JPS6268531A - Method for dissolving gas - Google Patents
Method for dissolving gasInfo
- Publication number
- JPS6268531A JPS6268531A JP60207761A JP20776185A JPS6268531A JP S6268531 A JPS6268531 A JP S6268531A JP 60207761 A JP60207761 A JP 60207761A JP 20776185 A JP20776185 A JP 20776185A JP S6268531 A JPS6268531 A JP S6268531A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- liquid
- bubbles
- film
- porous laminar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/232—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
- B01F23/2322—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles using columns, e.g. multi-staged columns
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、酸素、オゾンなどの気体を上水あるいは下水
などの液体に効率良く溶解する気体溶解方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas dissolving method for efficiently dissolving gases such as oxygen and ozone into liquids such as tap water or sewage.
従来の気体溶解方法としては、上水へのオゾンの溶解や
下水の活性汚泥処理における下水への酸素などの溶解に
見られるように溶解すべき気体を微細気泡として液体中
に噴出せしめる方法が採用されているにすぎない。Conventional gas dissolution methods involve ejecting the gas to be dissolved into the liquid as fine bubbles, as seen in the dissolution of ozone into tap water and the dissolution of oxygen into sewage during activated sludge treatment. It's just that it's being done.
しかし、これらの方法では気泡の微細化に多大のエネル
ギーを要するほか、気泡は通常水深4m全約10秒で上
昇するため、気液の接触効率を増大させるためには常時
気泡を発生させなければならず、この多量の気泡全発生
させるために多量のエネルギーを要する欠点があった。However, these methods require a large amount of energy to make the bubbles fine, and the bubbles usually rise to a depth of 4 meters in about 10 seconds, so in order to increase the gas-liquid contact efficiency, it is necessary to generate bubbles constantly. However, there was a drawback that a large amount of energy was required to generate all of this large amount of bubbles.
本発明は、かかる現状に鑑み、気体全溶解すべき液体を
充填した気体溶解槽の底部に設けた直径1〜3mの孔を
有する散気部材より気体を気泡として噴出せしめ、該散
気部材の上方に設けた細孔を有する多段の多孔性層状物
にて各多孔性層状物の下方に気泡を膜状にして保持せし
めて液体と接触させること全特徴とするものである。In view of the current situation, the present invention has been developed by ejecting gas as bubbles from an aeration member having holes with a diameter of 1 to 3 m provided at the bottom of a gas dissolving tank filled with a liquid in which all gas is to be dissolved. The entire feature is that air bubbles are held in the form of a film below each porous layered material in a multi-stage porous layered material having pores provided above, and brought into contact with a liquid.
本発明では、気体溶解槽の底部に設けた比較的簡易な直
径1〜3+mnの孔を有する散気部材より気体音液体中
に気泡として噴出せしめるので、比較的小さいエネルギ
ーで気泡を発生させることができ、しかも散気部材から
上昇した気泡は多段に設けた多孔性層状物にて項次多段
の気体膜として保持されながら上昇するので、多孔性層
状物の下部には気体膜が常時形成され、この上下両面に
おいて常時、液体と接触することとなり、微細気泡全発
生させる従来の方法に比して少ない気体供給量で高い溶
解効率を得ることが可能である。In the present invention, gas bubbles are ejected into the liquid from a relatively simple aeration member having holes with a diameter of 1 to 3+ mm provided at the bottom of the gas dissolving tank, so that bubbles can be generated with relatively small energy. Moreover, the air bubbles rising from the air diffuser are held in the multi-stage gas film by the porous layered material provided in multiple stages, so that a gas film is constantly formed at the bottom of the porous layered material. Since both the upper and lower surfaces are constantly in contact with the liquid, it is possible to obtain high dissolution efficiency with a smaller amount of gas supplied than in the conventional method in which all microbubbles are generated.
以下1本発明を実施例に従って詳細に説明することとす
る。Hereinafter, the present invention will be explained in detail according to examples.
図において、1は気体を溶解すべき液体を入れた気体溶
解槽にして、該気体溶解槽1の底部には直径が1〜3閣
の多数の孔を備えた散気管2.・・が設けられている。In the figure, reference numeral 1 denotes a gas dissolving tank containing a liquid in which gas is to be dissolved, and the bottom of the gas dissolving tank 1 is equipped with an aeration pipe 2, which is equipped with a large number of holes with a diameter of 1 to 3 mm. ... is provided.
