylammonium chloride (3 g) were added at room temperature. The mixture was charged below and the mixture was stirred at 80 ° C. for 3 hours. The reaction mixture was filtered to obtain 436 g of a mixture of isosorbide polyester resin B.
As for the analytical value of the whole mixture of the obtained isosorbide polyester resin B, the epoxy equivalent was 292 g / eq, and the number average molecular weight Mn was 409 from the analysis by GPC.
1Lのセパラブルフラスコにイソソルビドジグリシジルエーテル(400g)、cis-4-シクロヘキセン-1,2-ジカルボン酸(66g)及びテトラメチルアンモニウムクロライド(3g)を室温下で仕込み、この混合物を80℃で3時間かき混ぜた。反応混合物をろ過して、イソソルビドポリエステル樹脂Bの混合物436gを得た。
得られたイソソルビドポリエステル樹脂Bの混合物全体の分析値は、エポキシ当量が292g/eq、GPCでの分析より数平均分子量Mnが409であった。 Production Example 3 Production of Isosorbide Polyester Resin B In a 1 L separable flask, isosorbide diglycidyl ether (400 g), cis-4-cyclohexene-1,2-dicarboxylic acid (66 g) and tetramethylammonium chloride (3 g) were added at room temperature. The mixture was charged below and the mixture was stirred at 80 ° C. for 3 hours. The reaction mixture was filtered to obtain 436 g of a mixture of isosorbide polyester resin B.
As for the analytical value of the whole mixture of the obtained isosorbide polyester resin B, the epoxy equivalent was 292 g / eq, and the number average molecular weight Mn was 409 from the analysis by GPC.
(製造例4)イソソルビドポリエーテル樹脂Aの製造
1Lのセパラブルフラスコにイソソルビドジグリシジルエーテル(400g)、ビスフェノールF(123g)及びテトラメチルアンモニウムクロライド(3g)を室温下で仕込み、この混合物を80℃で3時間かき混ぜた。反応混合物をろ過して、イソソルビドポリエーテル樹脂Aの混合物489gを得た。
得られたイソソルビドポリエーテル樹脂Aの混合物全体の分析値は、エポキシ当量が450g/eq、GPCでの分析より数平均分子量Mnが1209であった。 (Production Example 4) Production of isosorbide polyether resin A A 1 L separable flask was charged with isosorbide diglycidyl ether (400 g), bisphenol F (123 g) and tetramethylammonium chloride (3 g) at room temperature, and this mixture was heated to 80 ° C. Stir for 3 hours. The reaction mixture was filtered to obtain 489 g of a mixture of isosorbide polyether resin A.
As for the analytical value of the entire mixture of the obtained isosorbide polyether resin A, the epoxy equivalent was 450 g / eq, and the number average molecular weight Mn was 1209 from the analysis by GPC.
1Lのセパラブルフラスコにイソソルビドジグリシジルエーテル(400g)、ビスフェノールF(123g)及びテトラメチルアンモニウムクロライド(3g)を室温下で仕込み、この混合物を80℃で3時間かき混ぜた。反応混合物をろ過して、イソソルビドポリエーテル樹脂Aの混合物489gを得た。
得られたイソソルビドポリエーテル樹脂Aの混合物全体の分析値は、エポキシ当量が450g/eq、GPCでの分析より数平均分子量Mnが1209であった。 (Production Example 4) Production of isosorbide polyether resin A A 1 L separable flask was charged with isosorbide diglycidyl ether (400 g), bisphenol F (123 g) and tetramethylammonium chloride (3 g) at room temperature, and this mixture was heated to 80 ° C. Stir for 3 hours. The reaction mixture was filtered to obtain 489 g of a mixture of isosorbide polyether resin A.
As for the analytical value of the entire mixture of the obtained isosorbide polyether resin A, the epoxy equivalent was 450 g / eq, and the number average molecular weight Mn was 1209 from the analysis by GPC.
(製造例5)イソソルビドポリエーテル樹脂Bの製造
1Lのセパラブルフラスコにイソソルビドジグリシジルエーテル(400g)、ビスフェノールF(74g)及びテトラメチルアンモニウムクロライド(3g)を室温下で仕込み、この混合物を80℃で3時間かき混ぜた。反応混合物をろ過して、イソソルビドポリエーテル樹脂Bの混合物444gを得た。
得られたイソソルビドポリエーテル樹脂Bの混合物全体の分析値は、エポキシ当量が307g/eq、GPCでの分析より数平均分子量Mnが472であった。 (Production Example 5) Production of isosorbide polyether resin B A 1 L separable flask was charged with isosorbide diglycidyl ether (400 g), bisphenol F (74 g) and tetramethylammonium chloride (3 g) at room temperature, and this mixture was heated to 80 ° C. Stir for 3 hours. The reaction mixture was filtered to obtain 444 g of a mixture of isosorbide polyether resin B.
As for the analytical value of the whole mixture of the obtained isosorbide polyether resin B, the epoxy equivalent was 307 g / eq, and the number average molecular weight Mn was 472 from the analysis by GPC.
1Lのセパラブルフラスコにイソソルビドジグリシジルエーテル(400g)、ビスフェノールF(74g)及びテトラメチルアンモニウムクロライド(3g)を室温下で仕込み、この混合物を80℃で3時間かき混ぜた。反応混合物をろ過して、イソソルビドポリエーテル樹脂Bの混合物444gを得た。
得られたイソソルビドポリエーテル樹脂Bの混合物全体の分析値は、エポキシ当量が307g/eq、GPCでの分析より数平均分子量Mnが472であった。 (Production Example 5) Production of isosorbide polyether resin B A 1 L separable flask was charged with isosorbide diglycidyl ether (400 g), bisphenol F (74 g) and tetramethylammonium chloride (3 g) at room temperature, and this mixture was heated to 80 ° C. Stir for 3 hours. The reaction mixture was filtered to obtain 444 g of a mixture of isosorbide polyether resin B.
As for the analytical value of the whole mixture of the obtained isosorbide polyether resin B, the epoxy equivalent was 307 g / eq, and the number average molecular weight Mn was 472 from the analysis by GPC.
(製造例6)イソソルビドポリウレタン樹脂Aの製造
1Lのセパラブルフラスコにジフェニルメタンジイソシアネート(200g)、テトラヒドロフラン(400g)及びイソソルビド(58g)を室温下で仕込み、イソソルビドが溶解するまでかき混ぜた。そのままの温度でテトラキス(2,4-ペンタンジオナト)ジルコニウム(IV)(4g)を仕込み、3時間かき混ぜた後、グリシドール(118g)を仕込んだ。得られた混合物をろ紙を敷いたブフナー漏斗へと移して、ろ過した。得られた固形物を水(100g)、メタノール(300g)で順にかけ洗いした。固形物をフラスコに移して、ロータリーエバポレーターで80℃、1時間かけて乾燥して、イソソルビドポリウレタン樹脂Aの混合物314gを得た。
得られたイソソルビドポリウレタン樹脂Aの混合物全体の分析値は、エポキシ当量が325g/eq、GPCでの分析より数平均分子量Mnが1770であった。 Production Example 6 Production of Isosorbide Polyurethane Resin A A 1 L separable flask was charged with diphenylmethane diisocyanate (200 g), tetrahydrofuran (400 g) and isosorbide (58 g) at room temperature and stirred until the isosorbide was dissolved. Tetrakis (2,4-pentanedionato) zirconium (IV) (4 g) was charged at the same temperature, and after stirring for 3 hours, glycidol (118 g) was charged. The resulting mixture was transferred to a Buchner funnel lined with filter paper and filtered. The obtained solid was washed with water (100 g) and methanol (300 g) in this order. The solid was transferred to a flask and dried at 80 ° C. for 1 hour on a rotary evaporator to obtain 314 g of a mixture of isosorbide polyurethane resin A.
