WO2013115011A1 - 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ - Google Patents
分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ Download PDFInfo
- Publication number
- WO2013115011A1 WO2013115011A1 PCT/JP2013/051188 JP2013051188W WO2013115011A1 WO 2013115011 A1 WO2013115011 A1 WO 2013115011A1 JP 2013051188 W JP2013051188 W JP 2013051188W WO 2013115011 A1 WO2013115011 A1 WO 2013115011A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conjugated diene
- rubber composition
- branched conjugated
- copolymer
- diene compound
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/22—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having three or more carbon-to-carbon double bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/045—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated conjugated hydrocarbons other than butadiene or isoprene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/08—Isoprene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L47/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
Definitions
- the present invention relates to a branched conjugated diene copolymer, a rubber composition comprising the copolymer, and a pneumatic tire produced using the rubber composition.
- a tire is mainly required to have high levels of wear resistance and grip performance.
- a method of improving the wear resistance of a tire generally, a high molecular weight polymer (for example, having a molecular weight of 250,000 or more, 500,000 or more, 1,000,000 or more), carbon black as a filler, and a rubber composition for a tire The method of mix
- blending to is known.
- rubbers having a high glass transition temperature (Tg) for example, those having a Tg of -20 ° C.
- Myrcene is a naturally occurring organic compound which is a kind of olefin belonging to monoterpenes. Myrcene has two isomers, ⁇ -myrcene (2-methyl-6-methyleneocta-1,7-diene) and ⁇ -myrcene (7-methyl-3-methyleneocta-1,6-diene) Although it exists, simply referring to Myrsen usually refers to the latter.
- Patent Document 1 discloses a myrcene polymer.
- Farnesene is one of isoprenoid compounds chemically synthesized by oligomerization of isoprene and dehydration reaction of nerolidol, and is mainly used as a fragrance or its raw material (Patent Document 2).
- the present invention relates to a novel branched conjugated diene copolymer useful for improving processability as a rubber component of a rubber composition for a tire, a rubber composition for a tire comprising the branched conjugated diene copolymer, particularly, A rubber composition for a tire, which improves both the abrasion resistance and the grip performance to high levels and exhibits excellent properties in processability, and a pneumatic tire manufactured using the rubber composition for a tire It is intended to be provided.
- the present invention relates to the general formula (1) (Wherein, R 1 represents an aliphatic hydrocarbon having 6 to 11 carbon atoms). And a branched conjugated diene compound represented by the general formula (2) (Wherein, R 2 and R 3 are the same or different and each represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, or a halogen atom).
- the copolymerization ratio (l) of the branched conjugated diene compound (1) is preferably 2.5 to 75% by weight, and the copolymerization ratio (m) of the conjugated diene compound (2) is preferably 25 to 97.5% by weight .
- the present invention has a low Mooney viscosity ML 1 + 4 (130 ° C.) in comparison with a polymer having the same weight average molecular weight in which the branched conjugated diene compound (1) is replaced with the conjugated diene compound (2)
- the above branched branched conjugated diene copolymer for improving processability.
- the branched conjugated diene compound (1) is preferably myrcene and / or farnesene.
- the conjugated diene compound (2) is preferably 1,3-butadiene and / or isoprene.
- the present invention also relates to a rubber composition comprising the branched conjugated diene copolymer.
- the present invention relates to a pneumatic tire produced using the above rubber composition.
- a novel branched conjugated diene copolymer useful for improving processability can be provided as a rubber component for a tire, and the use of the branched conjugated diene copolymer makes it possible to prevent abrasion. Both the wear resistance and the grip performance can be improved to high levels, and a tire rubber composition excellent in processability can be provided.
- Such a rubber composition for a tire according to the present invention can be used as a tire tread, a side rubber, a rubber for a case member, etc., and various rubbers such as ordinary passenger cars, truck buses, light trucks, light trucks, small trucks, motorcycles, motor bikes and industrial vehicles. Although useful as a composition, it is particularly useful as a rubber composition for a tire tread.
- a polymer having a large weight-average molecular weight (Mw, for example, 250,000 or more, 500,000 or more, or 1,000,000 or more) is rubberized in order to improve the wearability and grip performance of the tire. It is intended to provide a rubber composition for a tire tread having excellent processability in which an increase in Mooney viscosity is suppressed by blending the branched conjugated diene compound (1) as a component of the polymer even if it is used as a component. Can.
- the blending of the branched conjugated diene compound (1) may also have a feature of having little influence on the glass transition temperature (Tg) of the polymer.
- the branched conjugated diene copolymer of the present invention refers to a copolymer obtained by copolymerizing the branched conjugated diene compound (1) and the conjugated diene compound (2).
- the weight average molecular weight (Mw) of the branched conjugated diene copolymer of the present invention is not particularly limited as long as it is 3,000 or more, but preferably 250,000 or more, more preferably 500,000 or more, and still more preferably 1,000,000 or more. is there. If the Mw is less than 3,000, the liquid polymer tends to be a highly fluid liquid polymer, and if the Mw is less than 250,000, the hardness of the rubber composition tends to decrease and the processability does not deteriorate. On the other hand, Mw is not particularly limited as long as it is 3,000,000 or less, preferably 2,000,000 or less. If the Mw exceeds 3,000,000, it tends to be a solid which does not have rubber elasticity.
- the number average molecular weight (Mn) of the branched conjugated diene copolymer is preferably 3,000 or more, more preferably 250,000 or more. If it is less than 3000, the hardness of the rubber composition is increased and the processability tends not to be deteriorated. On the other hand, Mn is preferably 3,000,000 or less, more preferably 2,000,000 or less. If Mn exceeds 3,000,000, it tends to be a solid which does not have rubber elasticity.
- the preferable range of Mw / Mn is 20.0 or less, more preferably 10.0 or less.
- Mw / Mn is more than 20.0, there is a tendency that the problem of deterioration in processability due to the decrease in hardness of the rubber composition does not occur.
- limiting in particular about the lower limit of Mw / Mn There is no fault in particular in 1.0 or more.
- the glass transition temperature (Tg) of the branched conjugated diene copolymer is usually in the range of -110 ° C to 110 ° C.
- Tg of a branched conjugated diene copolymer for example, the Tg of a branched conjugated diene copolymer containing a relatively large amount of high cis-butadiene prepared with a transition metal catalyst can be obtained by containing a large amount of high cis-butadiene It tends to be lower.
- the branched conjugated diene copolymer containing a large amount of high cis-butadiene in the branched conjugated diene copolymer can be improved in processability only by blending and copolymerizing a small amount of the branched conjugated diene compound (1) Although it is shown, in most cases, Tg does not change much depending on the composition of the branched conjugated diene compound (1).
- the Mooney viscosity ML 1 + 4 (130 ° C.) of a branched conjugated diene copolymer is the same molecular weight as that obtained by replacing the branched conjugated diene compound (1) constituting the copolymer with the conjugated diene compound (2) As long as it is low in comparison with uniting, the effect of the present invention to improve the processability can be exhibited, and there is no particular limitation, but in general, it is preferably 25 or more, more preferably 30 or more. . If the Mooney viscosity is less than 25, it tends to be fluid. On the other hand, the Mooney viscosity is preferably 160 or less, more preferably 150 or less, still more preferably 100 or less, and still more preferably 60 or less. When the Mooney viscosity is more than 160, many softening agents and processing aids tend to be required when processing.
- the copolymerization ratio (l) of the branched conjugated diene compound (1) is not particularly limited as long as it is 1 to 99% by weight, but the lower limit is preferably 2.5% by weight or more, and 5% by weight or more More preferable. If it is less than 1%, the effect of the branched conjugated diene compound (1) combination to improve processability tends not to be sufficiently obtained. On the other hand, as an upper limit, 75 weight% or less is preferable, 60 weight% or less is more preferable, 50 weight% or less is more preferable, 15 weight% or less is more preferable. If it exceeds 99% by weight, it tends to be a fluid polymer, and the effect on the processability of the branched conjugated diene compound (1) tends to be sufficiently exhibited if it is blended by 15% by weight .
- the copolymerization ratio (m) of the conjugated diene compound (2) is not particularly limited as long as it is 1 to 99% by weight, but the lower limit is 25% by weight or more, more preferably Is 40% by weight or more, more preferably 50% by weight or more, and still more preferably 85% by weight or more. If m is less than 1% by weight, it tends to be a flowable polymer. On the other hand, the upper limit value of the preferable range is preferably 97.5% by weight or less, more preferably 95% by weight or less. If m exceeds 99% by weight, the effect of copolymerizing the branched conjugated diene compound (1) tends to be small to improve the processability.
- the total of the polymerization ratio 1 of the branched conjugated diene compound (1) and the polymerization ratio m of the conjugated diene compound (2) is 100% by weight.
- examples of the aliphatic hydrocarbon group having 6 to 11 carbon atoms include those having a normal structure such as hexyl group, heptyl group, octyl group, nonyl group, decyl group and undecyl group, These isomers and / or unsaturated ones, and their derivatives (for example, halides and hydroxylated compounds etc.) can be mentioned. Among them, 4-methyl-3-pentenyl group, 4,8-dimethyl-nona-3,7-dienyl group and the like, and derivatives thereof are particularly preferable.
- branched conjugated diene compound (1) examples include myrcene, farnesene and the like.
- myrcene includes both ⁇ -myrcene (2-methyl-6-methyleneocta-1,7-diene) and ⁇ -myrcene, and among them, ⁇ having the following structure -Myrcene (7-methyl-3-methyleneocta-1,6-diene) is preferred.
- farnesene includes any isomer such as ⁇ -farnesene ((3E, 7E) -3,7,11-trimethyl-1,3,6,10-dodecatetraene) and ⁇ -farnesene.
- (E) - ⁇ -farnesene (7,11-dimethyl-3-methylene-1,6,10-dodecatriene) having the following structure is preferable.
- branched conjugated diene compound (1) one or more may be used.
