WO2015045957A1 - Air diffuser for seawater desulfurization and seawater desulfurization device provided with same - Google Patents
Air diffuser for seawater desulfurization and seawater desulfurization device provided with same Download PDFInfo
- Publication number
- WO2015045957A1 WO2015045957A1 PCT/JP2014/074409 JP2014074409W WO2015045957A1 WO 2015045957 A1 WO2015045957 A1 WO 2015045957A1 JP 2014074409 W JP2014074409 W JP 2014074409W WO 2015045957 A1 WO2015045957 A1 WO 2015045957A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seawater
- air
- desulfurization
- diffuser
- seawater desulfurization
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
- B01D53/501—Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
- B01D53/504—Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2311—Mounting the bubbling devices or the diffusers
- B01F23/23113—Mounting the bubbling devices or the diffusers characterised by the disposition of the bubbling elements in particular configurations, patterns or arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2312—Diffusers
- B01F23/23121—Diffusers having injection means, e.g. nozzles with circumferential outlet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2312—Diffusers
- B01F23/23126—Diffusers characterised by the shape of the diffuser element
- B01F23/231265—Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/10—Oxidants
- B01D2251/11—Air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/10—Inorganic absorbents
- B01D2252/103—Water
- B01D2252/1035—Sea water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/302—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/14—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
- B05B1/20—Arrangements of several outlets along elongated bodies, e.g. perforated pipes or troughs, e.g. spray booms; Outlet elements therefor
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/18—Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
Definitions
- the present invention relates to an aeration apparatus for seawater desulfurization and a seawater desulfurization apparatus including the same.
- exhaust gas combustion exhaust gas
- SO 2 sulfur dioxide
- SOx oxide
- the flue gas desulfurization apparatus (hereinafter referred to as “seawater desulfurization apparatus”) employing the seawater method is a desulfurization system that uses seawater as an absorbent.
- a desulfurization tower (absorption tower) having a cylindrical shape or a rectangular shape such as a substantially cylindrical shape
- the seawater is used as an absorbing liquid to make a wet-based gas-liquid contact. Is generated to remove sulfur oxides.
- the desulfurized seawater (spent seawater) used as the absorbent in the desulfurization tower described above is, for example, a part of the water channel when drained by flowing in a long water channel (Seawater Oxidation Treatment System; SOTS) with an open top.
- SOTS Seawater Oxidation Treatment System
- the carbon dioxide is deaerated (aerated) by aeration in which fine bubbles are discharged from an aeration apparatus (oxidation / aeration tank) installed on the bottom of the unit (Patent Documents 1 to 3).
- SO 4 2-ions are the lysate of carbon dioxide generated by the seawater desulfurization (CO 2), the dissolved CO 2 rapidly It needs to be removed.
- seawater desulfurization is applied to a plant with a large amount of SO 2 in seawater desulfurization, the emergence of a seawater desulfurization apparatus capable of quickly removing CO 2 is eagerly desired.
- the present invention provides an aeration apparatus for seawater desulfurization that can quickly remove CO 2 when applying seawater desulfurization in a plant with a large amount of SO 2 , and a seawater desulfurization apparatus including the same.
- the task is to do.
- the first invention of the present invention for solving the above-described problem is the absorption of sulfur content that is disposed in an oxidation tank for seawater desulfurization, and is produced by bringing the sulfur content in the exhaust gas into contact with seawater and desulfurizing the seawater.
- the pitch between the holes of the trachea is 40 mm or more
- the pitch between the air diffusers arranged in the air supply pipe is 500 mm or more.
- the second invention is an aeration apparatus for seawater desulfurization characterized in that, in the first invention, the flow velocity of the air discharged from the hole is 10 to 100 m / s.
- the third invention is a seawater desulfurization device having the diffuser for seawater desulfurization of the first or second invention on the inlet side of the oxidation tank.
- the fourth invention is a seawater desulfurization apparatus comprising the diffuser for seawater desulfurization according to the first or second invention on an inlet side and an outlet side of an oxidation tank.
- an aeration operation is performed in which a large amount of large air is supplied from a hole having a large pore diameter to expel dissolved CO 2 in acidic mixed seawater in which desulfurization effluent and seawater are mixed from seawater. Therefore, in the case of applying seawater desulfurization in a plant in which decarbonation (aeration action) proceeds smoothly and has a high SO 2 content, CO 2 can be quickly removed.
- FIG. 1 is a schematic diagram illustrating a configuration of a seawater desulfurization apparatus according to a first embodiment.
- FIG. 2 is a schematic view of a diffuser for seawater desulfurization.
- FIG. 3 is a cross-sectional view of an air supply pipe and a diffuser pipe disposed in the oxidation tank.
- FIG. 4 is a perspective view of the diffusing tube.
- FIG. 5A is a cross-sectional view of the diffusing tube.
- FIG. 5-2 is a cross-sectional view of the air diffuser.
- FIG. 6 is a perspective view of an air diffuser provided with a nozzle.
- FIG. 7 is a cross-sectional view of FIG. FIG.
- FIG. 8 is a schematic diagram illustrating the configuration of the desulfurization aeration apparatus according to the second embodiment.
- FIG. 9 is a graph showing the relationship between the amount of SO 2 absorbed in the sulfur-absorbing seawater ( ⁇ S) generated by seawater desulfurization / the amount of alkali (TA) in seawater used for seawater desulfurization and the amount of oxidized air.
- FIG. 10 is a diagram showing the relationship between the air flow rate from the hole (horizontal axis), the oxidation rate (left vertical axis), and the oxidation rate per unit air amount (right vertical axis).
- FIG. 11 is a diagram showing the relationship between the pitch between the diffuser tubes and the oxidation rate.
- FIG. 1 is a schematic diagram illustrating a configuration of a seawater desulfurization apparatus according to a first embodiment.
- the seawater desulfurization apparatus 10 includes a flue gas desulfurization absorption tower 11, an inlet side dilution mixing tank 12, an oxidation tank 13 that performs water quality recovery processing, and an outlet side dilution mixing tank 14. And have.
- the seawater 15 used in the flue gas desulfurization absorption tower 11 and the seawater 15 used for water quality reforming in the oxidation tank 13 for performing water quality recovery processing are separately pumped and a condenser (not shown) in the boiler 21.
- the seawater before being discharged into the sea 16 after being used for cooling is used.
- the seawater 15 for dilution is pumped up through the seawater supply line L 1 by the pump P 11 from the sea 16, a portion of the seawater 15a the inlet side dilution mixing tank 12 through a seawater supply line L 2 by a pump P 11 To be supplied.
- dilute seawater supply line L 3 is provided for supplying the seawater 15b for dilution at the outlet side dilution mixing tank 14.
- seawater after cooling from a condenser (not shown) is used.
- the present invention is not limited to this, and seawater pumped directly from the sea 16 by the pump P 11 is used. It may be.
- the flue gas desulfurization absorption tower 11 is a tower that purifies the exhaust gas 22 by gas-liquid contact between the exhaust gas 22 from the boiler 21 and the seawater 15.
- the seawater 15 is ejected in a liquid column shape above the spray nozzle 11a, and the exhaust gas 22 and the supplied seawater 15 are brought into gas-liquid contact to perform desulfurization of sulfur in the exhaust gas 22.
- the spray nozzle 11a is a spray nozzle that ejects upward in a liquid column shape, but is not limited thereto, and may be sprayed downward in a shower shape.
- the exhaust gas 22 and the seawater 15 are brought into gas-liquid contact in the flue gas desulfurization absorption tower 11 to cause a reaction as shown in the following formula (I), and are contained in the form of SO 2 or the like in the exhaust gas 22.
- the sulfur content such as SOx is absorbed by the seawater 15, and the sulfur content in the exhaust gas 22 is removed using the seawater 15.
- the pH of the sulfur-absorbing seawater 23 is, for example, about 3 to 6.
- the sulfur content absorption seawater 23 which absorbed the sulfur content in the flue gas desulfurization absorption tower 11 is stored in the tower bottom part of the flue gas desulfurization absorption tower 11.
- the sulfur-absorbing seawater 23 stored at the bottom of the flue gas desulfurization absorption tower 11 is fed to the inlet side dilution / mixing tank 12 via the sulfur-absorbing seawater discharge line L 4 .
- the sulfur-absorbing seawater 23 supplied to the inlet side dilution / mixing tank 12 is mixed with the seawater 15 from the condenser and the seawater 15a for dilution supplied to the inlet side dilution / mixing tank 12, and diluted to be acidic mixed. It becomes seawater 24.
- the purified gas 25 desulfurized in the flue gas desulfurization absorption tower 11 is released from the chimney 26 into the atmosphere.
- a dust collecting means 27 is provided between the boiler 21 and the flue gas desulfurization absorption tower 11 to remove dust and the like in the exhaust gas 22.
- the desulfurization rate of the exhaust gas 22 is determined by the ratio of the inlet SO 2 concentration to the outlet SO 2 concentration in the exhaust gas 22 supplied to the flue gas desulfurization absorption tower 11 (outlet SO 2 concentration / inlet SO 2 concentration),
- the seawater 15 and the sulfur-absorbing seawater 23 are separately adjusted based on the seawater properties.
- SO 2 concentration meters for measuring the inlet SO 2 concentration and the outlet SO 2 concentration of the exhaust gas 22 are provided at the inlet and outlet of the exhaust gas 22.
- the acidic mixed seawater 24 in which the sulfur-absorbing seawater 23 and the seawater 15 are mixed is supplied to the oxidation tank 13 provided on the downstream side of the inlet side dilution mixing tank 12.
- the oxidation tank 13 is provided with a seawater desulfurization air diffuser 30 which is an aeration means for performing water quality recovery processing of the acidic mixed seawater 24.