As for the analytical value of the entire mixture of the obtained isosorbide polyurethane resin A, the epoxy equivalent was 325 g / eq, and the number average molecular weight Mn was 1770 from the analysis by GPC.
1Lのセパラブルフラスコにジフェニルメタンジイソシアネート(200g)、テトラヒドロフラン(400g)及びイソソルビド(58g)を室温下で仕込み、イソソルビドが溶解するまでかき混ぜた。そのままの温度でテトラキス(2,4-ペンタンジオナト)ジルコニウム(IV)(4g)を仕込み、3時間かき混ぜた後、グリシドール(118g)を仕込んだ。得られた混合物をろ紙を敷いたブフナー漏斗へと移して、ろ過した。得られた固形物を水(100g)、メタノール(300g)で順にかけ洗いした。固形物をフラスコに移して、ロータリーエバポレーターで80℃、1時間かけて乾燥して、イソソルビドポリウレタン樹脂Aの混合物314gを得た。
得られたイソソルビドポリウレタン樹脂Aの混合物全体の分析値は、エポキシ当量が325g/eq、GPCでの分析より数平均分子量Mnが1770であった。 Production Example 6 Production of Isosorbide Polyurethane Resin A A 1 L separable flask was charged with diphenylmethane diisocyanate (200 g), tetrahydrofuran (400 g) and isosorbide (58 g) at room temperature and stirred until the isosorbide was dissolved. Tetrakis (2,4-pentanedionato) zirconium (IV) (4 g) was charged at the same temperature, and after stirring for 3 hours, glycidol (118 g) was charged. The resulting mixture was transferred to a Buchner funnel lined with filter paper and filtered. The obtained solid was washed with water (100 g) and methanol (300 g) in this order. The solid was transferred to a flask and dried at 80 ° C. for 1 hour on a rotary evaporator to obtain 314 g of a mixture of isosorbide polyurethane resin A.
As for the analytical value of the entire mixture of the obtained isosorbide polyurethane resin A, the epoxy equivalent was 325 g / eq, and the number average molecular weight Mn was 1770 from the analysis by GPC.
(製造例7)イソソルビドポリウレタン樹脂Bの製造
1Lのセパラブルフラスコにジフェニルメタンジイソシアネート(200g)、テトラヒドロフラン(358g)及びイソソルビド(35g)を室温下で仕込み、イソソルビドが溶解するまでかき混ぜた。そのままの温度でテトラキス(2,4-ペンタンジオナト)ジルコニウム(IV)(4g)を仕込み、3時間かき混ぜた後、グリシドール(118g)を仕込んだ。得られた混合物をろ紙を敷いたブフナー漏斗へと移して、ろ過した。得られた固形物を水(100g)、メタノール(300g)で順にかけ洗いした。固形物をフラスコに移して、ロータリーエバポレーターで80℃、1時間かけて乾燥して、イソソルビドポリウレタン樹脂Bの混合物293gを得た。
得られたイソソルビドポリウレタン樹脂Bの混合物全体の分析値は、エポキシ当量が207g/eq、GPCでの分析より数平均分子量Mnが406であった。 (Production Example 7) Production of isosorbide polyurethane resin B A 1 L separable flask was charged with diphenylmethane diisocyanate (200 g), tetrahydrofuran (358 g) and isosorbide (35 g) at room temperature and stirred until the isosorbide was dissolved. Tetrakis (2,4-pentanedionato) zirconium (IV) (4 g) was charged at the same temperature, and after stirring for 3 hours, glycidol (118 g) was charged. The resulting mixture was transferred to a Buchner funnel lined with filter paper and filtered. The obtained solid was washed with water (100 g) and methanol (300 g) in this order. The solid material was transferred to a flask and dried on a rotary evaporator at 80 ° C. for 1 hour to obtain 293 g of a mixture of isosorbide polyurethane resin B.
As for the analytical value of the whole mixture of the obtained isosorbide polyurethane resin B, the epoxy equivalent was 207 g / eq, and the number average molecular weight Mn was 406 from the analysis by GPC.
1Lのセパラブルフラスコにジフェニルメタンジイソシアネート(200g)、テトラヒドロフラン(358g)及びイソソルビド(35g)を室温下で仕込み、イソソルビドが溶解するまでかき混ぜた。そのままの温度でテトラキス(2,4-ペンタンジオナト)ジルコニウム(IV)(4g)を仕込み、3時間かき混ぜた後、グリシドール(118g)を仕込んだ。得られた混合物をろ紙を敷いたブフナー漏斗へと移して、ろ過した。得られた固形物を水(100g)、メタノール(300g)で順にかけ洗いした。固形物をフラスコに移して、ロータリーエバポレーターで80℃、1時間かけて乾燥して、イソソルビドポリウレタン樹脂Bの混合物293gを得た。
得られたイソソルビドポリウレタン樹脂Bの混合物全体の分析値は、エポキシ当量が207g/eq、GPCでの分析より数平均分子量Mnが406であった。 (Production Example 7) Production of isosorbide polyurethane resin B A 1 L separable flask was charged with diphenylmethane diisocyanate (200 g), tetrahydrofuran (358 g) and isosorbide (35 g) at room temperature and stirred until the isosorbide was dissolved. Tetrakis (2,4-pentanedionato) zirconium (IV) (4 g) was charged at the same temperature, and after stirring for 3 hours, glycidol (118 g) was charged. The resulting mixture was transferred to a Buchner funnel lined with filter paper and filtered. The obtained solid was washed with water (100 g) and methanol (300 g) in this order. The solid material was transferred to a flask and dried on a rotary evaporator at 80 ° C. for 1 hour to obtain 293 g of a mixture of isosorbide polyurethane resin B.
As for the analytical value of the whole mixture of the obtained isosorbide polyurethane resin B, the epoxy equivalent was 207 g / eq, and the number average molecular weight Mn was 406 from the analysis by GPC.
(製造例8)イソソルビドポリエステルポリエーテル樹脂の製造
1Lのセパラブルフラスコにイソソルビドジグリシジルエーテル(400g)、サリチル酸(89g)及びテトラメチルアンモニウムクロライド(3g)を室温下で仕込み、この混合物を80℃で3時間かき混ぜた。反応混合物をろ過して、イソソルビドポリエステルポリエーテル樹脂の混合物492gを得た。
得られたイソソルビドポリエステルポリエーテル樹脂の混合物全体の分析値は、エポキシ当量が340g/eq、GPCでの分析より数平均分子量Mnが442であった。 Production Example 8 Production of Isosorbide Polyester Polyether Resin A 1 L separable flask was charged with isosorbide diglycidyl ether (400 g), salicylic acid (89 g) and tetramethylammonium chloride (3 g) at room temperature, and the mixture was heated at 80 ° C. Stir for 3 hours. The reaction mixture was filtered to obtain 492 g of a mixture of isosorbide polyester polyether resin.
As for the analytical value of the entire mixture of the obtained isosorbide polyester polyether resin, the epoxy equivalent was 340 g / eq, and the number average molecular weight Mn was 442 from the analysis by GPC.
1Lのセパラブルフラスコにイソソルビドジグリシジルエーテル(400g)、サリチル酸(89g)及びテトラメチルアンモニウムクロライド(3g)を室温下で仕込み、この混合物を80℃で3時間かき混ぜた。反応混合物をろ過して、イソソルビドポリエステルポリエーテル樹脂の混合物492gを得た。
得られたイソソルビドポリエステルポリエーテル樹脂の混合物全体の分析値は、エポキシ当量が340g/eq、GPCでの分析より数平均分子量Mnが442であった。 Production Example 8 Production of Isosorbide Polyester Polyether Resin A 1 L separable flask was charged with isosorbide diglycidyl ether (400 g), salicylic acid (89 g) and tetramethylammonium chloride (3 g) at room temperature, and the mixture was heated at 80 ° C. Stir for 3 hours. The reaction mixture was filtered to obtain 492 g of a mixture of isosorbide polyester polyether resin.