- examples of the aliphatic hydrocarbon group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like, among which a methyl group is preferable.
- a halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned, Among these, a chlorine atom is preferable.
- Each of R 2 and R 3 in the conjugated diene compound (2) is independently preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and more preferably a hydrogen atom or a methyl group.
- the conjugated diene compound (2) for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene and the like are preferable, and among these, 1,3-butadiene, isoprene and the like are preferable. .
- conjugated diene compound (2) one or more kinds can be used.
- the branched conjugated diene copolymer of the present invention can be obtained by copolymerizing the branched conjugated diene compound (1) and the conjugated diene compound (2).
- Such copolymerization is not particularly limited in the order of copolymerization.
- all the monomers may be randomly copolymerized at one time, or a specific monomer (for example, branched conjugated diene compound (1) monomer) may be preliminarily Or only the conjugated diene compound (2) monomer, or a combination of any monomer selected from these, etc.), and then the remaining monomers are added and copolymerized, or it is previously copolymerized for each specific monomer.
- the copolymer may be block copolymerized.
- Such copolymerization can be carried out by any conventional method, and can be carried out by, for example, anionic polymerization reaction, coordination polymerization and the like.
- the polymerization method is not particularly limited, and any of solution polymerization method, emulsion polymerization method, gas phase polymerization method and bulk polymerization method can be used, but among these, solution polymerization method is preferable.
- the polymerization type may be either batch type or continuous type.
- the anionic polymerization can be carried out in a suitable solvent in the presence of an anionic polymerization initiator.
- an anionic polymerization initiator any conventional one can be suitably used, and as such an anionic polymerization initiator, for example, a compound represented by the general formula RLix (wherein R represents one or more carbon atoms) And an organolithium compound having an aliphatic, aromatic or alicyclic group, and x is an integer of 1 to 20).
- Suitable organolithium compounds include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, phenyllithium and naphthyllithium.
- Preferred organolithium compounds are n-butyllithium and sec-butyllithium.
- An anionic polymerization initiator can be used individually or in mixture of 2 or more types.
- the amount of the polymerization initiator to be used in the anionic polymerization is not particularly limited. Is more preferred. If the amount of the polymerization initiator used is less than 0.05 mmol, the copolymer tends to be resin-like instead of rubbery, and if it is more than 35 mmol, the copolymer is soft and branched conjugated diene for processability. The effect of copolymerizing the compound (1) tends to be small.
- a solvent used for anion polymerization as long as it does not inactivate an anion polymerization initiator and does not stop a polymerization reaction, all can be used suitably, and any of a polar solvent or a nonpolar solvent can be used. It can be used.
- polar solvents include ether solvents such as tetrahydrofuran
- nonpolar solvents include, for example, chain hydrocarbons such as hexane, heptane, octane and pentane, cyclic hydrocarbons such as cyclohexane, benzene, toluene And aromatic hydrocarbons such as xylene. These solvents may be used alone or in combination of two or more.
- the anionic polymerization is preferably further carried out in the presence of a polar compound.
- polar compounds include dimethyl ether, diethyl ether, ethyl methyl ether, ethyl propyl ether, tetrahydrofuran, dioxane, diphenyl ether, tripropylamine, tributylamine, trimethylamine, triethylamine, N, N, N ', N'-tetramethylethylenediamine (TMEDA) and the like.
- TEDA trimethylamine
- the polar compounds can be used alone or in combination of two or more. This polar compound is useful for reducing the content of 1,2-structure with respect to control of the microstructure of the butadiene moiety.
- the amount of the polar compound used varies depending on the type of the polar compound and the polymerization conditions, but is preferably 0.1 or more as a molar ratio with the anionic polymerization initiator (polar compound / anionic polymerization initiator). If the molar ratio to the anionic polymerization initiator (polar compound / anionic polymerization initiator) is less than 0.1, the effect of the polar substance on controlling the microstructure tends to be insufficient.
- the reaction temperature in the anionic polymerization is not particularly limited as long as the reaction proceeds suitably, but it is preferably -10 ° C to 100 ° C, and more preferably 25 ° C to 70 ° C.
- the reaction time varies depending on the preparation amount, reaction temperature and other conditions, but usually, for example, about 3 hours is sufficient.
- the anionic polymerization can be terminated by the addition of reaction terminators commonly used in this field.
- a reaction terminator for example, polar solvents having active protons such as alcohols such as methanol, ethanol and isopropanol or acetic acid, and mixtures thereof, or polar solvents thereof and nonpolar solvents such as hexane and cyclohexane A mixed solution is mentioned.
- the addition amount of the reaction terminator is usually sufficient in the same molar amount or about 2 times the molar amount with respect to the anionic polymerization initiator.
- the branched conjugated diene copolymer is prepared by removing the solvent from the polymerization solution by a conventional method, or pouring the polymerization solution into one or more times the amount of alcohol to obtain a branched conjugated diene copolymer. It can be easily isolated by precipitation.
- the coordination polymerization can be carried out by using a coordination polymerization initiator in place of the anionic polymerization initiator in the above-mentioned anionic polymerization.
- a coordination polymerization initiator any conventional one can be suitably used, and as such a coordination polymerization initiator, for example, transition metal-containing compounds such as lanthanoid compounds, titanium compounds, cobalt compounds, nickel compounds and the like
- the catalyst which is a compound is mentioned.
- an aluminum compound or a boron compound can be further used as a cocatalyst.
- the lanthanoid compound is not particularly limited as long as it contains any of the elements with atomic numbers 57 to 71 (lanthanoid), and among these lanthanoids, neodymium is particularly preferable.
- lanthanoid compounds include carboxylates of these elements, ⁇ -diketone complexes, alkoxides, phosphates or phosphites, and halides. Among these, carboxylates, alkoxides and ⁇ -diketone complexes are preferred in terms of ease of handling.
- the titanium compound includes, for example, one cyclopentadienyl group, indenyl group, substituted cyclopentadienyl group or substituted indenyl group, and three substituents selected from halogen, alkoxyl group and alkyl group.
- the titanium containing compound etc. which it has are mentioned the compound which has one alkoxy silyl group is preferable from the point of catalyst performance.
- cobalt compounds include cobalt halides, carboxylates, ⁇ -diketone complexes, organic base complexes, organic phosphine complexes and the like.
- nickel compounds include nickel halides, carboxylates, ⁇ -diketone complexes, organic base complexes and the like.
- the catalyst used as a coordination polymerization initiator can be used individually or in combination of 2 or more types.
- the use amount of the catalyst as a polymerization initiator at the time of performing the coordination polymerization is not particularly limited.
- the preferable use amount is the same as the use amount of the catalyst in the case of the anionic polymerization.
- Examples of the aluminum compound used as a cocatalyst include organic aluminoxanes, halogenated organic aluminum compounds, organic aluminum compounds, hydrogenated organic aluminum compounds and the like.
- organic aluminoxanes for example, alkylaluminoxanes (methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, isobutylaluminoxane, octylaluminoxane, etc.)
- a halogenated organoaluminum compound for example, a halogenated alkyl Aluminum compounds (dimethylaluminium chloride, diethylaluminium chloride, methylaluminium dichloride, ethylaluminium dichloride), and as an organic aluminum compound, for example, an alkylaluminium compound (trimethylaluminium, triethylaluminium, triisopropylaluminium, triisobutyla
- boron compound for example, a compound containing an anionic species such as tetraphenyl borate, tetrakis (pentafluorophenyl) borate, (3,5-bistrifluoromethylphenyl) borate and the like can be mentioned. These cocatalysts may also be used alone or in combination of two or more.
- reaction time and reaction temperature are also the same as those described for the anionic polymerization. Termination of the polymerization reaction and isolation of the branched conjugated diene copolymer can also be carried out in the same manner as in the case of anionic polymerization.
- the weight average molecular weight (Mw) of the branched conjugated diene copolymer can be controlled by a conventional method, and for example, the monomer amount of the branched conjugated diene compound (1) and the conjugated diene compound (2) charged at the time of polymerization is adjusted It can control by doing.
- the Mw can be increased by increasing the ratio of the total monomer / anion polymerization catalyst or the ratio of the total monomer / coordination polymerization catalyst, and conversely, the Mw can be reduced by decreasing the ratio.
- Mn number average molecular weight
- the Tg of the branched conjugated diene copolymer is relatively low, for example, by using butadiene as the conjugated diene compound (2) and increasing the charge thereof, or by using an appropriate catalyst to increase the cis structure in butadiene.
- it can be made relatively high by using isoprene as the conjugated diene compound (2), increasing its charge, or increasing the trans structure in isoprene using a suitable catalyst.
- the Mooney viscosity of the branched conjugated diene copolymer can be controlled by adjusting the amount of the branched conjugated diene compound (1) monomer charged in the polymerization. For example, the Mooney viscosity increases as the charged amount of the branched conjugated diene compound (1) decreases, and the Mooney viscosity decreases as the charged amount of the branched conjugated diene compound (1) increases.
- the branched conjugated diene copolymer of the present invention thus obtained can be made into a rubber composition for tires by appropriately blending other components usually used in the field of rubber industry.
- the compounding amount of the branched conjugated diene copolymer in the rubber component is about 3% by weight or more, preferably about 5% by weight or more, more preferably 30% by weight or more, further Preferably it is 50 weight% or more. If the blending amount of the branched conjugated diene copolymer is less than 3% by weight, the effect of copolymerizing the branched conjugated diene compound (1) on the processability tends to be small. On the other hand, the upper limit value of the compounding amount of the branched conjugated diene copolymer is not particularly limited.
- NR natural rubber
- IR isoprene rubber
- BR butadiene rubber
- SBR styrene butadiene rubber
- IIR styrene isoprene
- diene rubbers such as styrene isoprene butadiene rubber (SIBR), ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), and butyl rubber (IIR).
- SIBR styrene isoprene butadiene rubber
- EPDM ethylene propylene diene rubber
- CR chloroprene rubber
- NBR acrylonitrile butadiene rubber
- IIR butyl rubber
- fillers As the filler, mention may be made of fillers commonly used in this field such as carbon black and silica.