- the seawater desulfurization aeration apparatus 30 includes an oxidation air blower 32 that is an air introduction means for supplying air 31, an air supply pipe 33 that supplies the air 31, and an air diffusion pipe 34 that is branched from the air supply pipe 33. , And an ejection hole (not shown in FIG. 1) 35 for supplying the air 31 to the acidic mixed seawater 24 in the oxidation tank 13.
- the external air 31 is sent from the hole 35 into the oxidation tank 13 through the air diffuser 34 by the oxidizing air blower 32, and the oxygen is dissolved as shown in the following formula (II).
- the sulfur content in the acidic mixed seawater 24 comes into contact with the air 31, and an oxidation reaction of bisulfite ions (HSO 3 ⁇ ) as shown in the following formulas (III) to (V) and bicarbonate ions (HCO 3 - ) Decarboxylation reaction occurs, and the acidic mixed seawater 24 is recovered in water quality to become water quality recovered seawater 29 and discharged into the sea 16 via the discharge line L7.
- the pH of the acidic mixed seawater 24 can be raised and the chemical oxygen demand (COD) can be reduced, and the pH, dissolved oxygen (DO) concentration, chemical oxygen demand (COD) of the water quality recovery seawater 29 can be reduced.
- COD chemical oxygen demand
- DO dissolved oxygen
- COD chemical oxygen demand
- FIG. 2 is a schematic view of a diffuser for seawater desulfurization.
- FIG. 3 is a cross-sectional view of an air supply pipe and a diffuser pipe disposed in the oxidation tank.
- FIG. 4 is a perspective view of the diffusing tube.
- 5A and 5B are cross-sectional views of the air diffuser.
- FIG. 6 is a perspective view of an air diffuser provided with a nozzle.
- FIG. 7 is a cross-sectional view of FIG.
- the seawater desulfurization air diffuser 30 is disposed in the oxidation tank 13 for seawater desulfurization, and is generated by bringing the sulfur content in the exhaust gas into contact with seawater and desulfurizing the seawater.
- the hole diameter (d) of the holes 35 is 5 mm or more, preferably 5 mm to 50 mm
- the pitch (P 1 ) between the holes 35, 35 of the air diffuser 34 is 40 mm or more, preferably 40 mm to 2000 mm
- the pitch (P 2 ) between the diffusing tubes 34, 34 arranged in the above is 500 mm or more, preferably 500 mm to 4500 mm (the test is 750 mm).
- the hole diameter (d) of the holes 35 of the diffuser tube 34 is 5 to 50 mm
- the pitch (P 1 ) between the holes 35 and 35 is 40 to 2000 mm
- the pitch (P 2 ) between the diffuser tubes 34 and 34 is 500 to 500 mm.
- the hole 35 is formed on the upper side of the diffuser tube 34, but in FIGS. 3 and 4, the hole 35 is formed on the lower side of the diffuser tube 34. As shown in FIG. 3, by forming the hole 35 on the lower side of the air diffuser 34, an upward flow is formed, which is more preferable.
- FIGS. 5-1 and 5-2 not only one hole 35 but also a plurality (three in FIG. 5-2) may be formed.
- a nozzle 36 may be installed in the hole 35, and the air 31 may be supplied into the oxidation tank 13 from the tip of the nozzle 36.
- FIG. 9 is a diagram showing the relationship between the amount of SO 2 absorbed in the sulfur-absorbing seawater 23 ( ⁇ S) generated by seawater desulfurization / the amount of alkali (TA) in seawater 15 used for seawater desulfurization and the amount of oxidized air. It is.
- the amount of alkali is obtained from the alkalinity in seawater 15 and seawater (amount).
- This alkalinity is obtained by separately collecting seawater 15 introduced from the condenser, and a value obtained by multiplying the obtained alkalinity by the amount of seawater introduced into the oxidation tank 13 is defined as the alkali amount.
- the alkalinity refers to carbonate (H 2 CO 3 ), carbonate ion (CO 3 2 ⁇ ), bicarbonate ion (HCO 3 ⁇ ), OH ⁇ , organic acid or weak acid salt (silica) contained in seawater 15. Acid, phosphoric acid, boric acid) and the like.
- the seawater desulfurization diffuser 30 of this embodiment is used to oxidize.
- predetermined seawater property required values such as pH and dissolved oxygen at the discharge point to the open sea.
- FIG. 10 is a diagram showing the relationship between the air flow rate from the hole (horizontal axis), the oxidation rate (left vertical axis), and the oxidation rate per unit air amount (right vertical axis).
- the dotted line and the solid line in FIG. 10 indicate the case of large-diameter air supply.
- the solid line represents the oxidation rate per unit air on the right vertical axis
- the dotted line represents the oxidation rate on the left vertical axis.
- the oxidation rate (left vertical axis) increases as the air flow rate from the hole increases, but the oxidation rate per unit air amount (right vertical axis) exceeds 100 m / s. And the oxidation rate decreases.
- the flow velocity from the hole 35 of the air diffuser 34 is 10 m / s or more, preferably 10 m / s to 100 m / s.
- FIG. 11 is a diagram showing the relationship between the pitch (P 2 ) between the diffusing tubes 34 and 34 and the oxidation rate.
- the solid line in FIG. 11 shows the case of large-diameter air supply.
- the pitch (P 2 ) between the air diffusers 34 and 34 is determined, but the maximum. It is good to be about 4500 mm.
- the hole diameter (d) of the (nozzle) hole 35 of the air diffuser 34 is 15 mm
- the pitch (P 1 ) between the holes 35 and 35 of the air diffuser 34 is 187.5 mm
- the air supply pipe 33 is disposed.
- the pitch (P 2 ) between the air diffusers 34 and 34 is 750 mm and the flow rate is 10 m / s
- the size of the oxidation tank 13 (the length of the passage) can be made smaller than before, and the hole 35 having a larger hole diameter.
- the large air 31 ejected from the air facilitates the decarboxylation in the acidic mixed seawater 24 in the oxidation tank 13.
- the water quality is not restored with fine air as in the past, but large air bubbles with a large capacity are supplied to recover the water quality by decarboxylating CO 2 in seawater at once. Can be achieved.
- Table 1 shows the aeration evaluation of the size of the hole diameter and the size of the oxidation tank when the air flow rate is 10 m / s and the absorbed SO 2 amount ( ⁇ S) / alkaline amount in seawater (TA) is 0.3.
- the size of the oxidation tank 13 (the length of the water channel) is large, and when the hole diameter is 10 mm or more, the size of the oxidation tank 13 is medium and the compactness is reduced. I was able to plan. When the hole diameter was 3 mm or less, the size of the oxidation tank 13 (the length of the water channel) became extra large, and it was not possible to reduce the size.
- the length and width of a large water channel are illustrated.
- the aeration apparatus 30 for seawater desulfurization as in the embodiment is disposed in the oxidation tank 13 and the holes 35 and 35 are disposed at a constant pitch (P 1 ), thereby oxidizing the oxidation air 31. It can be dispersed inside the tank 13. Further, by setting the oxidation air ejection flow rate and the installation interval to the predetermined ranges as in the present embodiment, the dispersion of the oxidation air 31 due to the flow in the oxidation tank 13 caused by the ejected air 31 and Diffusion can be promoted and the oxidation capacity of the entire oxidation tank 13 can be improved.
- the oxidation tank 13 can be made compact, the equipment cost can be reduced, and the air flow rate for oxidation can be reduced.
- FIG. 8 is a schematic diagram illustrating the configuration of the diffuser for seawater desulfurization according to the second embodiment.
- symbol is attached
- the diffuser for seawater desulfurization according to the present embodiment is installed on both the inlet side and the outlet side of the oxidation tank 13 for seawater desulfurization.
- the length of the oxidation tank 13 can be reduced according to the present invention, when the existing water channel is applied to an oxidation tank having a long length, the discharge point to seawater is separated.
- the seawater passage is long when the seawater desulfurization air diffuser 30A is provided only on the inlet side of the oxidation tank 13 having a long water channel.
- the recovered seawater 29 is oxidized and lowered to a water quality recovered seawater 29A having a pH of 5.9.
- the water quality recovery seawater 29A having a low pH cannot be discharged at the same pH value (5.9).
- a diffuser 30B for seawater desulfurization is also provided in the vicinity of the outlet side of the oxidation tank 13, and the air 31 is introduced to raise the pH, so that the water quality is pH 6.0 or higher, which is the pH value of the discharge regulation value.
- the recovered seawater 29 can be discharged.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
- Physical Water Treatments (AREA)
- Nozzles (AREA)
Abstract
An air diffuser (30) for seawater desulfurization is provided with air diffusing tubes (34) that are disposed within an oxidation tank (13) for seawater desulfurization, bring the sulfur component in exhaust gas (22) into contact with seawater, and supply air to acidic mixed seawater (24) that includes seawater (23) that has absorbed sulfur and that has arisen because of seawater desulfurization and an air supply tube (33) that feeds air from the outside by an air introduction means to the air diffusing tubes (34). The hole diameter (d) of holes (35) in the air diffusing tubes (34) is 5 mm or greater. The pitch (P1) between holes (35, 35) in the air diffusing tubes (34) is 40 mm or greater, and the pitch (P2) between the air diffusing tubes (34, 34) disposed on the air supply tube (33) is 500 mm or greater.
Description
本発明は、海水脱硫用散気装置及びそれを備えた海水脱硫装置に関するものである。
The present invention relates to an aeration apparatus for seawater desulfurization and a seawater desulfurization apparatus including the same.
従来、石炭や原油等を燃料とする発電プラントにおいて、ボイラから排出される燃焼排気ガス(以下、「排ガス」と呼ぶ)は、該排ガス中に含まれている二酸化硫黄(SO2)等の硫黄酸化物(SOx)を除去してから大気に放出される。このような脱硫処理を施す排煙脱硫装置の脱硫方式としては、石灰石膏法、スプレードライヤー法及び海水法等が知られている。
Conventionally, in a power plant using coal, crude oil or the like as fuel, combustion exhaust gas (hereinafter referred to as “exhaust gas”) discharged from a boiler is sulfur such as sulfur dioxide (SO 2 ) contained in the exhaust gas. The oxide (SOx) is removed and then released to the atmosphere. As a desulfurization method of a flue gas desulfurization apparatus that performs such a desulfurization treatment, a lime gypsum method, a spray dryer method, a seawater method, and the like are known.