As for the analytical value of the entire mixture of the obtained isosorbide polyester polyether resin, the epoxy equivalent was 340 g / eq, and the number average molecular weight Mn was 442 from the analysis by GPC.
(製造例9)イソソルビド変性ポリエステル樹脂Aの製造
1Lのセパラブルフラスコにブチルビニルエーテル(136g)、cis-4-シクロヘキセン-1,2-ジカルボン酸(110g)及びp-トルエンスルホン酸(2g)を室温下で仕込み、この混合物を60℃で2時間かき混ぜた。反応混合物にイソソルビドジグリシジルエーテル(400g)及びテトラメチルアンモニウムクロライド(3g)を室温下で加え、この混合物を100℃で6時間かき混ぜた。反応混合物をろ過して、イソソルビド変性ポリエステル樹脂Aの混合物651gを得た。
得られたイソソルビド変性ポリエステル樹脂Aの混合物全体の分析値は、エポキシ当量が461g/eq、GPCでの分析より数平均分子量Mnが1130であった。 Production Example 9 Production of Isosorbide Modified Polyester Resin A A 1 L separable flask was charged with butyl vinyl ether (136 g), cis-4-cyclohexene-1,2-dicarboxylic acid (110 g) and p-toluenesulfonic acid (2 g) at room temperature. The mixture was charged below and the mixture was stirred at 60 ° C. for 2 hours. Isosorbide diglycidyl ether (400 g) and tetramethylammonium chloride (3 g) were added to the reaction mixture at room temperature, and the mixture was stirred at 100 ° C. for 6 hours. The reaction mixture was filtered to obtain 651 g of a mixture of isosorbide-modified polyester resin A.
As for the analytical value of the whole mixture of the obtained isosorbide-modified polyester resin A, the epoxy equivalent was 461 g / eq, and the number average molecular weight Mn was 1130 from the analysis by GPC.
1Lのセパラブルフラスコにブチルビニルエーテル(136g)、cis-4-シクロヘキセン-1,2-ジカルボン酸(110g)及びp-トルエンスルホン酸(2g)を室温下で仕込み、この混合物を60℃で2時間かき混ぜた。反応混合物にイソソルビドジグリシジルエーテル(400g)及びテトラメチルアンモニウムクロライド(3g)を室温下で加え、この混合物を100℃で6時間かき混ぜた。反応混合物をろ過して、イソソルビド変性ポリエステル樹脂Aの混合物651gを得た。
得られたイソソルビド変性ポリエステル樹脂Aの混合物全体の分析値は、エポキシ当量が461g/eq、GPCでの分析より数平均分子量Mnが1130であった。 Production Example 9 Production of Isosorbide Modified Polyester Resin A A 1 L separable flask was charged with butyl vinyl ether (136 g), cis-4-cyclohexene-1,2-dicarboxylic acid (110 g) and p-toluenesulfonic acid (2 g) at room temperature. The mixture was charged below and the mixture was stirred at 60 ° C. for 2 hours. Isosorbide diglycidyl ether (400 g) and tetramethylammonium chloride (3 g) were added to the reaction mixture at room temperature, and the mixture was stirred at 100 ° C. for 6 hours. The reaction mixture was filtered to obtain 651 g of a mixture of isosorbide-modified polyester resin A.
As for the analytical value of the whole mixture of the obtained isosorbide-modified polyester resin A, the epoxy equivalent was 461 g / eq, and the number average molecular weight Mn was 1130 from the analysis by GPC.
(製造例10)イソソルビド変性ポリエステル樹脂Bの製造
1Lのセパラブルフラスコにブチルビニルエーテル(68g)、3,4-ジヒドロ-2H-ピラン(57g)、cis-4-シクロヘキセン-1,2-ジカルボン酸(110g)及びp-トルエンスルホン酸(2g)を室温下で仕込み、この混合物を60℃で2時間かき混ぜた。反応混合物にイソソルビドジグリシジルエーテル(400g)及びテトラメチルアンモニウムクロライド(3g)を室温下で加え、この混合物を100℃で6時間かき混ぜた。反応混合物をろ過して、イソソルビド変性ポリエステル樹脂Bの混合物640gを得た。
得られたイソソルビド変性ポリエステル樹脂Bの混合物全体の分析値は、エポキシ当量が482g/eq、GPCでの分析より数平均分子量Mnが1014であった。 Production Example 10 Production of Isosorbide Modified Polyester Resin B Into a 1 L separable flask, butyl vinyl ether (68 g), 3,4-dihydro-2H-pyran (57 g), cis-4-cyclohexene-1,2-dicarboxylic acid ( 110 g) and p-toluenesulfonic acid (2 g) were charged at room temperature, and the mixture was stirred at 60 ° C. for 2 hours. Isosorbide diglycidyl ether (400 g) and tetramethylammonium chloride (3 g) were added to the reaction mixture at room temperature, and the mixture was stirred at 100 ° C. for 6 hours. The reaction mixture was filtered to obtain 640 g of a mixture of isosorbide-modified polyester resin B.
As for the analytical value of the entire mixture of the obtained isosorbide-modified polyester resin B, the epoxy equivalent was 482 g / eq, and the number average molecular weight Mn was 1014 from the analysis by GPC.
1Lのセパラブルフラスコにブチルビニルエーテル(68g)、3,4-ジヒドロ-2H-ピラン(57g)、cis-4-シクロヘキセン-1,2-ジカルボン酸(110g)及びp-トルエンスルホン酸(2g)を室温下で仕込み、この混合物を60℃で2時間かき混ぜた。反応混合物にイソソルビドジグリシジルエーテル(400g)及びテトラメチルアンモニウムクロライド(3g)を室温下で加え、この混合物を100℃で6時間かき混ぜた。反応混合物をろ過して、イソソルビド変性ポリエステル樹脂Bの混合物640gを得た。
得られたイソソルビド変性ポリエステル樹脂Bの混合物全体の分析値は、エポキシ当量が482g/eq、GPCでの分析より数平均分子量Mnが1014であった。 Production Example 10 Production of Isosorbide Modified Polyester Resin B Into a 1 L separable flask, butyl vinyl ether (68 g), 3,4-dihydro-2H-pyran (57 g), cis-4-cyclohexene-1,2-dicarboxylic acid ( 110 g) and p-toluenesulfonic acid (2 g) were charged at room temperature, and the mixture was stirred at 60 ° C. for 2 hours. Isosorbide diglycidyl ether (400 g) and tetramethylammonium chloride (3 g) were added to the reaction mixture at room temperature, and the mixture was stirred at 100 ° C. for 6 hours. The reaction mixture was filtered to obtain 640 g of a mixture of isosorbide-modified polyester resin B.
As for the analytical value of the entire mixture of the obtained isosorbide-modified polyester resin B, the epoxy equivalent was 482 g / eq, and the number average molecular weight Mn was 1014 from the analysis by GPC.