- N 2 SA nitrogen adsorption specific surface area
- N 2 SA of carbon black is about 270 m 2 / g or less, preferably about 260 m 2 / g or less. If the carbon black N 2 SA is greater than 270, the carbon black dispersion tends to be poor.
- the compounding amount of carbon black is about 1% by weight or more, preferably about 3% by weight or more, with respect to 100 parts by weight of the rubber component. If the amount of carbon black is less than 1% by weight, the abrasion resistance tends to decrease. On the other hand, the blending amount of carbon black is about 200% by weight or less, more preferably 150 or less. When the amount of carbon black exceeds 200% by weight, the processability tends to be deteriorated.
- silica examples include silica (anhydrous silicic acid) prepared by a dry method, silica (hydrous silicic acid) prepared by a wet method, and the like. Among them, silica prepared by a wet method is preferable because the number of silanol groups on the surface is large and the number of reaction points with the silane coupling agent is large.
- the N 2 SA of silica is about 50 m 2 / g or more, preferably about 80 m 2 / g or more. If N 2 SA is less than 50, the reinforcing effect is small and the abrasion resistance tends to be lowered.
- the N 2 SA of silica is about 300 m 2 / g or less, preferably about 250 m 2 / g or less.
- N 2 SA is larger than 300 m 2 / g, the dispersion tends to decrease and the processability tends to decrease.
- the compounding amount of silica is about 1 part by weight or more, preferably about 10 parts by weight or more with respect to 100 parts by weight of the rubber component. If the amount of silica is less than 1 part by weight, abrasion resistance tends to be insufficient. On the other hand, the compounding amount of silica is about 150 parts by weight or less, and more preferably 100 parts by weight or less. When the amount of the silica is more than 150 parts by weight, the dispersibility of the silica tends to deteriorate and the processability tends to deteriorate.
- the rubber composition preferably contains a silane coupling agent.
- silane coupling agent conventionally known silane coupling agents can be used.
- silane coupling agent bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (4- (4) Triethoxysilylbutyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (4-trimethoxysilylbutyl) tetrasulfide, bis (3-triethoxy) Silylpropyl) trisulfide, bis (2-triethoxysilylethyl) trisulfide, bis (4-triethoxysilylbutyl) trisulfide, bis (3-trimethoxysilylpropyl
- silane coupling agents may be used alone or in combination of two or more.
- bis (3-triethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl) disulfide are preferably contained in view of good processability.
- the blending amount thereof is preferably 1 part by weight or more, and more preferably 2 parts by weight or more with respect to 100 parts by weight of silica. If the content of the silane coupling agent is less than 1 part by weight, effects such as improvement of dispersibility tend not to be sufficiently obtained.
- the content of the silane coupling agent is preferably 20 parts by weight or less, and more preferably 15 parts by weight or less. When the content of the silane coupling agent exceeds 20 parts by weight, a sufficient coupling effect can not be obtained, and the reinforcing property tends to be lowered.
- the rubber composition of the present invention may contain, in addition to the components described above, compounding agents conventionally used in the rubber industry, such as other reinforcing fillers, anti-aging agents, vulcanizing agents such as oils, waxes and sulfur, and vulcanizing agents.
- compounding agents conventionally used in the rubber industry such as other reinforcing fillers, anti-aging agents, vulcanizing agents such as oils, waxes and sulfur, and vulcanizing agents.
- a vulcanization accelerator, a vulcanization acceleration auxiliary and the like can be appropriately blended.
- the rubber composition of the present invention thus obtained can be used as various members of a tire, but since both the wear resistance and the grip performance can be improved to high levels, in particular, the tire tread can be used. It can be suitably used as
- branched conjugated diene copolymers in which the conjugated diene compound (2) is butadiene can be suitably used particularly for ordinary passenger cars or truck buses, and the conjugated diene compound (2) is isoprene.
- the branched conjugated diene copolymer can be suitably used for light trucks, small trucks, motorcycles, motorbikes or industrial vehicles, in addition to the above.
- the rubber composition of the present invention is used in the manufacture of a tire and can be made into a tire by a conventional method. That is, a mixture in which the above components are appropriately compounded as necessary is kneaded, and extruded in an unvulcanized stage according to the shape of each component of the tire, and molded by a conventional method on a tire molding machine As a result, an unvulcanized tire is formed.
- the unvulcanized tire is heated and pressurized in a vulcanizer to obtain a tire, which can be filled with air to form a pneumatic tire.
- Mw and Mn are measured using a gel permeation chromatograph (GPC) and converted from standard polystyrene.
- the glass transition temperature (Tg) is measured by differential scanning calorimetry (DSC).
- Mooney viscosity is measured according to JIS K6300.
- the term “1 to 99% by weight” simply includes the values at both ends.
- NR Natural rubber (TSR 20) SBR: SL 574 manufactured by JSR Corporation Copolymer: one synthesized according to the description of the present invention Carbon black: Show black N220 (nitrogen adsorption specific surface area (N2SA): 125 m 2 / g) manufactured by Cabot Japan Ltd.
- N2SA nitrogen adsorption specific surface area
- Silica Ultrasil VN3 manufactured by Texsa (nitrogen adsorption specific surface area (N2SA): 175 m 2 / g)
- Silane coupling agent Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Tegusa Corporation
- Anti-aging agent Noclac 6C (N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine) manufactured by Ouchi Emerging Chemical Industry Co., Ltd.
- Stearic acid stearic acid oil manufactured by NOF Corporation: mineral oil PW-380 manufactured by Idemitsu Kosan Co., Ltd.
- Zinc oxide Zinc oxide No.
- a catalyst solution (2) was obtained in the same manner as in the above (1) except that butadiene was replaced with isoprene in the above (1).
- Myrcene Copolymer Example 1 (1) (Synthesis of Copolymer 1) A 3-liter pressure resistant stainless steel container was purged with nitrogen, and 1800 ml of cyclohexane, 5 g of myrcene and 95 g of butadiene were added and stirred for 10 minutes, 2 ml of catalyst solution (1) was added, and stirring was performed while maintaining 30 ° C. After 3 hours, 10 ml of a 0.01 M BHT (dibutylhydroxytoluene) / isopropanol solution was added dropwise to complete the reaction.
- BHT dibutylhydroxytoluene
- Example 2 (1) (Synthesis of Copolymer 2) The same treatment as in Example 1 (1) was carried out except that 10 g of myrcene and 90 g of butadiene were used, to obtain 100 g of a copolymer 2. The polymerization conversion was about 100%.
- Example 3 (Synthesis of Copolymer 3) A treatment was performed in the same manner as in Example 1 (1) except that 20 g of myrcene and 80 g of butadiene were used to obtain 100 g of a copolymer 3. The polymerization conversion was about 100%.
- (2) (Production of Unvulcanized Rubber Composition 3) An unvulcanized rubber composition 3 was obtained in the same manner as in Example 1 (2) except that the copolymer 3 was used instead of the copolymer 1.
- (3) (Production of Vulcanized Rubber Composition 3) The unvulcanized rubber composition obtained in the above (2) was treated in the same manner as in Example 1 (3) to obtain a vulcanized rubber composition 3.
- Example 4 (1) (Synthesis of copolymer 4) A treatment was performed in the same manner as in Example 1 (1) except that 40 g of myrcene and 60 g of butadiene were used to obtain 100 g of a copolymer 4. The polymerization conversion was about 100%.
- Comparative Example 1 (1) (Synthesis of Polymer I) A treatment was carried out in the same manner as in Example 1 (1) except that 0 g of myrcene and 100 g of butadiene were used to obtain 100 g of a polymer I. The polymerization conversion was about 100%.
- Tg glass transition temperature
- the copolymerization ratio (l) (% by weight) was measured by a conventional method using pyrolysis gas chromatography (PGC). That is, a calibration curve is prepared for the purified branched conjugated diene compound (1), and the branched conjugated diene in the copolymer is obtained from the area ratio of the thermal decomposition product derived from the branched conjugated diene compound (1) obtained by PGC The weight% of the compound (1) was calculated.
- PGC pyrolysis gas chromatography
- a system comprising a gas chromatograph mass spectrometer spectrometer GCMS-QP 5050A manufactured by Shimadzu Corp. and a pyrolysis apparatus JHP-330 manufactured by Japan Analysis Industry Co., Ltd. was used.
- the copolymers 1 to 4 (Mw: 610,000 to 720,000) of the present invention have smaller Mw weights obtained by replacing the branched conjugated diene compound (1) with the conjugated diene compound (2)
- the Mooney viscosity ML 1 + 4 (130 ° C.) is lower than the combined I (Mw: 600,000), and the processability is excellent.
- each of the copolymers 1 to 4 of the present invention is a polymer of the same molecular weight in which the branched conjugated diene compound (1) is replaced with the conjugated diene compound (2). In the comparison of the above, it is clear that the Mooney viscosity is low and the processability is excellent.
- a test piece of a predetermined size is prepared from the unvulcanized rubber composition, and heated to 130 ° C. by preheating for 1 minute using a Mooney viscosity tester according to JIS K 6300 “Test method of unvulcanized rubber”. The large rotor was rotated under the following temperature conditions, and the Mooney viscosity ML 1 + 10 (130 ° C.) after 10 minutes was measured. The smaller the Mooney viscosity index, the better the processability.
- a tire for a cart (tire size: 11 ⁇ 1.10-5) is formed by molding an unvulcanized rubber sheet into a tread shape, bonding it to other tire members, and press curing it for 12 minutes under conditions of 170 ° C. )created.
- the cart tire was mounted on a cart, and a two-kilometer-round test course was run for eight weeks to conduct an actual vehicle running test.
- the tire grip performance of Comparative Example 1 was set to 100 points, and the test driver performed a sensory evaluation at a full 200 points.