このうち、海水法を採用した排煙脱硫装置(以下、「海水脱硫装置」と呼ぶ)は、吸収剤として海水を使用する脱硫方式である。この方式では、たとえば略円筒のような筒形状又は角形状を縦置きにした脱硫塔(吸収塔)の内部に海水及びボイラ排ガスを供給することにより、海水を吸収液として湿式ベースの気液接触を生じさせて硫黄酸化物を除去している。
上述した脱硫塔内で吸収剤として使用した脱硫後の海水(使用済海水)は、たとえば、上部が開放された長い水路(Seawater Oxidation Treatment System;SOTS)内を流れ排水される際、水路の一部の底面に設置したエアレーション装置(酸化・曝気槽)から微細気泡を流出させるエアレーションによって脱炭酸(曝気)される(特許文献1~3)。 Among these, the flue gas desulfurization apparatus (hereinafter referred to as “seawater desulfurization apparatus”) employing the seawater method is a desulfurization system that uses seawater as an absorbent. In this system, for example, by supplying seawater and boiler exhaust gas into a desulfurization tower (absorption tower) having a cylindrical shape or a rectangular shape such as a substantially cylindrical shape, the seawater is used as an absorbing liquid to make a wet-based gas-liquid contact. Is generated to remove sulfur oxides.
The desulfurized seawater (spent seawater) used as the absorbent in the desulfurization tower described above is, for example, a part of the water channel when drained by flowing in a long water channel (Seawater Oxidation Treatment System; SOTS) with an open top. The carbon dioxide is deaerated (aerated) by aeration in which fine bubbles are discharged from an aeration apparatus (oxidation / aeration tank) installed on the bottom of the unit (Patent Documents 1 to 3).
上述した脱硫塔内で吸収剤として使用した脱硫後の海水(使用済海水)は、たとえば、上部が開放された長い水路(Seawater Oxidation Treatment System;SOTS)内を流れ排水される際、水路の一部の底面に設置したエアレーション装置(酸化・曝気槽)から微細気泡を流出させるエアレーションによって脱炭酸(曝気)される(特許文献1~3)。 Among these, the flue gas desulfurization apparatus (hereinafter referred to as “seawater desulfurization apparatus”) employing the seawater method is a desulfurization system that uses seawater as an absorbent. In this system, for example, by supplying seawater and boiler exhaust gas into a desulfurization tower (absorption tower) having a cylindrical shape or a rectangular shape such as a substantially cylindrical shape, the seawater is used as an absorbing liquid to make a wet-based gas-liquid contact. Is generated to remove sulfur oxides.
The desulfurized seawater (spent seawater) used as the absorbent in the desulfurization tower described above is, for example, a part of the water channel when drained by flowing in a long water channel (Seawater Oxidation Treatment System; SOTS) with an open top. The carbon dioxide is deaerated (aerated) by aeration in which fine bubbles are discharged from an aeration apparatus (oxidation / aeration tank) installed on the bottom of the unit (
ところで、ボイラ設備が小さいプラント等においては、排ガス中のSO2量が少ないので、排煙脱硫装置で用いる海水中におけるSO2の吸収が小さく、空気中の酸素を海水に供給して、海水中に溶解させるには、微細な空気を発生させる微細孔(例えば1.0mm)を有する微細空気供給手段による空気供給が適している。
By the way, in plants with small boiler facilities, since the amount of SO 2 in the exhaust gas is small, the absorption of SO 2 in the sea water used in the flue gas desulfurization device is small, and oxygen in the air is supplied to the sea water. In order to dissolve it, air supply by a fine air supply means having fine holes (for example, 1.0 mm) for generating fine air is suitable.
しかしながら、ボイラ設備が大きいプラントや、燃料分での硫黄(S)分が多いようなSO2量が多いプラントでの海水脱硫を適用する場合、海水のpHが放流海水最適値に達成しない場合がある。
However, when applying seawater desulfurization in a plant with a large boiler facility or a plant with a large amount of SO 2 such as a large amount of sulfur (S) in the fuel, the pH of the seawater may not reach the optimum value for discharged seawater. is there.
ここで、pHを下げる原因としては、海水中のS分がSO4
2-イオンとなると共に、海水脱硫によって生成した二酸化炭素(CO2)の溶解物であるので、この溶存CO2を速やかに除去することが必要となる。
Here, as a cause of lowering the pH, with S content in seawater is SO 4 2-ions are the lysate of carbon dioxide generated by the seawater desulfurization (CO 2), the dissolved CO 2 rapidly It needs to be removed.
この場合、従来のような微細空気供給手段から供給することで、脱炭酸する場合には、微細な空気を大量に供給することが必要となり、所内電力が嵩むと共に、大量の微細な空気を供給する酸化槽の長い通路が必要となり、設備が膨大となる、という問題がある。
In this case, in the case of decarboxylation by supplying from a conventional fine air supply means, it is necessary to supply a large amount of fine air, increasing in-house power and supplying a large amount of fine air. Therefore, there is a problem that a long passage for the oxidation tank is required and the equipment becomes enormous.
そこで、海水脱硫において、SO2分が多いプラントでの海水脱硫を適用する場合、CO2を速やかに除去することができる海水脱硫装置の出現が切望されている。
Therefore, when seawater desulfurization is applied to a plant with a large amount of SO 2 in seawater desulfurization, the emergence of a seawater desulfurization apparatus capable of quickly removing CO 2 is eagerly desired.
本発明は、前記問題に鑑み、SO2分が多いプラントでの海水脱硫を適用する場合、CO2を速やかに除去することができる海水脱硫用散気装置及びそれを備えた海水脱硫装置を提供することを課題とする。
In view of the above problems, the present invention provides an aeration apparatus for seawater desulfurization that can quickly remove CO 2 when applying seawater desulfurization in a plant with a large amount of SO 2 , and a seawater desulfurization apparatus including the same. The task is to do.
上述した課題を解決するための本発明の第1の発明は、海水脱硫用の酸化槽内に配設され、排ガス中の硫黄分を海水と接触させて海水脱硫することによって生じた硫黄分吸収海水を含む酸化混合海水に空気を供給する散気管と、前記散気管に外部から空気導入手段により空気を送給する空気供給管とを備え、前記散気管の孔径が5mm以上であり、前記散気管の孔同士のピッチが40mm以上であり、前記空気供給管に配置される散気管同士のピッチが500mm以上であることを特徴とする海水脱硫用散気装置にある。
The first invention of the present invention for solving the above-described problem is the absorption of sulfur content that is disposed in an oxidation tank for seawater desulfurization, and is produced by bringing the sulfur content in the exhaust gas into contact with seawater and desulfurizing the seawater. A diffuser pipe for supplying air to the oxidative mixed seawater containing seawater; and an air supply pipe for supplying air to the diffuser pipe from the outside by air introduction means, the hole diameter of the diffuser pipe being 5 mm or more, In the air diffuser for seawater desulfurization, the pitch between the holes of the trachea is 40 mm or more, and the pitch between the air diffusers arranged in the air supply pipe is 500 mm or more.
第2の発明は、第1の発明において孔から排出される空気の噴出流速が10~100m/sであることを特徴とする海水脱硫用散気装置にある。
The second invention is an aeration apparatus for seawater desulfurization characterized in that, in the first invention, the flow velocity of the air discharged from the hole is 10 to 100 m / s.
第3の発明は、第1又は2の発明の海水脱硫用散気装置を、酸化槽の入口側に有することを特徴とする海水脱硫装置にある。
The third invention is a seawater desulfurization device having the diffuser for seawater desulfurization of the first or second invention on the inlet side of the oxidation tank.
第4の発明は、第1又は2の発明の海水脱硫用散気装置を、酸化槽の入口側と出口側とに有することを特徴とする海水脱硫装置にある。
The fourth invention is a seawater desulfurization apparatus comprising the diffuser for seawater desulfurization according to the first or second invention on an inlet side and an outlet side of an oxidation tank.
本発明によれば、孔径が大きな孔から多量の大粒の空気を供給して、脱硫排液と海水とが混合した酸性混合海水中の溶存CO2を海水から追い出す曝気操作を行うようにしているので、脱炭酸(曝気作用)がスムーズに進行し、SO2分が多いプラントでの海水脱硫を適用する場合、CO2を速やかに除去することができる。
According to the present invention, an aeration operation is performed in which a large amount of large air is supplied from a hole having a large pore diameter to expel dissolved CO 2 in acidic mixed seawater in which desulfurization effluent and seawater are mixed from seawater. Therefore, in the case of applying seawater desulfurization in a plant in which decarbonation (aeration action) proceeds smoothly and has a high SO 2 content, CO 2 can be quickly removed.
以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included.
本発明による実施例1に係る海水脱硫用散気装置を備えた海水脱硫装置について、図面を参照して説明する。図1は、実施例1に係る海水脱硫装置の構成を示す概略図である。図1に示すように、本実施例に係る海水脱硫装置10は、排煙脱硫吸収塔11と、入口側希釈混合槽12と、水質回復処理を行う酸化槽13と、出口側希釈混合槽14とを有する。
A seawater desulfurization apparatus provided with a diffuser for seawater desulfurization according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating a configuration of a seawater desulfurization apparatus according to a first embodiment. As shown in FIG. 1, the seawater desulfurization apparatus 10 according to this embodiment includes a flue gas desulfurization absorption tower 11, an inlet side dilution mixing tank 12, an oxidation tank 13 that performs water quality recovery processing, and an outlet side dilution mixing tank 14. And have.