(製造例11)イソソルビド変性ポリエステル樹脂Cの製造
1Lのセパラブルフラスコに3,4-ジヒドロ-2H-ピラン(114g)、cis-4-シクロヘキセン-1,2-ジカルボン酸(110g)及びp-トルエンスルホン酸(2g)を室温下で仕込み、この混合物を60℃で2時間かき混ぜた。反応混合物にイソソルビドジグリシジルエーテル(400g)及びテトラメチルアンモニウムクロライド(3g)を室温下で加え、この混合物を100℃で6時間かき混ぜた。反応混合物をろ過して、イソソルビド変性ポリエステル樹脂Cの混合物598gを得た。
得られたイソソルビド変性ポリエステル樹脂Cの混合物全体の分析値は、エポキシ当量が434g/eq、GPCでの分析より数平均分子量Mnが852であった。 Production Example 11 Production of Isosorbide Modified Polyester Resin C Into a 1 L separable flask, 3,4-dihydro-2H-pyran (114 g), cis-4-cyclohexene-1,2-dicarboxylic acid (110 g) and p-toluene were added. Sulfonic acid (2 g) was charged at room temperature, and the mixture was stirred at 60 ° C. for 2 hours. Isosorbide diglycidyl ether (400 g) and tetramethylammonium chloride (3 g) were added to the reaction mixture at room temperature, and the mixture was stirred at 100 ° C. for 6 hours. The reaction mixture was filtered to obtain 598 g of a mixture of isosorbide-modified polyester resin C.
As for the analytical value of the entire mixture of the obtained isosorbide-modified polyester resin C, the epoxy equivalent was 434 g / eq, and the number average molecular weight Mn was 852 from the analysis by GPC.
1Lのセパラブルフラスコに3,4-ジヒドロ-2H-ピラン(114g)、cis-4-シクロヘキセン-1,2-ジカルボン酸(110g)及びp-トルエンスルホン酸(2g)を室温下で仕込み、この混合物を60℃で2時間かき混ぜた。反応混合物にイソソルビドジグリシジルエーテル(400g)及びテトラメチルアンモニウムクロライド(3g)を室温下で加え、この混合物を100℃で6時間かき混ぜた。反応混合物をろ過して、イソソルビド変性ポリエステル樹脂Cの混合物598gを得た。
得られたイソソルビド変性ポリエステル樹脂Cの混合物全体の分析値は、エポキシ当量が434g/eq、GPCでの分析より数平均分子量Mnが852であった。 Production Example 11 Production of Isosorbide Modified Polyester Resin C Into a 1 L separable flask, 3,4-dihydro-2H-pyran (114 g), cis-4-cyclohexene-1,2-dicarboxylic acid (110 g) and p-toluene were added. Sulfonic acid (2 g) was charged at room temperature, and the mixture was stirred at 60 ° C. for 2 hours. Isosorbide diglycidyl ether (400 g) and tetramethylammonium chloride (3 g) were added to the reaction mixture at room temperature, and the mixture was stirred at 100 ° C. for 6 hours. The reaction mixture was filtered to obtain 598 g of a mixture of isosorbide-modified polyester resin C.
As for the analytical value of the entire mixture of the obtained isosorbide-modified polyester resin C, the epoxy equivalent was 434 g / eq, and the number average molecular weight Mn was 852 from the analysis by GPC.
(製造例12)イソソルビド変性ポリエステルポリエーテル樹脂Aの製造
1Lのセパラブルフラスコにブチルビニルエーテル(68g)、サリチル酸(89g)及びp-トルエンスルホン酸(2g)を室温下で仕込み、この混合物を60℃で2時間かき混ぜた。反応混合物にイソソルビドジグリシジルエーテル(400g)及びテトラメチルアンモニウムクロライド(3g)を室温下で加え、この混合物を100℃で6時間かき混ぜた。反応混合物をろ過して、イソソルビド変性ポリエステルポリエーテル樹脂Aの混合物630gを得た。
得られたイソソルビド変性ポリエステルポリエーテル樹脂Aの混合物全体の分析値は、エポキシ当量が440g/eq、GPCでの分析より数平均分子量Mnが880であった。 Production Example 12 Production of Isosorbide Modified Polyester Polyether Resin A A 1 L separable flask was charged with butyl vinyl ether (68 g), salicylic acid (89 g) and p-toluenesulfonic acid (2 g) at room temperature, and this mixture was heated to 60 ° C. And stirred for 2 hours. Isosorbide diglycidyl ether (400 g) and tetramethylammonium chloride (3 g) were added to the reaction mixture at room temperature, and the mixture was stirred at 100 ° C. for 6 hours. The reaction mixture was filtered to obtain 630 g of a mixture of isosorbide-modified polyester polyether resin A.
As for the analytical value of the entire mixture of the obtained isosorbide-modified polyester polyether resin A, the epoxy equivalent was 440 g / eq, and the number average molecular weight Mn was 880 from the analysis by GPC.
1Lのセパラブルフラスコにブチルビニルエーテル(68g)、サリチル酸(89g)及びp-トルエンスルホン酸(2g)を室温下で仕込み、この混合物を60℃で2時間かき混ぜた。反応混合物にイソソルビドジグリシジルエーテル(400g)及びテトラメチルアンモニウムクロライド(3g)を室温下で加え、この混合物を100℃で6時間かき混ぜた。反応混合物をろ過して、イソソルビド変性ポリエステルポリエーテル樹脂Aの混合物630gを得た。
得られたイソソルビド変性ポリエステルポリエーテル樹脂Aの混合物全体の分析値は、エポキシ当量が440g/eq、GPCでの分析より数平均分子量Mnが880であった。 Production Example 12 Production of Isosorbide Modified Polyester Polyether Resin A A 1 L separable flask was charged with butyl vinyl ether (68 g), salicylic acid (89 g) and p-toluenesulfonic acid (2 g) at room temperature, and this mixture was heated to 60 ° C. And stirred for 2 hours. Isosorbide diglycidyl ether (400 g) and tetramethylammonium chloride (3 g) were added to the reaction mixture at room temperature, and the mixture was stirred at 100 ° C. for 6 hours. The reaction mixture was filtered to obtain 630 g of a mixture of isosorbide-modified polyester polyether resin A.
As for the analytical value of the entire mixture of the obtained isosorbide-modified polyester polyether resin A, the epoxy equivalent was 440 g / eq, and the number average molecular weight Mn was 880 from the analysis by GPC.
(製造例13)イソソルビド変性ポリエステルポリエーテル樹脂Bの製造
1Lのセパラブルフラスコにブチルビニルエーテル(31g)、3,4-ジヒドロ-2H-ピラン(27g)、サリチル酸(89g)及びp-トルエンスルホン酸(2g)を室温下で仕込み、この混合物を60℃で2時間かき混ぜた。反応混合物にイソソルビドジグリシジルエーテル(400g)及びテトラメチルアンモニウムクロライド(3g)を室温下で加え、この混合物を100℃で6時間かき混ぜた。反応混合物をろ過して、イソソルビド変性ポリエステルポリエーテル樹脂Bの混合物556gを得た。
得られたイソソルビド変性ポリエステルポリエーテル樹脂Bの混合物全体の分析値は、エポキシ当量が418g/eq、GPCでの分析より数平均分子量Mnが824であった。 Production Example 13 Production of Isosorbide-Modified Polyester Polyether Resin B Into a 1 L separable flask, butyl vinyl ether (31 g), 3,4-dihydro-2H-pyran (27 g), salicylic acid (89 g) and p-toluenesulfonic acid ( 2 g) was charged at room temperature and the mixture was stirred at 60 ° C. for 2 hours. Isosorbide diglycidyl ether (400 g) and tetramethylammonium chloride (3 g) were added to the reaction mixture at room temperature, and the mixture was stirred at 100 ° C. for 6 hours. The reaction mixture was filtered to obtain 556 g of a mixture of isosorbide-modified polyester polyether resin B.
As for the analytical value of the entire mixture of the obtained isosorbide-modified polyester polyether resin B, the epoxy equivalent was 418 g / eq, and the number average molecular weight Mn was 824 from the analysis by GPC.
