[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015045450A1 - 樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含有する光学用粘着剤 - Google Patents

樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含有する光学用粘着剤 Download PDF

Info

Publication number
WO2015045450A1
WO2015045450A1 PCT/JP2014/059136 JP2014059136W WO2015045450A1 WO 2015045450 A1 WO2015045450 A1 WO 2015045450A1 JP 2014059136 W JP2014059136 W JP 2014059136W WO 2015045450 A1 WO2015045450 A1 WO 2015045450A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
resin composition
monomer unit
derived
group
Prior art date
Application number
PCT/JP2014/059136
Other languages
English (en)
French (fr)
Inventor
哲史 元田
大輔 加登
恵 平田
Original Assignee
株式会社クラレ
アミリス, インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ, アミリス, インコーポレイティド filed Critical 株式会社クラレ
Priority to JP2015538930A priority Critical patent/JPWO2015045450A1/ja
Priority to KR1020167007537A priority patent/KR102159419B1/ko
Priority to CN201480052669.3A priority patent/CN105829372B/zh
Publication of WO2015045450A1 publication Critical patent/WO2015045450A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • C08F290/128Polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J115/00Adhesives based on rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J147/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Adhesives based on derivatives of such polymers

Definitions

  • the present invention relates to a resin composition containing a polymer containing a monomer unit derived from farnesene, a cured product obtained by curing the polymer, and an optical pressure-sensitive adhesive containing this resin composition.
  • Patent Document 1 discloses a composition comprising polyisoprene having a (meth) acryloyl group in the molecule, a monofunctional (meth) acrylate monomer and a radical polymerization initiator, and further having a secondary amino group in the molecule.
  • a curable resin composition containing an unhindered amine compound is described.
  • Patent Document 2 describes a thermosetting resin composition containing an epoxy resin, a curing agent, and an epoxidized polybutadiene having a specific number average molecular weight and an epoxy group in the molecule.
  • Patent Documents 3 and 4 describe polymers of ⁇ -farnesene, but their practical use has not been sufficiently studied.
  • the curable resin compositions described in Patent Documents 1 and 2 have room for improvement in terms of viscosity from the viewpoint of improving coatability, and the cured product is required for electronic devices having a screen such as liquid crystal. There was room for improvement in terms of strength, flexibility and transparency.
  • the present invention has been made in view of the above circumstances, a resin composition capable of giving a cured product having a low viscosity and excellent in strength, flexibility and transparency, a cured product obtained by curing the resin composition, and An optical pressure-sensitive adhesive containing this resin composition is provided.
  • the present inventors have found that a polymer having a polymerizable functional group containing a monomer unit derived from a conjugated diene compound and a polymerizable functional group containing a monomer unit derived from farnesene.
  • the present invention was completed by finding that the resin composition containing a polymer not having a specific ratio has a low viscosity and can give a cured product excellent in strength, flexibility, hardness and transparency. .
  • the polymer (B) and the polymerization initiator (C) that are not present are contained, and the mass ratio [(A) / (B)] of the polymer (A) and the polymer (B) is 0.01 to 100.
  • cured material which hardened this, and the optical adhesive containing this resin composition Can provide.
  • the resin composition of the present invention includes a monomer unit (a1) derived from a conjugated diene compound, a polymer (A) having a polymerizable functional group, a monomer unit (b1) derived from farnesene, and polymerized. It contains a polymer (B) having no possible functional group and a polymerization initiator (C), and the mass ratio [(A) / (B)] of the polymer (A) to the polymer (B) is 0. 01 to 100.
  • the polymer (A) includes a monomer unit (a1) derived from a conjugated diene compound and has a polymerizable functional group.
  • the conjugated diene compound as the monomer unit (a1) is preferably farnesene and a conjugated diene compound having 12 or less carbon atoms.
  • Examples of the conjugated diene compound having 12 or less carbon atoms include butadiene, isoprene, 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-octadiene, 1,3-cyclohexadiene, 2-methyl-1,3-octadiene, Examples include 1,3,7-octatriene, myrcene and chloroprene. Of these, farnesene, isoprene and butadiene are more preferred. These conjugated diene compounds may be used individually by 1 type, and may use 2 or more types together.
  • the monomer unit derived from farnesene may be a monomer unit derived from ⁇ -farnesene, or may be a monomer unit derived from ⁇ -farnesene represented by the following formula (I). However, from the viewpoint of ease of production, a monomer unit derived from ⁇ -farnesene is preferable. Note that ⁇ -farnesene and ⁇ -farnesene may be used in combination.
  • Examples of the polymerizable functional group include (meth) acryloyl group, epoxy group, oxetanyl group, vinyl ether group, alkoxysilyl group, (meth) acrylamide group, styrene group, maleimide group, lactone group, lactam group, sulfide group, Examples include a thietane group, an acetonide group, and a thiourea group. Among these, at least one selected from a (meth) acryloyl group, an epoxy group, an oxetanyl group, a vinyl ether group, and an alkoxysilyl group is preferable, and a (meth) acryloyl group is more preferable. These functional groups may have a substituent.
  • “(meth) acryloyl” means “acryloyl or methacryloyl”. In the present specification, “(meth) acryl” means “acryl or methacryl”.
  • a functional group that can be polymerized by polymerizing monomers other than the conjugated diene compound and, if necessary, the conjugated diene compound is used.
  • examples thereof include a method of preparing an unmodified polymer having no polymer and introducing a polymerizable functional group into the unmodified polymer.
  • an unmodified polymer obtained by living anion polymerization of each of the monomers is reacted with a compound for grafting such as maleic anhydride, and then 2-hydroxyethyl methacrylate or the like.
  • a method of reacting a compound having a polymerizable functional group examples include a method of reacting a compound having a polymerizable functional group.
  • Examples of the compound for grafting the unmodified polymer include unsaturated carboxylic acid anhydrides such as maleic anhydride, citraconic anhydride, 2,3-dimethylmaleic anhydride and itaconic anhydride; maleic acid and fumaric acid Unsaturated carboxylic acids such as citraconic acid and itaconic acid; unsaturated carboxylic acid esters such as maleic acid ester, fumaric acid ester, citraconic acid ester and itaconic acid ester; maleic acid amide, fumaric acid amide, citraconic acid amide and itaconic acid Unsaturated carboxylic acid amides such as amides; Unsaturated carboxylic acid imides such as maleic imides, fumaric imides, citraconic imides, itaconic imides; maleimides, vinyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, etc.
  • unsaturated carboxylic acid anhydrides such as male
  • Examples of the compound having a polymerizable functional group include (meth) acrylic acid; 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, (Meth) acrylates such as pentaerythritol monohydroxyacrylate; 2-hydroxyethyl vinyl ether, N- (2-hydroxyethyl) acrylamide, N- (2-hydroxyethyl) methacrylamide, N- (2-hydroxyethyl) maleimide, 4 -Ethenylphenol and the like.
  • the position at which the polymerizable functional group is introduced may be the polymerization terminal or the side chain of the polymer.
  • the said functional group may combine 1 type (s) or 2 or more types.
  • a hydroxyl group with respect to the living terminal of an unmodified polymer obtained by subjecting the conjugated diene compound to living anion polymerization by the method described below Carboxyl group, carbonyl group, thiocarbonyl group, acid halide group, acid anhydride group, thiocarboxylic acid group, aldehyde group, thioaldehyde group, carboxylic acid ester group, amide group, sulfonic acid group, sulfonic acid ester group, phosphoric acid Group, phosphate ester group, amino group, imino group, nitrile group, pyridyl group, quinoline group, epoxy group, thioepoxy group, sulfide group, isocyanate group, isothiocyanate group, silanol group, alkoxysilane, silicon halide group, halogen Government selected from tin oxide group
  • Living anionic polymerization initiators for living anion polymerization of the conjugated diene compound include, for example, methyl lithium, ethyl lithium, n-butyl lithium, sec-butyl lithium, t-butyl lithium, hexyl lithium, phenyl lithium, stilbene lithium and the like.
  • Organic monolithium compounds such as: dilithiomethane, dilithionaphthalene, 1,4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, and the like; sodium naphthalene, Examples include potassium naphthalene.
  • compounds such as diisopropenyl benzene and dibenzyl toluene which react with an organic alkali metal compound and give a polyfunctional organic alkali metal compound.
  • the compound having at least one functional group that undergoes addition reaction with respect to the living terminal include cyclic ethers such as epoxide and oxetane; cyclic amines such as pyrrolidine; cyclic sulfides such as ethylene sulfide.
  • an unmodified polymer is obtained by polymerizing a conjugated diene compound and, if necessary, a monomer other than the conjugated diene compound by the method described below. There is a method of preparing and epoxidizing this unmodified polymer and then reacting a compound having a polymerizable functional group.
  • the compound for epoxidizing the unmodified polymer include peracids such as peracetic acid and perbenzoic acid.
  • Examples of the compound having a polymerizable functional group in these methods include carboxylic acids such as acrylic acid and methacrylic acid.
  • the position at which the polymerizable functional group is introduced may be the polymerization terminal or the side chain of the polymer.
  • the compound which has the said polymerizable functional group may combine 1 type (s) or 2 or more types.
  • an antiaging agent suitable for the unmodified polymer or the modified polymer is used for the purpose of suppressing molecular weight reduction, discoloration and gelation due to deterioration. You may combine.
  • the said anti-aging agent may be used individually by 1 type, and may use 2 or more types together.
  • the addition amount of the antioxidant is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the unmodified polymer or modified polymer.
  • the monomer unit constituting the polymer (A) may consist only of the monomer unit (a1) derived from the conjugated diene compound, and the monomer unit (a1) and conjugated diene derived from the conjugated diene compound. It may consist of a monomer unit (a2) derived from a monomer other than the compound. That is, the unmodified polymer may be obtained by polymerizing only the conjugated diene compound, or may be a copolymer of the conjugated diene compound and a monomer other than the conjugated diene compound.
  • examples of the monomer unit (a2) derived from a monomer other than the conjugated diene compound include monomer units derived from an aromatic vinyl compound.
  • examples of the aromatic vinyl compound include styrene, ⁇ -methyl styrene, 2-methyl styrene, 3-methyl styrene, 4-methyl styrene, 4-propyl styrene, 4-tert-butyl styrene, 4-cyclohexyl styrene, 4-dodecyl.
  • Styrene 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2-vinyl Naphthalene, vinyl anthracene, N, N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, divinylbenzene and the like can be mentioned. Of these, styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferable.
  • the monomer unit (a2) derived from a monomer other than the conjugated diene compound When the monomer unit (a2) derived from a monomer other than the conjugated diene compound is used, the monomer unit (a1) derived from the conjugated diene compound in the copolymer and the monomer other than the conjugated diene compound
  • the ratio of the monomer unit (a2) derived from the monomer other than the conjugated diene compound relative to the total amount of the monomer units (a2) derived is from the viewpoint of reducing the viscosity of the resin composition, and good elongation of the cured film. From the viewpoint of maintaining characteristics and flexibility, it is preferably 1 to 99% by mass, more preferably 1 to 80% by mass, still more preferably 1 to 70% by mass, and even more preferably 1 to 50% by mass.
  • the number average molecular weight (Mn) of the polymer (A) used in the present invention is preferably 1,000 to 1,000,000, more preferably 2,000 to 500,000, more preferably 8,000 to 500,000, and 15,000. To 450,000 are more preferable, 15,000 to 300,000 are more preferable, and 20,000 to 200,000 are more preferable.
  • Mn of the polymer (A) is within the above range, the flexibility and mechanical strength of the cured product are improved and the resin composition has a low viscosity.
  • the number average molecular weight (Mn) in this specification is a number average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the melt viscosity at 38 ° C. of the polymer (A) used in the present invention is preferably 0.1 to 3,000 Pa ⁇ s, more preferably 0.2 to 3,000 Pa ⁇ s, and more preferably 0.2 to 2,800 Pa ⁇ s. s is more preferable, and 0.3 to 2,600 Pa ⁇ s is still more preferable.
  • the melt viscosity of the polymer (A) is within the above range, the resin composition can be uniformly applied to the surface to be coated, so that the coating property is improved.
  • the melt viscosity of the polymer is a value determined by the method described in the examples described later.
  • the number of polymerizable functional groups per molecular chain of the polymer (A) used in the present invention is preferably 1 to 150, more preferably 1.5 to 75, still more preferably 1.5 to 30.
  • the number of polymerizable functional groups per molecular chain is expressed by the following formula from the number average molecular weight (Mn) of the polymer (A) and the functional group equivalent (g / eq) of the polymer (A). Calculated.
  • the functional group equivalent is an amount representing “molecular weight of polymer per functional group”.
  • the functional group equivalent when the polymerizable functional group is a methacryloyl group is referred to as “methacryloyl equivalent”, which means “molecular weight of polymer per methacryloyl group”.