本実施例では、排煙脱硫吸収塔11で用いる海水15と、水質回復処理を行う酸化槽13で水質改質に用いる海水15は、別途汲み上げられボイラ21での復水器(図示せず)で冷却に使用した後、海16に放流する前の海水を用いている。
In the present embodiment, the seawater 15 used in the flue gas desulfurization absorption tower 11 and the seawater 15 used for water quality reforming in the oxidation tank 13 for performing water quality recovery processing are separately pumped and a condenser (not shown) in the boiler 21. In this case, the seawater before being discharged into the sea 16 after being used for cooling is used.
また希釈用の海水15は、海16からポンプP11により海水供給ラインL1を介して汲み上げられ、一部の海水15aはポンプP11により海水供給ラインL2を介して入口側希釈混合槽12に供給される。また、必要に応じて、出口側希釈混合槽14に希釈用の海水15bとして供給する希釈海水供給ラインL3が設けられている。
なお、本実施例では、図示しない復水器からの冷却後の海水を用いているが、本発明はこれに限定されるものではなく、海16からポンプP11により直接汲み上げた海水を用いるようにしてもよい。 Theseawater 15 for dilution is pumped up through the seawater supply line L 1 by the pump P 11 from the sea 16, a portion of the seawater 15a the inlet side dilution mixing tank 12 through a seawater supply line L 2 by a pump P 11 To be supplied. If necessary, dilute seawater supply line L 3 is provided for supplying the seawater 15b for dilution at the outlet side dilution mixing tank 14.
In this embodiment, seawater after cooling from a condenser (not shown) is used. However, the present invention is not limited to this, and seawater pumped directly from thesea 16 by the pump P 11 is used. It may be.
なお、本実施例では、図示しない復水器からの冷却後の海水を用いているが、本発明はこれに限定されるものではなく、海16からポンプP11により直接汲み上げた海水を用いるようにしてもよい。 The
In this embodiment, seawater after cooling from a condenser (not shown) is used. However, the present invention is not limited to this, and seawater pumped directly from the
排煙脱硫吸収塔11は、ボイラ21からの排ガス22と海水15とを気液接触して排ガス22を浄化する塔である。排煙脱硫吸収塔11では、海水15は噴霧ノズル11aより上方に液柱状に噴出させ、排ガス22と供給される海水15とを気液接触させて、排ガス22中の硫黄分の脱硫を行っている。本実施例では、噴霧ノズル11aは、上方に液柱状に噴出させる噴霧ノズルであるが、これに限定されるものではなく、下方にシャワー状に噴霧するようにしてもよい。
The flue gas desulfurization absorption tower 11 is a tower that purifies the exhaust gas 22 by gas-liquid contact between the exhaust gas 22 from the boiler 21 and the seawater 15. In the flue gas desulfurization absorption tower 11, the seawater 15 is ejected in a liquid column shape above the spray nozzle 11a, and the exhaust gas 22 and the supplied seawater 15 are brought into gas-liquid contact to perform desulfurization of sulfur in the exhaust gas 22. Yes. In the present embodiment, the spray nozzle 11a is a spray nozzle that ejects upward in a liquid column shape, but is not limited thereto, and may be sprayed downward in a shower shape.
即ち、排煙脱硫吸収塔11において排ガス22と海水15とを気液接触させて、下記式(I)に示すような反応を生じさせ、排ガス22中のSO2などの形態で含有されているSOxなどの硫黄分を海水15に吸収させ、排ガス22中の硫黄分を、海水15を用いて除去している。
SO2(G) + H2O → H2SO3(L) → HSO3 - + H+ ・・・(I) That is, theexhaust gas 22 and the seawater 15 are brought into gas-liquid contact in the flue gas desulfurization absorption tower 11 to cause a reaction as shown in the following formula (I), and are contained in the form of SO 2 or the like in the exhaust gas 22. The sulfur content such as SOx is absorbed by the seawater 15, and the sulfur content in the exhaust gas 22 is removed using the seawater 15.
SO 2 (G) + H 2 O → H 2 SO 3 (L) → HSO 3 − + H + (I)
SO2(G) + H2O → H2SO3(L) → HSO3 - + H+ ・・・(I) That is, the
SO 2 (G) + H 2 O → H 2 SO 3 (L) → HSO 3 − + H + (I)
この海水脱硫により海水15と排ガス22との気液接触により発生したH2SO3が解離して水素イオン(H+)が海水15中に遊離するためpHが下がり、硫黄分吸収海水23には多量の硫黄分が吸収される。このため、硫黄分吸収海水23は硫黄分を高濃度に含んでいる。
Due to this seawater desulfurization, H 2 SO 3 generated by the gas-liquid contact between the sea water 15 and the exhaust gas 22 is dissociated and hydrogen ions (H + ) are liberated in the sea water 15, so that the pH is lowered, and the sulfur-absorbing sea water 23 A large amount of sulfur is absorbed. For this reason, sulfur content absorption seawater 23 contains sulfur content in high concentration.
このとき、硫黄分吸収海水23のpHとしては、例えば3~6程度となる。そして、排煙脱硫吸収塔11で硫黄分を吸収した硫黄分吸収海水23は、排煙脱硫吸収塔11の塔底部に貯留される。排煙脱硫吸収塔11の塔底部に貯留された硫黄分吸収海水23は、硫黄分吸収海水排出ラインL4を介して入口側希釈混合槽12に送給される。
この入口側希釈混合槽12に供給された硫黄分吸収海水23は、入口側希釈混合槽12に供給される復水器からの海水15及び希釈用の海水15aと混合されて希釈され、酸性混合海水24となる。 At this time, the pH of the sulfur-absorbingseawater 23 is, for example, about 3 to 6. And the sulfur content absorption seawater 23 which absorbed the sulfur content in the flue gas desulfurization absorption tower 11 is stored in the tower bottom part of the flue gas desulfurization absorption tower 11. The sulfur-absorbing seawater 23 stored at the bottom of the flue gas desulfurization absorption tower 11 is fed to the inlet side dilution / mixing tank 12 via the sulfur-absorbing seawater discharge line L 4 .
The sulfur-absorbingseawater 23 supplied to the inlet side dilution / mixing tank 12 is mixed with the seawater 15 from the condenser and the seawater 15a for dilution supplied to the inlet side dilution / mixing tank 12, and diluted to be acidic mixed. It becomes seawater 24.
この入口側希釈混合槽12に供給された硫黄分吸収海水23は、入口側希釈混合槽12に供給される復水器からの海水15及び希釈用の海水15aと混合されて希釈され、酸性混合海水24となる。 At this time, the pH of the sulfur-absorbing
The sulfur-absorbing
また、排煙脱硫吸収塔11で脱硫された浄化ガス25は煙突26から大気中に放出される。なお、ボイラ21と排煙脱硫吸収塔11との間には集塵手段27が設けられ、排ガス22中の煤塵等を除去している。
Further, the purified gas 25 desulfurized in the flue gas desulfurization absorption tower 11 is released from the chimney 26 into the atmosphere. A dust collecting means 27 is provided between the boiler 21 and the flue gas desulfurization absorption tower 11 to remove dust and the like in the exhaust gas 22.
なお、排ガス22の脱硫率は、排煙脱硫吸収塔11に供給される排ガス22中の入口SO2濃度と出口SO2濃度との比(出口SO2濃度/入口SO2濃度)や、脱硫用の海水15及び硫黄分吸収海水23の海水性状に基づいて別途調整される。
The desulfurization rate of the exhaust gas 22 is determined by the ratio of the inlet SO 2 concentration to the outlet SO 2 concentration in the exhaust gas 22 supplied to the flue gas desulfurization absorption tower 11 (outlet SO 2 concentration / inlet SO 2 concentration), The seawater 15 and the sulfur-absorbing seawater 23 are separately adjusted based on the seawater properties.
排煙脱硫吸収塔11における、排ガス22の入口および出口には、排ガス22の入口SO2濃度および出口SO2濃度を測定するためのSO2濃度計が設けられている。
In the flue gas desulfurization absorption tower 11, SO 2 concentration meters for measuring the inlet SO 2 concentration and the outlet SO 2 concentration of the exhaust gas 22 are provided at the inlet and outlet of the exhaust gas 22.
そして、硫黄分吸収海水23と海水15とが混合された酸性混合海水24は、入口側希釈混合槽12の下流側に設けられている酸化槽13に送給される。酸化槽13には、酸性混合海水24の水質回復処理を行う曝気手段である海水脱硫用散気装置30が設けられている。
Then, the acidic mixed seawater 24 in which the sulfur-absorbing seawater 23 and the seawater 15 are mixed is supplied to the oxidation tank 13 provided on the downstream side of the inlet side dilution mixing tank 12. The oxidation tank 13 is provided with a seawater desulfurization air diffuser 30 which is an aeration means for performing water quality recovery processing of the acidic mixed seawater 24.
海水脱硫用散気装置30は、空気31を供給する空気導入手段である酸化用空気ブロア32と、空気31を送給する空気供給管33と、空気供給管33から分岐される散気管34と、空気31を酸化槽13内の酸性混合海水24に供給する噴出用の孔(図1では図示せず)35とを有するものである。
The seawater desulfurization aeration apparatus 30 includes an oxidation air blower 32 that is an air introduction means for supplying air 31, an air supply pipe 33 that supplies the air 31, and an air diffusion pipe 34 that is branched from the air supply pipe 33. , And an ejection hole (not shown in FIG. 1) 35 for supplying the air 31 to the acidic mixed seawater 24 in the oxidation tank 13.