- the initial grip performance indicates the grip performance on the first to fourth rounds, and the second half grip performance indicates the grip on the fifth to eighth rounds. The larger the value, the better the grip characteristics.
- Comparative Example 1 has high Mooney viscosity and poor processability, but Examples 1 to 4 in which the branched conjugated diene compound (1) is blended have low Mooney viscosity and processability is improved. There is. Moreover, compared with Comparative Example 1, Examples 1 to 4 are also excellent in tensile strength, elongation at break, grip performance, and abrasion resistance, and the workability is improved while maintaining the strength or performance as a rubber. Has been achieved.
- Example 5 (Synthesis of Copolymer 5) A 3-liter pressure resistant stainless steel container was purged with nitrogen, and 1800 ml of cyclohexane, 5 g of myrcene and 95 g of isoprene were added and stirred for 10 minutes, 2 ml of the catalyst solution (2) was added, and stirring was performed while maintaining 30 ° C. After 3 hours, 10 ml of 0.01 M BHT / isopropanol solution was added dropwise to complete the reaction. After cooling, the reaction solution is added to 3 L of methanol prepared separately, and the precipitate thus obtained is air-dried overnight and further dried under reduced pressure for 2 days to obtain 100 g of a polymer (5).
- the polymerization conversion (percent of "dry weight / charge”) was approximately 100%.
- (2) (Production of Unvulcanized Rubber Composition 5) According to the composition described in Table 4, the above-obtained copolymer 5 and various chemicals for producing the above rubber composition (excluding insoluble sulfur and vulcanization accelerator) are mixed at a temperature of 150 ° C. for 5 minutes with a Banbury mixer. It was refined and a kneaded product was obtained. Sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneading was performed at 170 ° C. for 12 minutes using an open roll, to obtain an unvulcanized rubber composition 5.
- (3) (Production of Vulcanized Rubber Composition 5) The unvulcanized rubber composition obtained in the above (2) was press vulcanized at 170 ° C. for 20 minutes to obtain a vulcanized rubber composition 5.
- Example 6 (1) (Synthesis of Copolymer 6) The same treatment as in Example 5 (1) was carried out except that 10 g of myrcene and 90 g of isoprene were used, to obtain 100 g of a copolymer 6. The polymerization conversion was about 100%.
- (3) (Production of Vulcanized Rubber Composition 6) The unvulcanized rubber composition obtained in the above (2) was treated in the same manner as in Example 5 (3) to obtain a vulcanized rubber composition 6.
- Example 7 (1) (Synthesis of copolymer 7) The same treatment as in Example 5 (1) was carried out except that 20 g of myrcene and 80 g of isoprene were used, to obtain 100 g of a copolymer 7. The polymerization conversion was about 100%.
- Example 8 (1) (Synthesis of copolymer 8) The same treatment as in Example 5 (1) was carried out except that 40 g of myrcene and 60 g of isoprene were used, to obtain 100 g of a copolymer 8. The polymerization conversion was about 100%.
- Comparative example 2 (1) (Synthesis of Polymer II) A treatment was carried out in the same manner as in Example 5 (1) except that 0 g of myrcene and 100 g of isoprene were used to obtain 100 g of a polymer II. The polymerization conversion was about 100%.
- the copolymers 5 to 8 (Mw: 710,000 to 780,000) of the present invention have smaller Mw weight, in which the branched conjugated diene compound (1) is replaced with the conjugated diene compound (2)
- the Mooney viscosity ML 1 + 4 (130 ° C.) is lower than the combination II (Mw: 590,000), and the processability is excellent. Since the Mooney viscosity increases as the Mw increases, the copolymers 5 to 8 of the present invention each have a polymer of the same molecular weight in which the branched conjugated diene compound (1) is replaced with the conjugated diene compound (2). In the comparison of the above, it is clear that the Mooney viscosity is low and the processability is excellent.
- Comparative Example 2 has high Mooney viscosity and poor processability, but Examples 5 to 8 in which the branched conjugated diene compound (1) is blended have low Mooney viscosity and improved processability. There is. Moreover, compared with Comparative Example 2, Examples 5 to 8 are superior also in tensile strength, elongation at break, grip performance, and abrasion resistance, and the workability is improved while the strength or performance as a rubber is maintained. Has been achieved.
- Example 10 (Synthesis of copolymer 10) The same treatment as in Example 1 (1) was carried out except that 10 g of farnesene and 90 g of butadiene were used, to obtain 100 g of a copolymer 9. The polymerization conversion was almost 100%.
- (2) (Production of Unvulcanized Rubber Composition 10) An unvulcanized rubber composition 10 was obtained in the same manner as in Example 1 (2) except that the formulation described in Table 6 was followed.
- (3) (Production of Vulcanized Rubber Composition 10) The vulcanized rubber composition obtained in the above (2) was treated in the same manner as in Example 1 (3) to obtain a vulcanized rubber composition 10.
- Example 11 (Synthesis of copolymer 11) The same treatment as in Example 1 (1) was carried out except that 20 g of farnesene and 80 g of butadiene were used, to obtain 100 g of a copolymer 11. The polymerization conversion was almost 100%.
- (2) (Production of Unvulcanized Rubber Composition 11) An unvulcanized rubber composition 11 was obtained in the same manner as in Example 1 (2) except that the composition described in Table 6 was followed.
- (3) (Production of Vulcanized Rubber Composition 11) The vulcanized rubber composition obtained in the above (2) was treated in the same manner as in Example 1 (3) to obtain a vulcanized rubber composition 11.
- Example 12 (1) Synthesis of Copolymer 12 100 g of Copolymer 12 was obtained by treating in the same manner as Example 1 (1) except that 40 g of farnesene and 60 g of butadiene were used. The polymerization conversion was almost 100%.
- the weight average molecular weight Mw, the number average molecular weight Mn, the glass transition temperature Tg, the Mooney viscosity, and the copolymerization ratio (I) of the branched conjugated diene compound (1) for the copolymers 9 to 12 obtained above are It was measured. The results are shown in Table 5. In addition, the result about the copolymer I is also shown collectively.
- the copolymers 9 to 12 (Mw: 630,000 to 750,000) of the present invention have smaller Mw weights obtained by replacing the branched conjugated diene compound (1) with the conjugated diene compound (2)
- the Mooney viscosity ML 1 + 4 (130 ° C.) is lower than the combined I (Mw: 600,000), and the processability is excellent.
- the copolymers 9 to 12 of the present invention each have a polymer of the same molecular weight in which the branched conjugated diene compound (1) is replaced with the conjugated diene compound (2). In the comparison of the above, it is clear that the Mooney viscosity is low and the processability is excellent.
- Comparative Example 1 has high Mooney viscosity and poor processability, but Examples 9 to 12 in which the branched conjugated diene compound (1) is blended have low Mooney viscosity and improved processability. There is. Further, in comparison with Comparative Example 1, Examples 9 to 12 are superior also in tensile strength, elongation at break, grip performance, and abrasion resistance, and the workability is improved while maintaining the strength or performance as a rubber. Has been achieved.
- Example 13 (1) (Synthesis of copolymer 13) A treatment was performed in the same manner as in Example 5 (1) except that 5 g of farnesene and 95 g of isoprene were used, to obtain 100 g of a copolymer 13. The polymerization conversion was almost 100%.
- Example 14 (Synthesis of Copolymer 14) The same treatment as in Example 5 (1) was carried out except that 10 g of farnesene and 90 g of isoprene were used, to obtain 100 g of a copolymer 14. The polymerization conversion was almost 100%.
- (2) (Production of unvulcanized rubber composition 14) An unvulcanized rubber composition 14 was obtained in the same manner as in Example 5 (2) except that the formulation described in Table 8 was followed.
- (3) (Production of Vulcanized Rubber Composition 14) The vulcanized rubber composition obtained in the above (2) was treated in the same manner as in Example 5 (3) to obtain a vulcanized rubber composition 14.
- Example 15 (Synthesis of Copolymer 15) The same treatment as in Example 5 (1) was carried out except that 20 g of farnesene and 80 g of isoprene were used, to obtain 100 g of a copolymer 15. The polymerization conversion was almost 100%.
- (2) (Production of Unvulcanized Rubber Composition 15) An unvulcanized rubber composition 15 was obtained in the same manner as in Example 5 (2) except that the formulation described in Table 8 was followed.
- (3) (Production of Vulcanized Rubber Composition 15) The vulcanized rubber composition obtained in the above (2) was treated in the same manner as in Example 5 (3) to obtain a vulcanized rubber composition 15.
- Example 16 (1) (Synthesis of copolymer 16) The same treatment as in Example 5 (1) was carried out except that 40 g of farnesene and 60 g of isoprene were used, to obtain 100 g of a copolymer 16. The polymerization conversion was almost 100%.
- the weight average molecular weight Mw, the number average molecular weight Mn, the glass transition temperature Tg, the Mooney viscosity and the copolymerization ratio (I) of the branched conjugated diene compound (1) of the copolymers 13 to 16 obtained above were determined according to the above method It was measured. The results are shown in Table 7. In addition, the result about the copolymer II is also shown collectively.
- the copolymers 13 to 16 (Mw: 64 to 750,000) of the present invention were polymers of smaller Mw in which the branched conjugated diene compound (1) was replaced with the conjugated diene compound (2)
- the Mooney viscosity ML 1 + 4 (130 ° C.) is lower than II (Mw: 590,000), and the processability is excellent. Since the Mooney viscosity increases as Mw increases, the copolymers 13 to 16 of the present invention are compared with polymers of the same molecular weight in which the branched conjugated diene compound (1) is replaced with the conjugated diene compound (2) It is also apparent that the Mooney viscosity is low and the processability is excellent.
- Comparative Example 2 has high Mooney viscosity and poor processability, but Examples 13 to 16 in which the branched conjugated diene compound (1) is blended have low Mooney viscosity and processability is improved. There is. Further, in comparison with Comparative Example 2, Examples 13 to 16 are also excellent in grip performance and abrasion resistance, and improvement in processability is achieved while maintaining the performance as a rubber.