  • the functional group equivalent can be calculated based on the reaction rate of the modifier, or can be determined using various analytical instruments such as infrared spectroscopy and nuclear magnetic resonance spectroscopy.
  • the polymer (A) used in the present invention may be used alone, but two or more kinds of the polymers (A) having different monomer units, molecular weights and functional groups are mixed. It may be used.
  • the content of the polymer (A) in the total amount of the resin composition is preferably 1 to 99% by mass, more preferably 2 to 98% by mass, further preferably 5 to 95% by mass, and still more preferably 10 to 90% by mass. Preferably, 15 to 85% by mass is even more preferable.
  • a cured product having excellent strength, flexibility, and transparency can be provided.
  • the polymer (B) is a polymer containing a farnesene-derived monomer unit (b1) and having no polymerizable functional group. As this farnesene, the same thing as what was demonstrated by the above-mentioned polymer (A) can be used.
  • the monomer unit constituting the polymer (B) may be composed only of the farnesene-derived monomer unit (b1), or derived from a monomer other than the farnesene-derived monomer unit (b1) and farnesene. It may consist of the monomer unit (b2).
  • Examples of the monomer unit (b2) derived from monomers other than farnesene include monomer units derived from conjugated diene compounds and aromatic vinyl compounds.
  • the conjugated diene compound is preferably a conjugated diene compound having 12 or less carbon atoms.
  • Examples of the conjugated diene compound having 12 or less carbon atoms include butadiene, isoprene, 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-octadiene, 1,3-cyclohexadiene, 2-methyl-1,3-octadiene, 1,3,7-octatriene, myrcene, Examples include chloroprene. Of these, isoprene and butadiene are more preferred. These conjugated diene compounds may be used individually by 1 type, and may use 2 or more types together.
  • aromatic vinyl compound examples include styrene, ⁇ -methyl styrene, 2-methyl styrene, 3-methyl styrene, 4-methyl styrene, 4-propyl styrene, 4-tert-butyl styrene, 4-cyclohexyl styrene, 4-dodecyl.
  • Styrene 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2-vinyl And aromatic vinyl compounds such as naphthalene, vinylanthracene, N, N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, and divinylbenzene. Of these, styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferable.
  • the monomer unit (b2) derived from a monomer other than farnesene the monomer unit derived from a monomer other than farnesene (b1) and a monomer other than farnesene in the copolymer
  • the ratio of the monomer unit (b2) derived from the monomer other than farnesene to the total of (b2) is the viewpoint of reducing the viscosity of the resin composition, the viewpoint of improving the curing rate, and the good elongation characteristics of the cured film. From the viewpoint of maintaining flexibility, it is preferably 1 to 99% by mass, more preferably 1 to 80% by mass, still more preferably 1 to 70% by mass, and still more preferably 1 to 50% by mass.
  • the number average molecular weight (Mn) of the polymer (B) used in the present invention is preferably 1,000 to 1,000,000, more preferably 1,000 to 500,000, more preferably 1,000 to 200,000, and 5,000. ⁇ 200,000 is more preferred, and 5,000 to 150,000 is even more preferred.
  • Mn of the polymer (B) is within the above range, the flexibility and mechanical strength of the cured product are improved, and the resin composition has a low viscosity.
  • the melt viscosity at 38 ° C. of the polymer (B) used in the present invention is preferably 0.1 to 3,000 Pa ⁇ s, more preferably 0.2 to 3,000 Pa ⁇ s, and more preferably 0.2 to 2,800 Pa ⁇ s. s is more preferable, and 0.3 to 2,600 Pa ⁇ s is still more preferable.
  • the melt viscosity of the polymer (B) is within the above range, the resin composition can be uniformly applied to the surface to be coated without unevenness, so that the coating property is improved.
  • the molecular weight distribution (Mw / Mn) of the polymer (B) used in the present invention is preferably 1.0 to 8.0, more preferably 1.0 to 5.0, and still more preferably 1.0 to 3.0. .
  • Mw / Mn is within the above range, variation in the viscosity of the resulting polymer (B) is reduced.
  • the glass transition temperature of the polymer (B) used in the present invention varies depending on the bonding mode (microstructure), farnesene-derived monomers, and the amount of monomers other than farnesene used as necessary.
  • a range of ⁇ 90 to 0 ° C. is preferable, and a range of ⁇ 90 to ⁇ 10 ° C. is more preferable.
  • a flexible cured product can be obtained, and in the optical pressure-sensitive adhesive that is one of the uses of the present invention, the step following property and the impact absorbing property are improved.
  • the polymer (B) used in the present invention may be used alone, or two or more kinds of the polymers (B) having different monomer units and molecular weights may be mixed and used.
  • the polymer (B) used in the present invention can be produced by an emulsion polymerization method, a method described in International Publication No. 2010/027463, International Publication No. 2010/027464, or the like. Among these, an emulsion polymerization method or a solution polymerization method is preferable, and a solution polymerization method is more preferable.
  • Emsision polymerization method As an emulsion polymerization method for obtaining the polymer (B), a known method can be applied. For example, a predetermined amount of farnesene monomer is emulsified and dispersed in the presence of an emulsifier, and emulsion polymerization is performed using a radical polymerization initiator.
  • a radical polymerization initiator for example, a long chain fatty acid salt or rosin acid salt having 10 or more carbon atoms is used. Specific examples include potassium salts or sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid and stearic acid.
  • water is usually used, and it may contain a water-soluble organic solvent such as methanol and ethanol as long as the stability during polymerization is not inhibited.
  • a water-soluble organic solvent such as methanol and ethanol
  • examples of the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, and hydrogen peroxide. Chain transfer agents can also be used to adjust the molecular weight of the polymer.
  • chain transfer agent examples include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; carbon tetrachloride, thioglycolic acid, diterpene, terpinolene, ⁇ -terpinene, ⁇ -methylstyrene dimer and the like.
  • the emulsion polymerization temperature can be appropriately selected depending on the type of radical polymerization initiator to be used, but is usually preferably 0 to 100 ° C, more preferably 0 to 60 ° C.
  • the polymerization mode may be either continuous polymerization or batch polymerization. The polymerization reaction can be stopped by adding a polymerization terminator.
  • polymerization terminator examples include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine, and hydroxylamine, quinone compounds such as hydroquinone and benzoquinone, and sodium nitrite.
  • an antioxidant may be added as necessary.
  • unreacted monomers are removed from the obtained latex as necessary, and then a salt such as sodium chloride, calcium chloride, potassium chloride is used as a coagulant, and nitric acid, sulfuric acid, etc.
  • the polymer is recovered by coagulating the polymer while adjusting the pH of the coagulation system to a predetermined value by adding an acid, and then separating the dispersion solvent.
  • a polymer is obtained by drying after water washing and dehydration.
  • latex and an extending oil that has been made into an emulsified dispersion may be mixed and recovered as an oil-extended polymer.
  • a solution polymerization method for obtaining a polymer As a solution polymerization method for obtaining a polymer, a known method can be applied.
  • the farnesene monomer is polymerized in the presence of a polar compound as desired using a Ziegler catalyst, a metallocene catalyst, or an anionically polymerizable active metal in a solvent.
  • the active metal capable of anion polymerization include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; lanthanoid rare earth metals such as lanthanum and neodymium.
  • alkali metals and alkaline earth metals are preferable, and alkali metals are particularly preferable.
  • an organic alkali metal compound is more preferably used.
  • the solvent include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, toluene And aromatic hydrocarbons such as xylene.
  • organic alkali metal compound examples include organic monolithium compounds such as methyl lithium, ethyl lithium, n-butyl lithium, sec-butyl lithium, t-butyl lithium, hexyl lithium, phenyl lithium and stilbene lithium; dilithiomethane, dilithionaphthalene, Polyfunctional organolithium compounds such as 1,4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene; sodium naphthalene, potassium naphthalene and the like.
  • organic lithium compound is preferable, and an organic monolithium compound is more preferable.
  • the amount of the organic alkali metal compound to be used is appropriately determined depending on the required molecular weight of the polymer, but is 0.01 to 7 parts by mass with respect to 100 parts by mass of the total amount of monomers other than farnesene and farnesene as required. preferable.
  • the organic alkali metal compound can also be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine, dibenzylamine and the like.
  • the polar compound is used to adjust the microstructure of the farnesene site without deactivating the reaction in anionic polymerization.
  • ether compounds such as dibutyl ether, tetrahydrofuran, and ethylene glycol diethyl ether; tetramethylethylenediamine, trimethylamine, and the like 3 Secondary amines; alkali metal alkoxides, phosphine compounds, and the like.
  • the polar compound is preferably used in an amount of 0.01 to 1000 molar equivalents relative to the organic alkali metal compound.
  • the temperature of the polymerization reaction is usually in the range of ⁇ 80 to 150 ° C., preferably 0 to 100 ° C., more preferably 10 to 90 ° C.
  • the polymerization mode may be either batch or continuous.
  • the polymerization reaction can be stopped by adding an alcohol such as methanol or isopropanol as a polymerization terminator.
  • the polymer can be isolated by pouring the obtained polymerization reaction liquid into a poor solvent such as methanol to precipitate the polymer, or washing the polymerization reaction liquid with water, separating, and drying.
  • the mass ratio [(A) / (B)] of the polymer (A) and the polymer (B) is 0.01 to 100, preferably 0.05 to 100, more preferably. It is 0.1 to 50, more preferably 0.1 to 25, and still more preferably 0.1 to 10.
  • the mass ratio (A) / (B) is within the above range, a resin composition having a sufficiently low viscosity and a good elongation at break after curing can be obtained.
  • At least one of the polymer (A) and the polymer (B) preferably has a melt viscosity at 38 ° C. of 0.1 to 3,000 Pa ⁇ s, but the polymer (A) and the polymer More preferably, the melt viscosity of both (B) is in the range of 0.1 to 3,000 Pa ⁇ s.
  • Examples of the polymerization initiator (C) used in the present invention include a photopolymerization initiator that initiates a polymerization reaction by irradiation with active energy rays such as ultraviolet rays, and a thermal polymerization initiator that initiates a polymerization reaction by heat.
  • a photopolymerization initiator is preferred from the viewpoint that the resin is cured by short-time irradiation and a cured product can be obtained without deteriorating the base material, and photopolymerization initiation in which a polymerization reaction is initiated by ultraviolet irradiation. An agent is more preferable.
  • Examples of the photopolymerization initiator include a cationic photopolymerization initiator and a radical polymerization initiator.
  • Examples of the cationic photopolymerization initiator include aromatic diazonium salts, aromatic iodonium salts, aromatic sulfonium salts, metallocene compounds, and the like.
  • a cationic photopolymerization initiator of an aromatic diazonium salt “P-33 (trade name)” (manufactured by ADEKA Corporation) and the like are known.
  • Known examples of cationic photopolymerization initiators of aromatic iodonium salts include “Rhodorsil Photo Initiator 2074 (trade name)” (manufactured by Rhodia Co., Ltd.), “Irgacure 250 (trade name)” (manufactured by BASF Corporation), and the like. Yes.
  • cationic photopolymerization initiator of aromatic sulfonium salt “FC-509 (trade name)” (manufactured by Sumitomo 3M Limited), “Irgacure 270 (trade name)” (manufactured by BASF Corporation) and the like are known. Yes.
  • metallocene-based cationic photopolymerization initiator “Irgacure 261 (trade name)” (manufactured by BASF Corporation) and the like are known.
  • radical photopolymerization initiators examples include acetophenone, benzophenone, alkylphenone, acylphosphine oxide, benzoin, ketal, anthraquinone, disulfide, thioxanthone, thiuram, and fluoroamine. . Of these, alkylphenone-based or acylphosphine oxide-based radical photopolymerization initiators are preferred. Examples of the alkylphenone radical photopolymerization initiators include hydroxyalkylphenone and aminoalkylphenone.
  • Hydroxylphenone radical photopolymerization initiators include “DAROCUR 1173 (trade name)” (2-hydroxy-2-methyl-1-phenylpropan-1-one), “Irgacure 184 (trade name)” (1 -Hydroxycyclohexyl phenyl ketone), “Irgacure 2959 (trade name)” (1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one) and the like It is done.
  • aminoalkylphenone radical photopolymerization initiators examples include “Irgacure 907 (trade name)” (2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one), “Irgacure 369”. (Trade name) ”(2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone) and the like.
  • Acylphosphine oxide radical photopolymerization initiators include “LUCIRIN TPO (trade name)” (2,4,6-trimethylbenzoyldiphenylphosphine oxide), “Irgacure 819 (trade name)” (bis (2,4 , 6-trimethylbenzoyl) -phenylphosphine oxide) (all manufactured by BASF Corporation).
  • hydroxyalkylphenone-based radical photopolymerization initiators are preferable, and 2-hydroxy-2-methyl-1-phenylpropan-1-one is more preferable. These may be used alone or in combination of two or more.
  • the content of the polymerization initiator (C) in the total amount of the resin composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 20% by mass, still more preferably 1.0 to 20% by mass, 1.0 to 15% by mass is even more preferable, and 1.0 to 10% by mass is most preferable.
  • the content of the polymerization initiator (C) is within the above range, it is preferable in terms of curing speed and mechanical properties.