酸化用空気ブロア32により外部の空気31が散気管34を介して孔35から酸化槽13内に送り込まれ、下記式(II)のような酸素の溶解を生じる。酸化槽13において酸性混合海水24中の硫黄分が空気31と接触して下記式(III)~(V)のような亜硫酸水素イオン(HSO3
-)の酸化反応と、重炭酸イオン(HCO3
-)の脱炭酸反応とを生じ、酸性混合海水24は水質回復されて水質回復海水29となり、排出ラインL7を介して海16に放流される。
O2(G) → O2(L)・・・(II)
HSO3 - + 1/2O2 → SO4 2- + H+ ・・・(III)
HCO3 - + H+ → CO2(G) + H2O ・・・(IV)
CO3 2- +2H+ → CO2(G) + H2O ・・・(V) Theexternal air 31 is sent from the hole 35 into the oxidation tank 13 through the air diffuser 34 by the oxidizing air blower 32, and the oxygen is dissolved as shown in the following formula (II). In the oxidation tank 13, the sulfur content in the acidic mixed seawater 24 comes into contact with the air 31, and an oxidation reaction of bisulfite ions (HSO 3 − ) as shown in the following formulas (III) to (V) and bicarbonate ions (HCO 3 - ) Decarboxylation reaction occurs, and the acidic mixed seawater 24 is recovered in water quality to become water quality recovered seawater 29 and discharged into the sea 16 via the discharge line L7.
O 2 (G) → O 2 (L) (II)
HSO 3 − + 1 / 2O 2 → SO 4 2− + H + (III)
HCO 3 − + H + → CO 2 (G) + H 2 O (IV)
CO 3 2- + 2H + → CO 2 (G) + H 2 O (V)
O2(G) → O2(L)・・・(II)
HSO3 - + 1/2O2 → SO4 2- + H+ ・・・(III)
HCO3 - + H+ → CO2(G) + H2O ・・・(IV)
CO3 2- +2H+ → CO2(G) + H2O ・・・(V) The
O 2 (G) → O 2 (L) (II)
HSO 3 − + 1 / 2O 2 → SO 4 2− + H + (III)
HCO 3 − + H + → CO 2 (G) + H 2 O (IV)
CO 3 2- + 2H + → CO 2 (G) + H 2 O (V)
これにより、酸性混合海水24のpHを上昇させると共に、化学的酸素要求量(COD)を低減することができ、水質回復海水29のpH、溶存酸素(DO)濃度、化学的酸素要求量(COD)を海16へ放流可能なレベルとして放出することができる。
As a result, the pH of the acidic mixed seawater 24 can be raised and the chemical oxygen demand (COD) can be reduced, and the pH, dissolved oxygen (DO) concentration, chemical oxygen demand (COD) of the water quality recovery seawater 29 can be reduced. ) Can be released to the sea 16 as a level that can be released.
次に、本実施例に係る海水脱硫用散気装置について、図2~図7を参照して説明する。図2は、海水脱硫用散気装置の概略図である。図3は、酸化槽内に配置される空気供給管及び散気管の断面図である。図4は、散気管の斜視図である。図5-1及び図5-2は、散気管の断面図である。図6は、ノズルを設けた散気管の斜視図である。図7は、図6の断面図である。
Next, the diffuser for seawater desulfurization according to the present embodiment will be described with reference to FIGS. FIG. 2 is a schematic view of a diffuser for seawater desulfurization. FIG. 3 is a cross-sectional view of an air supply pipe and a diffuser pipe disposed in the oxidation tank. FIG. 4 is a perspective view of the diffusing tube. 5A and 5B are cross-sectional views of the air diffuser. FIG. 6 is a perspective view of an air diffuser provided with a nozzle. FIG. 7 is a cross-sectional view of FIG.
図2及び図3に示すように、海水脱硫用散気装置30は、海水脱硫用の酸化槽13内に配設され、排ガス中の硫黄分を海水と接触させて海水脱硫することによって生じた硫黄分吸収海水23を含む酸性混合海水24に空気を供給する散気管34と、散気管34に外部から空気導入手段により空気を送給する空気供給管33と、散気管34の(ノズル)の孔35の孔径(d)が5mm以上、好ましくは5mm~50mmであり、散気管34の孔35、35同士のピッチ(P1)が40mm以上、好ましくは40mm~2000mmであり、空気供給管33に配置される散気管34、34同士のピッチ(P2)が500mm以上、好ましくは500mm~4500mm(試験は750mm)である。
As shown in FIGS. 2 and 3, the seawater desulfurization air diffuser 30 is disposed in the oxidation tank 13 for seawater desulfurization, and is generated by bringing the sulfur content in the exhaust gas into contact with seawater and desulfurizing the seawater. A diffuser pipe 34 for supplying air to the acidic mixed seawater 24 containing the sulfur-absorbing seawater 23, an air supply pipe 33 for supplying air to the diffuser pipe 34 from the outside by air introduction means, and (nozzles) of the diffuser pipe 34 The hole diameter (d) of the holes 35 is 5 mm or more, preferably 5 mm to 50 mm, the pitch (P 1 ) between the holes 35, 35 of the air diffuser 34 is 40 mm or more, preferably 40 mm to 2000 mm, and the air supply pipe 33. The pitch (P 2 ) between the diffusing tubes 34, 34 arranged in the above is 500 mm or more, preferably 500 mm to 4500 mm (the test is 750 mm).
ここで、散気管34の孔35の孔径(d)を5~50mm、孔35、35同士のピッチ(P1)を40~2000mm、散気管34、34同士のピッチ(P2)を500~4500mmとすることで、大径の空気を孔35から酸化槽13の酸性混合海水24中に放出することができる。
Here, the hole diameter (d) of the holes 35 of the diffuser tube 34 is 5 to 50 mm, the pitch (P 1 ) between the holes 35 and 35 is 40 to 2000 mm, and the pitch (P 2 ) between the diffuser tubes 34 and 34 is 500 to 500 mm. By setting the length to 4500 mm, large-diameter air can be discharged from the holes 35 into the acidic mixed seawater 24 in the oxidation tank 13.
図2では、散気管34の上部側に孔35を形成しているが、図3及び図4では、散気管34の下部側に孔35を形成している。図3のように、散気管34の下部側に孔35を形成することで、上昇流が形成されるので、より好ましい。
In FIG. 2, the hole 35 is formed on the upper side of the diffuser tube 34, but in FIGS. 3 and 4, the hole 35 is formed on the lower side of the diffuser tube 34. As shown in FIG. 3, by forming the hole 35 on the lower side of the air diffuser 34, an upward flow is formed, which is more preferable.
また、図5-1及び図5-2に示すように、孔35は1つのみならず、複数(図5-2では3つ)形成するようにしてもよい。
Further, as shown in FIGS. 5-1 and 5-2, not only one hole 35 but also a plurality (three in FIG. 5-2) may be formed.
また、図6及び図7に示すように、孔35にノズル36を設置して、ノズル36の先端から空気31を酸化槽13の内部に供給するようにしてもよい。
Further, as shown in FIGS. 6 and 7, a nozzle 36 may be installed in the hole 35, and the air 31 may be supplied into the oxidation tank 13 from the tip of the nozzle 36.
図9は、海水脱硫することによって生じた硫黄分吸収海水23中の吸収SO2量(ΔS)/海水脱硫に用いる海水15中のアルカリ量(TA)と、酸化空気量との関係を示す図である。
FIG. 9 is a diagram showing the relationship between the amount of SO 2 absorbed in the sulfur-absorbing seawater 23 (ΔS) generated by seawater desulfurization / the amount of alkali (TA) in seawater 15 used for seawater desulfurization and the amount of oxidized air. It is.
図9に示すように、硫黄分吸収海水23の海水性状と水質改質のために供給する海水15中のアルカリ量との関係(吸収SO2量(ΔS)/海水中アルカリ量(TA))が、0.2以上の場合に、脱炭酸処理のための本願構成の散気装置を適用するのが好ましい。
As shown in FIG. 9, the relationship between the seawater properties of the sulfur-absorbing seawater 23 and the amount of alkali in the seawater 15 supplied for water quality modification (absorbed SO 2 amount (ΔS) / alkaline amount in seawater (TA)). However, in the case of 0.2 or more, it is preferable to apply the diffuser of the present configuration for the decarboxylation treatment.
ここで、アルカリ量は、海水15中のアルカリ度と海水(量)から求める。このアルカリ度は、復水器から導入される海水15を別途採取して求め、この求めたアルカリ度に酸化槽13に導入される海水量を乗じた値をアルカリ量とする。
なお、アルカリ度とは、海水15中に含まれる炭酸(H2CO3)、炭酸イオン(CO3 2-)、炭酸水素イオン(HCO3 -)、OH-、有機酸や弱酸の塩(ケイ酸、リン酸、ホウ酸)などの酸を消費する成分の含有量である。 Here, the amount of alkali is obtained from the alkalinity inseawater 15 and seawater (amount). This alkalinity is obtained by separately collecting seawater 15 introduced from the condenser, and a value obtained by multiplying the obtained alkalinity by the amount of seawater introduced into the oxidation tank 13 is defined as the alkali amount.
The alkalinity refers to carbonate (H 2 CO 3 ), carbonate ion (CO 3 2− ), bicarbonate ion (HCO 3 − ), OH − , organic acid or weak acid salt (silica) contained inseawater 15. Acid, phosphoric acid, boric acid) and the like.