この散気管2. の孔径は約1〜3朋であるので、微細
気泡は発生しないが、気泡発生に要する消費エネルギー
は微細気泡音生ぜしめる散気部材に比して著しく低減せ
しめることができる。This air diffuser 2. Since the pore diameter is approximately 1 to 3 mm, no microbubbles are generated, but the energy consumption required for bubble generation can be significantly reduced compared to an air diffuser that produces microbubble noise.
3、 は、多孔性層状物4.・・の外周下部に気泡の側
方への逸脱全防止する枠体5.・全装着してなる気体膜
形成用部材にして、枠体5.・は気体溶解槽1内に直立
せしめた支柱6. に固定されている。多孔性層状物4
. は散気管2.−より上昇した気泡が一時的に保持さ
れ、かつ微細気泡が通過しうる細孔全方するため、多孔
性層状物4、 の下方には気泡が徐々に集積され、気体
膜A、・・・が形成され、実際に形成される気体膜A。3. is a porous layered material; 4. A frame body that completely prevents air bubbles from escaping to the side at the lower part of the outer periphery of 5.・The gas film forming member is completely attached to the frame body 5. - is a column 6 that stands upright in the gas dissolving tank 1. is fixed. Porous layered material 4
.. is a diffuser pipe 2. - Since the air bubbles that have risen further are temporarily retained and are filled throughout the pores through which fine air bubbles can pass, the air bubbles gradually accumulate below the porous layered material 4, forming a gas film A,... gas film A that is actually formed.
−・・の最大限の厚みは、多孔性層状物4. の細孔の
大きさ、多孔性層状物4.・の素材の親水性。- The maximum thickness of the porous layered material 4. Pore size, porous layered material4.・Hydrophilicity of the material.
液体の表面張力などにより変化するが、これらの要素が
特定された状態においては、気体膜A、・・が前記要素
によって決定される所定の厚みに達すると、均衡が破れ
て多孔性層状物4.・・の全面から一斉に気泡が発生し
、上方の段に至るまで上昇することとなる。そこで、実
際に形成される最大限の気体膜A、・・・の厚みよりも
枠体5.・・の厚み(上下方向の長さ)金大きく設定し
ておけば、気体膜A、・・・全形成する気体は側方から
逸脱するととなく常に多孔性層状物4.・の細孔を通過
して気泡を形成することとなる。多孔性層状物4.・・
・の細孔の大きさが小さいなどの理由により気体膜の厚
みが過度に厚く形成される場合においては、後述のよう
に気体膜形成用部材3に例えば間欠的に衝撃力を与えれ
ば、気体膜全比較的に薄い状態に保持することができる
。気体膜が所定の厚みに達して均衡が破れて気泡が形成
される場合においても一部の気体は多孔性層状物4.
の下面に残留し、常に少なくともいくらかの気体膜全保
持することとなる。このため、気体膜と液体とは常時か
なりの広い面積で接触することとな如、消費エネルギー
を要しない割に気体溶解効率を高率に維持することがで
きる。多孔性層状物4.・・は例えば多孔板、網状物、
布状物などであって、その細孔の大きさは0.2〜2.
0閣が望ましい。また、枠体5.・の厚みは30〜10
0咽が望ましい。It varies depending on the surface tension of the liquid, etc., but when these elements are specified, when the gas film A,... reaches a predetermined thickness determined by the elements, the equilibrium is broken and the porous layered material 4 .. Bubbles are generated all at once from the entire surface of ... and rise to the upper stage. Therefore, the maximum thickness of the gas film A, . If the thickness (length in the vertical direction) of . . . is set large, the gas film A, .・It will pass through the pores and form bubbles. Porous layered material4.・・・
If the gas film is formed to be excessively thick due to reasons such as small pore size, if an impact force is applied intermittently to the gas film forming member 3 as described later, the gas The entire membrane can be kept relatively thin. Even when the gas film reaches a predetermined thickness and the equilibrium is broken and bubbles are formed, some of the gas still remains in the porous layered layer 4.
will remain on the underside of the gas, always retaining at least some gas film. Therefore, the gas film and the liquid are always in contact over a fairly wide area, and the gas dissolution efficiency can be maintained at a high rate even though no energy consumption is required. Porous layered material4. ...for example, perforated plates, net-like materials,
It is a cloth-like material, etc., and its pore size is 0.2 to 2.