  • the resin composition of the present invention may contain a monomer (D) as necessary in order to further improve the viscosity, handleability and strength after curing of the resin composition.
  • the monomer (D) preferably has a functional group capable of reacting with the polymer (A).
  • a functional group capable of reacting with the polymer (A) For example, a compound having (meth) acryloyl group, epoxy group, oxetanyl group, vinyl ether group, alkoxysilyl group in the molecule. Is mentioned.
  • Specific compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, butylethoxy (meth) acrylate, butylethyl (meth) acrylate, 2-ethylhexyl (meth) ) Acrylate, lauryl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, cyclohexyl (meth) ) Acrylate, isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, phenoxyhydroxypropyl (meth) acrylate Rate, morpholine (me
  • the monomer (D) is at least selected from monofunctional (meth) acrylate, bifunctional (meth) acrylate and polyfunctional (meth) acrylate from the viewpoint of good compatibility with the polymer (A). It is preferable that it is 1 type, and it is more preferable that it is at least 1 type chosen from monofunctional (meth) acrylate and bifunctional (meth) acrylate.
  • dicyclopentenyloxyethyl (meth) acrylate 1,9-nonanediol di (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, phenoxyethyl (meth) ) Acrylate and the like are particularly preferable. These may be used alone or in combination of two or more.
  • the monomer (D) can react with the polymerizable functional group of the polymer (A) with a polymerization initiator such as a radical polymerization initiator, a cationic polymerization initiator, and an anionic polymerization initiator.
  • the content of the monomer (D) is preferably 0.01 to 1,000 parts by mass, and 0.1 to 800 parts by mass with respect to 100 parts by mass in total of the polymer (A) and the polymer (B). Part is more preferred, 1.0 to 600 parts by weight is still more preferred, and 1.0 to 400 parts by weight is even more preferred.
  • the content of the monomer (D) is within the above range, the viscosity is lowered and handling properties are improved. Moreover, since the breaking strength and tensile elongation of a cured film are improved when the resin composition of the present invention is cured, a cured product having excellent flexibility can be obtained.
  • the resin composition of the present invention may contain a hindered amine compound (E) in the molecule as necessary in order to further improve the heat resistance and weather resistance of the resin composition and the cured product obtained therefrom. Good.
  • a hindered amine type compound (E) it is preferable to use the hindered amine type compound which does not have a secondary amino group in a molecule
  • hindered amine compounds (E) having no secondary amino group in the molecule include bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and bis (2,2 , 6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) ⁇ [3,5-bis (1,1-dimethylethyl) -4- Hydroxyphenyl] methyl ⁇ butyl malonate, bis (2,2,6,6-tetramethyl-1- (octyloxy) -4-piperidinyl) ester of decanedioic acid, methyl 1,2,2,6,6-pentamethyl -4-piperidyl sebacate, 1,2,3,4-butanetetracarboxylic acid tetrakis (1,2,2,6,6-pentamethyl-4-piperidinyl), 1,2,2,6,6-penta Chill 4-piperidyl methacrylate and the like.
  • bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate, 1,2,3,4-butane Tetracarboxylic acid tetrakis (1,2,2,6,6-pentamethyl-4-piperidinyl) and the like are preferable. These may be used alone or in combination of two or more.
  • the content of the hindered amine compound (E) in the total amount of the resin composition is preferably 0.01 to 10% by mass, more preferably 0.5 to 7% by mass, and still more preferably 1 to 4% by mass.
  • the content of the hindered amine compound (E) is within the above range, it is preferable in terms of improving the heat resistance and improving the mechanical properties of the cured product.
  • the resin composition of the present invention has a polymerizable functional group obtained by polymerizing a conjugated diene compound other than farnesene, in addition to the polymer (A) and the polymer (B), as long as the effects of the present invention are not impaired. You may contain the conjugated diene polymer which does not have.
  • Conjugated diene compounds other than farnesene include butadiene, isoprene, 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3 -Octadiene, 1,3-cyclohexadiene, 2-methyl-1,3-octadiene, 1,3,7-octatriene, myrcene, chloroprene and the like.
  • the resin composition of the present invention is a copolymer of a conjugated diene compound other than farnesene and an aromatic vinyl compound, in addition to the polymer (A) and the polymer (B), within a range that does not impair the effects of the present invention.
  • a conjugated diene compound-aromatic vinyl compound copolymer having no polymerizable functional group obtained in this manner may be contained. Examples of the conjugated diene compound are the same as those described above.
  • aromatic vinyl compound examples include styrene, ⁇ -methyl styrene, 2-methyl styrene, 3-methyl styrene, 4-methyl styrene, 4-propyl styrene, 4-tert-butyl styrene, 4-cyclohexyl styrene, 4-dodecyl.
  • Styrene 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2-vinyl Naphthalene, vinyl anthracene, N, N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, divinylbenzene and the like can be mentioned.
  • the contents of the conjugated diene polymer and conjugated diene compound-aromatic vinyl compound copolymer that may be contained in addition to the polymer (A) and the polymer (B) are not particularly limited. However, in a resin composition, 50 mass% or less is preferable, 30 mass% or less is more preferable, and 10 mass% or less is still more preferable.
  • the method for producing the resin composition of the present invention is not particularly limited.
  • the components can be produced by mixing them at room temperature using ordinary mixing means such as a stirrer or a kneader.
  • the resin composition of the present invention has a melt viscosity at 38 ° C. of preferably 15 Pa ⁇ s or less, more preferably 12 2 Pa ⁇ s or less, and still more preferably 10 Pa ⁇ s or less.
  • the melt viscosity of the resin composition is within the above range, it is possible to uniformly apply the resin composition to the surface to be coated, and it is easy to prevent air bubbles from being mixed. Become.
  • the melt viscosity of the resin composition is a value determined by the method described in Examples described later.
  • the resin composition of the present invention has a low melt viscosity, excellent curability, and further a cured product having excellent strength, flexibility and transparency, an adhesive, a pressure-sensitive adhesive (particularly an optical pressure-sensitive adhesive), It can use suitably for uses, such as a coating agent, a sealing material, and ink.
  • the cured product of the present invention is obtained by curing the resin composition of the present invention.
  • the polymer (A) can be obtained by irradiating energy rays or applying heat to the resin composition of the present invention. And it can be made to harden
  • energy rays for curing ultraviolet rays are preferable.
  • the ultraviolet light source include a xenon lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, and a microwave excimer lamp.
  • an atmosphere for irradiating ultraviolet rays an inert gas atmosphere such as nitrogen gas or carbon dioxide gas or an atmosphere in which the oxygen concentration is lowered is preferable.
  • the irradiation atmosphere temperature is preferably 10 to 200 ° C.
  • the UV irradiation amount is preferably 200 to 10,000 mJ / cm 2 .
  • optical pressure sensitive adhesive contains the resin composition of the present invention, and can be suitably used for electronic devices such as smartphones, liquid crystal displays, and organic EL displays.
  • additives can be appropriately added as necessary without departing from the object of the present invention.
  • the additive include a tackifier, a plasticizer, a pigment, a colorant, an anti-aging agent, and an ultraviolet absorber.
  • Production Example 1 Production of polyisoprene (A-1) having a methacryloyl group in the molecule By subjecting isoprene to anionic polymerization in n-hexane using n-butyllithium as an initiator, a polyisoprene having a number average molecular weight of 36,000 is produced. Isoprene was obtained. By adding 1.5 parts by mass of maleic anhydride to 100 parts by mass of this polyisoprene and reacting at 180 ° C. for 15 hours, polyisoprene having 3 acid anhydride groups as an average per molecule was obtained.
  • polymer (A-1) A modified liquid polyisoprene having three methacryloyl groups as an average per molecule (hereinafter also referred to as “polymer (A-1)”) was obtained.
  • Table 1 shows the physical properties of the polymer (A-1).
  • Production Example 2 Production of polyfarnesene (A-2) having a methacryloyl group in the molecule
  • A-2 polyfarnesene having a methacryloyl group in the molecule
  • the temperature was raised to 50 ° C.
  • 1510 g of ⁇ -farnesene was added, and polymerization was carried out for 2 hours.
  • the obtained polymerization solution was poured into methanol to reprecipitate the unmodified polymer, and was filtered off, followed by vacuum drying at 80 ° C. for 10 hours to obtain 1200 g of polyfarnesene (unmodified polymer).
  • polymer (A-2) Polyfarnesene (hereinafter also referred to as “polymer (A-2)”) was obtained.
  • Table 1 shows the physical properties of the polymer (A-2).
  • Production Example 3 Production of polyfarnesene (B-1) 241 g of cyclohexane as a solvent and 28.3 g of sec-butyllithium (10.5 mass% cyclohexane solution) as an initiator were charged in a pressure-resistant container purged with nitrogen and dried at 50 ° C. Then, 342 g of ⁇ -farnesene was added and polymerized for 1 hour. The obtained polymerization reaction liquid was treated with methanol, and the polymerization reaction liquid was washed with water. The polymerization reaction solution after washing was separated from water and dried at 70 ° C. for 12 hours to obtain liquid polyfarnesene (hereinafter also referred to as “polymer (B-1)”). Table 1 shows the physical properties of the polymer (B-1).
  • Production Example 4 Production of polyfarnesene (B-2) In a pressure-resistant container purged with nitrogen and dried, 304 g of cyclohexane as a solvent and 1.5 g of sec-butyllithium (10.5 mass% cyclohexane solution) as an initiator were charged at 50 ° C. Then, 302 g of ⁇ -farnesene was added and polymerized for 1 hour. The obtained polymerization reaction liquid was treated with methanol, and the polymerization reaction liquid was washed with water. The polymerization reaction solution after washing was separated from water and dried at 70 ° C. for 12 hours to obtain liquid polyfarnesene (hereinafter also referred to as “polymer (B-2)”). Table 1 shows the physical properties of the polymer (B-2).
  • Production Example 6 Production of polybutadiene (X-2) By subjecting butadiene to anionic polymerization in n-hexane using n-butyllithium as an initiator, liquid polybutadiene having a number average molecular weight of 9,000 was obtained. Table 1 shows the physical properties of polybutadiene (X-2).
  • Production Example 7 Production of Polybutadiene (X-3) Butadiene was anionically polymerized in n-hexane using n-butyllithium as an initiator to obtain a liquid polybutadiene having a number average molecular weight of 44,000. Table 1 shows the physical properties of polybutadiene (X-3).
  • the number average molecular weight (Mn) and the molecular weight distribution (Mw / Mn) were determined in terms of standard polystyrene equivalent molecular weight by GPC (gel permeation chromatography).
  • the measuring apparatus and conditions are as follows.
  • GPC device GPC device “GPC8020” manufactured by Tosoh Corporation Separation column: “TSKgel G4000HXL” manufactured by Tosoh Corporation ⁇ Detector: “RI-8020” manufactured by Tosoh Corporation ⁇ Eluent: Tetrahydrofuran (Wako Pure Chemical Industries, Ltd.) ⁇ Eluent flow rate: 1.0 ml / min ⁇ Sample concentration: 5 mg / 10 ml -Column temperature: 40 ° C
  • a concentration of sample / deuterated chloroform 100 mg / 1 mL, 512 times of integration, and a measurement temperature of 50 ° C.
  • the mass of the polymer, that is, the functional group equivalent was calculated.
  • the number of polymerizable functional groups per molecular chain was calculated from the number average molecular weight of the polymer (A) and the functional group equivalent determined by the above method.
  • Breaking strength and breaking elongation Breaking strength when a strip-like sample having a width of 6 mm and a length of 70 mm is punched from the cured product obtained in (3) and a tensile test is performed at a pulling speed of 50 mm / min. The breaking elongation was measured with an Instron tensile tester.
  • the resin compositions of Examples 1 to 3 and Examples 6 and 7 are polyisoprene (A-1) and polyfarnesene (B-1 or B-) having a methacryloyl group which is a polymerizable functional group. 2), both of them have a lower viscosity than the comparative example 4 containing only the polyisoprene (A-1) having a methacryloyl group, and the elongation at break was improved without impairing the appearance. .
  • the breaking strength was also improved as compared with Comparative Example 4.
  • Example 8 even when other conjugated diene polymers were used in combination, a viscosity reducing effect and a cured film breaking elongation improving effect were similarly observed. Further, as is clear from the comparison between Example 9 and Comparative Example 6, also in the resin composition having a high monomer (D) content, the viscosity reducing effect, the breaking elongation and the breaking strength of the cured film are improved. The effect was seen. Since the resin compositions of Examples 4 and 5 contain polyfarnesene (A-2) and polyfarnesene (B-1) having a methacryloyl group that is a polymerizable functional group in the molecule, they have a methacryloyl group.
  • A-2 polyfarnesene
  • B-1 polyfarnesene
  • Comparative Example 5 Compared with Comparative Example 5 containing only polyfarnesene (A-2), the viscosity, elongation at break and strength at break were improved.
  • polyisoprene (X-1) or polybutadiene (X-2 or X-3) was blended with polyisoprene (A-1) having a methacryloyl group in the molecule. Although it was a composition, the elongation at break was reduced as compared with Examples 1 to 3 blended with polyfarnesene.
  • Example 1 Comparative Example 2
  • polyfarnesene (B-1) and polybutadiene (X-2) having the same molecular weight
  • the use of polyfarnesene is superior in the effect of reducing the viscosity. It became clear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 共役ジエン化合物由来の単量体単位(a1)を含み、重合可能な官能基を有する重合体(A)、ファルネセン由来の単量体単位(b1)を含み、重合可能な官能基を有しない重合体(B)及び重合開始剤(C)を含有し、重合体(A)と重合体(B)との質量比[(A)/(B)]が0.01~100である樹脂組成物。