なお、アルカリ度とは、海水15中に含まれる炭酸(H2CO3)、炭酸イオン(CO3 2-)、炭酸水素イオン(HCO3 -)、OH-、有機酸や弱酸の塩(ケイ酸、リン酸、ホウ酸)などの酸を消費する成分の含有量である。 Here, the amount of alkali is obtained from the alkalinity in
The alkalinity refers to carbonate (H 2 CO 3 ), carbonate ion (CO 3 2− ), bicarbonate ion (HCO 3 − ), OH − , organic acid or weak acid salt (silica) contained in
よって、図9に示すように、ΔS/TA=0.2以上のように硫黄分吸収海水23中のS分濃度が高い場合、本実施例の海水脱硫用散気装置30を用いて、酸化槽13内の酸性混合海水24中に大粒の空気を供給することで、脱炭酸が良好に進行する。
ここで、本発明でΔS/TA=0.2以上と規定するのは、外海への放流地点におけるpHや溶存酸素といった所定の海水性状の要求値を満足するため、硫黄分吸収海水23中のS分濃度が低い場合、溶存酸素濃度を上げることが決定的になる場合が多く、溶存酸素濃度を上げるためには微細空気供給の方が空気を微細化できる分、必要酸化空気量が少なくて済むこととなる。これに対し、硫黄分吸収海水23中のS分濃度が高い場合、中和反応により生成したCO2を海水中から脱炭酸することが決定的になる場合が多く、脱炭酸させるには大量の空気を一度に送れる大径空気供給の方が高効率となる。これら微細空気供給と大径空気供給の、必要空気量の大小関係が逆転するのがΔS/TA=0.2近傍にあたることとなる。 Therefore, as shown in FIG. 9, when the S concentration in the sulfur-absorbingseawater 23 is high, such as ΔS / TA = 0.2 or higher, the seawater desulfurization diffuser 30 of this embodiment is used to oxidize. By supplying a large amount of air into the acidic mixed seawater 24 in the tank 13, decarboxylation proceeds well.
Here, in the present invention, ΔS / TA = 0.2 or more is defined in order to satisfy predetermined seawater property required values such as pH and dissolved oxygen at the discharge point to the open sea. When the S concentration is low, it is often decisive to increase the dissolved oxygen concentration. In order to increase the dissolved oxygen concentration, the amount of required oxidized air is less because the fine air supply can refine the air. It will be over. On the other hand, when the S content concentration in the sulfur-absorbingseawater 23 is high, it often becomes decisive to decarboxylate the CO 2 produced by the neutralization reaction from the seawater. Large diameter air supply that can send air at a time is more efficient. The relationship of the required air quantity between the fine air supply and the large-diameter air supply is reversed in the vicinity of ΔS / TA = 0.2.
ここで、本発明でΔS/TA=0.2以上と規定するのは、外海への放流地点におけるpHや溶存酸素といった所定の海水性状の要求値を満足するため、硫黄分吸収海水23中のS分濃度が低い場合、溶存酸素濃度を上げることが決定的になる場合が多く、溶存酸素濃度を上げるためには微細空気供給の方が空気を微細化できる分、必要酸化空気量が少なくて済むこととなる。これに対し、硫黄分吸収海水23中のS分濃度が高い場合、中和反応により生成したCO2を海水中から脱炭酸することが決定的になる場合が多く、脱炭酸させるには大量の空気を一度に送れる大径空気供給の方が高効率となる。これら微細空気供給と大径空気供給の、必要空気量の大小関係が逆転するのがΔS/TA=0.2近傍にあたることとなる。 Therefore, as shown in FIG. 9, when the S concentration in the sulfur-absorbing
Here, in the present invention, ΔS / TA = 0.2 or more is defined in order to satisfy predetermined seawater property required values such as pH and dissolved oxygen at the discharge point to the open sea. When the S concentration is low, it is often decisive to increase the dissolved oxygen concentration. In order to increase the dissolved oxygen concentration, the amount of required oxidized air is less because the fine air supply can refine the air. It will be over. On the other hand, when the S content concentration in the sulfur-absorbing
図10は、孔からの空気流速(横軸)と酸化速度(左縦軸)、単位空気量あたりの酸化速度(右縦軸)との関係を示す図である。ここで、図10における点線及び実線は、大径空気供給の場合を示す。また、図10において、実線は右縦軸の単位空気あたりの酸化速度、点線は左縦軸の酸化速度を示す。
図10に示すように、酸化速度(左縦軸)は、孔からの空気流速が速いほど増大するが、単位空気量あたりの酸化速度(右縦軸)は、空気流速が100m/sを超えると酸化速度が減少する。 FIG. 10 is a diagram showing the relationship between the air flow rate from the hole (horizontal axis), the oxidation rate (left vertical axis), and the oxidation rate per unit air amount (right vertical axis). Here, the dotted line and the solid line in FIG. 10 indicate the case of large-diameter air supply. In FIG. 10, the solid line represents the oxidation rate per unit air on the right vertical axis, and the dotted line represents the oxidation rate on the left vertical axis.
As shown in FIG. 10, the oxidation rate (left vertical axis) increases as the air flow rate from the hole increases, but the oxidation rate per unit air amount (right vertical axis) exceeds 100 m / s. And the oxidation rate decreases.
図10に示すように、酸化速度(左縦軸)は、孔からの空気流速が速いほど増大するが、単位空気量あたりの酸化速度(右縦軸)は、空気流速が100m/sを超えると酸化速度が減少する。 FIG. 10 is a diagram showing the relationship between the air flow rate from the hole (horizontal axis), the oxidation rate (left vertical axis), and the oxidation rate per unit air amount (right vertical axis). Here, the dotted line and the solid line in FIG. 10 indicate the case of large-diameter air supply. In FIG. 10, the solid line represents the oxidation rate per unit air on the right vertical axis, and the dotted line represents the oxidation rate on the left vertical axis.
As shown in FIG. 10, the oxidation rate (left vertical axis) increases as the air flow rate from the hole increases, but the oxidation rate per unit air amount (right vertical axis) exceeds 100 m / s. And the oxidation rate decreases.
よって、図10に示すように、散気管34の孔35からの噴出流速は、10m/s以上、好ましくは10m/s~100m/sとするのがよい。
Therefore, as shown in FIG. 10, the flow velocity from the hole 35 of the air diffuser 34 is 10 m / s or more, preferably 10 m / s to 100 m / s.
図11は、散気管34、34同士のピッチ(P2)と酸化速度との関係を示す図である。ここで、図11における実線は、大径空気供給の場合を示す。
散気管34、34同士のピッチ(P2)は、あまりにも狭いと上昇する大粒の空気が干渉して、曝気効果が低減するので、少なくとも500mm以上離すのが好ましい。 FIG. 11 is a diagram showing the relationship between the pitch (P 2 ) between the diffusing tubes 34 and 34 and the oxidation rate. Here, the solid line in FIG. 11 shows the case of large-diameter air supply.
When the pitch (P 2 ) between the air diffusers 34 and 34 is too narrow, large air that rises interferes with each other and the aeration effect is reduced. Therefore, it is preferable to separate at least 500 mm or more.
散気管34、34同士のピッチ(P2)は、あまりにも狭いと上昇する大粒の空気が干渉して、曝気効果が低減するので、少なくとも500mm以上離すのが好ましい。 FIG. 11 is a diagram showing the relationship between the pitch (P 2 ) between the diffusing
When the pitch (P 2 ) between the
また、空気の上昇流速を決定し、孔35の孔径と、孔35、35同士のピッチ(P1)を決めると、散気管34、34同士のピッチ(P2)は決定されるが最大で4500mm程度とするのがよい。
Further, when the air ascending flow rate is determined and the hole diameter of the holes 35 and the pitch (P 1 ) between the holes 35 and 35 are determined, the pitch (P 2 ) between the air diffusers 34 and 34 is determined, but the maximum. It is good to be about 4500 mm.
一例としては、散気管34の(ノズル)の孔35の孔径(d)を15mm、散気管34の孔35、35同士のピッチ(P1)を187.5mm、空気供給管33に配置される散気管34、34同士のピッチ(P2)を750mm、流速を10m/sで行った場合、酸化槽13の大きさ(通路の長さ)を従来よりも小さくできると共に、孔径が大きな孔35からの噴出する大粒の空気31で、酸化槽13内の酸性混合海水24中の脱炭酸を助長させることとなる。
As an example, the hole diameter (d) of the (nozzle) hole 35 of the air diffuser 34 is 15 mm, the pitch (P 1 ) between the holes 35 and 35 of the air diffuser 34 is 187.5 mm, and the air supply pipe 33 is disposed. When the pitch (P 2 ) between the air diffusers 34 and 34 is 750 mm and the flow rate is 10 m / s, the size of the oxidation tank 13 (the length of the passage) can be made smaller than before, and the hole 35 having a larger hole diameter. The large air 31 ejected from the air facilitates the decarboxylation in the acidic mixed seawater 24 in the oxidation tank 13.
すなわち、本実施例によれば、孔径が大きな孔35から多量の大粒の空気31を供給して、酸性混合海水24中の溶存CO2を海水から追い出す曝気操作を行うようにしているので、脱炭酸(曝気作用)がスムーズに進行する。
That is, according to the present embodiment, since a large amount of large air 31 is supplied from the hole 35 having a large hole diameter, the aeration operation for expelling the dissolved CO 2 in the acidic mixed seawater 24 from the seawater is performed. Carbonic acid (aeration action) proceeds smoothly.
本実施例では、従来のように微細な空気での水質回復ではなく、大容量での大きな気泡を供給して、海水中のCO2を一気に脱炭酸させる水質回復を行うので、装置のコンパクト化を図ることができる。
In this embodiment, the water quality is not restored with fine air as in the past, but large air bubbles with a large capacity are supplied to recover the water quality by decarboxylating CO 2 in seawater at once. Can be achieved.
表1に、空気流速が10m/s、吸収SO2量(ΔS)/海水中アルカリ量(TA)が0.3のときにおける孔径の大きさと酸化槽の大きさのエアレーション評価を行った。
Table 1 shows the aeration evaluation of the size of the hole diameter and the size of the oxidation tank when the air flow rate is 10 m / s and the absorbed SO 2 amount (ΔS) / alkaline amount in seawater (TA) is 0.3.