1Lのセパラブルフラスコにブチルビニルエーテル(31g)、3,4-ジヒドロ-2H-ピラン(27g)、サリチル酸(89g)及びp-トルエンスルホン酸(2g)を室温下で仕込み、この混合物を60℃で2時間かき混ぜた。反応混合物にイソソルビドジグリシジルエーテル(400g)及びテトラメチルアンモニウムクロライド(3g)を室温下で加え、この混合物を100℃で6時間かき混ぜた。反応混合物をろ過して、イソソルビド変性ポリエステルポリエーテル樹脂Bの混合物556gを得た。
得られたイソソルビド変性ポリエステルポリエーテル樹脂Bの混合物全体の分析値は、エポキシ当量が418g/eq、GPCでの分析より数平均分子量Mnが824であった。 Production Example 13 Production of Isosorbide-Modified Polyester Polyether Resin B Into a 1 L separable flask, butyl vinyl ether (31 g), 3,4-dihydro-2H-pyran (27 g), salicylic acid (89 g) and p-toluenesulfonic acid ( 2 g) was charged at room temperature and the mixture was stirred at 60 ° C. for 2 hours. Isosorbide diglycidyl ether (400 g) and tetramethylammonium chloride (3 g) were added to the reaction mixture at room temperature, and the mixture was stirred at 100 ° C. for 6 hours. The reaction mixture was filtered to obtain 556 g of a mixture of isosorbide-modified polyester polyether resin B.
As for the analytical value of the entire mixture of the obtained isosorbide-modified polyester polyether resin B, the epoxy equivalent was 418 g / eq, and the number average molecular weight Mn was 824 from the analysis by GPC.
(製造例14)イソソルビド変性ポリエステルポリエーテル樹脂Cの製造
1Lのセパラブルフラスコに3,4-ジヒドロ-2H-ピラン(53g)、サリチル酸(89g)及びp-トルエンスルホン酸(2g)を室温下で仕込み、この混合物を60℃で2時間かき混ぜた。反応混合物にイソソルビドジグリシジルエーテル(400g)及びテトラメチルアンモニウムクロライド(3g)を室温下で加え、この混合物を100℃で6時間かき混ぜた。反応混合物をろ過して、イソソルビド変性ポリエステルポリエーテル樹脂Cの混合物520gを得た。
得られたイソソルビド変性ポリエステルポリエーテル樹脂Cの混合物全体の分析値は、エポキシ当量が432g/eq、GPCでの分析より数平均分子量Mnが910であった。 (Production Example 14) Production of isosorbide-modified polyester polyether resin C To a 1 L separable flask, 3,4-dihydro-2H-pyran (53 g), salicylic acid (89 g) and p-toluenesulfonic acid (2 g) were added at room temperature. The mixture was stirred and the mixture was stirred at 60 ° C. for 2 hours. Isosorbide diglycidyl ether (400 g) and tetramethylammonium chloride (3 g) were added to the reaction mixture at room temperature, and the mixture was stirred at 100 ° C. for 6 hours. The reaction mixture was filtered to obtain 520 g of a mixture of isosorbide-modified polyester polyether resin C.
As for the analytical value of the whole mixture of the obtained isosorbide-modified polyester polyether resin C, the epoxy equivalent was 432 g / eq, and the number average molecular weight Mn was 910 from the analysis by GPC.
1Lのセパラブルフラスコに3,4-ジヒドロ-2H-ピラン(53g)、サリチル酸(89g)及びp-トルエンスルホン酸(2g)を室温下で仕込み、この混合物を60℃で2時間かき混ぜた。反応混合物にイソソルビドジグリシジルエーテル(400g)及びテトラメチルアンモニウムクロライド(3g)を室温下で加え、この混合物を100℃で6時間かき混ぜた。反応混合物をろ過して、イソソルビド変性ポリエステルポリエーテル樹脂Cの混合物520gを得た。
得られたイソソルビド変性ポリエステルポリエーテル樹脂Cの混合物全体の分析値は、エポキシ当量が432g/eq、GPCでの分析より数平均分子量Mnが910であった。 (Production Example 14) Production of isosorbide-modified polyester polyether resin C To a 1 L separable flask, 3,4-dihydro-2H-pyran (53 g), salicylic acid (89 g) and p-toluenesulfonic acid (2 g) were added at room temperature. The mixture was stirred and the mixture was stirred at 60 ° C. for 2 hours. Isosorbide diglycidyl ether (400 g) and tetramethylammonium chloride (3 g) were added to the reaction mixture at room temperature, and the mixture was stirred at 100 ° C. for 6 hours. The reaction mixture was filtered to obtain 520 g of a mixture of isosorbide-modified polyester polyether resin C.
As for the analytical value of the whole mixture of the obtained isosorbide-modified polyester polyether resin C, the epoxy equivalent was 432 g / eq, and the number average molecular weight Mn was 910 from the analysis by GPC.
(製造例15)N,N,N’,N’-テトラグリシジルジアミノジフェニルメタンの製造
1Lのセパラブルフラスコにエピクロロヒドリン(750g)及びジアミノジフェニルメタン(80g)を室温下で仕込んだ。この混合物を激しくかき混ぜながら、50℃下で固形の水酸化ナトリウム(70g)を1時間かけて投入した後、そのままの温度で3時間かき混ぜた。反応後、水を投入して副生した塩を溶解することで、有機層と水層を分離した。有機層を純水(100g)で3回洗浄した後、過剰のエピクロロヒドリンを減圧除去した。得られた残渣をろ過して、N,N,N’,N’-テトラグリシジルジアミノジフェニルメタン172gを得た。
得られたN,N,N’,N’-テトラグリシジルジアミノジフェニルメタンの分析値は、エポキシ当量が110g/eq、GPCでの分析より数平均分子量Mnが453であった。 Production Example 15 Production of N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane Epichlorohydrin (750 g) and diaminodiphenylmethane (80 g) were charged at room temperature into a 1 L separable flask. While stirring this mixture vigorously, solid sodium hydroxide (70 g) was added at 50 ° C. over 1 hour, and then stirred at the same temperature for 3 hours. After the reaction, water was added to dissolve the by-produced salt, thereby separating the organic layer and the aqueous layer. The organic layer was washed 3 times with pure water (100 g), and then excess epichlorohydrin was removed under reduced pressure. The obtained residue was filtered to obtain 172 g of N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane.
As for the analytical value of the obtained N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, the epoxy equivalent was 110 g / eq, and the number average molecular weight Mn was 453 from the analysis by GPC.
1Lのセパラブルフラスコにエピクロロヒドリン(750g)及びジアミノジフェニルメタン(80g)を室温下で仕込んだ。この混合物を激しくかき混ぜながら、50℃下で固形の水酸化ナトリウム(70g)を1時間かけて投入した後、そのままの温度で3時間かき混ぜた。反応後、水を投入して副生した塩を溶解することで、有機層と水層を分離した。有機層を純水(100g)で3回洗浄した後、過剰のエピクロロヒドリンを減圧除去した。得られた残渣をろ過して、N,N,N’,N’-テトラグリシジルジアミノジフェニルメタン172gを得た。
得られたN,N,N’,N’-テトラグリシジルジアミノジフェニルメタンの分析値は、エポキシ当量が110g/eq、GPCでの分析より数平均分子量Mnが453であった。 Production Example 15 Production of N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane Epichlorohydrin (750 g) and diaminodiphenylmethane (80 g) were charged at room temperature into a 1 L separable flask. While stirring this mixture vigorously, solid sodium hydroxide (70 g) was added at 50 ° C. over 1 hour, and then stirred at the same temperature for 3 hours. After the reaction, water was added to dissolve the by-produced salt, thereby separating the organic layer and the aqueous layer. The organic layer was washed 3 times with pure water (100 g), and then excess epichlorohydrin was removed under reduced pressure. The obtained residue was filtered to obtain 172 g of N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane.