Description

樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含有する光学用粘着剤
 本発明は、ファルネセン由来の単量体単位を含む重合体を含有する樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含有する光学用粘着剤に関する。
 近年、液晶等の画面を有する電子機器、例えばスマートフォンやタブレットPC等の普及に伴って、画面を覆うように使用される透明樹脂材料及び透明樹脂接着剤の研究が盛んに行われている。
 例えば、特許文献1には分子内に(メタ)アクリロイル基を有するポリイソプレン、単官能の(メタ)アクリレートモノマー及びラジカル重合開始剤からなる組成物に、さらに分子内に第二級アミノ基を有しないヒンダードアミン系化合物を配合した硬化性樹脂組成物が記載されている。
 また、特許文献2には、エポキシ樹脂、硬化剤及び分子内にエポキシ基を特定量含有し、かつ特定の数平均分子量を有するエポキシ化ポリブタジエンを含有する熱硬化性樹脂組成物が記載されている。
 なお、特許文献3,4には、β-ファルネセンの重合体が記載されているが、実用的な用途については十分に検討されていない。
特許第5073400号公報 特許第4098107号公報 国際公開第2010/027463号 国際公開第2010/027464号
 特許文献1,2に記載される硬化性樹脂組成物は、塗工性を向上させる観点から粘度について改善の余地があり、更にその硬化物について、液晶等の画面を有する電子機器において要求される強度、柔軟性及び透明性等についても改善の余地があった。
 本発明は、上記の実情に鑑みてなされたものであり、粘度が低く、かつ強度、柔軟性及び透明性に優れる硬化物を与えることができる樹脂組成物、これを硬化させた硬化物、及びこの樹脂組成物を含有する光学用粘着剤を提供する。
 本発明者らは、鋭意検討を行った結果、共役ジエン化合物由来の単量体単位を含み重合可能な官能基を有する重合体と、ファルネセン由来の単量体単位を含み重合可能な官能基を有しない重合体とを特定の比率で含有する樹脂組成物が、低粘度であり、更に、強度、柔軟性、硬度及び透明性に優れる硬化物を与えることができることを見出し、本発明を完成した。
 すなわち、本発明は以下を要旨とするものである。
[1]共役ジエン化合物由来の単量体単位(a1)を含み、重合可能な官能基を有する重合体(A)、ファルネセン由来の単量体単位(b1)を含み、重合可能な官能基を有しない重合体(B)及び重合開始剤(C)を含有し、重合体(A)と重合体(B)との質量比[(A)/(B)]が0.01~100である樹脂組成物。
[2]前記[1]に記載の樹脂組成物を硬化させた硬化物。
[3]前記[1]に記載の樹脂組成物を含有する光学用粘着剤。
 本発明によれば、粘度が低く、かつ強度、柔軟性及び透明性に優れる硬化物を与えることができる樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含有する光学用粘着剤を提供できる。
[樹脂組成物]
 本発明の樹脂組成物は、共役ジエン化合物由来の単量体単位(a1)を含み、重合可能な官能基を有する重合体(A)、ファルネセン由来の単量体単位(b1)を含み、重合可能な官能基を有しない重合体(B)及び重合開始剤(C)を含有し、重合体(A)と重合体(B)との質量比[(A)/(B)]が0.01~100である。
<重合体(A)>
 重合体(A)は、共役ジエン化合物由来の単量体単位(a1)を含み、重合可能な官能基を有するものである。
 単量体単位(a1)としての共役ジエン化合物は、ファルネセン及び炭素数12以下の共役ジエン化合物が好ましく、炭素数12以下の共役ジエン化合物としては、例えばブタジエン、イソプレン、2,3-ジメチルブタジエン、2-フェニルブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、ミルセン及びクロロプレン等が挙げられる。中でもファルネセン、イソプレン及びブタジエンがより好ましい。これらの共役ジエン化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 前記ファルネセン由来の単量体単位は、α-ファルネセン由来の単量体単位であってもよく、また、下記式(I)で表されるβ-ファルネセン由来の単量体単位であってもよいが、製造容易性の観点から、β-ファルネセン由来の単量体単位であることが好ましい。なお、α-ファルネセンとβ-ファルネセンとは併用してもよい。
Figure JPOXMLDOC01-appb-C000001
 前記重合可能な官能基としては、例えば(メタ)アクリロイル基、エポキシ基、オキセタニル基、ビニルエーテル基、アルコキシシリル基、(メタ)アクリルアミド基、スチレン基、マレイミド基、ラクトン基、ラクタム基、スルフィド基、チエタン基、アセトニド基、チオウレア基などが挙げられる。これらの中では(メタ)アクリロイル基、エポキシ基、オキセタニル基、ビニルエーテル基及びアルコキシシリル基から選ばれる少なくとも1種が好ましく、(メタ)アクリロイル基がより好ましい。なお、これらの官能基は置換基を有していてもよい。
 本明細書において「(メタ)アクリロイル」とは、「アクリロイル又はメタクリロイル」を意味する。また、本明細書において「(メタ)アクリル」とは、「アクリル又はメタクリル」を意味する。
 本発明に用いる重合体(A)を製造する第1の方法としては、例えば前記共役ジエン化合物及び必要に応じて更に前記共役ジエン化合物以外の単量体を重合することにより重合可能な官能基を有しない未変性重合体を調製し、この未変性重合体に対して重合可能な官能基を導入する方法が挙げられる。
 具体的には、前記各単量体をリビングアニオン重合して得られる未変性重合体に対して、無水マレイン酸等のグラフト化するための化合物を反応させ、次いで、2-ヒドロキシエチルメタクリレート等の重合可能な官能基を有する化合物を反応させる方法が挙げられる。
 前記未変性重合体をグラフト化するための化合物としては、例えば無水マレイン酸、無水シトラコン酸、無水2,3-ジメチルマレイン酸、無水イタコン酸等の不飽和カルボン酸無水物;マレイン酸、フマル酸、シトラコン酸、イタコン酸等の不飽和カルボン酸;マレイン酸エステル、フマル酸エステル、シトラコン酸エステル、イタコン酸エステル等の不飽和カルボン酸エステル;マレイン酸アミド、フマル酸アミド、シトラコン酸アミド、イタコン酸アミド等の不飽和カルボン酸アミド;マレイン酸イミド、フマル酸イミド、シトラコン酸イミド、イタコン酸イミド等の不飽和カルボン酸イミド;マレイミド、ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等が挙げられる。
 また、前記重合可能な官能基を有する化合物としては、例えば(メタ)アクリル酸;2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールモノヒドロキシアクリレート等の(メタ)アクリレート;2-ヒドロキシエチルビニルエーテル、N-(2-ヒドロキシエチル)アクリルアミド、N-(2-ヒドロキシエチル)メタクリルアミド、N-(2-ヒドロキシエチル)マレイミド、4-エテニルフェノール等が挙げられる。なお、重合可能な官能基が導入される位置は、重合体の重合末端でも、側鎖でもよい。また、上記官能基は1種又は2種以上を組み合わせてもよい。
 本発明に用いる重合体(A)を製造する第2の方法としては、例えば前記共役ジエン化合物を後述の方法でリビングアニオン重合することにより得られる未変性重合体のリビング末端に対して、水酸基、カルボキシル基、カルボニル基、チオカルボニル基、酸ハロゲン化物基、酸無水物基、チオカルボン酸基、アルデヒド基、チオアルデヒド基、カルボン酸エステル基、アミド基、スルホン酸基、スルホン酸エステル基、リン酸基、リン酸エステル基、アミノ基、イミノ基、ニトリル基、ピリジル基、キノリン基、エポキシ基、チオエポキシ基、スルフィド基、イソシアネート基、イソチオシアネート基、シラノール基、アルコキシシラン、ハロゲン化ケイ素基、ハロゲン化スズ基、アルコキシスズ基及びフェニルスズ基等から選ばれる官能基を少なくとも1個有する化合物を付加反応させ、次いで、重合可能な官能基を有する化合物を反応させる方法が挙げられる。
 前記共役ジエン化合物をリビングアニオン重合するためのリビングアニオン重合開始剤としては、例えばメチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。また、有機アルカリ金属化合物と反応し、多官能有機アルカリ金属化合物を与えるジイソプロペニルベンゼンやジベンジルトルエン等の化合物を併用してもよい。
 また、リビング末端に対して付加反応させる、前記官能基を少なくとも1個有する化合物としては、例えばエポキシド、オキセタン等の環状エーテル;ピロリジン等の環状アミン;エチレンスルフィド等の環状スルフィド等が挙げられる。
 本発明に用いる重合体(A)を製造する第3の方法としては、共役ジエン化合物及び必要に応じて更に共役ジエン化合物以外の単量体を後述の方法で重合することにより未変性重合体を調製し、この未変性重合体をエポキシ化した後、重合可能な官能基を有する化合物を反応させる方法が挙げられる。前記未変性重合体をエポキシ化するための化合物としては、例えば、過酢酸や過安息香酸等の過酸が挙げられる。
 これらの方法における重合可能な官能基を有する化合物としては、例えばアクリル酸、メタクリル酸等のカルボン酸が挙げられる。重合可能な官能基が導入される位置は、重合体の重合末端でも、側鎖でもよい。また前記重合可能な官能基を有する化合物は、1種又は2種以上を組み合わせてもよい。
 前記未変性重合体を官能基化する際や変性重合体の保存時に、劣化による分子量の低下や変色及びゲル化を抑制する目的で、未変性重合体又は変性重合体に適当な老化防止剤を組み合わせてもよい。具体的には、2,6-ジt-ブチル-4-メチルフェノール(BHT)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)(AO-40)、3,9-ビス[1,1-ジメチル-2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(AO-80)、2,4-ビス[(オクチルチオ)メチル]-6-メチルフェノール(Irganox 1520L)、2,4-ビス[(ドデシルチオ)メチル]-6-メチルフェノール(Irganox 1726)、2-[1-(2-ヒドロキシ-3,5-ジt-ペンチルフェニル)エチル]-4,6-ジt-ペンチルフェニルアクリレート(Sumilizer GS)、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(Sumilizer GM)、6-t-ブチル-4-[3-(2,4,8,10-テトラ-t-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イルオキシ)プロピル]-2-メチルフェノール(Sumilizer GP)、亜りん酸トリス(2,4-ジt-ブチルフェニル)(Irgafos 168)、ジオクタデシル3,3’-ジチオビスプロピオネート、ヒドロキノン、p-メトキシフェノール、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(ノクラック6C)、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(LA-77Y)、N,N-ジオクタデシルヒドロキシルアミン(Irgastab FS 042)、ビス(4-t-オクチルフェニル)アミン(Irganox 5057)等が挙げられる。また、上記老化防止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 老化防止剤の添加量は、未変性重合体又は変性重合体100質量部に対して0.01~10質量部が好ましく、0.1~3質量部がより好ましい。
 重合体(A)を構成する単量体単位は、前記共役ジエン化合物由来の単量体単位(a1)のみからなってもよく、前記共役ジエン化合物由来の単量体単位(a1)及び共役ジエン化合物以外の単量体に由来する単量体単位(a2)からなってもよい。すなわち、未変性重合体は、前記共役ジエン化合物のみを重合したものでもよく、前記共役ジエン化合物と前記共役ジエン化合物以外の単量体との共重合体であってもよい。
 未変性重合体が共重合体である場合、前記共役ジエン化合物以外の単量体に由来する単量体単位(a2)としては、芳香族ビニル化合物に由来する単量体単位が挙げられる。