表1に示すように、孔径が5mm以上の場合、酸化槽13の大きさ(水路の長さ)が大であり、10mm以上の場合、酸化槽13の大きさが中程度となり、コンパクト化を図ることができた。なお、孔径が3mm以下の場合は、酸化槽13の大きさ(水路の長さ)が特大となり、コンパクト化を図ることができなかった。
ここで、一例として、大型の水路の長さ、幅について例示する。
吸収SO2量(ΔS)/海水中アルカリ量(TA)が0.3の酸性海水を、幅25mの酸化槽でpH6.0、溶存酸素飽和率70%以上まで処理する際、孔径が5mmのときの酸化槽の長さが80mだったが、孔径を10mmにした場合には、酸化槽長さが20mまで縮めることができた。しかし孔径を3mmとすると必要な酸化槽長さが200mとなり、コンパクト化を図ることができないのが判明した。 As shown in Table 1, when the hole diameter is 5 mm or more, the size of the oxidation tank 13 (the length of the water channel) is large, and when the hole diameter is 10 mm or more, the size of theoxidation tank 13 is medium and the compactness is reduced. I was able to plan. When the hole diameter was 3 mm or less, the size of the oxidation tank 13 (the length of the water channel) became extra large, and it was not possible to reduce the size.
Here, as an example, the length and width of a large water channel are illustrated.
When acidic seawater having an absorbed SO 2 amount (ΔS) / seawater alkali amount (TA) of 0.3 is treated in an oxidation tank having a width of 25 m to a pH of 6.0 and a dissolved oxygen saturation of 70% or more, the pore diameter is 5 mm. The length of the oxidation tank was 80 m, but when the hole diameter was 10 mm, the oxidation tank length could be reduced to 20 m. However, it has been found that if the hole diameter is 3 mm, the required oxidation tank length is 200 m, which makes it impossible to achieve compactness.
ここで、一例として、大型の水路の長さ、幅について例示する。
吸収SO2量(ΔS)/海水中アルカリ量(TA)が0.3の酸性海水を、幅25mの酸化槽でpH6.0、溶存酸素飽和率70%以上まで処理する際、孔径が5mmのときの酸化槽の長さが80mだったが、孔径を10mmにした場合には、酸化槽長さが20mまで縮めることができた。しかし孔径を3mmとすると必要な酸化槽長さが200mとなり、コンパクト化を図ることができないのが判明した。 As shown in Table 1, when the hole diameter is 5 mm or more, the size of the oxidation tank 13 (the length of the water channel) is large, and when the hole diameter is 10 mm or more, the size of the
Here, as an example, the length and width of a large water channel are illustrated.
When acidic seawater having an absorbed SO 2 amount (ΔS) / seawater alkali amount (TA) of 0.3 is treated in an oxidation tank having a width of 25 m to a pH of 6.0 and a dissolved oxygen saturation of 70% or more, the pore diameter is 5 mm. The length of the oxidation tank was 80 m, but when the hole diameter was 10 mm, the oxidation tank length could be reduced to 20 m. However, it has been found that if the hole diameter is 3 mm, the required oxidation tank length is 200 m, which makes it impossible to achieve compactness.
この結果、S分が多いプラントでの海水脱硫の場合、消費された溶存酸素(DO)をもとの海水の7割程度に戻しても、海水のpHが放流海水最適値に達成しない場合、従来のような、微細空気の供給により、脱炭酸する場合には、大量の微細な空気を供給することが必要となり、空気ブロアの所内電力が嵩むこととなり、さらには大量の微細な空気を供給する長い酸化槽の通路が必要となっていたが、本実施例のような海水脱硫用散気装置30を用いることで、設備が膨大となることが回避される。
As a result, in the case of seawater desulfurization in a plant with a large amount of S, even if the dissolved oxygen (DO) consumed is returned to about 70% of the original seawater, the pH of the seawater does not reach the optimum value for the discharged seawater, When decarboxylation is performed by supplying fine air as in the past, it is necessary to supply a large amount of fine air, which increases the internal power of the air blower, and also supplies a large amount of fine air. However, the use of the seawater desulfurization air diffuser 30 as in this embodiment avoids an enormous amount of equipment.
以上のように、実施例のような海水脱硫用散気装置30を酸化槽13に配置し、孔35、35同士を一定ピッチ(P1)で配置することで、酸化用の空気31を酸化槽13の内部に分散させることができる。また、酸化用の空気噴出流速及び設置間隔を、本実施例のような所定範囲に設定することで、噴出する空気31に起因する酸化槽13内での流動で酸化用の空気31の分散及び拡散を促進し、酸化槽13全体の酸化能力を向上させることができる。
As described above, the aeration apparatus 30 for seawater desulfurization as in the embodiment is disposed in the oxidation tank 13 and the holes 35 and 35 are disposed at a constant pitch (P 1 ), thereby oxidizing the oxidation air 31. It can be dispersed inside the tank 13. Further, by setting the oxidation air ejection flow rate and the installation interval to the predetermined ranges as in the present embodiment, the dispersion of the oxidation air 31 due to the flow in the oxidation tank 13 caused by the ejected air 31 and Diffusion can be promoted and the oxidation capacity of the entire oxidation tank 13 can be improved.
この結果、S分が多いプラントでの海水脱硫の場合においても、酸化槽13のコンパクト化を図ると共に、設備費低減、酸化用の空気流量の低減を図ることができる。
As a result, even in the case of seawater desulfurization in a plant with a large amount of S, the oxidation tank 13 can be made compact, the equipment cost can be reduced, and the air flow rate for oxidation can be reduced.
本発明による実施例2に係る海水脱硫用散気装置について、図面を参照して説明する。図8は、実施例2に係る海水脱硫用散気装置の構成を示す概略図である。なお、実施例1の装置構成と同一の構成部材については、同一の符号を付して重複する説明は省略する。
図8に示すように、本実施例に係る海水脱硫用散気装置を、海水脱硫用の酸化槽13の入口側と出口側との両方に設置するようにしている。 An aeration apparatus for seawater desulfurization according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a schematic diagram illustrating the configuration of the diffuser for seawater desulfurization according to the second embodiment. In addition, about the component same as the apparatus structure of Example 1, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
As shown in FIG. 8, the diffuser for seawater desulfurization according to the present embodiment is installed on both the inlet side and the outlet side of theoxidation tank 13 for seawater desulfurization.
図8に示すように、本実施例に係る海水脱硫用散気装置を、海水脱硫用の酸化槽13の入口側と出口側との両方に設置するようにしている。 An aeration apparatus for seawater desulfurization according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a schematic diagram illustrating the configuration of the diffuser for seawater desulfurization according to the second embodiment. In addition, about the component same as the apparatus structure of Example 1, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
As shown in FIG. 8, the diffuser for seawater desulfurization according to the present embodiment is installed on both the inlet side and the outlet side of the
本発明により酸化槽13の長さのコンパクト化を図ることができるものの、既存の水路が長い酸化槽に適用する場合、海水への放流点が離れていることとなる。
Although the length of the oxidation tank 13 can be reduced according to the present invention, when the existing water channel is applied to an oxidation tank having a long length, the discharge point to seawater is separated.
例えば放流点での放流海水のpH規制値がpH6.0の場合、水路の長さが長い酸化槽13の入口側のみに海水脱硫用散気装置30Aを有する際、海水通路が長いので、水質回復海水29は酸化され、pHが5.9の水質回復海水29Aに低下する。このpHが低い水質回復海水29Aは、そのままのpHの値(5.9)では放流できない。
For example, when the pH regulation value of the discharged seawater at the discharge point is pH 6.0, the seawater passage is long when the seawater desulfurization air diffuser 30A is provided only on the inlet side of the oxidation tank 13 having a long water channel. The recovered seawater 29 is oxidized and lowered to a water quality recovered seawater 29A having a pH of 5.9. The water quality recovery seawater 29A having a low pH cannot be discharged at the same pH value (5.9).
そこで、酸化槽13の出口側近傍にも海水脱硫用散気装置30Bを設けて、空気31を導入することで、pHを上昇させて、放流規制値のpH値であるpH6.0以上の水質回復海水29とし、放流することができる。
Accordingly, a diffuser 30B for seawater desulfurization is also provided in the vicinity of the outlet side of the oxidation tank 13, and the air 31 is introduced to raise the pH, so that the water quality is pH 6.0 or higher, which is the pH value of the discharge regulation value. The recovered seawater 29 can be discharged.
10 海水脱硫装置
11 排煙脱硫吸収塔
12 入口側希釈混合槽
13 酸化槽
14 出口側希釈混合槽
15 海水
23 硫黄分吸収海水
24 酸性混合海水
30 海水脱硫用散気装置
31 空気
33 空気供給管
34 散気管
35 孔
36 ノズル DESCRIPTION OFSYMBOLS 10 Seawater desulfurization apparatus 11 Flue gas desulfurization absorption tower 12 Inlet side dilution mixing tank 13 Oxidation tank 14 Outlet side dilution mixing tank 15 Seawater 23 Sulfur content absorption seawater 24 Acid mixed seawater 30 Seawater desulfurization diffuser 31 Air 33 Air supply pipe 34 Air diffuser 35 hole 36 nozzle
11 排煙脱硫吸収塔
12 入口側希釈混合槽
13 酸化槽
14 出口側希釈混合槽
15 海水
23 硫黄分吸収海水
24 酸性混合海水
30 海水脱硫用散気装置
31 空気
33 空気供給管
34 散気管
35 孔
36 ノズル DESCRIPTION OF
Claims (4)
- 海水脱硫用の酸化槽内に配設され、排ガス中の硫黄分を海水と接触させて海水脱硫することによって生じた硫黄分吸収海水を含む酸化混合海水に空気を供給する散気管と、
前記散気管に外部から空気導入手段により空気を送給する空気供給管とを備え、
前記散気管の孔径が5mm以上であり、
前記散気管の孔同士のピッチが40mm以上であり、
前記空気供給管に配置される散気管同士のピッチが500mm以上であることを特徴とする海水脱硫用散気装置。 A diffuser pipe disposed in an oxidation tank for seawater desulfurization, supplying air to oxidized mixed seawater containing sulfur-absorbed seawater produced by contacting sulfur in the exhaust gas with seawater and desulfurizing seawater;
An air supply pipe for supplying air from the outside to the diffuser pipe by air introduction means,
The hole diameter of the air diffuser is 5 mm or more,
The pitch between the holes of the air diffuser is 40 mm or more,
An air diffuser for seawater desulfurization, wherein a pitch between air diffusers arranged in the air supply pipe is 500 mm or more. - 請求項1において、
孔から排出される空気の噴出流速が10~100m/sであることを特徴とする海水脱硫用散気装置。 In claim 1,
An air diffuser for seawater desulfurization, wherein the flow velocity of air discharged from the hole is 10 to 100 m / s. - 請求項1又は2の海水脱硫用散気装置を、酸化槽の入口側に有することを特徴とする海水脱硫装置。 A seawater desulfurization apparatus comprising the diffuser for seawater desulfurization according to claim 1 or 2 on an inlet side of an oxidation tank.