As for the analytical value of the obtained N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, the epoxy equivalent was 110 g / eq, and the number average molecular weight Mn was 453 from the analysis by GPC.
<繊維強化複合材の物性評価>
下記実施例1~14、比較例1、2において、硬化剤としては4,4’-ジアミノジフェニルスルホン(三井化学ファイン株式会社製)を用いた。
繊維質材料としては、炭素繊維(東邦テナックス株式会社製、べスファイトIM600-24K)を用いた。 <Evaluation of physical properties of fiber reinforced composites>
In Examples 1 to 14 and Comparative Examples 1 and 2 below, 4,4′-diaminodiphenylsulfone (manufactured by Mitsui Chemicals Fine Co., Ltd.) was used as the curing agent.
As the fiber material, carbon fiber (manufactured by Toho Tenax Co., Ltd., Besfight IM600-24K) was used.
下記実施例1~14、比較例1、2において、硬化剤としては4,4’-ジアミノジフェニルスルホン(三井化学ファイン株式会社製)を用いた。
繊維質材料としては、炭素繊維(東邦テナックス株式会社製、べスファイトIM600-24K)を用いた。 <Evaluation of physical properties of fiber reinforced composites>
In Examples 1 to 14 and Comparative Examples 1 and 2 below, 4,4′-diaminodiphenylsulfone (manufactured by Mitsui Chemicals Fine Co., Ltd.) was used as the curing agent.
As the fiber material, carbon fiber (manufactured by Toho Tenax Co., Ltd., Besfight IM600-24K) was used.
(実施例1~14、比較例1、2)
製造例1~15で製造したエポキシ樹脂又は1,6-ヘキサンジオールジグリシジルエーテル(ナガセケムテックス株式会社製、デナコールEX-212)と、硬化剤とを、下記表1に示す重量比で混合し、マトリックス組成物を得た。
得られたマトリックス組成物を120℃で加熱し、均一な液状とした後に離型紙上に塗布した。塗布したマトリックス組成物の上から一方向に引きそろえた炭素繊維を被せることで、炭素繊維にマトリックス組成物を含浸させた。炭素繊維の体積含有率は50±1%となる様に調製した。マトリックス組成物を含浸させた炭素繊維を、熱風乾燥機を用いて、150℃で2時間乾燥処理することにより、一方向プリプレグを得た。得られたプリプレグを、熱風乾燥機を用いて、200℃で1時間加熱処理することにより、繊維強化複合材を得た。得られた繊維強化複合材を用いて、後述する方法により物性の評価を行った。結果を表1に示す。 (Examples 1 to 14, Comparative Examples 1 and 2)
The epoxy resin or 1,6-hexanediol diglycidyl ether (manufactured by Nagase ChemteX Corporation, Denacol EX-212) manufactured in Production Examples 1 to 15 and a curing agent were mixed at a weight ratio shown in Table 1 below. A matrix composition was obtained.
The obtained matrix composition was heated at 120 ° C. to obtain a uniform liquid, and then applied onto release paper. The carbon fiber was impregnated with the matrix composition by covering the coated matrix composition with carbon fibers that were aligned in one direction from above. The volume content of carbon fiber was adjusted to 50 ± 1%. The carbon fiber impregnated with the matrix composition was dried at 150 ° C. for 2 hours using a hot air dryer to obtain a unidirectional prepreg. The obtained prepreg was heat-treated at 200 ° C. for 1 hour using a hot air dryer to obtain a fiber-reinforced composite material. Using the obtained fiber reinforced composite material, physical properties were evaluated by the method described later. The results are shown in Table 1.
製造例1~15で製造したエポキシ樹脂又は1,6-ヘキサンジオールジグリシジルエーテル(ナガセケムテックス株式会社製、デナコールEX-212)と、硬化剤とを、下記表1に示す重量比で混合し、マトリックス組成物を得た。
得られたマトリックス組成物を120℃で加熱し、均一な液状とした後に離型紙上に塗布した。塗布したマトリックス組成物の上から一方向に引きそろえた炭素繊維を被せることで、炭素繊維にマトリックス組成物を含浸させた。炭素繊維の体積含有率は50±1%となる様に調製した。マトリックス組成物を含浸させた炭素繊維を、熱風乾燥機を用いて、150℃で2時間乾燥処理することにより、一方向プリプレグを得た。得られたプリプレグを、熱風乾燥機を用いて、200℃で1時間加熱処理することにより、繊維強化複合材を得た。得られた繊維強化複合材を用いて、後述する方法により物性の評価を行った。結果を表1に示す。 (Examples 1 to 14, Comparative Examples 1 and 2)
The epoxy resin or 1,6-hexanediol diglycidyl ether (manufactured by Nagase ChemteX Corporation, Denacol EX-212) manufactured in Production Examples 1 to 15 and a curing agent were mixed at a weight ratio shown in Table 1 below. A matrix composition was obtained.
The obtained matrix composition was heated at 120 ° C. to obtain a uniform liquid, and then applied onto release paper. The carbon fiber was impregnated with the matrix composition by covering the coated matrix composition with carbon fibers that were aligned in one direction from above. The volume content of carbon fiber was adjusted to 50 ± 1%. The carbon fiber impregnated with the matrix composition was dried at 150 ° C. for 2 hours using a hot air dryer to obtain a unidirectional prepreg. The obtained prepreg was heat-treated at 200 ° C. for 1 hour using a hot air dryer to obtain a fiber-reinforced composite material. Using the obtained fiber reinforced composite material, physical properties were evaluated by the method described later. The results are shown in Table 1.
<物性の評価方法>
実施例1~14、比較例1、2において、繊維強化複合材の物性は以下の方法により評価した。
1.ガラス転移温度(Tg)
実施例1~14、比較例1、2で得られた繊維強化複合材を、長さ50mm、幅10mm、厚さ2mmの大きさに切断し、試験片を得て、JIS K7244に準拠して測定した。
2.曲げ弾性率
実施例1~14、比較例1、2で得られた繊維強化複合材を、長さ100mm、幅15mm、厚さ2mmの大きさに切断し、試験片を得て、JIS K7074に準拠して測定した。 <Method for evaluating physical properties>
In Examples 1 to 14 and Comparative Examples 1 and 2, the physical properties of the fiber reinforced composite materials were evaluated by the following methods.
1. Glass transition temperature (Tg)
The fiber reinforced composite materials obtained in Examples 1 to 14 and Comparative Examples 1 and 2 were cut into a size of 50 mm in length, 10 mm in width, and 2 mm in thickness to obtain a test piece, in accordance with JIS K7244. It was measured.
2. The fiber-reinforced composite materials obtained in the flexural modulus examples 1 to 14 and comparative examples 1 and 2 were cut into a size of 100 mm in length, 15 mm in width, and 2 mm in thickness to obtain a test piece, which was applied to JIS K7074. Measured in conformity.
実施例1~14、比較例1、2において、繊維強化複合材の物性は以下の方法により評価した。
1.ガラス転移温度(Tg)
実施例1~14、比較例1、2で得られた繊維強化複合材を、長さ50mm、幅10mm、厚さ2mmの大きさに切断し、試験片を得て、JIS K7244に準拠して測定した。
2.曲げ弾性率
実施例1~14、比較例1、2で得られた繊維強化複合材を、長さ100mm、幅15mm、厚さ2mmの大きさに切断し、試験片を得て、JIS K7074に準拠して測定した。 <Method for evaluating physical properties>
In Examples 1 to 14 and Comparative Examples 1 and 2, the physical properties of the fiber reinforced composite materials were evaluated by the following methods.
