[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015060443A1 - 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池 - Google Patents

非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池 Download PDF

Info

Publication number
WO2015060443A1
WO2015060443A1 PCT/JP2014/078399 JP2014078399W WO2015060443A1 WO 2015060443 A1 WO2015060443 A1 WO 2015060443A1 JP 2014078399 W JP2014078399 W JP 2014078399W WO 2015060443 A1 WO2015060443 A1 WO 2015060443A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrolyte secondary
active material
electrode active
secondary battery
Prior art date
Application number
PCT/JP2014/078399
Other languages
English (en)
French (fr)
Inventor
小川容一
児島映理
岸見光浩
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to JP2015543934A priority Critical patent/JPWO2015060443A1/ja
Publication of WO2015060443A1 publication Critical patent/WO2015060443A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery containing silicon (Si), a negative electrode for a non-aqueous electrolyte secondary battery containing the negative electrode active material, and a non-aqueous electrolyte secondary battery using the negative electrode.
  • lithium-ion batteries have steadily expanded the market as secondary batteries for mobile devices such as mobile phones and game machines, and are now one of the most important secondary batteries.
  • practical application has been extensively studied as a main power storage device used in solar cells, wind power generation, smart grids, electric vehicles, and the like, and the market is steadily expanding.
  • Si has a theoretical capacity of 4200 Ah / kg, which is 10 times the theoretical capacity of the currently mainstream carbon (C) negative electrode material
  • C carbon
  • Si as a negative electrode material has a problem that the volume expands to 4 times or more when charged. For this reason, Si repeatedly expands and contracts due to charge and discharge, pulverizes and electrical coupling is broken, and the initial capacity is rapidly reduced. Attempts to pulverize Si crystals to solve this problem, attempts to add various additives such as fluoroethylene carbonate (FEC) and vinylene carbonate (VC) to the electrolyte, and addition of a second element to Si Attempts have been made to alloy them.
  • FEC fluoroethylene carbonate
  • VC vinylene carbonate
  • JP 2006-324210 A International Publication No. 2006/129415 JP 2006-164960 A
  • the negative electrode active materials described in Patent Documents 1 to 3 are amorphous, Si and metal elements such as Ti are not uniformly mixed, and the whole negative electrode active material is not uniform. It has a phase structure, and the crystallites constituting each phase are large. For this reason, it is expected that the expansion and contraction of Si due to charge / discharge will be unevenly generated, and although the charge / discharge cycle characteristics are improved as compared with the conventional negative electrode using Si, there is room for further improvement of the charge / discharge cycle characteristics. it is conceivable that.
  • the present invention has been made in view of the above situation, and includes a negative electrode active material for a non-aqueous electrolyte secondary battery containing Si for obtaining a non-aqueous electrolyte secondary battery having further excellent charge / discharge cycle characteristics, and the negative electrode active material.
  • a negative electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the negative electrode are provided.
  • the negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a negative electrode active material for a non-aqueous electrolyte secondary battery made of an alloy of a metal element that is not alloyed with Li and Si, and is not alloyed with the Li.
  • the ratio of the metal element is 15 atomic% or more and 35 atomic% or less in atomic ratio, and in the X-ray diffraction measurement by CuK ⁇ ray, the diffraction angle 2 ⁇ is in the range of 20 to 60 ° due to the alloy components. It does not have a diffraction peak whose half width is 1.5 ° or less.
  • the negative electrode for a non-aqueous electrolyte secondary battery of the present invention is characterized by containing the negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention.
  • the nonaqueous electrolyte secondary battery of the present invention includes the above-described negative electrode for a nonaqueous electrolyte secondary battery of the present invention, a positive electrode, and a nonaqueous electrolyte.
  • a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics can be provided.
  • FIG. 1 is a schematic view of an RF magnetron sputtering apparatus used for producing the negative electrode active material of the present invention.
  • FIG. 2 is a graph showing the relationship between the maximum discharge capacity and the Ti content in the evaluation batteries of Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 3 is a graph showing the relationship between the discharge capacity ratio and the number of cycles in the evaluation batteries of Examples 1 and 2 and Comparative Example 1.
  • FIG. 4 is an X-ray diffraction pattern of the SiTi alloy thin film of Example 1.
  • FIG. 5 is an X-ray diffraction pattern of the SiTi alloy thin film of Example 2.
  • 6 is a transmission electron micrograph of the cross section of the negative electrode of Example 1.
  • FIG. 7 is a graph showing the relationship between the maximum discharge capacity and the Ti content in the evaluation batteries of Examples 3 and 4 and Comparative Examples 3 to 5.
  • FIG. 8 is a graph showing the relationship between the discharge capacity ratio and the number of cycles in the evaluation batteries of Examples 3 and 4 and Comparative Examples 3 and 4.
  • FIG. 9 is an X-ray diffraction pattern of the SiTi alloy powder of Example 3.
  • 10 is an X-ray diffraction diagram of the SiTi alloy powder of Comparative Example 3.
  • FIG. FIG. 11 is a diagram showing a discharge curve at the 10th cycle of the evaluation battery of Example 5 and a differential curve of the discharge curve.
  • FIG. 12 is a diagram illustrating a discharge curve at the 10th cycle of the evaluation battery of Example 6 and a differential curve of the discharge curve.
  • FIG. 13 is a diagram showing a discharge curve at the 10th cycle of the evaluation battery of Example 7 and a differential curve of the discharge curve.
  • FIG. 14 is a diagram showing a discharge curve at the 10th cycle of the evaluation battery of Comparative Example 6 and a differential curve of the discharge curve.
  • FIG. 15 is a diagram showing a discharge curve at the 10th cycle of the evaluation battery of Comparative Example 7 and a differential curve of the discharge curve.
  • FIG. 16A is an X-ray diffraction diagram of a negative electrode made of a copper foil with a SiTi alloy thin film of Example 5, and FIG. 16B is an enlarged view thereof.
  • FIG. 16A is an X-ray diffraction diagram of a negative electrode made of a copper foil with a SiTi alloy thin film of Example 5
  • FIG. 16B is an enlarged view thereof.
  • 17A is an X-ray diffraction diagram of a negative electrode including a negative electrode mixture layer containing the SiTi alloy powder of Example 6 as a negative electrode active material
  • FIG. 17B is an enlarged view thereof.
  • 18A is an X-ray diffraction diagram of a negative electrode including a negative electrode mixture layer containing the SiTi alloy powder of Example 7 as a negative electrode active material
  • FIG. 18B is an enlarged view thereof.
  • 19A is an X-ray diffraction pattern of a negative electrode including a negative electrode mixture layer containing the SiTi alloy powder of Comparative Example 6 as a negative electrode active material
  • FIG. 19B is an enlarged view thereof.
  • 20A is an X-ray diffraction diagram of a negative electrode including a negative electrode mixture layer containing the SiTi alloy powder of Comparative Example 7 as a negative electrode active material
  • FIG. 20B is an enlarged view thereof.
  • the negative electrode active material for a nonaqueous electrolyte secondary battery of the present invention (hereinafter simply referred to as “negative electrode active material”) will be described.
  • the negative electrode active material of the present invention comprises an alloy of a metal element that is not alloyed with Li and Si, and the ratio of the metal element that is not alloyed with Li is 15 atomic% or more and 35 atomic% or less in atomic ratio.
  • the diffraction angle 2 ⁇ is in the range of 20 to 60 °, and does not have a diffraction peak with a half-value width of 1.5 ° or less due to the components of the alloy.
  • the negative electrode active material of the present invention is a crystal having a half-value width of 1.5 ° or less due to the above-mentioned alloy component in the diffraction angle 2 ⁇ of 20 to 60 ° in the X-ray diffraction measurement by CuK ⁇ ray. It does not have a characteristic diffraction peak and is in an amorphous state. That is, in the negative electrode active material of the present invention, it is considered that Si, a metal element that does not alloy with Li, and Si are uniformly mixed.
  • Si and another metal element (hereinafter, also referred to as "M".)
  • M another metal element
  • the alloy of, observed and Si x M y phase and the Si phase, crystalline diffraction peaks derived from the phases is confirmed
  • Si and M are finely dispersed and mixed so that the diffraction peak cannot be confirmed in the X-ray diffraction measurement.
  • the internal stress due to the expansion / contraction of Si due to charge / discharge can be dispersed, the collapse of the negative electrode active material can be suppressed, and the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery can be improved.
  • the metal element that is not alloyed with Li has some interaction with Si to inactivate Si, thereby relaxing the expansion and contraction of Si. .
  • the diffraction angle 2 ⁇ is not in the range of 20 to 60 °, and does not have a diffraction peak having a half width of 3 ° or less due to the alloy components. More preferably, it does not have a diffraction peak with a value width of 5 ° or less, more preferably it does not have a diffraction peak with a half-value width of 7 ° or less, and a diffraction peak due to the above-mentioned alloy component is detected. Most preferably not. As the half-value width increases, the amorphous nature of the negative electrode active material of the present invention increases, and when the diffraction peak is not detected, the negative electrode active material of the present invention is considered to be in an almost complete amorphous state. Because.
  • the metal element that does not alloy with Li is not related to the charge / discharge capacity, or is a material having a lower capacity than Si. Therefore, if the content in the alloy is too large, the capacity of the negative electrode is reduced. If the amount is too small, the charge / discharge cycle characteristics of the negative electrode deteriorate. Therefore, the proportion of the metal element that does not alloy with Li in the alloy needs to be 15 atomic percent or more and 35 atomic percent or less in atomic ratio, and more preferably 20 atomic percent or more and 30 atomic percent or less.
  • the negative electrode active material of the present invention preferably has a crystallite size of less than 5 nm determined by the X-ray diffraction measurement. This is because when the crystallite size is small, the stress of structural change when lithium is inserted becomes small, and the pulverization of the negative electrode active material of the present invention can be suppressed.
  • the crystallite size: D (nm) can be obtained from the half-value width of a diffraction peak appearing in the range of a diffraction angle 2 ⁇ of 20 to 60 ° using the following Scherrer equation.
  • the metal element that does not alloy with Li at least one selected from the group consisting of Ti, Zr, Mo, W, Co, V, Cr, Mn, Fe, Ni, Cu, and Ag can be used. This is because these metal elements are considered to exert some interaction with Si to inactivate Si, thereby relaxing the expansion and contraction of Si.
  • the negative electrode active material of the present invention can be used as a thin film or powder.
  • the negative electrode active material of the present invention is formed by, for example, forming a composite target by placing a silicon chip on a target made of a metal element that is not alloyed with Li, and using the composite target by a radio frequency (RF) magnetron sputtering method. It can be manufactured by forming a thin film made of an alloy of a metal element not alloyed with Li and Si on a rotating substrate. Moreover, the thin film which consists of an alloy of the metal element which does not alloy with said Li, and Si can be made into a powdery negative electrode active material by grind
  • RF radio frequency
  • the number of rotations of the substrate may be 60 rpm or more, and by setting the film forming rate of the thin film to 0.1 nm / second or less, Li, a metal element that is not alloyed, and Si are uniformly mixed, and the amorphous state A negative electrode active material can be obtained.
  • FIG. 1 is a schematic view of an RF magnetron sputtering apparatus used for producing the negative electrode active material of the present invention.
  • the RF magnetron sputtering apparatus 10 includes a chamber 11, a substrate holder 12, a rotating mechanism 13, a magnet 14, a high frequency power supply 15, and an argon gas sealing valve 16.
  • a substrate 17 is disposed on the surface of the substrate holder 12, and a composite target 18 is disposed on the magnet 14.
  • the composite target 18 includes a metal target 18a made of a metal element that does not alloy with Li, and a silicon chip 18b disposed on the metal target 18a.
  • the chamber 11 is filled with argon gas.
  • the negative electrode active material of the present invention can be produced by pulverizing and alloying metal element particles not alloyed with Li and Si particles by a mechanical alloy method using a planetary ball mill. In this case, for example, by setting the rotation speed to 200 to 400 rpm and the rotation time to 50 hours or more, it is possible to obtain a fine-particle negative electrode active material in which elements are uniformly mixed and the crystallite size is less than 5 nm.
  • the size of the negative electrode active material of the present invention when in the form of particles is preferably an average particle size of 0.1 ⁇ m or more and less than 50 ⁇ m.
  • the average particle diameter of a negative electrode active material here can be measured as D50 with a normal particle size distribution meter using a dynamic light scattering method, a laser diffraction method, or the like.
  • the negative electrode of the present invention includes the negative electrode active material of the present invention.
  • the negative electrode of the present invention contains the negative electrode active material of the present invention, it is possible to disperse internal stress due to expansion / contraction of Si due to charge / discharge, and also to reduce expansion / contraction of Si.
  • the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery using the negative electrode of the invention can be improved.
  • the discharge curve has no inflection point when the potential with respect to the counter electrode is in the range of 0.2V to 0.5V.
  • a first aspect of the negative electrode of the present invention includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer is formed from the negative electrode active material of the present invention. ing.
  • the thickness of the negative electrode active material layer is preferably 80 nm or more and 5 ⁇ m or less. This is because if the thickness of the negative electrode active material layer becomes too thick, it becomes difficult to uniformly mix Li and a metal element that is not alloyed with Si, and if the thickness is too thin, the capacity of the negative electrode decreases. .
  • the negative electrode of the first aspect of the present invention is obtained by directly applying the negative electrode active material of the present invention directly on the current collector by the RF magnetron sputtering method described in the method for producing a negative electrode active material of the present invention, using the current collector as the substrate. It can manufacture by forming the negative electrode active material layer which consists of a substance.