0 cabinet is desirable. Also, the frame body 5.・Thickness is 30~10
Zero throat is desirable.
第3図は清水中における多孔性層状物の細孔の大きさく
目開き)と気体膜の厚みとの関係の一例全示すものであ
って、これより細孔の大きさが約0.2〜2.0膿の場
合に適度の気体膜が形成されることが分る。なお、前述
のように気体膜の厚みは各種要素によって異なるが、第
3図に示す例では、ポリエステルタック(5)、木綿ガ
ーゼ(B)、ボ、り塩化ビニリデンネット(0を使用し
た。Figure 3 shows an example of the relationship between the pore size and gas membrane thickness of a porous layered material in fresh water. It can be seen that a moderate gas film is formed in the case of 2.0 pus. As mentioned above, the thickness of the gas film varies depending on various factors, but in the example shown in FIG. 3, polyester tack (5), cotton gauze (B), and polyvinylidene chloride net (0) were used.
7は気体膜形成用部材3に衝撃を付与するための衝撃付
与部材にして、該衝撃部材7は移動規制部材8.・・・
にて上下方向にのみ可動とされた縦杆9に設けた突起1
0に2回転駆動される回転部材11の爪部12が間欠的
に下方より当接して持上げ、離すことにより縦杆9全支
柱6の先端上に落下せしめ、支柱6を介して気体膜形成
用部材3に上下動を伴う衝撃2与え、気体膜の過度の厚
みの増大を防止するものである。7 is an impact applying member for applying an impact to the gas film forming member 3, and the impact member 7 is a movement regulating member 8. ...
A protrusion 1 provided on a vertical rod 9 that is movable only in the vertical direction
The claws 12 of the rotating member 11 which is driven twice at zero rotate intermittently from below, lift it up, and when released, cause the vertical rod 9 to fall onto the tips of all the columns 6, forming a gas film via the columns 6. A shock 2 is applied to the member 3 with vertical movement to prevent an excessive increase in the thickness of the gas film.
下水処理の一例として、BODが200ppmである生
活排水の標準活性汚泥法の処理装置に6段の気体膜形成
用部材を設置し、空気の送気量を標準活性汚泥法の1/
3として運転したところ、BOD除去率97%の処理水
が得られた。As an example of sewage treatment, a 6-stage gas film forming member is installed in a standard activated sludge method treatment equipment for domestic wastewater with a BOD of 200 ppm, and the amount of air supplied is reduced to 1/1 of the standard activated sludge method.
When operated under No. 3, treated water with a BOD removal rate of 97% was obtained.
以上の説明から明らかなように、本発明によれば比較的
大きな直径の孔を有する簡易な散気部材より気泡を発生
せしめるので、省エネルギーで気泡全発生させることが
できると共に、散気部材から上昇した気泡は第一段目よ
り順次、多段の多孔性層状物にて保持され、気体膜が常
時、形成されるので、気体は多孔性層状物を通過するさ
いに生ずる気泡としてのみならず、気体膜の上下両面に
おいても液体と常時、接触することとなり、微細気泡全
発生させる従来の場合に比して少ない気体供給量にて気
液の高い接触効率および溶解効率を維持することが可能
である。As is clear from the above explanation, according to the present invention, air bubbles are generated from a simple air diffuser member having holes with a relatively large diameter, so that all the air bubbles can be generated with energy saving, and the air bubbles rise from the air diffuser member. The bubbles are held in the multi-stage porous layered material in sequence from the first stage, and a gas film is constantly formed. Both the upper and lower surfaces of the membrane are in constant contact with the liquid, making it possible to maintain high gas-liquid contact efficiency and dissolution efficiency with a smaller gas supply amount than in the conventional case where all microbubbles are generated. .
例を示す側断面図、第2図は多孔性層状物の斜面図、第
3図は多孔性層状物の細孔の大きさと気体膜の厚みとの
関係を示すグラフである。FIG. 2 is a side sectional view showing an example, FIG. 2 is a perspective view of the porous layered material, and FIG. 3 is a graph showing the relationship between the pore size and the thickness of the gas film of the porous layered material.