- a novel branched conjugated diene copolymer useful for improving processability as a rubber component of a rubber composition for a tire a rubber composition for a tire comprising the branched conjugated diene copolymer,
- a rubber composition for a tire that improves both the abrasion resistance and the grip performance to high levels and exhibits excellent properties in processability, and pneumatically produced using the rubber composition for a tire A tire can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Tires In General (AREA)
Abstract
Description
で示される分枝共役ジエン化合物と、一般式(2)
で示される共役ジエン化合物とを共重合して得られる分枝共役ジエン共重合体であって、
分枝共役ジエン化合物(1)の共重合比(l)が1~99重量%、共役ジエン化合物(2)の共重合比(m)が99~1重量%である分枝共役ジエン共重合体に関する。
本発明の分枝共役ジエン共重合体とは、分枝共役ジエン化合物(1)と、共役ジエン化合物(2)を共重合して得られる共重合体をいう。
<分枝共役ジエン化合物(1)>
分枝共役ジエン化合物(1)において、炭素数6~11の脂肪族炭化水素基としては、例えば、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基等のノルマル構造のもの、それらの異性体かつ/または不飽和体、並びに、それらの誘導体(例えば、ハロゲン化物および水酸基化物等)が挙げられる。そのうち、特に、4-メチル-3-ペンテニル基、4,8-ジメチル-ノナ-3,7-ジエニル基等、および、それらの誘導体が好ましい。
共役ジエン化合物(2)において、炭素数1~3の脂肪族炭化水素基としてはメチル基、エチル基、n-プロピル基、イソプロピル基等が挙げられ、このうちメチル基がこのましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、このうち、塩素原子が好ましい。
本発明の分枝共役ジエン共重合体は、分枝共役ジエン化合物(1)と、共役ジエン化合物(2)とを共重合させて得ることができる。
該アニオン重合は、アニオン重合開始剤の存在下、適当な溶媒中で実施することができる。アニオン重合開始剤としては、慣用のものをいずれも好適に使用することができ、そのようなアニオン重合開始剤としては、例えば、一般式RLix(但し、Rは1個またはそれ以上の炭素原子を含む脂肪族、芳香族または脂環式基であり、xは1~20の整数である。)を有する有機リチウム化合物があげられる。適当な有機リチウム化合物としては、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、フェニルリチウムおよびナフチルリチウムが挙げられる。好ましい有機リチウム化合物はn-ブチルリチウムおよびsec-ブチルリチウムである。アニオン重合開始剤は、単独でまたは2種以上を混合して用いることができる。アニオン重合を行う際の重合開始剤の使用量は特に限定はないが、例えば、重合に供する全モノマー100g当り、約0.05~35mmol用いるのが好ましく、約0.05~0.2mmol用いるのがより好ましい。重合開始剤の使用量が0.05mmol未満では共重合体がゴム状とならず樹脂状となる傾向があり、35mmolより多い場合には、共重合体が軟らかく加工性に対して分枝共役ジエン化合物(1)を共重合させることによる効果が小さくなる傾向がある。
配位重合は、上記アニオン重合におけるアニオン重合開始剤に代えて、配位重合開始剤を用いることにより、実施することができる。配位重合開始剤としては、慣用のものをいずれも好適に用いることができ、そのような配位重合開始剤としては、例えば、ランタノイド化合物、チタン化合物、コバルト化合物、ニッケル化合物等の遷移金属含有化合物である触媒が挙げられる。また、所望により、さらにアルミニウム化合物、ホウ素化合物を助触媒として使用することができる。
ガラス転移温度(Tg)は、示差走査熱量計(DSC)により測定される。
ムーニー粘度は、JISK6300に準じて測定される。
単に、「1~99重量%」というときは、両端の値を含むものである。
シクロヘキサン:関東化学(株)製のシクロヘキサン(特級)
イソプロパノール:関東化学(株)製のイソプロパノール(特級)
TMEDA:関東化学(株)製のテトラメチルエチレンジアミン(試薬)
ブタジエン:高千穂化学工業(株)製の1,3-ブタジエン
イソプレン:和光純薬(株)のイソプレン(試薬)
ミルセン:和光純薬(株)のβ-ミルセン(試薬)
ファルネセン:日本テルペン化学(株)の(E)-β-ファルネセン(試薬)
NR:天然ゴム(TSR 20)
SBR:JSR(株)製のSL574
共重合体:本明細書の記載に従い合成したもの
カーボンブラック:キャボットジャパン(株)製のショウブラックN220(チッ素吸着比表面積(N2SA):125m2/g)
シリカ:テグッサ社製のウルトラシルVN3(チッ素吸着比表面積(N2SA):175m2/g)
シランカップリング剤:テグッサ社製のSi69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)
老化防止剤:大内新興化学工業(株)製のノクラック6C(N-1,3-ジメチルブチル-N’-フェニル-p-フェニレンジアミン)
ステアリン酸:日油(株)製のステアリン酸
オイル:出光興産(株)製のミネラルオイルPW-380
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ワックス:大内新興化学工業(株)製のサンノックワックスN
硫黄:鶴見化学(株)製の粉末硫黄
加硫促進剤1:大内新興化学工業(株)製のノクセラーCZ(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)
加硫促進剤2:大内新興化学工業(株)製のノクセラーD(N,N’-ジフェニルグアニジン)
(1)50mlガラス容器を窒素置換し、ブタジエンのシクロヘキサン溶液(2.0mol/L)8ml、2-エチルヘキサン酸ネオジム(III)/シクロヘキサン溶液(0.2mol/L)1ml、PMAO(Al:6.8質量%)8mlを加え撹絆した。5分後、1M-水素化ジイソブチルアルミニウム/ヘキサン溶液5mlを加え、さらに5分後、1M-塩化ジエチルアルミニウム/ヘキサン溶液2mlを加え、攪拌して、触媒溶液(1)を得た。
(2)上記(1)において、ブタジエンをイソプレンに代えた以外は、上記(1)と同様に処理して、触媒溶液(2)を得た。
実施例1
(1)(共重合体1の合成)
3Lの耐圧ステンレス容器を窒素置換し、シクロヘキサンを1800ml、ミルセンを5g、ブタジエンを95g入れ10分間攪拌した後、触媒溶液(1)を2ml添加し、30℃を保ったまま攪拌を行った。3時間後、0.01M-BHT(ジブチルヒドロキシトルエン)/イソプロパノール溶液を10ml滴下し、反応を終了させた。反応液を、冷却後、別途用意しておいたメタノール3L中に加え、こうして得られた沈殿物を1晩風乾し、さらに2日間減圧乾燥を行い、重合体(1)100gを得た。重合転化率(「乾燥重量/仕込量」の百分率)はほぼ100%であった。
(2)(未加硫ゴム組成物1の製造)
表2記載の配合に従い、上記で得た共重合体1と、上記ゴム組成物製造用の各種薬品(不溶性硫黄および加硫促進剤を除く)を、バンバリーミキサーにて、150℃で5分間混錬りし、混練り物を得た。得られた混錬物に、硫黄ならびに加硫促進剤を添加して、オープンロールを用いて、170℃で12分間混錬りし、未加硫ゴム組成物1を得た。
(3)(加硫ゴム組成物1の製造)
上記(2)で得た未加硫ゴム組成物を、170℃で20分間プレス加硫し、加硫ゴム組成物1を得た。
(1)(共重合体2の合成)
ミルセンを10g、ブタジエンを90gとした以外は、実施例1(1)と同様に処理して、共重合体2を100g得た。重合転化率はほぼ100%であった。
(2)(未加硫ゴム組成物2の製造)
共重合体1に代えて共重合体2を使用した以外は、実施例1(2)と同様に処理して、未加硫ゴム組成物2を得た。
(3)(加硫ゴム組成物2の製造)
上記(2)で得た未加硫ゴム組成物を、実施例1(3)と同様に処理して、加硫ゴム組成物2を得た。
(1)(共重合体3の合成)
ミルセンを20g、ブタジエンを80gとした以外は、実施例1(1)と同様に処理して、共重合体3を100g得た。重合転化率はほぼ100%であった。
(2)(未加硫ゴム組成物3の製造)
共重合体1に代えて共重合体3を使用した以外は、実施例1(2)と同様に処理して、未加硫ゴム組成物3を得た。
(3)(加硫ゴム組成物3の製造)
上記(2)で得た未加硫ゴム組成物を、実施例1(3)と同様に処理して、加硫ゴム組成物3を得た。
(1)(共重合体4の合成)
ミルセンを40g、ブタジエンを60gとした以外は、実施例1(1)と同様に処理して、共重合体4を100g得た。重合転化率はほぼ100%であった。
(2)(未加硫ゴム組成物4の製造)
共重合体1に代えて共重合体4を使用した以外は、実施例1(2)と同様に処理して、未加硫ゴム組成物4を得た。
(3)(加硫ゴム組成物4の製造)
上記(2)で得た未加硫ゴム組成物を、実施例1(3)と同様に処理して、加硫ゴム組成物4を得た。
(1)(重合体Iの合成)
ミルセンを0g、ブタジエンを100gとした以外は、実施例1(1)と同様に処理して、重合体I 100gを得た。重合転化率はほぼ100%であった。
(2)(未加硫ゴム組成物5の製造)
共重合体1に代えて重合体Iを使用した以外は、実施例1(2)と同様に処理して、未加硫ゴム組成物Iを得た。
(3)(加硫ゴム組成物5の製造)
上記(2)で得た未加硫ゴム組成物を、実施例1(3)と同様に処理して、加硫ゴム組成物Iを得た。
上記で得た共重合体1~4および重合体Iについて、重量平均分子量Mw、数平均分子量Mn、ガラス転移温度Tg、ムーニー粘度および分枝共役ジエン化合物(1)の共重合比(l)を、以下方法に従い測定した。結果を、表1に示す。
Mw、Mnは、東ソー(株)製GPC-8000シリーズの装置、検知器として示差屈折計を用いて測定し、標準ポリスチレンにより校正した。
各共重合体について、示差走査熱量計(DSC)を用い、昇温速度10℃/分にて開始温度-150℃から最終温度150℃までを測定しTgを算出した。
各共重合体について、JIS K 6300「未加硫ゴムの試験方法」に準じて、ムーニー粘度試験機を用いて、1分間の予熱によって熱せられた130℃の温度条件にて、大ローターを回転させ、4分間経過した時点でのムーニー粘度ML1+4(130℃)を測定した。なお、ムーニー粘度が小さいほど、加工性に優れることを示している。
該共重合比(l)(重量%)は、熱分解ガスクロマトグラフィー(PGC)による定法によって測定した。すなわち、精製した分枝共役ジエン化合物(1)についての検量線を作製し、PGCによって得られる分枝共役ジエン化合物(1)由来の熱分解物の面積比から共重合体中の分枝共役ジエン化合物(1)の重量%を算出した。熱分解クロマトグラフィーは(株)島津製作所製のガスクロマトグラフ質量分析計GCMS-QP5050Aと日本分析工業(株)製の熱分解装置JHP-330から構成されるシステムを使用した。
上記で得た未加硫ゴム組成物1~4および未加硫ゴム組成物I、ならびに、加硫ゴム組成物1~4および加硫ゴム組成物Iを用いて、下記の試験を行った。結果を表2に示す。
前記未加硫ゴム組成物から所定のサイズの試験片を作成し、JISK6300「未加硫ゴムの試験方法」に準じて、ムーニー粘度試験機を用いて、1分間の予熱によって熱せられた130℃の温度条件にて、大ローターを回転させ、10分間経過した時点でのムーニー粘度ML1+10(130℃)を測定した。なお、ムーニー粘度指数が小さいほど、加工性に優れることを示している。