1. Glass transition temperature (Tg)
The fiber reinforced composite materials obtained in Examples 1 to 14 and Comparative Examples 1 and 2 were cut into a size of 50 mm in length, 10 mm in width, and 2 mm in thickness to obtain a test piece, in accordance with JIS K7244. It was measured.
2. The fiber-reinforced composite materials obtained in the flexural modulus examples 1 to 14 and comparative examples 1 and 2 were cut into a size of 100 mm in length, 15 mm in width, and 2 mm in thickness to obtain a test piece, which was applied to JIS K7074. Measured in conformity.
3.曲げ強度
実施例1~14、比較例1、2で得られた繊維強化複合材を、長さ100mm、幅15mm、厚さ2mmの大きさに切断し、試験片を得て、JIS K7074に準拠して測定した。 3. Bending strength The fiber reinforced composite materials obtained in Examples 1 to 14 and Comparative Examples 1 and 2 were cut into a length of 100 mm, a width of 15 mm, and a thickness of 2 mm to obtain a test piece, which was compliant with JIS K7074. And measured.
実施例1~14、比較例1、2で得られた繊維強化複合材を、長さ100mm、幅15mm、厚さ2mmの大きさに切断し、試験片を得て、JIS K7074に準拠して測定した。 3. Bending strength The fiber reinforced composite materials obtained in Examples 1 to 14 and Comparative Examples 1 and 2 were cut into a length of 100 mm, a width of 15 mm, and a thickness of 2 mm to obtain a test piece, which was compliant with JIS K7074. And measured.
4.相対歪み率
実施例1~14及び比較例1、2について、曲げ歪み(ε)をε=600sh/L2(s:たわみ、h:試験片の厚み、L:支点間距離)として算出した。たわみの値は曲げ強度測定時に、試験片が破断する際の変位を測定し、たわみの値とした。試験片が破断しない場合の曲げ歪みは「破断せず」とした。比較例1の歪み率を基準として、実施例1~14及び比較例2の相対的な歪み率を算出した。例えば比較例2の場合であれば、(比較例2の相対歪み率(%)=比較例2の曲げ歪み/比較例1の曲げ歪み×100)として算出した。 4). Relative strain rate For Examples 1 to 14 and Comparative Examples 1 and 2, the bending strain (ε) was calculated as ε = 600 sh / L 2 (s: deflection, h: thickness of test piece, L: distance between fulcrums). The deflection value was determined by measuring the displacement when the test piece broke when measuring the bending strength. The bending strain when the test piece did not break was defined as “no break”. Based on the distortion rate of Comparative Example 1, the relative distortion rates of Examples 1 to 14 and Comparative Example 2 were calculated. For example, in the case of Comparative Example 2, calculation was performed as (relative strain rate (%) of Comparative Example 2 = bending strain of Comparative Example 2 / bending strain of Comparative Example 1 × 100).
実施例1~14及び比較例1、2について、曲げ歪み(ε)をε=600sh/L2(s:たわみ、h:試験片の厚み、L:支点間距離)として算出した。たわみの値は曲げ強度測定時に、試験片が破断する際の変位を測定し、たわみの値とした。試験片が破断しない場合の曲げ歪みは「破断せず」とした。比較例1の歪み率を基準として、実施例1~14及び比較例2の相対的な歪み率を算出した。例えば比較例2の場合であれば、(比較例2の相対歪み率(%)=比較例2の曲げ歪み/比較例1の曲げ歪み×100)として算出した。 4). Relative strain rate For Examples 1 to 14 and Comparative Examples 1 and 2, the bending strain (ε) was calculated as ε = 600 sh / L 2 (s: deflection, h: thickness of test piece, L: distance between fulcrums). The deflection value was determined by measuring the displacement when the test piece broke when measuring the bending strength. The bending strain when the test piece did not break was defined as “no break”. Based on the distortion rate of Comparative Example 1, the relative distortion rates of Examples 1 to 14 and Comparative Example 2 were calculated. For example, in the case of Comparative Example 2, calculation was performed as (relative strain rate (%) of Comparative Example 2 = bending strain of Comparative Example 2 / bending strain of Comparative Example 1 × 100).
Claims (7)
- 下記一般式(1)で表されるエポキシ樹脂を含むことを特徴とする、繊維強化複合材用マトリックス組成物。
Xは、下記一般式(2)~(6)及び(9)からなる群より選択されるいずれか1つの構造を含む2価の有機基を示し;
Z1及びZ2は、それぞれ独立して、水素又は下記一般式(7)若しくは下記一般式(8)で表される構造(ここで、Z1、Z2のうち少なくとも一方は下記一般式(7)又は下記一般式(8)で表される構造である)を示す。;
Uは水素、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示し、
Yは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)、又は、前記炭素数1~20の鎖状炭化水素基若しくは前記炭素数3~20の環状炭化水素基にカルボニル基が導入された基を示す。);
Tは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示す。)};
Z3は下記一般式(7)又は下記一般式(8)で表される構造を示す。;
Uは水素、炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示し、
Yは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)、又は、前記炭素数1~20の鎖状炭化水素基若しくは前記炭素数3~20の環状炭化水素基にカルボニル基が導入された基を示す。);
Tは炭素数1~20の鎖状炭化水素基(ここで、炭素鎖は直鎖でも分岐鎖でもよく、炭素原子の一部はヘテロ原子で置換されていてもよく、炭素鎖上の水素の一部又は全てが置換されていてもよい)、又は、炭素数3~20の環状炭化水素基(ここで、環は単環、縮環又はスピロ環でもよく、縮環とスピロ環との両方を持つものでもよく、炭素原子の一部がヘテロ原子で置換されていてもよく、環上の水素の一部又は全てが置換されていてもよい)を示す。)};
nは、0から200を示す。] A matrix composition for a fiber-reinforced composite material, comprising an epoxy resin represented by the following general formula (1).
X represents a divalent organic group containing any one structure selected from the group consisting of the following general formulas (2) to (6) and (9);
Z 1 and Z 2 are each independently hydrogen or a structure represented by the following general formula (7) or the following general formula (8) (wherein at least one of Z 1 and Z 2 has the following general formula ( 7) or a structure represented by the following general formula (8). ;
U is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, part of the carbon atoms may be substituted with a heteroatom, A part or all of hydrogens may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and a condensed ring and a spiro ring) And a part of the carbon atom may be substituted with a heteroatom, or part or all of the hydrogen on the ring may be substituted).
Y is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of carbon atoms may be substituted with a heteroatom, A part or all of which may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and has both a condensed ring and a spiro ring) Or a part of the carbon atoms may be substituted with a heteroatom, or part or all of the hydrogen atoms on the ring may be substituted), or the chain carbonization having 1 to 20 carbon atoms A group in which a carbonyl group is introduced into a hydrogen group or the cyclic hydrocarbon group having 3 to 20 carbon atoms is shown. );
T is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of the carbon atom may be substituted with a hetero atom, A part or all of them may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and both a condensed ring and a spiro ring) Or a part of the carbon atom may be substituted with a heteroatom, and a part or all of the hydrogen on the ring may be substituted). )};
Z 3 represents a structure represented by the following general formula (7) or the following general formula (8). ;
U is hydrogen, a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be a straight chain or a branched chain, part of the carbon atoms may be substituted with a heteroatom, A part or all of hydrogens may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and a condensed ring and a spiro ring) And a part of the carbon atom may be substituted with a heteroatom, or part or all of the hydrogen on the ring may be substituted).