  • the second form of the negative electrode of the present invention comprises a current collector and a negative electrode mixture layer formed on the current collector, and the negative electrode mixture layer comprises the negative electrode active material of the present invention. Contains.
  • the thickness of the negative electrode mixture layer is preferably 80 nm or more and 60 ⁇ m or less. This is because when the thickness of the negative electrode mixture layer becomes too thick, the conductivity decreases, and when the thickness becomes too thin, the capacity of the negative electrode decreases.
  • a powdered negative electrode active material is manufactured by the method described in the method for manufacturing a negative electrode active material of the present invention, and then, for example, the powdered negative electrode active material, a binder, a solvent, etc. Can be produced by forming a coating material for forming a negative electrode mixture layer, coating on one or both sides of a current collector, drying, and the like to form a negative electrode mixture layer. Furthermore, after drying, the negative electrode mixture layer may be calendered as necessary.
  • the negative electrode active material of the present invention may be used as the negative electrode active material, or the negative electrode active material of the present invention and another negative electrode active material may be used in combination.
  • examples of other negative electrode active materials that can be used in combination with the negative electrode active material of the present invention include scale-like or spherical natural graphite; pyrolytic carbons, mesophase carbon microbeads (MCMB), carbon fiber and other graphitizable carbon. Examples thereof include carbonaceous materials such as artificial graphite graphitized at 2800 ° C. or higher; carbons obtained by coating graphite on the surface of non-graphitizable carbon;
  • the content of the negative electrode active material of the present invention in all the negative electrode active materials of the negative electrode Is preferably 1% by mass or more, and more preferably 3% by mass or more.
  • the upper limit value of the content of the negative electrode active material of the present invention in all the negative electrode active materials of the negative electrode is 100% by mass. It is.
  • the negative electrode mixture layer may contain a conductive aid as necessary.
  • the conductive auxiliary agent contained in the negative electrode mixture layer is not particularly limited as long as it does not cause a chemical change in the battery.
  • low-temperature calcined carbon carbon black (thermal black, furnace black, channel black, kettle, etc.
  • carbonaceous materials such as carbon black and carbon nanotube.
  • binder used in the negative electrode mixture layer examples include starch, polyvinyl alcohol, polyacrylic acid, carboxymethyl cellulose (CMC), hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, and other polysaccharides and their modified products; polyvinyl Thermoplastic resins such as chloride, polyvinyl pyrrolidone (PVP), polytetrafluoroethylene, polyhexafluoropropylene, polyvinylidene fluoride, polyethylene, polypropylene, polyamideimide, polyamide, and their modified products; polyimide; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene / butadiene rubber (SBR), butadiene rubber, polybutadiene, fluoro rubber, polyethylene oxide, etc. Polymers and their modified product; and the like, can be used alone or in combination of two or more thereof.
  • CMC carboxymethyl cellulose
  • the solvent used for the coating material for forming the negative electrode mixture layer for example, water, N-methyl-2-pyrrolidone (NMP) or the like can be used.
  • the content of the negative electrode active material (the total amount thereof when a plurality of types of negative electrode active materials are used) is preferably 80 to 98% by mass, and the binder content is It is preferably 2 to 10% by mass.
  • the content of the conductive auxiliary in the negative electrode mixture layer is preferably 2 to 10% by mass.
  • metal foil made of copper, nickel, stainless steel, etc., iron metal foil whose surface is coated with nickel, titanium, etc., punching metal, mesh
  • An expanded metal or the like can be used, but usually a copper foil is preferably used.
  • the upper limit of the thickness is preferably 30 ⁇ m in order to obtain a battery with high energy density, and the lower limit of the thickness is 5 ⁇ m in order to ensure mechanical strength. Is desirable.
  • the nonaqueous electrolyte secondary battery of the present invention includes the negative electrode of the present invention, a positive electrode, and a nonaqueous electrolyte. Since the nonaqueous electrolyte secondary battery of the present invention includes the negative electrode of the present invention, it is excellent in charge / discharge cycle characteristics as described above.
  • nonaqueous electrolyte secondary battery of the present invention can be suitably used for power supply applications of high-performance and multifunctional mobile devices and the like, and nonaqueous electrolyte secondary batteries such as conventionally known lithium ion batteries Can be used for the same applications as those to which is applied.
  • a lithium ion secondary battery will be exemplified as the non-aqueous electrolyte secondary battery of the present invention, and constituent elements other than the negative electrode of the present invention will be described.
  • the positive electrode according to the nonaqueous electrolyte secondary battery of the present invention has, for example, a positive electrode mixture layer containing a positive electrode active material, a binder, a conductive material (conductive auxiliary agent), etc. on one side or both sides of the current collector.
  • a structure can be used.
  • the positive electrode active material used for the said positive electrode does not specifically limit as a positive electrode active material used for the said positive electrode, What is necessary is just to use the positive electrode active material generally used, such as a lithium containing transition metal oxide.
  • the lithium-containing transition metal oxides for example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Mn y Ni z Co 1-yz Examples thereof include O 2 and Li x Mn 2 O 4 .
  • the same binders as those described above that can be used for the negative electrode of the present invention can be used.
  • the same conductive aid as that described above that can be used for the negative electrode of the present invention can be used.
  • the positive electrode is prepared by dispersing a positive electrode active material, a binder, and a conductive additive in a solvent such as NMP to prepare a coating material for forming a positive electrode mixture layer, which is applied to one or both sides of a current collector and dried.
  • a solvent such as NMP
  • the current collector used for the positive electrode can be the same as that used for a positive electrode of a conventionally known lithium ion secondary battery.
  • an aluminum foil having a thickness of 10 to 30 ⁇ m is preferable. .
  • the thickness of the positive electrode mixture layer is preferably 30 to 95 ⁇ m per side of the current collector.
  • the content of the positive electrode active material is preferably 85 to 98% by mass
  • the content of the binder is preferably 1 to 10% by mass
  • the content of the conductive auxiliary agent Is preferably 1 to 10% by mass.
  • Non-aqueous electrolyte As the non-aqueous electrolyte according to the non-aqueous electrolyte secondary battery of the present invention, for example, a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent can be used.
  • the lithium salt used in the non-aqueous electrolyte is not particularly limited as long as it dissociates in a solvent to form lithium ions and does not easily cause a side reaction such as decomposition in a voltage range used as a battery.
  • inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (SO 2 F) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ⁇ n ⁇ 7), LiN (RfOSO 2 ) 2 [where Rf is fluoroalkyl Organolithium salts such as the group] and the like can be used.
  • the concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, and more preferably 0.9 to 1.25 mol / L.
  • the organic solvent used in the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; cyclic esters such as ⁇ -butyrolactone; dimethoxyethane, Chain ethers such as diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; nitriles such as acetonitrile, propionitrile and methoxypropionitrile; ethylene Examples thereof include sulfites such as glyco
  • the separator used in the non-aqueous electrolyte secondary battery of the present invention has a property that the pores are blocked at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower) (ie, shutdown function). ),
  • separators used in ordinary lithium ion secondary batteries for example, microporous membranes made of polyolefin such as polyethylene (PE) and polypropylene (PP) can be used.
  • the microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be.
  • a separator using a heat-resistant resin such as cellulose, polyamideimide, polyimide, a separator using glass, and a porous layer using inorganic particles were formed on the surface of the microporous film to impart heat resistance.
  • a separator may be used.
  • the negative electrode of the present invention and the positive electrode are, for example, a laminated body (laminated electrode body) superposed via a separator, or this laminated body is further wound in a spiral shape. Used in the form of a wound body (wound electrode body).
  • Examples of the form of the nonaqueous electrolyte secondary battery of the present invention include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can, an aluminum can, or the like as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
  • Example 1 ⁇ Production of negative electrode> Using the RF magnetron sputtering apparatus shown in FIG. 1, a SiTi alloy thin film was formed by RF magnetron sputtering on a copper foil (substrate) having a thickness of 10 ⁇ m as a current collector.
  • the rotation speed of the substrate holder was 60 rpm, and the film formation rate was 0.044 nm / second.
  • As the composite target a silicon target disposed on a titanium target was used, and the alloy composition was adjusted by changing the area of the silicon chip to produce a SiTi alloy thin film having a Ti content of 21.6 atomic%.
  • the thickness of the SiTi alloy thin film was 100 nm.
  • the produced copper foil with SiTi alloy thin film was cut into a predetermined size to produce a negative electrode.
  • LiPF 6 as a lithium salt was dissolved at a concentration of 1 mol / L in a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 to prepare a nonaqueous electrolytic solution.
  • a stainless steel plate with lithium metal bonded thereto is prepared as a counter electrode, and the negative electrode and the counter electrode are combined through a separator made of a microporous polyethylene film having a thickness of 16 ⁇ m and a porosity of 50%.
  • a battery for evaluation of Example 1 was produced using the liquid.
  • Example 2 The evaluation battery of Example 2 was prepared in the same manner as in Example 1 except that a SiTi alloy thin film having a Ti content of 29.0 atomic% was prepared in the same manner as in Example 1 and this SiTi alloy thin film was used. Produced.
  • Comparative Example 1 A titanium thin film having a thickness of 100 nm containing no Ti was prepared in the same manner as in Example 1 using only a silicon target without using a titanium target, and was the same as in Example 1 except that this Si thin film was used. Thus, an evaluation battery of Comparative Example 1 was produced.
  • Comparative Example 2 A SiTi alloy thin film having a Ti content of 38.3 atomic% was prepared in the same manner as in Example 1, and the evaluation battery of Comparative Example 2 was prepared in the same manner as in Example 1 except that this SiTi alloy thin film was used. Produced.
  • each evaluation battery was subjected to constant current-constant voltage charging (end current: 0.01 mA / cm 2 ) with a constant current of 0.1 mA / cm 2 and a constant voltage of 4.2 V, and then 0.1 mA.
  • a constant current discharge discharge end voltage: 1.5 V was performed at / cm 2 and the discharge capacity (mAh) was measured.
  • charging / discharging was repeated for 200 cycles under the same conditions with the above charging / discharging as one cycle, and the maximum discharging capacity, which was the maximum value among all the discharging capacities obtained in each cycle, was measured.
  • nth cycle discharge capacity ratio nth cycle discharge capacity / maximum discharge capacity
  • FIG. 2 is a diagram showing the relationship between the maximum discharge capacity and the Ti content of each evaluation battery
  • FIG. 3 is a diagram showing the relationship between the discharge capacity ratio and the number of cycles.
  • the evaluation battery using the negative electrode active material having a Ti content of 38.3 atomic% that is, the evaluation battery of Comparative Example 2 did not exhibit any discharge capacity.
  • the result of the comparative example 2 is not shown in FIG.
  • the evaluation batteries of Examples 1 and 2 have better charge / discharge cycle characteristics than the evaluation battery of Comparative Example 1 using a negative electrode active material not containing Ti.
  • a straight line A indicates a calculated capacity A calculated on the assumption that all Si atoms of the used SiTi alloy thin film contributed to the discharge capacity.
  • a straight line B indicates the measured capacity B obtained by connecting the measured capacities of the evaluation batteries of Examples 1 and 2 and Comparative Examples 1 and 2 with a straight line.
  • curve C assumes that the alloy of the SiTi alloy thin film used has a mixed phase of a Si phase composed only of Si and a SiTi phase in which Si atoms and Ti atoms are alloyed at a ratio of 1: 1.
  • the calculated capacity C calculated on the assumption that only Si of the Si phase contributed to the discharge capacity is shown.
  • a straight line D represents the theoretical capacity D when all the negative electrode active materials are carbon instead of the SiTi alloy thin film.
  • the actually measured capacity B approximates the calculated capacity C. From this result, it can be presumed that the SiTi alloy thin film alloys of Examples 1 and 2 have a phase approximate to a mixed phase in which the Si phase and the SiTi phase are mixed, and Si constituting the SiTi phase contributes to the discharge capacity. However, it can be estimated that only Si in the Si phase contributes to the discharge capacity.
  • FIG. 4 shows an X-ray diffraction pattern of the SiTi alloy thin film of Example 1 by CuK ⁇ rays.
  • FIG. 5 shows an X-ray diffraction pattern of the SiTi alloy thin film of Example 2 by CuK ⁇ rays. 4 and 5, it can be seen that all diffraction peaks appearing in the X-ray diffraction diagrams are caused by the substrate (Cu foil), and no diffraction peaks caused by the SiTi alloy component were detected. From these results, it can be seen that the SiTi alloy thin films of Examples 1 and 2 are in a substantially complete amorphal state.
  • FIG. 6 shows a transmission electron micrograph of the cross section of the negative electrode of Example 1. From FIG. 6, it can be seen that the SiTi alloy thin film has a uniform mixture formed at the nano level, and it can be estimated that the Si phase and the SiTi phase are mixed at the nano level.
  • FIG. 6 also shows an FIB (focused ion beam) processing protective film made of W / C / Pt—Pd for preparing a measurement sample.
  • FIB focused ion beam
  • the Si phase and the SiTi phase are finely dispersed and mixed so that they cannot be confirmed by X-ray diffraction measurement. For this reason, it is considered that the internal stress due to the expansion / contraction of Si due to charge / discharge can be dispersed to suppress the collapse of the negative electrode active material and improve the charge / discharge cycle characteristics. Further, in the negative electrode active material of the present invention, it is considered that a metal element that is not alloyed with Li has some interaction with Si to inactivate Si, thereby relaxing the expansion and contraction of Si.