 芳香族ビニル化合物としては、例えばスチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン、ジビニルベンゼン等が挙げられる。中でもスチレン、α-メチルスチレン、4-メチルスチレンが好ましい。
 共役ジエン化合物以外の単量体に由来する単量体単位(a2)を用いる場合において、共重合体中における共役ジエン化合物由来の単量体単位(a1)及び共役ジエン化合物以外の単量体に由来する単量体単位(a2)の合計に対する共役ジエン化合物以外の単量体に由来する単量体単位(a2)の割合は、樹脂組成物の粘度を低下させる観点、硬化膜の良好な伸び特性と柔軟性を保つ観点から、1~99質量%が好ましく、1~80質量%がより好ましく、1~70質量%が更に好ましく、1~50質量%がより更に好ましい。
 本発明に用いる重合体(A)の数平均分子量(Mn)は、1,000~100万が好ましく、2,000~50万がより好ましく、8,000~50万がより好ましく、15,000~45万が更に好ましく、15,000~30万がより更に好ましく、20,000~20万がより更に好ましい。重合体(A)のMnが前記範囲内であると、硬化物の柔軟性、力学強度が向上すると共に、樹脂組成物が低粘度になる。
 なお、本明細書における数平均分子量(Mn)とは、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量である。
 本発明に用いる重合体(A)の38℃における溶融粘度は、0.1~3,000Pa・sが好ましく、0.2~3,000Pa・sがより好ましく、0.2~2,800Pa・sがより好ましく、0.3~2,600Pa・sが更に好ましい。重合体(A)の溶融粘度が前記範囲内であると、被塗布面に対してムラ無く、均一に樹脂組成物を塗布することが可能になるため、塗工性が良好になる。
 なお、本明細書において重合体の溶融粘度は、後述する実施例に記載した方法で求めた値である。
 本発明に用いる重合体(A)の1分子鎖あたりの重合可能な官能基の数は、1~150が好ましく、1.5~75がより好ましく、1.5~30が更に好ましい。1分子鎖あたりの重合可能な官能基の数が前記範囲内であると、重合体(A)の粘度を低下させることができると共に、硬化速度を向上させることができ、更に硬化する際の収縮を低く抑えることができる。
 なお、分子鎖1本あたりの重合可能な官能基の数は、重合体(A)の数平均分子量(Mn)と重合体(A)の官能基当量(g/eq)から次式のように算出される。
(分子鎖1本あたりの重合可能な官能基の数)=(Mn)/(官能基当量)
 官能基当量とは、「官能基1個あたりの重合体の分子量」を表す量である。例えば、重合可能な官能基がメタクリロイル基であるときの官能基当量を「メタクリロイル当量」といい、「メタクリロイル基1個あたりの重合体の分子量」を意味する。官能基当量は、変性剤の反応率を基に算出することもできるし、赤外分光法、核磁気共鳴分光法等の各種分析機器を用いて求めることもできる。
 本発明に用いる重合体(A)は、1種を単独で用いてもよいが、単量体単位や分子量及び官能基の種類がそれぞれ異なる2種以上の前記重合体(A)を混合して用いてもよい。
 樹脂組成物全量中における重合体(A)の含有量は、1~99質量%が好ましく、2~98質量%がより好ましく、5~95質量%が更に好ましく、10~90質量%がより更に好ましく、15~85質量%がより更に好ましい。樹脂組成物中の重合体(A)の含有量が上記範囲内であると、強度、柔軟性、及び透明性に優れる硬化物を与えることができる。
<重合体(B)>
 重合体(B)は、ファルネセン由来の単量体単位(b1)を含み、重合可能な官能基を有しない重合体である。当該ファルネセンとしては、前述の重合体(A)で説明したものと同じものを使用できる。重合体(B)を構成する単量体単位は、ファルネセン由来の単量体単位(b1)のみからなってもよく、ファルネセン由来の単量体単位(b1)及びファルネセン以外の単量体に由来する単量体単位(b2)からなってもよい。
 ファルネセン以外の単量体に由来する単量体単位(b2)としては、共役ジエン化合物及び芳香族ビニル化合物に由来する単量体単位が挙げられる。
 共役ジエン化合物としては炭素数12以下の共役ジエン化合物が好ましく、炭素数12以下の共役ジエン化合物としては、例えばブタジエン、イソプレン、2,3-ジメチルブタジエン、2-フェニルブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、ミルセン、クロロプレン等が挙げられる。中でもイソプレン、ブタジエンがより好ましい。これらの共役ジエン化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 芳香族ビニル化合物としては、例えばスチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン、ジビニルベンゼン等の芳香族ビニル化合物等が挙げられる。中でもスチレン、α-メチルスチレン、4-メチルスチレンが好ましい。
 ファルネセン以外の単量体に由来する単量体単位(b2)を用いる場合において、共重合体中におけるファルネセン由来の単量体単位(b1)及びファルネセン以外の単量体に由来する単量体単位(b2)の合計に対するファルネセン以外の単量体に由来する単量体単位(b2)の割合は、樹脂組成物の粘度を低下させる観点、硬化速度を向上させる観点及び硬化膜の良好な伸び特性と柔軟性を保つ観点から、1~99質量%が好ましく、1~80質量%がより好ましく、1~70質量%が更に好ましく、1~50質量%がより更に好ましい。
 本発明に用いる重合体(B)の数平均分子量(Mn)は、1,000~100万が好ましく、1,000~50万がより好ましく、1,000~20万がより好ましく、5,000~20万が更に好ましく、5,000~15万がより更に好ましい。重合体(B)のMnが前記範囲内であると、硬化物の柔軟性、力学強度が向上すると共に、樹脂組成物が低粘度になる。
 本発明に用いる重合体(B)の38℃における溶融粘度は、0.1~3,000Pa・sが好ましく、0.2~3,000Pa・sがより好ましく、0.2~2,800Pa・sがより好ましく、0.3~2,600Pa・sが更に好ましい。重合体(B)の溶融粘度が前記範囲内であると、被塗布面に対してムラ無く、均一に樹脂組成物を塗布することが可能になるため、塗工性が良好になる。
 本発明に用いる重合体(B)の分子量分布(Mw/Mn)は、1.0~8.0が好ましく、1.0~5.0がより好ましく、1.0~3.0が更に好ましい。Mw/Mnが前記範囲内であると、得られる重合体(B)の粘度のばらつきが小さくなる。
 本発明に用いる重合体(B)のガラス転移温度は、結合様式(ミクロ構造)やファルネセン由来の単量体及び必要に応じてさらに用いられるファルネセン以外の単量体の量によっても変化するが、-90~0℃の範囲が好ましく、-90~-10℃の範囲がより好ましい。前記範囲であると、柔軟な硬化物が得られ、本発明の用途のひとつである光学用粘着剤においては、段差追従性や衝撃吸収性が良好になる。
 本発明に用いる重合体(B)は、1種を単独用いてもよいが、単量体単位や分子量がそれぞれ異なる、2種以上の前記重合体(B)を混合して用いてもよい。本発明に用いる重合体(B)は、乳化重合法、又は国際公開第2010/027463号、国際公開第2010/027464号に記載の方法等により製造することができる。その中でも、乳化重合法又は溶液重合法が好ましく、溶液重合法が更に好ましい。
(乳化重合法)
 重合体(B)を得るための乳化重合法としては公知の方法を適用できる。例えば、所定量のファルネセン単量体を乳化剤の存在下に乳化分散し、ラジカル重合開始剤により乳化重合する。
 乳化剤としては、例えば炭素数10以上の長鎖脂肪酸塩又はロジン酸塩が用いられる。具体例としては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸等の脂肪酸のカリウム塩又はナトリウム塩が挙げられる。
 分散剤としては通常、水が使用され、重合時の安定性が阻害されない範囲で、メタノール、エタノール等の水溶性有機溶媒を含んでいてもよい。
 ラジカル重合開始剤としては、例えば、過硫酸アンモニウムや過硫酸カリウムのような過硫酸塩、有機過酸化物、過酸化水素等が挙げられる。
 重合体の分子量を調整するため、連鎖移動剤を使用することもできる。連鎖移動剤としては、例えばt-ドデシルメルカプタン、n-ドデシルメルカプタン等のメルカプタン類;四塩化炭素、チオグリコール酸、ジテルペン、ターピノーレン、γ-テルピネン、α-メチルスチレンダイマー等が挙げられる。
 乳化重合温度は、使用するラジカル重合開始剤の種類によって適宜選択できるが、通常、0~100℃が好ましく、0~60℃がより好ましい。重合様式は、連続重合、回分重合のいずれでもよい。重合反応は、重合停止剤の添加により停止できる。
 重合停止剤としては、例えばイソプロピルヒドロキシルアミン、ジエチルヒドロキシルアミン、ヒドロキシルアミン等のアミン化合物、ヒドロキノンやベンゾキノン等のキノン系化合物、亜硝酸ナトリウム等が挙げられる。
 重合反応停止後、必要に応じて老化防止剤を添加してもよい。重合反応停止後、得られたラテックスから必要に応じて未反応単量体を除去し、次いで、塩化ナトリウム、塩化カルシウム、塩化カリウム等の塩を凝固剤とし、必要に応じて硝酸、硫酸等の酸を添加して凝固系のpHを所定の値に調整しながら、重合体を凝固させた後、分散溶媒を分離することによって重合体を回収する。次いで水洗、脱水後、乾燥することで、重合体が得られる。なお、凝固の際に、必要に応じて予めラテックスと乳化分散液にした伸展油とを混合し、油展の重合体として回収してもよい。
(溶液重合法)
 重合体を得るための溶液重合法としては、公知の方法を適用できる。例えば、溶媒中でチーグラー系触媒、メタロセン系触媒、アニオン重合可能な活性金属を使用して、所望により極性化合物の存在下、ファルネセン単量体を重合する。
 アニオン重合可能な活性金属としては、例えばリチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属等が挙げられる。中でもアルカリ金属及びアルカリ土類金属が好ましく、アルカリ金属が特に好ましい。さらに、有機アルカリ金属化合物がより好ましく用いられる。
 溶媒としては、例えばn-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。
 有機アルカリ金属化合物としては、例えばメチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。有機アルカリ金属化合物の使用量は要求される重合体の分子量によって適宜決められるが、ファルネセン及び必要に応じ用いるファルネセン以外の単量体の合計量100質量部に対して0.01~7質量部が好ましい。
 有機アルカリ金属化合物はまた、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン等の第2級アミンと反応させて、有機アルカリ金属アミドとして使用することもできる。
 極性化合物は、アニオン重合において、反応を失活させず、ファルネセン部位のミクロ構造を調整するため用いられ、例えばジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物等が挙げられる。極性化合物は、有機アルカリ金属化合物に対して好ましくは0.01~1000モル当量の範囲で使用される。
 重合反応の温度は、通常、-80~150℃、好ましくは0~100℃、更に好ましくは10~90℃の範囲である。重合様式は回分式あるいは連続式のいずれでもよい。
 重合反応は、重合停止剤としてメタノール、イソプロパノール等のアルコールを添加して、反応を停止できる。得られた重合反応液をメタノール等の貧溶媒に注いで重合体を析出させるか、重合反応液を水で洗浄し、分離後、乾燥することにより重合体を単離できる。
 本発明において前記重合体(A)と前記重合体(B)との質量比[(A)/(B)]は、0.01~100であり、好ましくは0.05~100、より好ましくは0.1~50、更に好ましくは0.1~25、より更に好ましくは0.1~10である。前記質量比(A)/(B)が前記範囲内であると十分に粘度が低く、硬化後の破断伸度が良好な樹脂組成物を得ることができる。
 本発明においては、重合体(A)及び重合体(B)の少なくとも一方の38℃における溶融粘度が0.1~3,000Pa・sであることが好ましいが、重合体(A)及び重合体(B)の両方の溶融粘度が0.1~3,000Pa・sの範囲であることがより好ましい。