Y is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of carbon atoms may be substituted with a heteroatom, A part or all of which may be substituted), a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and has both a condensed ring and a spiro ring) Or a part of the carbon atoms may be substituted with a heteroatom, or part or all of the hydrogen atoms on the ring may be substituted), or the chain carbonization having 1 to 20 carbon atoms A group in which a carbonyl group is introduced into a hydrogen group or the cyclic hydrocarbon group having 3 to 20 carbon atoms is shown. );
T is a chain hydrocarbon group having 1 to 20 carbon atoms (wherein the carbon chain may be linear or branched, a part of the carbon atom may be substituted with a hetero atom, A part or all of them may be substituted), or a cyclic hydrocarbon group having 3 to 20 carbon atoms (wherein the ring may be a monocyclic ring, a condensed ring or a spiro ring, and both a condensed ring and a spiro ring) Or a part of the carbon atom may be substituted with a heteroatom, and a part or all of the hydrogen on the ring may be substituted). )};
n represents 0 to 200. ] - 前記エポキシ樹脂の含有量が、全固形分中に45~99重量%である、請求項1記載のマトリックス組成物。 The matrix composition according to claim 1, wherein the content of the epoxy resin is 45 to 99% by weight in the total solid content.
- 前記繊維強化複合材は炭素繊維強化複合材である、請求項1又は2記載のマトリックス組成物。 The matrix composition according to claim 1, wherein the fiber reinforced composite material is a carbon fiber reinforced composite material.
- 前記エポキシ樹脂が、数平均分子量が250~100000である、請求項1~3のいずれか1項記載のマトリックス組成物。 The matrix composition according to any one of claims 1 to 3, wherein the epoxy resin has a number average molecular weight of 250 to 100,000.
- 請求項1~4のいずれか1項記載のマトリックス組成物の硬化物と、繊維質材料とからなる繊維強化複合材。 A fiber-reinforced composite material comprising a cured product of the matrix composition according to any one of claims 1 to 4 and a fibrous material.
- 以下の工程を含む、繊維強化複合材の製造方法:
(i)請求項1~4のいずれか1項記載のマトリックス組成物を繊維質材料に含浸する工程;及び
(ii)前記工程(i)においてマトリックス組成物を含浸させた繊維質材料を加熱処理する工程。 A method for producing a fiber reinforced composite material comprising the following steps:
(I) a step of impregnating the fibrous material with the matrix composition according to any one of claims 1 to 4; and (ii) a heat treatment of the fibrous material impregnated with the matrix composition in the step (i). Process. - 前記繊維質材料は炭素繊維である、請求項6記載の繊維強化複合材の製造方法。 The method for producing a fiber-reinforced composite material according to claim 6, wherein the fibrous material is carbon fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015544992A JPWO2015064551A1 (en) | 2013-10-28 | 2014-10-28 | MATRIX COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, FIBER-REINFORCED COMPOSITE AND METHOD FOR PRODUCING FIBER-REINFORCED COMPOSITE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-223224 | 2013-10-28 | ||
JP2013223224 | 2013-10-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015064551A1 true WO2015064551A1 (en) | 2015-05-07 |
Family
ID=53004154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/078554 WO2015064551A1 (en) | 2013-10-28 | 2014-10-28 | Matrix composition for fiber-reinforced composite material, fiber-reinforced composite material, and method for producing fiber-reinforced composite material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015064551A1 (en) |
WO (1) | WO2015064551A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006002071A (en) * | 2004-06-18 | 2006-01-05 | Dainippon Ink & Chem Inc | Epoxy resin composition and laminate using the same |
JP2006321897A (en) * | 2005-05-18 | 2006-11-30 | Nagase Chemtex Corp | Method for molding fiber-reinforced thermoplastic resin |
WO2008147473A1 (en) * | 2007-05-31 | 2008-12-04 | New Jersey Institute Of Technology | Thermoset epoxy polymers from renewable resources |
WO2012041816A1 (en) * | 2010-09-30 | 2012-04-05 | Solvay Sa | Derivative of epichlorohydrin of natural origin |
-
2014
- 2014-10-28 JP JP2015544992A patent/JPWO2015064551A1/en active Pending
- 2014-10-28 WO PCT/JP2014/078554 patent/WO2015064551A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006002071A (en) * | 2004-06-18 | 2006-01-05 | Dainippon Ink & Chem Inc | Epoxy resin composition and laminate using the same |
JP2006321897A (en) * | 2005-05-18 | 2006-11-30 | Nagase Chemtex Corp | Method for molding fiber-reinforced thermoplastic resin |
WO2008147473A1 (en) * | 2007-05-31 | 2008-12-04 | New Jersey Institute Of Technology | Thermoset epoxy polymers from renewable resources |
WO2012041816A1 (en) * | 2010-09-30 | 2012-04-05 | Solvay Sa | Derivative of epichlorohydrin of natural origin |
Non-Patent Citations (2)
Title |
---|
C. MARIE ET AL.: "Preparation and properties of bio-based epoxy networks derived from isosorbide diglycidyl ether", POLYMER, vol. 52, no. 16, 20 July 2011 (2011-07-20), pages 3611 - 3620 * |
F. XIANHONG ET AL.: "Thermal analysis cheracterization of isosorbide-containing thermosets isosorbide epoxy as BPA replacement for thermosets industry", J. THERM. ANAL. CALORIMETRY, vol. 109, no. 3, September 2012 (2012-09-01), pages 1267 - 1275 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015064551A1 (en) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102309168B1 (en) | Epoxy resin, method for producing epoxy resin, curable resin composition and cured product thereof, fiber-reinforced composite material, and molded article | |
CN100390233C (en) | Hardener composition for epoxy resins | |
US20130267659A1 (en) | Benzoxazines and Compositions Containing the Same | |
JP2024063017A (en) | Phenolic resin, epoxy resin, epoxy resin composition and cured product of the same | |
KR101738291B1 (en) | Cyanate resin composition and application thereof | |
TWI226900B (en) | Curable mixtures of cyanate resins and epoxide compounds | |
KR101903190B1 (en) | Flame-retardant epoxy resin, epoxy resin composition containing the epoxy resin as essential component and cured product thereof | |
KR102603395B1 (en) | Phosphorus-containing phenolic compound, phosphorus-containing epoxy resin, curable resin composition or epoxy resin composition, and cured product thereof | |
KR102268342B1 (en) | Epoxy resin, curable resin composition, cured product, semiconductor encapsulating material, semiconductor device, prepreg, circuit board, buildup film, buildup substrate, fiber-reinforced composite material and fiber-reinforced molded article | |
JP4873223B2 (en) | New epoxy resin | |
TW201841970A (en) | Epoxy resin composition for fiber-reinforced composite materials, fiber-reinforced composite material and molded body | |
JP6385884B2 (en) | Allyloxysilane oligomer, epoxy resin curing agent, and use thereof | |
JP2010265371A (en) | Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material | |
KR101422659B1 (en) | Novel oxetane compound, method for preparing thereof, composite sheet for display device comprising the same | |
JP2823057B2 (en) | Manufacturing method of epoxy resin | |
TWI798311B (en) | Epoxy resin composition and cured product thereof | |
TW202330705A (en) | Polyvalent hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition and cured product thereof | |
US8916655B2 (en) | Phosphazene blocked imidazole as latent catalyst for epoxy resins | |
JP3230054B2 (en) | Process for producing novolak type epoxy resin and novolak type epoxy resin composition | |
JPH0434565B2 (en) | ||
JPWO2014119533A1 (en) | Epoxy resin, method for producing epoxy resin, epoxy resin composition and cured product | |
CN111295407B (en) | Resin composition and resin infusion method | |
WO2015064551A1 (en) | Matrix composition for fiber-reinforced composite material, fiber-reinforced composite material, and method for producing fiber-reinforced composite material | |
JP6783121B2 (en) | Allyl group-containing resin, its manufacturing method, resin varnish and laminated board manufacturing method | |
JP3894628B2 (en) | Modified epoxy resin, epoxy resin composition and cured product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14858429 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015544992 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14858429 Country of ref document: EP Kind code of ref document: A1 |