前記加硫ゴム組成物からからなる3号ダンベル型試験片を用いて、JISK6251「加硫ゴムおよび熱可塑性ゴム-引張特性の求め方」に準じて引張試験を実施し、破断時の引張強さTB(MPa)および伸びEB(%)を測定した。TBが大きいほどゴム強度が優れることを示し、同様にEBが大きいほどゴム強度が優れることを示す。
未加硫ゴムシートをトレッド形状に成形して、他のタイヤ部材と貼りあわせ、170℃の条件下で12分間プレス加硫することにより、カート用タイヤ(タイヤサイズ:11×1.10-5)を作成した。該カート用タイヤをカートに装着し、1周2kmのテストコースを8週走行して、実車走行試験を行った。比較例1のタイヤグリップ性能を100点とし、200点満点でテストドライバーが官能評価した。なお、初期グリップ性能は1~4周目のグリップ性能、後半グリップ性能は5~8周目のグリップ性能を示す。値が大きいほど、グリップ特性が優れていることを示す。
上記実車走行試験後のタイヤについて、比較例1のタイヤの摩耗外観を100点とし、各配合の摩耗外観を、200点満点で相対評価した。値が大きいほど耐摩耗性が優れていることを示す。
(1)(共重合体5の合成)
3Lの耐圧ステンレス容器を窒素置換し、シクロヘキサンを1800ml、ミルセンを5g、イソプレンを95g入れ10分間攪拌した後、触媒溶液(2)を2ml添加し、30℃を保ったまま攪拌を行った。3時間後、0.01M-BHT/イソプロパノール溶液を10ml滴下し、反応を終了させた。反応液を、冷却後、別途用意しておいたメタノール3L中に加え、こうして得られた沈殿物を1晩風乾し、さらに2日間減圧乾燥を行い、重合体(5)100gを得た。重合転化率(「乾燥重量/仕込量」の百分率)はほぼ100%であった。
(2)(未加硫ゴム組成物5の製造)
表4記載の配合に従い、上記で得た共重合体5と、上記ゴム組成物製造用の各種薬品(不溶性硫黄および加硫促進剤を除く)を、バンバリーミキサーにて、150℃で5分間混錬りし、混練り物を得た。得られた混錬物に、硫黄ならびに加硫促進剤を添加して、オープンロールを用いて、170℃で12分間混錬りし、未加硫ゴム組成物5を得た。
(3)(加硫ゴム組成物5の製造)
上記(2)で得た未加硫ゴム組成物を、170℃で20分間プレス加硫し、加硫ゴム組成物5を得た。
(1)(共重合体6の合成)
ミルセンを10g、イソプレンを90gとした以外は、実施例5(1)と同様に処理して、共重合体6を100g得た。重合転化率はほぼ100%であった。
(2)(未加硫ゴム組成物6の製造)
共重合体5に代えて共重合体6を使用した以外は、実施例5(2)と同様に処理して、未加硫ゴム組成物6を得た。
(3)(加硫ゴム組成物6の製造)
上記(2)で得た未加硫ゴム組成物を、実施例5(3)と同様に処理して、加硫ゴム組成物6を得た。
(1)(共重合体7の合成)
ミルセンを20g、イソプレンを80gとした以外は、実施例5(1)と同様に処理して、共重合体7を100g得た。重合転化率はほぼ100%であった。
(2)(未加硫ゴム組成物7の製造)
共重合体5に代えて共重合体7を使用した以外は、実施例5(2)と同様に処理して、未加硫ゴム組成物7を得た。
(3)(加硫ゴム組成物7の製造)
上記(2)で得た未加硫ゴム組成物を、実施例5(3)と同様に処理して、加硫ゴム組成物7を得た。
(1)(共重合体8の合成)
ミルセンを40g、イソプレンを60gとした以外は、実施例5(1)と同様に処理して、共重合体8を100g得た。重合転化率はほぼ100%であった。
(2)(未加硫ゴム組成物8の製造)
共重合体5に代えて共重合体8を使用した以外は、実施例5(2)と同様に処理して、未加硫ゴム組成物8を得た。
(3)(加硫ゴム組成物8の製造)
上記(2)で得た未加硫ゴム組成物を、実施例5(3)と同様に処理して、加硫ゴム組成物8を得た。
(1)(重合体IIの合成)
ミルセンを0g、イソプレンを100gとした以外は、実施例5(1)と同様に処理して、重合体IIを100gを得た。重合転化率はほぼ100%であった。
(2)(未加硫ゴム組成物IIの製造)
共重合体5に代えて重合体IIを使用した以外は、実施例5(2)と同様に処理して、未加硫ゴム組成物IIを得た。
(3)(加硫ゴム組成物IIの製造)
上記(2)で得た未加硫ゴム組成物を、実施例5(3)と同様に処理して、加硫ゴム組成物IIを得た。
上記で得た未加硫ゴム組成物5~8および未加硫ゴム組成物II、ならびに、加硫ゴム組成物5~8および加硫ゴム組成物IIを用いて、上記に従い、加工性、ゴム強度、グリップ性能および耐摩耗性に関する試験を行った。結果を表4に示す。
実施例9
(1)(共重合体9の合成)
ファルネセンを5g、ブタジエンを95gとした以外は実施例1(1)と同様に処理して共重合体9を100g得た。重合転化率はほぼ100%だった。
(2)(未加硫ゴム組成物9の製造)
表6記載の配合に従う以外は、実施例1(2)と同様に処理して、未加硫ゴム組成物9を得た。
(3)(加硫ゴム組成物9の製造)
上記(2)で得た加硫ゴム組成物を、実施例1(3)と同様に処理して、加硫ゴム組成物9を得た。
(1)(共重合体10の合成)
ファルネセンを10g、ブタジエンを90gとした以外は実施例1(1)と同様に処理して共重合体9を100g得た。重合転化率はほぼ100%だった。
(2)(未加硫ゴム組成物10の製造)
表6記載の配合に従う以外は、実施例1(2)と同様に処理して、未加硫ゴム組成物10を得た。
(3)(加硫ゴム組成物10の製造)
上記(2)で得た加硫ゴム組成物を、実施例1(3)と同様に処理して、加硫ゴム組成物10を得た。
(1)(共重合体11の合成)
ファルネセンを20g、ブタジエンを80gとした以外は実施例1(1)と同様に処理して共重合体11を100g得た。重合転化率はほぼ100%だった。
(2)(未加硫ゴム組成物11の製造)
表6記載の配合に従う以外は、実施例1(2)と同様に処理して、未加硫ゴム組成物11を得た。
(3)(加硫ゴム組成物11の製造)
上記(2)で得た加硫ゴム組成物を、実施例1(3)と同様に処理して、加硫ゴム組成物11を得た。
(1)共重合体12の合成
ファルネセンを40g、ブタジエンを60gとした以外は実施例1(1)と同様に処理して共重合体12を100g得た。重合転化率はほぼ100%だった。
(2)(未加硫ゴム組成物12の製造)
表6記載の配合に従う以外は、実施例1(2)と同様に処理して、未加硫ゴム組成物12を得た。
(3)(加硫ゴム組成物12の製造)
上記(2)で得た加硫ゴム組成物を、実施例1(3)と同様に処理して、加硫ゴム組成物12を得た。
上記で得た未加硫ゴム組成物9~12および加硫ゴム組成物9~12を用いて、上記に従い、加工性、ゴム強度、グリップ性能および耐摩耗性に関する試験を行った。結果を表6に示す。
(1)(共重合体13の合成)
ファルネセンを5g、イソプレンを95gとした以外は実施例5(1)と同様に処理して、共重合体13を100g得た。重合転化率はほぼ100%だった。
(2)(未加硫ゴム組成物13の製造)
表8記載の配合に従う以外は、実施例5(2)と同様に処理して、未加硫ゴム組成物13を得た。
(3)(加硫ゴム組成物13の製造)
上記(2)で得た加硫ゴム組成物を、実施例5(3)と同様に処理して、加硫ゴム組成物13を得た。
(1)(共重合体14の合成)
ファルネセンを10g、イソプレンを90gとした以外は実施例5(1)と同様に処理して共重合体14を100g得た。重合転化率はほぼ100%だった。
(2)(未加硫ゴム組成物14の製造)
表8記載の配合に従う以外は、実施例5(2)と同様に処理して、未加硫ゴム組成物14を得た。
(3)(加硫ゴム組成物14の製造)
上記(2)で得た加硫ゴム組成物を、実施例5(3)と同様に処理して、加硫ゴム組成物14を得た。
(1)(共重合体15の合成)
ファルネセンを20g、イソプレンを80gとした以外は実施例5(1)と同様に処理して共重合体15を100g得た。重合転化率はほぼ100%だった。
(2)(未加硫ゴム組成物15の製造)
表8記載の配合に従う以外は、実施例5(2)と同様に処理して、未加硫ゴム組成物15を得た。
(3)(加硫ゴム組成物15の製造)
上記(2)で得た加硫ゴム組成物を、実施例5(3)と同様に処理して、加硫ゴム組成物15を得た。
(1)(共重合体16の合成)
ファルネセンを40g、イソプレンを60gとした以外は実施例5(1)と同様に処理して共重合体16を100g得た。重合転化率はほぼ100%だった。
(2)(未加硫ゴム組成物16の製造)
表8記載の配合に従う以外は、実施例5(2)と同様に処理して、未加硫ゴム組成物16を得た。
(3)(加硫ゴム組成物16の製造)
上記(2)で得た加硫ゴム組成物を、実施例5(3)と同様に処理して、加硫ゴム組成物16を得た。
上記で得た未加硫ゴム組成物13~16および加硫ゴム組成物13~16を用いて、上記に従い、加工性、ゴム強度、グリップ性能および耐摩耗性に関する試験を行った。結果を表8に示す。
Claims (7)
- 分枝共役ジエン化合物(1)の共重合比(l)が2.5~75重量%、共役ジエン化合物(2)の共重合比(m)が25~97.5重量%である請求項1記載の分枝共役ジエン共重合体。
- 分枝共役ジエン化合物(1)を共役ジエン化合物(2)で置き換えた同一の重量平均分子量の重合体との比較において、ムーニー粘度ML1+4(130℃)が低いものである、加工性改善用の、請求項1または2記載の分枝共役ジエン共重合体。
- 分枝共役ジエン化合物(1)が、ミルセンおよび/またはファルネセンである請求項1~3のいずれか1項に記載の分枝共役ジエン共重合体。
- 共役ジエン化合物(2)が、1,3-ブタジエンおよび/またはイソプレンである請求項1~4のいずれか1項に記載の分枝共役ジエン共重合体。
- 請求項1~5のいずれか1項に記載の分枝共役ジエン共重合体を含んでなるゴム組成物。
- 請求項6記載のゴム組成物を用いて作製した空気入りタイヤ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013556327A JP6338859B2 (ja) | 2012-02-02 | 2013-01-22 | ゴム組成物および空気入りタイヤ |
US14/370,323 US9434804B2 (en) | 2012-02-02 | 2013-01-22 | Branched conjugated diene copolymer, rubber composition and pneumatic tire |
EP13743059.1A EP2810963B1 (en) | 2012-02-02 | 2013-01-22 | Branched conjugated diene copolymer, rubber composition and pneumatic tire |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012020914 | 2012-02-02 | ||
JP2012-020914 | 2012-02-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013115011A1 true WO2013115011A1 (ja) | 2013-08-08 |
Family
ID=48905053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/051188 WO2013115011A1 (ja) | 2012-02-02 | 2013-01-22 | 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ |
Country Status (4)
Country | Link |
---|---|
US (1) | US9434804B2 (ja) |
EP (1) | EP2810963B1 (ja) |
JP (3) | JP6338859B2 (ja) |
WO (1) | WO2013115011A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5555813B2 (ja) * | 2012-04-04 | 2014-07-23 | 株式会社クラレ | 共重合体、それを用いたゴム組成物及びタイヤ |
JP5555814B2 (ja) * | 2012-04-04 | 2014-07-23 | 株式会社クラレ | 共重合体、それを用いたゴム組成物及びタイヤ |
JP5617040B2 (ja) * | 2012-02-24 | 2014-10-29 | 株式会社クラレ | ゴム組成物及びタイヤ |