<重合開始剤(C)>
 本発明で用いる重合開始剤(C)としては、紫外線等の活性エネルギー線の照射等により重合反応が開始する光重合開始剤や熱により重合反応が開始する熱重合開始剤が挙げられる。中でも、短時間の照射で樹脂が硬化し、また基材を変質させることなく硬化物を得ることができるという観点から、光重合開始剤が好ましく、紫外線の照射により重合反応が開始する光重合開始剤がより好ましい。光重合開始剤としては、例えばカチオン系光重合開始剤やラジカル系重合開始剤が挙げられる。
 カチオン系光重合開始剤としては、例えば芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルフォニウム塩、メタロセン系化合物等が挙げられる。
 芳香族ジアゾニウム塩のカチオン系光重合開始剤としては、「P-33(商品名)」(株式会社ADEKA製)等が知られている。
 芳香族ヨードニウム塩のカチオン系光重合開始剤としては、「Rhodorsil Photo Initiator 2074(商品名)」(ローディア株式会社製)、「イルガキュア250(商品名)」(BASF株式会社製)等が知られている。
 芳香族スルフォニウム塩のカチオン系光重合開始剤としては、「FC-509(商品名)」(住友スリーエム株式会社製)、「イルガキュア270(商品名)」(BASF株式会社製)等が知られている。
 メタロセン系のカチオン系光重合開始剤としては、「イルガキュア261(商品名)」(BASF株式会社製)等が知られている。
 ラジカル系光重合開始剤としては、例えばアセトフェノン系、ベンゾフェノン系、アルキルフェノン系、アシルホスフィンオキサイド系、ベンゾイン系、ケタール系、アントラキノン系、ジスルフィド系、チオキサントン系、チウラム系、フルオロアミン系等が挙げられる。中でもアルキルフェノン系又はアシルホスフィンオキサイド系のラジカル系光重合開始剤が好ましい。
 アルキルフェノン系のラジカル系光重合開始剤としては、ヒドロキシアルキルフェノン系、アミノアルキルフェノン系等が挙げられる。ヒドロキシアルキルフェノン系のラジカル系光重合開始剤としては、「DAROCUR1173(商品名)」(2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン)、「イルガキュア184(商品名)」(1-ヒドロキシシクロヘキシルフェニルケトン)、「イルガキュア2959(商品名)」(1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン)等が挙げられる。
 アミノアルキルフェノン系のラジカル系光重合開始剤としては、「イルガキュア907(商品名)」(2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン)、「イルガキュア369(商品名)」(2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン)等が挙げられる。
 アシルホスフィンオキサイド系のラジカル系光重合開始剤としては、「LUCIRIN TPO(商品名)」(2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド)、「イルガキュア819(商品名)」(ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド)(いずれもBASF株式会社製)等が挙げられる。
 これらの中でも、ヒドロキシアルキルフェノン系のラジカル系光重合開始剤が好ましく、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンがより好ましい。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 樹脂組成物の全量中における重合開始剤(C)の含有量は、0.1~20質量%が好ましく、0.5~20質量%がより好ましく、1.0~20質量%が更に好ましく、1.0~15質量%がより更に好ましく、1.0~10質量%が最も好ましい。重合開始剤(C)の含有量が前記範囲内であると、硬化速度と力学物性の点で好ましい。
<単量体(D)>
 本発明の樹脂組成物は、当該樹脂組成物の粘度、取り扱い性及び硬化後の強度をより向上させるために、必要に応じて単量体(D)を含有してもよい。単量体(D)としては重合体(A)と反応し得る官能基を有するものが好ましく、例えば分子内に(メタ)アクリロイル基、エポキシ基、オキセタニル基、ビニルエーテル基、アルコキシシリル基を有する化合物が挙げられる。
 具体的な化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ブチルエトキシ(メタ)アクリレート、ブチルエチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、フェノキシヒドロキシプロピル(メタ)アクリレート、モルフォリン(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート等の単官能(メタ)アクリレート;
 1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート等の二官能(メタ)アクリレート;
 トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の多官能(メタ)アクリレート;
 3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘヘキセンカルボキシレート、1,2-エポキシ-4-ビニルシクロヘキサン、1,2:8,9-ジエポキシリモネン、2,6,6-トリメチル-2,3-エポキシビシクロ[3.1.1]ヘプタン等のエポキシ化合物;
 3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス[(3-エチル-3-オキタニルメトキシ)メチル]ベンゼン、3-エチル-3-(フェノキシメチル)オキセタン、ビス[1-エチル(3-オキセタニル)]メチルエーテル、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン等のオキセタン化合物;
 2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル等のビニルエーテル化合物;
 メルカプトメチルトリメトキシシラン、グリシドキシメチルトリメトキシシラン、ビニルメチルトリメトキシシラン等のシラン化合物等が挙げられる。
 中でも、単量体(D)としては、重合体(A)との相溶性が良好な観点から、単官能(メタ)アクリレート、二官能(メタ)アクリレート及び多官能(メタ)アクリレートから選ばれる少なくとも1種であることが好ましく、単官能(メタ)アクリレート及び二官能(メタ)アクリレートから選ばれる少なくとも1種であることがより好ましい。中でも、ジシクロペンテニルオキシエチル(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等が特に好ましい。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 前記単量体(D)は、ラジカル重合開始剤、カチオン重合開始剤及びアニオン重合開始剤等の重合開始剤により、前記重合体(A)の重合可能な官能基と反応することができる。前記単量体(D)の含有量は、重合体(A)及び重合体(B)の合計100質量部に対して、0.01~1,000質量部が好ましく、0.1~800質量部がより好ましく、1.0~600質量部が更に好ましく、1.0~400質量部がより更に好ましい。単量体(D)の含有量が前記範囲内であると粘度が低下し、ハンドリング性が向上する。また、本発明の樹脂組成物を硬化させた際に、硬化膜の破断強度及び引張伸度が向上するため、柔軟性に優れた硬化物が得られる。
<ヒンダードアミン系化合物(E)>
 本発明の樹脂組成物は、当該樹脂組成物及びそれから得られる硬化物の耐熱性、耐候性をより向上させるために、必要に応じて分子内にヒンダードアミン系化合物(E)を含有していてもよい。なお、ヒンダードアミン系化合物(E)としては、分子内に第二級アミノ基を有しないヒンダードアミン系化合物を用いることが好ましい。かかる分子内に第二級アミノ基を有しないヒンダードアミン系化合物(E)を用いることにより、当該樹脂組成物及びこれらから得られる硬化物の熱に晒した後の力学物性の低下や、色調の変化を顕著に改善できる。
 このような、分子内に第二級アミノ基を有しないヒンダードアミン系化合物(E)としては、例えばビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル){[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル}ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1-(オクチルオキシ)-4-ピペリジニル)エステル、メチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート、1,2,3,4-ブタンテトラカルボン酸テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)、1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリラート等が挙げられる。
 中でも、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、メチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート、1,2,3,4-ブタンテトラカルボン酸テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)等が好ましい。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 樹脂組成物の全量中におけるヒンダードアミン系化合物(E)の含有量は、0.01~10質量%が好ましく、0.5~7質量%がより好ましく、1~4質量%が更に好ましい。ヒンダードアミン系化合物(E)の含有量が前記範囲内であると、耐熱性を向上させる点及び硬化物の力学物性を向上させる点で好ましい。
 本発明の樹脂組成物は、本発明の効果を阻害しない範囲で、重合体(A)及び重合体(B)以外に、ファルネセン以外の共役ジエン化合物を重合して得られる重合可能な官能基を有しない共役ジエン系重合体を含有してもよい。ファルネセン以外の共役ジエン化合物としては、ブタジエン、イソプレン、2,3-ジメチルブタジエン、2-フェニルブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、ミルセン、クロロプレン等が挙げられる。
 また、本発明の樹脂組成物は、本発明の効果を阻害しない範囲で、重合体(A)及び重合体(B)以外に、ファルネセン以外の共役ジエン化合物と芳香族ビニル化合物とを共重合して得られる重合可能な官能基を有しない共役ジエン化合物-芳香族ビニル化合物系共重合体を含有してもよい。共役ジエン化合物の例としては、前記と同様のものが用いられる。
 芳香族ビニル化合物としては、例えばスチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン、ジビニルベンゼン等が挙げられる。
 重合体(A)及び重合体(B)以外に含有していてもよい前記共役ジエン系重合体及び共役ジエン化合物-芳香族ビニル化合物系共重合体の含有量は、特に制限されるものではないが、樹脂組成物中、50質量%以下が好ましく、30質量%以下がより好ましく、10質量%以下が更に好ましい。
<樹脂組成物の製造方法>
 本発明の樹脂組成物の製造方法としては、特に制限はないが、例えば、前記重合体(A)、前記重合体(B)、重合開始剤(C)及び必要に応じて使用されるその他の成分を室温下、攪拌機やニーダーなどの通常の混合手段を用いて混合することで製造できる。
<樹脂組成物の溶融粘度>
 本発明の樹脂組成物の38℃における溶融粘度は、15Pa・s以下が好ましく、12Pa・s以下がより好ましく、10Pa・s以下が更に好ましい。樹脂組成物の溶融粘度が前記範囲内であると、被塗布面に均一に樹脂組成物を塗布することが可能であり、気泡の混入を防ぐことも容易となるため、塗工性が良好になる。なお、本明細書において樹脂組成物の溶融粘度は、後述する実施例に記載した方法で求めた値である。