- 請求項1又は2の海水脱硫用散気装置を、酸化槽の入口側と出口側とに有することを特徴とする海水脱硫装置。 A seawater desulfurization apparatus comprising the diffuser for seawater desulfurization according to claim 1 or 2 on an inlet side and an outlet side of an oxidation tank.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-204902 | 2013-09-30 | ||
JP2013204902A JP6313945B2 (en) | 2013-09-30 | 2013-09-30 | Air diffuser for seawater desulfurization, seawater desulfurizer equipped with the same, and water quality improvement method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015045957A1 true WO2015045957A1 (en) | 2015-04-02 |
Family
ID=52743098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/074409 WO2015045957A1 (en) | 2013-09-30 | 2014-09-16 | Air diffuser for seawater desulfurization and seawater desulfurization device provided with same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6313945B2 (en) |
MY (1) | MY172570A (en) |
WO (1) | WO2015045957A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108128882A (en) * | 2018-02-05 | 2018-06-08 | 北京龙源环保工程有限公司 | Sea water desulfuration recovery system Simulation experimental method and device |
CN108704446A (en) * | 2018-06-04 | 2018-10-26 | 广州引航者信息科技有限公司 | A kind of marine exhaust desulfurizer and method |
CN110723806A (en) * | 2019-09-23 | 2020-01-24 | 上海蓝魂环保科技有限公司 | Aeration device for seawater after seawater desulfurization reaction of ship |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6189202B2 (en) * | 2013-12-17 | 2017-08-30 | 佐竹化学機械工業株式会社 | Stirrer |
JP2016215092A (en) * | 2015-05-15 | 2016-12-22 | 三菱日立パワーシステムズ株式会社 | Water quality-improving apparatus for seawater desulfurization waste water, and seawater flue gas desulfurization system |
JP2017077537A (en) * | 2015-10-21 | 2017-04-27 | 月島機械株式会社 | Device and method for treating sulfur absorptive solution |
EP3260187A1 (en) * | 2016-06-23 | 2017-12-27 | Yara Marine Technologies AS | System and method for reducing the amount of sulfur oxides in exhaust gas |
CL2018002442A1 (en) * | 2018-04-13 | 2018-10-12 | Jiangnan Environmental Prot Group Inc | Method and device for oxidizing a solution for ammonia desulfurization. |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6268531A (en) * | 1985-09-21 | 1987-03-28 | Unitika Ltd | Method for dissolving gas |
JPH08243582A (en) * | 1995-03-10 | 1996-09-24 | Hitachi Kiden Kogyo Ltd | Aeration process and its device |
JPH09253685A (en) * | 1996-03-22 | 1997-09-30 | Toto Ltd | Aeration apparatus |
JPH10309597A (en) * | 1997-05-09 | 1998-11-24 | Nippon Synthetic Chem Ind Co Ltd:The | Nozzle structure of diffuser pipe |
JP2010234334A (en) * | 2009-03-31 | 2010-10-21 | Mitsubishi Heavy Ind Ltd | Oxidation tank, apparatus for treating seawater, and system for desulfurizing seawater |
JP2012000584A (en) * | 2010-06-18 | 2012-01-05 | Kubota Corp | Air lift pump apparatus and wastewater treatment facility |
JP2012071307A (en) * | 2005-02-24 | 2012-04-12 | Toray Ind Inc | Immersion type membrane separator, method of cleaning air diffuser, and membrane separation method |
JP2012225320A (en) * | 2011-04-22 | 2012-11-15 | Fukushima Seisakusho:Kk | Exhaust emission control device of diesel engine |
JP2012236146A (en) * | 2011-05-11 | 2012-12-06 | Mitsubishi Heavy Ind Ltd | Aeration apparatus and seawater flue gas desulfurization apparatus including the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5641294B2 (en) * | 1972-05-08 | 1981-09-28 | ||
JPS5144699B2 (en) * | 1972-09-29 | 1976-11-30 |
-
2013
- 2013-09-30 JP JP2013204902A patent/JP6313945B2/en active Active
-
2014
- 2014-09-16 MY MYPI2016700296A patent/MY172570A/en unknown
- 2014-09-16 WO PCT/JP2014/074409 patent/WO2015045957A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6268531A (en) * | 1985-09-21 | 1987-03-28 | Unitika Ltd | Method for dissolving gas |
JPH08243582A (en) * | 1995-03-10 | 1996-09-24 | Hitachi Kiden Kogyo Ltd | Aeration process and its device |
JPH09253685A (en) * | 1996-03-22 | 1997-09-30 | Toto Ltd | Aeration apparatus |
JPH10309597A (en) * | 1997-05-09 | 1998-11-24 | Nippon Synthetic Chem Ind Co Ltd:The | Nozzle structure of diffuser pipe |
JP2012071307A (en) * | 2005-02-24 | 2012-04-12 | Toray Ind Inc | Immersion type membrane separator, method of cleaning air diffuser, and membrane separation method |
JP2010234334A (en) * | 2009-03-31 | 2010-10-21 | Mitsubishi Heavy Ind Ltd | Oxidation tank, apparatus for treating seawater, and system for desulfurizing seawater |
JP2012000584A (en) * | 2010-06-18 | 2012-01-05 | Kubota Corp | Air lift pump apparatus and wastewater treatment facility |
JP2012225320A (en) * | 2011-04-22 | 2012-11-15 | Fukushima Seisakusho:Kk | Exhaust emission control device of diesel engine |
JP2012236146A (en) * | 2011-05-11 | 2012-12-06 | Mitsubishi Heavy Ind Ltd | Aeration apparatus and seawater flue gas desulfurization apparatus including the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108128882A (en) * | 2018-02-05 | 2018-06-08 | 北京龙源环保工程有限公司 | Sea water desulfuration recovery system Simulation experimental method and device |
CN108704446A (en) * | 2018-06-04 | 2018-10-26 | 广州引航者信息科技有限公司 | A kind of marine exhaust desulfurizer and method |
CN110723806A (en) * | 2019-09-23 | 2020-01-24 | 上海蓝魂环保科技有限公司 | Aeration device for seawater after seawater desulfurization reaction of ship |
CN110723806B (en) * | 2019-09-23 | 2021-11-16 | 上海蓝魂环保科技有限公司 | Aeration device for seawater after seawater desulfurization reaction of ship |
Also Published As
Publication number | Publication date |
---|---|
JP6313945B2 (en) | 2018-04-18 |
JP2015066526A (en) | 2015-04-13 |
MY172570A (en) | 2019-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6313945B2 (en) | Air diffuser for seawater desulfurization, seawater desulfurizer equipped with the same, and water quality improvement method | |
JP5259964B2 (en) | Seawater flue gas desulfurization system | |
JP2012115764A (en) | Wastewater channel of seawater desulfurization apparatus and seawater flue gas desulfurization system | |
JP6462359B2 (en) | Method and apparatus for desulfurization of exhaust gas containing sulfurous acid gas | |
TWI488682B (en) | Seawater desulfurization system and power generation system | |
JP2012179521A (en) | Seawater flue-gas desulfurization system, and power generating system | |
JP2012179521A5 (en) | ||
WO2013118683A1 (en) | Desulfurization seawater processing system | |
WO2014156984A1 (en) | Seawater flue gas desulfurization apparatus and operating method therefor | |
JP2015066526A5 (en) | Air diffuser for seawater desulfurization, seawater desulfurizer equipped with the same, and water quality improvement method | |
JP5186396B2 (en) | Seawater desulfurization equipment | |
WO2013115108A1 (en) | Oxidation tank, seawater flue-gas desulfurization system and power generation system | |
JP5437151B2 (en) | Flue gas desulfurization apparatus and oxygen combustion apparatus and method provided with the same | |
WO2014196458A1 (en) | Device for desulfurization with seawater and system for desulfurization with seawater | |
TWI392655B (en) | Desulfurization seawater treatment method | |
JP3836048B2 (en) | Wet flue gas desulfurization method and apparatus | |
EP2851344A1 (en) | Method and system for seawater foam control | |
JP2012236146A (en) | Aeration apparatus and seawater flue gas desulfurization apparatus including the same | |
JP6285773B2 (en) | Wastewater treatment method for exhaust gas treatment equipment | |
CN203507812U (en) | Single-tower double-medium desulfurizer | |
JP6742830B2 (en) | Seawater plant with tilted aeration and mixed automatic recovery | |
JP5991664B2 (en) | Flue gas desulfurization system | |
CN105399241A (en) | Desulfurized sea water quality restoration device and method without secondary pollution | |
JP2012239922A (en) | Seawater flue gas desulfurization apparatus | |
KR100421463B1 (en) | Control method for sufite ion concentration in the circulation water of the flue gas disulfurization equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14848315 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201600587 Country of ref document: ID |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14848315 Country of ref document: EP Kind code of ref document: A1 |