1:気体溶解槽 2:散気萱 4:多孔性層状物 A:気体膜 第3図1: Gas dissolution tank 2: Diffuser 4: Porous layered material A: Gas membrane Figure 3
Claims (1)
けた直径1〜3mmの孔を有する散気部材より気体を気
泡として噴出せしめ、該散気部材の上方に設けた細孔を
有する多段の多孔性層状物にて各多孔性層状物の下方に
気泡を膜状にして保持せしめて液体と接触させることを
特徴とする気体溶解方法。A multi-stage system in which gas is ejected as bubbles from a diffuser member having holes with a diameter of 1 to 3 mm provided at the bottom of a gas dissolving tank filled with a liquid to be dissolved, and having pores provided above the diffuser member. A gas dissolving method characterized in that air bubbles are held in the form of a film below each porous layered material and brought into contact with a liquid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60207761A JPS6268531A (en) | 1985-09-21 | 1985-09-21 | Method for dissolving gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60207761A JPS6268531A (en) | 1985-09-21 | 1985-09-21 | Method for dissolving gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6268531A true JPS6268531A (en) | 1987-03-28 |
JPH0119930B2 JPH0119930B2 (en) | 1989-04-13 |
Family
ID=16545109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60207761A Granted JPS6268531A (en) | 1985-09-21 | 1985-09-21 | Method for dissolving gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6268531A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015045957A1 (en) * | 2013-09-30 | 2015-04-02 | 三菱日立パワーシステムズ株式会社 | Air diffuser for seawater desulfurization and seawater desulfurization device provided with same |
JP2020025917A (en) * | 2018-08-10 | 2020-02-20 | 日本特殊陶業株式会社 | Fine bubble generator, fine bubble generating method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4857262A (en) * | 1972-12-20 | 1973-08-11 |
-
1985
- 1985-09-21 JP JP60207761A patent/JPS6268531A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4857262A (en) * | 1972-12-20 | 1973-08-11 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015045957A1 (en) * | 2013-09-30 | 2015-04-02 | 三菱日立パワーシステムズ株式会社 | Air diffuser for seawater desulfurization and seawater desulfurization device provided with same |
JP2015066526A (en) * | 2013-09-30 | 2015-04-13 | 三菱重工業株式会社 | Air diffuser for seawater desulfurization and seawater desulfurization apparatus with the same |
JP2020025917A (en) * | 2018-08-10 | 2020-02-20 | 日本特殊陶業株式会社 | Fine bubble generator, fine bubble generating method |
Also Published As
Publication number | Publication date |
---|---|
JPH0119930B2 (en) | 1989-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3341427B2 (en) | Immersion membrane equipment | |
JP4426596B2 (en) | Air diffuser | |
Gillot et al. | Prediction of alpha factor values for fine pore aeration systems | |
JP2001212587A (en) | Method and apparatus for diffusing air of membrane separation activated sludge method | |
WO1999033552A1 (en) | Vapor/liquid mixer and polluted water purification apparatus using the mixer | |
JPH11207162A (en) | Pressure type oxygen dissolving method | |
JP6151578B2 (en) | Wastewater treatment equipment | |
US11325079B2 (en) | Combined coarse and fine bubble diffuser | |
JPS6268531A (en) | Method for dissolving gas | |
JP6451724B2 (en) | Biological activated carbon treatment equipment | |
JP4004874B2 (en) | Aeration method and apparatus | |
JP3953127B2 (en) | Aeration treatment equipment | |
JPH0337759Y2 (en) | ||
JP3181523B2 (en) | Sewage purification equipment | |
JP2002224685A (en) | Activated sludge process equipment and method for operating the same | |
JP2003275546A (en) | Apparatus for treating membrane separated waste water | |
CN213680013U (en) | Activated sludge sewage treatment device | |
JPH039835Y2 (en) | ||
JP3569978B2 (en) | Aerobic treatment method for wastewater containing organic matter and its aerobic treatment device | |
JPH02233199A (en) | Fixed bed deep tank wastewater treatment method | |
JPH06285482A (en) | Gas-liquid contact device and gas-liquid contact system | |
JPH04290594A (en) | Method and device for biological treatment | |
JPS62201693A (en) | Treatment of liquid | |
JP3156173B2 (en) | Pressurized floating purification device | |
JPH02135196A (en) | Sewage and waste water treating device |