 本発明の樹脂組成物は、溶融粘度が低く、硬化性に優れており、更に強度、柔軟性及び透明性に優れる硬化物が得られるため、接着剤、粘着剤(中でも光学用粘着剤)、コーティング剤、封止材及びインキ等の用途に好適に用いることができる。
[硬化物]
 本発明の硬化物は前記本発明の樹脂組成物を硬化させたものであり、例えば、本発明の樹脂組成物に対してエネルギー線を照射する或いは熱を加えることにより、前記重合体(A)及び重合開始剤(C)を反応させることにより硬化させることができる。
 硬化させるためのエネルギー線としては、紫外線が好ましい。紫外線源としては、例えばキセノンランプ、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、マイクロ波方式エキシマランプ等が挙げられる。紫外線を照射する雰囲気としては、窒素ガス、炭酸ガス等の不活性ガス雰囲気あるいは酸素濃度を低下させた雰囲気が好ましい。
 照射雰囲気温度は、10~200℃が好ましく、UV照射量は200~10,000mJ/cm2が好ましい。
[光学用粘着剤]
 本発明の光学用粘着剤は、前記本発明の樹脂組成物を含有するものであり、スマートフォン、液晶ディスプレイ、有機ELディスプレイ等の電子機器等に好適に使用することができる。
 前記光学用粘着剤は、本発明の目的を逸脱しない範囲で、必要に応じて各種の添加剤を適宜に添加することもできる。前記添加剤としては、例えば、粘着付与剤、可塑剤、顔料、着色剤、老化防止剤、紫外線吸収剤等を挙げることができる。
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 本実施例及び比較例において使用した各成分は以下のとおりである。
<重合体(A)>
・後述する製造例1,2により得られた重合体(A-1)及び(A-2)
<重合体(B)>
・後述する製造例3,4により得られた重合体(B-1)及び(B-2)
<重合開始剤(C)>
・重合開始剤(C-1)
 2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン
 BASF株式会社製、商品名「DAROCUR 1173」
<単量体(D)>
・ジシクロペンテニルオキシエチルメタクリレート
 日立化成工業株式会社製、商品名「ファンクリルFA-512M」
<ヒンダードアミン系化合物(E)>
・ヒンダードアミン系化合物(E-1)
 ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートと、メチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートとの混合物
 BASF株式会社製、商品名「TINUVIN 765」
<その他の重合体(X)>
・重合体(X-1)~(X-3)
 後述する製造例5~7により得られた重合体(X-1)、(X-2)及び(X-3)
<製造例1~7>
製造例1:分子内にメタクリロイル基を有するポリイソプレン(A-1)の製造
 イソプレンを、n-ブチルリチウムを開始剤としてn-ヘキサン中でアニオン重合させることにより、数平均分子量36,000のポリイソプレンを得た。このポリイソプレン100質量部に無水マレイン酸1.5質量部を加え、180℃で15時間反応させることにより、1分子あたりの平均として酸無水物基を3個有するポリイソプレンを得た。次に、この1分子あたりの平均として酸無水物基を3個有するポリイソプレン100質量部に2.0質量部の2-ヒドロキシエチルメタクリレートを加え、遮光した後に120℃で10時間反応させることにより、1分子あたりの平均としてメタクリロイル基を3個有する変性液状ポリイソプレン(以下、「重合体(A-1)」ともいう)を得た。重合体(A-1)の物性を表1に示す。
製造例2:分子内にメタクリロイル基を有するポリファルネセン(A-2)の製造
 窒素置換を行った容量5リットルのオートクレーブ中に、シクロへキサン1520g及びsec-ブチルリチウム10.5質量%シクロヘキサン溶液7.8gを仕込んだ後、50℃まで昇温し、β-ファルネセン1510gを添加し、2時間重合を行った。得られた重合溶液をメタノール中に注いで未変性重合体を再沈させて濾別し、80℃で10時間真空乾燥することにより1200gのポリファルネセン(未変性重合体)を得た。
  窒素置換を行った容量1リットルのオートクレーブ中に得られたポリファルネセン100質量部を仕込み、無水マレイン酸1.5質量部とBHT(2,6-ジ-t-ブチル-4-メチルフェノール、本州化学工業株式会社製)1質量部を添加し、160℃で20時間反応させることにより、1分子あたりの平均として酸無水物基を11個有するポリファルネセンを得た。次に、このポリファルネセン100質量部に2.0質量部の2-ヒドロキシエチルメタクリレートを加え、遮光した後に80℃で6時間反応させることにより、1分子あたりの平均としてメタクリロイル基を11個有する変性液状ポリファルネセン(以下、「重合体(A-2)」ともいう)を得た。重合体(A-2)の物性を表1に示す。
製造例3:ポリファルネセン(B-1)の製造
 窒素置換し乾燥させた耐圧容器に溶媒としてシクロヘキサン241g、開始剤としてsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)28.3gを仕込み、50℃に昇温した後、β-ファルネセン342gを加えて1時間重合した。得られた重合反応液をメタノールで処理し、水を用いて重合反応液を洗浄した。洗浄後の重合反応液を水と分離して、70℃で12時間乾燥することにより液状ポリファルネセン(以下、「重合体(B-1)」ともいう)を得た。重合体(B-1)の物性を表1に示す。
製造例4:ポリファルネセン(B-2)の製造
 窒素置換し乾燥させた耐圧容器に溶媒としてシクロヘキサン304g、開始剤としてsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)1.5gを仕込み、50℃に昇温した後、β-ファルネセン302gを加えて1時間重合した。得られた重合反応液をメタノールで処理し、水を用いて重合反応液を洗浄した。洗浄後の重合反応液を水と分離して、70℃で12時間乾燥することにより液状ポリファルネセン(以下、「重合体(B-2)」ともいう)を得た。重合体(B-2)の物性を表1に示す。
製造例5:ポリイソプレン(X-1)の製造
 イソプレンを、n-ブチルリチウムを開始剤としてn-ヘキサン中でアニオン重合させることにより、数平均分子量20,000の液状ポリイソプレンを得た。ポリイソプレン(X-1)の物性を表1に示す。
製造例6:ポリブタジエン(X-2)の製造
 ブタジエンを、n-ブチルリチウムを開始剤としてn-ヘキサン中でアニオン重合させることにより、数平均分子量9,000の液状ポリブタジエンを得た。ポリブタジエン(X-2)の物性を表1に示す。
製造例7:ポリブタジエン(X-3)の製造
 ブタジエンを、n-ブチルリチウムを開始剤としてn-ヘキサン中でアニオン重合させることにより、数平均分子量44,000の液状ポリブタジエンを得た。ポリブタジエン(X-3)の物性を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 
<実施例1~9>
 各製造例で得られた重合体(A-1)、(A-2)、(B-1)、(B-2)、(X-2)と、重合開始剤(C-1)、単量体(D)及びヒンダートアミン系化合物(E)を、表2に示す割合でステンレス製300mL容器に投入し、室温下、攪拌翼を用いて20分混合することにより200gの樹脂組成物を製造した。得られた樹脂組成物を下記方法により評価した。結果を表2に示す。
<比較例1~6>
 各製造例で得られた重合体(A-1)、(A-2)、(X-1)~(X-3)と、重合開始剤(C-1)及び単量体(D)を表3に示す割合で配合したこと以外は実施例1と同様にして樹脂組成物を製造し、評価を行った。結果を表3に示す。
<評価方法>
(1)数平均分子量及び分子量分布の測定
 東ソー株式会社製GPC-8020を使用し、サンプル/テトラヒドロフラン=5mg/10mLの濃度で調整し、測定した。
 数平均分子量(Mn)及び分子量分布(Mw/Mn)はGPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算分子量で求めた。測定装置及び条件は、以下の通りである。
・装置    :東ソー株式会社製GPC装置「GPC8020」
・分離カラム :東ソー株式会社製「TSKgelG4000HXL」
・検出器   :東ソー株式会社製「RI-8020」
・溶離液   :テトラヒドロフラン(和光純薬株工業式会社製)
・溶離液流量 :1.0ml/分
・サンプル濃度:5mg/10ml
・カラム温度 :40℃
(2)溶融粘度、ガラス転移温度、及び官能基当量
 前記製造例で得られた重合体(A-1)、(A-2)、(B-1)、(B-2)及び(X-1)~(X-3)、並びに各実施例及び比較例で得られた樹脂組成物の38℃における溶融粘度をブルックフィールド型粘度計(BROOKFIELD ENGINEERING LABS. INC.製)により測定した。
 製造例1~7で得られた重合体10mgをアルミパンに採取し、示差走査熱量測定(DSC)により10℃/分の昇温速度条件においてサーモグラムを測定し、DDSCのピークトップの値をガラス転移温度とした。
 日本電子株式会社製1H-NMR測定装置(500MHz)を使用し、サンプル/重クロロホルム=100mg/1mLの濃度、積算回数512回、測定温度50℃で1H-NMRスペクトルを測定した。
 重合体(A)を測定して得られたスペクトルについて、メタクリロイル基の二重結合に由来するピークと、重合体主鎖の二重結合に由来するピークとの面積比から、メタクリロイル基1当量に対する重合体の質量、すなわち官能基当量を算出した。
 また、分子鎖1本あたりの重合可能な官能基数については、重合体(A)の数平均分子量と、上述の方法で求めた官能基当量から算出した。
(3)外観
 実施例及び比較例で得られた樹脂組成物を、縦70mm、横70mm、厚さ0.5mmの型枠に注入し、組成物表面を厚さ50μmのPETフィルムで覆った後、UV照射装置(株式会社ジーエス・ユアサコーポレーション製、水銀ランプとしてHAK125L-Fを使用)を用い、照度45mW/cm2、コンベアー速度0.25m/minに設定し、1回の作業で1,000mJ/cm2のUVを照射した。これを3回繰り返して硬化物を得た。硬化物からPETフィルムを剥がした後、目視により観察し、下記基準にしたがって透明性を評価した。
<評価基準>
5:無色透明
4:極僅かな着色が認められるが透明
3:やや着色が認められるが透明
2:明らかな着色が認められるが透明
1:不透明
(4)破断強度及び破断伸度
 上記(3)において得られた硬化物から幅6mm、長さ70mmの短冊状のサンプルを打ち抜き、50mm/minの引っ張り速度で引っ張り試験を行った際の破断強度及び破断伸度をインストロン社製引張試験機により測定した。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 表2、3より、実施例1~3及び実施例6、7の樹脂組成物は、重合可能な官能基であるメタクリロイル基を有するポリイソプレン(A-1)とポリファルネセン(B-1又はB-2)とを含有しているため、メタクリロイル基を有するポリイソプレン(A-1)のみを含有する比較例4と比べて、いずれも低粘度であり、外観を損なうことなく破断伸度が向上した。また、実施例2,3及び6においては、比較例4と比べて破断強度も改善した。さらに、実施例8に示すように他の共役ジエン重合体を併用しても、同様に粘度低減効果、硬化膜の破断伸度改善効果がみられた。さらに、実施例9と比較例6の比較から明らかなように、単量体(D)の含有量が多い樹脂組成物においても、同様に粘度低減効果、硬化膜の破断伸度及び破断強度改善効果がみられた。
 実施例4及び5の樹脂組成物は、分子内に重合可能な官能基であるメタクリロイル基を有するポリファルネセン(A-2)とポリファルネセン(B-1)とを含有しているため、メタクリロイル基を有するポリファルネセン(A-2)のみを含有する比較例5と比べて、粘度と破断伸度、破断強度が改善した。
 一方で、比較例1~3の樹脂組成物は、分子内にメタクリロイル基を有するポリイソプレン(A-1)にポリイソプレン(X-1)又はポリブタジエン(X-2又はX-3)を配合した組成物であるが、ポリファルネセンを配合した実施例1~3と比較して、破断伸度がいずれも低下した。
 また、実施例1と比較例2との比較により、同程度の分子量を有するポリファルネセン(B-1)とポリブタジエン(X-2)とでは、ポリファルネセンを用いた方が、粘度低減効果に優れることが明らかとなった。