JP2014218631A (ja) * | 2013-05-10 | 2014-11-20 | 住友ゴム工業株式会社 | ゴム組成物及び空気入りタイヤ |
WO2015045450A1 (ja) * | 2013-09-30 | 2015-04-02 | 株式会社クラレ | 樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含有する光学用粘着剤 |
JP2015074699A (ja) * | 2013-10-08 | 2015-04-20 | 株式会社クラレ | ゴム組成物及びタイヤ |
JPWO2013132905A1 (ja) * | 2012-03-06 | 2015-07-30 | 住友ゴム工業株式会社 | 水添分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ |
JP2015218255A (ja) * | 2014-05-16 | 2015-12-07 | 横浜ゴム株式会社 | タイヤトレッド用ゴム組成物 |
US20150361252A1 (en) * | 2014-06-16 | 2015-12-17 | Sumitomo Rubber Industries, Ltd. | Truck or bus tires |
US9334394B1 (en) | 2015-06-03 | 2016-05-10 | Fina Technology, Inc. | Farnesene resins, rubber compositions, and tire compositions |
WO2017002651A1 (ja) * | 2015-06-30 | 2017-01-05 | 株式会社クラレ | ファルネセン重合体及びその製造方法 |
EP3045494A4 (en) * | 2013-09-10 | 2017-03-22 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
JP2017088769A (ja) * | 2015-11-12 | 2017-05-25 | 住友ゴム工業株式会社 | ゴム組成物及び該ゴム組成物を用いて作製した空気入りタイヤ |
JP2017200983A (ja) * | 2016-05-06 | 2017-11-09 | 株式会社ブリヂストン | 共役ジエン系共重合体及びその製造方法、ゴム組成物、架橋ゴム組成物、並びにタイヤ |
US9822245B2 (en) | 2013-03-27 | 2017-11-21 | Sumitomo Rubber Industries, Ltd. | Studless winter tire |
JP2018048349A (ja) * | 2017-12-14 | 2018-03-29 | 株式会社クラレ | ゴム組成物及びタイヤ |
WO2019044888A1 (ja) | 2017-09-01 | 2019-03-07 | 株式会社クラレ | タイヤ用ゴム組成物 |
JP2021535172A (ja) * | 2018-09-03 | 2021-12-16 | シントス エス.アー.Synthos S.A. | アミノシリル官能化共役ジエン、その調製、およびゴムの製造におけるその使用方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9163105B2 (en) | 2013-03-12 | 2015-10-20 | Sumitomo Chemical Company, Limited | Conjugated diene based polymer, and polymer composition containing the polymer |
FR3066763B1 (fr) | 2017-05-24 | 2019-06-28 | Bostik Sa | Nouveaux copolymeres hydrocarbones liquides a deux groupements terminaux alcoxysilanes et procede de preparation |
FR3066762B1 (fr) | 2017-05-24 | 2019-06-28 | Bostik Sa | Copolymeres hydrocarbones liquides a deux groupements terminaux alcoxysilanes et procede de preparation |
FR3071501A1 (fr) | 2017-09-28 | 2019-03-29 | Bostik Sa | Copolymeres hydrocarbones liquides a deux groupements terminaux ether cyclocarbonate |
FR3071502B1 (fr) | 2017-09-28 | 2020-06-19 | Bostik Sa | Copolymeres hydrocarbones liquides a deux groupements terminaux ester cyclocarbonate |
FR3115789B1 (fr) | 2020-11-03 | 2024-04-12 | Bostik Sa | polymère HYDROCARBONE à blocs POLYETHER ET POLYOLEFINE COMPRENANT AU MOINS UN groupement terminal alcoxysilane |
CN115073666B (zh) * | 2022-07-05 | 2023-12-26 | 中国科学院青岛生物能源与过程研究所 | 一种高分子量铁系生物基橡胶、其制备方法和应用、及基于它的橡胶组合物 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63179908A (ja) | 1987-01-22 | 1988-07-23 | Japan Synthetic Rubber Co Ltd | ミルセン重合体およびその製造方法 |
JPH05125225A (ja) * | 1991-11-06 | 1993-05-21 | Asahi Chem Ind Co Ltd | 水添ブタジエン系共重合体組成物 |
JPH05125108A (ja) * | 1991-11-05 | 1993-05-21 | Asahi Chem Ind Co Ltd | 水添ブタジエン系共重合体 |
WO2005085306A1 (ja) * | 2004-03-04 | 2005-09-15 | Riken | アイソタクチック3,4−イソプレン系重合体 |
JP2008156516A (ja) | 2006-12-25 | 2008-07-10 | Lion Corp | 香料粒子及び洗剤組成物 |
WO2010027464A1 (en) * | 2008-09-04 | 2010-03-11 | Amyris Biotechnologies, Inc. | Farnesene interpolymers |
WO2010027463A1 (en) * | 2008-09-04 | 2010-03-11 | Amyris Biotechnologies, Inc. | Adhesive compositions comprising a polyfarnesene |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2979488A (en) * | 1957-09-30 | 1961-04-11 | Phillips Petroleum Co | Modification of linear rubbery polymers |
US3018812A (en) * | 1958-08-25 | 1962-01-30 | Us Rubber Co | Adhering vinylpyridine-butadiene rubbers to other rubbers |
US4553578A (en) * | 1981-07-13 | 1985-11-19 | Gencorp Inc. | Star-shaped polymers for improved tire treads |
JP4965055B2 (ja) * | 2000-11-10 | 2012-07-04 | 株式会社ブリヂストン | 新規な官能化剤を用いて製造した官能化高シス−1,4−ポリブタジエン |
MY140477A (en) * | 2006-01-16 | 2009-12-31 | Ube Industries | Rubber composition for tire and tire |
US7655739B1 (en) * | 2009-06-26 | 2010-02-02 | Amyris Biotechnologies, Inc. | Adhesive compositions comprising a polyfarnesene |
TW201120213A (en) * | 2009-06-17 | 2011-06-16 | Danisco Us Inc | Polymerization of isoprene from renewable resources |
JP5473811B2 (ja) | 2010-07-16 | 2014-04-16 | 太平洋セメント株式会社 | セメント添加材およびセメント組成物 |
US9079980B2 (en) * | 2010-08-31 | 2015-07-14 | The Goodyear Tire & Rubber Company | Copolymers of conjugated triene monomers for improved filler interaction |
TWI471375B (zh) * | 2011-09-30 | 2015-02-01 | Kuraray Co | 橡膠組成物及輪胎 |
WO2013115010A1 (ja) | 2012-02-01 | 2013-08-08 | 住友ゴム工業株式会社 | 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ |
KR102047638B1 (ko) * | 2012-04-04 | 2019-11-21 | 주식회사 쿠라레 | 공중합체, 그것을 사용한 고무 조성물 및 타이어 |
BR112014021695B1 (pt) | 2012-04-04 | 2021-05-11 | Kuraray Co., Ltd. | composição de borracha compreendendo copolímero contendo uma unidade monomérica derivada de farneseno e pneu |
JP5952788B2 (ja) * | 2012-10-04 | 2016-07-13 | 住友ゴム工業株式会社 | 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ |
-
2013
- 2013-01-22 US US14/370,323 patent/US9434804B2/en active Active
- 2013-01-22 JP JP2013556327A patent/JP6338859B2/ja active Active
- 2013-01-22 EP EP13743059.1A patent/EP2810963B1/en active Active
- 2013-01-22 WO PCT/JP2013/051188 patent/WO2013115011A1/ja active Application Filing
-
2016
- 2016-09-07 JP JP2016174471A patent/JP6190934B2/ja active Active
-
2017
- 2017-05-02 JP JP2017091698A patent/JP6381733B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63179908A (ja) | 1987-01-22 | 1988-07-23 | Japan Synthetic Rubber Co Ltd | ミルセン重合体およびその製造方法 |
JPH05125108A (ja) * | 1991-11-05 | 1993-05-21 | Asahi Chem Ind Co Ltd | 水添ブタジエン系共重合体 |