  • Example 3 ⁇ Production of negative electrode> Si particles and Ti particles having an average particle diameter of 50 ⁇ m are alloyed by a mechanical alloy method (rotation speed: 200 rpm, rotation time: 75 hours) using a planetary ball mill, and made of SiTi alloy powder having a Ti content of 29 atomic%. A negative electrode active material was obtained. The alloying was performed under an argon atmosphere. The obtained negative electrode active material had an average particle size of 4.3 nm.
  • no diffraction peak with a half-value width of 1.5 ° or less was observed in the range where the diffraction angle 2 ⁇ was 20 to 60 °, while the diffraction angle 2 ⁇ was 28 °. In the vicinity, a diffraction peak having a half-value width of 2.1 ° corresponding to the diffraction peak of the Si (111) plane was observed, and the crystallite size determined thereby was 4.3 nm.
  • the negative electrode active material 90 parts by mass is dispersed in water together with 10 parts by mass of styrene / butadiene rubber as a binder, and mixed to prepare a coating material for forming a negative electrode mixture layer.
  • This is a copper foil having a thickness of 12 ⁇ m.
  • the negative electrode provided with a negative electrode mixture layer having a thickness of 2 ⁇ m on one side of the current collector was applied to a current collector made of
  • LiPF 6 as a lithium salt was dissolved at a concentration of 1 mol / L in a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 to prepare a nonaqueous electrolytic solution.
  • ⁇ Assembly of battery for evaluation> Prepared by attaching lithium metal on a stainless steel plate as a counter electrode, and combined the negative electrode and the counter electrode with a separator made of a microporous polyethylene film having a thickness of 16 ⁇ m and a porosity of 50%, and laminating film exterior After inserting into the body and injecting the non-aqueous electrolyte into the exterior body, the exterior body was sealed to prepare an evaluation battery of Example 3.
  • Example 4 A SiTi alloy powder was produced in the same manner as in Example 3 except that the mixing ratio of Si particles and Ti particles was changed so that the Ti content was 22 atomic%, and this SiTi alloy powder was used as the negative electrode active material. A battery for evaluation was produced in the same manner as in Example 3 except for the above.
  • Example 3 A SiTi alloy powder was prepared in the same manner as in Example 3 except that the rotation time in the mechanical alloy method was changed to 10 hours, and this SiTi alloy powder was used as the negative electrode active material in the same manner as in Example 3. An evaluation battery was produced.
  • the diffraction angles 2 ⁇ were around 28 °, 38 °, and 47 °, respectively, of the Si (111) plane, (220) plane, and (311) plane. Crystalline diffraction peaks corresponding to diffraction peaks with half widths of 0.22 °, 0.27 °, and 0.31 ° are recognized, and the average value of the crystallite size obtained using these values is It was 43 nm.
  • Comparative Example 4 Except that only Si particles were put into the planetary ball mill, a Si powder was prepared by applying a mechanical alloy method in the same manner as in Example 3, and this Si powder was used as a negative electrode active material in the same manner as in Example 3. A battery for evaluation was prepared.
  • Example 5 A SiTi alloy powder was prepared in the same manner as in Example 3 except that the mixing ratio of Si particles and Ti particles was changed so that the Ti content was 38.3 atomic%, and this SiTi alloy powder was used as a negative electrode active material. A battery for evaluation was produced in the same manner as in Example 3 except that it was used.
  • nth cycle discharge capacity ratio nth cycle discharge capacity / maximum discharge capacity
  • FIG. 7 is a diagram showing the relationship between the maximum discharge capacity and the Ti content of each evaluation battery
  • FIG. 8 is a diagram showing the relationship between the discharge capacity ratio and the number of cycles. From FIG. 7, it can be seen that the evaluation battery using the negative electrode active material having a Ti content of 38.3 atomic% (that is, the evaluation battery of Comparative Example 5) did not exhibit any discharge capacity. For this reason, the result of the comparative example 5 is not shown in FIG.
  • the evaluation batteries of Examples 3 and 4 have diffraction peaks with a half-value width of 1.5 ° or less, derived from the SiTi alloy components, in the diffraction angle 2 ⁇ of 20 to 60 °. It can be seen that the charge / discharge cycle characteristics are superior to the evaluation battery of Comparative Example 3 and the evaluation battery of Comparative Example 4 using the negative electrode active material not containing Ti.
  • a straight line A represents a calculated capacity A calculated on the assumption that all Si atoms of the used SiTi alloy powder contributed to the discharge capacity.
  • a straight line B indicates the measured capacity B obtained by connecting the measured capacities of the evaluation batteries of Examples 3 and 4 and Comparative Examples 3 to 5 with a straight line.
  • the maximum discharge capacities of Example 3 and Comparative Example 3 have the same value and are represented by the same points.
  • curve C assumes that the alloy of the SiTi alloy powder used has a mixed phase of a Si phase composed only of Si and a SiTi phase in which Si atoms and Ti atoms are alloyed at a ratio of 1: 1.
  • the calculated capacity C calculated on the assumption that only Si of the Si phase contributed to the discharge capacity is shown.
  • a straight line D represents the theoretical capacity D when all the negative electrode active materials are carbon instead of the SiTi alloy powder.
  • the actually measured capacity B approximates the calculated capacity C. From this result, it can be inferred that the alloys of the SiTi alloy powders of Examples 3 and 4 and Comparative Example 3 have a phase approximate to a mixed phase in which the Si phase and the SiTi phase are mixed. Further, Si constituting the SiTi phase is It can be assumed that only Si in the Si phase contributes to the discharge capacity without contributing to the discharge capacity.
  • FIG. 9 shows an X-ray diffraction pattern of the SiTi alloy powder of Example 3 by CuK ⁇ rays.
  • FIG. 10 shows an X-ray diffraction diagram of the SiTi alloy powder of Comparative Example 3 by CuK ⁇ rays. 9 and 10, the crystalline diffraction peak derived from Si observed in the SiTi alloy powder of Comparative Example 3 shows a broad half-value width broad band indicating amorphousness in the SiTi alloy powder of Example 3. It turns out that it has changed to the diffraction peak.
  • the Si phase and the SiTi phase are uniformly and finely dispersed and mixed. For this reason, it is considered that the internal stress due to the expansion / contraction of Si due to charge / discharge can be dispersed, the collapse of the negative electrode active material can be suppressed, and the charge / discharge cycle characteristics can be improved. Further, in the negative electrode active material of the present invention, it is considered that a metal element that is not alloyed with Li has some interaction with Si to inactivate Si, thereby relaxing the expansion and contraction of Si.
  • Example 5 ⁇ Production of negative electrode> Using a low-temperature high-speed sputtering apparatus “CFS-4ES” manufactured by Tokuda Seisakusho, a SiTi alloy thin film was formed by RF magnetron sputtering on a 10 ⁇ m-thick copper foil (substrate) as a current collector.
  • the number of rotations of the substrate holder was 40 rpm, the ultimate vacuum was 3 ⁇ 10 ⁇ 4 Pa or less, the introduced gas during film formation was argon gas, and the substrate temperature was room temperature.
  • the composite target a silicon target disposed on a titanium target was used, and the alloy composition was adjusted by changing the area of the silicon chip to produce a SiTi alloy thin film having a Ti content of 29 atomic%.
  • the thickness of the SiTi alloy thin film was 1.5 ⁇ m.
  • the produced copper foil with SiTi alloy thin film was cut into a predetermined size to produce a negative electrode.
  • LiPF 6 as a lithium salt was dissolved at a concentration of 1 mol / L in a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 to prepare a nonaqueous electrolytic solution.
  • ⁇ Assembly of battery for evaluation> Prepared as a counter electrode by attaching a lithium metal on a stainless steel plate. Combined with the negative electrode and the counter electrode via a microporous polyethylene film separator with a thickness of 16 ⁇ m and a porosity of 50%. After inserting the non-aqueous electrolyte into this outer package, the outer package was sealed to produce an evaluation battery of Example 5.
  • Example 6 A battery for evaluation of Example 6 was produced in the same manner as Example 5 except that the negative electrode was produced as follows.
  • the negative electrode active material 45 parts by mass of the SiTi alloy material and 45 parts by mass of vapor-grown carbon fiber are used as the negative electrode active material, 10 parts by mass of styrene-butadiene rubber as a binder and water are added to the negative electrode active material, By mixing and dispersing, a coating solution for forming a negative electrode mixture layer was prepared. Subsequently, the negative electrode mixture layer-forming coating solution was applied to a current collector made of a copper foil having a thickness of 12 ⁇ m and dried to provide a negative electrode mixture layer having a thickness of 2 ⁇ m on one surface of the current collector. A negative electrode was produced.
  • Example 7 A battery for evaluation of Example 7 was produced in the same manner as Example 5 except that the negative electrode was produced as follows.
  • a powdery SiTi alloy material was produced in the same manner as in Example 6.
  • a negative electrode was produced in the same manner as in Example 6 except that 10 parts by mass of the SiTi alloy material and 80 parts by mass of vapor grown carbon fiber were used as the negative electrode active material.
  • Comparative Example 6 A battery for evaluation of Comparative Example 6 was produced in the same manner as Example 5 except that the negative electrode was produced as follows.
  • a powdery SiTi alloy material was produced by a gas atomizing method in an argon gas atmosphere.
  • the Ti content in the SiTi alloy material is 29 atomic%.
  • a negative electrode was produced in the same manner as in Example 6 except that 45 parts by mass of the SiTi alloy material and 45 parts by mass of vapor-grown carbon fiber were used as the negative electrode active material.
  • Comparative Example 7 A battery for evaluation of Comparative Example 7 was produced in the same manner as in Example 7 except that the SiTi alloy material produced in Comparative Example 6 was used.
  • FIG. 11 is a diagram showing a discharge curve at the 10th cycle of the evaluation battery of Example 5 and a differential curve of the discharge curve.
  • FIG. 12 is a diagram illustrating a discharge curve at the 10th cycle of the evaluation battery of Example 6 and a differential curve of the discharge curve.
  • FIG. 13 is a diagram showing a discharge curve at the 10th cycle of the evaluation battery of Example 7 and a differential curve of the discharge curve.
  • FIG. 14 is a diagram showing a discharge curve at the 10th cycle of the evaluation battery of Comparative Example 6 and a differential curve of the discharge curve.
  • FIG. 15 is a diagram showing a discharge curve at the 10th cycle of the evaluation battery of Comparative Example 7 and a differential curve of the discharge curve.
  • the discharge curves of the evaluation batteries of Examples 5 to 7 have no inflection points. That is, it can be seen that the discharge curves of the evaluation batteries of Examples 5 to 7 are smooth, and the phenomenon such as two-stage discharge does not occur.
  • the inflection point of the discharge curve in the present invention is a differential curve of a discharge curve in which the potential with respect to the counter electrode is between 0.2 V and 0.5 V when the negative electrode is discharged by combining metallic lithium as the counter electrode. The point of the discharge curve corresponding to the maximum peak point where the sign of the slope changes.
  • FIG. 14 shows that the discharge curve of the evaluation battery of Comparative Example 6 has an inflection point near the discharge voltage of 0.33V.
  • FIG. 15 also shows that the discharge curve of the evaluation battery of Comparative Example 7 has an inflection point in the vicinity of the discharge voltage of 0.42V.
  • the discharge curves of the evaluation batteries of Comparative Examples 6 and 7 show that a phenomenon such as two-stage discharge occurs near the inflection point.
  • Table 1 shows the discharge capacity ratio at the 200th cycle of each of the batteries for evaluation of Examples 5 to 7 and Comparative Examples 6 and 7.
  • FIG. 16A shows an X-ray diffraction pattern by CuK ⁇ rays of a negative electrode made of a copper foil with a SiTi alloy thin film of Example 5, and FIG. 16B is an enlarged view thereof.
  • FIG. 17A shows an X-ray diffraction diagram by CuK ⁇ rays of a negative electrode provided with a negative electrode mixture layer containing the SiTi alloy powder of Example 6 as a negative electrode active material
  • FIG. 17B is an enlarged view thereof.
  • FIG. 18A shows an X-ray diffraction diagram by CuK ⁇ rays of a negative electrode provided with a negative electrode mixture layer containing the SiTi alloy powder of Example 7 as a negative electrode active material
  • FIG. 18B is an enlarged view thereof.
  • FIG. 19A shows an X-ray diffractogram of a negative electrode provided with a negative electrode mixture layer containing the SiTi alloy powder of Comparative Example 6 as a negative electrode active material
  • FIG. 19B is an enlarged view thereof
  • FIG. 20A shows an X-ray diffraction diagram of a negative electrode provided with a negative electrode mixture layer containing the SiTi alloy powder of Comparative Example 7 as a negative electrode active material
  • FIG. 20B is an enlarged view thereof.
  • FIGS. 16A and B to FIGS. 18A and B show that in the X-ray diffraction measurement of the negative electrodes of Examples 5 to 7, all the diffraction peaks appearing in the X-ray diffraction diagram are caused by the substrate (Cu foil). It can be seen that no diffraction peaks due to the components of the material were detected. From these results, it can be seen that the SiTi alloy materials of Examples 5 to 7 are in a substantially complete amorphal state.
  • the diffraction peaks caused by the substrate (Cu foil) can also be confirmed in the X-ray diffraction diagrams in the X-ray diffraction measurements of Comparative Examples 6 and 7.
  • the diffraction angle 2 ⁇ in the X-ray diffraction diagram in the X-ray diffraction measurement of Comparative Examples 6 and 7 is in the range of 20 to 60 ° due to Si and Ti which are SiTi alloy components.
  • a diffraction peak having a half width of 1.5 ° or less can be confirmed. From these results, it can be seen that the SiTi alloy materials of Comparative Examples 6 and 7 are materials having a crystal structure at least partially.
  • the Si phase and the SiTi phase are finely dispersed and mixed so that they cannot be confirmed by X-ray diffraction measurement. For this reason, it is considered that the internal stress due to the expansion / contraction of Si due to charge / discharge can be dispersed, the collapse of the negative electrode active material can be suppressed, and the charge / discharge cycle characteristics can be improved. Further, in the negative electrode active material of the present invention, it is considered that a metal element that is not alloyed with Li has some interaction with Si to inactivate Si, thereby relaxing the expansion and contraction of Si.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明の非水電解質二次電池用負極活物質は、Liと合金化しない金属元素と、Siとの合金からなり、前記Liと合金化しない金属元素の割合が、原子比で15原子%以上35原子%以下であり、CuKα線によるX線回折測定において、回折角2θが20~60°の範囲には、前記合金の成分に起因する、半値幅が1.5°以下となる回折ピークを有していないことを特徴とする。本発明の非水電解質二次電池用負極は、上記本発明の非水電解質二次電池用負極活物質を含むことを特徴とする。本発明の非水電解質二次電池は、上記本発明の非水電解質二次電池用負極と、正極と、非水電解質とを含むことを特徴とする。

Description

非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池
 本発明は、シリコン(Si)を含む非水電解質二次電池用負極活物質、上記負極活物質を含む非水電解質二次電池用負極、及び上記負極を用いた非水電解質二次電池に関する。
 1991年の商品化以来、リチウムイオン電池は携帯電話やゲーム機等の携帯機器用の二次電池として順調に市場を広げ、現在では最も主要な二次電池の一つとなっている。近年は太陽電池や風力発電、スマートグリッド、電気自動車等に用いる主要蓄電装置として広範に実用化が検討されており、その市場は拡大の一途をたどっている。
 このように市場が拡大するリチウムイオン電池であるが、その用途によってさまざまな要求が寄せられている。特に、携帯電話や携帯ゲーム機等のモバイル機器においては、高性能化、多機能化が進められた結果、電力消費が増大して、充放電容量の高容量化に対する強い要求が寄せられている。
 このような要求に答えるために、負極材料としてSiを用いたリチウムイオン電池の開発が活発に進められている。Siは4200Ah/kgと現在主流であるカーボン(C)負極材料の10倍以上の理論容量を有していることから、これを負極活物質に使用することで、リチウムイオン電池の大幅な容量向上が期待できる。実際にSiを負極材料として用いると、少なくともリチウムイオン電池の初回充放電容量は大幅に向上することが確認されている。
 しかし、負極材料としてのSiには充電時に体積が4倍以上に膨張するという問題が存在する。このため充放電によってSiは膨張・収縮を繰り返し、微粉化して電気的結合が寸断され、初期の容量が急激に減少してしまう。この課題を解消するためにSi結晶を微粉化する試みや、電解液にフルオロエチレンカーボネイト(FEC)やビニレンカーボネイト(VC)のような各種添加剤を添加する試み、Siに第2元素を添加して合金化する試みなどがなされている。しかし、微粉化や添加剤の添加によって、ある程度の充放電サイクル特性の向上は認められるものの、未だ十分な性能が得られていない。
 このような状況の中で、SiとTi等の金属元素とを含む非晶質性の負極活物質が提案されている(例えば、特許文献1~3等参照。)。
特開2006-324210号公報 国際公開第2006/129415号 特開2006-164960号公報
 しかし、特許文献1~3に記載された負極活物質は、非晶質性ではあるものの、SiとTi等の金属元素とが均一に混合されておらず、負極活物質全体としては不均一な相構造を有しており、それぞれの相を構成する結晶子が大きなものとなっている。このため、充放電によるSiの膨張・収縮が不均一に生じると予想され、従来のSiを用いた負極に比べて充放電サイクル特性は向上するものの、充放電サイクル特性を更に向上させる余地はあると考えられる。
 本発明は上記状況を鑑みなされてもので、充放電サイクル特性が更に優れた非水電解質二次電池を得るためのSiを含む非水電解質二次電池用負極活物質、上記負極活物質を含む非水電解質二次電池用負極、及び上記負極を用いた非水電解質二次電池を提供するものである。
 本発明の非水電解質二次電池用負極活物質は、Liと合金化しない金属元素と、Siとの合金からなる非水電解質二次電池用負極活物質であって、前記Liと合金化しない金属元素の割合が、原子比で15原子%以上35原子%以下であり、CuKα線によるX線回折測定において、回折角2θが20~60°の範囲には、前記合金の成分に起因する、半値幅が1.5°以下となる回折ピークを有していないことを特徴とする。
 本発明の非水電解質二次電池用負極は、上記本発明の非水電解質二次電池用負極活物質を含むことを特徴とする。
 本発明の非水電解質二次電池は、上記本発明の非水電解質二次電池用負極と、正極と、非水電解質とを含むことを特徴とする。
 本発明によれば、充放電サイクル特性に優れた非水電解質二次電池を提供することができる。
図1は、本発明の負極活物質の製造に用いるRFマグネトロンスパッタリング装置の概略図である。 図2は、実施例1、2及び比較例1、2の評価用電池における最大放電容量とTi含有率との関係を示す図である。 図3は、実施例1、2及び比較例1の評価用電池における放電容量比とサイクル数との関係を示す図である。 図4は、実施例1のSiTi合金薄膜のX線回折図である。 図5は、実施例2のSiTi合金薄膜のX線回折図である。 図6は、実施例1の負極の断面の透過型電子顕微鏡写真を示す図である。 図7は、実施例3、4及び比較例3~5の評価用電池における最大放電容量とTi含有率との関係を示す図である。 図8は、実施例3、4及び比較例3、4の評価用電池における放電容量比とサイクル数との関係を示す図である。 図9は、実施例3のSiTi合金粉末のX線回折図である。 図10は、比較例3のSiTi合金粉末のX線回折図である。 図11は、実施例5の評価用電池の10サイクル目の放電曲線と、その放電曲線の微分曲線とを示す図である。 図12は、実施例6の評価用電池の10サイクル目の放電曲線と、その放電曲線の微分曲線とを示す図である。 図13は、実施例7の評価用電池の10サイクル目の放電曲線と、その放電曲線の微分曲線とを示す図である。 図14は、比較例6の評価用電池の10サイクル目の放電曲線と、その放電曲線の微分曲線とを示す図である。 図15は、比較例7の評価用電池の10サイクル目の放電曲線と、その放電曲線の微分曲線とを示す図である。 図16Aは、実施例5のSiTi合金薄膜付銅箔からなる負極のX線回折図であり、図16Bは、その拡大図である。 図17Aは、実施例6のSiTi合金粉末を負極活物質として含有する負極合剤層を備えた負極のX線回折図であり、図17Bは、その拡大図である。 図18Aは、実施例7のSiTi合金粉末を負極活物質として含有する負極合剤層を備えた負極のX線回折図であり、図18Bは、その拡大図である。 図19Aは、比較例6のSiTi合金粉末を負極活物質として含有する負極合剤層を備えた負極のX線回折図であり、図19Bは、その拡大図である。 図20Aは、比較例7のSiTi合金粉末を負極活物質として含有する負極合剤層を備えた負極のX線回折図であり、図20Bは、その拡大図である。
 〔本発明の非水電解質二次電池用負極活物質〕
 先ず、本発明の非水電解質二次電池用負極活物質(以下、単に「負極活物質」という。)について説明する。本発明の負極活物質は、Liと合金化しない金属元素と、Siとの合金からなり、上記Liと合金化しない金属元素の割合が、原子比で15原子%以上35原子%以下であり、CuKα線によるX線回折測定において、回折角2θが20~60°の範囲には、上記合金の成分に起因する、半値幅が1.5°以下となる回折ピークを有していないことを特徴とする。
 本発明の負極活物質は、そのCuKα線によるX線回折測定において、回折角2θが20~60°の範囲には、上記合金の成分に起因する、半値幅が1.5°以下となる結晶性の回折ピークを有しておらず、アモルファス状態となっている。即ち、本発明の負極活物質では、Liと合金化しない金属元素とSiとが均一に混合されていると考えられる。通常、Siと他の金属元素(以下、「M」ともいう。)との合金では、Sixy相とSi相とが認められ、それらの相に由来する結晶性の回折ピークが確認されるが、本発明の負極活物質では、X線回折測定において上記回折ピークを確認できないほどに、SiとMとが微細に分散・混合していると考えられる。このため、充放電によるSiの膨張・収縮による内部応力を分散させて、負極活物質の崩壊を抑制でき、非水電解質二次電池の充放電サイクル特性を向上できると考えられる。また、本発明の負極活物質では、上記Liと合金化しない金属元素が、Siに対して何らかの相互作用を及ぼしてSiを不活性化して、Siの膨張・収縮を緩和しているとも考えられる。
 また、上記X線回折測定において、回折角2θが20~60°の範囲には、上記合金の成分に起因する、半値幅が3°以下となる回折ピークを有していないことが好ましく、半値幅が5°以下となる回折ピークを有していないことがより好ましく、半値幅が7°以下となる回折ピークを有していないことが更に好ましく、上記合金の成分に起因する回折ピークが検出されないことが最も好ましい。上記半値幅が大きくなるにつれて本発明の負極活物質の非晶質性が高まり、上記回折ピークが検出されない場合には、本発明の負極活物質はほぼ完全なアモルファス状態となっていると考えられるからである。
 但し、上記Liと合金化しない金属元素は、充放電容量に関わらないか、又はSiに比べて容量が低い材料であるため、上記合金中での含有量が多すぎると負極の容量低下につながり、少なすぎると負極の充放電サイクル特性が低下する。よって、上記合金中での、上記Liと合金化しない金属元素の割合は、原子比で15原子%以上35原子%以下とする必要があり、20原子%以上30原子%以下がより好ましい。
 また、本発明の負極活物質は、上記X線回折測定により求められる結晶子サイズが5nm未満であることが好ましい。上記結晶子サイズが微小であることにより、リチウムの挿入時の構造変化の応力が小さくなり、本発明の負極活物質の微粉化を抑制することができるからである。
 ここで、上記結晶子サイズ:D(nm)は、回折角2θが20~60°の範囲に現れる回折ピークの半値幅から、以下のScherrerの式を用いて求めることができる。
 D=0.9×λ/〔π/180×β×cos(π/180×θ)〕
 但し、上記式中、λ、β及びθは、それぞれ、
 λ=1.5405(nm):CuKα線の波長
 β=回折ピークの半値幅(°)
 θ=回折角(°)
である。また、上記合金の成分に起因する回折ピークが全く検出されない場合は、結晶子サイズは0nmとする。
 上記Liと合金化しない金属元素としては、Ti、Zr、Mo、W、Co、V、Cr、Mn、Fe、Ni、Cu及びAgからなる群から選択される少なくとも1種を用いることができる。これらの金属元素は、Siに対して何らかの相互作用を及ぼしてSiを不活性化して、Siの膨張・収縮を緩和できると考えられるからである。
 本発明の負極活物質は、薄膜状又は粉末状として用いることができる。本発明の負極活物質を粉末状として用いる場合には、本発明の負極活物質と、従来の負極活物質である炭素質材料とを混合して使用してもよい。
 本発明の負極活物質は、例えば、Liと合金化しない金属元素からなるターゲットの上にシリコンチップを配置して複合ターゲットを形成し、上記複合ターゲットを用いて、高周波(RF)マグネトロンスパッタリング法により、回転する基板上に上記Liと合金化しない金属元素とSiとの合金からなる薄膜を形成することにより製造することができる。また、上記Liと合金化しない金属元素とSiとの合金からなる薄膜は必要に応じて粉砕することにより、粉末状の負極活物質とすることができる。上記基板の回転数は60rpm以上とすればよく、上記薄膜の成膜速度を0.1nm/秒以下とすることにより、Liと合金化しない金属元素とSiとが均一に混合され、アモルファス状の負極活物質を得ることができる。
 次に、本発明の負極活物質の製造に用いるRFマグネトロンスパッタリング装置を図面に基づき説明する。図1は、本発明の負極活物質の製造に用いるRFマグネトロンスパッタリング装置の概略図である。図1において、RFマグネトロンスパッタリング装置10は、チャンバー11と、基板ホルダー12と、回転機構13と、マグネット14と、高周波電源15と、アルゴンガス封入バルブ16とを備えている。基板ホルダー12の表面には基板17が配置され、マグネット14の上には、複合ターゲット18が配置されている。複合ターゲット18は、Liと合金化しない金属元素からなる金属ターゲット18aと、金属ターゲット18aの上に配置されたシリコンチップ18bとから構成されている。また、チャンバー11内にはアルゴンガスが封入されている。
 この状態で、基板ホルダー12を回転させながら、基板17と複合ターゲット18との間に高周波電源15から高周波電圧を印加すると、金属ターゲット18aとシリコンチップ18bとが同時にスパッタリングされて、Liと合金化しない金属元素とSiとからなる薄膜を基板17の表面に形成することができる。上記薄膜中の各成分の含有量は、複合ターゲット18の表面における金属ターゲット18aの面積とシリコンチップ18bの面積とを調整することにより制御できる。
 また、本発明の負極活物質は、Liと合金化しない金属元素の粒子と、Si粒子とを、遊星ボールミルを用いたメカニカルアロイ法によって粉砕・合金化することによって製造することもできる。この場合、例えば、回転数は200~400rpm、回転時間は50時間以上とすることにより、元素が均一に混合され、結晶子サイズが5nm未満となる微粒子の負極活物質を得ることができる。
 粒子状である場合の本発明の負極活物質のサイズは、平均粒子径で、0.1μm以上50μm未満であることが好ましい。ここでいう負極活物質の平均粒子径は、動的光散乱法やレーザー回折法等を用いた通常の粒度分布計でD50として測定することができる。
 〔本発明の非水電解質二次電池用負極〕
 次に、本発明の非水電解質二次電池用負極(以下、単に「負極」という。)を説明する。本発明の負極は、本発明の負極活物質を含むことを特徴とする。
 本発明の負極は、本発明の負極活物質を含んでいるため、充放電によるSiの膨張・収縮による内部応力を分散させることができるとともに、Siの膨張・収縮も緩和することができ、本発明の負極を用いた非水電解質二次電池の充放電サイクル特性を向上させることができる。
 また、本発明の負極は、金属リチウムを対極として組み合わせて放電した場合、上記対極に対する電位が0.2V~0.5Vの範囲で、その放電曲線が変曲点を持たないことが好ましい。これにより、本発明の負極を用いた非水電解質二次電池の充放電サイクル特性を更に向上させることができる。
 詳細は不明であるが、電位が0.2V~0.5Vの間の放電曲線に変曲点を生じる場合は、変曲点の前後で、放電反応が異なる2段階の放電となるのに対し、本発明の負極では、そのような2段階の放電反応を示さず、均一に放電反応が進行することが上記充放電サイクル特性の向上をもたらすのではないかと推定される。
 以下、具体的に本発明の負極の形態について説明する。
 本発明の負極の第1の形態は、集電体と、上記集電体の上に形成された負極活物質層とを備え、上記負極活物質層は、本発明の負極活物質から形成されている。
 上記第1の形態の負極において、上記負極活物質層の厚さは、80nm以上5μm以下であることが好ましい。上記負極活物質層の厚さが厚くなりすぎると、Liと合金化しない金属元素とSiとが均一に混合しにくくなり、上記厚さが薄くなりすぎると、負極の容量が低下するからである。
 上記第1の形態の負極は、本発明の負極活物質の製造方法で説明したRFマグネトロンスパッタリング法により、前述の基板として集電体を用いて、集電体の上に直接本発明の負極活物質からなる負極活物質層を形成することにより製造することができる。
 また、本発明の負極の第2の形態は、集電体と、上記集電体の上に形成された負極合剤層とを備え、上記負極合剤層は、本発明の負極活物質を含んでいる。
 上記第2の形態の負極において、上記負極合剤層の厚さは、80nm以上60μm以下であることが好ましい。上記負極合剤層の厚さが厚くなりすぎると、導電性が低下し、上記厚さが薄くなりすぎると、負極の容量が低下するからである。
 上記第2の形態の負極は、本発明の負極活物質の製造方法で説明した方法により、粉末状の負極活物質を製造し、その後、例えば、上記粉末状の負極活物質、バインダ及び溶媒等を含む負極合剤層形成用塗料を作製して、集電体の片面又は両面に塗布して乾燥等を行って負極合剤層を形成することにより製造することができる。更に、乾燥した後に、必要に応じて負極合剤層にカレンダ処理を施してもよい。
 上記第2の形態の負極は、負極活物質として、本発明の負極活物質のみを用いてもよく、本発明の負極活物質と他の負極活物質とを併用してもよい。本発明の負極活物質と併用できる他の負極活物質としては、例えば、鱗片状もしくは球形状の天然黒鉛;熱分解炭素類、メソフェーズカーボンマイクロビーズ(MCMB)、炭素繊維等の易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;難黒鉛化炭素の表面に黒鉛をコートした炭素類;などの炭素質材料が挙げられる。
 また、上記第2の形態の負極において、本発明の負極活物質と他の負極活物質とを併用する場合には、負極の有する全負極活物質中において、本発明の負極活物質の含有量が、1質量%以上であることが好ましく、3質量%以上であることがより好ましい。上記第2の形態の負極において、負極活物質は本発明の負極活物質のみでもよいため、負極の有する全負極活物質中における本発明の負極活物質の含有量の上限値は、100質量%である。
 また、上記負極合剤層には、必要に応じて導電助剤を含有させてもよい。上記負極合剤層に含有させる導電助剤としては、電池内において化学変化を起こさないものであれば特に限定されず、例えば、低温焼成カーボン、カーボンブラック(サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック、アセチレンブラック等)、炭素繊維、カーボンナノチューブ等の炭素質材料が挙げられる。
 また、上記負極合剤層に用いるバインダとしては、例えば、でんぷん、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース等の多糖類やそれらの変成体;ポリビニルクロリド、ポリビニルピロリドン(PVP)、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリアミドイミド、ポリアミド等の熱可塑性樹脂やそれらの変成体;ポリイミド;エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシド等のゴム状弾性を有するポリマーやそれらの変成体;などが挙げられ、これらの1種又は2種以上を用いることができる。
 上記負極合剤層形成用塗料に用いる溶媒としては、例えば、水、N-メチル-2-ピロリドン(NMP)等を用いることができる。
 上記負極合剤層においては、負極活物質の含有量(複数種の負極活物質を使用する場合は、それらの合計量。)は80~98質量%であることが好ましく、バインダの含有量は2~10質量%であることが好ましい。また、上記負極合剤層に導電助剤を含有させる場合には、上記負極合剤層における導電助剤の含有量は、2~10質量%であることが好ましい。
 上記第1及び第2の形態の負極に用いる集電体としては、銅製、ニッケル製、ステンレス鋼製等の金属箔、表面がニッケルやチタン等で被覆された鉄製の金属箔、パンチングメタル、網、エキスパンドメタル等を用い得るが、通常、銅箔が好ましく用いられる。上記金属箔を用いる場合には、高エネルギー密度の電池を得るために、その厚さの上限は30μmであることが好ましく、機械的強度を確保するためにその厚さの下限は5μmであることが望ましい。
 〔本発明の非水電解質二次電池〕
 次に、本発明の非水電解質二次電池を説明する。本発明の非水電解質二次電池は、本発明の負極と、正極と、非水電解質とを備えていることを特徴とする。本発明の非水電解質二次電池は、本発明の負極を備えているため、前述のとおり、充放電サイクル特性に優れている。このため、本発明の非水電解質二次電池は、高性能で多機能のモバイル機器の電源用途等に好適に使用できるとともに、従来から知られているリチウムイオン電池等の非水電解質二次電池が適用されている用途と同じ用途に使用することができる。
 以下、本発明の非水電解質二次電池としてリチウムイオン二次電池を例示し、本発明の負極以外の構成要素について説明する。
 〔正極〕
 本発明の非水電解質二次電池に係る正極には、例えば、正極活物質、バインダ、導電性材料(導電助剤)等を含有する正極合剤層を、集電体の片面又は両面に有する構造のものが使用できる。
 上記正極に用いる正極活物質としては特に限定されず、リチウム含有遷移金属酸化物等の一般に用いることのできる正極活物質を使用すればよい。リチウム含有遷移金属酸化物の具体例としては、例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixMnyNizCo1-y-z2、LixMn24等が例示される。但し、上記の各組成式中において、0≦x≦1.1、0<y<1.0、2.0<z<1.0である。
 上記正極に用いるバインダとしても、本発明の負極で用いることができる前述のバインダと同様のものを用いることができる。
 上記正極に用いる導電助剤としても、本発明の負極に用いることができる前述の導電助剤と同様のものが使用できる。
 上記正極は、例えば、正極活物質、バインダ及び導電助剤を、NMP等の溶媒に分散させて正極合剤層形成用塗料を調製し、これを集電体の片面又は両面に塗布し乾燥して正極合剤層を形成する方法で製造することができる。また、上記正極合剤層の形成後に、必要に応じてカレンダ処理を施してもよい。
 上記正極に用いる集電体としては、従来から知られているリチウムイオン二次電池の正極に使用されているものと同様のものが使用でき、例えば、厚さが10~30μmのアルミニウム箔が好ましい。
 上記正極合剤層の厚さは、集電体の片面あたり30~95μmであることが好ましい。上記正極合剤層の厚さを上記範囲に設定し、できるだけ厚くすることにより、非水電解質二次電池の高容量化を図ることができる。また、上記正極合剤層においては、正極活物質の含有量は85~98質量%であることが好ましく、バインダの含有量は1~10質量%であることが好ましく、導電助剤の含有量は1~10質量%であることが好ましい。
 〔非水電解質〕
 本発明の非水電解質二次電池に係る非水電解質としては、例えば、リチウム塩を有機溶媒に溶解した非水電解液を使用できる。
 上記非水電解液に用いるリチウム塩としては、溶媒中で解離してリチウムイオンを形成し、電池として使用される電圧範囲で分解等の副反応を起こしにくいものであれば特に制限はない。例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6等の無機リチウム塩;LiCF3SO3、LiCF3CO2、Li224(SO32、LiN(SO2F)2、LiN(CF3SO22、LiC(CF3SO23、LiCn2n+1SO3(2≦n≦7)、LiN(RfOSO22〔ここで、Rfはフルオロアルキル基〕等の有機リチウム塩;などを用いることができる。
 上記リチウム塩の非水電解液中の濃度としては、0.5~1.5mol/Lとすることが好ましく、0.9~1.25mol/Lとすることがより好ましい。
 上記非水電解液に用いる有機溶媒としては、上記リチウム塩を溶解し、電池として使用される電圧範囲で分解等の副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状カーボネート;プロピオン酸メチル等の鎖状エステル;γ-ブチロラクトン等の環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライム等の鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリル等のニトリル類;エチレングリコールサルファイト等の亜硫酸エステル類等が挙げられ、これらは1種単独で用いることができ、2種以上を混合して用いることもできる。より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒等、高い導電率を得ることができる組み合わせで用いることが望ましい。
 〔セパレータ〕
 本発明の非水電解質二次電池に用いるセパレータには、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(即ち、シャットダウン機能)を有していることが好ましく、通常のリチウムイオン二次電池等で使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。更に、セルロース、ポリアミドイミド、ポリイミド等の耐熱性の樹脂を用いたセパレータや、ガラスを用いたセパレータ、上記微多孔膜の表面に無機粒子を用いた多孔質層を形成して耐熱性を付与したセパレータを用いてもよい。
 〔電極の形態〕
 本発明の非水電解質二次電池において、本発明の負極と上記正極とは、例えば、セパレータを介して重ね合わせた積層体(積層電極体)や、この積層体を更に渦巻状に巻回した巻回体(巻回電極体)の形態で使用される。
 〔電池の形態〕
 本発明の非水電解質二次電池の形態としては、スチール缶やアルミニウム缶等を外装缶として使用した筒形(角筒形や円筒形等)等が挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
 以下、実施例に基づいて本発明を詳細に説明する。但し、下記実施例は、本発明を制限するものではない。
 (実施例1)
 <負極の作製>
 図1に示したRFマグネトロンスパッタリング装置を用い、集電体である厚さ10μmの銅箔(基板)の上にRFマグネトロンスパッタリング法でSiTi合金薄膜を形成した。基板ホルダーの回転数は60rpmとし、成膜速度は0.044nm/秒とした。複合ターゲットとしては、チタンターゲット上にシリコンチップを配置したものを用い、シリコンチップの面積を変えることによって合金組成を調整し、Ti含有率が21.6原子%のSiTi合金薄膜を作製した。SiTi合金薄膜の膜厚は100nmとした。作製したSiTi合金薄膜付銅箔を所定のサイズに切断して負極を作製した。
 <非水電解液の調製>
 エチレンカーボネート及びジエチルカーボネートを体積比で1:1に混合したものに、リチウム塩としてLiPF6を濃度1mol/Lで溶解させて非水電解液を調製した。
 <評価用電池の組み立て>
 ステンレス鋼板上にリチウム金属を張り付けたものを対極として準備し、上記負極と上記対極とを、厚さ16μmで開孔率50%の微多孔性ポリエチレンフィルム製セパレータを介して組み合わせ、上記非水電解液を用いて実施例1の評価用電池を作製した。
 (実施例2)
 Ti含有率が29.0原子%のSiTi合金薄膜を実施例1と同様にして作製し、このSiTi合金薄膜を用いたこと以外は、実施例1と同様にして実施例2の評価用電池を作製した。
 (比較例1)
 チタンターゲットを用いず、シリコンターゲットだけを用いて、Tiを含まない厚さ100nmのSi薄膜を実施例1と同様にして作製し、このSi薄膜を用いたこと以外は、実施例1と同様にして比較例1の評価用電池を作製した。
 (比較例2)
 Ti含有率が38.3原子%のSiTi合金薄膜を実施例1と同様にして作製し、このSiTi合金薄膜を用いたこと以外は、実施例1と同様にして比較例2の評価用電池を作製した。
 次に、実施例1、2及び比較例1、2の評価用電池について、下記条件で充放電サイクル特性を評価した。先ず、各評価用電池について、0.1mA/cm2の定電流及び4.2Vの定電圧による定電流-定電圧充電(終止電流:0.01mA/cm2)を行った後、0.1mA/cm2で定電流放電(放電終止電圧:1.5V)を行い、放電容量(mAh)を測定した。その後、上記充放電を1サイクルとして、同一条件で200サイクル充放電を繰り返し、各サイクルで求められる全ての放電容量のうちの最大値である最大放電容量を測定した。
 続いて、下記式から各評価用電池のサイクル毎の放電容量比を算出した。
 nサイクル目の放電容量比=nサイクル目の放電容量/最大放電容量
 以上の結果を図2及び図3に示す。図2は、各評価用電池の最大放電容量とTi含有率との関係を示す図であり、図3は、放電容量比とサイクル数との関係を示す図である。図2から、Ti含有率が38.3原子%の負極活物質を用いた評価用電池(即ち、比較例2の評価用電池)では放電容量が全く出なかったことが分かる。このため、図3では比較例2の結果は示していない。また、図3から、実施例1及び2の評価用電池は、Tiを含まない負極活物質を用いた比較例1の評価用電池に比べて、充放電サイクル特性が優れていることが分かる。
 また、図2において、直線Aは、用いたSiTi合金薄膜のSi原子が全て放電容量に寄与したと仮定して計算した計算容量Aを示す。また、直線Bは、実施例1、2及び比較例1、2の評価用電池の実測容量を直線で結んだ実測容量Bを示す。更に、曲線Cは、用いたSiTi合金薄膜の合金が、SiのみからなるSi相と、Si原子とTi原子とが1:1の割合で合金化したSiTi相との混在した相を有すると仮定し、Si相のSiのみが放電容量に寄与したと仮定して計算した計算容量Cを示す。また、直線Dは、SiTi合金薄膜に代えて全ての負極活物質をカーボンとした場合の理論容量Dを示す。
 図2から分かるように、実測容量Bは計算容量Cに近似している。この結果から、実施例1及び2のSiTi合金薄膜の合金は、Si相とSiTi相との混在した混合相に近似した相を有すると推定でき、更にSiTi相を構成するSiは放電容量に寄与せず、Si相のSiのみが放電容量に寄与しているものと推定できる。
 図4に実施例1のSiTi合金薄膜のCuKα線によるX線回折図を示す。また、図5に実施例2のSiTi合金薄膜のCuKα線によるX線回折図を示す。図4及び図5から、X線回折図に現れた回折ピークは全て基板(Cu箔)に起因することが分かり、SiTi合金の成分に起因する回折ピークは検出されなかったことが分かる。これらの結果から、実施例1及び2のSiTi合金薄膜は、ほぼ完全なアモルファル状態であることが分かる。
 図6に実施例1の負極の断面の透過型電子顕微鏡写真を示す。図6から、SiTi合金薄膜はナノレベルで均一な混合体が形成されていることが分かり、Si相とSiTi相とがナノレベルで混合した混合相を形成していると推定できる。図6には、測定試料作製用のW/C/Pt-PdからなるFIB(収束イオンビーム)加工用保護膜も示されている。
 以上より、本発明の負極活物質では、Si相とSiTi相とがX線回折測定において確認できないほどに、微細に分散・混合していると考えられる。このため、充放電によるSiの膨張・収縮による内部応力を分散させて、負極活物質の崩壊を抑制し、充放電サイクル特性を向上できると考えられる。また、本発明の負極活物質では、Liと合金化しない金属元素がSiに対して何らかの相互作用を及ぼしてSiを不活性化して、Siの膨張・収縮を緩和しているとも考えられる。
 (実施例3)
 <負極の作製>
 平均粒子径が50μmのSi粒子とTi粒子を、遊星ボールミルを用いてメカニカルアロイ法(回転数:200rpm、回転時間:75時間)によって合金化し、Ti含有率が29原子%のSiTi合金粉末よりなる負極活物質を得た。上記合金化は、アルゴン雰囲気下で行った。得られた負極活物質は、平均粒子径が4.3nmであった。CuKα線によるX線回折測定を行った結果、回折角2θが20~60°の範囲には、半値幅が1.5°以下となる回折ピークは認められず、一方、回折角2θが28°付近に、Siの(111)面の回折ピークに相当する半値幅が2.1°となる回折ピークが認められ、これにより求めた結晶子サイズは4.3nmであった。
 上記負極活物質:90質量部を、バインダとしてスチレン・ブタジエンゴム:10質量部とともに水に分散させ、混合することにより負極合剤層形成用塗料を調製し、これを厚さが12μmの銅箔からなる集電体に塗布し、乾燥させて、集電体の片面に厚さが2μmの負極合剤層を備えた負極を作製した。
 <非水電解液の調製>
 エチレンカーボネート及びジエチルカーボネートを体積比で1:1に混合したものに、リチウム塩としてLiPF6を濃度1mol/Lで溶解させて非水電解液を調製した。
 <評価用電池の組み立て>
 ステンレス鋼板上にリチウム金属を張り付けたものを対極として準備し、上記負極と上記対極とを、厚さ16μmで開孔率50%の微多孔性ポリエチレンフィルム製セパレータを介して組み合わせて、ラミネートフィルム外装体に挿入し、この外装体内に上記非水電解液を注入した後、外装体を封止して、実施例3の評価用電池を作製した。
 (実施例4)
 Ti含有率が22原子%となるようにSi粒子とTi粒子の混合比を変えた以外は、実施例3と同様にしてSiTi合金粉末を作製し、このSiTi合金粉末を負極活物質として使用した以外は、実施例3と同様にして評価用電池を作製した。
 上記負極活物質のCuKα線によるX線回折測定では、回折角2θが20~60°の範囲には、半値幅が1.5°以下となる回折ピークは認められず、一方、回折角2θが28°付近に、Siの(111)面の回折ピークに相当する、半値幅が2.0°となる回折ピークが認められ、これにより求めた結晶子サイズは4.5nmであった。
 (比較例3)
 メカニカルアロイ法における回転時間を10時間に変更した以外は、実施例3と同様にしてSiTi合金粉末を作製し、このSiTi合金粉末を負極活物質として使用した以外は、実施例3と同様にして評価用電池を作製した。
 上記負極活物質のCuKα線によるX線回折測定では、回折角2θが28°付近、38°付近及び47°付近に、それぞれ、Siの(111)面、(220)面及び(311)面の回折ピークに相当する、半値幅が0.22°、0.27°及び0.31°となる結晶性の回折ピークが認められ、これらの値を用いて求めた結晶子サイズの平均値は、43nmであった。
 (比較例4)
 Si粒子のみを遊星ボールミルに投入した以外は、実施例3と同様にしてメカニカルアロイ法を施してSi粉末を作製し、このSi粉末を負極活物質として使用した以外は、実施例3と同様にして評価用電池を作製した。
 上記負極活物質のCuKα線によるX線回折測定では、比較例3に係る負極活物質と同様に、Siの(111)面、(220)面及び(311)面の回折ピークに相当する、半値幅が0.46°、0.44°及び0.51°となる結晶性の回折ピークが認められ、これらの値を用いて求めた結晶子径の平均値は、22nmであった。
 (比較例5)
 Ti含有率が38.3原子%となるようにSi粒子とTi粒子の混合比を変えた以外は、実施例3と同様にしてSiTi合金粉末を作製し、このSiTi合金粉末を負極活物質として使用した以外は、実施例3と同様にして評価用電池を作製した。
 上記負極活物質のCuKα線によるX線回折測定では、回折角2θが28°付近に、Siの(111)面の回折ピークに相当する、半値幅が1.0°となる回折ピークが認められ、これにより求めた結晶子サイズは10nmであった。
 実施例3、4及び比較例3~5の評価用電池について、実施例1の評価用電池と同様の条件で充放電サイクル特性を評価した。
 続いて、下記式から各評価用電池のサイクル毎の放電容量比を算出した。
 nサイクル目の放電容量比=nサイクル目の放電容量/最大放電容量
 以上の結果を図7及び図8に示す。図7は、各評価用電池の最大放電容量とTi含有率との関係を示す図であり、図8は、放電容量比とサイクル数との関係を示す図である。図7から、Ti含有率が38.3原子%の負極活物質を用いた評価用電池(即ち、比較例5の評価用電池)では放電容量が全く出なかったことが分かる。このため、図8では比較例5の結果は示していない。また、図8から、実施例3及び4の評価用電池は、回折角2θが20~60°の範囲に、SiTi合金の成分に由来する、半値幅が1.5°以下となる回折ピークを有する比較例3の評価用電池、及びTiを含まない負極活物質を用いた比較例4の評価用電池に比べて、充放電サイクル特性が優れていることが分かる。
 また、図7において、直線Aは、用いたSiTi合金粉末のSi原子が全て放電容量に寄与したと仮定して計算した計算容量Aを示す。また、直線Bは、実施例3、4及び比較例3~5の評価用電池の実測容量を直線で結んだ実測容量Bを示す。但し、実施例3と比較例3の最大放電容量は同じ値となり、同じ点で表されている。更に、曲線Cは、用いたSiTi合金粉末の合金が、SiのみからなるSi相と、Si原子とTi原子とが1:1の割合で合金化したSiTi相との混在した相を有すると仮定し、Si相のSiのみが放電容量に寄与したと仮定して計算した計算容量Cを示す。また、直線Dは、SiTi合金粉末に代えて全ての負極活物質をカーボンとした場合の理論容量Dを示す。
 図7から分かるように、実測容量Bは計算容量Cに近似している。この結果から、実施例3、4及び比較例3のSiTi合金粉末の合金は、Si相とSiTi相との混在した混合相に近似した相を有すると推測でき、更にSiTi相を構成するSiは放電容量に寄与せず、Si相のSiのみが放電容量に寄与しているものと推測できる。
 図9に実施例3のSiTi合金粉末のCuKα線によるX線回折図を示す。また、図10に比較例3のSiTi合金粉末のCuKα線によるX線回折図を示す。図9及び図10から、比較例3のSiTi合金粉末において認められたSiに由来する結晶性の回折ピークは、実施例3のSiTi合金粉末では、非晶質性を示す半値幅の広いブロードな回折ピークに変化していることが分かる。
 以上より、本発明の負極活物質では、Si相とSiTi相とが均一かつ微細に分散・混合していると考えられる。このため、充放電によるSiの膨張・収縮による内部応力を分散させて、負極活物質の崩壊を抑制し、充放電サイクル特性を向上できると考えられる。また、本発明の負極活物質では、Liと合金化しない金属元素がSiに対して何らかの相互作用を及ぼしてSiを不活性化し、Siの膨張・収縮を緩和しているとも考えられる。
 (実施例5)
 <負極の作製>
 徳田製作所製の低温高速スパッタリング装置“CFS-4ES”を用い、集電体である厚さ10μmの銅箔(基板)の上にRFマグネトロンスパッタリング法でSiTi合金薄膜を形成した。基板ホルダーの回転数は40rpmとし、到達真空度は3×10-4Pa以下とし、製膜時の導入ガスはアルゴンガスとし、基板温度は室温とした。複合ターゲットとしては、チタンターゲット上にシリコンチップを配置したものを用い、シリコンチップの面積を変えることによって合金組成を調整し、Ti含有率が29原子%のSiTi合金薄膜を作製した。SiTi合金薄膜の膜厚は1.5μmとした。作製したSiTi合金薄膜付銅箔を所定のサイズに切断して負極を作製した。
 <非水電解液の調製>
 エチレンカーボネート及びジエチルカーボネートを体積比で1:1に混合したものに、リチウム塩としてLiPF6を濃度1mol/Lで溶解させて非水電解液を調製した。
 <評価用電池の組み立て>
 ステンレス鋼板上にリチウム金属を張り付けたものを対極として準備し、上記負極と上記対極とを、厚さ16μmで開孔率50%の微多孔性ポリエチレンフィルム製セパレータを介して組み合わせて、ラミネートフィルム製の外装体に挿入し、この外装体に上記非水電解液を注入した後、外装体を封止して、実施例5の評価用電池を作製した。
 (実施例6)
 負極を下記のように作製したこと以外は、実施例5と同様にして実施例6の評価用電池を作製した。
 <負極の作製>
 先ず、集電体である厚さ10μmの銅箔(基板)の上に、株式会社ヒロテック製のシリコンウエハー・ガラスフォトマスク用表面保護スプレー剤“SIRITECT II”を塗布し、この上に、実施例5と同様にして、厚さ1.5μmのSiTi合金薄膜を作製した。続いて、上記SiTi合金薄膜をアセトン中に浸漬し、基板からSiTi合金薄膜を剥離して、剥離したSiTi合金薄膜を洗浄後、粉砕して粉末状のSiTi合金材料を作製した。上記SiTi合金材料におけるTi含有率は、29原子%である。
 次に、負極活物質として、上記SiTi合金材料を45質量部、気相成長炭素繊維を45質量部用い、この負極活物質にバインダとしてスチレン・ブタジエンゴムを10質量部と水とを加えて、混合・分散することにより、負極合剤層形成用塗布液を調製した。続いて、上記負極合剤層形成用塗布液を厚さ12μmの銅箔からなる集電体に塗布し、乾燥することにより、集電体の片面に厚さ2μmの負極合剤層を備えた負極を作製した。
 (実施例7)
 負極を下記のように作製したこと以外は、実施例5と同様にして実施例7の評価用電池を作製した。
 <負極の作製>
 先ず、実施例6と同様にして、粉末状のSiTi合金材料を作製した。次に、負極活物質として、上記SiTi合金材料を10質量部、気相成長炭素繊維を80質量部用いたこと以外は、実施例6と同様にして負極を作製した。
 (比較例6)
 負極を下記のように作製したこと以外は、実施例5と同様にして比較例6の評価用電池を作製した。
 <負極の作製>
 先ず、粉末状のSiTi合金材料をアルゴンガス雰囲気中でガスアトマイズ法により作製した。上記SiTi合金材料におけるTi含有率は、29原子%である。次に、負極活物質として、上記SiTi合金材料を45質量部、気相成長炭素繊維を45質量部用いたこと以外は、実施例6と同様にして負極を作製した。
 (比較例7)
 比較例6で作製したSiTi合金材料を用いたこと以外は、実施例7と同様にして比較例7の評価用電池を作製した。
 次に、実施例5~7及び比較例6、7の評価用電池について、実施例1の評価用電池と同様の条件で充放電サイクル特性を評価した。
 続いて、下記式から各評価用電池の200サイクル目の放電容量比を算出した。
 200サイクル目の放電容量比=200サイクル目の放電容量/最大放電容量
 以上の結果を図11~図15及び表1に示す。
 図11は、実施例5の評価用電池の10サイクル目の放電曲線と、その放電曲線の微分曲線とを示す図である。図12は、実施例6の評価用電池の10サイクル目の放電曲線と、その放電曲線の微分曲線とを示す図である。図13は、実施例7の評価用電池の10サイクル目の放電曲線と、その放電曲線の微分曲線とを示す図である。図14は、比較例6の評価用電池の10サイクル目の放電曲線と、その放電曲線の微分曲線とを示す図である。図15は、比較例7の評価用電池の10サイクル目の放電曲線と、その放電曲線の微分曲線とを示す図である。
 図11~図13から、実施例5~7の評価用電池の放電曲線には変曲点がないことが分かる。即ち、実施例5~7の評価用電池の放電曲線は滑らかで、二段放電等の現象は生じていないことが分かる。ここで、本発明において放電曲線の変曲点とは、負極を、金属リチウムを対極として組み合わせて放電した場合、上記対極に対する電位が0.2V~0.5Vの間の放電曲線の微分曲線において傾きの符号が変化する最大ピーク点に対応する放電曲線の点をいう。
 一方、図14から、比較例6の評価用電池の放電曲線には、放電電圧0.33V付近に変曲点があることが分かる。また、図15から、比較例7の評価用電池の放電曲線には、放電電圧0.42V付近に変曲点があることが分かる。この結果、比較例6及び7の評価用電池の放電曲線は、上記変曲点付近で二段放電等の現象が生じていることが分かる。
 表1は、実施例5~7及び比較例6、7の各評価用電池の200サイクル目の放電容量比を示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例5~7の評価用電池は、比較例6、7の評価用電池に比べて、充放電サイクル特性が優れていることが分かる。
 図16Aは、実施例5のSiTi合金薄膜付銅箔からなる負極のCuKα線によるX線回折図を示し、図16Bは、その拡大図である。図17Aは、実施例6のSiTi合金粉末を負極活物質として含有する負極合剤層を備えた負極のCuKα線によるX線回折図を示し、図17Bは、その拡大図である。図18Aは、実施例7のSiTi合金粉末を負極活物質として含有する負極合剤層を備えた負極のCuKα線によるX線回折図を示し、図18Bは、その拡大図である。図19Aは、比較例6のSiTi合金粉末を負極活物質として含有する負極合剤層を備えた負極のCuKα線によるX線回折図を示し、図19Bは、その拡大図である。図20Aは、比較例7のSiTi合金粉末を負極活物質として含有する負極合剤層を備えた負極のCuKα線によるX線回折図を示し、図20Bは、その拡大図である。
 図16A、B~図18A、Bより、実施例5~7の負極のX線回折測定において、X線回折図に現れた回折ピークは全て基板(Cu箔)に起因することが分かり、SiTi合金材料の成分に起因する回折ピークは検出されなかったことが分かる。これらの結果から、実施例5~7のSiTi合金材料は、ほぼ完全なアモルファル状態であることが分かる。
 また、図19A及び図20Aより、比較例6及び7のX線回折測定におけるX線回折図にも基板(Cu箔)に起因する回折ピークが確認できる。一方、図19B及び図20Bより、比較例6及び7のX線回折測定におけるX線回折図の回折角2θが20~60°の範囲には、SiTi合金成分であるSi及びTiに起因する、半値幅が1.5°以下となる回折ピークが確認できる。これらの結果から、比較例6及び7のSiTi合金材料は、少なくとも一部に結晶構造を有する材料であることが分かる。
 以上より、本発明の負極活物質では、Si相とSiTi相とがX線回折測定において確認できないほどに、微細に分散・混合していると考えられる。このため、充放電によるSiの膨張・収縮による内部応力を分散させて、負極活物質の崩壊を抑制し、充放電サイクル特性を向上できると考えられる。また、本発明の負極活物質では、Liと合金化しない金属元素がSiに対して何らかの相互作用を及ぼしてSiを不活性化して、Siの膨張・収縮を緩和しているとも考えられる。
 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。
 10 RFマグネトロンスパッタリング装置
 11 チャンバー
 12 基板ホルダー
 13 回転機構
 14 マグネット
 15 高周波電源
 16 アルゴンガス封入バルブ
 17 基板
 18 複合ターゲット
 18a 金属ターゲット
 18b シリコンチップ

Claims (10)

  1.  Liと合金化しない金属元素と、Siとの合金からなる非水電解質二次電池用負極活物質であって、
     前記Liと合金化しない金属元素の割合が、原子比で15原子%以上35原子%以下であり、
     CuKα線によるX線回折測定において、回折角2θが20~60°の範囲には、前記合金の成分に起因する、半値幅が1.5°以下となる回折ピークを有していないことを特徴とする非水電解質二次電池用負極活物質。
  2.  前記X線回折測定において、回折角2θが20~60°の範囲には、前記合金の成分に起因する、半値幅が3°以下となる回折ピークを有していない請求項1に記載の非水電解質二次電池用負極活物質。
  3.  前記X線回折測定により求められる結晶子サイズが、5nm未満である請求項1に記載の非水電解質二次電池用負極活物質。
  4.  前記Liと合金化しない金属元素が、Ti、Zr、Mo、W、Co、V、Cr、Mn、Fe、Ni、Cu及びAgからなる群から選択される少なくとも1種である請求項1に記載の非水電解質二次電池用負極活物質。
  5.  請求項1~4のいずれか1項に記載の非水電解質二次電池用負極活物質を含むことを特徴とする非水電解質二次電池用負極。
  6.  金属リチウムを対極として組み合わせて放電した場合、前記対極に対する電位が0.2V~0.5Vの範囲で、その放電曲線が変曲点を持たない請求項5に記載の非水電解質二次電池用負極。
  7.  集電体と、前記集電体の上に形成された負極活物質層とを含む非水電解質二次電池用負極であって、
     前記負極活物質層は、請求項1~4のいずれか1項に記載の非水電解質二次電池用負極活物質から形成されていることを特徴とする非水電解質二次電池用負極。
  8.  集電体と、前記集電体の上に形成された負極合剤層とを含む非水電解質二次電池用負極であって、
     前記負極合剤層は、請求項1~4のいずれか1項に記載の非水電解質二次電池用負極活物質を含むことを特徴とする非水電解質二次電池用負極。
  9.  前記負極合剤層は、負極活物質又は導電助剤として炭素質材料を更に含む請求項8に記載の非水電解質二次電池用負極。
  10.  請求項5に記載の非水電解質二次電池用負極と、正極と、非水電解質とを含むことを特徴とする非水電解質二次電池。
PCT/JP2014/078399 2013-10-25 2014-10-24 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池 WO2015060443A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015543934A JPWO2015060443A1 (ja) 2013-10-25 2014-10-24 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-222426 2013-10-25
JP2013222426 2013-10-25
JP2013257920 2013-12-13
JP2013-257920 2013-12-13
JP2014-059795 2014-03-24
JP2014059795 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015060443A1 true WO2015060443A1 (ja) 2015-04-30

Family

ID=52993028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078399 WO2015060443A1 (ja) 2013-10-25 2014-10-24 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池

Country Status (2)

Country Link
JP (1) JPWO2015060443A1 (ja)
WO (1) WO2015060443A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114467194A (zh) * 2020-08-21 2022-05-10 株式会社Lg新能源 用于预锂化负极的装置和用于预锂化负极的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017949A1 (fr) * 1998-09-18 2000-03-30 Canon Kabushiki Kaisha Materiau electrode pour pole negatif d'une cellule secondaire au lithium, structure d'electrode utilisant ce materiau electrode, cellule secondaire au lithium utilisant cette structure d'electrode, et procede de fabrication de cette structure d'electrode et de cette cellule secondaire au lithium
JP2004311429A (ja) * 2003-03-26 2004-11-04 Canon Inc リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池
WO2004109839A1 (ja) * 2003-06-09 2004-12-16 Sanyo Electric Co., Ltd. リチウム二次電池及びその製造方法
JP2006260944A (ja) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法およびそれを用いたリチウムイオン二次電池
JP2006324210A (ja) * 2005-05-20 2006-11-30 Fukuda Metal Foil & Powder Co Ltd リチウム二次電池用負極材料及びその製造方法
WO2011065503A1 (ja) * 2009-11-27 2011-06-03 日産自動車株式会社 電気デバイス用Si合金負極活物質
JP2012156028A (ja) * 2011-01-27 2012-08-16 Idemitsu Kosan Co Ltd アモルファス合金、それからなる二次電池用負極材料、それを含む二次電池用負極、及び二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017949A1 (fr) * 1998-09-18 2000-03-30 Canon Kabushiki Kaisha Materiau electrode pour pole negatif d'une cellule secondaire au lithium, structure d'electrode utilisant ce materiau electrode, cellule secondaire au lithium utilisant cette structure d'electrode, et procede de fabrication de cette structure d'electrode et de cette cellule secondaire au lithium
JP2004311429A (ja) * 2003-03-26 2004-11-04 Canon Inc リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池
WO2004109839A1 (ja) * 2003-06-09 2004-12-16 Sanyo Electric Co., Ltd. リチウム二次電池及びその製造方法
JP2006260944A (ja) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法およびそれを用いたリチウムイオン二次電池
JP2006324210A (ja) * 2005-05-20 2006-11-30 Fukuda Metal Foil & Powder Co Ltd リチウム二次電池用負極材料及びその製造方法
WO2011065503A1 (ja) * 2009-11-27 2011-06-03 日産自動車株式会社 電気デバイス用Si合金負極活物質
JP2012156028A (ja) * 2011-01-27 2012-08-16 Idemitsu Kosan Co Ltd アモルファス合金、それからなる二次電池用負極材料、それを含む二次電池用負極、及び二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114467194A (zh) * 2020-08-21 2022-05-10 株式会社Lg新能源 用于预锂化负极的装置和用于预锂化负极的方法
CN114467194B (zh) * 2020-08-21 2024-01-30 株式会社Lg新能源 用于预锂化负极的装置和用于预锂化负极的方法

Also Published As

Publication number Publication date
JPWO2015060443A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP7369157B2 (ja) プレリチウム化された電極材料および該電極材料を使用するセル
US11201328B2 (en) Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
JP7265668B2 (ja) リチウムイオン二次電池、モバイル端末、自動車及び電力貯蔵システム
JP7027387B2 (ja) ドープニオブ酸チタンおよび電池
JP5791432B2 (ja) 正極活物質、その製造方法及びそれを採用した正極並びにリチウム電池
US9748562B2 (en) Negative active material, negative electrode including the negative active material, and lithium secondary battery including the negative electrode
WO2017061073A1 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池、非水電解質二次電池用負極材の製造方法、及び非水電解質二次電池の製造方法
JP6861565B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP6867821B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、負極の製造方法、及びリチウムイオン二次電池の製造方法
US10276862B2 (en) Composite cathode active material, method of preparing the composite cathode active material, and cathode and lithium battery each including the composite cathode active material
TWI714758B (zh) 負極活性物質、混合負極活性物質材料、及負極活性物質的製造方法
JP6797739B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
KR20150089388A (ko) 양극 활물질, 이를 채용한 리튬전지 및 상기 양극 활물질의 제조방법
US9406933B2 (en) Negative active material, negative electrode and lithium battery including negative active material, and method of manufacturing negative active material
KR20200075209A (ko) 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬이차전지
JP6493408B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
KR102331725B1 (ko) 음극 활물질 및 이를 채용한 리튬 전지
WO2015025887A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2005294079A (ja) 二次電池用負極、その製造方法及び二次電池
JP5863631B2 (ja) 非水電解質二次電池の製造方法
JP6862091B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
WO2022085216A1 (ja) リチウム二次電池
KR101942654B1 (ko) 금속/카본 결정 입자 복합체, 이의 제조방법 및 이를 함유하는 에너지 저장소자
JP5978024B2 (ja) 非水二次電池
WO2015060443A1 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855573

Country of ref document: EP

Kind code of ref document: A1