Claims (16)

  1.  共役ジエン化合物由来の単量体単位(a1)を含み、重合可能な官能基を有する重合体(A)、ファルネセン由来の単量体単位(b1)を含み、重合可能な官能基を有しない重合体(B)及び重合開始剤(C)を含有し、重合体(A)と重合体(B)との質量比[(A)/(B)]が0.01~100である樹脂組成物。
  2.  更に、重合体(A)及び重合体(B)の合計100質量部に対して単量体(D)を0.01~1,000質量部含有する、請求項1に記載の樹脂組成物。
  3.  樹脂組成物の全量中における重合開始剤(C)の含有量が、0.1~20質量%である、請求項1又は2に記載の樹脂組成物。
  4.  更に、ヒンダードアミン系化合物(E)を樹脂組成物の全量中に0.01~10質量%含有する、請求項1~3のいずれかに記載の樹脂組成物。
  5.  重合体(A)及び重合体(B)の少なくとも一方の38℃における溶融粘度が0.1~3,000Pa・sである、請求項1~4のいずれかに記載の樹脂組成物。
  6.  重合体(B)の数平均分子量が1,000~100万である、請求項1~5のいずれかに記載の樹脂組成物。
  7.  重合体(B)を構成する単量体単位がファルネセン由来の単量体単位(b1)のみからなる、請求項1~6のいずれかに記載の樹脂組成物。
  8.  重合体(B)を構成する単量体単位がファルネセン由来の単量体単位(b1)及びファルネセン以外の単量体に由来する単量体単位(b2)を含有する、請求項1~6のいずれかに記載の樹脂組成物。
  9.  単量体単位(b2)がファルネセン以外の共役ジエン化合物に由来する単量体単位である、請求項8に記載の樹脂組成物。
  10.  単量体単位(b2)が芳香族ビニル化合物に由来する単量体単位である、請求項8に記載の樹脂組成物。
  11.  重合体(A)を構成する単量体単位が共役ジエン化合物に由来する単量体単位(a1)のみからなる、請求項1~10のいずれかに記載の樹脂組成物。
  12.  重合体(A)を構成する単量体単位が共役ジエン化合物に由来する単量体単位(a1)及び共役ジエン化合物以外の単量体に由来する単量体単位(a2)を含有する、請求項1~10のいずれかに記載の樹脂組成物。
  13.  単量体単位(a1)としての共役ジエン化合物が、ファルネセン、イソプレン及びブタジエンから選ばれる少なくとも1種である、請求項11又は12に記載の樹脂組成物。
  14.  重合体(A)が有する重合可能な官能基が、置換基を有していてもよい、(メタ)アクリロイル基、エポキシ基、オキセタニル基、ビニルエーテル基及びアルコキシシリル基から選ばれる少なくとも1種である、請求項1~13のいずれかに記載の樹脂組成物。
  15.  請求項1~14のいずれかに記載の樹脂組成物を硬化させた硬化物。
  16.  請求項1~14のいずれかに記載の樹脂組成物を含有する光学用粘着剤。
PCT/JP2014/059136 2013-09-30 2014-03-28 樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含有する光学用粘着剤 WO2015045450A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015538930A JPWO2015045450A1 (ja) 2013-09-30 2014-03-28 樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含有する光学用粘着剤
KR1020167007537A KR102159419B1 (ko) 2013-09-30 2014-03-28 수지 조성물, 이것을 경화시킨 경화물 및 이 수지 조성물을 함유하는 광학용 점착제
CN201480052669.3A CN105829372B (zh) 2013-09-30 2014-03-28 树脂组合物、将该树脂组合物固化而成的固化物和含有该树脂组合物的光学用粘合剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-205538 2013-09-30
JP2013205538 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015045450A1 true WO2015045450A1 (ja) 2015-04-02

Family

ID=52742610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059136 WO2015045450A1 (ja) 2013-09-30 2014-03-28 樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含有する光学用粘着剤

Country Status (5)

Country Link
JP (1) JPWO2015045450A1 (ja)
KR (1) KR102159419B1 (ja)
CN (1) CN105829372B (ja)
TW (1) TWI617589B (ja)
WO (1) WO2015045450A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067805A (ja) * 2013-09-30 2015-04-13 株式会社クラレ 樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含む光学用粘着剤
JP2015086283A (ja) * 2013-10-30 2015-05-07 株式会社クラレ 硬化性樹脂組成物
WO2017003573A1 (en) * 2015-06-29 2017-01-05 Fina Technology, Inc. Farnesene-based polymers and liquid optically clear adhesive compositions incorporating the same
JP2018115346A (ja) * 2018-05-02 2018-07-26 株式会社クラレ 硬化性樹脂組成物
US10544241B2 (en) 2016-09-15 2020-01-28 Fina Technology, Inc. Farnesene-based macromonomers and methods of making and using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213050B2 (ja) * 2018-09-28 2023-01-26 京セラ株式会社 電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法
US20220112373A1 (en) * 2019-01-24 2022-04-14 Showa Denko K.K. Thermosetting resin composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502136A (ja) * 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド ファルネセン共重合体
WO2013047348A1 (ja) * 2011-09-30 2013-04-04 株式会社クラレ ゴム組成物及びタイヤ
WO2013047347A1 (ja) * 2011-09-30 2013-04-04 株式会社クラレ ゴム組成物及びタイヤ
WO2013115010A1 (ja) * 2012-02-01 2013-08-08 住友ゴム工業株式会社 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
WO2013115011A1 (ja) * 2012-02-02 2013-08-08 住友ゴム工業株式会社 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
WO2013126129A1 (en) * 2012-02-22 2013-08-29 Amyris, Inc. Polymerization of compositions comprising a farnesene
WO2013125496A1 (ja) * 2012-02-24 2013-08-29 株式会社クラレ ゴム組成物及びタイヤ
WO2013128977A1 (ja) * 2012-03-01 2013-09-06 住友ゴム工業株式会社 分枝共役ジエン重合体の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4098107B2 (ja) 2003-02-10 2008-06-11 株式会社クラレ 熱硬化性樹脂組成物
JP5073400B2 (ja) 2007-07-30 2012-11-14 株式会社クラレ 耐熱安定性に優れた硬化性樹脂組成物
TWI393742B (zh) * 2008-09-04 2013-04-21 Amyris Inc 聚法呢烯及含聚法呢烯的組合物
WO2010027463A1 (en) * 2008-09-04 2010-03-11 Amyris Biotechnologies, Inc. Adhesive compositions comprising a polyfarnesene
CN103052664B (zh) * 2010-08-02 2015-08-12 阿迈瑞斯公司 带有缩聚物的聚法呢烯接枝共聚物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502136A (ja) * 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド ファルネセン共重合体
WO2013047348A1 (ja) * 2011-09-30 2013-04-04 株式会社クラレ ゴム組成物及びタイヤ
WO2013047347A1 (ja) * 2011-09-30 2013-04-04 株式会社クラレ ゴム組成物及びタイヤ
WO2013115010A1 (ja) * 2012-02-01 2013-08-08 住友ゴム工業株式会社 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
WO2013115011A1 (ja) * 2012-02-02 2013-08-08 住友ゴム工業株式会社 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
WO2013126129A1 (en) * 2012-02-22 2013-08-29 Amyris, Inc. Polymerization of compositions comprising a farnesene
WO2013125496A1 (ja) * 2012-02-24 2013-08-29 株式会社クラレ ゴム組成物及びタイヤ
WO2013128977A1 (ja) * 2012-03-01 2013-09-06 住友ゴム工業株式会社 分枝共役ジエン重合体の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067805A (ja) * 2013-09-30 2015-04-13 株式会社クラレ 樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含む光学用粘着剤
JP2015086283A (ja) * 2013-10-30 2015-05-07 株式会社クラレ 硬化性樹脂組成物
WO2017003573A1 (en) * 2015-06-29 2017-01-05 Fina Technology, Inc. Farnesene-based polymers and liquid optically clear adhesive compositions incorporating the same
US9850329B2 (en) 2015-06-29 2017-12-26 Fina Technology, Inc. Farnesene-based polymers and liquid optically clear adhesive compositions incorporating the same
CN108026215A (zh) * 2015-06-29 2018-05-11 飞纳技术有限公司 基于法呢烯的聚合物和包含其的液体光学清晰粘合剂组合物
US10239973B2 (en) 2015-06-29 2019-03-26 Fina Technology, Inc. Farnesene-based polymers and liquid optically clear adhesive compositions incorporating the same
CN108026215B (zh) * 2015-06-29 2019-06-07 飞纳技术有限公司 基于法呢烯的聚合物和包含其的液体光学清晰粘合剂组合物
US10336839B2 (en) 2015-06-29 2019-07-02 Fina Technology, Inc. Farnesene-based polymers and liquid optically clear adhesive compositions incorporating the same
US10544241B2 (en) 2016-09-15 2020-01-28 Fina Technology, Inc. Farnesene-based macromonomers and methods of making and using the same
US11117988B2 (en) 2016-09-15 2021-09-14 Fina Technology, Inc. Farnesene-based macromonomers and methods of making and using the same
JP2018115346A (ja) * 2018-05-02 2018-07-26 株式会社クラレ 硬化性樹脂組成物

Also Published As

Publication number Publication date
TW201512234A (zh) 2015-04-01
KR102159419B1 (ko) 2020-09-24
CN105829372A (zh) 2016-08-03
CN105829372B (zh) 2018-11-13
TWI617589B (zh) 2018-03-11
KR20160065826A (ko) 2016-06-09
JPWO2015045450A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
KR102167198B1 (ko) 중합체 및 그 제조 방법, 그리고 그 중합체를 함유하는 수지 조성물
WO2015045450A1 (ja) 樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含有する光学用粘着剤
JP6672174B2 (ja) 変性液状ジエン系ゴム及び該変性液状ジエン系ゴムを含む樹脂組成物
JP5805916B1 (ja) 変性液状ジエン系ゴム及びその製造方法
JP6199682B2 (ja) 樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含む光学用粘着剤
JP6368476B2 (ja) 硬化性樹脂組成物
JP5209387B2 (ja) 変性液状ゴム組成物の製造方法
JP2015105279A (ja) 硬化性樹脂組成物
JP2018115346A (ja) 硬化性樹脂組成物
JP6185547B2 (ja) 熱可塑性エラストマー組成物および熱可塑性エラストマー組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538930

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167007537

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848124

Country of ref document: EP

Kind code of ref document: A1