JPH05125225A (ja) * | 1991-11-06 | 1993-05-21 | Asahi Chem Ind Co Ltd | 水添ブタジエン系共重合体組成物 |
WO2005085306A1 (ja) * | 2004-03-04 | 2005-09-15 | Riken | アイソタクチック3,4−イソプレン系重合体 |
JP2008156516A (ja) | 2006-12-25 | 2008-07-10 | Lion Corp | 香料粒子及び洗剤組成物 |
WO2010027464A1 (en) * | 2008-09-04 | 2010-03-11 | Amyris Biotechnologies, Inc. | Farnesene interpolymers |
WO2010027463A1 (en) * | 2008-09-04 | 2010-03-11 | Amyris Biotechnologies, Inc. | Adhesive compositions comprising a polyfarnesene |
Non-Patent Citations (1)
Title |
---|
See also references of EP2810963A1 |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5617040B2 (ja) * | 2012-02-24 | 2014-10-29 | 株式会社クラレ | ゴム組成物及びタイヤ |
JPWO2013132905A1 (ja) * | 2012-03-06 | 2015-07-30 | 住友ゴム工業株式会社 | 水添分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ |
US10040877B2 (en) | 2012-03-06 | 2018-08-07 | Sumitomo Rubber Industries, Ltd. | Hydrogenated branched conjugated diene copolymer, rubber composition and pneumatic tire |
US10759885B2 (en) | 2012-03-06 | 2020-09-01 | Sumitomo Rubber Industries, Ltd. | Hydrogenated branched conjugated diene copolymer, rubber composition and pneumatic tire |
JP5555813B2 (ja) * | 2012-04-04 | 2014-07-23 | 株式会社クラレ | 共重合体、それを用いたゴム組成物及びタイヤ |
JPWO2013151069A1 (ja) * | 2012-04-04 | 2015-12-17 | 株式会社クラレ | 共重合体、それを用いたゴム組成物及びタイヤ |
JPWO2013151068A1 (ja) * | 2012-04-04 | 2015-12-17 | 株式会社クラレ | 共重合体、それを用いたゴム組成物及びタイヤ |
JP5555814B2 (ja) * | 2012-04-04 | 2014-07-23 | 株式会社クラレ | 共重合体、それを用いたゴム組成物及びタイヤ |
US9822245B2 (en) | 2013-03-27 | 2017-11-21 | Sumitomo Rubber Industries, Ltd. | Studless winter tire |
JP2014218631A (ja) * | 2013-05-10 | 2014-11-20 | 住友ゴム工業株式会社 | ゴム組成物及び空気入りタイヤ |
US9862816B2 (en) | 2013-09-10 | 2018-01-09 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
EP3045494A4 (en) * | 2013-09-10 | 2017-03-22 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
WO2015045450A1 (ja) * | 2013-09-30 | 2015-04-02 | 株式会社クラレ | 樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含有する光学用粘着剤 |
JPWO2015045450A1 (ja) * | 2013-09-30 | 2017-03-09 | 株式会社クラレ | 樹脂組成物、これを硬化させた硬化物及びこの樹脂組成物を含有する光学用粘着剤 |
JP2015074699A (ja) * | 2013-10-08 | 2015-04-20 | 株式会社クラレ | ゴム組成物及びタイヤ |
JP2015218255A (ja) * | 2014-05-16 | 2015-12-07 | 横浜ゴム株式会社 | タイヤトレッド用ゴム組成物 |
US20150361252A1 (en) * | 2014-06-16 | 2015-12-17 | Sumitomo Rubber Industries, Ltd. | Truck or bus tires |
EP2957433A1 (en) * | 2014-06-16 | 2015-12-23 | Sumitomo Rubber Industries, Ltd. | Truck or bus tires |
EP3147136A1 (en) * | 2014-06-16 | 2017-03-29 | Sumitomo Rubber Industries, Ltd. | Truck or bus tires |
US9550889B2 (en) | 2014-06-16 | 2017-01-24 | Sumitomo Rubber Industries, Ltd. | Truck or bus tires |
CN105175801B (zh) * | 2014-06-16 | 2019-09-27 | 住友橡胶工业株式会社 | 卡车轮胎或公交车轮胎 |
CN105175801A (zh) * | 2014-06-16 | 2015-12-23 | 住友橡胶工业株式会社 | 卡车轮胎或公交车轮胎 |
US9334394B1 (en) | 2015-06-03 | 2016-05-10 | Fina Technology, Inc. | Farnesene resins, rubber compositions, and tire compositions |
JPWO2017002651A1 (ja) * | 2015-06-30 | 2018-04-12 | 株式会社クラレ | ファルネセン重合体及びその製造方法 |
WO2017002651A1 (ja) * | 2015-06-30 | 2017-01-05 | 株式会社クラレ | ファルネセン重合体及びその製造方法 |
JP2020143297A (ja) * | 2015-06-30 | 2020-09-10 | 株式会社クラレ | ファルネセン重合体 |
JP2017088769A (ja) * | 2015-11-12 | 2017-05-25 | 住友ゴム工業株式会社 | ゴム組成物及び該ゴム組成物を用いて作製した空気入りタイヤ |
JP2017200983A (ja) * | 2016-05-06 | 2017-11-09 | 株式会社ブリヂストン | 共役ジエン系共重合体及びその製造方法、ゴム組成物、架橋ゴム組成物、並びにタイヤ |
WO2019044888A1 (ja) | 2017-09-01 | 2019-03-07 | 株式会社クラレ | タイヤ用ゴム組成物 |
KR20200040832A (ko) | 2017-09-01 | 2020-04-20 | 주식회사 쿠라레 | 타이어용 고무 조성물 |
JP2018048349A (ja) * | 2017-12-14 | 2018-03-29 | 株式会社クラレ | ゴム組成物及びタイヤ |
JP2021535172A (ja) * | 2018-09-03 | 2021-12-16 | シントス エス.アー.Synthos S.A. | アミノシリル官能化共役ジエン、その調製、およびゴムの製造におけるその使用方法 |
US11993620B2 (en) | 2018-09-03 | 2024-05-28 | Synthos S.A. | Aminosilyl-functionalized conjugated dienes, their preparation and their use in the production of rubbers |
JP7574179B2 (ja) | 2018-09-03 | 2024-10-28 | シントス エス.アー. | アミノシリル官能化共役ジエン、その調製、およびゴムの製造におけるその使用方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2016211004A (ja) | 2016-12-15 |
EP2810963A4 (en) | 2015-11-04 |
US20140371415A1 (en) | 2014-12-18 |
EP2810963B1 (en) | 2017-05-03 |
JPWO2013115011A1 (ja) | 2015-05-11 |
JP6190934B2 (ja) | 2017-08-30 |
JP6338859B2 (ja) | 2018-06-06 |
US9434804B2 (en) | 2016-09-06 |
JP6381733B2 (ja) | 2018-08-29 |
EP2810963A1 (en) | 2014-12-10 |
JP2017137508A (ja) | 2017-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6381733B2 (ja) | 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ | |
JP6230736B2 (ja) | 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ | |
US10759885B2 (en) | Hydrogenated branched conjugated diene copolymer, rubber composition and pneumatic tire | |
JP5952788B2 (ja) | 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ | |
JP2019099656A (ja) | タイヤ用ゴム組成物 | |
JP7453877B2 (ja) | 共役ジエン系重合体組成物 | |
JP6159574B2 (ja) | 分枝共役ジエン共重合体および水添分枝共役ジエン共重合体、ゴム組成物、並びに空気入りタイヤ | |
JP5886782B2 (ja) | スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ | |
JP6164927B2 (ja) | 空気入りタイヤ | |
JP2016003266A (ja) | スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ | |
JP2014240470A (ja) | フェランドレン共重合体、タイヤ用ゴム組成物および空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13743059 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14370323 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2013556327 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013743059 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013743059 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |