WO2015041784A1 - Absorbent cores having material free areas - Google Patents
Absorbent cores having material free areas Download PDFInfo
- Publication number
- WO2015041784A1 WO2015041784A1 PCT/US2014/051584 US2014051584W WO2015041784A1 WO 2015041784 A1 WO2015041784 A1 WO 2015041784A1 US 2014051584 W US2014051584 W US 2014051584W WO 2015041784 A1 WO2015041784 A1 WO 2015041784A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- absorbent
- core
- absorbent material
- superabsorbent polymer
- polymer particles
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
- A61F13/531—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad
- A61F13/532—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad
- A61F13/5323—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad having absorbent material located in discrete regions, e.g. pockets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
- A61F13/534—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
- A61F13/534—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
- A61F13/535—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad, e.g. core absorbent layers being of different sizes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
- A61F13/539—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium characterised by the connection of the absorbent layers with each other or with the outer layers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/58—Adhesives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/60—Liquid-swellable gel-forming materials, e.g. super-absorbents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F120/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F120/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F120/04—Acids; Metal salts or ammonium salts thereof
- C08F120/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/245—Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
- A61F2013/530481—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
- A61F2013/530481—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
- A61F2013/53051—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials being only in particular parts or specially arranged
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
- A61F2013/530481—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
- A61F2013/530708—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials characterized by the absorbency properties
- A61F2013/530715—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials characterized by the absorbency properties by the acquisition rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
- A61F13/534—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
- A61F2013/53463—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad with a reinforcing structure, e.g. net
- A61F2013/53472—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad with a reinforcing structure, e.g. net being a non-woven tissue wrapping the core
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
Definitions
- the invention provides absorbent cores for use in absorbent hygiene articles such as, but not limited to, baby diapers, training pants, feminine hygiene sanitary pads and adult incontinence products.
- Absorbent articles for personal hygiene of the type indicated above are designed to absorb and contain body exudates, in particular large quantity of urine. These absorbent articles comprise several layers providing different functions, for example a topsheet, a backsheet and in-between an absorbent core, among other layers.
- the function of the absorbent core is typically to absorb and retain the exudates for a prolonged amount of time, minimize re-wet to keep the wearer dry and avoid soiling of clothes or bed sheets.
- absorbent articles comprise as absorbent material a blend of comminuted wood pulp with superabsorbent polymers (SAP) in particulate form, also called absorbent gelling materials (AGM), see for example US 5,151,092 (Buell).
- SAP superabsorbent polymers
- AGM absorbent gelling materials
- Absorbent articles having a core consisting essentially of SAP as absorbent material have also been proposed (see e.g. WO2008/155699 (Hundorf), W095/11652 (Tanzer), WO2012/052172 (Van Malderen)).
- Absorbent cores with slits or grooves have also been proposed, typically to increase the fluid acquisition properties of the core or to act as a folding guide.
- WO2012/170778 (Rosati et al., see also WO2012/170779, WO2012/170781 and WO2012/170808) discloses absorbent structures that comprise superabsorbent polymers, optionally a cellulosic material, and at least a pair of substantially longitudinally extending channels.
- the core wrap can be adhesively bonded through the channels to form a channel bond.
- the channel bonds may be permanent, so that their integrity is at least partially maintained both in dry and wet state.
- the absorbent structure absorbs liquid and swells, the absorbent structure takes a three-dimensional shape with the channels becoming visible.
- the channels are indicated to provide improved fit and/or better liquid acquisition/transportation, and/or improved performance throughout the use of the absorbent structure.
- Any superabsorbent polymer particles known from the superabsorbent literature are indicated to be suitable.
- the properties of superabsorbent polymers have been characterized in various ways.
- the absorbent capacity (CRC) in grams of liquid per gram of superabsorbent particles has been used, as well as their absorption speed as measured by the Free Swell Rate (FSR) and their permeability as measured by the Urine Permeability Measurement (UPM) test.
- CRC absorbent capacity
- FSR Free Swell Rate
- UPM Urine Permeability Measurement
- the present invention is for absorbent cores as defined in the claims and absorbent articles comprising these absorbent cores.
- the absorbent cores of the invention comprise in particular a core wrap enclosing an absorbent material comprising superabsorbent polymer particles, wherein the core wrap comprises a top side and a bottom side.
- the absorbent core comprises one or more area(s) substantially free of absorbent material through which the top side of the core wrap is attached to the bottom side of the core wrap, so that when the absorbent material swells the core wrap forms a channel along each area substantially free of absorbent material.
- the superabsorbent polymer particles have a time to reach an uptake of 20 g/g (T20) of less than 240 s as measured according to the K(t) test method described herein.
- Fig. 1 is a top view of an embodiment of an absorbent core according to the invention with the topside layer of the core wrap partially removed;
- Fig. 2 is a transversal cross-section of the embodiment of Fig. 1 at the crotch point (C);
- Fig. 3 is a longitudinal cross-section of the embodiment of Fig. 1;
- Fig. 4 is a close-up view of a part of Fig. 3
- Fig. 5 is a top view of an exemplary absorbent article in the form a diaper with an absorbent core of the invention.
- Fig. 6 is a transversal cross-section of the article of Fig. 5;
- Fig. 7 is a transversal cross-section of the article taken at the same point as Fig. 6 where channels have formed in the core as a result of the diaper being loaded with fluid.
- Fig. 8 is a sketch of a vacuum table which was used to make the exemplary absorbent cores 1 and 3 described below.
- Fig. 9 is a partial cross- sectional side view of a suitable permeability measurement system for conducting the Dynamic Effective Permeability and Uptake Kinetics Measurement Test.
- Fig. 10 is a cross-sectional side view of a piston/cylinder assembly for use in conducting the
- Fig. 11 is a top view of a piston head suitable for use in the piston/cylinder assembly shown in Fig. 10.
- absorbent articles for personal hygiene refers to disposable devices such as baby diapers, infant training pants, adult incontinence products or feminine hygiene sanitary pads, and the like which are placed against or in proximity to the body of the wearer to absorb and contain exudates discharged from the body.
- the absorbent articles of the invention will be further illustrated in the below description and in the Figures in the form of a taped diaper. None in this description should be however considered limiting the scope of the claims unless explicitly indicated otherwise.
- nonwoven web as used herein means a manufactured sheet, web or batting of directionally or randomly orientated fibers, bonded by friction, and/or cohesion and/or adhesion, excluding paper and products which are woven, knitted, tufted, stitch-bonded incorporating binding yarns or filaments, or felted by wet- milling, whether or not additionally needled.
- the fibers may be of natural or man-made origin and may be staple or continuous filaments or be formed in situ.
- Nonwoven webs can be formed by many processes such as meltblowing, spunbonding, solvent spinning, electro spinning, carding and airlaying.
- the basis weight of nonwoven webs is usually expressed in grams per square meter (g/m 2 or gsm).
- joind or "bonded” or “attached”, as used herein, encompasses configurations whereby an element is directly secured to another element by affixing the element directly to the other element e.g. by gluing, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
- Comprise “comprising,” and “comprises” are open ended terms, each specifies the presence of what follows, e.g., a component, but does not preclude the presence of other features, e.g., elements, steps, components known in the art, or disclosed herein. These terms based on the verb “comprise” should be read as encompassing the narrower terms “consisting of which excludes any element, step, or ingredient not specified and “consisting essentially of which limits the scope of an element to the specified materials or steps and those that do not materially affect the way the element performs its function. Any preferred or exemplary embodiments described below are not limiting the scope of the claims, unless specifically indicated to do so. The words “typically”, “normally”, “advantageously” and the likes also qualify elements which are not intended to limit the scope of the claims unless specifically indicated to do so.
- the absorbent core of the invention will be typically made to be used in an absorbent article of the type indicated before.
- the absorbent core may for example be made on-line and assembled directly with the remaining components of the article or may be off-line at another site and transported to the converting line. It is also possible to use the absorbent core directly as an absorbent article without further assembling of other components for applications which do not require other layers.
- the absorbent core will be assembled with other components such as a topsheet and a backsheet to form a finished hygiene article, as will be exemplary described further below for a diaper.
- the absorbent core is typically the component of the article having the most absorbent capacity.
- the absorbent core of the invention comprises a core wrap enclosing an absorbent material, and may also comprise at least one adhesive.
- the absorbent material comprises a superabsorbent polymer in particulate forms (herein abbreviated as "SAP").
- SAP superabsorbent polymer in particulate forms
- the absorbent material may comprise relatively high amount of SAP enclosed within the core wrap.
- absorbent material it is meant a material which has some absorbency property or liquid retaining properties, such as SAP, cellulosic fibers as well as synthetic fibers.
- adhesives used in making absorbent cores have no absorbency properties and are not considered as absorbent material.
- the SAP content may represent at least 70% or more (in particular at least 80%, at least 85%, at least 90%, at least 95% and up to 100%) by weight of the absorbent material enclosed in the core wrap.
- the core wrap itself is not considered as absorbent material for the purpose of assessing the percentage of SAP in the absorbent core.
- High amount of SAP provides a relatively thin core compared to conventional core typically comprising between 40-60% by weight of cellulose fibers.
- the absorbent core may be thin, for example having a thickness not exceeding 5 mm, e.g. from 0.2 mm to 4 mm, in particular from 0.5 to 3 mm, as measured with the Dry Absorbent Core Caliper Test disclosed therein.
- the absorbent core 28 of the invention is shown in isolation in Figs. 1-4 and will now be further described.
- the absorbent core shown and its description are purely for exemplary purpose and are not intended to limit the scope of the claims, unless otherwise stated.
- the absorbent core typically comprises a front side 280, a back side 282 and two longitudinal sides 284, 286 joining the front side 280 and the back side 282.
- the absorbent core also comprises a generally planar top side 16 and a generally planar bottom side 16' formed by the core wrap.
- the front side 280 of the core is the side of the core intended to be placed towards the front edge 10 of the absorbent article.
- the core may have a longitudinal axis 80' corresponding substantially to the longitudinal axis of the article 80, as seen from the top in a planar view as in Fig. 1.
- the absorbent material will be advantageously distributed in higher amount towards the front side and middle portion of the core than towards the back side as more absorbency is required at the front.
- the front and back sides of the core are shorter than the longitudinal sides of the core.
- the core wrap may be formed by two nonwoven material which may be at least partially sealed along the sides of the absorbent core. The first nonwoven may substantially form the whole of the top side of the core wrap and the second nonwoven substantially the whole of the bottom side 16' of the core wrap.
- the top side and first nonwoven are represented by the same number 16 on the drawings, the bottom side and the second nonwoven by number 16' .
- the core wrap may be at least partially sealed along its front side, back side and/or two longitudinal sides to improve the containment of the absorbent material during use.
- the absorbent material may in particular comprises less than 10% weight percent of natural or synthetic fibers, or less than 5% weight percent, or even be substantially free of natural and/or synthetic fibers.
- the absorbent material may advantageously comprise little or no airfelt (cellulose) fibers, in particular the absorbent core may comprise less than 15%, 10%, 5% airfelt (cellulose) fibers by weight of the absorbent core, or even be substantially free of cellulose fibers.
- the absorbent core 28 comprises at least one area 26 which is substantially free of absorbent material and through which the top side of the core wrap is attached to the bottom side of the core wrap. When the absorbent material absorbs a liquid, it swells in proportion and the core wrap gradually forms a channel 26' along the bonded area 26 substantially free of absorbent material.
- the length L" of the absorbent core as measured along it axis 80' from the front side 280 to the back side 282 should be adapted for the intended article in which it will be used.
- the length L" may for example range from 5 to 40 cm.
- the absorbent core comprises a crotch point C defined as the point on the longitudinal axis 80' situated at a distance of two fifth (2/5) of L' ' starting from the front side 280 of the absorbent core.
- the function of the core wrap is to enclose the absorbent material.
- Typical core wraps comprise two substrates 16, 16' which are attached to another, but the core wrap may also be made of a single substrate folded around the absorbent material, or may comprises several substrates. When two substrates are used, these may be typically attached to another along at least part of the periphery of the absorbent core.
- Typical attachments are the so-called C-wrap and sandwich wrap.
- a C-wrap as exemplarily shown in Fig. 2
- the longitudinal and/or transversal edges of one of the substrate are folded over the other substrate to form flaps. These flaps are then bonded to the external surface of the other substrate, typically by gluing.
- a sandwich wrap as shown on Fig. 3, the edges of both substrates are attached, e.g. by gluing, to another in a flat configuration.
- the core wrap may be formed by any materials suitable for enclosing the absorbent material. Typical substrate materials used in the production of conventional cores may be used, in particular nonwovens but also paper, tissues, films, wovens, or laminate of any of these.
- the core wrap may in particular be formed by a nonwoven web, such as a carded nonwoven, a spunbond nonwoven ("S") or a meltblown nonwoven (“M”), and laminates of any of these.
- spunmelt polypropylene nonwovens are suitable, in particular those having a laminate web SMS, or SMMS, or SSMMS, structure, and having a basis weight range of about 5 gsm to 15 gsm.
- Nonwoven materials are for example disclosed in US7,744,576, US2011/0268932A1, US2011/0319848A1 or US2011/0250413A1.
- Nonwoven materials provided from synthetic fibers may be used, such as PE, PET and in particular PP.
- the core wrap comprises a first substrate 16 and a second substrate 16' these may be made of the same type of material, or may be made of different materials or one of the substrate may be treated differently than the other to provide it with different properties.
- the polymers used for nonwoven production are inherently hydrophobic, they are preferably coated with hydrophilic coatings if placed on the fluid receiving side of the absorbent core. It is advantageous that the top side 16 of the core wrap, i.e. the side placed closer to the wearer in the absorbent article, be more hydrophilic than the bottom side 16' of the core wrap.
- a possible way to produce nonwovens with durably hydrophilic coatings is via applying a hydrophilic monomer and a radical polymerization initiator onto the nonwoven, and conducting a polymerization activated via UV light resulting in monomer chemically bound to the surface of the nonwoven.
- An alternative possible way to produce nonwovens with durably hydrophilic coatings is to coat the nonwoven with hydrophilic nanoparticles, e.g. as described in WO 02/064877.
- Permanently hydrophilic nonwovens are also useful in some embodiments.
- Surface tension can be used to measure how permanently a certain hydrophilicity level is achieved.
- Liquid strike through can be used to measure the hydrophilicity level.
- the first and/or second substrate may in particular have a surface tension of at least 55, preferably at least 60 and most preferably at least 65 mN/m or higher when being wetted with saline solution.
- the substrate may also have a liquid strike through time of less than 5 seconds for a fifth gush of liquid.
- Hydrophilicity and wettability are typically defined in terms of contact angle and the strike through time of the fluids, for example through a nonwoven fabric. This is discussed in detail in the American Chemical Society publication entitled “Contact angle, wettability and adhesion", edited by Robert F. Gould (Copyright 1964).
- a substrate having a lower contact angle between the water and the surface of substrate may be said to be more hydrophilic than another.
- the substrates may also be air-permeable. Films useful herein may therefore comprise micropores.
- the substrate may have for example an air-permeability of from 40 or from 50, to 300 or to 200 m 3 / (m 2 x min), as determined by ED ANA method 140-1-99 (125 Pa, 38.3 cm 2 ).
- the material of the core wrap may alternatively have a lower air-permeability, e.g. being non-air-permeable, for example to facilitate handling on a moving surface comprising vacuum.
- the core wrap may be sealed along its longitudinal edges and/or its transversal edges.
- a first substrate 16 may be placed on one side of the core and extends around the core's longitudinal edges to partially wrap the opposed bottom side of the core (see Fig. 2).
- the second substrate 16' is typically present between the wrapped flaps of the first substrate 16 and the absorbent material 60.
- the flaps of the first substrate 16 may be glued to the second substrate 16' to provide a strong seal.
- This so called C-wrap construction can provide benefits such as improved resistance to bursting in a wet loaded state compared to a sandwich seal.
- the front side and back side of the core wrap may then also be sealed for example by gluing the first substrate and second substrate to another to provide complete enclosing of the absorbent material across the whole of the periphery of the core.
- the first and second substrate may extend and be joined together in a substantially planar direction, forming for these edges a so-called sandwich construction.
- the first and second substrates may also extend outwardly on all sides of the core and be sealed flat along the whole or parts of the periphery of the core typically by gluing and/or heat/pressure bonding.
- first nor second substrates need to be shaped, so that they can be rectangularly cut for ease of production but of course other shapes are possible.
- seal and "enclosing” are to be understood in a broad sense.
- the seal does not need to be continuous along the whole periphery of the core wrap but may be discontinuous along part or the whole of it, such as formed by a series of seal points spaced on a line. Typically a seal may be formed by gluing and/or thermal bonding.
- the core wrap may also be formed by a single substrate which may enclose the absorbent material as in a parcel wrap and be for example sealed along the front side and back side of the core and one longitudinal seal.
- the absorbent core 28 comprises an absorbent material 60 comprising superabsorbent polymer particles ("SAP").
- SAP superabsorbent polymer particles
- the absorbent material may be for example applied as a continuous layer.
- the absorbent material may also be comprised of individual pockets or stripes of absorbent material enclosed within the core wrap.
- a continuous layer of absorbent material, in particular of SAP may also be obtained by combining two absorbent layers having matching discontinuous absorbent material application pattern wherein the resulting layer is substantially continuously distributed across the absorbent particulate polymer material area, as taught in US2008/0312622A1 (Hundorf) for example.
- each absorbent material layer comprises a pattern having absorbent material areas and absorbent material-free areas, wherein the absorbent material areas of the first layer correspond substantially to the absorbent material-free areas of the second layer and vice versa.
- a microfibrous glue 51 as disclosed further below may be applied on each absorbent material layer to immobilize it on each substrate.
- the absorbent core 28 may thus comprise a first absorbent layer and a second absorbent layer, the first absorbent layer comprising a first substrate 16 and a first layer 61 of absorbent material, which may be 100% SAP, and the second absorbent layer comprising a second substrate 16' and a second layer 62 of absorbent material, which may also be 100% SAP.
- the first and second SAP layers may be applied as transversal stripes or "land areas" having the same width as the desired absorbent material deposition area 8 on their respective substrate before being combined.
- the stripes may advantageously comprise different amount of absorbent material to provide a profiled basis weight along the longitudinal axis and/or transversal axis of the core 80'.
- the first substrate 16 and the second substrate 16' may form the core wrap.
- An auxiliary glue 71, 72 may be applied between one or both substrates and the absorbent layers, as well as microfiber glue on each absorbent layer.
- SAP Superabsorbent polymer particles
- Superabsorbent polymers refer to absorbent material which are cross-linked polymeric materials that can absorb at least 10 times their weight of an aqueous 0.9% saline solution as measured using the Centrifuge Retention Capacity (CRC) test (ED ANA method WSP 241.2-05E). These polymers are typically used in particulate forms (“SAP”) so as to be flowable in the dry state.
- SAP particulate forms
- particles refers to granules, fibers, flakes, spheres, powders, platelets and other shapes and forms known to persons skilled in the art of superabsorbent polymer particles.
- Typical particulate absorbent polymer materials are made of poly(meth)acrylic acid polymers. However, e.g. starch-based particulate absorbent polymer material may also be used, as well polyacrylamide copolymer, ethylene maleic anhydride copolymer, cross-linked carboxymethylcellulose, polyvinyl alcohol copolymers, cross-linked polyethylene oxide, and starch grafted copolymer of polyacrylonitrile.
- the superabsorbent polymer may be polyacrylates and polyacrylic acid polymers that are internally and/ or surface cross-linked. The superabsorbent polymers can be internally cross-linked, i.e.
- the polymerization is carried out in the presence of compounds having two or more polymerizable groups which can be free-radically copolymerized into the polymer network.
- exemplary superabsorbent polymer particles of the prior art are for example described in WO2006/083584, WO2007/047598, WO2007/046052, WO2009/155265, WO2009/155264.
- the present invention uses SAP having a time to reach an uptake of 20 g/g (T20) of less than 240 s as measured by the K(t) test method described in WO2012/174026A1 to solve this problem.
- the SAP may in particular have a T20 of less than 220s, or less than 200s, or less than 180s, or less than 160s.
- the time T20 may also be in particular of at least of 40s, 60s, 80s, 100s, 120s or 140s and any combinations of these values to form a range, e.g. of from 100s to 200s.
- WO2012/174,026Al describes SAP having these properties and the method used to measure these parameters.
- An equipment used for this method is called 'Zeitabhangiger für fürtechniksprufstand' or 'Time Dependent Permeability Tester', Equipment No. 03-080578 and is commercially available at BRAUN GmbH, Frankfurter Str. 145, 61476 Kronberg, Germany and is detailed in the above mentioned application.
- operating instructions, wiring diagrams and detailed technical drawings are also available.
- the K(t) method is also useful to determine other SAP parameters, which may also be advantageously used in the present invention.
- the uptake of the SAP at 20 min (U20) may be in particular of at least 22 g/g, or at least 24 g/g, or at least 28 g/g or at least 30 g/g, or of from 28 g/g to 60 g/g, or of from 30 g/g to 50 g/g, or of from 30 g/g to 40 g/g as measured according to the K(t) test method disclosed in WO2012/174,026Al.
- the SAP may have an effective permeability at 20 minutes (K20) of at least 5- 10 "8 cm 2 , or at least 7 ⁇ 10 "8 cm 2 , or at least 8.5 ⁇ 10 "8 cm 2 , or of 5 ⁇ 10 "8 cm 2 to 1- 10 - " 6 cm 2 , or of 7 ⁇ 10 - " 8° cm 2" to 5 ⁇ 10 - " 7' cm 2 , or of 8.5 ⁇ 10 - " 8 to 1 ⁇ 10 - " 7 cm 2 as measured according to the K(t) test method.
- K20 effective permeability at 20 minutes
- the SAP may also have a ratio between the minimum effective permeability and the permeability at 20 minutes (Kmin/K20 ratio) of more than 0.75, or more than 0.8 or more than 0.9 as measured according to the K(t) test method.
- the transient gel blocking is minimum and the liquid exudates are able to travel fast through the void spaces present between the particles throughout all the swelling process and especially in the initial part of the swelling phase which is the most critical for the first gush.
- the K(t) test method is carried out on a mixture of the more than one type of superabsorbent polymer particles present in their respective proportion as used in the absorbent core.
- the superabsorbent polymer particles may further have a permeability at equilibrium expressed as UPM (Urine Permeability Measurement) value of more than 40, or preferably more than 50, or more than 60, or of 50 to 500, or of 55 to 200, or of 60 to 150 UPM units, where 1 UPM unit is 1 x 10 - " 7 (cm 3.s) /g.
- UPM Urine Permeability Measurement
- the UPM Test method typically measures the flow resistance of a preswollen layer of superabsorbent polymer particles, i.e. the flow resistance is measured at equilibrium. Therefore, such superabsorbent polymer particles having a high UPM value exhibit a high permeability when a significant volume of the absorbent article is already wetted by the liquid exudates. These embodiments exhibit good absorption properties not only at the first gush but also at the subsequent gushes.
- the SAP used may also have a FSR (Free Swell Rate) of more than 0.1 g/g/s, or of from 0.1 to 2 g/g/s, or 0.3 to 1 g/g/s, or 0.3 to 0.6 g/g/s, or 0.4 to 0.6 g/g/s.
- FSR Free Swell Rate
- the Free Swell Rate of the SAP is measured according to the FSR test method set out in WO2012/174,026Al. SAP having high free swell rate values will be able to absorb liquid quickly under no confining pressure. Contrary to the K(t) test method, no external pressure is applied to the gel bed in order to measure the free swell rate.
- SAP having a too low FSR value may require more than 240s to reach an uptake of 20 g/g as measured according to the K(t) test method of the present invention and will consequently not be able to absorb the liquid exudates as fast as necessary.
- superabsorbent polymer particles having a high FSR value do not automatically lead to high uptake values as measured according to the K(t) test method.
- the SAP may have a CRC (centrifuge retention capacity) value of more than 18 g/g, or more than 20 g/g, or more than 22 g/g, or more than 24 g/g, for example up to 50 g/g, or up to 40 g/g, or to 30 g/g, as measured according to ED ANA method WSP 241.2-05.
- the CRC measures the liquid absorbed by the superabsorbent polymer particles for free swelling in excess liquid.
- Superabsorbent polymer particles having a high CRC value may be preferred since less superabsorbent polymer particles are needed to facilitate a required overall capacity for liquid absorption.
- At least some of the superabsorbent polymers may be present in the form of agglomerated superabsorbent polymer particles.
- Agglomerated superabsorbent polymer particles comprise agglomerated precursor particles having a first mass average particle size, and wherein the agglomerated superabsorbent polymer particles have a second mass average particle size which is at least 25% greater than the first mass average particle size.
- the second mass average particle size may be at least 30%, or at least 40% or at least 50% higher than the first mass average particle size.
- Mass average particle size may be measured according to Mass Average Particle Size Sieve Test method described below.
- the agglomerated superabsorbent polymer particles may be obtained by various methods.
- Agglomerated particles may be for example obtained by aggregating the precursor particles with an interparticle crosslinking agent reacted with the polymer material of the precursor particles to form crosslink bonds between the precursor particles have been for example disclosed in US5,300,565, US5,180,622, (both to Berg), US5,149,334, US5,102,597 (both to Roe), US5,492,962 (Lahrman).
- Agglomerated superabsorbent polymer particles may also be obtained by a method comprising the steps of providing superabsorbent polymer particles and mixing the superabsorbent polymer particles with a solution comprising water and a multivalent salt having a valence of three or higher. This method is further disclosed in co-pending application number EP14168064.
- the superabsorbent polymer particles of the core of the invention may in particular comprise at least 10%, or at least 20% or at least 30% or at least 50% by weight of the agglomerated superabsorbent polymer particles
- the total amount of SAP present in the absorbent core may also vary according to expected user of the article. Diapers for newborns require less SAP than infant or adult incontinence diapers.
- the amount of SAP in the core may be for example comprised from about 2 to 50 g, in particular from 5 to 40 g for typical preschool diapers.
- the average SAP basis weight within the (or "at least one", if several are present) deposition area 8 of the SAP may be for example of at least 50, 100, 200, 300, 400, 500 or more g/m .
- the material free areas 26 present in the absorbent material deposition area 8 are deduced from the absorbent material deposition area to calculate this average basis weight.
- the absorbent core 28 comprises one or more area(s) 26 which is/are substantially free of absorbent material.
- substantially free it is meant that in each of these areas the basis weight of the absorbent material is at least less than 25%, in particular less than 20%, less than 10%, of the average basis weight of the absorbent material in the rest of the core. In particular there can be no absorbent material in these areas. Minimal amount such as involuntary contaminations with absorbent material that may occur during the making process are not considered as absorbent material.
- the areas 26 are advantageously surrounded by the absorbent material, when seen in the plane of the core, which means that the area(s) 26 does not extend to any of the edge of the deposition area 8 of the absorbent material.
- the top side 16 of the core wrap is attached to the bottom side 16' of the core wrap by core wrap bond(s) 27 through these area(s) 26 substantially free of absorbent material.
- core wrap bond(s) 27 As shown in Fig. 7, when the absorbent material swells upon absorbing a liquid, the core wrap bond remains at least initially attached in the substantially material free area(s) 26.
- the absorbent material swells in the rest of the core when it absorbs a liquid, so that the core wrap forms one or more channel(s) 26' along the area(s) 26 substantially free of absorbent material comprising the core wrap bond 27.
- These channels 26' are three dimensional and can serve to distribute an insulting fluid along their length to a wider area of the core.
- the channels 26' can also provide a deformation of an overlying layer such as a fibrous layer 54 and provide corresponding ditches 29 in the overlying layer. It is not excluded that the absorbent core may comprise other area(s) substantially free of absorbent material but without a core wrap bond, but these non-bonded areas will typically not form a channel when wet.
- the top side 16 and the bottom side 16' of the core wrap may be attached together continuously along the area(s) 26 substantially free of absorbent material, but the core wrap bond 27 may also be discontinuous (intermittent) such as series of point bonds.
- an adhesive can be used to attach the top side to the bottom of the core wrap, but it is possible to bond via other known attachment means, such as pressure bonding, ultrasonic bonding or heat bonding or combination thereof.
- the attachment of the top side and bottom side of the core wrap may be provided by one or more adhesive material, in particular one or more layers of auxiliary glue 71, 72 and/or one or more layers of fibrous adhesive material 51, if present in the core, as indicated below. These glues may therefore serve the dual function of immobilizing the absorbent material and attach the top side and the bottom side of the core together.
- the core wrap bond 27 may have the same outline but be slightly smaller than the areas 26 due to the tolerance required in some manufacturing process.
- the substantially material free area(s) 26 may be present within the crotch region of the article, in particular at least at the same longitudinal level as the crotch point C, as represented in Fig. 1 by the two longitudinally extending areas substantially free of absorbent material 26.
- the absorbent core 28 may also comprise more than two substantially absorbent material free area(s), for example at least 3, or at least 4 or at least 5 or at least 6.
- the absorbent core may comprise one or more pairs of areas substantially free of absorbent material symmetrically arranged relative to the longitudinal axis 80'. Shorter area(s) substantially free of absorbent material may also be present, for example in the back region or the front region of the core, as seen for example in the Figures of WO2012/170778.
- the area(s) 26 substantially free of absorbent material may extend substantially longitudinally, which means typically that each area extends more in the longitudinal direction than in the transverse direction, and typically at least twice as much in the longitudinal direction than in the transverse direction (as measured after projection on the respective axis).
- the area(s) 26 substantially free of absorbent material may have a length L' projected on the longitudinal axis 80' of the core that is at least 10% of the length L" of the absorbent core, in particular from 20% to 80%. It may be advantageous that at least some or all of the area(s) 26 are not completely or substantially completely transversely oriented channels in the core.
- the area(s) 26 substantially free of absorbent material may be completely oriented longitudinally and parallel to the longitudinal axis but also may be curved. In particular some or all these area(s), in particular these area(s) present in the crotch region, may be concave towards the longitudinal axis 80', as for example represented in Fig. 1 for the pair of channels 26'.
- the radius of curvature may typically be at least equal (and preferably at least 1.5 or at least 2.0 times this average transverse dimension) to the average transverse dimension of the absorbent material deposition area 8; and also straight but under an angle of (e.g. from 5°) up to 30°, or for example up to 20°, or up to 10° with a line parallel to the longitudinal axis.
- the radius of curvature may be constant for a substantially absorbent material free area(s), or may vary along its length. This may also includes area(s) substantially free of absorbent material with an angle therein, provided said angle between two parts of a channel is at least 120°, preferably at least 150°; and in any of these cases, provided the longitudinal extension of the area is more than the transverse extension. These area(s) may also be branched, for example a central substantially material free area superposed with the longitudinal axis in the crotch region which branches towards the back and/or towards the front of the article.
- the area(s) substantially free of absorbent material may be spaced apart from one another over their whole longitudinal dimension.
- the smallest spacing distance may be for example at least 5 mm, or at least 10 mm, or at least 16 mm.
- the area(s) substantially free of absorbent material may advantageously not extend up to any of the edges of the absorbent material deposition area 8, and are therefore surrounded by and fully encompassed within the absorbent material deposition area 8 of the core.
- the smallest distance between an area(s) substantially free of absorbent material and the closest edge of the absorbent material deposition area is at least 5 mm.
- the area(s) substantially free of absorbent material may have a width Wc along at least part of its length which is at least 2 mm, or at least 3 mm or at least 4 mm, up to for example 20 mm, or 16 mm or 12 mm.
- the width Wc of the area(s) substantially free of absorbent material may be constant through substantially its whole length or may vary along its length.
- the channels 26' in the absorbent core start forming when the absorbent material absorbs a liquid such as urine and starts swelling. As the core absorbs more liquid, the depressions within the absorbent core formed by channels will become deeper and more apparent to the eye and the touch. It is possible to create a sufficiently strong core wrap bond combined with a relatively low amount of SAP so that the channels remain permanent until complete saturation of the absorbent material. On the other hand, the core wrap bonds may in some cases also restrict the swelling of the absorbent material when the core is substantially loaded. The inventors have thus found that the core wrap bond 27 may also be designed to open in a controlled manner when exposed to a large amount of fluid. The bonds may thus remain substantially intact at least during a first phase as the absorbent material absorbs a moderate quantity of fluid.
- the core wrap bonds 27 in the channels can start opening to provide more space for the absorbent material to swell while keeping most of the benefits of the channels such as increased flexibility of the core in transversal direction and fluid management.
- a more substantial part of the channel bonds can open to provide even more space for the swelling absorbent material to expand.
- the strength of core wrap bond 27 within the channels can be controlled for example by varying the amount and nature of the glue used for the attaching the two sides of the core wrap, the pressure used to make the core wrap bond and/or the distribution of the absorbent material, as more absorbent material will usually causes more swelling and will put more pressure on the bond.
- the extensibility of the material of the core wrap may also play a role.
- the absorbent material deposition area 8 can be defined by the periphery of the layer formed by the absorbent material 60 within the core wrap, as seen from the top side of the absorbent core.
- the absorbent material deposition area 8 can be generally rectangular, for example as shown in Fig. 1, but other shapes can also be used such as a "T" or "Y” or “sand-hour” or “dog-bone” shape.
- the deposition area may which show a tapering along its width towards the middle or "crotch” region of the core. In this way, the absorbent material deposition area may have a relatively narrow width in an area of the core intended to be placed in the crotch region of the absorbent article. This may provide for example better wearing comfort.
- the absorbent material deposition area 8 may thus have a width (as measured in the transversal direction) at its narrowest point which is less than about 100 mm, 90 mm, 80 mm, 70 mm, 60 mm or even less than about 50 mm.
- This narrowest width may further be for example at least 5 mm, or at least 10 mm, smaller than the width of the deposition area at its largest point in the front and / or back regions of the deposition area 8.
- the basis weight (amount deposited per unit of surface) of the SAP may also be varied along the deposition area 8 to create a profiled distribution of absorbent material, in particular SAP, in the longitudinal direction (as shown in Fig. 3), in the transversal direction, or both directions of the core.
- the basis weight of absorbent material may vary, as well as along the transversal axis, or any axis parallel to any of these axes.
- the basis weight of SAP in area of relatively high basis weight may thus be for example at least 10%, or 20%, or 30%, or 40%, or 50% higher than in an area of relatively low basis weight.
- the SAP present in the absorbent material deposition area at the longitudinal position of the crotch point C may have more SAP per unit of surface deposited as compared to another area of the absorbent material deposition area 8.
- the absorbent material may be deposited using known techniques, which may allow relatively precise deposition of SAP at relatively high speed.
- SAP printing technology as disclosed for example in US2006/024433 (Blessing), US2008/0312617 and US2010/0051166A1 (both to Hundorf et al.) may be used.
- This technique uses a transfer device such as a printing roll to deposit SAP onto a substrate disposed on a grid of a support which may include a plurality of cross bars extending substantially parallel to and spaced from one another so as to form channels extending between the plurality of cross-bars.
- This technology allows high-speed and precise deposition of SAP on a substrate in particular to provide one or more area(s) 26 substantially free of absorbent material surrounded by absorbent material.
- the areas substantially free of absorbent material can be formed for example by modifying the pattern of the grid and receiving drums so that no SAP is applied in the selected areas, as exemplary disclosed in US2012/0312491 (Jackels).
- the absorbent core may also comprise a fibrous thermoplastic adhesive material 51, in particular a microfiber glue, to further immobilize the absorbent material within the core.
- the fibrous thermoplastic adhesive material 51 may be useful to immobilize the layer of absorbent materials 61, 62 to their respective substrate, in particular when the absorbent layer(s) comprises land areas separated by junction areas.
- the fibrous thermoplastic adhesive material 51 may then be at least partially in contact with the absorbent material 61, 62 in the land areas and at least partially in contact with the substrate layer 16, 16' in the junction areas. This imparts an essentially three- dimensional net- like structure to the fibrous layer of thermoplastic adhesive material 51, which in itself is essentially a two-dimensional structure of relatively small thickness, as compared to the dimension in length and width directions.
- the fibrous thermoplastic adhesive material may provide cavities to cover the absorbent material in the land areas, and thereby immobilizes this absorbent material.
- the microfiber glue 51 may be for example applied by spraying each absorbent layer.
- the thermoplastic polymer may typically have a molecular weight (Mw) of more than 10,000 and a glass transition temperature (Tg) usually below room temperature or -6 °C ⁇ Tg ⁇ 16 °C. Typical concentrations of the polymer in a hotmelt are in the range of about 20 to about 40% by weight.
- the thermoplastic polymers may be water insensitive. Exemplary polymers are (styrenic) block copolymers including A-B-A triblock structures, A-B diblock structures and (A- B)n radial block copolymer structures wherein the A blocks are non-elastomeric polymer blocks, typically comprising polystyrene, and the B blocks are unsaturated conjugated diene or (partly) hydrogenated versions of such.
- the B block is typically isoprene, butadiene, ethylene/butylene (hydrogenated butadiene), ethylene/propylene (hydrogenated isoprene), and mixtures thereof.
- suitable thermoplastic polymers that may be employed are metallocene polyolefins, which are ethylene polymers prepared using single-site or metallocene catalysts. Therein, at least one comonomer can be polymerized with ethylene to make a copolymer, terpolymer or higher order polymer.
- APAO amorphous polyolefins or amorphous polyalphaolefins
- the tackifying resin may exemplarily have a Mw below 5,000 and a Tg usually above room temperature, typical concentrations of the resin in a hotmelt are in the range of about 30 to about 60%, and the plasticizer has a low Mw of typically less than 1,000 and a Tg below room temperature, with a typical concentration of about 0 to about 15%.
- thermoplastic adhesive used for the fibrous layer preferably has elastomeric properties, such that the web formed by the fibers on the SAP layer is able to be stretched as the SAP swell.
- exemplary elastomeric, hotmelt adhesives include thermoplastic elastomers such as ethylene vinyl acetates, polyurethanes, polyolefin blends of a hard component (generally a crystalline polyolefin such as polypropylene or polyethylene) and a Soft component (such as ethylene-propylene rubber); copolyesters such as poly (ethylene terephthalate-co-ethylene azelate); and thermoplastic elastomeric block copolymers having thermoplastic end blocks and rubbery mid blocks designated as A-B-A block copolymers: mixtures of structurally different homopolymers or copolymers, e.g., a mixture of polyethylene or polystyrene with an A-B-A block copolymer; mixtures of a thermoplastic elastomer
- the thermoplastic adhesive material 51 fibers may exemplarily have an average thickness of about 1 to about 50 micrometers or about 1 to about 35 micrometers and an average length of about 5 mm to about 50 mm or about 5mm to about 30 mm.
- such layers may be pre-treated with an auxiliary adhesive.
- the fibers adhere to each other to form a fibrous layer, which can also be described as a mesh.
- the absorbent core advantageously achieve an SAP loss of no more than about 70%, 60%, 50%, 40%, 30%, 20%, 10% according to the Wet Immobilization Test described in US2010/0051166A1.
- the absorbent core of the invention may further comprise an auxiliary glue present on the inner surface of the top side and/ bottom side of the absorbent core, in particular to help immobilizing the SAP within the core wrap, to ensure integrity of the core wrap and/or to form the bond 27 attaching the bottom side of the core wrap to the top side of the core wrap through the one or more area(s) substantially free of absorbent material.
- auxiliary glue 71, 72 can be applied on the inner surface of the top side and/or the bottom side of the core wrap.
- the auxiliary glue may be any conventional glue used in the field, in particular hotmelt glue.
- Example of glues are based on an adhesive polymer such SIS (Styrene- Isoprene-Block Co-Polymer), SBS (Styrene-Butadiene-Block Co-polymer) or mPO (metalocine Polyolefine).
- the glue may also comprise a tackifier such as a hydrogenated hydrocarbon resin, as well as an oil and an antioxidant.
- Hydrogenated hydrocarbon resins are made from mixed aromatic/aliphatic resins which are subsequently selectively hydrogenated to produce a wide range of materials with low color, high stability and broad compatibility.
- Examples of commercially available adhesives are available as HL1358LO and NW1286 (both from HB Fuller) and DM 526 (from Henkel).
- the auxiliary glue may be applied on the top side and/or the bottom side of the core wrap in an average amount ranging from 2 gsm to 20 gsm, more particularly from 4 gsm to 10 gsm.
- the auxiliary glue may be uniformly applied, or discontinuously, in particular as a series of stripes regularly spaced and longitudinally oriented, for example a series of auxiliary glue stripes of about 1 mm width spaced from each other by a distance raging from 1 mm to 3 mm.
- the auxiliary glue may help forming the core wrap bond 27 if sufficient pressure and glue is applied within the material free area 26 to attach both sides of the core wrap.
- the auxiliary glue layer may be applied to the inner surface of the bottom side, the inner surface of the top side, or both inner surfaces of the core wrap.
- Fig. 5 is a plan view of the exemplary diaper 20, in a flattened state, with portions of the structure being cut-away to more clearly show the construction of the diaper 20.
- This diaper 20 is shown for illustration purpose only as the invention may be used for making a wide variety of diapers or other absorbent articles.
- the absorbent article comprises a liquid permeable topsheet 24, a liquid impermeable backsheet 25, and an absorbent core 28 between the topsheet 24 and the backsheet 25.
- An optional acquisition / distribution layer 54 is represented on Fig. 5, which also shows other typical taped diaper components such as a fastening system comprising adhesive tabs 42 attached towards the back edge of the article and cooperating with a landing zone 44 on the front of the article, barrier leg cuffs 34 and elasticized gasketing cuffs 32 joined to the chassis of the absorbent article, typically via the topsheet and/or backsheet, and substantially planar with the chassis of the diaper.
- the absorbent article may also comprise other typical elements, which are not represented, such as a back elastic waist feature, a front elastic waist feature, transverse barrier cuff(s), a lotion application, etc...
- the absorbent article 20 comprises a front edge 10, a back edge 12, and two side (longitudinal edges) 13, 14.
- the front edge 10 of the article is the edge which is intended to be placed towards the front of the user when worn, and the back edge 12 is the opposite edge of the article.
- the absorbent article may be notionally divided by a longitudinal axis 80 extending from the front edge to the back edge of the article and dividing the article in two substantially symmetrical halves relative to this axis, with article placed flat and viewed from above as in Fig. 5.
- the length L of the article can be measured along the longitudinal axis 80 from front edge 10 to back edge 12.
- the article comprises a crotch point C defined herein as the point placed on the longitudinal axis at a distance of two fifth (2/5) of L starting from the front edge 10 of the article 20.
- the width of the article for a diaper application at the crotch point may in particular be of from 50 mm to 300 mm, or from 80 mm to 250 mm. For adult incontinence products the width may go up to 450 mm.
- the crotch region can be defined as the region of the diaper longitudinally centered at the crotch point C and extending towards the front and towards the back of the absorbent article by a distance of one fifth of L (175) in each direction.
- a front region and a back region can be defined as the remaining portions of the diapers placed respectively towards the front and the back edges of the article.
- the topsheet 24, the backsheet 25, the absorbent core 28 and the other article components may be assembled in a variety of well known configurations, in particular by gluing or heat embossing. Exemplary diaper configurations are described generally in US3, 860,003, US5,221,274, US5,554,145, US5,569,234, US5,580,411, and US6,004,306.
- the absorbent article is preferably thin.
- the caliper at the crotch point C of the article may be for example from 3.0 mm to 12.0 mm, in particular from 4.0 mm to 10.0 mm, as measured with the Absorbent Article Caliper Test described herein.
- the liquid discharge occurs predominately in the front half of the article, in particular for diaper.
- the front half of the article (as defined by the region between the front edge and a transversal line 90 placed at a distance of half L from the front or back edge may therefore comprise most of the absorbent capacity of the core.
- at least 60% of the SAP, or at least 65%, 70%, 75% or 80% of the SAP may be present in the front half of the absorbent article, the remaining SAP being disposed in the back half of the absorbent article.
- the absorbent article may have an acquisition time for the first gush of less than 30s, preferably less than 27s, as measured according to the Flat Acquisition test method set out in WO2012/174026A1.
- This acquisition time may be in measured in particular on a baby diaper which is designated for wearers having a weight in the range of 8 to 13 kg + 20% (such as Pampers Active Fit size 4 or other Pampers baby diapers size 4, Huggies baby diapers size 4 or baby diapers size 4 of most other tradenames).
- the topsheet 24 is the layer of the absorbent article that is destined to be in contact with the wearer's skin.
- the topsheet 24 can be joined to the backsheet 25, the core 28 and/or any other layers as is known in the art.
- the topsheet 24 and the backsheet 25 may be joined directly to each other on or close to the periphery of the article and are indirectly joined together in other locations by directly joining them to one or more other elements of the article 20.
- the topsheet may be attached to an underlying layer 54, which may be an acquisition and/or distribution layer, by any conventional means, in particular gluing, mechanical or heat bonding and combinations thereof.
- the topsheet may in particular be attached directly or indirectly to the fibrous layer 54 in the area where the ditches of the fibrous layer are formed, as exemplarily shown in Fig. 7. This may provide or help the formation of secondary ditches 29 at the surface of the article.
- the topsheet 24 is preferably compliant, soft-feeling, and non-irritating to the wearer's skin. Further, at least a portion of the topsheet 24 is liquid permeable, permitting liquids to readily penetrate through its thickness.
- a suitable topsheet may be manufactured from a wide range of materials, such as porous foams, reticulated foams, apertured plastic films, or woven or nonwoven materials of natural fibers (e.g., wood or cotton fibers), synthetic fibers or filaments (e.g., polyester or polypropylene or bicomponent PE/PP fibers or mixtures thereof), or a combination of natural and synthetic fibers.
- the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed as is known in the art, in particular spunbond PP nonwoven.
- a suitable topsheet comprising a web of staple-length polypropylene fibers is manufactured by Veratec, Inc., a Division of International Paper Company, of Walpole, MA under the designation P-8.
- Suitable formed film topsheets are also described in US3,929,135, US4,324,246, US4,342,314, US4,463,045, and US5,006,394.
- Other suitable topsheets may be made in accordance with US4,609,518 and 4,629,643 issued to Curro et al.
- Such formed films are available from The Procter & Gamble Company of Cincinnati, Ohio as “DRI- WEAVE” and from Tredegar Corporation, based in Richmond, VA, as "CLIFF-T”.
- topsheet 24 may be coated with a lotion as is known in the art.
- suitable lotions include those described in US5,607,760, US5,609,587, US5,635,191, US5,643,588, US5,968,025 and US6,716,441.
- the topsheet 24 may also include or be treated with antibacterial agents, some examples of which are disclosed in PCT Publication W095/24173.
- the topsheet 24, the backsheet 25 or any portion of the topsheet or backsheet may be embossed and/or matte finished to provide a more cloth like appearance.
- the topsheet 24 may comprise one or more apertures to ease penetration of exudates therethrough, such as urine and/or feces (solid, semi-solid, or liquid).
- the size of at least the primary aperture is important in achieving the desired waste encapsulation performance. If the primary aperture is too small, the waste may not pass through the aperture, either due to poor alignment of the waste source and the aperture location or due to fecal masses having a diameter greater than the aperture. If the aperture is too large, the area of skin that may be contaminated by "rewet" from the article is increased.
- the total area of the apertures at the surface of a diaper may have an area of between about 10 cm 2 and about 50 cm 2 , in particular between about 15 cm 2 and 35 cm 2.
- apertured topsheet examples are disclosed in US6632504, assigned to BBA NONWOVENS SIMPSONVILLE.
- WO2011/163582 also discloses suitable colored topsheet having a basis weight of from 12 to 18 gsm and comprising a plurality of bonded points.
- Each of the bonded points has a surface area of from 2 mm 2 to 5 mm 2 and the cumulated surface area of the plurality of bonded points is from 10 to 25% of the total surface area of the topsheet.
- Typical diaper topsheets have a basis weight of from about 10 to about 28 gsm, in particular between from about 12 to about 18 gsm but other basis weights are possible.
- the backsheet 25 is generally that portion of the absorbent article 20 which forms the majority of the external surface of the article when worn by the user.
- the backsheet is positioned towards the bottom side of the absorbent core and prevents the exudates absorbed and contained therein from soiling articles such as bedsheets and undergarments.
- the backsheet 25 is typically impermeable to liquids (e.g. urine).
- the backsheet may for example be or comprise a thin plastic film such as a thermoplastic film having a thickness of about 0.012 mm to about 0.051 mm.
- Exemplary backsheet films include those manufactured by Tredegar Corporation, based in Richmond, VA, and sold under the trade name CPC2 film.
- Suitable backsheet materials may include breathable materials which permit vapors to escape from the diaper 20 while still preventing exudates from passing through the backsheet 25.
- exemplary breathable materials may include materials such as woven webs, nonwoven webs, composite materials such as film-coated nonwoven webs, microporous films such as manufactured by Mitsui Toatsu Co., of Japan under the designation ESPOIR NO and by Tredegar Corporation of Richmond, VA, and sold under the designation EXAIRE, and monolithic films such as manufactured by Clopay Corporation, Cincinnati, OH under the name HYTREL blend P18-3097.
- Some breathable composite materials are described in greater detail in PCT Application No. WO 95/16746 published on June 22, 1995 in the name of E. I.
- the backsheet 25 may be joined to the topsheet 24, the absorbent core 28 or any other element of the diaper 20 by any attachment means known in the art.
- Suitable attachment means are described above with respect to means for joining the topsheet 24 to other elements of the article 20.
- the attachment means may include a uniform continuous layer of adhesive, a patterned layer of adhesive, or an array of separate lines, spirals, or spots of adhesive.
- Suitable attachment means comprises an open pattern network of filaments of adhesive as disclosed in US4,573,986.
- Other suitable attachment means include several lines of adhesive filaments which are swirled into a spiral pattern, as is illustrated by the apparatus and methods shown in US3, 911,173, US 4,785,996; and US 4,842,666. Adhesives which have been found to be satisfactory are manufactured by H.
- attachment means may comprise heat bonds, pressure bonds, ultrasonic bonds, dynamic mechanical bonds, or any other suitable attachment means or combinations of these attachment means as are known in the art.
- the absorbent article may further comprise one or more additional layer 54 that can serve to acquire and distribute the fluid, as illustrate by layer 54 in the Figures.
- the additional layer(s) may be present between the topsheet 24 and the absorbent core 28, as represented in the Figures, but it may be also between the backsheet 25 and the absorbent core 28, or both.
- the additional layer 54 may be at least partially bonded to the top side or the bottom side of the core wrap in the area(s) substantially free of absorbent material. The formation of the channel 26' in the absorbent core as the absorbent material swells may thus provides of one or more corresponding ditches 27 in the additional layer 54.
- the additional layer(s) may be of any kind such as nonwoven, a woven material or even loose fibers.
- the additional layers may in particular be of the type known in the art for acquisition layers and/or distribution layers. Typical acquisition and/or distribution layers do not comprise SAP as this may slow the acquisition and distribution of the fluid, but an additional layer may also comprise SAP if some fluid retention properties are wished.
- the prior art discloses many type of acquisition and/or distribution layers that may be used, see for example WO2000/59430 (Daley), WO95/10996 (Richards), US5,700,254 (McDowall), WO02/067809 (Graef).
- a distribution layer can spread an insulting fluid liquid over a larger surface within the article so that the absorbent capacity of the core can be more efficiently used.
- distribution layers are made of a nonwoven material based on synthetic or cellulosic fibers and having a relatively low density.
- the density of the distribution layer may vary depending on the compression of the article, but may typically range from 0.03 to 0.25 g/cm 3 , in particular from 0.05 to 0.15 g/cm 3 measured at 0.30 psi (2.07kPa).
- the distribution layer may also be a material having a water retention value of from 25 to 60, preferably from 30 to 45, measured as indicated in the procedure disclosed in US5, 137,537.
- the distribution layer may typically have an average basis weight of from 30 to 400 g/m 2 , in particular from 100 to 300 g/m 2.
- the distribution layer may for example comprise at least 50% by weight of cross-linked cellulose fibers.
- the cross-linked cellulosic fibers may be crimped, twisted, or curled, or a combination thereof including crimped, twisted, and curled. This type of material has been used in the past in disposable diapers as part of an acquisition system, for example US 2008/0312622 Al (Hundorf).
- the cross-linked cellulosic fibers provide higher resilience and therefore higher resistance to the first absorbent layer against the compression in the product packaging or in use conditions, e.g. under a baby's weight. This provides the core with a higher void volume, permeability and liquid absorption, and hence reduced leakage and improved dryness.
- Exemplary chemically cross-linked cellulosic fibers suitable for a distribution layer are disclosed in US5,549,791, US5,137,537, W09534329 or US2007/118087.
- Exemplary cross-linking agents include polycarboxylic acids such as citric acid and/or polyacrylic acids such as acrylic acid and maleic acid copolymers.
- the absorbent article may also comprise an acquisition layer as additional layer, whose function can be to quickly acquire the fluid away from the topsheet so as to provide a good dryness for the wearer.
- Such an acquisition layer is typically placed directly under the topsheet.
- the absorbent article may also then comprise a distribution layer typically placed between the acquisition layer and the absorbent core.
- the acquisition layer may typically be or comprise a non- woven material, for example a
- SMS or SMMS material comprising a spunbonded, a melt-blown and a further spunbonded layer or alternatively a carded chemical-bonded nonwoven.
- the non-woven material may in particular be latex bonded.
- Exemplary upper acquisition layers are disclosed in US7,786,341.
- Carded, resin- bonded nonwovens may be used, in particular where the fibers used are solid round or round and hollow PET staple fibers (50/50 or 40/60 mix of 6 denier and 9 denier fibers).
- An exemplary binder is a butadiene/styrene latex.
- Non-wovens have the advantage that they can be manufactured outside the converting line and stored and used as a roll of material.
- Such an acquisition layer may be stabilized by a latex binder, for example a styrene- butadiene latex binder (SB latex).
- SB latex styrene- butadiene latex binder
- Processes for obtaining such lattices are known, for example, from EP 149 880 (Kwok) and US 2003/0105190 (Diehl et al.).
- the binder may be present in the acquisition layer in excess of about 12%, about 14% or about 16% by weight.
- SB latex is available under the trade name GENFLOTM 3160 (OMNOVA Solutions Inc.; Akron, Ohio).
- a further acquisition layer may be used in addition to a first acquisition layer described above.
- a tissue layer may be placed between the first acquisition layer and the distribution layer.
- the tissue may have enhanced capillarity distribution properties compared to the acquisition layer described above.
- the tissue and the first acquisition layer may be of the same size or may be of different size, for example the tissue layer may extend further in the back of the absorbent article than the first acquisition layer.
- An example of hydrophilic tissue is a 13 - 22.5 gsm high wet strength made of cellulose fibers from supplier Havix.
- this acquisition layer is larger than or least as large as an underlying distribution layer in the longitudinal and/or transversal dimension.
- the distribution layer can be deposited on the acquisition layer. This simplifies handling, in particular if the acquisition layer is a nonwoven which can be unrolled from a roll of stock material.
- the distribution layer may also be deposited directly on the absorbent core's upper side of the core wrap or another layer of the article.
- an acquisition layer larger than the distribution layer allows to directly glue the acquisition layer to the storage core (at the larger areas). This can give increased patch integrity and better liquid communication.
- the absorbent article may include a fastening system, for example as is known in taped diapers.
- the fastening system can be used to provide lateral tensions about the circumference of the absorbent article to hold the absorbent article on the wearer as is typical for taped diapers. This fastening system is not necessary for training pant article since the waist region of these articles is already bonded.
- the fastening system usually comprises a fastener such as tape tabs, hook and loop fastening components, interlocking fasteners such as tabs & slots, buckles, buttons, snaps, and/or hermaphroditic fastening components, although any other known fastening means are generally acceptable.
- a landing zone is normally provided on the front waist region for the fastener to be releasably attached.
- Some exemplary surface fastening systems are disclosed in US 3,848,594, US4,662,875, US 4,846,815, US4,894,060, US4,946,527, US5,151,092 and US 5,221,274 issued to Buell.
- An exemplary interlocking fastening system is disclosed in US6,432,098.
- the fastening system may also provide a means for holding the article in a disposal configuration as disclosed in US 4,963,140 issued to Robertson et al.
- the fastening system may also include primary and secondary fastening systems, as disclosed in US4,699,622 to reduce shifting of overlapped portions or to improve fit as disclosed in US5,242,436, US5,499,978, US5,507,736, and US5,591,152.
- the absorbent article may comprise a pair of barrier leg cuffs 34 and/or gasketing cuffs 32.
- US3,860,003 describes a disposable diaper which provides a contractible leg opening having a side flap and one or more elastic members to provide an elasticized leg cuff (a gasketing cuff).
- US4,808,178 and US4,909,803 issued to Aziz et al. describe disposable diapers having "stand-up" elasticized flaps (barrier leg cuffs) which improve the containment of the leg regions.
- US4,695,278 and US4,795,454 issued to Lawson and to Dragoo respectively, describe disposable diapers having dual cuffs, including gasketing cuffs and barrier leg cuffs. All or a portion of the barrier leg and/or gasketing cuffs may be treated with a lotion.
- the barrier leg cuffs 34 can be formed from a piece of material, typically a nonwoven, which is partially bonded to the rest of the article so that a portion of the material, the barrier leg cuffs, can be partially raised away and stand up from the plane defined by the topsheet when the article is pulled flat as shown e.g. in Fig. 5.
- the barrier leg cuffs can provide improved containment of liquids and other body exudates approximately at the junction of the torso and legs of the wearer.
- the barrier leg cuffs extend at least partially between the front edge and the back edge of the diaper on opposite sides of the longitudinal axis and are at least present at the longitudinal position of the crotch point (C).
- the barrier leg cuffs are delimited by a proximal edge 64 joined to the rest of the article, typically the topsheet and/or the backsheet, and a free terminal edge 66, which is intended to contact and form a seal with the wearer's skin.
- the barrier leg cuffs are joined at the proximal edge 64 with the chassis of the article by a bond 65 which may be made for example by gluing, fusion bonding or combination of known bonding means.
- the bond 65 at the proximal edge 64 may be continuous or intermittent.
- the side of the bond 65 closest to the raised section of the barrier leg cuffs 34 delimits the proximal edge 64 of the standing up section of the leg cuffs.
- the barrier leg cuffs 34 can be integral with the topsheet or the backsheet, or more typically be formed from a separate material joined to the rest of the article. Typically the material of the barrier leg cuffs may extend through the whole length of the diapers but is "tack bonded" to the topsheet towards the front edge and back edge of the article so that in these sections the barrier leg cuff material remains flush with the topsheet.
- Each barrier leg cuff 34 may comprise one, two or more elastic strings 35 close to this free terminal edge 66 to provide a better seal.
- the article may comprise gasketing cuffs 32 joined to the chassis of absorbent article, in particular the topsheet and/or the backsheet and may be placed externally relative to the barrier leg cuffs.
- the gasketing cuffs can provide a better seal around the thighs of the wearer.
- each gasketing leg cuff will comprise one or more elastic string or elastic element 33 comprised in the chassis of the diaper for example between the topsheet and backsheet in the area of the leg openings.
- the absorbent article may comprise front ears 46 and back ears 40 as is known in the art.
- the ears can be integral part of the chassis, for example formed from the topsheet and/or backsheet as side panel. Alternatively, as represented on Fig. 5, they may be separate elements attached by gluing and / or heat embossing or pressure bonding.
- the back ears 40 are advantageously stretchable to facilitate the attachment of the tabs 42 on the landing zone 44 and maintain the taped diapers in place around the wearer's waist.
- the back ears 40 may also be elastic or extensible to provide a more comfortable and contouring fit by initially conformably fitting the absorbent article to the wearer and sustaining this fit throughout the time of wear well past when absorbent article has been loaded with exudates since the elasticized ears allow the sides of the absorbent article to expand and contract.
- the absorbent article may also comprise at least one elastic waist feature (not represented) that helps to provide improved fit and containment.
- the elastic waist feature is generally intended to elastically expand and contract to dynamically fit the wearer's waist.
- the elastic waist feature preferably extends at least longitudinally outwardly from at least one waist edge of the absorbent core 28 and generally forms at least a portion of the end edge of the absorbent article.
- Disposable diapers can be constructed so as to have two elastic waist features, one positioned in the front waist region and one positioned in the back waist region.
- the elastic waist feature may be constructed in a number of different configurations including those described in US4,515,595, US4,710,189, US5,151,092 and US 5,221,274.
- the absorbent articles of the invention may be made by any conventional methods known in the art.
- the articles may be hand-made or industrially produced at high speed.
- adjacent layers and components will be joined together using conventional bonding method such as adhesive coating via slot coating or spraying on the whole or part of the surface of the layer, or thermo-bonding, or pressure bonding or combinations thereof.
- This bonding is exemplarily represented for the bond between the leg cuffs 65 and the topsheet 24 on Fig. 6, and the auxiliary glues 71, 72 and microfibrous glue 51 on the detail view of the absorbent core on Fig. 4.
- Adhesives may be typically used to improve the adhesion of the different layers, for example between the backsheet and the core wrap.
- the glue may be any standard hotmelt glue as known in the art.
- the absorbent core and in particular its absorbent material deposition area 8 may advantageously be at least as large and long and advantageously at least partially larger and/or longer than the fibrous layer. This is because the absorbent material in the core can usually more effectively retain fluid and provide dryness benefits across a larger area than the fibrous layer.
- the absorbent article may have a rectangular SAP layer and a non-rectangular (shaped) fibrous layer.
- the absorbent article may also have a rectangular (non-shaped) fibrous layer and a rectangular layer of SAP.
- This method determines the time dependent effective permeability (K(t)) and the uptake kinetics of a gel layer formed from hydrogel-forming superabsorbent polymer particles or of an absorbent structure containing such particles under a confining pressure.
- the objective of this method is to assess the ability of the gel layer formed from hydrogel-forming superabsorbent polymer particles or the absorbent structure containing them to acquire and distribute body fluids when the polymer is present at high concentrations in an absorbent article and exposed to mechanical pressures as they typically occur during use of the absorbent article.
- Darcy' s law and steady-state flow methods are used to calculate effective permeability (see below). See also for example, "Absorbency,” ed. by P.K. Chatterjee, Elsevier, 1982, Pages 42-43 and "Chemical Engineering Vol. II, Third Edition, J.M. Coulson and J.F. Richardson, Pergamon Press, 1978, Pages 122-127.
- the equipment used for this method is called 'Zeitabhangiger für fürtechniksprufstand' or 'Time Dependent Permeability Tester', Equipment No. 03-080578 and is commercially available at BRAUN GmbH, Frankfurter Str. 145, 61476 Kronberg, Germany and is described below. Upon request, operating instructions, wiring diagrams and detailed technical drawings are also available.
- Fig. 9 shows the dynamic effective permeability and uptake kinetic measurement system, called 'Time Dependent Permeability Tester' herein.
- the equipment consists of the following main parts:
- Mi l Digital Laser Sensor for caliper measurement 701 (MEL Mikroelektronik GmbH, 85386 Eching, Germany
- Fiber for Liquid Level Detection 702 (FU95, Keyence Corp., Japan)
- Reservoir 708 (5L Glass bottle, VWR) with joint 709 and open-end tube for air admittance 723
- a controlled valve 714 (Burkert)
- Fig. 10 shows the piston/cylinder assembly 713 comprising piston guiding lid 801, piston 802 and cylinder 803.
- the inner cylinder walls 850 are smooth; the height of the cylinder r is about 7.50 cm.
- the bottom 804 of the cylinder 803 is faced with a US. Standard 400 mesh stainless- steel screen cloth (not shown) (e.g. from Weisse and Eschrich) that is bi-axially stretched to tautness prior to attachment to the bottom 804 of the cylinder 803.
- the piston 802 is composed of a stainless steel piston body 805 and a stainless steel head 806.
- the piston head 806 diameter q is slightly less than 6 cm so as to slide freely into the cylinder 803 without leaving any gap for the hydrogel-forming particle to pass trough.
- the piston body 805 is firmly attached perpendicularly at the center of the piston head 806.
- the piston body diameter t is about 2.2 cm.
- the piston body 805 is then inserted into a piston guiding lid 801.
- the guiding lid 801 has a POM (Polyoxymethylene) ring 809 with a diameter allowing a free sliding of the piston 802 yet keeping the piston body 805 perfectly vertical and parallel to the cylinder walls 850 once the piston 802 with the guiding lid 801 are positioned on top of the cylinder 803.
- the top view of the piston head 806 is shown in Fig. 11.
- the piston head 806 is meant to apply the pressure homogeneously to the sample 718. It is also highly permeable to the hydrophilic liquid so as to not limit the liquid flow during measurement.
- the piston head 806 is composed of a US. standard 400 mesh stainless steel screen cloth 903 (e.g. from Weisse and Eschrich) that is bi-axially stretched to tautness and secured at the piston head stainless steel outer ring 901. The entire bottom surface of the piston is flat. Structural integrity and resistance to bending of the mesh screen is then ensured by the stainless steel radial spokes 902.
- the height of the piston body 805 is selected such that the weight of the piston 802 composed of the piston body 805 and the piston head 806 is 596 g ( ⁇ 6g), this corresponds to 0.30 psi over the area of the cylinder 803.
- the piston guiding lid 801 is a flat circle of stainless steel with a diameter s of about 7.5 cm held perpendicular to the piston body 805 by the POM ring 809 in its center. There are two inlets in the guiding lid (810 and 812) .
- the first inlet 812 allows the Fiber for Liquid Level Detection 702 to be positioned exactly 5 cm above the top surface of the screen (not shown) attached to the bottom (804) of the cylinder 803 once the piston 802 is assembled with the cylinder 803 for the measurement.
- the second inlet 810 allows connecting a liquid tube 721 providing the liquid to the experiment.
- a slit 814 is made on the cylinder 803 matching a position marker 813 in the guiding lid 801. In this way the rotation angle of the cylinder and the guiding lid is always the same.
- the stainless steel screen cloth 903 of the piston head 806 and cylinder 803 should be inspected for clogging, holes or over- stretching and replaced when necessary.
- a K(t) apparatus with damaged screen can deliver erroneous K(t) and uptake kinetic results, and must not be used until the screen has been replaced.
- a 5 cm mark 808 is scribed on the cylinder at a height k of 5.00 cm (+0.02 cm) above the top surface of the screen attached to the bottom 804 of the cylinder 803. This marks the fluid level to be maintained during the analysis.
- the Fiber for Liquid Level Detection 702 is positioned exactly at the 5 cm mark 808. Maintenance of correct and constant fluid level (hydrostatic pressure) is critical for measurement accuracy
- a reservoir 708 connected via tubing to the piston/cylinder assembly 713 holding the sample and a controller valve 714 are used to deliver salt solution to the cylinder 803 and to maintain the level of salt solution at a height k of 5.00 cm above the top surface of screen attached to the bottom of the cylinder 804.
- the valve 714, the Fiber for Liquid Level Detection 702 and the Digital Fiber Sensor 703 are connected to the computerized acquisition system 710 trough the operating unit 705. This allows the Dynamic Effective Permeability and Uptake Kinetic Measurement System to use the information from the Fiber for Liquid Level Detection 702 and the Digital Fiber Sensor 703 to control the valve 714 and ultimately maintain the level of the liquid at the 5 cm mark 808.
- the reservoir 708 is placed above the piston/cylinder assembly 713 in such a manner as to allow a 5 cm hydrohead to be formed within 15 seconds of initiating the test, and to be maintained in the cylinder throughout the test procedure.
- the piston/cylinder assembly 713 is positioned on the support ring 717 of the cover plate 716 and the first inlet 812 is held in place with the docking support 719. This allows only one position of the guiding lid 801. Furthermore, due to the position marker 813, there is also only one position for the cylinder 803.
- the screen attached to the bottom of the cylinder 804 must be perfectly level and horizontal.
- the supporting ring 717 needs to have an internal diameter small enough, so to firmly support cylinder 803 but larger than 6.0 cm so to lay outside of the internal diameter of the cylinder once the cylinder is positioned on the supporting ring 717. This is important so to avoid any interference of the supporting ring 717 with the liquid flow.
- the salt solution, applied to the sample 718 with a constant hydrohead of 5 cm can now freely flow from the piston/cylinder assembly 713 into a receiving vessel 707 positioned on the balance 704 which is accurate within + 0.01 g.
- the digital output of the balance is connected to a computerized data acquisition system.
- the caliper (thickness) of the sample is constantly measured with a Digital Laser Sensor for caliper measurement 701.
- the laser beam 720 of the digital laser sensor 701 is directed at the center of the POM cover plate 811 of the piston body.
- the accurate positioning of all the parts of the piston/cylinder assembly 713 allows the piston body 805 to be perfectly parallel to the laser beam 720 and as a result an accurate measure of the thickness is obtained.
- the reservoir 708 is filled with test solution.
- the test solution is an aqueous solution containing 9.00 grams of sodium chloride and 1.00 grams of surfactant per liter of solution. The preparation of the test solution is described below.
- the receiving vessel 707 is placed on the balance 704 which is connected to a computerized data acquisition system 710. Before the start of the measurement the balance is reset to zero.
- Ten liters of a solution containing 9.00 grams per litre of NaCl and 1.00 grams per liter linear C12-C14 alcohol ethoxalate in distilled water is prepared and equilibrated at 23°C + 1°C for 1 hour.
- the surface tension is measured on 3 individual aliquots and should be 28 +0.5 mN/m. If the surface tension of the solution is different from 28 + 0.5 mN/m, the solution is discarded and a new test solution is prepared.
- the test solution has to be used within 36 hours from its preparation and is considered expired afterwards.
- K(t) Sample preparation A 10 grams representative sample of the superabsorbent polymer particles is obtained. This is then dried in an uncovered 10 cm diameter Petri dish in a vacuum chamber at 23 + 2°C and 0.01 Torr or lower for 48 hours prior to use. The sample is removed from the vacuum chamber and immediately stored in a tightly sealed 20 mL glass airtight container at 23 + 2°C until further use.
- the measurement is carried out at Tappi lab conditions: 23°C ⁇ l°C/50 RH ⁇ 2%.
- the empty piston/cylinder assembly 713 is mounted in the circular opening in the cover plate 716 and is supported around its lower perimeter by the supporting ring 717.
- the piston/cylinder assembly 713 is held in place with the docking support 719 with the cylinder 803 and piston 802 aligned at the proper angle.
- the reference caliper reading (r r ) is measured by Digital Laser sensor. After this, the empty piston/cylinder assembly 713 is removed from the cover plate 716 and supporting ring 717 and the piston 802 is removed from the cylinder 803.
- the sample 718 is positioned (absorbent structure) or sprinkled (superabsorbent polymer particles) on the cylinder screen as explained above.
- the piston 802 assembled with the guiding lid 801 is carefully set into the cylinder 803 by matching the position marker 813 of the guiding lid 801 with the slit 814 made in the cylinder 803
- the piston/cylinder assembly is held in place with the docking support 719 with the cylinder and piston aligned at the proper angle
- liquid tube 721 connected to the reservoir 708 and the Digital Fiber Sensor 703 are inserted into the piston/cylinder assembly 713 via the two inlets 810 and 812 in the guiding lid 801.
- the computerized data acquisition system 710 is connected to the balance 704 and to the digital laser sensor for caliper measurement 701. Fluid flow from the reservoir 708 to the cylinder 803 is initiated by the computer program by opening valve 714. The cylinder is filled until the 5 cm mark 808 is reached in 5 to 15 seconds, after which the computer program regulates the flow rate to maintain a constant 5 cm hydrohead. The quantity of solution passing through the sample 718 is measured by the balance 704 and the caliper increase is measured by the laser caliper gauge. Data acquisition is started when the fluid flow is initiated specifically when the valve 714 is opened for the first time, and continues for 21 minutes or until the reservoir runs dry so that the 5 cm hyrdrohead is no longer maintained. The duration of one measurement is 21 min, laser caliper and balance readings are recorded regularly with an interval that may vary according to the measurement scope from 2 to lOsec, and 3 replicates are measured.
- the controlled valve 714 closes automatically.
- the piston/cylinder assembly 713 is removed and the measurements of the 2 nd and 3 rd replicates are done accordingly, always following the same procedure.
- the controlled valve 714 stops the flow of liquid and stopcock 722 of the reservoir 708 is closed.
- the collected raw data is stored in the form of a simple data table, which then can be imported easily to a program for further analysis e.g. Excel 2003, SP3.
- the data from 30 seconds to the end of the experiment are used in the K(t) and uptake kinetics calculation.
- the data collected in the first 30 seconds are not included in the calculation.
- the effective permeability K(t) and the uptake kinetics of the absorbent structure are then determined using the equation sets below.
- the driving pressure is calculated from the hydro head as follows:
- the caliper at each time t is calculated as the difference of the caliper sensor reading at time t; and the reference reading without sample:
- the caliper of the sample at time (do) is used to evaluate the quality of the particle sprinkling.
- An apparent sample density inside the cylinder can be in fact calculated as: If this apparent density inside the cylinder differs from the apparent density of the powder by more than + 40% the measurement has to be considered invalid and eliminated.
- the apparent density can be measured according ED ANA method 406.2 - 02 ("Superabsorbent materials - Polyacrylate superabsorbent powders - GRAVIMETRIC DETERMINATION OF DENSITY")
- the rate of change with time of the balance reading at time t is calculated as follows:
- the rate of change with time of the caliper reading at time t is calculated as follows:
- the uptake Kinetics is calculated as follows
- V s dry sample volume
- V s can be calculated or measured by different methods known by the skilled person for example, knowing the exact composition and the skeletal density of the components it can be determined as follows:
- V s can be easily calculated as follow:
- the average density p s can be determined by pycnometry with a suitable non-swelling liquid of known density. This technique cannot be performed on the same samples subsequently used for the K(t) measure therefore a suitable additional representative set of samples should be prepared for this experiment measurement.
- U(t) at the different time steps calculated as explained above one can determine the uptake at any specific time by linear interpolation. For example one of the important outputs is the uptake at 20 minutes also called U20 (in g/g). From U(t) at the different time steps one can also determine the time required to reach a certain uptake by linear interpolation. The time where the uptake of 20 g/g is first reached is called T20. Similarly the time to reach any other uptakes can be calculated accordingly (e,g T5 or T10). Knowing U20 it is possible to determine from U(t) at the different time steps also the time to reach 80% of U20, this property is called T80%.
- Kmin/K20 is the ratio between the minimum effective permeability and the permeability at 20 minutes.
- This parameter express the temporary gel blocking that might occur in some of the samples. If the value is close to 1 there is no temporary gel blocking if the value is close to 0 it is an indication that the material goes through a strong effective permeability drop when initially loaded with liquid.
- the CRC measures the liquid absorbed by the superabsorbent polymer particles for free swelling in excess liquid.
- the CRC is measured according to ED ANA method WSP 241.2-05.
- Dry Absorbent Core Caliper Test This test may be used to measure the caliper of the absorbent core (before use i.e. without fluid loading) in a standardized manner at the crotch point C of the core or any other point.
- a circular weight may be applied to the foot (e.g., a weight with a slot to facilitate application around the instrument shaft) to achieve the target weight.
- the total weight of foot and added weight (including shaft) is selected to provide 2.07 kPa (0.30 psi) of pressure to the sample.
- the caliper gauge is mounted with the lower surface of the contact foot in an horizontal plane so that the lower surface of the contact foot contacts the center of the flat horizontal upper surface of a base plate approximately 20 x 25 cm.
- the gauge is set to read zero with the contact foot resting on the base plate.
- Sample preparation The core is conditioned at least 24 hours as indicated above.
- Measurement procedure The core is laid flat with the bottom side, i.e. the side intended to be placed towards the backsheet in the finished article facing down.
- the point of measurement e.g. the crotch point C corresponding to this point in the finished article
- the point of measurement is carefully drawn on the top side of the core taking care not to compress or deform the core.
- the contact foot of the caliper gauge is raised and the core is placed flat on the base plate of the caliper gauge with the top side of the core up so that when lowered, the center of the foot is on the marked measuring point.
- the foot is gently lowered onto the article and released (ensure calibration to "0" prior to the start of the measurement).
- the caliper value is read to the nearest 0.01 mm, 10 seconds after the foot is released.
- the Absorbent Article Caliper Test can be performed as for the Dry Absorbent Core Caliper Test with the difference that the caliper of the finished absorbent article is measured instead of the caliper of the core.
- the point of measurement may be the intersection of the longitudinal axis (80) and transversal axis (90) of the absorbent article or the crotch point C of the article. If the absorbent articles were provided folded and/or in a package, the articles to be measured are unfolded and/or removed from the center area of the package. If the package contains more than 4 articles, the outer most two articles on each side of the package are not used in the testing. If the package contains more than 4 but fewer than 14 articles, then more than one package of articles is required to complete the testing.
- the package contains 14 or more articles, then only one package of articles is required to perform the testing. If the package contains 4 or fewer articles then all articles in the package are measured and multiple packages are required to perform the measurement. Caliper readings should be taken 24 + 1 hours after the article is removed from the package, unfolded and conditioned. Physical manipulation of product should be minimal and restricted only to necessary sample preparation.
- Any elastic components of the article that prevent the article from being laid flat under the caliper foot are cut or removed. These may include leg cuffs or waistbands. Pant-type articles are opened or cut along the side seams as necessary. Apply sufficient tension to flatten out any folds/wrinkles. Care is taken to avoid touching and/or compressing the area of measurement.
- This test quantifies the speed of absorption of saline solution at different times.
- the absorbent core to be tested is weighted to the nearest O. lg and the weight recorded as Dry Core Weight.
- the core is then immerged flat in a container containing an excess of 0.9% saline solution with the body-facing side of the core facing down in direct contact with liquid.
- the core is left in the solution for exactly 90s.
- the core is then removed and the excess of saline is removed via gravity for 20 seconds by hanging the core vertically with the back edge of the core up.
- the wet core is then weighted again to the nearest O. lg and the weight recorded as the 90s Wet Weight.
- the core is then laid flat again for 20 minutes on the lab bench with the body-facing side down.
- the core is immerged again for 90s in an excess of fresh 0.9% saline solution again with the body-facing side facing down.
- the core is then again hanged vertical from the back of the core for 20 seconds to let any excess solution drip.
- the core is weighted again to the nearest O.lg and the weight recorded as 180s Wet Weight. The following values are then calculated from the data:
- the 10 g sample is loaded to the top sieve (i.e. 850 ⁇ ) and sieved via a sieve machine ("AS 400 control" available from Retsch GmbH, Haan, Germany) for 3 min at 250 rpm.
- the weight of each sieve after sieving is noted down, to an accuracy of 0.01 g.
- the difference between the weight of loaded sieve and the empty sieve for each size gives the weight of particles per mesh size.
- the mass average particle size (mAvPS) herein is calculated as
- a polyacrylic acid polymer gel preferably wherein the acrylic acid monomers have been polymerized at 50% to 95% neutralization, typically using NaOH to raise the pH;
- SAP having a T20 below 240s are disclosed in WO2012/174,026Al.
- the fourth, comparative, example SAP4 exemplifies the making of SAP having a T20 of 341s and did not have the re-wetting step.
- the first SAP example (SAP1) was made by preparing a polyacrylic acid base polymer, followed by a rewet and grinding step and a further surface cross-linking step.
- the base polymer can be obtained according to the following procedure.
- a 20000 ml resin kettle (equipped with a four-necked glass cover closed with septa, suited for the introduction of a thermometer, syringe needles) is charged with about 1.5 kg ice (1458.19 g) (prepared from de-ionized water).
- a magnetic stirrer capable of mixing the whole content (when liquid), is added.
- An amount of glacial acrylic acid (AA) (appr. 423 g) is taken from 4000.00 g AA (for synthesis, from Merck) to dissolve 25.68 g MethyleneBisAcrylAmide (MBAA) (for molecular biology, for electrophoresis from Sigma Aldrich).
- the remaining AA is added to the ice in 6 portions of about 250-1060 g while stirring is continued.
- a thermometer is introduced and 3330.56 g 50% NaOH solution (for analysis, from Merck) and 5944.72 g ice (prepared from de-ionized water) are added as follows such that the temperature is in the range of 15-25°C:
- the NaOH is added to the ice/AA mixture in 8 portions of about 215-550 g with addition of ice in 7 portions of about 420-1510 g between the addition of NaOH and addition of 965.52 g deionized water after about half of the NaOH solution is added.
- the MBAA solution is added to the mixture while stirring is continued.
- Deionized water (the required amount to achieve in total 12639.70 g (ice + water) minus the amount to dissolve the initiator "V50") is added. Then, the resin kettle is closed, and a pressure relief is provided e.g. by puncturing two syringe needles through the septa. The solution is then purged vigorously with argon via an 80 cm injection needle while stirring at about 400 - 1200 RPM. The argon stream is placed close to the stirrer for efficient and fast removal of dissolved oxygen.
- initiator "V50" 2,2'-azobis ( ⁇ , ⁇ '- dimethyleneisobutyramidine) dihydrochloride, from Waco Chemicals) dissolved in appr. 89.74 g deionized water is added to the reaction mixture while stirring and Argon purging is continued.
- the initiator solution is mixed with the reaction mixture (typically about 3-5 min stirring and Argon purging)
- two photo lamps e.g. Kaiser Provision 2.55 HF equipped with 2 lamps Osram Dulux L 55W/830
- the solution typically starts to become turbid or a sudden increase in viscosity is observed after about 5-20 min, typically at temperatures about room temperature.
- the argon injection needle is raised above the surface of the gel and purging with argon is continued at a reduced flow rate.
- the temperature is monitored; typically it rises from about 20°C to about 60 - 75°C within 60 - 120 minutes. Once the temperature reaches about 60°C or after about 105 min after the reaction mixture becomes turbid or viscous, the lamps are switched off. Once the temperature starts to drop, the resin kettle is transferred into a circulation oven (e.g. Binder FED 720) and kept at about 60°C for 15 - 18 hours. After this time, the resin kettle is allowed to cool at room temperature to about 20-40°C, and the gel is removed and broken manually or cut with scissors into smaller pieces. The gel is grinded with a grinder (e.g.
- the base polymer 1 thus obtained can then be wet grinded according to the following process.
- 800.2 g of dried and grinded polymer resulting from the synthesis above were added to a 3000 ml glass beaker.
- a mixture of 801.3g of dionized water and 50ml Ethanol (e.g. for analysis from Merck) was quickly added to the glass beaker and the mixture was stirred quickly manually with a large lab spoon for about 5 mins.
- the wetted base polymer was kept in the glass beaker for another 30 mins.
- the polymer mixture was grinded three times through 3 connected mincer plates (e.g.
- meat grinder X70G from Sharpen with Unger R70 plate system equipped with a) pre-cutter kidney plate with straight holes at 17mm diameter, b) plate with 20 8mm diameter holes and c) plate with 176 3mm diameter holes).
- the feeding rate for grinding was about 300-600g per minute.
- the wetted polymer heats up and water and ethanol evaporates resulting in 498.2g wetted and grinded base polymer.
- the wetted and grinded polymer is spread on a 50x50cm perforated stainless steel dish (5mm diameter) and dried in a circulation over at 120°C for 12hrs. The resulting dried polymer is broken manually and ground with a cutting- grinding mill (e.g.
- IKA MF 10 basic grinding drive with the MF 10.1 cutting-grinding head and an outlet sieve with 1.5 mm diameter holes) and sieved to 150 - 710 ⁇ (e.g. with AS 400 control from Retsch).
- the fraction above 710 ⁇ is ground again through the cutting-grinding mill through an outlet sieve with 1.0mm diameter holes and again sieved through 150-7 ⁇ .
- the grinding and sieving yields in 584.2g grinded base polymer 1 particles of 150-7 ⁇ .
- the grinded base polymer 1 particles can then be surface cross-linked as follows. 500.0 g grinded superabsorbent base polymer 1 is added to a Lodige Ploughshare Laboratory Mixer, Type L5 and mixed at rotary speed setting 6. 30.05 g of Al lactate solution (15w% Al lactate in deionized water (Aluminium L-lactate 95% from Sigma-Aldrich)) is added via the peristaltic pump (e.g. Ismatec MCP Standard with Tygon MHLL tube, inner diameter e.g.
- peristaltic pump e.g. Ismatec MCP Standard with Tygon MHLL tube, inner diameter e.g.
- the temperature stays in the range of about 23°C.
- the covered baking trays are heated at 120°C for 2h 20 min in the oven (e.g. Binder APT. Line FD 240). After the heating time, the baking trays are taken out of the oven, the aluminium foil is cut, so about 3-6 slits of about 3 cm length and about 3 mm width are created.
- the samples are put under a fume hood and let cool down to room temperature. Afterwards, the samples are manually broken and sieved to 150-710 ⁇ (with sieves DIN/ISO 3310- 1 e.g. from Retsch) to get the final material SAP1 in yield of 379.4g.
- SAP preparation SAP2
- SAP2 was made starting from the base polymer 1 used for making SAP1 as described above.
- the further wet grinding and surface cross-linking steps were then conducted as follows. 1998.5 g of dried and grinded base polymer 1 were added to a 5000 ml glass beaker and 2000 ml dionized water was quickly added to the glass beaker. The mixture was stirred quickly manually with a large lab spoon for about 10 mins. After the mixing, the wetted base polymer was kept in the glass beaker for another 30mins. Following, the polymer mixture was grinded four times through a meat grinder (e.g.
- meat grinder X70G from Sharpen with Unger R70 plate system equipped with a) plate with 20 8mm diameter holes, b) 3 shafted cutter knife and c) plate with 176 3mm diameter holes).
- the feeding rate for grinding was about 300-600g per minute.
- the wetted polymer heats up and water evaporates.
- the wetted and grinded polymer is spread on three 50x50cm perforated stainless steel dish (5mm diameter) and dried in a circulation over at 120°C for 12hrs. The resulting dried polymer is broken manually and ground with a cutting-grinding mill (e.g.
- IKA MF 10 basic grinding drive with the MF 10.1 cutting-grinding head and an outlet sieve with 1.0 mm diameter holes) and sieved to 150 - 710 ⁇ (e.g. with AS 400 control from Retsch).
- the fraction above 710 ⁇ is ground again through the cutting-grinding mill and sieved.
- the grinding and sieving yields in 1348.4g grinded base polymer 2 of 150-7 ⁇ , which was cross-linked as follows.
- Al lactate solution 15w% Al lactate in deionized water (Aluminium L-lactate 95% from Sigma-Aldrich)
- peristaltic pump e.g. Ismatec MCP Standard with Tygon MHLL tube, inner diameter e.g. 1.52 mm
- spray nozzle spray nozzle of Mini Spray Dryer B-290 from Biichi with nozzle disc diameter 1.5 mm
- EGDGE EthyleneGlycolDiGlycidylEther
- the baking trays are covered with aluminum foil and maintained at room temperature for about 14 hours. After that the covered baking trays are heated at 180°C for 2h in the oven (e.g. Binder APT. Line FD 240). After the heating time, the baking trays are taken out of the oven, the aluminium foil is cut, so about 3-6 slits of about 3 cm length and about 3 mm width are created.
- the samples in the baking trays are put under a fume hood and let cool down to room temperature. The samples are manually broken and sieved to 150-710 ⁇ (with sieves DIN/ISO 3310-1 e.g. from Retsch) to get the final material SAP2 in yield of 503.2g.
- This SAP was made as SAP2 except for the surface crosslinking of the grinded base polymer which was made as follows. 600.4 g grinded superabsorbent base polymer 2 is added to a Lodige Ploughshare Laboratory Mixer, Type L5 and mixed at rotary speed setting 6. 35.8 g of Al lactate solution (15w% Al lactate in deionized water (Aluminium L-lactate 95% from Sigma-Aldrich)) is added via the peristaltic pump (e.g. Ismatec MCP Standard with Tygon MHLL tube, inner diameter e.g.
- peristaltic pump e.g. Ismatec MCP Standard with Tygon MHLL tube, inner diameter e.g.
- the temperature stays around room temperature.
- 76.2 g of deionized water is added via the peristaltic pump and the spray nozzle at a flow rate of about 10 g solution/min.
- the temperature rises to about 25 °C.
- the Lodige mixer is opened all other material is removed from the mixer and placed onto two Teflon coated baking trays (e.g. Kaiser 7509960, 41 x 31 x 10 cm). The baking trays are covered with aluminum foil and maintained at room temperature for about 14 hours.
- the covered baking trays are heated at 180°C for 2h in the oven (e.g. Binder APT. Line FD 240). After the heating time, the baking trays are taken out of the oven, the aluminium foil is cut, so about 3-6 slits of about 3 cm length and about 3 mm width are created.
- the samples in the baking trays are put under a fume hood and let cool down to room temperature. The samples are manually broken and sieved to 150-710 ⁇ (with sieves DIN/ISO 3310-1 e.g. from Retsch) to get the final SAP3in yield of 512.8g.
- Examples SAP1, SAP2 and SAP3 all had a T20 below 240s.
- Comparative example SAP4 below describes a SAP having a T20 above 240s.
- the comparative SAP was made according the following steps, which comprised a polymerization step and a surface cross-linking step.
- a 20000 ml resin kettle equipped with a four- necked glass cover closed with septa, suited for the introduction of a thermometer, syringe needles
- ice 2921.94 g
- a magnetic stirrer capable of mixing the whole content (when liquid)
- 1178.26 g 50% NaOH solution for analysis, from Merck
- thermometer is introduced and the remaining AA and ice are added as follows such that the temperature is in the range of 15-25°C:
- the remaining AA is added to the ice/NaOH mixture in 8 portions of about 210-715 g with addition of 6145.77 g ice (prepared from de-ionized water) in 6 portions of about 770-1600 g between the addition of AA while stirring is continued.
- Deionized water (the required amount to achieve in total 12639.80 g (ice + water) minus the amount to dissolve the initiator "V50) is added.
- the resin kettle is closed, and a pressure relief is provided e.g. by puncturing two syringe needles through the septa.
- the solution is then purged vigorously with argon via an 80 cm injection needle while stirring at about 400 - 1200 RPM.
- the argon stream is placed close to the stirrer for efficient and fast removal of dissolved oxygen.
- initiator "V50" 2,2'-azobis (N,N'-dimethyleneisobutyramidine) dihydrochloride, from Waco Chemicals
- a deionized water is added to the reaction mixture while stirring and Argon purging is continued.
- the initiator solution is mixed with the reaction mixture (typically about 3-5 min stirring and Argon purging), two photo lamps (e.g.
- Kaiser Provision 2.55 HF equipped with 2 lamps Osram Dulux L 55W/830 are placed on either side of the vessel.
- the solution typically starts to become turbid or a sudden increase in viscosity is observed after about 5-20 min, typically at temperatures about room temperature.
- the argon injection needle is raised above the surface of the gel and purging with argon is continued at a reduced flow rate.
- the temperature is monitored; typically it rises from about 20°C to about 60 - 70°C within 60 - 120 minutes. Once the temperature reaches about 60°C or after about 105 min after the reaction mixture becomes turbid or viscous, the lamps are switched off. Once the temperature starts to drop, the resin kettle is transferred into a circulation oven (e.g.
- Binder FED 720 Binder FED 720 and kept at about 60°C for 15 - 18 hours. After this time, the resin kettle is allowed to cool at room temperature to about 20-40°C, and the gel is removed and broken manually or cut with scissors into smaller pieces. The gel is grinded with a grinder (e.g. meat grinder X70G from Sharpen with Unger R70 plate system equipped with pre-cutter kidney plate with straight holes at 17mm diameter), put onto perforated stainless steel dishes (hole diameter 4.8 mm, 50 cm x 50 cm, 0.55 mm caliper, 50% open area, from RS) and transferred into a circulation oven (Binder FED 720) at about 80°C for about 40 hours.
- a grinder e.g. meat grinder X70G from Sharpen with Unger R70 plate system equipped with pre-cutter kidney plate with straight holes at 17mm diameter
- perforated stainless steel dishes hole diameter 4.8 mm, 50 cm x 50 cm, 0.55 mm caliper, 50% open area, from RS
- the gel is ground using a centrifuge mill (e.g. Retsch ZM 200 with vibratory feeder DR 100, interchangeable sieve with 1.5 mm opening settings, rotary speed 8000 RPM), and sieved to 150 - 850 ⁇ (e.g. with AS 400 control from Retsch, with sieves DIN/ISO 3310-1 e.g. from Retsch).
- the remaining fraction > 850 ⁇ is again milled and sieved to 150 - 850 ⁇ .
- the milling step is repeated with remaining fractions > 850 ⁇ about 1-3 times. All fractions 150-850 ⁇ are collected and combined to form the base polymer sample.
- the sample is again dried, e.g. in a circulation oven (e.g. Binder FED 720) at about 80°C for about 5 hours. This drying step might be repeated until the residual moisture is about 6% by weight or lower, e.g. about 1-5%, yielding comparative base polymer 2.
- a circulation oven e.g. Binder FED 720
- the obtained comparative base polymer 2 can then surface cross-linked to obtain comparative SAP4.
- 1000.11 g superabsorbent base polymer 2 as above is added to a Lodige Ploughshare Laboratory Mixer, Type L5 and mixed at rotary speed setting 6.
- 60.05 g of Al lactate solution (15w% Al lactate in deionized water (Aluminium L-lactate 95% from Sigma-Aldrich)) is added via the peristaltic pump (e.g. Ismatec MCP Standard with Tygon MHLL tube, inner diameter e.g.
- the temperature is in the range of about 32°C.
- deionized water is added via the peristaltic pump and the spray nozzle at a spray pressure of about 2 bar at a flow rate of about 10 g solution/min.
- the temperature is in the range of about 32°C.
- the bottom outlet of the Lodige mixer is opened and the material that comes out of the bottom outlet pushed out only by the Ploughshare mixer rotation is collected and evenly distributed onto two Teflon coated baking trays (e.g. Kaiser 7509960, 41 x 31 x 10 cm).
- the baking trays are covered with aluminum foil and maintained at room temperature for about 15-18 hours.
- the covered baking trays are heated at 120°C for 2h 20 min in the oven (e.g. Binder APT.Line FD 240). After the heating time, the baking trays are taken out of the oven, the aluminium foil is cut, so about 3-6 slits of about 3 cm length and about 3 mm width are created.
- the samples are put under a fume hood and let cool down to room temperature. Afterwards, the samples are manually broken and sieved to 150-850 um (with sieves DIN/ISO 3310-1 e.g. from Retsch) to get the final comparative SAP4.
- Base Polymer 3 Base Polymer 3:
- a 20 000 ml resin kettle (equipped with a four-necked glass cover closed with septa, suited for the introduction of a thermometer, syringe needles) is charged with about 5089.0 g of ice (ca. 30- 40% of the total amount of ice: 12128.0 g ice prepared from deionized water).
- a magnetic stirrer capable of mixing the whole content (when liquid), is added and stirring is started.
- V50 2,2'-azobis ( ⁇ , ⁇ '- dimethyleneisobutyramidine) dihydrochloride, from Waco Chemicals) e.g. in a glass vessel with plastic snap-on cap.
- the vessel with the "V50” solution is closed and set aside in a fridge at about 4°C.
- the remaining AA is added to the ice in the resin kettle while stirring is continued.
- thermometer is introduced and in total 3330.7 g of 50% NaOH solution (for analysis, from Merck) and the remaining amount of ice (prepared from de-ionized water) are added subsequently in portions such that the temperature is in the range of about 15-30°C.
- the MBAA solution is added to the mixture of AA, NaOH solution and ice at a temperature of about 15-30°C while stirring is continued.
- the beaker that contained the MBAA solution is washed 2x with deionized water in an amount of about 10% of the MBAA solution volume per wash.
- the wash water of both washing steps is added to the stirred mixture.
- Deionized water (the remaining amount required to achieve the total amount of (ice + water) of 12639.3 g minus the amount to wash the "V50" containing vessel 2x with deionized water in an amount of about 10% of the "V50" solution volume per wash) is added to the stirred mixture.
- the resin kettle is closed, and a pressure relief is provided e.g. by puncturing two syringe needles through the septa.
- the solution is then purged vigorously with argon via an 80 cm injection needle at about 0.4 bar while stirring at about 400 - 1200 RPM.
- the argon stream is placed close to the stirrer for efficient and fast removal of dissolved oxygen.
- the temperature is monitored; typically it rises from about 23°C to about 60°C within 60 minutes. Once the temperature reaches about 60°C, the lamps are switched off. Once the temperature starts to drop, the resin kettle is transferred into a circulation oven (Binder FED 720) and kept at about 60°C for about 18 hours.
- Binder FED 720 Binder FED 720
- the oven is switched off and the resin kettle is allowed to cool down to about 20-40°C while remaining in the oven.
- the gel is removed and broken manually or cut with scissors into smaller pieces.
- the gel is grinded with a grinder (X70G from Scharfen with Unger R70 plate system: 3 pre-cutter kidney plates with straight holes at 17mm diameter) , put onto perforated stainless steel dishes (hole diameter 4.8 mm, 50 cm x 50 cm, 0.55 mm caliper, 50% open area, from RS; max. height of gel before drying: about 3 cm) and transferred into a circulation oven (Binder FED 720) at about 105°C for about 18 hours.
- a grinder X70G from Scharfen with Unger R70 plate system: 3 pre-cutter kidney plates with straight holes at 17mm diameter
- the residual moisture of the dried gel is about 6.2% by weight.
- the wetted base polymer was kept in the trays for another 30mins. Following, the wetted base polymer of the four trays is combined and grinded four times through a meat grinder (Grinder X70G from Sharpen with Unger R70 plate system equipped with a) plate with 20 8 mm diameter holes, b) 3 shafted cutter knife and c) plate with 176 3 mm diameter holes). The feeding rate for grinding was about 300-600 g per minute. During grinding, the wetted polymer heats up and water evaporates.
- a meat grinder Grinder X70G from Sharpen with Unger R70 plate system equipped with a) plate with 20 8 mm diameter holes, b) 3 shafted cutter knife and c) plate with 176 3 mm diameter holes.
- the feeding rate for grinding was about 300-600 g per minute. During grinding, the wetted polymer heats up and water evaporates.
- the wetted and grinded polymer is spread on several 50x50cm perforated stainless steel dish (hole diameter 4.8 mm, 50 cm x 50 cm, 0.55 mm caliper, 50% open area, from RS) at max gel height of about 3 cm and dried in a circulation oven (Binder FED 720) at 105°C for 18 hours and subsequently for 2.5 hours at 105°C and for 14 hours in an vacuum oven (e.g. Vacutherm, VT6130 P-BL, Heraeus equipped with vapour trap e.g. Titan Vapor Trap, Kinetics, and/or equipped with vacuum pump e.g. Trivac®, Leybold) at 80°C at max. about 80 mbar.
- a circulation oven e.g. Vacutherm, VT6130 P-BL, Heraeus equipped with vapour trap e.g. Titan Vapor Trap, Kinetics, and/or equipped with vacuum pump e.g. Trivac®, Leybold
- the residual moisture of the dried gel is about 3.1% by weight.
- the dried gel is then ground using a centrifuge mill (Retsch ZM 200 with vibratory feeder DR 100 (setting 50-60), interchangeable sieve with 1.5 mm opening settings, rotary speed 8000 rpm).
- the milled polymer is again dried in an oven (e.g. Binder APT. Line FD 240) for 12 hours at 120°C and then sieved via a sieving machine (AS 400 control from Retsch with sieves DIN/ISO 3310-1 at about 200-280 rpm for about for 5-10 min) to the following particle size cuts with the following yields:
- a 20 000 ml resin kettle (equipped with a four-necked glass cover closed with septa, suited for the introduction of a thermometer, syringe needles) is charged with about 5388.3 g of ice (ca. 30- 45% of the total amount of ice: 12149.9 g ice prepared from deionized water).
- a magnetic stirrer capable of mixing the whole content (when liquid), is added and stirring is started.
- V50 2,2'-azobis ( ⁇ , ⁇ '- dimethyleneisobutyramidine) dihydrochloride, from Waco Chemicals) e.g. in a glass vessel with plastic snap-on cap.
- the vessel with the "V50” solution is closed and set aside in a fridge at about 4°C.
- the remaining AA is added to the ice in the resin kettle while stirring is continued.
- thermometer is introduced and in total 3330.6 g of 50% NaOH solution (for analysis, from Merck) and the remaining amount of ice (prepared from de-ionized water) are added subsequently in portions such that the temperature is in the range of about 15-30°C.
- the MBAA solution is added to the mixture of AA, NaOH solution and ice at a temperature of about 15-30°C while stirring is continued.
- the beaker that contained the MBAA solution is washed 2x with deionized water in an amount of about 10% of the MBAA solution volume per wash.
- the wash water of both washing steps is added to the stirred mixture.
- Deionized water (the remaining amount required to achieve the total amount of (ice + water) of 12639.3 g minus the amount to wash the "V50" containing vessel 2x with deionized water in an amount of about 10% of the "V50" solution volume per wash) is added to the stirred mixture.
- the resin kettle is closed, and a pressure relief is provided e.g. by puncturing two syringe needles through the septa.
- the solution is then purged vigorously with argon via an 80 cm injection needle at about 0.4 bar while stirring at about 400 - 1200 RPM.
- the argon stream is placed close to the stirrer for efficient and fast removal of dissolved oxygen.
- the temperature is monitored; typically it rises from about 23-24°C to about 60°C within 60 minutes. Once the temperature reaches about 60°C, the lamps are switched off. Once the temperature starts to drop, the resin kettle is transferred into a circulation oven (Binder FED 720) and kept at about 60°C for about 18 hours.
- Binder FED 720 Binder FED 720
- the oven is switched off and the resin kettle is allowed to cool down to about 20-40°C while remaining in the oven.
- the gel is removed and broken manually or cut with scissors into smaller pieces.
- the gel is grinded with a grinder (X70G from Scharfen with Unger R70 plate system: 3 pre-cutter kidney plates with straight holes at 17mm diameter), put onto perforated stainless steel dishes (hole diameter 4.8 mm, 50 cm x 50 cm, 0.55 mm caliper, 50% open area, from RS; max. height of gel before drying: about 3 cm) and transferred into a circulation oven (Binder FED 720) at about 120°C for about 20 hours.
- a grinder X70G from Scharfen with Unger R70 plate system: 3 pre-cutter kidney plates with straight holes at 17mm diameter
- perforated stainless steel dishes hole diameter 4.8 mm, 50 cm x 50 cm, 0.55 mm caliper, 50% open area, from RS; max. height of gel before drying: about 3 cm
- the residual moisture of the dried gel is about 5.8% by weight.
- the wetted base polymer was kept in the trays for another 30mins. Following, the wetted base polymer of the four trays is combined and grinded four times through a meat grinder (Grinder X70G from Sharpen with Unger R70 plate system equipped with a) plate with 20 8 mm diameter holes, b) 3 shafted cutter knife and c) plate with 176 3 mm diameter holes). The feeding rate for grinding was about 300-600 g per minute. During grinding, the wetted polymer heats up and water evaporates.
- a meat grinder Grinder X70G from Sharpen with Unger R70 plate system equipped with a) plate with 20 8 mm diameter holes, b) 3 shafted cutter knife and c) plate with 176 3 mm diameter holes.
- the feeding rate for grinding was about 300-600 g per minute. During grinding, the wetted polymer heats up and water evaporates.
- the wetted and grinded polymer is spread on several 50x50cm perforated stainless steel dish (hole diameter 4.8 mm, 50 cm x 50 cm, 0.55 mm caliper, 50% open area, from RS) at max gel height of about 3 cm and dried in a circulation oven (Binder FED 720) at 120°C for 20 hours.
- the residual moisture of the dried gel is about 2.7% by weight.
- the dried gel is then ground using a centrifuge mill (Retsch ZM 200 with vibratory feeder DR 100 (setting 50-60), interchangeable sieve with 1.5 mm opening settings, rotary speed 8000 rpm).
- the milled polymer is again dried in an oven (e.g. Binder APT. Line FD 240) for 12 hours at 120°C and then sieved via a sieving machine (AS 400 control from Retsch with sieves DIN/ISO 3310-1 at about 200-280 rpm for about for 5-10 min) to the following particle size cuts with the following yields:
- the surface-crosslinked and agglomerated superabsorbent polymers SAP 5 - 9 were made as follows:
- 600.0 g base polymer (see table) is added to a Lodige Ploughshare Laboratory Mixer, Type L5 and mixed at rotary speed setting 6.
- the amount of Al lactate solution (see table) (15w% Al lactate in deionized water (Aluminium L-lactate 95% from Sigma-Aldrich)) is added via the peristaltic pump (e.g. Ismatec MCP Standard with Tygon MHLL tube, inner diameter e.g. 1.52 mm) via a spray nozzle (spray nozzle of Mini Spray Dryer B-290 from Biichi with nozzle disc diameter 1.5 mm) at a spray pressure of about 2 bar, at a flow rate of about 4.3 g solution/min, at a starting temperature of about 23°C.
- the peristaltic pump e.g. Ismatec MCP Standard with Tygon MHLL tube, inner diameter e.g. 1.52 mm
- a spray nozzle spray nozzle of Mini Spray Dryer B-290 from Biichi with
- the amount of Denacol EX 810 solution (see table) is added via the peristaltic pump and the spray nozzle at a spray pressure of about 2 bar at a flow rate of about 4.0 g solution/min.
- the liquid hose is disconnected, cleaned and flushed with deionized water and connected again to the spraying unit.
- the amount of deionized water (see table) is added via the peristaltic pump and the spray nozzle at a spray pressure of about 2 bar at a flow rate of about 13.6 g solution/min.
- the bottom outlet of the Lodige mixer is opened and the material that comes out of the bottom outlet pushed out only by the Ploughshare mixer rotation is collected and evenly distributed onto Teflon coated baking trays (e.g. Kaiser 7509960, 41 x 31 x 10 cm) into layers of about 2-3cm thickness.
- Teflon coated baking trays e.g. Kaiser 7509960, 41 x 31 x 10 cm
- the baking trays are covered with aluminum foil and maintained at room temperature for about 20-24 hours. After that the covered baking trays are heated at 120°C for 2h 20 min in the oven (e.g. Binder APT. Line FD 240). After the heating time, the baking trays are taken out of the oven, the aluminium foil is cut, so about 3-6 slits of about 3 cm length and about 3 mm width are created.
- the samples are put under a fume hood and let cool down to room temperature. Afterwards, the samples are manually broken and sieved (with sieves DIN/ISO 3310-1 e.g. from Retsch) to get the final materials as seen in the table below.
- the superabsorbent polymers SAP 11 - 12 were made by mixing two superabsorbent polymers as follows:
- the amount of the first superabsorbent polymer (agglomerated) and the amount of the second superabsorbent polymer (see table below) were placed in a wide-necked 100 ml PE bottle (e.g. from VWR, Art. No. 215-5631).
- the bottle is closed with the cap and then gently moved by hand in a rotation movement (e.g. clockwise) upside down and up again, avoiding vibrational movements (e.g. shaking).
- the rotational movement is continued for about 1 min, performing about 40-60 rotations.
- SAP 1-3 and SAP 7-12 are examples having a T20 below 240s.
- SAP 4 is a Comparative example.
- SAP 7-12 contain agglomerated superabsorbent polymer particles.
- SAP1 and comparative SAP4 were used in the core examples described in more details below.
- Invention example 1 is an absorbent core which illustrates the present invention.
- the core of example 1 comprised two channels similar to those shown in Fig. 1 and the SAP described above having a T20 of 194s.
- Comparative example 1 comprised the SAP having a T20 of 341s and no channels.
- Comparative example 2 comprised the same channels as example 1 and the same SAP as comparative core example 1 (SAP4).
- the core of example 1 was made by combining two absorbent layers.
- the first absorbent layer comprised as first substrate a 420 mm long and 165 mm wide hydrophilic nonwoven web (SMS, i.e. spunbond-meltblown-spunbond layers) made of polypropylene and having a basis weight of 10 g/m 2 .
- This substrate was positioned on a vacuum table 800 as shown schematically on Fig. 8.
- the table comprises a rigid support comprising a series of transversal support ridges 840 and two channel shaped ridges 820.
- the vacuum holes 830 are formed between these ridges.
- the vacuum areas were each 8mm wide (MD) and 110mm long (CD), except in the area where the channel shaped ridges were present, the width of the transversal ridges was 2mm (MD) for a total of 36 parallel stripes.
- the nonwoven substrate was positioned on the vacuum table.
- a net of Microfiber glue (NW1151ZP ex. FULLER ADHESrVES) was evenly applied on the substrate at an average basis weight of about 10 g/m 2 and a width of 110 mm, covering the whole length of the substrate.
- the vacuum pattern was divided in 6 zones starting from the 1 st stripe. Area 1 was 40mm long in MD. Zones 2 to 5 are 60 mm wide and zone 6 was 80mm wide. With vacuum helping immobilizing the SAP in the desired regions, the SAP was homogeneously distributed within each zone according to the below table. The pre-determined amount of SAP was distributed for each zone with the aid of shaped silicon paper matching exactly the vacuum table design.
- the SAP was applied in stripes matching the pattern of the vacuum table.
- the overall amount of superabsorbent polymer material in the first absorbent layer was 7.05 g.
- a net of Microfiber glue (first adhesive) was evenly applied, at an average basis weight of about 10 g/m 2 and a width of 110 mm, covering the whole length of the first absorbent layer.
- the two curved SAP free materials area were further fitted with a double side adhesive (1524 - 3M transfer adhesive with a width 6.4mm) along the channel area on the nonwoven. This was to ensure sufficient bond strength of the channels during the further testing of these hand-made absorbent cores.
- the second absorbent layer comprised as second substrate a 420 mm long and 130 mm wide SMS nonwoven web made of polypropylene and having a basis weight of 10 g/m 2 .
- the second absorbent layer was formed using a similar vacuum table and absorbent material and glue as the first absorbent layer, with the transversal ridges shifted by a few mm so that the land and junction areas of the opposed absorbent layer match each other.
- the first and the second absorbent layers were combined by placing them together such that the sides of both carrier substrates, which were not covered by superabsorbent polymer material were facing outwardly. Thereby the laminate absorbent core is formed with the superabsorbent polymer material enclosed between the first and second carrier substrate.
- the first and second absorbent layers were combined such that each SAP stripe was placed to match the gap between the stripes of the absorbent layer directly opposed. Hence, each SAP stripe of the upper layer is placed centrally in the respective gap between two superabsorbent polymer material stripes of the lower laminate layer and vice versa in order to provide a substantially continuous combined absorbent layer.
- the external edges of the first substrate werefolded over the second substrate so that the combined core structure had a width of 120mm.
- the flaps on each side were fixed with a stripe of double side adhesive (1524 - 3M transfer adhesive with a width 6.4mm) of 420 mm, but in an industrial process a standard hotmelt glue can be used to seal the longitudinal sides of the core.
- Comparative example 1 was made as example 1 with the differences that the vacuum table did not comprise channel forming ridges and that the SAP4 having a T20 of 341s was used. Thus this absorbent core did not form channels when absorbing a liquid. The same amount of SAP and their repartition in the zones was used.
- Comparative example 2 was made as example 1 using the same vacuum table to form the same areas free of SAP as Invention Example 1.
- the SAP used for this absorbent core was the same SAP4 as in Comparative Example 1 having a T20 of 341s.
- Comparative examples 1 and 2 show that for the first 90s of the test, the presence or absence of the channels did not significantly influence the speed of absorption. At 180s however, the speed of acquisition of the core with the channels was significantly worse (minus 0.05 g/s) than the same core without the channels (at 95% confidence with t-Student test).
- the core of the invention example 1 showed an acquisition speed at 180s of 1.79 g/s, which was significantly higher than the speed of the conventional AGM at 180s or even at 90s.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Hematology (AREA)
- Dispersion Chemistry (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2016003666A MX2016003666A (en) | 2013-09-19 | 2014-08-19 | Absorbent cores having material free areas. |
CA2924800A CA2924800A1 (en) | 2013-09-19 | 2014-08-19 | Absorbent cores having material free areas |
CN201480051587.7A CN105579008B (en) | 2013-09-19 | 2014-08-19 | Absorbent cores with the region without material |
RU2016113767A RU2016113767A (en) | 2013-09-19 | 2014-08-19 | Absorbent cores containing areas free of absorbent material |
JP2016541985A JP6490694B2 (en) | 2013-09-19 | 2014-08-19 | Absorbent core with areas free of material |
BR112016006099A BR112016006099A2 (en) | 2013-09-19 | 2014-08-19 | absorbent cores that have material free areas |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13185212 | 2013-09-19 | ||
EP13185212.1 | 2013-09-19 | ||
EP14168157.7 | 2014-05-13 | ||
EP14168157.7A EP2851048B1 (en) | 2013-09-19 | 2014-05-13 | Absorbent cores having material free areas |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015041784A1 true WO2015041784A1 (en) | 2015-03-26 |
Family
ID=49223627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/051584 WO2015041784A1 (en) | 2013-09-19 | 2014-08-19 | Absorbent cores having material free areas |
Country Status (11)
Country | Link |
---|---|
US (4) | US10130527B2 (en) |
EP (2) | EP2851048B1 (en) |
JP (1) | JP6490694B2 (en) |
CN (1) | CN105579008B (en) |
BR (1) | BR112016006099A2 (en) |
CA (1) | CA2924800A1 (en) |
CL (1) | CL2016000640A1 (en) |
FR (1) | FR3010632B1 (en) |
MX (1) | MX2016003666A (en) |
RU (1) | RU2016113767A (en) |
WO (1) | WO2015041784A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3238678A1 (en) | 2016-04-29 | 2017-11-01 | The Procter and Gamble Company | Absorbent core with transversal folding lines |
EP3238679A1 (en) | 2016-04-29 | 2017-11-01 | The Procter and Gamble Company | Absorbent article with a distribution layer comprising channels |
EP3238676A1 (en) | 2016-04-29 | 2017-11-01 | The Procter and Gamble Company | Absorbent core with profiled distribution of absorbent material |
EP3238677A1 (en) | 2016-04-29 | 2017-11-01 | The Procter and Gamble Company | Absorbent core with profiled distribution of absorbent material |
EP3315106A1 (en) | 2016-10-31 | 2018-05-02 | The Procter and Gamble Company | Absorbent article with an intermediate layer comprising channels and back pocket |
WO2018155591A1 (en) | 2017-02-22 | 2018-08-30 | 株式会社日本触媒 | Water absorbent sheet, elongated water absorbent sheet, and absorbent article |
EP3406235A1 (en) | 2017-05-24 | 2018-11-28 | The Procter and Gamble Company | Absorbent article with raisable topsheet |
EP3406233A1 (en) | 2017-05-24 | 2018-11-28 | The Procter and Gamble Company | Absorbent article with raisable topsheet |
EP3406234A1 (en) | 2017-05-24 | 2018-11-28 | The Procter and Gamble Company | Absorbent article with raisable topsheet |
WO2018217591A1 (en) | 2017-05-24 | 2018-11-29 | The Procter & Gamble Company | Absorbent article with raisable topsheet |
US10335768B2 (en) | 2016-03-23 | 2019-07-02 | Lg Chem, Ltd. | Super absorbent polymer |
WO2019198821A1 (en) | 2018-04-13 | 2019-10-17 | 株式会社日本触媒 | Water absorbent sheet, water absorbent sheet production method, and absorbent article |
WO2020032280A1 (en) | 2018-08-09 | 2020-02-13 | 株式会社日本触媒 | Water absorbent sheet and water absorbent article comprising same |
US11000829B2 (en) | 2016-12-23 | 2021-05-11 | Lg Chem, Ltd. | Super absorbent polymer and method for producing same |
EP3881814A1 (en) | 2020-03-17 | 2021-09-22 | The Procter & Gamble Company | Absorbent core comprising a high loft central layer and superabsorbent particles |
WO2022120693A1 (en) | 2020-12-10 | 2022-06-16 | The Procter & Gamble Company | Absorbent core comprising a high loft central layer and two different superabsorbent polymers |
EP4088697A1 (en) | 2021-05-10 | 2022-11-16 | The Procter & Gamble Company | Process for forming composite absorbent material and composite absorbent material made by the process |
WO2023168616A1 (en) | 2022-03-09 | 2023-09-14 | The Procter & Gamble Company | Absorbent article with high permeability sap |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10149788B2 (en) | 2011-06-10 | 2018-12-11 | The Procter & Gamble Company | Disposable diapers |
PL3111903T5 (en) | 2011-06-10 | 2022-02-14 | The Procter And Gamble Company | Absorbent structure for absorbent articles |
PL2740449T3 (en) | 2012-12-10 | 2019-07-31 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
USD783812S1 (en) * | 2013-12-12 | 2017-04-11 | The Procter & Gamble Company | Absorbent article with channels |
PL3254656T3 (en) | 2013-06-14 | 2022-01-10 | The Procter & Gamble Company | Absorbent article and absorbent core forming channels when wet |
EP2851048B1 (en) | 2013-09-19 | 2018-09-05 | The Procter and Gamble Company | Absorbent cores having material free areas |
US9789009B2 (en) | 2013-12-19 | 2017-10-17 | The Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
PL2886092T3 (en) | 2013-12-19 | 2017-03-31 | The Procter And Gamble Company | Absorbent cores having channel-forming areas and c-wrap seals |
KR102686169B1 (en) | 2015-11-03 | 2024-07-19 | 킴벌리-클라크 월드와이드, 인크. | Paper tissue with high bulk and low lint |
EP3167859B1 (en) * | 2015-11-16 | 2020-05-06 | The Procter and Gamble Company | Absorbent cores having material free areas |
EP3167858A1 (en) * | 2015-11-16 | 2017-05-17 | The Procter and Gamble Company | Absorbent cores having material free areas |
US11135097B2 (en) | 2016-03-31 | 2021-10-05 | Kimberly-Clark Wordwide, Inc. | Absorbent cores and methods for forming absorbent cores |
AU2016401213B2 (en) | 2016-03-31 | 2021-09-23 | Kimberly-Clark Worldwide, Inc. | Absorbent cores and methods for forming absorbent cores |
KR102507704B1 (en) | 2016-03-31 | 2023-03-09 | 킴벌리-클라크 월드와이드, 인크. | Absorbent cores and methods for forming absorbent cores |
CN108712896B (en) | 2016-03-31 | 2019-12-06 | 金伯利-克拉克环球有限公司 | Absorbent core and method of forming an absorbent core |
US20180098891A1 (en) * | 2016-10-11 | 2018-04-12 | The Procter & Gamble Company | Discreet disposable absorbent article |
CN110022909A (en) * | 2016-12-19 | 2019-07-16 | 宝洁公司 | Product zeolite-containing |
US10767029B2 (en) | 2017-04-19 | 2020-09-08 | The Procter & Gamble Company | Agglomerated superabsorbent polymer particles comprising clay platelets with edge modification and/or surface modification |
EP3391963B1 (en) * | 2017-04-19 | 2021-04-14 | The Procter & Gamble Company | Process to prepare agglomerated superabsorbent polymer particles comprising clay platelets with edge modification and/or surface modification |
EP3473222B1 (en) | 2017-10-23 | 2021-08-04 | The Procter & Gamble Company | Absorbent articles with different types of channels |
EP3473224B1 (en) * | 2017-10-23 | 2020-12-30 | The Procter & Gamble Company | Absorbent articles with different types of channels |
EP3473223B1 (en) * | 2017-10-23 | 2021-08-11 | The Procter & Gamble Company | Absorbent articles with different types of channels |
KR102165232B1 (en) | 2017-11-29 | 2020-10-13 | 킴벌리-클라크 월드와이드, 인크. | Fiber sheet with improved properties |
EP3791841A1 (en) | 2017-12-21 | 2021-03-17 | Gdm S.P.A. | Method for manufacturing an absorbent article |
CN111465377A (en) | 2017-12-21 | 2020-07-28 | 易希提卫生与保健公司 | Absorbent article comprising a strong channel seal bond |
PL3727261T3 (en) | 2017-12-21 | 2024-06-10 | Essity Hygiene And Health Aktiebolag | Absorbent article with a sealing arrangement comprising welding spots and method for manufacturing the absorbent article |
BR112020007555A2 (en) | 2017-12-21 | 2020-09-24 | Essity Hygiene And Health Aktiebolag | absorbent article and method for making an absorbent article |
JP7150023B2 (en) | 2017-12-21 | 2022-10-07 | エシティ・ハイジーン・アンド・ヘルス・アクチエボラグ | absorbent article |
MY196695A (en) | 2017-12-21 | 2023-04-30 | Essity Hygiene & Health Ab | Absorbent Article Comprising a Wetness Indicator and Method for Manufacturing The Absorbent Article |
BR112020007571B1 (en) | 2017-12-21 | 2024-02-27 | Essity Hygiene And Health Aktiebolag | ABSORBENT ARTICLE AND ABSORBENT CORE |
MY196723A (en) | 2017-12-21 | 2023-05-02 | Essity Hygiene & Health Ab | Absorbent article with reduced sagging |
CN112384181B (en) * | 2018-03-22 | 2022-09-09 | 瑞德科技控股有限公司 | Disposable absorbent article and absorbent core composite |
EP3784187B1 (en) * | 2018-04-24 | 2023-10-25 | The Procter & Gamble Company | Absorbent pant having an absorbent core with channels |
EP3784188B1 (en) | 2018-04-24 | 2023-11-08 | The Procter & Gamble Company | Absorbent pant having an absorbent core with continuous channel |
US11313061B2 (en) | 2018-07-25 | 2022-04-26 | Kimberly-Clark Worldwide, Inc. | Process for making three-dimensional foam-laid nonwovens |
WO2020025400A1 (en) * | 2018-08-01 | 2020-02-06 | Basf Se | Feminine hygiene absorbent article |
IT201900012675A1 (en) * | 2019-07-25 | 2021-01-25 | Fater Spa | ABSORBENT STRUCTURE AND ABSORBENT HYGIENIC ARTICLE |
EP4070771A4 (en) * | 2019-12-04 | 2023-11-15 | Toray Industries, Inc. | Absorbent body and sanitary material product |
EP3838242A1 (en) | 2019-12-20 | 2021-06-23 | Ontex BV | Absorbent core for disposable absorbent articles with increased absorption rate and improved integrity |
EP4042994B1 (en) | 2020-03-19 | 2024-03-13 | Ontex BV | Absorbent articles and methods of making |
NL2027163B1 (en) | 2020-12-18 | 2022-07-15 | Drylock Tech Nv | Absorbent article with improved bottom distribution assembly |
EP4294345A1 (en) * | 2021-02-22 | 2023-12-27 | The Procter & Gamble Company | Absorbent article with a hydrophilic hot melt adhesive |
JP2024516600A (en) * | 2021-04-20 | 2024-04-16 | イエン,ウイリアム,ウインチン | Porous sheet products and methods for making and using same |
WO2023066852A1 (en) | 2021-10-21 | 2023-04-27 | Evonik Superabsorber Gmbh | Preparing fast superabsorbents with enhanced elastic behavior |
Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3848594A (en) | 1973-06-27 | 1974-11-19 | Procter & Gamble | Tape fastening system for disposable diaper |
US3860003A (en) | 1973-11-21 | 1975-01-14 | Procter & Gamble | Contractable side portions for disposable diaper |
US3911173A (en) | 1973-02-05 | 1975-10-07 | Usm Corp | Adhesive process |
US3929135A (en) | 1974-12-20 | 1975-12-30 | Procter & Gamble | Absorptive structure having tapered capillaries |
US4324246A (en) | 1980-05-12 | 1982-04-13 | The Procter & Gamble Company | Disposable absorbent article having a stain resistant topsheet |
US4342314A (en) | 1979-03-05 | 1982-08-03 | The Procter & Gamble Company | Resilient plastic web exhibiting fiber-like properties |
US4463045A (en) | 1981-03-02 | 1984-07-31 | The Procter & Gamble Company | Macroscopically expanded three-dimensional plastic web exhibiting non-glossy visible surface and cloth-like tactile impression |
US4515595A (en) | 1982-11-26 | 1985-05-07 | The Procter & Gamble Company | Disposable diapers with elastically contractible waistbands |
EP0149880A2 (en) | 1983-05-26 | 1985-07-31 | BASF Aktiengesellschaft | Non-woven webs of synthetic fibres consolidated by means of carboxylated styrene-butadiene latices, and disposable articles made therefrom |
US4573986A (en) | 1984-09-17 | 1986-03-04 | The Procter & Gamble Company | Disposable waste-containment garment |
US4609518A (en) | 1985-05-31 | 1986-09-02 | The Procter & Gamble Company | Multi-phase process for debossing and perforating a polymeric web to coincide with the image of one or more three-dimensional forming structures |
US4629643A (en) | 1985-05-31 | 1986-12-16 | The Procter & Gamble Company | Microapertured polymeric web exhibiting soft and silky tactile impression |
US4662875A (en) | 1985-11-27 | 1987-05-05 | The Procter & Gamble Company | Absorbent article |
US4681793A (en) | 1985-05-31 | 1987-07-21 | The Procter & Gamble Company | Non-occluding, liquid-impervious, composite backsheet for absorptive devices |
US4695278A (en) | 1985-10-11 | 1987-09-22 | The Procter & Gamble Company | Absorbent article having dual cuffs |
US4699622A (en) | 1986-03-21 | 1987-10-13 | The Procter & Gamble Company | Disposable diaper having an improved side closure |
US4710189A (en) | 1983-03-18 | 1987-12-01 | The Procter & Gamble Company | Shaped disposable diapers with shaped elastically contractible waistbands |
US4731066A (en) | 1984-03-30 | 1988-03-15 | Personal Products Company | Elastic disposable diaper |
US4785996A (en) | 1987-04-23 | 1988-11-22 | Nordson Corporation | Adhesive spray gun and nozzle attachment |
US4795454A (en) | 1986-10-10 | 1989-01-03 | The Procter & Gamble Company | Absorbent article having leakage-resistant dual cuffs |
US4808178A (en) | 1981-07-17 | 1989-02-28 | The Proctor & Gamble Company | Disposable absorbent article having elasticized flaps provided with leakage resistant portions |
US4842666A (en) | 1987-03-07 | 1989-06-27 | H. B. Fuller Company | Process for the permanent joining of stretchable threadlike or small ribbonlike elastic elements to a flat substrate, as well as use thereof for producing frilled sections of film or foil strip |
US4846815A (en) | 1987-01-26 | 1989-07-11 | The Procter & Gamble Company | Disposable diaper having an improved fastening device |
US4894060A (en) | 1988-01-11 | 1990-01-16 | Minnesota Mining And Manufacturing Company | Disposable diaper with improved hook fastener portion |
US4909803A (en) | 1983-06-30 | 1990-03-20 | The Procter And Gamble Company | Disposable absorbent article having elasticized flaps provided with leakage resistant portions |
US4946527A (en) | 1989-09-19 | 1990-08-07 | The Procter & Gamble Company | Pressure-sensitive adhesive fastener and method of making same |
US4963140A (en) | 1987-12-17 | 1990-10-16 | The Procter & Gamble Company | Mechanical fastening systems with disposal means for disposable absorbent articles |
US5006394A (en) | 1988-06-23 | 1991-04-09 | The Procter & Gamble Company | Multilayer polymeric film |
US5102597A (en) | 1990-04-02 | 1992-04-07 | The Procter & Gamble Company | Porous, absorbent, polymeric macrostructures and methods of making the same |
US5137537A (en) | 1989-11-07 | 1992-08-11 | The Procter & Gamble Cellulose Company | Absorbent structure containing individualized, polycarboxylic acid crosslinked wood pulp cellulose fibers |
US5149334A (en) | 1990-04-02 | 1992-09-22 | The Procter & Gamble Company | Absorbent articles containing interparticle crosslinked aggregates |
US5151092A (en) | 1991-06-13 | 1992-09-29 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
US5180622A (en) | 1990-04-02 | 1993-01-19 | The Procter & Gamble Company | Absorbent members containing interparticle crosslinked aggregates |
US5221274A (en) | 1991-06-13 | 1993-06-22 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
US5242436A (en) | 1991-06-13 | 1993-09-07 | The Procter & Gamble Company | Absorbent article with fastening system providing dynamic elasticized waistband fit |
US5300565A (en) | 1990-04-02 | 1994-04-05 | The Procter & Gamble Company | Particulate, absorbent, polymeric compositions containing interparticle crosslinked aggregates |
WO1995010996A1 (en) | 1993-10-21 | 1995-04-27 | The Procter & Gamble Company | Catamenial absorbent structures |
WO1995011652A1 (en) | 1993-10-29 | 1995-05-04 | Kimberly-Clark Corporation | Absorbent article which includes superabsorbent material located in discrete pockets having water-sensitive and water-insensitive containment structures |
WO1995016746A1 (en) | 1993-12-13 | 1995-06-22 | E.I. Du Pont De Nemours And Company | Breathable film |
WO1995024173A2 (en) | 1994-03-10 | 1995-09-14 | The Procter & Gamble Company | Absorbent articles containing antibacterial agents in the topsheet for odor control |
WO1995034329A1 (en) | 1994-06-15 | 1995-12-21 | The Procter & Gamble Company | Absorbent structure containing individualized cellulosic fibers crosslinked with polyacrylic acid polymers |
US5492962A (en) | 1990-04-02 | 1996-02-20 | The Procter & Gamble Company | Method for producing compositions containing interparticle crosslinked aggregates |
US5507736A (en) | 1991-06-13 | 1996-04-16 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature comprising an expansive tummy panel |
US5549791A (en) | 1994-06-15 | 1996-08-27 | The Procter & Gamble Company | Individualized cellulosic fibers crosslinked with polyacrylic acid polymers |
US5554145A (en) | 1994-02-28 | 1996-09-10 | The Procter & Gamble Company | Absorbent article with multiple zone structural elastic-like film web extensible waist feature |
US5569234A (en) | 1995-04-03 | 1996-10-29 | The Procter & Gamble Company | Disposable pull-on pant |
US5571096A (en) | 1995-09-19 | 1996-11-05 | The Procter & Gamble Company | Absorbent article having breathable side panels |
US5580411A (en) | 1995-02-10 | 1996-12-03 | The Procter & Gamble Company | Zero scrap method for manufacturing side panels for absorbent articles |
US5599335A (en) | 1994-03-29 | 1997-02-04 | The Procter & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
US5607760A (en) | 1995-08-03 | 1997-03-04 | The Procter & Gamble Company | Disposable absorbent article having a lotioned topsheet containing an emollient and a polyol polyester immobilizing agent |
US5609587A (en) | 1995-08-03 | 1997-03-11 | The Procter & Gamble Company | Diaper having a lotioned topsheet comprising a liquid polyol polyester emollient and an immobilizing agent |
US5635191A (en) | 1994-11-28 | 1997-06-03 | The Procter & Gamble Company | Diaper having a lotioned topsheet containing a polysiloxane emollient |
US5643588A (en) | 1994-11-28 | 1997-07-01 | The Procter & Gamble Company | Diaper having a lotioned topsheet |
US5700254A (en) | 1994-03-31 | 1997-12-23 | Kimberly-Clark Worldwide, Inc. | Liquid distribution layer for absorbent articles |
WO1998043684A1 (en) * | 1997-03-27 | 1998-10-08 | Kimberly-Clark Gmbh | Absorbent item |
US5865823A (en) | 1996-11-06 | 1999-02-02 | The Procter & Gamble Company | Absorbent article having a breathable, fluid impervious backsheet |
US5938648A (en) | 1997-12-03 | 1999-08-17 | The Procter & Gamble Co. | Absorbent articles exhibiting improved internal environmental conditions |
US6004306A (en) | 1993-11-19 | 1999-12-21 | The Procter & Gamble Company | Absorbent article with multi-directional extensible side panels |
WO2000059430A1 (en) | 1999-04-03 | 2000-10-12 | Kimberly-Clark Worldwide, Inc. | Intake/distribution material for personal care products |
US6432098B1 (en) | 1997-09-04 | 2002-08-13 | The Procter & Gamble Company | Absorbent article fastening device |
WO2002064877A2 (en) | 2001-01-30 | 2002-08-22 | The Procter & Gamble Company | Coating compositions for modifying surfaces |
WO2002067809A2 (en) | 2000-12-07 | 2002-09-06 | Weyerhaeuser Company | Distribution layer having improved liquid transfer to a storage layer |
US20030105190A1 (en) | 1999-08-05 | 2003-06-05 | Diehl David F. | Latex binder for nonwoven fibers and article made therewith |
US20030148684A1 (en) | 2002-01-30 | 2003-08-07 | The Procter & Gamble Company | Method for hydrophilizing materials using charged particles |
US6632504B1 (en) | 2000-03-17 | 2003-10-14 | Bba Nonwovens Simpsonville, Inc. | Multicomponent apertured nonwoven |
US6716441B1 (en) | 1998-03-12 | 2004-04-06 | The Procter & Gamble Company | Compositions for efficient release of active ingredients |
EP1447067A1 (en) * | 2003-02-12 | 2004-08-18 | The Procter & Gamble Company | Thin and dry diaper |
EP1447066A1 (en) | 2003-02-12 | 2004-08-18 | The Procter & Gamble Company | Comfortable diaper |
US20050008839A1 (en) | 2002-01-30 | 2005-01-13 | Cramer Ronald Dean | Method for hydrophilizing materials using hydrophilic polymeric materials with discrete charges |
US6946585B2 (en) | 2000-10-23 | 2005-09-20 | Mcneil-Ppc, Inc. | Absorbent article |
US20060024433A1 (en) | 2004-07-28 | 2006-02-02 | The Procter & Gamble Company | Indirect printing of AGM |
WO2006083584A2 (en) | 2005-02-04 | 2006-08-10 | The Procter & Gamble Company | Absorbent structure with improved water-absorbing material |
WO2007046052A1 (en) | 2005-10-21 | 2007-04-26 | The Procter & Gamble Company | Absorbent article having improved absorption and retention capacity for proteinaceous or serous body fluids |
WO2007047598A1 (en) | 2005-10-21 | 2007-04-26 | The Procter & Gamble Company | Absorbent article having increased absorption and retention capacity for proteinaceous or serous body fluids |
US20070118087A1 (en) | 2005-11-21 | 2007-05-24 | The Procter & Gamble Company | Fluid acquisition layer |
US20080312617A1 (en) | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Substantially Continuously Distributed Absorbent Particulate Polymer Material And Method |
US20080312622A1 (en) | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Improved Acquisition System |
WO2009011717A1 (en) * | 2007-07-16 | 2009-01-22 | Evonik Stockhausen, Inc. | Superabsorbent polymer compositions having color stability |
WO2009155264A2 (en) | 2008-06-20 | 2009-12-23 | The Procter & Gamble Company | Absorbent structures with immobilized absorbent material |
WO2009155265A2 (en) | 2008-06-20 | 2009-12-23 | The Procter & Gamble Company | Absorbent structures including coated absorbent material |
US20100051166A1 (en) | 2008-08-26 | 2010-03-04 | Harald Hermann Hundorf | Method And Apparatus For Making Disposable Absorbent Article With Absorbent Particulate Polymer Material And Article Made Therewith |
US7786341B2 (en) | 2003-08-07 | 2010-08-31 | The Procter & Gamble Company | Diaper providing temperature insensitive liquid handling |
US20110250413A1 (en) | 2010-02-25 | 2011-10-13 | Lu Jon Aaron | Bond patterns for fibrous webs |
US20110268932A1 (en) | 2010-04-30 | 2011-11-03 | Kemal Vatansever Catalan | Nonwoven Having Durable Hydrophilic Coating |
US20110319848A1 (en) | 2010-06-28 | 2011-12-29 | Mckiernan Robin Lynn | Substrate Coated With A Hydrophilic Elastomer |
WO2011163582A1 (en) | 2010-06-25 | 2011-12-29 | The Procter & Gamble Company | Disposable diaper with reduced bulk |
WO2012052172A1 (en) | 2010-10-20 | 2012-04-26 | Vynka Bvba | Environmentally friendly absorbent structure |
DE102010043113A1 (en) * | 2010-10-29 | 2012-05-03 | Evonik Stockhausen Gmbh | Process for the preparation of improved absorbent polymers by cryogenic milling |
US20120316528A1 (en) * | 2011-06-10 | 2012-12-13 | Carsten Heinrich Kreuzer | Disposable Diapers |
WO2012170779A1 (en) | 2011-06-10 | 2012-12-13 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US20120312491A1 (en) | 2011-06-10 | 2012-12-13 | The Procter & Gamble Company | Method and Apparatus for Making Absorbent Structures with Absorbent Material |
WO2012170778A1 (en) | 2011-06-10 | 2012-12-13 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
WO2012170808A1 (en) | 2011-06-10 | 2012-12-13 | The Procter & Gamble Company | Absorbent core for disposable absorbent articles |
WO2012174026A1 (en) | 2011-06-17 | 2012-12-20 | The Procter & Gamble Company | Absorbent articles with improved absorption properties |
Family Cites Families (1334)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1733997A (en) | 1928-04-30 | 1929-10-29 | Paul Molnar | Catamenial bandage |
US1734499A (en) | 1928-12-04 | 1929-11-05 | Marinsky Davis | Sanitary napkin |
US1989283A (en) | 1934-05-03 | 1935-01-29 | Walter P Limacher | Diaper |
US2058509A (en) | 1936-01-30 | 1936-10-27 | Rose David | Infant's undergarment |
US2271676A (en) | 1939-11-24 | 1942-02-03 | Bjornbak Elna | Diaper |
US2450789A (en) | 1945-07-05 | 1948-10-05 | Jacob G Frieman | Sanitary garment |
US2508811A (en) | 1947-07-15 | 1950-05-23 | Edna E Best | Diaper |
US2583553A (en) | 1949-04-07 | 1952-01-29 | Faureed Company | Sanitary protector for bedridden patients |
US2568910A (en) | 1949-10-07 | 1951-09-25 | Jessie C Condylis | Fastening means for garments, and more particularly diapers |
US2570963A (en) | 1949-11-21 | 1951-10-09 | John E Mesmer | Infant's diaper |
US2570796A (en) | 1950-12-06 | 1951-10-09 | Gross Rose | Diaper |
US2705957A (en) | 1953-07-08 | 1955-04-12 | Mauro Virginia | Sanitary panty |
US2807263A (en) | 1953-08-18 | 1957-09-24 | Newton Jewel Mae | Ladies' sanitary garment |
US2830589A (en) | 1953-12-07 | 1958-04-15 | Joseph B Doner | Diapers |
US2890700A (en) | 1954-02-18 | 1959-06-16 | Ethel C Lonberg-Holm | Disposable diaper |
US2890701A (en) | 1954-10-06 | 1959-06-16 | Weinman Mary | Support for a sanitary napkin |
US2788003A (en) | 1955-06-06 | 1957-04-09 | Chicopee Mfg Corp | Disposable absorbent pad |
US2788786A (en) | 1955-09-23 | 1957-04-16 | Fred F Dexter | Disposable diaper |
US2798489A (en) | 1955-10-20 | 1957-07-09 | Behrman Mayes | Protective garment |
US2898912A (en) | 1956-02-09 | 1959-08-11 | Adams Jane | Infant's diaper |
US2977957A (en) | 1957-08-28 | 1961-04-04 | Napette Sanitary Napkin Holder | Sanitary napkin holders and holder units |
US2931361A (en) | 1957-12-18 | 1960-04-05 | Sostrin Alice | Self-fastening infant's diaper |
US3071138A (en) | 1958-11-07 | 1963-01-01 | Garcia Gustavo | Sanitary napkin |
NL281020A (en) | 1961-07-17 | 1900-01-01 | ||
US3207158A (en) | 1961-08-17 | 1965-09-21 | Yoshitake Kazuko | Sanitary napkin supporting panty |
US3227160A (en) | 1963-05-23 | 1966-01-04 | Mense Inc | Surgical belt |
US3386442A (en) | 1965-03-29 | 1968-06-04 | Sabee Reinhardt | Disposable diaper |
US3411504A (en) | 1965-06-24 | 1968-11-19 | Jacob A. Glassman | Sanitary napkins |
US3670731A (en) | 1966-05-20 | 1972-06-20 | Johnson & Johnson | Absorbent product containing a hydrocolloidal composition |
US3572342A (en) | 1968-01-19 | 1971-03-23 | Johnson & Johnson | Diaper |
US3578155A (en) | 1969-02-24 | 1971-05-11 | Paper Converting Machine Co | Disposable product |
US3592194A (en) | 1969-03-05 | 1971-07-13 | Procter & Gamble | Diaper having improved wicking and dryness |
US3575174A (en) | 1969-07-11 | 1971-04-20 | Personal Products Co | Sanitary napkin |
BE754405A (en) | 1969-08-05 | 1971-02-04 | Thomae Gmbh Dr K | NEW BETA-ARYL-2-AMINOALCOXYSTYRENES |
US3572432A (en) | 1969-09-25 | 1971-03-23 | Halliburton Co | Apparatus for flotation completion for highly deviated wells |
US3847702A (en) | 1969-10-20 | 1974-11-12 | J Jones | Process for manufacture of integral diaper waist band fastener |
US3610244A (en) | 1969-10-20 | 1971-10-05 | Jones Sr John L | Integral diaper waistband fasteners |
GB1333081A (en) | 1970-01-17 | 1973-10-10 | Southalls Birmingham Ltd | Absorbent products |
US3606887A (en) | 1970-02-05 | 1971-09-21 | Kimberly Clark Co | Overlap seal and support strip for a sanitary napkin wrapper |
US3618608A (en) | 1970-02-16 | 1971-11-09 | Mary E Brink | Diaper with fastener |
US3840418A (en) | 1970-03-09 | 1974-10-08 | R Sabee | Method of manufacture of a sanitary article and ply having selectively thickened areas |
US3653381A (en) | 1970-03-23 | 1972-04-04 | Crystal E Warnken | Belted diapers |
FR2082803A5 (en) | 1970-03-26 | 1971-12-10 | Consortium General Textile | |
US3667468A (en) | 1970-04-28 | 1972-06-06 | Paper Converting Machine Co | Sanitary napkin and method and means of producing |
US3642001A (en) | 1970-07-27 | 1972-02-15 | Reinhardt N Sabee | Disposable diaper or the like |
FR2110515A5 (en) | 1970-10-20 | 1972-06-02 | Beghin | |
US3710797A (en) | 1971-02-26 | 1973-01-16 | Procter & Gamble | Disposable diaper |
US3776233A (en) | 1971-05-17 | 1973-12-04 | Colgate Palmolive Co | Edge contourable diaper |
US3731688A (en) | 1971-06-30 | 1973-05-08 | Techmation Corp | Disposable diaper |
US3882870A (en) | 1971-07-09 | 1975-05-13 | Lucille Hathaway | Diaper |
US3774241A (en) | 1972-02-16 | 1973-11-27 | J Zerkle | Loincloth and spreader therefor |
JPS5129536B2 (en) | 1972-05-22 | 1976-08-26 | ||
US3828784A (en) | 1972-08-21 | 1974-08-13 | Kendall & Co | Conformable baby diaper |
US3924626A (en) | 1972-12-08 | 1975-12-09 | Int Paper Co | Rectangular disposable diaper having a contoured absorbent pad |
US3863637A (en) | 1972-12-08 | 1975-02-04 | Int Paper Co | Folded disposable diaper |
SE370313B (en) | 1973-02-09 | 1974-10-14 | O Heurlen | |
US3848595A (en) | 1973-04-26 | 1974-11-19 | Kimberly Clark Co | Prefolded diaper with improved leg fit |
US3848597A (en) | 1973-07-05 | 1974-11-19 | Kimberly Clark Co | Prefolded disposable diaper |
US3884234A (en) | 1973-10-18 | 1975-05-20 | Colgate Palmolive Co | Disposable diaper |
US3929134A (en) | 1974-08-29 | 1975-12-30 | Colgate Palmolive Co | Absorbent article and method |
US3930501A (en) | 1974-05-23 | 1976-01-06 | Colgate-Palmolive Company | Disposable diaper with end flap means and method |
US3978861A (en) | 1974-05-23 | 1976-09-07 | Colgate-Palmolive Company | Disposable diaper with end flap means and method |
US3926189A (en) | 1974-08-05 | 1975-12-16 | Colgate Palmolive Co | Selectively positionable diaper assembly |
US3920017A (en) | 1974-09-27 | 1975-11-18 | Colgate Palmolive Co | Crotch-shaped diaper and method |
US3938523A (en) | 1974-10-17 | 1976-02-17 | Scott Paper Company | Prefolded and packaged disposable diaper |
US3987794A (en) | 1974-10-31 | 1976-10-26 | Colgate-Palmolive Company | Diaper with elastic crotch means |
US3995637A (en) | 1974-10-31 | 1976-12-07 | Colgate-Palmolive Company | Diaper with waist means |
US4014338A (en) | 1974-10-31 | 1977-03-29 | Colgate-Palmolive Company | Diaper with elastic means |
US4084592A (en) | 1975-01-08 | 1978-04-18 | Johnson & Johnson | Disposable prefolded diaper with permanently attached adhesive closure system |
US3968799A (en) | 1975-04-04 | 1976-07-13 | Kimberly-Clark Corporation | Prefolded disposable diaper |
GB1513055A (en) | 1975-07-02 | 1978-06-07 | Mccullins J | Disposable diapers |
US4100922A (en) | 1975-07-09 | 1978-07-18 | Colgate-Palmolive Company | Disposable diaper |
US3981306A (en) | 1975-08-11 | 1976-09-21 | Scott Paper Company | Multilayer one-piece disposable diapers |
GB1563697A (en) | 1975-08-22 | 1980-03-26 | Unilever Ltd | Liquid absorption devices |
US3999547A (en) | 1975-12-29 | 1976-12-28 | Colgate-Palmolive Company | Disposable diaper having front side edge sealing means |
US3995640A (en) | 1976-01-05 | 1976-12-07 | Colgate-Palmolive Company | Diaper with elastic means |
US4034760A (en) | 1976-03-18 | 1977-07-12 | Filitsa Amirsakis | Self contained disposable diaper |
US4055180A (en) | 1976-04-23 | 1977-10-25 | Colgate-Palmolive Company | Absorbent article with retained hydrocolloid material |
US4074508A (en) | 1976-12-21 | 1978-02-21 | Riegel Textile Corporation | Apparatus for compressing and banding a predetermined number of articles |
US4079739A (en) | 1976-12-27 | 1978-03-21 | Kimberly-Clark Corporation | Die-cut contoured catamenial napkin of multi-layered construction |
EP0000984B1 (en) | 1977-08-19 | 1983-05-11 | BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin | Programmable pacer with variable amplifier gain |
US4146119A (en) | 1977-08-25 | 1979-03-27 | Airco, Inc. | Impact-resistant carbon current collectors |
US4388075A (en) | 1977-12-20 | 1983-06-14 | Johnson & Johnson Baby Products Company | Disposable diaper with wide elastic gathering means for improved comfort |
US4287153A (en) | 1978-09-20 | 1981-09-01 | Towsend Marvin S | Disposable article with non-leachable saline water indicator |
US4259220A (en) | 1978-12-06 | 1981-03-31 | H. B. Fuller Company | Hot melt adhesive for elastic banding |
US4381783A (en) | 1978-10-24 | 1983-05-03 | Johnson & Johnson | Absorbent article |
JPS5925369Y2 (en) | 1978-11-15 | 1984-07-25 | 日本バイリ−ン株式会社 | Liquid-absorbing articles |
US4257418A (en) | 1979-01-22 | 1981-03-24 | Mo Och Domsjo Aktiebolag | Device for absorbing urine with incontinent persons |
US4296750A (en) | 1979-06-22 | 1981-10-27 | Kimberly-Clark Corporation | Refastenable pressure-sensitive tape closure system for disposable diapers and method for its manufacture |
JPS6025045B2 (en) | 1980-03-19 | 1985-06-15 | 製鉄化学工業株式会社 | Method for producing acrylic acid polymer with excellent salt water absorption ability |
US4315508A (en) | 1980-03-31 | 1982-02-16 | Kimberly-Clark Corporation | Self-centering multiple use garment suspension system |
US4410571A (en) | 1980-08-25 | 1983-10-18 | Johnson & Johnson | Absorbent products, process and compositions for immobilization of particulate absorbents |
US4341216A (en) | 1981-02-27 | 1982-07-27 | The Procter & Gamble Company | Breathable backsheet for disposable diapers |
US4360021A (en) | 1981-05-06 | 1982-11-23 | Colgate-Palmolive Company | Absorbent article |
NZ200464A (en) | 1981-05-18 | 1984-10-19 | Colgate Palmolive Co | Box-pleated diaper with cushioned elastic members |
US4461621A (en) | 1981-10-19 | 1984-07-24 | Colgate-Palmolive Company | Disposable diaper with polymer coating |
US4475912A (en) | 1981-10-26 | 1984-10-09 | Coates Fredrica V | Adjustable diapers with fastening means |
JPS6018690B2 (en) | 1981-12-30 | 1985-05-11 | 住友精化株式会社 | Method for improving water absorbency of water absorbent resin |
DE3205931C2 (en) | 1982-02-19 | 1985-08-29 | Vereinigte Papierwerke Schickedanz & Co, 8500 Nürnberg | Absorbent pads for hygienic pulp products |
JPS58180233A (en) | 1982-04-19 | 1983-10-21 | Nippon Shokubai Kagaku Kogyo Co Ltd | Absorbing agent |
SE453071B (en) | 1982-06-21 | 1988-01-11 | Tetra Pak Ab | DEVICE FOR PROCESSING A PACKAGING CONTAINER |
SE446055B (en) | 1982-07-01 | 1986-08-11 | Landstingens Inkopscentral | CONTINENTAL PROTECTION OR BLOW WITH SIGNIFICANT RECTANGULAR FORM |
JPS604500Y2 (en) | 1982-07-06 | 1985-02-08 | ユニ・チヤ−ム株式会社 | sanitary napkin |
US4527990A (en) | 1982-09-30 | 1985-07-09 | Kimberly-Clark Corporation | Elasticized garment and method for its manufacture |
US4469710A (en) | 1982-10-14 | 1984-09-04 | The Procter & Gamble Company | Pourable solid shortening |
US4636207A (en) | 1982-11-15 | 1987-01-13 | The Procter & Gamble Company | Disposable garment with breathable leg cuffs |
US5085654A (en) | 1982-11-15 | 1992-02-04 | The Procter & Gamble Company | Disposable garment with breathable leg cuffs |
US4900317A (en) | 1982-11-15 | 1990-02-13 | The Procter & Gamble Company | Disposable garment with breathable leg cuffs |
US4610678A (en) | 1983-06-24 | 1986-09-09 | Weisman Paul T | High-density absorbent structures |
FR2543430B1 (en) | 1983-03-29 | 1986-11-14 | Beghin Say Sa | DISPOSABLE LAYER, PARTICULARLY FOR INCONTINENT ADULT |
JPS59180339A (en) | 1983-03-30 | 1984-10-13 | Shimadzu Corp | Differential pressure transmitter |
JPS6027803A (en) | 1983-07-23 | 1985-02-12 | Anritsu Corp | Work measuring apparatus |
JPS60104502A (en) | 1983-11-07 | 1985-06-08 | 花王株式会社 | Disposable diaper |
ATE43471T1 (en) | 1983-11-17 | 1989-06-15 | Akzo Nv | ANTIMICROBIAL MIXTURES. |
US4960477A (en) | 1983-12-01 | 1990-10-02 | Mcneil-Ppc, Inc. | Disposable diaper with folded absorbent batt |
US4670011A (en) | 1983-12-01 | 1987-06-02 | Personal Products Company | Disposable diaper with folded absorbent batt |
US4681581A (en) | 1983-12-05 | 1987-07-21 | Coates Fredrica V | Adjustable size diaper and folding method therefor |
US4578072A (en) | 1983-12-08 | 1986-03-25 | Weyerhaeuser Company | Leak resistant diaper or incontinent garment |
GB8332828D0 (en) | 1983-12-08 | 1984-01-18 | Procter & Gamble | Diaper with fold points |
JPS60215810A (en) | 1984-04-11 | 1985-10-29 | Unitika Ltd | Polyvinylidene fluoride monofilament and its production |
US4731070A (en) | 1984-04-19 | 1988-03-15 | Personal Products Company | Adult incontinent absorbent article |
US4578702A (en) | 1984-05-31 | 1986-03-25 | American Television & Communications Corporation | CATV tap-off unit with detachable directional coupler |
JPS60259922A (en) | 1984-06-05 | 1985-12-23 | Sumitomo Electric Ind Ltd | Strain sensor |
JPS619213A (en) | 1984-06-21 | 1986-01-16 | 井関農機株式会社 | Slide type roller in combine |
FR2566631B1 (en) | 1984-06-28 | 1988-08-05 | Boussac Saint Freres Bsf | PULLOVER WITH ELASTIC BELT AND METHOD FOR MANUFACTURING SUCH PULLOVER |
US4551191A (en) | 1984-06-29 | 1985-11-05 | The Procter & Gamble Company | Method for uniformly distributing discrete particles on a moving porous web |
US5415644A (en) | 1984-07-02 | 1995-05-16 | Kimberly-Clark Corporation | Diapers with elasticized side pockets |
CA1341430C (en) | 1984-07-02 | 2003-06-03 | Kenneth Maynard Enloe | Diapers with elasticized side pockets |
US4624666A (en) | 1984-07-20 | 1986-11-25 | Personal Products Company | Channeled napkin with dry cover |
JPS6135701A (en) | 1984-07-26 | 1986-02-20 | ヤンマーディーゼル株式会社 | Biaxial type rotary plow apparatus |
US4689193A (en) | 1984-10-15 | 1987-08-25 | Exxon Nuclear Company Inc. | Mechanism for testing fuel tubes in nuclear fuel bundles |
US4596568A (en) | 1984-10-22 | 1986-06-24 | Diaperaps Limited | Diaper cover |
EP0186741B1 (en) | 1984-12-10 | 1988-09-21 | Maschinenfabrik Rieter Ag | Apparatus for cleaning measuring rolls |
US4585448A (en) | 1984-12-19 | 1986-04-29 | Kimberly-Clark Corporation | Disposable garment having high-absorbency area |
US4641381A (en) | 1985-01-10 | 1987-02-10 | Kimberly-Clark Corporation | Disposable underpants, such as infant's training pants and the like |
US4894277A (en) | 1985-01-16 | 1990-01-16 | Nordson Corporation | Application method and products that use a foamed hot melt adhesive |
JPS61248733A (en) | 1985-04-26 | 1986-11-06 | ノードソン株式会社 | Moisture absorbing cloth and manufacture thereof |
FR2575905B1 (en) | 1985-01-17 | 1987-03-20 | Boussac Saint Freres Bsf | HYGIENE PRODUCT COMPRISING AN ABSORBENT MATTRESS PROVIDED WITH A HUMIDITY INDICATOR AND MANUFACTURING METHOD |
SE453556B (en) | 1985-01-30 | 1988-02-15 | Moelnlycke Ab | Absorbent articles, such as flea, incontinence protection or menstrual bindings |
CA1259151A (en) | 1985-02-01 | 1989-09-12 | Kenneth B. Buell | Disposable waste containment garment |
FR2578163B1 (en) | 1985-03-01 | 1990-04-13 | Beghin Say Sa | ABSORBENT STRUCTURE FOR SINGLE USE ARTICLE. |
JPS61233562A (en) | 1985-04-08 | 1986-10-17 | Mitsubishi Electric Corp | Thermal head |
US4585450A (en) | 1985-04-29 | 1986-04-29 | Kimberly-Clark Corporation | Refastenable tape system for disposable diapers and similar garments |
JPS61259484A (en) | 1985-05-13 | 1986-11-17 | 株式会社明電舎 | High frequency hardening apparatus |
GB8512206D0 (en) | 1985-05-14 | 1985-06-19 | Kimberly Clark Ltd | Non-woven material |
FR2583377B1 (en) | 1985-06-14 | 1987-12-24 | Colgate Palmolive Co | DISCONTINUOUS DISPENSER OF POWDER |
USRE32649E (en) | 1985-06-18 | 1988-04-19 | The Procter & Gamble Company | Hydrogel-forming polymer compositions for use in absorbent structures |
FR2583621B1 (en) | 1985-06-19 | 1990-10-05 | Boussac Saint Freres Bsf | DISPOSABLE PANTY LAYER WITH ELASTIC BELT |
US4994053A (en) | 1985-06-26 | 1991-02-19 | Kimberly-Clark Corporation | Composite article having discrete particulate areas formed therein |
US4720321A (en) | 1985-06-26 | 1988-01-19 | Keyes Fibre Company | Method and apparatus for manufacturing packaging pads |
US5030314A (en) | 1985-06-26 | 1991-07-09 | Kimberly-Clark Corporation | Apparatus for forming discrete particulate areas in a composite article |
US4670012A (en) | 1985-07-15 | 1987-06-02 | Weyerhaeuser Company | Diaper or incontinent pad having pleated attachment strap |
JPS62129180A (en) | 1985-11-28 | 1987-06-11 | Nordson Kk | Method and apparatus for applying or scattering particulate material |
US4681579A (en) | 1985-10-11 | 1987-07-21 | The Procter & Gamble Co. | Absorbent article having reservoirs |
US4741941A (en) | 1985-11-04 | 1988-05-03 | Kimberly-Clark Corporation | Nonwoven web with projections |
CA1291327C (en) | 1985-11-04 | 1991-10-29 | Dawn Ilnicki Houghton | Absorbent article having liquid impervious shelves |
US4680030A (en) | 1985-11-13 | 1987-07-14 | Coates Fredrica V | Garment having improved, self closing, filamentary fasteners |
US4606964A (en) | 1985-11-22 | 1986-08-19 | Kimberly-Clark Corporation | Bulked web composite and method of making the same |
US4646510A (en) | 1986-01-31 | 1987-03-03 | Acumeter Laboratories, Inc. | Method of and apparatus for making powder-filled pouches and the like |
DE3608114A1 (en) | 1986-03-12 | 1987-09-17 | Puttfarcken Ulf | Wrapper with moisture indicator, e.g. diaper |
US4763191A (en) | 1986-03-17 | 1988-08-09 | American Telephone And Telegraph Company, At&T Bell Laboratories | Dial-up telephone network equipment for requesting an identified selection |
PH26871A (en) | 1986-03-31 | 1992-11-16 | Uni Charm Corp | Disposable diaper |
EP0262230A4 (en) | 1986-04-02 | 1990-12-12 | Showa Denko Kabushiki Kaisha | Water-absorbent composite and process for its preparation |
IL82511A (en) | 1986-05-28 | 1992-09-06 | Procter & Gamble | Apparatus for and methods of airlaying fibrous webs having discrete particles therein |
US4690680A (en) | 1986-06-27 | 1987-09-01 | The Procter & Gamble Company | Adhesive attachment means for absorbent articles |
GB2193625B (en) | 1986-07-04 | 1990-11-28 | Uni Charm Corp | Disposable diaper |
SE453720B (en) | 1986-07-17 | 1988-02-29 | Moelnlycke Ab | PUT IN CONNECTION WITH THE PREPARATION, VIKING AN ABSORBING disposable item, such as a diaper, for packaging condition |
US4834735A (en) | 1986-07-18 | 1989-05-30 | The Proctor & Gamble Company | High density absorbent members having lower density and lower basis weight acquisition zones |
US4834742A (en) | 1986-09-03 | 1989-05-30 | Kimberly-Clark Corporation | Fastening system for a disposable absorbent garment |
CA1305952C (en) | 1986-10-24 | 1992-08-04 | Migaku Suzuki | Method for making wearable articles |
BE905791A (en) | 1986-11-19 | 1987-03-16 | Lynes Holding Sa | POURING CAP. |
US4806598A (en) | 1986-12-22 | 1989-02-21 | Kimberly-Clark Corporation | Thermoplastic polymer blends and nonwoven webs prepared therefrom |
JPS63162242A (en) | 1986-12-26 | 1988-07-05 | Kowa Koki Seisakusho:Kk | Plate registering device in lithographic printing |
US4808176A (en) | 1986-12-31 | 1989-02-28 | Kimberly-Clark Corporation | Elasticized waist integration member for disposable absorbent garments |
US4940463A (en) | 1987-02-17 | 1990-07-10 | Sherman Leathers | Disposable combined panty with sanitary napkin |
US4838886A (en) | 1987-03-09 | 1989-06-13 | Kent Gail H | Pad holder |
JPS63220159A (en) | 1987-03-10 | 1988-09-13 | Canon Inc | Electrophotographic sensitive body |
JPH0433848Y2 (en) | 1987-03-19 | 1992-08-13 | ||
US5549593A (en) | 1987-03-24 | 1996-08-27 | Molnlycke Ab | Device for the support of an absorbent article |
FR2612770B1 (en) | 1987-03-26 | 1995-06-30 | Celatose Sa | EXCHANGE FOR INCONTINENTS |
US4904251A (en) | 1987-03-30 | 1990-02-27 | Uni-Charm Corporation | Disposable diaper |
US4747846A (en) | 1987-04-03 | 1988-05-31 | Kimberly-Clark Corporation | Stretchable disposable absorbent undergarment |
US4909802A (en) | 1987-04-16 | 1990-03-20 | The Procter & Gamble Company | Absorbent garment having a waist belt attachment system |
US4968313A (en) | 1987-04-27 | 1990-11-06 | Sabee Reinhardt N | Diaper with waist band elastic |
US4753648A (en) | 1987-05-08 | 1988-06-28 | Personal Products Company | Sanitary napkin adhesively attached via elastic member |
FR2617020B1 (en) | 1987-06-26 | 1993-09-24 | Boussac Saint Freres Bsf | IMPROVED ABSORBENT MATTRESS, PARTICULARLY FOR HYGIENE PRODUCTS, AND PROCESS FOR THE CONTINUOUS MANUFACTURE OF SUCH MATTRESSES |
US4892535A (en) | 1987-08-07 | 1990-01-09 | Landstingens Inkopscentral, Lic, Ekonomisk Forening | Absorbent pad and method and apparatus for making the same |
US4936839A (en) | 1987-08-27 | 1990-06-26 | Mcneil-Ppc, Inc. | Winged napkin having cross-channeling |
US4773905A (en) | 1987-08-27 | 1988-09-27 | Personal Products Company | Winged napkin having cross-channeling |
US4826880B1 (en) | 1987-09-21 | 2000-04-25 | Johnson & Johnson Inc | Immobilizing particulate absorbents by conversion to hydrates |
US4861652A (en) | 1987-10-13 | 1989-08-29 | Kimberly-Clark Corporation | Diaper article with elasticized waist panel |
US4846825A (en) | 1987-10-30 | 1989-07-11 | Kimberly-Clark Corporation | Diapers with elasticized side pockets |
US4940464A (en) | 1987-12-16 | 1990-07-10 | Kimberly-Clark Corporation | Disposable incontinence garment or training pant |
US4869724A (en) | 1987-12-17 | 1989-09-26 | The Procter & Gamble Company | Mechanical fastening systems with adhesive tape disposal means for disposable absorbent articles |
US5611879A (en) | 1987-12-18 | 1997-03-18 | Kimberly-Clark Corporation | Absorbent article having an absorbent with a variable density in the Z direction and a method of forming said article |
US4950264A (en) | 1988-03-31 | 1990-08-21 | The Procter & Gamble Company | Thin, flexible sanitary napkin |
US5147343B1 (en) | 1988-04-21 | 1998-03-17 | Kimberly Clark Co | Absorbent products containing hydrogels with ability to swell against pressure |
US4886697A (en) | 1988-04-29 | 1989-12-12 | Weyerhaeuser Company | Thermoplastic material containing absorbent pad or other article |
US4848815A (en) | 1988-07-29 | 1989-07-18 | Molloy Toni J | Coffee filter extractor |
US4892536A (en) | 1988-09-02 | 1990-01-09 | The Procter & Gamble Company | Absorbent article having elastic strands |
US4990147A (en) | 1988-09-02 | 1991-02-05 | The Procter & Gamble Company | Absorbent article with elastic liner for waste material isolation |
US5797894A (en) | 1988-09-12 | 1998-08-25 | Johnson & Johnson, Inc. | Unitized sanitary napkin |
JPH02107250A (en) | 1988-10-17 | 1990-04-19 | Takao Sakata | Liquid absorbing body, and method and apparatus for preparing the same |
US5151091A (en) | 1988-10-24 | 1992-09-29 | Mcneil-Ppc, Inc. | Absorbent structure having multiple canals |
GR1001048B (en) | 1988-10-24 | 1993-04-28 | Mcneil Ppc Inc | Absorbing construction having many canals |
US5072687A (en) | 1988-11-16 | 1991-12-17 | James G. Mitchell | Absorbent product for personal use |
US5637106A (en) | 1988-11-16 | 1997-06-10 | Carol M. Stocking | Absorbent product for personal use |
EP0374542B1 (en) | 1988-12-20 | 1994-11-09 | The Procter & Gamble Company | Improved brief |
US6406468B1 (en) | 1988-12-20 | 2002-06-18 | Kimberly-Clark Worldwide, Inc. | Mechanical fastening tapes and method for their construction |
US5087255A (en) | 1988-12-21 | 1992-02-11 | The Procter & Gamble Company | Absorbent article having inflected barrier cuffs |
US5312386A (en) | 1989-02-15 | 1994-05-17 | Johnson & Johnson | Disposable sanitary pad |
US5032120A (en) | 1989-03-09 | 1991-07-16 | The Procter & Gamble Company | Disposable absorbent article having improved leg cuffs |
US5037416A (en) | 1989-03-09 | 1991-08-06 | The Procter & Gamble Company | Disposable absorbent article having elastically extensible topsheet |
US5021051A (en) | 1989-04-06 | 1991-06-04 | The Procter & Gamble Company | Disposable absorbent article having improved barrier leg cuffs |
JPH0622344Y2 (en) | 1989-05-29 | 1994-06-15 | ユニ・チャーム株式会社 | Disposable diapers |
WO1990015830A1 (en) | 1989-06-12 | 1990-12-27 | Weyerhaeuser Company | Hydrocolloid polymer |
US5246432A (en) | 1989-07-17 | 1993-09-21 | Uni-Charm Corporation | Disposable absorbent articles |
US5019063A (en) | 1989-10-30 | 1991-05-28 | The Procter & Gamble Company | Absorbent articles containing mechanical pulp and polymeric gelling material |
US5190563A (en) | 1989-11-07 | 1993-03-02 | The Proctor & Gamble Co. | Process for preparing individualized, polycarboxylic acid crosslinked fibers |
US5034008A (en) | 1989-11-07 | 1991-07-23 | Chicopee | Elasticized absorbent article |
US5071414A (en) | 1989-11-27 | 1991-12-10 | Elliott Donald P | Packaging pocket for disposable diaper |
CN1024746C (en) | 1989-12-20 | 1994-06-01 | 李清祈 | Boiler with heat energy regulating component |
JP2664501B2 (en) | 1989-12-22 | 1997-10-15 | ユニ・チャーム株式会社 | Disposable wearing articles |
US5188624A (en) | 1990-01-16 | 1993-02-23 | Weyerhaeuser Company | Absorbent article with superabsorbent particle containing insert pad and liquid dispersion pad |
US5584829A (en) | 1991-05-21 | 1996-12-17 | The Procter & Gamble Company | Absorbent articles having panty covering components that naturally wrap the sides of panties |
JPH0636735B2 (en) | 1990-01-26 | 1994-05-18 | 日本鉱業株式会社 | A novel rhabdovirus isolated from horseradish |
US5246431A (en) | 1990-01-31 | 1993-09-21 | Pope & Talbot Company | Diaper with source reduction overlay and having improved fecal containment characteristics |
US5075142A (en) | 1990-02-20 | 1991-12-24 | E. I. Du Pont De Nemours And Company | Thermoformable composite sheet |
US5149335A (en) | 1990-02-23 | 1992-09-22 | Kimberly-Clark Corporation | Absorbent structure |
US5019072A (en) | 1990-02-27 | 1991-05-28 | Minnesota Mining And Manufacturing Company | Disposable diaper that is fastened by contact between overlapping adhesive patches |
USD329697S (en) | 1990-04-02 | 1992-09-22 | Kimberly-Clark Corporation | Belted diaper |
CA2023043A1 (en) | 1990-04-02 | 1991-10-03 | Anne M. Fahrenkrug | Diaper having disposable chassis assembly and reusable elasticized belt removably retained by said chassis assembly |
IT1239718B (en) | 1990-04-23 | 1993-11-15 | Cge Compagnia Generale Elettromeccanica | CONNECTION CLAMP |
US5204997A (en) | 1990-05-24 | 1993-04-27 | Uni-Charm Corporation | Disposable garments of pants type |
JPH0435341A (en) | 1990-05-28 | 1992-02-06 | Nanba Masako | Voice reply device for busy state incoming call service catchphone service) |
JPH05105884A (en) | 1990-06-07 | 1993-04-27 | Tonen Corp | Gasoline additive composition |
US5824004A (en) | 1990-06-18 | 1998-10-20 | The Procter & Gamble Company | Stretchable absorbent articles |
JP2945722B2 (en) | 1990-06-28 | 1999-09-06 | 株式会社リコー | Card insertion type input device |
DE4020780C1 (en) | 1990-06-29 | 1991-08-29 | Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De | |
JPH0461086A (en) | 1990-06-29 | 1992-02-27 | Canon Inc | Card cleaner |
BR9102840A (en) | 1990-07-06 | 1992-04-28 | Johnson & Johnson | ABSORBENT PRODUCT AND METHOD OF DOING THE SAME |
US5248309A (en) | 1990-07-19 | 1993-09-28 | Kimberly-Clark Corporation | Thin sanitary napkin having a central absorbent zone and a method of forming the napkin |
JP2666533B2 (en) | 1990-08-06 | 1997-10-22 | 日本電気株式会社 | Switch module |
JP2986592B2 (en) | 1990-09-07 | 1999-12-06 | 帝人株式会社 | Method for separating 24-position epimer of 24-hydroxycholesterol derivative |
JP2810519B2 (en) | 1990-09-13 | 1998-10-15 | ユニ・チャーム株式会社 | Disposable diapers |
JPH0776451B2 (en) | 1990-09-17 | 1995-08-16 | 株式会社ニチコン | INVERT FORMING METHOD AND INVERT FORM |
JPH04148594A (en) | 1990-10-12 | 1992-05-21 | Nec Corp | Device and method for forming multipin through hole formation |
JP2936428B2 (en) | 1990-10-12 | 1999-08-23 | 森産業株式会社 | Method and apparatus for artificially cultivating mushroom logs |
JPH04162609A (en) | 1990-10-25 | 1992-06-08 | Naoetsu Denshi Kogyo Kk | Manufacture of substrate for discrete element use |
JP2786327B2 (en) | 1990-10-25 | 1998-08-13 | 三菱電機株式会社 | Heterojunction field effect transistor |
US6231556B1 (en) | 1990-10-29 | 2001-05-15 | The Procter & Gamble Company | Generally thin, flexible sanitary napkin with stiffened center |
JPH04167406A (en) | 1990-10-31 | 1992-06-15 | Sony Corp | Photomagnetic recording medium |
JPH04166923A (en) | 1990-10-31 | 1992-06-12 | Brother Ind Ltd | Projecting device |
SG49659A1 (en) | 1990-11-01 | 1998-06-15 | Procter & Gamble | Fibrous superabsorbent core having intergrally attached hydrophobic facing layer |
JP2868887B2 (en) | 1990-11-06 | 1999-03-10 | 花王株式会社 | Medicated cosmetics |
US5462541A (en) | 1990-11-13 | 1995-10-31 | Kimberly-Clark Corporation | Pocket-like diaper or absorbent article |
JPH04190675A (en) | 1990-11-21 | 1992-07-09 | Hitachi Ltd | Protecting device for power semiconductor |
JPH04190693A (en) | 1990-11-26 | 1992-07-09 | Secoh Giken Inc | Circuit for controlling energizing of inductance load |
JP3019873B2 (en) | 1990-11-30 | 2000-03-13 | 松下精工株式会社 | Fan for pipe |
JP2892843B2 (en) | 1990-12-18 | 1999-05-17 | ユニ・チャーム株式会社 | Disposable wearing articles |
DE69133620D1 (en) | 1990-12-21 | 2009-09-10 | Nippon Catalytic Chem Ind | Water-absorbing material and process for its preparation and water-absorbent articles and process for its preparation |
JP3216142B2 (en) | 1990-12-31 | 2001-10-09 | カシオ計算機株式会社 | Score interpreter |
US5460622A (en) | 1991-01-03 | 1995-10-24 | The Procter & Gamble Company | Absorbent article having blended multi-layer absorbent structure with improved integrity |
US5486167A (en) | 1991-01-03 | 1996-01-23 | The Procter & Gamble Company | Absorbent article having blended multi-layer absorbent structure with improved integrity |
JP2525290B2 (en) | 1991-01-28 | 1996-08-14 | 幸雄 小松 | Transfer-type powder and particle dispersal device |
JPH0731591B2 (en) | 1991-01-31 | 1995-04-10 | 松下電器産業株式会社 | Leading 1 detection circuit and floating point addition / subtraction device |
KR100230139B1 (en) | 1991-02-15 | 1999-11-15 | 오노 알버어스 | Carbonylation catalyst system |
US5167897A (en) | 1991-02-28 | 1992-12-01 | The Procter & Gamble Company | Method for incrementally stretching a zero strain stretch laminate web to impart elasticity thereto |
US5628741A (en) | 1991-02-28 | 1997-05-13 | The Procter & Gamble Company | Absorbent article with elastic feature having a prestrained web portion and method for forming same |
US5156793A (en) | 1991-02-28 | 1992-10-20 | The Procter & Gamble Company | Method for incrementally stretching zero strain stretch laminate web in a non-uniform manner to impart a varying degree of elasticity thereto |
US5143679A (en) | 1991-02-28 | 1992-09-01 | The Procter & Gamble Company | Method for sequentially stretching zero strain stretch laminate web to impart elasticity thereto without rupturing the web |
US5175046A (en) | 1991-03-04 | 1992-12-29 | Chicopee | Superabsorbent laminate structure |
JPH04322228A (en) | 1991-04-22 | 1992-11-12 | Fuji Xerox Co Ltd | Optical fiber amplifier |
SE468305B (en) | 1991-04-24 | 1992-12-14 | Moelnlycke Ab | PROCEDURE AND DEVICE FOR APPLYING PARTICLES TO A CURRENT MATERIAL |
US5190606A (en) | 1991-06-14 | 1993-03-02 | Paper Converting Machine Company | Method for producing raised leg cuff for diapers including two folding boards |
JP3394267B2 (en) | 1991-07-09 | 2003-04-07 | 株式会社アマダ | Work transfer device in cutting machine |
JPH0527364A (en) | 1991-07-19 | 1993-02-05 | Oji Paper Co Ltd | Base for photographic paper free from generation of paper powder or the like |
JP3042051B2 (en) | 1991-08-02 | 2000-05-15 | オムロン株式会社 | Electronic sphygmomanometer |
JPH0542351A (en) | 1991-08-09 | 1993-02-23 | Nkk Corp | Short side support roll for continuous caster |
JPH0546488A (en) | 1991-08-09 | 1993-02-26 | Toshiba Corp | Memory card device |
US5260345A (en) | 1991-08-12 | 1993-11-09 | The Procter & Gamble Company | Absorbent foam materials for aqueous body fluids and absorbent articles containing such materials |
US5387207A (en) | 1991-08-12 | 1995-02-07 | The Procter & Gamble Company | Thin-unit-wet absorbent foam materials for aqueous body fluids and process for making same |
US5147345A (en) | 1991-08-12 | 1992-09-15 | The Procter & Gamble Company | High efficiency absorbent articles for incontinence management |
JP3043850B2 (en) | 1991-08-19 | 2000-05-22 | 株式会社ネオス | Fluorinated phthalein |
US5690627A (en) | 1991-08-22 | 1997-11-25 | The Procter & Gamble Company | Absorbent article with fit enhancement system |
DK0530438T3 (en) | 1991-09-03 | 1997-08-18 | Hoechst Celanese Corp | Superabsorbent polymer with improved absorption properties |
ZA92308B (en) | 1991-09-11 | 1992-10-28 | Kimberly Clark Co | Thin absorbent article having rapid uptake of liquid |
JPH0742188B2 (en) | 1991-09-12 | 1995-05-10 | 旭化成工業株式会社 | Combustion control propellant composition |
JP3020675B2 (en) | 1991-09-20 | 2000-03-15 | 株式会社日立製作所 | Spent fuel storage rack and manufacturing method thereof |
JPH0584476A (en) | 1991-09-27 | 1993-04-06 | Terumo Corp | Water purifier |
JP2942036B2 (en) | 1991-09-27 | 1999-08-30 | 東北リコー株式会社 | Barcode printer |
JPH0598322A (en) | 1991-10-02 | 1993-04-20 | Nkk Corp | Method for controlling grain size of charging material into blast furnace |
JPH05113146A (en) | 1991-10-23 | 1993-05-07 | Toyota Motor Corp | Internal combustion engine |
JPH05129536A (en) | 1991-11-01 | 1993-05-25 | Mitsubishi Electric Corp | Semiconductor device and manufacture thereof |
US5246433A (en) | 1991-11-21 | 1993-09-21 | The Procter & Gamble Company | Elasticized disposable training pant and method of making the same |
DE4138408A1 (en) | 1991-11-22 | 1993-05-27 | Cassella Ag | HYDROPHILES, HIGHLY SOURCE HYDROGELS |
JP2823402B2 (en) | 1991-12-04 | 1998-11-11 | ユニ・チャーム株式会社 | Body fluid absorbent articles |
US5213817A (en) | 1991-12-12 | 1993-05-25 | Mcneil-Ppc, Inc. | Apparatus for intermittently applying particulate powder material to a fibrous substrate |
US5681300A (en) | 1991-12-17 | 1997-10-28 | The Procter & Gamble Company | Absorbent article having blended absorbent core |
US5451442A (en) | 1991-12-17 | 1995-09-19 | Paragon Trade Brands, Inc. | Absorbent panel structure for a disposable garment |
JP3045422B2 (en) | 1991-12-18 | 2000-05-29 | 株式会社日本触媒 | Method for producing water absorbent resin |
SE9103851L (en) | 1991-12-30 | 1993-07-01 | Moelnlycke Ab | ABSORBING ALSTER |
CA2072689A1 (en) | 1991-12-31 | 1993-07-01 | Kimberly-Clark Corporation | Disposable absorbent article with flushable insert |
US5235515A (en) | 1992-02-07 | 1993-08-10 | Kimberly-Clark Corporation | Method and apparatus for controlling the cutting and placement of components on a moving substrate |
EP0559476B1 (en) | 1992-03-05 | 1997-07-16 | Nippon Shokubai Co., Ltd. | Method for the production of absorbent resin |
US5649917A (en) | 1992-03-31 | 1997-07-22 | The Procter & Gamble Company | Sanitary napkin having barrier means |
JP3188902B2 (en) | 1992-04-09 | 2001-07-16 | ワッカー・エヌエスシーイー株式会社 | Silicon wafer etching method and etching solution using the same |
GB9208449D0 (en) | 1992-04-16 | 1992-06-03 | Dow Deutschland Inc | Crosslinked hydrophilic resins and method of preparation |
AU678554B2 (en) | 1992-04-28 | 1997-06-05 | Procter & Gamble Company, The | Generally thin, flexible sanitary napkin with stiffened center |
JP3350094B2 (en) | 1992-05-22 | 2002-11-25 | ザ、プロクター、エンド、ギャンブル、カンパニー | Disposable training pants with improved elastic side panels |
US5429630A (en) | 1992-05-29 | 1995-07-04 | Kimberly-Clark Corporation | Absorbent article and a method of removing said article from an undergarment |
CA2079140C (en) | 1992-05-29 | 2002-05-14 | Joseph Dipalma | An absorbent article having a non-absorbent, resilient layer |
JP3563417B2 (en) | 1992-06-01 | 2004-09-08 | 株式会社日本吸収体技術研究所 | Diaper with pocket structure and method of manufacturing the same |
US5269775A (en) | 1992-06-12 | 1993-12-14 | The Procter & Gamble Company | Trisection topsheets for disposable absorbent articles and disposable absorbent articles having such trisection topsheets |
DE69328957T3 (en) | 1992-08-13 | 2004-07-29 | Japan Absorbent Technology Institute | Stretchable absorbent article |
US5366782A (en) | 1992-08-25 | 1994-11-22 | The Procter & Gamble Company | Polymeric web having deformed sections which provide a substantially increased elasticity to the web |
US5336552A (en) | 1992-08-26 | 1994-08-09 | Kimberly-Clark Corporation | Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer |
SG75789A1 (en) | 1992-09-28 | 2000-10-24 | Procter & Gamble | Absorbent article with dynamic elastic feature comprising elasticized hip panels |
AU679689B2 (en) | 1992-10-14 | 1997-07-10 | Mcneil-Ppc, Inc. | Garment shield |
SE508450C2 (en) | 1992-11-11 | 1998-10-05 | Sca Hygiene Prod Ab | Absorbent article and method of making it |
JP3579905B2 (en) | 1992-12-11 | 2004-10-20 | 株式会社日本吸収体技術研究所 | Diaper |
US6010490A (en) | 1992-12-18 | 2000-01-04 | The Procter & Gamble Company | Absorbent article having an upstanding transverse partition |
JPH06191505A (en) | 1992-12-25 | 1994-07-12 | Koei Chem Co Ltd | Manufacture of packaged object |
NZ250889A (en) | 1993-02-22 | 1996-05-28 | Mcneil Ppc Inc | Absorbent pad: double layer with embossed garment facing layer |
CA2114815C (en) | 1993-02-24 | 2005-06-14 | Mark Kevin Melius | Absorbent composite |
JP3190761B2 (en) | 1993-03-16 | 2001-07-23 | ユニ・チャーム株式会社 | Body fluid treatment article and method of manufacturing the same |
US5348547A (en) | 1993-04-05 | 1994-09-20 | The Procter & Gamble Company | Absorbent members having improved fluid distribution via low density and basis weight acquisition zones |
JP3177341B2 (en) | 1993-05-19 | 2001-06-18 | ユニ・チャーム株式会社 | Manufacturing method of pants-type disposable diapers |
US5358500A (en) | 1993-06-03 | 1994-10-25 | The Procter & Gamble Company | Absorbent articles providing sustained dynamic fit |
US5540671A (en) | 1993-06-10 | 1996-07-30 | The Procter & Gamble Company | Absorbent article having a pocket cuff with an apex |
DE69435237D1 (en) | 1993-06-18 | 2009-10-22 | Nippon Catalytic Chem Ind | Process for the preparation of an absorbent resin |
US5397316A (en) | 1993-06-25 | 1995-03-14 | The Procter & Gamble Company | Slitted absorbent members for aqueous body fluids formed of expandable absorbent materials |
SG64914A1 (en) | 1993-06-30 | 1999-05-25 | Procter & Gamble | Absorbent core having improved fluid handling properties |
NZ268535A (en) | 1993-06-30 | 1998-05-27 | Procter & Gamble | Absorbent article comprising layers of superabsorbent material |
FR2707159B1 (en) | 1993-07-09 | 1995-09-08 | Peaudouce | Disposable absorbent hygiene article. |
IT1272480B (en) | 1993-07-21 | 1997-06-23 | Korma S R L Ora Korma S P A | PROCEDURE AND EQUIPMENT FOR MANUFACTURING INTERMEDIATE ABSORBING PRODUCTS, PRODUCTS SO OBTAINED, AND FINISHED ABSORBING ITEMS USING THESE PRODUCTS. |
US5387208A (en) | 1993-07-26 | 1995-02-07 | The Procter & Gamble Co. | Absorbent core having improved dry/wet integrity |
CA2167907C (en) | 1993-07-26 | 2000-04-18 | Gregory Ashton | Absorbent article having improved dry/wet integrity |
US5451219A (en) | 1993-07-28 | 1995-09-19 | Paragon Trade Brands, Inc. | Stretchable absorbent article |
US5389095A (en) | 1993-07-28 | 1995-02-14 | Paragon Trade Brands, Inc. | Suspended absorbent diaper article |
US5518801A (en) | 1993-08-03 | 1996-05-21 | The Procter & Gamble Company | Web materials exhibiting elastic-like behavior |
US5968029A (en) | 1993-08-03 | 1999-10-19 | The Procter & Gamble Company | Web materials exhibiting elastic-like behavior |
US5891544A (en) | 1993-08-03 | 1999-04-06 | The Procter & Gamble Company | Web materials exhibiting elastic-like behavior |
ITSS930002U1 (en) | 1993-09-16 | 1995-03-16 | Antonio Giovanni Flumene | INTRAVENESE CATHETER WITH AUTOMATIC DISAPPEARANCE OF THE GUIDE NEEDLE IN A PROTECTIVE HOOD. |
AU685833B2 (en) | 1993-10-15 | 1998-01-29 | Uni-Charm Corporation | Disposable absorbent pad |
US5713881A (en) | 1993-10-22 | 1998-02-03 | Rezai; Ebrahim | Non-continuous absorbent composites comprising a porous macrostructure of absorbent gelling particles and a substrate |
US5411497A (en) | 1993-10-29 | 1995-05-02 | Kimberly-Clark Corporation | Absorbent article which includes superabsorbent material located in discrete pockets having an improved containment structure |
US5425725A (en) | 1993-10-29 | 1995-06-20 | Kimberly-Clark Corporation | Absorbent article which includes superabsorbent material and hydrophilic fibers located in discrete pockets |
CA2116953C (en) | 1993-10-29 | 2003-08-19 | Kimberly-Clark Worldwide, Inc. | Absorbent article which includes superabsorbent material located in discrete elongate pockets placed in selected patterns |
JP3576192B2 (en) | 1993-11-02 | 2004-10-13 | 広栄化学工業株式会社 | Method of manufacturing a package |
US5401792A (en) | 1993-11-10 | 1995-03-28 | Minnesota Mining And Manufacturing Company | Sprayable thermoplastic compositions |
BR9408081A (en) | 1993-11-17 | 1997-08-12 | Procter & Gamble | Absorbent structure female absorbent disposable diaper and air-dried absorbent structure |
JPH07142627A (en) | 1993-11-18 | 1995-06-02 | Fujitsu Ltd | Semiconductor device and manufacture thereof |
ID23486A (en) | 1993-11-19 | 1995-12-28 | Procter & Gamble | ABSORPTION OBJECTS WITH LOAD STRUCTURE NETWORKS LIKE ELASTIC |
JP4014626B2 (en) | 1993-11-30 | 2007-11-28 | ザ プロクター アンド ギャンブル カンパニー | Absorbent articles with asymmetric shapes for improved protection |
CA2122660A1 (en) | 1993-12-14 | 1995-06-15 | John Philip Vukos | Absorbent article having a body adhesive |
US5397317A (en) | 1993-12-16 | 1995-03-14 | Procter And Gamble Company | Disposable absorbent article core integrity support |
US5476458A (en) | 1993-12-22 | 1995-12-19 | Kimberly-Clark Corporation | Liquid-retaining absorbent garment and method of manufacture |
SE508400C2 (en) | 1993-12-29 | 1998-10-05 | Sca Hygiene Prod Ab | Absorption body in an absorbent article |
SE508399C2 (en) | 1993-12-29 | 1998-10-05 | Sca Hygiene Prod Ab | Absorption body in an absorbent article |
IT1261155B (en) | 1993-12-31 | 1996-05-09 | P & G Spa | STRATIFIED ABSORBENT STRUCTURE, ABSORBENT ITEM INCLUDING SUCH STRUCTURE AND METHOD FOR ITS REALIZATION. |
US5542943A (en) | 1994-01-07 | 1996-08-06 | The Procter & Gamble Company | Absorbent article having inflected barrier cuffs and method for making the same |
SE508628C2 (en) | 1994-02-18 | 1998-10-19 | Sca Hygiene Prod Ab | Absorbent pants diaper |
CA2180825A1 (en) | 1994-01-19 | 1995-07-27 | Kathleen Quinlan Ames | Convertible belted diaper |
GB9402706D0 (en) | 1994-02-11 | 1994-04-06 | Minnesota Mining & Mfg | Absorbent materials and preparation thereof |
IL112570A (en) | 1994-02-18 | 1999-09-22 | Mcneil Ppc Inc | Absorbent articles |
SE508244C2 (en) | 1994-02-24 | 1998-09-21 | Moelnlycke Ab | Absorption body and apparatus for making such an absorption body |
US5624424A (en) | 1994-02-25 | 1997-04-29 | New Oji Paper Co., Ltd. | Disposable diaper |
EP0748196B1 (en) | 1994-03-01 | 2000-06-14 | The Procter & Gamble Company | Trisection sanitary napkin |
US5486166A (en) | 1994-03-04 | 1996-01-23 | Kimberly-Clark Corporation | Fibrous nonwoven web surge layer for personal care absorbent articles and the like |
EP0672774B1 (en) | 1994-03-04 | 1999-07-14 | Kimberly-Clark Worldwide, Inc. | Improved surge management fibrous nonwoven web for personal care absorbent articles and the like |
SE502549C2 (en) | 1994-03-18 | 1995-11-13 | Moelnlycke Ab | Absorbent article, such as a diaper, comprising an apertured top layer |
US5591148A (en) | 1994-04-08 | 1997-01-07 | The Procter & Gamble Company | Sanitary napkin having an independently displaceable central core segment |
GB2288540A (en) | 1994-04-23 | 1995-10-25 | Skippingdale Paper Products Li | A diaper |
JPH09512594A (en) | 1994-04-29 | 1997-12-16 | ザ、プロクター、エンド、ギャンブル、カンパニー | Closure system for disposable pull-on pants with stretchable torso band |
JPH07299093A (en) | 1994-05-10 | 1995-11-14 | Uni Charm Corp | Body fluid absorbent article for wear |
US5520674A (en) | 1994-05-31 | 1996-05-28 | The Procter & Gamble Company | Disposable absorbent article having a sealed expandable component |
JP3215262B2 (en) | 1994-06-03 | 2001-10-02 | ユニ・チャーム株式会社 | Disposable body fluid absorbent articles |
CA2134268C (en) | 1994-06-13 | 2005-10-04 | Frederich Oma Lassen | Absorbent article having a body-accommodating absorbent core |
CA2136810A1 (en) | 1994-06-30 | 1995-12-31 | Franklin M. C. Chen | Absorbent structure including an adhesive |
ATE187341T1 (en) | 1994-07-05 | 1999-12-15 | Procter & Gamble | ABSORBENT SWELLABLE MATERIAL CONTAINING A DRY MIXTURE OF AT LEAST TWO DIFFERENT TYPES OF HYDROGEL-FORMING PARTICLES AND METHOD FOR PRODUCING IT |
US5714156A (en) | 1994-07-05 | 1998-02-03 | The Procter & Gamble Company | Absorbent gelling material comprising a dry mixture of at least two types of hydrogel-forming particles and method for making the same |
US5494622A (en) | 1994-07-12 | 1996-02-27 | Kimberly-Clark Corporation | Apparatus and method for the zoned placement of superabsorbent material |
US5849816A (en) | 1994-08-01 | 1998-12-15 | Leonard Pearlstein | Method of making high performance superabsorbent material |
US5830202A (en) | 1994-08-01 | 1998-11-03 | The Procter & Gamble Company | Absorbent comprising upper and lower gel layers |
US5593401A (en) | 1994-08-03 | 1997-01-14 | Kimberly-Clark Corporation | Absorbent article with bridge flap |
US5527300A (en) | 1994-08-31 | 1996-06-18 | Kimberly-Clark Corporation | Absorbent article with high capacity surge management component |
CA2153125A1 (en) | 1994-08-31 | 1996-03-01 | Frank Paul Abuto | Liquid-absorbing article |
EP0700673B1 (en) | 1994-09-09 | 2002-03-27 | The Procter & Gamble Company | Method of manufacture of an absorbent structure |
US5643243A (en) | 1994-09-26 | 1997-07-01 | Drypers Corporation | Disposable diaper with cuff |
JP3224481B2 (en) | 1994-10-26 | 2001-10-29 | ユニ・チャーム株式会社 | Sanitary napkin |
AUPM931094A0 (en) | 1994-11-09 | 1994-12-01 | Procter & Gamble Company, The | Treating interparticle bonded aggregates with latex to increase flexibility of porous, absorbent macrostructures |
WO1996015748A2 (en) | 1994-11-23 | 1996-05-30 | Kimberly-Clark Worldwide, Inc. | Absorbent article having a composite absorbent core |
CN1173122A (en) | 1994-11-30 | 1998-02-11 | 普罗克特和甘保尔公司 | Stretchable absorbent article core |
US5624423A (en) | 1994-11-30 | 1997-04-29 | Kimberly-Clark Corporation | Absorbent article having barrier means and medial bulge |
US5560878A (en) | 1994-11-30 | 1996-10-01 | The Procter & Gamble Company | Method and apparatus for making stretchable absorbent articles |
IN187105B (en) | 1994-12-07 | 2002-02-02 | Mcneil Ppc Inc | |
KR100244610B1 (en) | 1994-12-21 | 2000-02-15 | 데이비드 엠 모이어 | An absorbent article having integral barrier cuffs and process for making the same |
US5614283A (en) | 1994-12-22 | 1997-03-25 | Tredegar Industries | Absorbent composite with three-dimensional film surface for use in absorbent disposable products |
US5649914A (en) | 1994-12-22 | 1997-07-22 | Kimberly-Clark Corporation | Toilet training aid |
US5772825A (en) | 1994-12-22 | 1998-06-30 | The Procter & Gamble Company | Method for making an undergarment having side seams |
US5779831A (en) | 1994-12-24 | 1998-07-14 | The Procter & Gamble Company | Method and apparatus for making an undergarment having overlapping or butt-type side seams |
US5559335A (en) | 1994-12-28 | 1996-09-24 | The University Of Utah | Rotating and warping projector/backprojector for converging-beam geometries |
JP3219229B2 (en) | 1995-02-17 | 2001-10-15 | 花王株式会社 | Method and apparatus for dispersing powder |
US6110157A (en) | 1995-02-24 | 2000-08-29 | Kimberly-Clark Worldwide, Inc. | Disposable absorbent article having an integrated fastening system |
DE29505307U1 (en) | 1995-03-29 | 1995-05-24 | The Procter & Gamble Co., Cincinnati, Ohio | Liquid absorbent hygienic pulp product |
US5925439A (en) | 1995-03-29 | 1999-07-20 | The Procter & Gamble Company | Liquid-absorbent sanitary cellulose product |
US5549592A (en) | 1995-04-03 | 1996-08-27 | Kimberly-Clark Corporation | Absorbent article with a laminated tape |
AU701286B2 (en) | 1995-04-03 | 1999-01-21 | Mcneil-Ppc, Inc. | Multiple folded side barriers for improved leakage protection |
AU2444995A (en) | 1995-04-28 | 1996-11-18 | Kroeyer, Karl Kristian Kobs | Method of producing flow lines in a sanitary product |
US5522810A (en) | 1995-06-05 | 1996-06-04 | Kimberly-Clark Corporation | Compressively resistant and resilient fibrous nonwoven web |
US5575785A (en) | 1995-06-07 | 1996-11-19 | Kimberly-Clark Corporation | Absorbent article including liquid containment beams and leakage barriers |
US5683374A (en) | 1995-06-08 | 1997-11-04 | Uni-Charm Corporation | Absorbent padding for undergarments |
US6120866A (en) | 1995-08-07 | 2000-09-19 | Nitto Denko Corporation | Re-peeling pressure-sensitive adhesive tape or pressure-sensitive adhesive, and fastening system using the same |
US5938650A (en) | 1995-08-09 | 1999-08-17 | Fibertech Group, Inc. | Absorbent core for absorbing body liquids and method |
GB9614668D0 (en) | 1995-08-11 | 1996-09-04 | Camelot Superabsorbents Ltd | Absorbent articles |
JP3208289B2 (en) | 1995-08-15 | 2001-09-10 | ユニ・チャーム株式会社 | Disposable absorbent undergarment |
MY117986A (en) | 1995-08-25 | 2004-08-30 | Uni Charm Corp | Disposable absorbent undergarment |
US5840404A (en) | 1995-08-25 | 1998-11-24 | Fort James France | Absorbent multilayer sheet and method for making same |
US5891118A (en) | 1995-09-05 | 1999-04-06 | Kao Corporation | Absorbent article |
US5628845A (en) | 1995-09-28 | 1997-05-13 | Thermal Products, Inc. | Process for forming hydratable, flexible refrigement media |
US5643238A (en) | 1995-09-29 | 1997-07-01 | Paragon Trade Brands, Inc. | Absorbent core structure comprised of storage and acquisition cells |
EP0796071B1 (en) | 1995-10-05 | 2001-12-19 | Kao Corporation | Disposable diaper |
US6120489A (en) | 1995-10-10 | 2000-09-19 | The Procter & Gamble Company | Flangeless seam for use in disposable articles |
US5662638A (en) | 1995-10-10 | 1997-09-02 | The Procter & Gamble Company | Flangeless seam for use in disposable articles |
US5622589A (en) | 1995-10-10 | 1997-04-22 | The Procter & Gamble Company | Method for making a flangeless seam for use in disposable articles |
US5607537A (en) | 1995-10-10 | 1997-03-04 | The Procter & Gamble Company | Method for making a flangeless seam for use in disposable articles |
JP3053561B2 (en) | 1995-10-19 | 2000-06-19 | ユニ・チャーム株式会社 | Sanitary napkin |
US5658268A (en) | 1995-10-31 | 1997-08-19 | Kimberly-Clark Worldwide, Inc. | Enhanced wet signal response in absorbent articles |
US5843059A (en) | 1995-11-15 | 1998-12-01 | Kimberly-Clark Worldwide, Inc. | Absorbent composite and disposable absorbent garment comprising same |
SE504444C2 (en) | 1995-11-16 | 1997-02-10 | Moelnlycke Ab | Absorbent article such as a diaper having a cup-shaped absorbent body having at least one recess in the form of grooves or compression lines |
DE19646484C2 (en) | 1995-11-21 | 2000-10-19 | Stockhausen Chem Fab Gmbh | Liquid absorbing polymers, processes for their production and their use |
DE19543368C2 (en) | 1995-11-21 | 1998-11-26 | Stockhausen Chem Fab Gmbh | Water-absorbing polymers with improved properties, processes for their production and their use |
JP3310842B2 (en) | 1995-11-29 | 2002-08-05 | ユニ・チャーム株式会社 | Disposable diapers |
US5626571A (en) | 1995-11-30 | 1997-05-06 | The Procter & Gamble Company | Absorbent articles having soft, strong nonwoven component |
US6117121A (en) | 1995-12-11 | 2000-09-12 | Kimberly-Clark Worldwide, Inc. | Absorbent article using extensible leg cuffs |
US5879751A (en) | 1995-12-18 | 1999-03-09 | The Procter & Gamble Company | Method and apparatus for making absorbent structures having divided particulate zones |
US5846232A (en) | 1995-12-20 | 1998-12-08 | Kimberly-Clark Worldwide, Inc. | Absorbent article containing extensible zones |
EP0781537A1 (en) | 1995-12-27 | 1997-07-02 | The Procter & Gamble Company | Disposable absorbent article |
HU221144B1 (en) | 1995-12-28 | 2002-08-28 | Procter & Gamble | Disposable absorbent article having reduced wet through equipped with a breathable backsheet and method making thereof |
US5858515A (en) | 1995-12-29 | 1999-01-12 | Kimberly-Clark Worldwide, Inc. | Pattern-unbonded nonwoven web and process for making the same |
US5766389A (en) | 1995-12-29 | 1998-06-16 | Kimberly-Clark Worldwide, Inc. | Disposable absorbent article having a registered graphic and process for making |
US5662758A (en) | 1996-01-10 | 1997-09-02 | The Procter & Gamble Company | Composite material releasably sealable to a target surface when pressed thereagainst and method of making |
JP3469385B2 (en) | 1996-01-10 | 2003-11-25 | 花王株式会社 | Absorbent articles |
WO1997025013A1 (en) | 1996-01-11 | 1997-07-17 | The Procter & Gamble Company | Absorbent structure having zones surrounded by a continuous region of hydrogel-forming absorbent polymer |
KR19990077259A (en) | 1996-01-16 | 1999-10-25 | 딘 에이 스캐르버로우 | Tensile mechanical / adhesive closures for disposable diapers |
BR9706989A (en) | 1996-01-16 | 2001-08-28 | Avery Dennison Corp | Improvements in diaper closure systems |
US6376034B1 (en) | 1996-01-23 | 2002-04-23 | William M. Brander | Absorbent material for use in disposable articles and articles prepared therefrom |
US5691036A (en) | 1996-01-30 | 1997-11-25 | Du Pont Taiwan Limited | High pressure high temperature cushioning material |
JP3345248B2 (en) | 1996-01-31 | 2002-11-18 | ユニ・チャーム株式会社 | Urine collection bag for men |
IN189366B (en) | 1996-02-12 | 2003-02-15 | Mcneil Ppc Inc | |
US5685874A (en) | 1996-02-22 | 1997-11-11 | The Procter & Gamble Company | Disposable pull-on pant |
EP0883394B1 (en) | 1996-02-29 | 2002-05-02 | Kimberly-Clark Worldwide, Inc. | Dual elastic, liquid barrier containment flaps for a disposable absorbent article |
SE504624C2 (en) | 1996-03-13 | 1997-03-17 | Moelnlycke Ab | Waist belt for absorbent articles and method of manufacture thereof |
US6372952B1 (en) | 1996-03-22 | 2002-04-16 | The Procter & Gamble Company | Absorbent components having a sustained acquisition rate capability upon absorbing multiple discharges of aqueous body fluids |
US5855572A (en) | 1996-03-22 | 1999-01-05 | The Procter & Gamble Company | Absorbent components having a fluid acquisition zone |
US5897545A (en) | 1996-04-02 | 1999-04-27 | The Procter & Gamble Company | Elastomeric side panel for use with convertible absorbent articles |
US6120487A (en) | 1996-04-03 | 2000-09-19 | The Procter & Gamble Company | Disposable pull-on pant |
DE69630362D1 (en) | 1996-04-15 | 2003-11-20 | Eastman Chemical Resins Inc | Hot melt adhesive based on block copolymers containing styrene |
US6730387B2 (en) | 1996-04-24 | 2004-05-04 | The Procter & Gamble Company | Absorbent materials having improved structural stability in dry and wet states and making methods therefor |
US5650214A (en) | 1996-05-31 | 1997-07-22 | The Procter & Gamble Company | Web materials exhibiting elastic-like behavior and soft, cloth-like texture |
US6336922B1 (en) | 1996-06-19 | 2002-01-08 | Kimberly-Clark Worldwide, Inc. | Absorbent article having a fit panel |
US5938652A (en) | 1996-06-19 | 1999-08-17 | Kimberly-Clark Worldwide, Inc. | Absorbent article having a selectively elasticized waist flap |
US5810800A (en) | 1996-06-27 | 1998-09-22 | The Procter & Gamble Company | Absorbent article having flexure resistant elasticized cuffs |
JP3499375B2 (en) | 1996-07-02 | 2004-02-23 | ユニ・チャーム株式会社 | Absorbent sheet and method for producing the same |
JP3155711B2 (en) | 1996-07-15 | 2001-04-16 | ユニ・チャーム株式会社 | Disposable diapers |
JP3434649B2 (en) | 1996-08-07 | 2003-08-11 | ユニ・チャーム株式会社 | Disposable diapers |
JP3589528B2 (en) | 1996-08-08 | 2004-11-17 | ユニ・チャーム株式会社 | Diapers |
SG85608A1 (en) | 1996-08-19 | 2002-01-15 | Uni Charm Corp | Disposable diaper |
JP3688403B2 (en) | 1996-09-17 | 2005-08-31 | 花王株式会社 | Disposable diapers |
JP3640475B2 (en) | 1996-09-27 | 2005-04-20 | 花王株式会社 | Absorbent articles |
US6423884B1 (en) | 1996-10-11 | 2002-07-23 | Kimberly-Clark Worldwide, Inc. | Absorbent article having apertures for fecal material |
EP0957868B1 (en) | 1996-10-15 | 2003-02-05 | The Procter & Gamble Company | Disposable absorbent garment and method of constructing the same |
US6585713B1 (en) | 1996-11-14 | 2003-07-01 | Kimberly-Clark Worldwide, Inc. | Absorbent article providing a dynamic fit |
GB2354449C (en) | 1996-11-29 | 2005-09-21 | Kao Corp | Absorbent article |
EP0941157B1 (en) | 1996-12-06 | 2004-02-04 | Weyerhaeuser Company | Unitary stratified composite |
US20050090789A1 (en) | 1996-12-06 | 2005-04-28 | Graef Peter A. | Absorbent composite having improved surface dryness |
US20020007169A1 (en) | 1996-12-06 | 2002-01-17 | Weyerhaeuser Company | Absorbent composite having improved surface dryness |
US6734335B1 (en) | 1996-12-06 | 2004-05-11 | Weyerhaeuser Company | Unitary absorbent system |
RU2186797C2 (en) | 1996-12-13 | 2002-08-10 | Джапан Абсорбент Технолоджи Инститьют | Composite composition with high absorption ability, absorbing sheet material coated with such compositions, and method of preparation thereof |
US6060115A (en) | 1996-12-17 | 2000-05-09 | Kimberly-Clark Worldwide, Inc. | Method of making an absorbent pad |
SE519601C2 (en) | 1996-12-17 | 2003-03-18 | Sca Moelnlycke Ab | Absorbent structure for diaper, incontinence cover, sanitary napkin or the like with high utilization rate |
US6319239B1 (en) | 1996-12-20 | 2001-11-20 | The Procter & Gamble Company | Absorbent article having improved integrity and acquisition |
US6102892A (en) | 1996-12-23 | 2000-08-15 | Kimberly-Clark Worldwide, Inc. | Diaper with pleats for containment of liquid and solid waste |
SE513075C2 (en) | 1996-12-27 | 2000-07-03 | Sca Hygiene Prod Ab | Absorbing garment fastener |
US6648869B1 (en) | 1996-12-30 | 2003-11-18 | Kimberly-Clark Worldwide, Inc. | Vertically pleated diaper liner |
US6315765B1 (en) | 1997-01-17 | 2001-11-13 | Kimberly-Clark Worldwide, Inc. | Elasticized absorbent pad |
JP3566012B2 (en) | 1997-01-28 | 2004-09-15 | 花王株式会社 | Absorbent articles |
US6461343B1 (en) | 1997-02-18 | 2002-10-08 | The Procter & Gamble Company | Disposable absorbent article with folded ear panels and method of making same |
CN1252829A (en) | 1997-02-19 | 2000-05-10 | 普罗克特和甘保尔公司 | Mixed-bed ion-exchange hydrogel-forming polymer compositions and absorbent members comprising relatively high concentrations of these compositions |
US5964743A (en) | 1997-02-27 | 1999-10-12 | Kimberly-Clark Worldwide, Inc. | Elastic absorbent material for personal care products |
SE512761C2 (en) | 1997-02-28 | 2000-05-08 | Sca Hygiene Prod Ab | Diaper, comprising a waist belt and absorbent unit |
US6083210A (en) | 1997-03-27 | 2000-07-04 | The Procter & Gamble Company | Absorbent articles providing improved fit when wet |
US6383431B1 (en) | 1997-04-04 | 2002-05-07 | The Procter & Gamble Company | Method of modifying a nonwoven fibrous web for use as component of a disposable absorbent article |
US5928184A (en) | 1997-04-14 | 1999-07-27 | Tampax Corporation | Multi-layer absorbent article |
US5865824A (en) | 1997-04-21 | 1999-02-02 | Chen; Fung-Jou | Self-texturing absorbent structures and absorbent articles made therefrom |
TW418677U (en) | 1997-04-21 | 2001-01-11 | Kao Corp | Disposable garments |
EP0875224A1 (en) | 1997-04-28 | 1998-11-04 | Cidieffe S.r.l. | Absorbent article which includes superabsorbent material located in discrete pockets and manufacturing process |
JP3323100B2 (en) | 1997-04-30 | 2002-09-09 | ユニ・チャーム株式会社 | Disposable pants-type wearing article |
JPH10295728A (en) | 1997-05-02 | 1998-11-10 | Kureshia:Kk | Disposable diaper with excellent wearing workability |
US20030139718A1 (en) | 1997-05-13 | 2003-07-24 | Weyerhaeuser Company | Reticulated absorbent composite |
JP2001527476A (en) | 1997-05-13 | 2001-12-25 | ウェヤーハウザー・カンパニー | Reticulated absorbent composite |
US6042673A (en) | 1997-05-15 | 2000-03-28 | The Procter & Gamble Company | Method for making a flangeless seam for use in disposable articles |
GB2325432B (en) | 1997-05-21 | 1999-12-22 | Bristol Myers Squibb Co | Absorbing aqueous matter |
EP0984759B1 (en) | 1997-05-22 | 2002-08-14 | BBA Nonwovens Simpsonville, Inc. | Composite fabric for coverstock having separate liquid pervious and impervious regions |
JP3850102B2 (en) | 1997-05-28 | 2006-11-29 | 花王株式会社 | Absorbent articles |
TW538745U (en) | 1997-05-29 | 2003-06-21 | Kao Corp | Absorbent article |
US6132411A (en) | 1997-06-04 | 2000-10-17 | The Procter & Gamble Company | Absorbent article with multiple zone side panels |
US5989236A (en) | 1997-06-13 | 1999-11-23 | The Procter & Gamble Company | Absorbent article with adjustable waist feature |
JP3719819B2 (en) | 1997-06-13 | 2005-11-24 | 花王株式会社 | Method for manufacturing absorbent body for absorbent article and absorbent article |
US6342715B1 (en) | 1997-06-27 | 2002-01-29 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device |
JPH1133056A (en) | 1997-07-16 | 1999-02-09 | Uni Charm Corp | Disposable training pants for infant |
JPH1142252A (en) | 1997-07-25 | 1999-02-16 | Ykk Corp | Disposable diaper |
DE19732499C2 (en) | 1997-07-29 | 2001-05-17 | Hartmann Paul Ag | diaper |
US6402731B1 (en) | 1997-08-08 | 2002-06-11 | Kimberly-Clark Worldwide, Inc. | Multi-functional fastener for disposable absorbent articles |
JP3874499B2 (en) | 1997-08-29 | 2007-01-31 | 花王株式会社 | Shorts napkin |
US6117803A (en) | 1997-08-29 | 2000-09-12 | Kimberly-Clark Worldwide, Inc. | Personal care articles with abrasion resistant meltblown layer |
US6107537A (en) | 1997-09-10 | 2000-08-22 | The Procter & Gamble Company | Disposable absorbent articles providing a skin condition benefit |
CA2303941C (en) | 1997-09-16 | 2006-01-17 | Sunita Pargass | Disposable training pant with elasticized side panels |
SG71837A1 (en) | 1997-09-29 | 2000-04-18 | Uni Charm Corp | Absorbent article |
SE514291C2 (en) | 1997-09-30 | 2001-02-05 | Sca Hygiene Prod Ab | Absorbent disposable articles with high collection capacity |
JP3420481B2 (en) | 1997-09-30 | 2003-06-23 | ユニ・チャーム株式会社 | Infant wear article |
JP3385188B2 (en) | 1997-09-30 | 2003-03-10 | ユニ・チャーム株式会社 | Disposable diapers |
US6383960B1 (en) | 1997-10-08 | 2002-05-07 | Kimberly-Clark Worldwide, Inc. | Layered absorbent structure |
PH11998002499B1 (en) | 1997-10-08 | 2004-11-05 | Kimberly Clark Co | Layered absorbent structure |
CO5261577A1 (en) | 1997-10-08 | 2003-03-31 | Kimberly Clark Co | ABSORBENT ARTICLE WITH ABSORBENT STRUCTURE WITH HETEROGENOUS COAT REGION |
US6156424A (en) | 1997-10-31 | 2000-12-05 | Andover Coated Products, Inc. | Cohesive products |
FR2770395B1 (en) | 1997-11-04 | 2000-02-18 | Proteco | HYGIENE ARTICLE WITH BREATHABLE NON-WOVEN PANELS |
US6410820B1 (en) | 1997-11-14 | 2002-06-25 | The Procter & Gamble Company | Method of making a slitted or particulate absorbent material and structures formed thereby |
US6171985B1 (en) | 1997-12-01 | 2001-01-09 | 3M Innovative Properties Company | Low trauma adhesive article |
JP3510093B2 (en) | 1997-12-16 | 2004-03-22 | ユニ・チャーム株式会社 | Disposable diapers |
US6955733B2 (en) | 1997-12-19 | 2005-10-18 | The Procter & Gamble Company | Method and system for registering pre-produced webs with variable pitch length |
US6444064B1 (en) | 1997-12-19 | 2002-09-03 | Procter & Gamble Company | Registration system for phasing simultaneously advancing webs of material having variable pitch lengths |
SE517865C2 (en) | 1997-12-29 | 2002-07-23 | Sca Hygiene Prod Ab | Absorbent articles with fixed radius compression lines |
US6129720A (en) | 1997-12-31 | 2000-10-10 | Kimberly-Clark Worldwide, Inc. | Extensible absorbent article including an extensible absorbent pad layer |
KR20010033927A (en) | 1998-01-07 | 2001-04-25 | 데이비드 엠 모이어 | Absorbent polymer compositions with high sorption capacity and high fluid permeability under an applied pressure |
US6121509A (en) | 1998-01-07 | 2000-09-19 | The Procter & Gamble Company | Absorbent polymer compositions having high sorption capacities under an applied pressure and improved integrity when wet |
JP3406214B2 (en) | 1998-01-30 | 2003-05-12 | ユニ・チャーム株式会社 | Disposable diapers |
DE19807502B4 (en) | 1998-02-21 | 2004-04-08 | Basf Ag | Process for post-crosslinking hydrogels with 2-oxazolidinones, hydrogels made therefrom and their use |
US6265488B1 (en) | 1998-02-24 | 2001-07-24 | Nippon Shokubai Co., Ltd. | Production process for water-absorbing agent |
US6503979B1 (en) | 1998-02-26 | 2003-01-07 | Basf Aktiengesellschaft | Method for cross-linking hydrogels with bis- and poly-2-oxazolidinones |
US6630054B1 (en) | 1998-03-19 | 2003-10-07 | Weyerhaeuser Company | Methods for forming a fluted composite |
CN1293555A (en) | 1998-03-19 | 2001-05-02 | 韦尔豪泽公司 | Method for forming fluted composite |
JP3411211B2 (en) | 1998-03-27 | 2003-05-26 | ユニ・チャーム株式会社 | Disposable diapers |
US6632209B1 (en) | 1998-03-30 | 2003-10-14 | Paragon Trade Brands, Inc. | Thin absorbent core made from folded absorbent laminate |
US6068620A (en) | 1998-03-30 | 2000-05-30 | Paragon Trade Brands | Absorbent laminate |
US6440117B1 (en) | 1998-04-02 | 2002-08-27 | Kao Corporation | Disposable diaper having upstanding walls for improving leakage prevention |
AU3097699A (en) | 1998-04-03 | 1999-10-25 | Kimberly-Clark Worldwide, Inc. | An absorbent article |
US6416502B1 (en) | 1998-04-03 | 2002-07-09 | Kimberly-Clark Worldwide, Inc. | Absorbent article having channels for receiving the edges of an undergarment |
JP3660816B2 (en) | 1998-04-06 | 2005-06-15 | 白十字株式会社 | Disposable diapers |
JP3856941B2 (en) | 1998-04-15 | 2006-12-13 | 花王株式会社 | Absorbent articles |
JP3330076B2 (en) | 1998-04-20 | 2002-09-30 | ユニ・チャーム株式会社 | Disposable diapers |
JPH11299825A (en) | 1998-04-20 | 1999-11-02 | Uni Charm Corp | Disposable body fluid absorptive article |
JPH11308127A (en) | 1998-04-20 | 1999-11-05 | Kokusai Electric Co Ltd | Transmission output stabilization device for millimeter wave band transmitter |
JP3398047B2 (en) | 1998-04-24 | 2003-04-21 | ユニ・チャーム株式会社 | Disposable pants-type diapers |
JPH11313851A (en) | 1998-05-01 | 1999-11-16 | Uni Charm Corp | Sanitary napkin |
US6534572B1 (en) | 1998-05-07 | 2003-03-18 | H. B. Fuller Licensing & Financing, Inc. | Compositions comprising a thermoplastic component and superabsorbent polymer |
JP4109350B2 (en) | 1998-05-12 | 2008-07-02 | ユニ・チャームペットケア株式会社 | Absorber |
JP3909953B2 (en) | 1998-05-12 | 2007-04-25 | ユニ・チャームペットケア株式会社 | Absorber manufacturing method |
JP3490291B2 (en) | 1998-05-18 | 2004-01-26 | ユニ・チャーム株式会社 | Absorbent articles |
JPH11318980A (en) | 1998-05-18 | 1999-11-24 | Zuiko Corp | Disposable diaper |
US6261679B1 (en) | 1998-05-22 | 2001-07-17 | Kimberly-Clark Worldwide, Inc. | Fibrous absorbent material and methods of making the same |
JPH11342154A (en) | 1998-06-03 | 1999-12-14 | Uni Charm Corp | Humor absorption article |
US5873868A (en) | 1998-06-05 | 1999-02-23 | The Procter & Gamble Company | Absorbent article having a topsheet that includes selectively openable and closable openings |
US6403857B1 (en) | 1998-06-08 | 2002-06-11 | Buckeye Technologies Inc. | Absorbent structures with integral layer of superabsorbent polymer particles |
CN1238171A (en) | 1998-06-09 | 1999-12-15 | 顺德市妇康卫生用品有限公司 | New-type sanitary napkin |
US7037299B2 (en) | 1998-06-12 | 2006-05-02 | First Quality Products, Inc. | Disposable elastic absorbent article having retaining enclosures |
JP3612424B2 (en) | 1998-06-12 | 2005-01-19 | ユニ・チャーム株式会社 | Sanitary napkin |
US20040033750A1 (en) | 1998-06-12 | 2004-02-19 | Everett Rob D | Layered absorbent structure with a heterogeneous layer region |
US6413249B1 (en) | 1998-06-12 | 2002-07-02 | First Quality Enterprises, Inc. | Disposable absorbent article having elastically contractible waist and sides |
US6710225B1 (en) | 1998-06-15 | 2004-03-23 | Kimberly-Clark Worldwide, Inc. | Layered absorbent structure with a zoned basis weight |
US6022431A (en) | 1998-06-19 | 2000-02-08 | Kimberly-Clark Worldwide, Inc. | Method of making prefastened absorbent articles having a stretch band |
US6022430A (en) | 1998-06-19 | 2000-02-08 | Kimberly-Clark Worldwide, Inc. | Method of making absorbent articles having an adjustable belt |
US6322552B1 (en) | 1998-06-19 | 2001-11-27 | Kimberly-Clark Worldwide, Inc. | Absorbent articles having belt loops and an adjustable belt |
JP3868628B2 (en) | 1998-06-25 | 2007-01-17 | 花王株式会社 | Absorbent articles |
WO2000000123A1 (en) | 1998-06-26 | 2000-01-06 | The Procter & Gamble Company | Faecal collector with improved adhesive flange attachment means to facilitate removal with low pain level |
JP3568146B2 (en) | 1998-07-03 | 2004-09-22 | 花王株式会社 | Method and apparatus for manufacturing absorbent article |
US6562168B1 (en) | 1998-07-07 | 2003-05-13 | The Procter & Gamble Company | Method for cutting and sealing an absorbent member |
EP0978263A1 (en) | 1998-08-03 | 2000-02-09 | The Procter & Gamble Company | Improved adhesive printing process for disposable absorbent articles |
US6531027B1 (en) | 1998-08-03 | 2003-03-11 | The Procter & Gamble Company | Adhesive printing process for disposable absorbent articles |
US6531025B1 (en) | 1998-08-03 | 2003-03-11 | The Procter & Gamble Company | Gravure roll printing process for adhesive application for disposable absorbent articles |
JP3926042B2 (en) | 1998-08-06 | 2007-06-06 | 花王株式会社 | Absorbent articles |
US6231566B1 (en) | 1998-08-12 | 2001-05-15 | Katana Research, Inc. | Method for scanning a pulsed laser beam for surface ablation |
JP3616723B2 (en) | 1998-09-11 | 2005-02-02 | ユニ・チャーム株式会社 | Sanitary napkin |
JP3652523B2 (en) | 1998-09-11 | 2005-05-25 | ユニ・チャーム株式会社 | Sanitary napkin |
JP3411224B2 (en) | 1998-09-14 | 2003-05-26 | ユニ・チャーム株式会社 | Disposable diapers |
US6667424B1 (en) | 1998-10-02 | 2003-12-23 | Kimberly-Clark Worldwide, Inc. | Absorbent articles with nits and free-flowing particles |
US6503233B1 (en) | 1998-10-02 | 2003-01-07 | Kimberly-Clark Worldwide, Inc. | Absorbent article having good body fit under dynamic conditions |
US6673982B1 (en) | 1998-10-02 | 2004-01-06 | Kimberly-Clark Worldwide, Inc. | Absorbent article with center fill performance |
EP1117530B1 (en) | 1998-10-02 | 2005-11-16 | The Procter & Gamble Company | Elastic laminate including nonwoven layer formed from highly oriented component fibers and disposable garment employing the same |
US6562192B1 (en) | 1998-10-02 | 2003-05-13 | Kimberly-Clark Worldwide, Inc. | Absorbent articles with absorbent free-flowing particles and methods for producing the same |
CN2362468Y (en) | 1998-10-16 | 2000-02-09 | 保定三利报业纸品有限公司 | Four concave trough leakage-proof feminine napkin |
US6520947B1 (en) | 1998-10-16 | 2003-02-18 | The Procter & Gamble Company | Disposable absorbent article having reusable fastening means |
US6529860B1 (en) | 1998-10-19 | 2003-03-04 | Ford Global Technologies, Inc. | Particle impact and soil deposition analysis system and method for vehicle design |
US6090994A (en) | 1998-10-26 | 2000-07-18 | Chen; Chuan-Mei | Structure of a diaper |
ZA996987B (en) | 1998-11-09 | 2001-05-08 | Johnson & Johnson | Sanitary napkin with rear extension providing a liquid blocking function. |
JP3724963B2 (en) | 1998-11-17 | 2005-12-07 | 花王株式会社 | Pants-type absorbent article |
JP3705943B2 (en) | 1998-11-19 | 2005-10-12 | ユニ・チャーム株式会社 | Sanitary napkin |
DE19854573A1 (en) | 1998-11-26 | 2000-05-31 | Basf Ag | Process for post-crosslinking hydrogels with 2-oxo-tetrahydro-1,3-oxazines |
DE19854574A1 (en) | 1998-11-26 | 2000-05-31 | Basf Ag | Process for post-crosslinking hydrogels with N-acyl-2-oxazolidinones |
AU752867B2 (en) | 1998-11-30 | 2002-10-03 | Procter & Gamble Company, The | Absorbent article having channel |
JP4198849B2 (en) | 1998-12-01 | 2008-12-17 | ユニ・チャーム株式会社 | Absorbent articles |
JP3639447B2 (en) | 1998-12-11 | 2005-04-20 | ユニ・チャーム株式会社 | Disposable body fluid absorbent article |
US6573422B1 (en) | 1998-12-23 | 2003-06-03 | Mcneil-Ppc, Inc. | Absorbent article with high absorbency zone |
HU221691B1 (en) | 1998-12-23 | 2002-12-28 | Mcneil-Ppc, Inc. | Absorbent article for feminine hygiene use and method for making thereof |
US6183601B1 (en) | 1999-02-03 | 2001-02-06 | Kimberly-Clark Worldwide, Inc. | Method of calendering a sheet material web carried by a fabric |
JP3616728B2 (en) | 1999-01-19 | 2005-02-02 | ユニ・チャーム株式会社 | Body fluid absorbent article |
JP2000232985A (en) | 1999-02-15 | 2000-08-29 | Fukuyoo:Kk | Incontinence liner |
JP3908403B2 (en) | 1999-02-22 | 2007-04-25 | 株式会社リブドゥコーポレーション | Laminated body for disposable products |
US6220999B1 (en) | 1999-03-19 | 2001-04-24 | Kimberly-Clark Worldwide, Inc. | Method and apparatus for forming an apertured pad |
US6091336A (en) | 1999-03-24 | 2000-07-18 | Franz Zand | Moisture detection apparatus |
JP3535984B2 (en) | 1999-04-02 | 2004-06-07 | ユニ・チャーム株式会社 | Worn article |
JP4208338B2 (en) | 1999-04-07 | 2009-01-14 | 花王株式会社 | Sanitary napkin |
DE60016730T3 (en) | 1999-04-12 | 2009-11-19 | Kao Corp. | DISPOSABLE DIAPERS |
PE20001393A1 (en) | 1999-04-16 | 2000-12-13 | Kimberly Clark Co | FIBROUS STRUCTURES INCLUDING A SET OF FIBERS AND A RELEASING AGENT |
US6409883B1 (en) | 1999-04-16 | 2002-06-25 | Kimberly-Clark Worldwide, Inc. | Methods of making fiber bundles and fibrous structures |
TR200102991T2 (en) | 1999-04-16 | 2002-02-21 | Kimberly Clark Worldwide, Inc. | Absorbent articles with nits and free-flowing particles. |
US6139912A (en) | 1999-05-10 | 2000-10-31 | Mcneil-Ppc, Inc. | Method for intermittent application of particulate material |
JP3510150B2 (en) | 1999-05-12 | 2004-03-22 | ユニ・チャーム株式会社 | Disposable body fluid treatment articles |
KR20000074441A (en) | 1999-05-21 | 2000-12-15 | 문국현 | Fluid Intake Intensifier |
JP4148594B2 (en) | 1999-05-25 | 2008-09-10 | 花王株式会社 | Absorbent articles |
US6559081B1 (en) | 1999-05-25 | 2003-05-06 | Bki Holding Corporation | Multifunctional fibrous material with improved edge seal |
JP2001046435A (en) | 1999-05-28 | 2001-02-20 | Oji Paper Co Ltd | Absorbent article |
JP3541144B2 (en) | 1999-05-31 | 2004-07-07 | ユニ・チャーム株式会社 | Disposable wearing articles for stool processing |
JP3638819B2 (en) | 1999-06-07 | 2005-04-13 | ユニ・チャーム株式会社 | Disposable diapers with back leak prevention function |
US6307119B1 (en) | 1999-06-15 | 2001-10-23 | Kimberly-Clark Worldwide, Inc. | Absorbent articles having wetness indicating graphics incorporating a training zone |
US6177607B1 (en) | 1999-06-25 | 2001-01-23 | Kimberly-Clark Worldwide, Inc. | Absorbent product with nonwoven dampness inhibitor |
JP3986210B2 (en) | 1999-06-30 | 2007-10-03 | 花王株式会社 | Absorbent articles |
JP3856990B2 (en) | 1999-07-28 | 2006-12-13 | 花王株式会社 | Absorbent articles |
US6443936B1 (en) | 1999-08-06 | 2002-09-03 | The Procter & Gamble Company | Absorbent article having improved adhesive system to provide flexibility and breathability |
US6254294B1 (en) | 1999-08-09 | 2001-07-03 | Sigrid G. Muhar | Pharmaceutical kit |
EP1078618B1 (en) | 1999-08-16 | 2007-05-16 | Johnson & Johnson Inc. | A sanitary napkin with improved liquid retention capability |
US6515195B1 (en) | 1999-08-16 | 2003-02-04 | Johnson & Johnson Inc. | Sanitary napkin with improved liquid retention capability |
US6429350B1 (en) | 1999-08-27 | 2002-08-06 | Kimberly-Clark Worldwide, Inc. | Absorbent article having superabsorbent pockets in a non-absorbent carrier layer |
US6610900B1 (en) | 1999-08-27 | 2003-08-26 | Kimberly-Clark Worldwide, Inc. | Absorbent article having superabsorbent in discrete pockets on a stretchable substrate |
US6290686B1 (en) | 1999-08-27 | 2001-09-18 | Kimberly-Clark Worldwide, Inc. | Absorbent article having imbricated superabsorbent tiles on a substrate |
US6867346B1 (en) | 1999-09-21 | 2005-03-15 | Weyerhaeuser Company | Absorbent composite having fibrous bands |
US6746976B1 (en) | 1999-09-24 | 2004-06-08 | The Procter & Gamble Company | Thin until wet structures for acquiring aqueous fluids |
BR9904370A (en) | 1999-09-28 | 2001-06-05 | Johnson & Johnson Ind Com | Female sanitary pad |
JP3196933B2 (en) | 1999-09-29 | 2001-08-06 | 株式会社日本吸収体技術研究所 | Water-absorbing composite surface-coated with fibrous hot melt, method for producing the same, and absorbent article |
JP4190675B2 (en) | 1999-09-30 | 2008-12-03 | 大王製紙株式会社 | Sanitary napkin with gathered cuffs |
US6605172B1 (en) | 1999-09-30 | 2003-08-12 | The Procter & Gamble Company | Method of making a breathable and liquid impermeable web |
US6700034B1 (en) | 1999-10-01 | 2004-03-02 | Kimberly-Clark Worldwide, Inc. | Absorbent article with unitary absorbent layer for center fill performance |
US6414214B1 (en) | 1999-10-04 | 2002-07-02 | Basf Aktiengesellschaft | Mechanically stable hydrogel-forming polymers |
US6723892B1 (en) | 1999-10-14 | 2004-04-20 | Kimberly-Clark Worldwide, Inc. | Personal care products having reduced leakage |
US20030036741A1 (en) | 1999-10-14 | 2003-02-20 | Kimberly-Clark Worldwide, Inc. | Textured airlaid materials |
US7247152B2 (en) | 1999-10-15 | 2007-07-24 | Associated Hygienic Products Llc | Disposable absorbent article with containment structure |
JP3989144B2 (en) | 1999-10-25 | 2007-10-10 | 花王株式会社 | Absorbent articles |
US6710224B2 (en) | 1999-10-25 | 2004-03-23 | Paragon Trade Brands | Superabsorbent polymers providing long-term generation of free volume in partially hydrated absorbent cores |
JP3986222B2 (en) | 1999-11-04 | 2007-10-03 | 花王株式会社 | Absorbent articles |
US7059474B2 (en) | 1999-11-08 | 2006-06-13 | Kimberly-Clark Worldwide, Inc. | Packaged array of flexible articles |
JP3595471B2 (en) | 1999-11-19 | 2004-12-02 | ユニ・チャーム株式会社 | Disposable urine pad |
MXPA02005020A (en) | 1999-11-19 | 2003-05-23 | Bki Holding Corp | Absorbent cores with y density gradient. |
JP3515932B2 (en) | 1999-11-30 | 2004-04-05 | ユニ・チャーム株式会社 | Disposable wearing articles |
JP2001158074A (en) | 1999-12-01 | 2001-06-12 | Oji Paper Co Ltd | Water absorption sheet |
US6416697B1 (en) | 1999-12-03 | 2002-07-09 | Kimberly-Clark Worldwide, Inc. | Method for obtaining a dual strata distribution of superabsorbent in a fibrous matrix |
JP3904356B2 (en) | 1999-12-16 | 2007-04-11 | 花王株式会社 | Absorbent articles |
US6863960B2 (en) | 1999-12-21 | 2005-03-08 | The Procter & Gamble Company | User-activatible substance delivery system |
US6830800B2 (en) | 1999-12-21 | 2004-12-14 | The Procter & Gamble Company | Elastic laminate web |
US6878433B2 (en) | 1999-12-21 | 2005-04-12 | The Procter & Gamble Company | Applications for laminate web |
JP4152049B2 (en) | 1999-12-22 | 2008-09-17 | 花王株式会社 | Method for producing particle deposit |
US6459016B1 (en) | 1999-12-23 | 2002-10-01 | Mcneil-Ppc, Inc. | Absorbent article with multiple high absorbency zones |
JP4148620B2 (en) | 1999-12-27 | 2008-09-10 | 花王株式会社 | Absorbent articles |
JP2001178768A (en) | 1999-12-27 | 2001-07-03 | Kao Corp | Absorbent article |
US20010044610A1 (en) | 1999-12-29 | 2001-11-22 | Kim Hyung Byum | Absorbent article with fluid intake intensifier |
JP3705981B2 (en) | 2000-01-06 | 2005-10-12 | ユニ・チャーム株式会社 | Water-decomposable absorbent article |
US6437214B1 (en) | 2000-01-06 | 2002-08-20 | Kimberly-Clark Worldwide, Inc. | Layered absorbent structure with a zoned basis weight and a heterogeneous layer region |
JP2001190581A (en) | 2000-01-12 | 2001-07-17 | Nippon Kyushutai Gijutsu Kenkyusho:Kk | Absorbing pad for incontinence |
JP4392936B2 (en) | 2000-01-25 | 2010-01-06 | 花王株式会社 | Sanitary napkin |
ATE282388T1 (en) | 2000-01-31 | 2004-12-15 | Bki Holding Corp | ABSORBENT ARTICLE WITH IMPROVED VERTICAL WICKING AND REMOISTURE PROPERTIES |
JP4190693B2 (en) | 2000-02-17 | 2008-12-03 | 大王製紙株式会社 | Sanitary napkin with gathered flap |
JP2001224626A (en) | 2000-02-17 | 2001-08-21 | Michiko Kiba | Shape duplicating solid napkin |
JP3850618B2 (en) | 2000-03-06 | 2006-11-29 | ユニ・チャーム株式会社 | Absorbent articles |
WO2001070286A1 (en) | 2000-03-17 | 2001-09-27 | Dow Global Technologies Inc. | Tagged superabsorbent polymers in a multicomponent structure |
JP4255196B2 (en) | 2000-03-22 | 2009-04-15 | 花王株式会社 | Absorbent articles |
JP2001277394A (en) | 2000-03-29 | 2001-10-09 | Kao Corp | Method for manufacturing powder filling sheet |
US6494873B2 (en) | 2000-03-31 | 2002-12-17 | Sca Hygiene Products | Absorbent article provided with a belt |
JP2001301857A (en) | 2000-04-20 | 2001-10-31 | Oji Paper Co Ltd | Packaged disposable diaper |
JP4166923B2 (en) | 2000-04-28 | 2008-10-15 | 花王株式会社 | Absorbent articles |
US6506186B1 (en) | 2000-05-03 | 2003-01-14 | Kimberly-Clark Worldwide, Inc. | Absorbent article having enhanced leg curvature in use |
JP2001321397A (en) | 2000-05-15 | 2001-11-20 | Zuiko Corp | Method of manufacturing laminated material |
US6846374B2 (en) | 2000-05-16 | 2005-01-25 | Kimberly-Clark Worldwide | Method and apparatus for making prefastened and refastenable pant with desired waist and hip fit |
US20020019614A1 (en) | 2000-05-17 | 2002-02-14 | Woon Paul S. | Absorbent articles having improved performance |
EP1293187B1 (en) | 2000-05-23 | 2006-08-30 | Toyo Eizai Kabushiki Kaisha | Ultra-thin absorbing sheet body, disposable absorbent article provided with ultra-thin absorbing sheet body and production device for ultra-thin absorbing sheet body |
JP3934855B2 (en) | 2000-05-31 | 2007-06-20 | ユニ・チャーム株式会社 | Disposable diapers |
US20030208175A1 (en) | 2000-06-12 | 2003-11-06 | Gross James R. | Absorbent products with improved vertical wicking and rewet capability |
US8309789B2 (en) | 2000-06-13 | 2012-11-13 | Sca Hygiene Products Ab | Absorbent article |
FR2810234B1 (en) | 2000-06-14 | 2004-11-19 | Proteco | SINGLE-USE PANTY LAYER |
JP2001353174A (en) | 2000-06-16 | 2001-12-25 | Kao Corp | Absorbable article |
JP3933847B2 (en) | 2000-06-19 | 2007-06-20 | ユニ・チャーム株式会社 | Absorbent articles |
JP3725008B2 (en) | 2000-06-21 | 2005-12-07 | 花王株式会社 | Absorbent articles |
US8251965B2 (en) | 2000-07-21 | 2012-08-28 | The Procter And Gamble Company | Dark colored absorbent articles |
US6506961B1 (en) | 2000-07-24 | 2003-01-14 | Tyco Healthcare Retail Services Ag | Light incontinent product |
JP4115077B2 (en) | 2000-08-08 | 2008-07-09 | 花王株式会社 | Absorber and production method thereof |
US6689115B1 (en) | 2000-08-15 | 2004-02-10 | Kimberly-Clark Worldwide, Inc. | Absorbent garment with asymmetrical leg elastic spacing |
JP3781617B2 (en) | 2000-08-29 | 2006-05-31 | 花王株式会社 | Absorbent articles |
JP3967873B2 (en) | 2000-09-04 | 2007-08-29 | ユニ・チャーム株式会社 | Absorbent article using continuous filament and absorbent sheet |
JP2002065718A (en) | 2000-09-04 | 2002-03-05 | Idemitsu Unitech Co Ltd | Cold insulant and method of manufacturing cold insulant |
US6648871B2 (en) | 2000-09-18 | 2003-11-18 | Sca Hygiene Products Ab | Absorbent article and a method for its manufacture |
US6610904B1 (en) * | 2000-09-22 | 2003-08-26 | Tredegar Film Products Corporation | Acquisition distribution layer having void volumes for an absorbent article |
JP3850207B2 (en) | 2000-09-22 | 2006-11-29 | 花王株式会社 | Absorbent articles |
US7147628B2 (en) | 2000-10-02 | 2006-12-12 | Sca Hygiene Products Ab | Absorbent article with improved liquid-handling ability |
US20020121848A1 (en) | 2000-10-05 | 2002-09-05 | Chih-Kung Lee | Backlight module for electro-optical display |
JP5133474B2 (en) | 2000-10-11 | 2013-01-30 | 大王製紙株式会社 | Multifunctional multilayer absorber and method for producing the same |
JP3676219B2 (en) | 2000-10-19 | 2005-07-27 | 株式会社瑞光 | Wearing article and manufacturing apparatus thereof |
JP3820096B2 (en) | 2000-10-19 | 2006-09-13 | ユニ・チャーム株式会社 | Body fluid absorbing panel |
US6979564B2 (en) | 2000-10-20 | 2005-12-27 | Millennium Pharmaceuticals, Inc. | 80090, human fucosyltransferase nucleic acid molecules and uses thereof |
US6809158B2 (en) | 2000-10-20 | 2004-10-26 | Nippon Shokubai Co., Ltd. | Water-absorbing agent and process for producing the same |
US6605752B2 (en) | 2000-10-30 | 2003-08-12 | Sca Hygiene Products Ab | Absorbent product with improved instantaneous liquid adsorption, and improved fit |
SE517522C2 (en) | 2000-10-30 | 2002-06-11 | Sca Hygiene Prod Ab | Absorbent articles with channels in the absorption layer and compressed surface for high liquid absorption |
US6705465B2 (en) | 2000-11-15 | 2004-03-16 | Kimberly-Clark Worldwide, Inc. | Package for feminine care articles |
AU2002241483A1 (en) | 2000-11-20 | 2002-06-11 | The Procter And Gamble Company | Predictive method for polymers |
JP3987684B2 (en) | 2000-11-21 | 2007-10-10 | ユニ・チャーム株式会社 | Absorbent articles |
SG96660A1 (en) | 2000-11-21 | 2003-06-16 | Uni Charm Corp | Sanitary napkin |
JP3810999B2 (en) | 2000-11-24 | 2006-08-16 | ユニ・チャーム株式会社 | Disposable wearing items |
JP3717397B2 (en) | 2000-11-30 | 2005-11-16 | ユニ・チャーム株式会社 | Disposable diapers |
JP2002165832A (en) | 2000-11-30 | 2002-06-11 | Daio Paper Corp | Paper diaper |
JP3811000B2 (en) | 2000-11-30 | 2006-08-16 | ユニ・チャーム株式会社 | Disposable diapers |
JP4187180B2 (en) | 2000-12-01 | 2008-11-26 | 大王製紙株式会社 | Sanitary napkin |
JP2001198157A (en) | 2000-12-07 | 2001-07-24 | Kao Corp | Throwaway diaper |
US20030115969A1 (en) | 2000-12-15 | 2003-06-26 | Izumi Engineering Laboratory Co., Ltd | Ultrasonic flow meter |
JP4321961B2 (en) | 2000-12-18 | 2009-08-26 | 花王株式会社 | Method for producing particulate deposit |
US20020115972A1 (en) | 2000-12-20 | 2002-08-22 | Shmuel Dabi | Absorbent article |
US20010007065A1 (en) | 2000-12-22 | 2001-07-05 | Blanchard Stephen John | Sanitary napkin having multiple longitudinal hinges |
US20020102392A1 (en) | 2000-12-28 | 2002-08-01 | Kimberly-Clark Worldwide, Inc. | Flexible laminate structures having enclosed discrete regions of a material |
US20020095127A1 (en) | 2000-12-28 | 2002-07-18 | Kimberly-Clark Worldwide, Inc. | Controlled delamination of laminate structures having enclosed discrete regions of a material |
US7037571B2 (en) | 2000-12-28 | 2006-05-02 | Kimberly-Clark Worldwide, Inc. | Disposable shoe liner |
US6716205B2 (en) | 2000-12-28 | 2004-04-06 | Kimberly-Clark Worldwide, Inc. | Pant-like absorbent garment having tailored flap and leg elastic |
US20020133131A1 (en) | 2001-01-09 | 2002-09-19 | Krishnakumar Rangachari | Absorbent material incorporating synthetic fibers and process for making the material |
JP3811010B2 (en) | 2001-01-12 | 2006-08-16 | ユニ・チャーム株式会社 | Disposable wearing items |
JP3703723B2 (en) | 2001-01-19 | 2005-10-05 | ユニ・チャーム株式会社 | Disposable underwear |
JP3964624B2 (en) | 2001-01-23 | 2007-08-22 | ユニ・チャーム株式会社 | Disposable diapers |
JP3748813B2 (en) | 2001-01-29 | 2006-02-22 | 花王株式会社 | Absorbent articles |
US20040158212A1 (en) | 2003-02-10 | 2004-08-12 | The Procter & Gamble Company | Disposable absorbent article comprising a durable hydrophilic core wrap |
US6330735B1 (en) | 2001-02-16 | 2001-12-18 | Kimberly-Clark Worldwide, Inc. | Apparatus and process for forming a laid fibrous web with enhanced basis weight capability |
JP3801449B2 (en) | 2001-02-20 | 2006-07-26 | 花王株式会社 | Absorbent articles |
JP4840895B2 (en) | 2001-02-20 | 2011-12-21 | 株式会社日本吸収体技術研究所 | Liquid distribution unit and absorbent product comprising the same |
CN1188094C (en) | 2001-02-28 | 2005-02-09 | 株式会社日本吸收体技术研究所 | Absorption pad for incontinence |
US6717029B2 (en) | 2001-03-06 | 2004-04-06 | Paragon Trade Brands, Inc. | Absorbent article having an ideal core distribution and method of preparing same |
JP4458702B2 (en) | 2001-03-14 | 2010-04-28 | 花王株式会社 | Absorbent articles |
JP2002272769A (en) | 2001-03-19 | 2002-09-24 | Kao Corp | Absorbable article |
JP3737376B2 (en) | 2001-03-23 | 2006-01-18 | 花王株式会社 | Absorbent articles |
US20030088223A1 (en) | 2001-04-13 | 2003-05-08 | Kimberly-Clark Worldwide, Inc. | Passive bonds for personal care article |
US6972010B2 (en) | 2001-04-17 | 2005-12-06 | The Procter & Gamble Company | Absorbent article comprising an agent able to convey a perception to the wearer, without the need to create the external condition perceived |
SE0101393L (en) | 2001-04-20 | 2002-10-21 | Sca Hygiene Prod Ab | Methods of forming a fibrous web for use in absorbent articles and in accordance with the method produced fibrous web |
US6929629B2 (en) | 2001-04-20 | 2005-08-16 | Sca Hygiene Products Ab | Absorbent article with improved fit |
US6818166B2 (en) | 2001-04-20 | 2004-11-16 | Sca Hygiene Products Ab | Method of forming a fiber web for use in absorbent products, and fiber web produced according to the method |
JP3874626B2 (en) | 2001-04-26 | 2007-01-31 | 花王株式会社 | Pants-type absorbent article |
JP4388241B2 (en) | 2001-05-01 | 2009-12-24 | 大王製紙株式会社 | Absorbent articles |
JP4556017B2 (en) | 2001-05-02 | 2010-10-06 | 株式会社日本吸収体技術研究所 | Water-absorbing water-resistant sheet, method for producing the same, and absorbent product using the same |
JP3734720B2 (en) | 2001-05-18 | 2006-01-11 | ユニ・チャーム株式会社 | Pants-type disposable wearing articles |
JP4824882B2 (en) | 2001-05-24 | 2011-11-30 | ユニ・チャーム株式会社 | Laminated sheet |
JP4167406B2 (en) | 2001-05-30 | 2008-10-15 | 大王製紙株式会社 | Absorbent article and manufacturing method thereof |
ATE312888T1 (en) | 2001-06-02 | 2005-12-15 | Procter & Gamble | METHOD FOR PRINTING ADHESIVES, ADHESIVE ITEMS AND GRAVO ROLL |
US7163740B2 (en) | 2001-06-02 | 2007-01-16 | The Procter & Gamble Company | Process for printing adhesives, adhesive articles and printing equipment |
US6605070B2 (en) | 2001-06-29 | 2003-08-12 | The Procter & Gamble Company | Absorbent article having selectively changeable size adjustment |
MXPA03011679A (en) | 2001-07-02 | 2004-03-19 | Procter & Gamble | Absorbent article having extensibility at waist panel. |
JP3971136B2 (en) | 2001-07-12 | 2007-09-05 | ユニ・チャーム株式会社 | Absorbent articles |
JP3926587B2 (en) | 2001-07-12 | 2007-06-06 | ユニ・チャーム株式会社 | Absorbent articles |
JP4652626B2 (en) | 2001-07-16 | 2011-03-16 | 大王製紙株式会社 | Absorbent article and manufacturing method thereof |
TW552196B (en) | 2001-07-20 | 2003-09-11 | Clopay Corp | Laminated sheet and method of making same |
JP4246413B2 (en) | 2001-07-23 | 2009-04-02 | 王子製紙株式会社 | Sheet-like absorbent body and absorbent product using the same |
JP4638087B2 (en) | 2001-07-24 | 2011-02-23 | ユニ・チャーム株式会社 | Absorbent articles |
EP1414381A2 (en) | 2001-07-25 | 2004-05-06 | Tyco Healthcare Retail Group Inc. | Absorbent article provided with a belt |
JP4620299B2 (en) | 2001-07-30 | 2011-01-26 | ユニ・チャーム株式会社 | Sanitary napkin |
CN1617695A (en) | 2001-08-03 | 2005-05-18 | 旭化成生活制品株式会社 | Color masking component for use with feminine sanitary pad and the like |
US7795492B2 (en) | 2001-08-31 | 2010-09-14 | Sca Hygiene Products Ab | Absorbent article having openings in the absorbent body |
JP5027364B2 (en) | 2001-09-19 | 2012-09-19 | ユニ・チャーム株式会社 | Disposable diapers |
DE60118737T2 (en) | 2001-09-19 | 2006-10-19 | The Procter & Gamble Company, Cincinnati | Color printed multilayer structure, an absorbent article made therewith and method of making the same |
ATE287904T1 (en) | 2001-10-05 | 2005-02-15 | Basf Ag | METHOD FOR CROSSLINKING HYDROGELS WITH MORPHOLINE-2,3-DIONES |
JP3971150B2 (en) | 2001-10-23 | 2007-09-05 | ユニ・チャーム株式会社 | Absorbent article and container for absorbent article |
US6753455B2 (en) | 2001-10-26 | 2004-06-22 | Paragon Trade Brands, Inc. | Absorbent core attachment |
US6772708B2 (en) | 2001-10-30 | 2004-08-10 | The Procter And Gamble Company | Wetness indicator having improved colorant retention |
US20030088229A1 (en) | 2001-11-02 | 2003-05-08 | Andrew Baker | Absorbent article with bimodal acquisition layer |
US6840929B2 (en) | 2001-11-14 | 2005-01-11 | Zuiko Corporation | Disposable worn absorbent article including stand-up cuffs |
US6461034B1 (en) | 2001-11-14 | 2002-10-08 | V & P Scientific, Inc. | Use of a bubble paddle tumble stirrer to mix the contents of a vessel while the contents are being removed |
JP2003153955A (en) | 2001-11-22 | 2003-05-27 | Uni Charm Corp | Open type disposal diaper |
US6939914B2 (en) | 2002-11-08 | 2005-09-06 | Kimberly-Clark Worldwide, Inc. | High stiffness absorbent polymers having improved absorbency rates and method for making the same |
US6689934B2 (en) | 2001-12-14 | 2004-02-10 | Kimberly-Clark Worldwide, Inc. | Absorbent materials having improved fluid intake and lock-up properties |
US20030139715A1 (en) | 2001-12-14 | 2003-07-24 | Richard Norris Dodge | Absorbent materials having high stiffness and fast absorbency rates |
US6726668B2 (en) | 2001-12-14 | 2004-04-27 | Kimberly-Clark Worldwide, Inc. | Disposable absorbent article |
US20030139712A1 (en) | 2001-12-14 | 2003-07-24 | Dodge Richard Norris | Absorbent materials having improved fluid intake and lock-up properties |
US7323615B2 (en) | 2001-12-18 | 2008-01-29 | Sca Hygiene Products Ab | Absorbent article and method of production |
US6884238B2 (en) | 2001-12-19 | 2005-04-26 | Kimberly-Clark Worldwide, Inc. | Method of providing a series of disposable absorbent articles to consumers |
US7402157B2 (en) | 2001-12-19 | 2008-07-22 | The Procter & Gamble Company | Absorbent article having perception of depth |
US7270651B2 (en) | 2001-12-19 | 2007-09-18 | The Procter & Gamble Company | Absorbent article |
US7306582B2 (en) | 2001-12-19 | 2007-12-11 | The Procter & Gamble Company | Absorbent article |
AU2002359767A1 (en) | 2001-12-20 | 2003-07-09 | Kimberly-Clark Worldwide, Inc. | Absorbent article with stabilized absorbent structure |
US20030120249A1 (en) | 2001-12-20 | 2003-06-26 | Wulz Andrea Susan | Absorbent article having an insert providing for improved fluid distribution |
GB0130461D0 (en) | 2001-12-20 | 2002-02-06 | Scimat Ltd | An absorbent hygiene product |
JP3919638B2 (en) | 2001-12-20 | 2007-05-30 | 花王株式会社 | Absorbent articles |
US7189888B2 (en) | 2001-12-21 | 2007-03-13 | Kimberly-Clark Worldwide, Inc. | Nonabsorbent surge layer having discrete regions of superabsorbent and method for making |
US7799968B2 (en) | 2001-12-21 | 2010-09-21 | Kimberly-Clark Worldwide, Inc. | Sponge-like pad comprising paper layers and method of manufacture |
US7767875B2 (en) | 2001-12-31 | 2010-08-03 | Kimberly-Clark Worldwide, Inc. | Wetness indicator for alerting a wearer to urination |
US6802834B2 (en) | 2002-01-15 | 2004-10-12 | Kimberly-Clark Worldwide, Inc. | Absorbent article having discontinuous absorbent core |
US20050101929A1 (en) | 2002-01-17 | 2005-05-12 | Andrew Waksmundzki | Absorbent core with three-dimensional sub-layer |
US6682516B2 (en) | 2002-01-16 | 2004-01-27 | Paragon Trade Brands, Inc. | Leg gasketing index for absorbent undergarments |
US6923926B2 (en) | 2002-01-16 | 2005-08-02 | Paragon Trade Brands, Inc. | Method and apparatus for forming tow-based absorbent structures with a single casing sheet |
US20030135177A1 (en) | 2002-01-16 | 2003-07-17 | Andrew Baker | Absorbent articles containing multi-component core composite and methods of making same |
US20030135176A1 (en) | 2002-01-16 | 2003-07-17 | Troy Delzer | System and method for depositing particulate matter in absorbent cores |
US6832905B2 (en) | 2002-01-16 | 2004-12-21 | Paragon Trade Brands, Inc. | System and method for dry forming absorbent cores |
JP4051208B2 (en) | 2002-01-31 | 2008-02-20 | ユニ・チャーム株式会社 | Pants-type disposable wearing articles |
ZA200200977B (en) | 2002-02-04 | 2003-10-29 | Mcneil Ppc Inc | Sanitary napkin having multiple longitudinal hinges. |
CN2527254Y (en) | 2002-02-04 | 2002-12-25 | 福建恒安集团有限公司 | Disposable absorbent article with diffusible flow-guiding groove |
AU2003224607A1 (en) | 2002-02-05 | 2003-09-02 | Tredegar Film Products Corporation | Absorbent composition and method of assembling |
DE10204937A1 (en) | 2002-02-07 | 2003-08-21 | Stockhausen Chem Fab Gmbh | Process for post-crosslinking of a water absorbing polymer surface with a cyclic urea useful in foams, fibers, films, cables, especially sealing materials and liquid absorbing hygiene articles |
JP4061086B2 (en) | 2002-02-08 | 2008-03-12 | 大王製紙株式会社 | Sanitary napkin |
JP4035341B2 (en) | 2002-02-12 | 2008-01-23 | 大王製紙株式会社 | Sanitary napkin |
US7365238B2 (en) | 2002-02-19 | 2008-04-29 | The Procter And Gamble Company | Absorbent article having a dehydration indicator |
US20030158532A1 (en) | 2002-02-20 | 2003-08-21 | Magee Luke R. | Disposable absorbent article designed to facilitate an easy intuitive change |
JP4058281B2 (en) | 2002-03-12 | 2008-03-05 | 大王製紙株式会社 | Absorbent articles |
JP3953848B2 (en) | 2002-03-13 | 2007-08-08 | ユニ・チャーム株式会社 | Pants-type disposable diapers |
JP4124322B2 (en) | 2002-03-13 | 2008-07-23 | 大王製紙株式会社 | Absorbent articles |
EP1408903A2 (en) | 2002-03-21 | 2004-04-21 | Dow Global Technologies Inc. | Designing dry and porous absorbent composites containing super-absorbent polymers |
JP2003275237A (en) | 2002-03-22 | 2003-09-30 | Daio Paper Corp | Napkin for physiology |
JP4057321B2 (en) | 2002-03-25 | 2008-03-05 | ユニ・チャーム株式会社 | Pants-type disposable diapers |
JP3586256B2 (en) | 2002-04-01 | 2004-11-10 | ユニ・チャーム株式会社 | Method for producing disposable diaper having patterned sheet |
JP4261120B2 (en) | 2002-04-05 | 2009-04-30 | 株式会社日本吸収体技術研究所 | Absorber comprising bypass channel member and absorbent product using the same |
CN2535020Y (en) | 2002-04-13 | 2003-02-12 | 福建恒安集团有限公司 | Anti side-leakge sanitary napkin with U-shaped PE membrane |
CN2548609Y (en) | 2002-04-16 | 2003-05-07 | 福建恒安集团有限公司 | Side-leakageproof sanitary towel |
JP4226843B2 (en) | 2002-05-10 | 2009-02-18 | ユニ・チャーム株式会社 | Disposable diapers |
US20030225385A1 (en) | 2002-05-28 | 2003-12-04 | Glaug Frank S. | Absorbent article with multiple core |
EP1366825B1 (en) | 2002-05-28 | 2018-01-24 | The Procter & Gamble Company | Method and apparatus for creating a pulsed stream of particles |
DE10225943A1 (en) | 2002-06-11 | 2004-01-08 | Basf Ag | Process for the preparation of esters of polyalcohols |
BR0311498A (en) | 2002-06-11 | 2005-03-15 | Basf Ag | ester f, processes for preparing the same and a cross-linked hydrogel, polymer, cross-linked hydrogel, use of a polymer, composition of matter, and uses of a reaction mixture, and an ester |
AU2003238476A1 (en) | 2002-06-11 | 2003-12-22 | Basf Aktiengesellschaft | (meth)acrylic esters of polyalkoxylated trimethylolpropane |
US6880211B2 (en) | 2002-06-13 | 2005-04-19 | 3M Innovative Properties Company | Macro closure device for disposable articles |
US20030233082A1 (en) | 2002-06-13 | 2003-12-18 | The Procter & Gamble Company | Highly flexible and low deformation fastening device |
JP4495405B2 (en) | 2002-06-14 | 2010-07-07 | ユニ・チャーム株式会社 | Absorbent articles |
US20030236512A1 (en) | 2002-06-19 | 2003-12-25 | Baker Andrew A. | Absorbent core with folding zones for absorbency distribution |
JP3616077B2 (en) | 2002-07-09 | 2005-02-02 | 大王製紙株式会社 | Disposable diapers |
US20040015145A1 (en) | 2002-07-16 | 2004-01-22 | The Procter & Gamble Company | Absorbent article having a graphic visible through body contacting surface |
US7759540B2 (en) | 2002-07-23 | 2010-07-20 | Paragon Trade Brands, Llc | Absorbent articles containing absorbent cores having zoned absorbency and methods of making same |
US7219403B2 (en) | 2002-07-23 | 2007-05-22 | The Procter & Gamble Company | Fastening member comprising shaped tab |
US7001167B2 (en) | 2002-07-30 | 2006-02-21 | Kimberly-Clark Worldwide, Inc. | Apparatus and form for making an air formed fibrous web |
JP3878085B2 (en) | 2002-08-09 | 2007-02-07 | ユニ・チャーム株式会社 | Disposable body fluid absorbent article |
DE10239074A1 (en) | 2002-08-26 | 2004-03-11 | Basf Ag | Water-absorbing product, e.g. useful for making hygiene articles, comprises water-absorbing polymer particles and a nitrogen-containing polymer |
JP3779946B2 (en) | 2002-08-29 | 2006-05-31 | ピジョン株式会社 | Absorbent pad |
JP4160807B2 (en) | 2002-08-30 | 2008-10-08 | ユニ・チャーム株式会社 | Pants-type disposable wearing articles |
US8109915B2 (en) | 2002-08-30 | 2012-02-07 | Uni-Charm Corporation | Pull-on disposable wearing article |
JP4119718B2 (en) | 2002-08-31 | 2008-07-16 | ユニ・チャーム株式会社 | Pants-type disposable diapers |
US7550646B2 (en) | 2002-09-09 | 2009-06-23 | Uni-Charm Corporation | Absorbent article with resilient portion and method for manufacturing the same |
JP4180865B2 (en) | 2002-09-09 | 2008-11-12 | ユニ・チャーム株式会社 | Absorbent article with flexible shaft |
US20040064113A1 (en) | 2002-09-26 | 2004-04-01 | Erdman Carol L. | Disposable absorbent article with wetness/dryness indicator |
US6982052B2 (en) | 2002-09-26 | 2006-01-03 | Kimberly-Clark Worldwide, Inc. | Process and apparatus for air forming an article having a plurality of superimposed fibrous layers |
US6953451B2 (en) | 2002-09-30 | 2005-10-11 | Mcneil-Ppc, Inc. | Thin comfortable sanitary napkin having reduced bunching |
US20040064115A1 (en) | 2002-09-30 | 2004-04-01 | Arora Tarun K. | Disposable articles having a failure detection system |
US20040064116A1 (en) | 2002-09-30 | 2004-04-01 | Arora Tarun K. | Intravaginal disposable articles having a failure detection system |
DE60211902T2 (en) | 2002-09-30 | 2007-01-11 | The Procter & Gamble Company, Cincinnati | Hydrophilic nonwovens containing absorbent articles |
US20040064125A1 (en) | 2002-09-30 | 2004-04-01 | Justmann David A. | Pleated tissue and adhesive arrangement for the absorbent core of an extensible absorbent article |
US7067711B2 (en) | 2002-12-05 | 2006-06-27 | Uni-Charm Corporation | Elongated absorbent article |
JP4323786B2 (en) | 2002-12-05 | 2009-09-02 | ユニ・チャーム株式会社 | Absorbent article with vertically long compressed groove |
US7132585B2 (en) | 2002-12-05 | 2006-11-07 | Uni-Charm Corporation | Absorbent article with liquid acquisition layer |
JP4390445B2 (en) | 2002-12-05 | 2009-12-24 | ユニ・チャーム株式会社 | Long absorbent article |
JP4173723B2 (en) | 2002-12-05 | 2008-10-29 | ユニ・チャーム株式会社 | Absorbent articles |
JP4198978B2 (en) | 2002-12-05 | 2008-12-17 | ユニ・チャーム株式会社 | Long absorbent article |
MXPA02012811A (en) | 2002-12-19 | 2004-09-03 | Grupo P I Mabe Sa De C V | Disposable diaper having fastening strap. |
US7727217B2 (en) | 2002-12-20 | 2010-06-01 | Kimberly-Clark Worldwide, Inc | Absorbent article with unitary elastomeric waistband with multiple extension zones |
JP4426754B2 (en) | 2002-12-27 | 2010-03-03 | ユニ・チャーム株式会社 | Body fluid absorbent article indicator |
JP4324375B2 (en) | 2002-12-27 | 2009-09-02 | ユニ・チャーム株式会社 | Absorbent article provided with compressed groove and flexible part |
US7943813B2 (en) | 2002-12-30 | 2011-05-17 | Kimberly-Clark Worldwide, Inc. | Absorbent products with enhanced rewet, intake, and stain masking performance |
US20040127871A1 (en) | 2002-12-31 | 2004-07-01 | Odorzynski Thomas W. | Secondary absorbent article |
US7226880B2 (en) | 2002-12-31 | 2007-06-05 | Kimberly-Clark Worldwide, Inc. | Breathable, extensible films made with two-component single resins |
JP2004216082A (en) | 2003-01-10 | 2004-08-05 | Uni Charm Corp | Pants-type disposable article to wear |
JP4392170B2 (en) | 2003-01-17 | 2009-12-24 | ユニ・チャーム株式会社 | Disposable diapers |
JP4076450B2 (en) | 2003-01-21 | 2008-04-16 | 花王株式会社 | Absorbent articles |
US8247491B2 (en) | 2003-02-10 | 2012-08-21 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition and its production process |
US20040167489A1 (en) | 2003-02-14 | 2004-08-26 | Kellenberger Stanley R. | Compact absorbent article |
JP3769546B2 (en) | 2003-02-24 | 2006-04-26 | 大王製紙株式会社 | Disposable paper diapers |
JP2003265524A (en) | 2003-02-25 | 2003-09-24 | Kao Corp | Absorbent article |
US7686790B2 (en) | 2003-03-04 | 2010-03-30 | Kimberly-Clark Worldwide, Inc. | Nonlinear, undulating perimeter embossing in an absorbent article |
PT1609448E (en) | 2003-03-12 | 2010-04-29 | Livedo Corp | Disposable absorbent article |
US7850672B2 (en) * | 2003-03-26 | 2010-12-14 | Sca Hygiene Products Ab | Absorbent article comprising an absorbent structure |
SE0300878D0 (en) | 2003-03-26 | 2003-03-26 | Sca Hygiene Prod Ab | Absorbent article compressining and absorbent structure |
US20040193127A1 (en) | 2003-03-26 | 2004-09-30 | Sca Hygiene Products Ab | Absorbent article comprising an absorbent structure |
JP3877702B2 (en) | 2003-04-23 | 2007-02-07 | ピジョン株式会社 | Absorbent products |
JP3978406B2 (en) | 2003-04-24 | 2007-09-19 | ユニ・チャーム株式会社 | Disposable diapers |
US20040214499A1 (en) | 2003-04-25 | 2004-10-28 | Kimberly-Clark Worldwide, Inc. | Absorbent structure with superabsorbent material |
US8118799B2 (en) | 2003-05-05 | 2012-02-21 | Kimberly-Clark Worldwide, Inc. | Disposable garment having first and second attachment members |
JP4416431B2 (en) | 2003-05-09 | 2010-02-17 | 株式会社リブドゥコーポレーション | Disposable absorbent article |
JP2004337314A (en) | 2003-05-14 | 2004-12-02 | Kao Corp | Absorbent article and its manufacturing apparatus |
JP4393108B2 (en) | 2003-05-16 | 2010-01-06 | 花王株式会社 | Absorbent articles |
US8333749B2 (en) | 2003-05-20 | 2012-12-18 | Dsg Technology Holdings Ltd. | Disposable absorbent article with regions of varying elasticity |
JP4298377B2 (en) | 2003-05-22 | 2009-07-15 | ユニ・チャーム株式会社 | Disposable pants-type wearing articles |
US20040236455A1 (en) | 2003-05-22 | 2004-11-25 | Kimberly-Clark Worldwide, Inc. | Method of designing a product in a virtual environment |
JP4430338B2 (en) | 2003-05-27 | 2010-03-10 | ユニ・チャーム株式会社 | Absorbent articles |
CL2004001285A1 (en) | 2003-05-27 | 2005-04-15 | Procter & Gamble | A DISPOSABLE GARMENT THAT IS REMOVED AND SET, WITH OPENINGS FOR WAIST AND LEGS, WHICH INCLUDES; MAIN ABSORBENT BODY WITH UPPER LEAF, LOWER LEAF AND NUCELO; ELASTIC BELT SIMILAR TO A RING WITH CENTRAL AND SIDE PANEL; AND CAPE CUB |
JP4209719B2 (en) | 2003-05-28 | 2009-01-14 | 株式会社リブドゥコーポレーション | Disposable wearing items |
JP4476563B2 (en) | 2003-05-29 | 2010-06-09 | ユニ・チャーム株式会社 | Sanitary napkin |
JP4476611B2 (en) | 2003-05-29 | 2010-06-09 | ユニ・チャーム株式会社 | Sanitary napkin |
JP4421222B2 (en) | 2003-06-09 | 2010-02-24 | ユニ・チャーム株式会社 | Absorbent articles |
JP4313097B2 (en) | 2003-06-10 | 2009-08-12 | ユニ・チャーム株式会社 | Absorbent article and manufacturing method thereof |
US7754940B2 (en) | 2003-06-12 | 2010-07-13 | Johnson & Johnson Inc. | Thin sanitary napkin having protrusions |
US8211815B2 (en) | 2003-06-13 | 2012-07-03 | Kimberly-Clark Worldwide, Inc. | Absorbent structure having three-dimensional topography on upper and lower surfaces |
CA2432832A1 (en) | 2003-06-16 | 2004-12-16 | James G. Hildebrandt | Headphones for 3d sound |
JP4421223B2 (en) | 2003-06-20 | 2010-02-24 | ユニ・チャーム株式会社 | Sanitary napkin |
US7960469B2 (en) | 2003-06-24 | 2011-06-14 | Nippon Shokubai Co., Ltd. | Water absorbent resin composition and production method thereof |
EP1493453B1 (en) | 2003-06-30 | 2010-12-22 | The Procter & Gamble Company | Absorbent comprising coated super-absorbent polymer particles |
US7311968B2 (en) | 2004-06-30 | 2007-12-25 | The Procter & Gamble Company | Absorbent structures comprising coated super-absorbent polymer particles |
US7435244B2 (en) | 2003-07-01 | 2008-10-14 | Arquest, Inc. | Diaper design having zones of reduced stiffness and continuous breathability |
JP3691499B2 (en) | 2003-07-02 | 2005-09-07 | ユニ・チャーム株式会社 | Disposable pants-type wearing articles |
JP2005027068A (en) | 2003-07-03 | 2005-01-27 | Pioneer Electronic Corp | Video signal converting apparatus and method therefor |
DE10331456A1 (en) | 2003-07-10 | 2005-02-24 | Basf Ag | (Meth) acrylic esters of alkoxylated unsaturated polyol ethers and their preparation |
DE10331450A1 (en) | 2003-07-10 | 2005-01-27 | Basf Ag | (Meth) acrylic esters of monoalkoxylated polyols and their preparation |
JP2005057732A (en) | 2003-07-24 | 2005-03-03 | Ricoh Co Ltd | Image processing apparatus, image processing method and program |
DE10334271B4 (en) * | 2003-07-25 | 2006-02-23 | Stockhausen Gmbh | Process for the agglomeration of superabsorbent fine particles, superabsorbent particles obtainable therefrom, their use and composites containing them |
DE10334584A1 (en) | 2003-07-28 | 2005-02-24 | Basf Ag | Post crosslinking of water absorbing polymers, useful for hygiene articles and packaging, comprises treatment with a bicyclic amideacetal crosslinking agent with simultaneous or subsequent heating |
JP4325994B2 (en) | 2003-07-31 | 2009-09-02 | 株式会社リブドゥコーポレーション | Manufacturing method and apparatus for sheet-like body, and manufacturing method for disposable absorbent article using sheet-like body |
JP3822869B2 (en) | 2003-08-14 | 2006-09-20 | ユニ・チャーム株式会社 | Disposable diapers |
EP1656162B1 (en) | 2003-08-20 | 2006-12-20 | Tyco Healthcare Retail Services AG | Absorbent cores for absorbent articles and method for making same |
EP1518567B1 (en) | 2003-09-25 | 2017-06-28 | The Procter & Gamble Company | Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles |
JP3950098B2 (en) | 2003-09-30 | 2007-07-25 | 大王製紙株式会社 | Absorbent articles |
JP4012135B2 (en) | 2003-10-17 | 2007-11-21 | 大王製紙株式会社 | Disposable diapers |
US7160281B2 (en) | 2003-10-21 | 2007-01-09 | Kimberly-Clark Worldwide, Inc. | Absorbent article having an absorbent structure secured to a stretchable component of the article |
US7767876B2 (en) | 2003-10-30 | 2010-08-03 | The Procter & Gamble Company | Disposable absorbent article having a visibly highlighted wetness sensation member |
US7872168B2 (en) | 2003-10-31 | 2011-01-18 | Kimberely-Clark Worldwide, Inc. | Stretchable absorbent article |
JP4342330B2 (en) | 2003-11-14 | 2009-10-14 | ユニ・チャーム株式会社 | Disposable wearing items |
US7073373B2 (en) | 2003-11-24 | 2006-07-11 | Kimberly-Clark Worldwide, Inc. | Absorbent structure having enhanced intake performance characteristics and method for evaluating such characteristics |
DE10355401A1 (en) | 2003-11-25 | 2005-06-30 | Basf Ag | (Meth) acrylic esters of unsaturated amino alcohols and their preparation |
US7108759B2 (en) | 2003-12-19 | 2006-09-19 | Kimberly-Clark Worldwide, Inc. | Method for improved bond strength in an elastomeric material |
EP1547625A1 (en) | 2003-12-23 | 2005-06-29 | The Procter & Gamble Company | Superabsorbent material comprising multicomponent particles |
US20050148961A1 (en) | 2003-12-29 | 2005-07-07 | Sosalla Paula M. | Article featuring an interior graphic |
US8231590B2 (en) | 2003-12-30 | 2012-07-31 | Kimberly-Clark Worldwide, Inc. | Visually coordinated absorbent product |
US20050148258A1 (en) | 2003-12-31 | 2005-07-07 | Jayant Chakravarty | Absorbent structures having enhanced flexibility |
US7736351B2 (en) | 2004-02-02 | 2010-06-15 | The Procter & Gamble Company | Simple disposable absorbent article |
JP4162609B2 (en) | 2004-02-05 | 2008-10-08 | 花王株式会社 | Method for manufacturing absorbent article |
JP4177770B2 (en) | 2004-02-06 | 2008-11-05 | 白十字株式会社 | Disposable absorbent article and method for producing the same |
JP4532940B2 (en) | 2004-03-12 | 2010-08-25 | ユニ・チャーム株式会社 | Disposable wearing articles |
US7318820B2 (en) | 2004-03-12 | 2008-01-15 | The Procter & Gamble Company | Simple disposable absorbent article having breathable side barriers |
EP1588723B1 (en) | 2004-03-29 | 2009-06-03 | The Procter & Gamble Company | Absorbent member for absorbent articles comprising swellable polymers of high permeability which are capable of forming hydrogels |
US20050217791A1 (en) | 2004-03-31 | 2005-10-06 | Kimberly-Clark Worldwide, Inc. | Two-step registered printing |
JP4473032B2 (en) | 2004-04-12 | 2010-06-02 | ユニ・チャーム株式会社 | Disposable wearing items |
JP4845344B2 (en) | 2004-04-14 | 2011-12-28 | ユニ・チャーム株式会社 | Disposable diapers |
US7332642B2 (en) | 2004-04-19 | 2008-02-19 | The Procter & Gamble Company | Disposable absorbent articles having printed wetness indicators |
JP4410022B2 (en) | 2004-04-27 | 2010-02-03 | ユニ・チャーム株式会社 | Absorbent articles |
US8246594B2 (en) | 2004-04-30 | 2012-08-21 | Kimberly-Clark Worldwide, Inc. | Absorbent article having an absorbent structure configured for improved donning and lateral stretch distribution |
US7993319B2 (en) | 2004-04-30 | 2011-08-09 | Kimberly-Clark Worldwide, Inc. | Absorbent article having an absorbent structure configured for improved donning of the article |
US8167862B2 (en) | 2004-05-24 | 2012-05-01 | The Procter And Gamble Company | Absorbent article having a fit guide |
JP4599096B2 (en) | 2004-05-31 | 2010-12-15 | ユニ・チャーム株式会社 | Disposable wearing items |
US7884259B2 (en) | 2004-06-28 | 2011-02-08 | Daio Paper Corporation | Absorbent article |
US7717150B2 (en) | 2004-06-28 | 2010-05-18 | Daio Paper Corporation | Manufacturing facility of absorbent body, absorbent body and absorbent article |
WO2006006395A1 (en) | 2004-06-28 | 2006-01-19 | Daio Paper Corporation | Absorber and absorbent article |
US8684988B2 (en) | 2004-06-29 | 2014-04-01 | The Procter & Gamble Company | Disposable absorbent article having barrier cuff strips |
US6962578B1 (en) | 2004-06-29 | 2005-11-08 | The Procter & Gamble Company | Disposable absorbent article having backsheet strips |
WO2006004018A1 (en) | 2004-06-30 | 2006-01-12 | Daio Paper Corporation | Humor absorbent article and process for producing the same |
JP2006014792A (en) | 2004-06-30 | 2006-01-19 | Daiichi Eizai Kk | Absorbent implement |
EP1774935A1 (en) | 2004-06-30 | 2007-04-18 | Daio Paper Corporation | Paper diaper |
WO2006004017A1 (en) | 2004-06-30 | 2006-01-12 | Daio Paper Corporation | Humor absorbent article |
US7938813B2 (en) | 2004-06-30 | 2011-05-10 | Kimberly-Clark Worldwide, Inc. | Absorbent article having shaped absorbent core formed on a substrate |
US20060004334A1 (en) | 2004-06-30 | 2006-01-05 | Kimberly-Clark Worldwide, Inc. | Stabilized absorbent structures |
US7718844B2 (en) | 2004-06-30 | 2010-05-18 | Kimberly-Clark Worldwide, Inc. | Absorbent article having an interior graphic |
US7563257B2 (en) | 2004-07-09 | 2009-07-21 | Uni-Charm Corporation | Disposable wearing article |
JP4162637B2 (en) | 2004-07-09 | 2008-10-08 | 花王株式会社 | Absorbent article and manufacturing method thereof |
EP2286776B1 (en) | 2004-07-28 | 2017-07-12 | The Procter and Gamble Company | Process for producing absorbent core structures |
DE602004026566D1 (en) | 2004-07-28 | 2010-05-27 | Procter & Gamble | Indirect pressure from AMG |
JP4230971B2 (en) | 2004-08-12 | 2009-02-25 | ユニ・チャーム株式会社 | Excrement disposal pad and pants with the pad |
US20060184149A1 (en) | 2004-08-20 | 2006-08-17 | Kao Corporation | Absorbent article |
JP2006110329A (en) | 2004-08-20 | 2006-04-27 | Kao Corp | Absorptive article |
JP4092319B2 (en) | 2004-09-06 | 2008-05-28 | 大王製紙株式会社 | Disposable diapers |
JP4455241B2 (en) | 2004-09-14 | 2010-04-21 | ユニ・チャーム株式会社 | Sanitary napkin |
US7695461B2 (en) | 2004-09-16 | 2010-04-13 | Mcneil-Ppc, Inc. | Drapeable sanitary absorbent napkin |
US7594904B2 (en) | 2004-09-16 | 2009-09-29 | Mcneil-Ppc, Inc. | Drapeable sanitary absorbent napkin |
US20060069367A1 (en) | 2004-09-29 | 2006-03-30 | Andrew Waksmundzki | Absorbent core having two or more types of superabsorbent |
JP4683892B2 (en) | 2004-09-30 | 2011-05-18 | ユニ・チャーム株式会社 | Absorbent pad |
US7285178B2 (en) | 2004-09-30 | 2007-10-23 | Kimberly-Clark Worldwide, Inc. | Method and apparatus for making a wrapped absorbent core |
JP4459013B2 (en) | 2004-10-20 | 2010-04-28 | 花王株式会社 | Absorbent articles |
JP2006116036A (en) | 2004-10-21 | 2006-05-11 | Kao Corp | Absorbent article |
JP4577766B2 (en) | 2004-11-15 | 2010-11-10 | 株式会社リブドゥコーポレーション | Absorbent articles |
JP2008521481A (en) | 2004-11-30 | 2008-06-26 | エスセーアー・ハイジーン・プロダクツ・アーベー | Absorption article |
JP4540104B2 (en) | 2004-11-30 | 2010-09-08 | 大王製紙株式会社 | Absorbent articles |
US20070239125A9 (en) | 2004-12-08 | 2007-10-11 | Tyco Healthcare Retail Group, Ag | Absorbent article with multi-zone acquisition |
KR20070092707A (en) | 2004-12-10 | 2007-09-13 | 니폰 쇼쿠바이 컴파니 리미티드 | Method for production of modified water absorbent resin |
US8039685B2 (en) | 2004-12-15 | 2011-10-18 | The Procter & Gamble Company | Absorbent article having a functional enhancement indicator |
JP4647667B2 (en) | 2004-12-23 | 2011-03-09 | エスセーアー・ハイジーン・プロダクツ・アーベー | Absorption article |
JP4712374B2 (en) | 2004-12-28 | 2011-06-29 | ユニ・チャーム株式会社 | Sanitary napkin |
JP4648698B2 (en) | 2004-12-28 | 2011-03-09 | ユニ・チャーム株式会社 | Sanitary napkin |
WO2006071145A1 (en) | 2004-12-29 | 2006-07-06 | Sca Hygiene Products Ab | Absorbent article having a pocket for receiving and storing faeces and method for its manufacture |
DE602005020412D1 (en) | 2005-01-11 | 2010-05-20 | Procter & Gamble | Dense connection of the sheath of an absorbent core |
US20060173433A1 (en) | 2005-02-01 | 2006-08-03 | Laumer Jason M | Absorbent articles comprising polyamine-coated superabsorbent polymers |
CN101115508A (en) | 2005-02-04 | 2008-01-30 | 宝洁公司 | Absorbent structure with improved water-absorbing material |
CN101115513A (en) | 2005-02-04 | 2008-01-30 | 宝洁公司 | Absorbent structure with improved water-swellable material |
JP4870365B2 (en) | 2005-02-23 | 2012-02-08 | ユニ・チャーム株式会社 | Sanitary napkin |
JP5046488B2 (en) | 2005-02-24 | 2012-10-10 | 花王株式会社 | Absorbent articles |
US20060206091A1 (en) | 2005-03-10 | 2006-09-14 | Tyco Healthcare Retail Services Ag | Absorbent article having a channeled absorbent layer and method of making the same |
US20060202380A1 (en) | 2005-03-11 | 2006-09-14 | Rachelle Bentley | Method of making absorbent core structures with undulations |
JP4492957B2 (en) | 2005-03-24 | 2010-06-30 | 大王製紙株式会社 | Absorbent articles |
JP4653537B2 (en) | 2005-03-29 | 2011-03-16 | ユニ・チャーム株式会社 | Absorbent articles |
US7763004B2 (en) | 2005-05-18 | 2010-07-27 | The Procter & Gamble Company | Disposable absorbent article having layered containment pockets |
JP4727494B2 (en) | 2005-05-19 | 2011-07-20 | ユニ・チャーム株式会社 | Pants-type disposable wearing articles |
US20060264861A1 (en) | 2005-05-20 | 2006-11-23 | Lavon Gary D | Disposable absorbent article having breathable side flaps |
JP4484765B2 (en) | 2005-05-23 | 2010-06-16 | 花王株式会社 | Absorbent articles |
US20060271010A1 (en) | 2005-05-24 | 2006-11-30 | Lavon Gary D | Loincloth diaper |
JP4322228B2 (en) | 2005-05-30 | 2009-08-26 | 花王株式会社 | Sanitary napkin |
US8187239B2 (en) | 2005-05-31 | 2012-05-29 | The Procter & Gamble Company | Side notched folded diaper |
US7435316B2 (en) | 2005-06-08 | 2008-10-14 | The Procter & Gamble Company | Embossing process including discrete and linear embossing elements |
JP4352027B2 (en) | 2005-06-13 | 2009-10-28 | 大王製紙株式会社 | Absorbent articles |
WO2006134906A1 (en) | 2005-06-14 | 2006-12-21 | Daio Paper Corporation | Absorbent article |
JP4954502B2 (en) | 2005-06-14 | 2012-06-20 | 大王製紙株式会社 | Absorbent articles |
EP1862155A1 (en) | 2006-05-29 | 2007-12-05 | Paper-Pak Sweden Ab | Absorbent pad |
DE102005030182A1 (en) | 2005-06-29 | 2007-01-04 | Paul Hartmann Ag | Disposable absorbent hygiene product in pant form |
JP4652911B2 (en) | 2005-07-01 | 2011-03-16 | ユニ・チャーム株式会社 | Absorbent articles |
JP4540563B2 (en) | 2005-07-08 | 2010-09-08 | 花王株式会社 | Absorbent articles |
WO2007008125A1 (en) | 2005-07-13 | 2007-01-18 | Sca Hygiene Products Ab | Absorbent article having improved fit |
JP4658197B2 (en) | 2005-07-26 | 2011-03-23 | ザ プロクター アンド ギャンブル カンパニー | A flexible absorbent article with further improved body fit |
US7931636B2 (en) | 2005-08-04 | 2011-04-26 | The Procter & Gamble Company | Simple disposable absorbent article |
CN101242795B (en) | 2005-08-19 | 2012-06-20 | 宝洁公司 | Absorbent article |
US20070049897A1 (en) | 2005-08-24 | 2007-03-01 | Lavon Gary D | Disposable pull-on garment having frangible belt |
US20070044903A1 (en) | 2005-08-30 | 2007-03-01 | Kimberly-Clark Worldwide, Inc. | Method and apparatus for making absorbent article with core wrap |
US20070049892A1 (en) | 2005-08-30 | 2007-03-01 | Kimberly-Clark Worldwide, Inc. | Absorbent article with core wrap |
ITBO20050551A1 (en) | 2005-09-09 | 2007-03-10 | Gdm Spa | UNIT AND METHOD FOR THE FORMATION OF ABSORBENT PADDING PADS |
EP1767177B1 (en) | 2005-09-23 | 2016-06-15 | The Procter & Gamble Company | Apertured liquid acquisition layer with caliper recovery |
DE602005012121D1 (en) | 2005-09-23 | 2009-02-12 | Procter & Gamble | Perforated cover and fluid receiving layer |
JP4913381B2 (en) | 2005-09-26 | 2012-04-11 | ユニ・チャーム株式会社 | Absorbent articles |
JP4627472B2 (en) | 2005-09-28 | 2011-02-09 | 株式会社リブドゥコーポレーション | Men's urine absorbent product |
JP4627473B2 (en) | 2005-09-28 | 2011-02-09 | 株式会社リブドゥコーポレーション | Men's urine absorbent product |
JP4693574B2 (en) | 2005-09-29 | 2011-06-01 | 花王株式会社 | Absorbent articles |
JP4619253B2 (en) | 2005-09-29 | 2011-01-26 | 花王株式会社 | Absorbent articles |
US20070078422A1 (en) | 2005-09-30 | 2007-04-05 | Tyco Healthcare Retail Services Ag | Absorbent article configured for controlled deformation and method of making the same |
JP4889276B2 (en) | 2005-10-13 | 2012-03-07 | 花王株式会社 | Absorbent articles |
US8114059B2 (en) | 2005-10-14 | 2012-02-14 | The Procter & Gamble Company | Absorbent article including barrier leg cuff structure and absorbent core with superabsorbent material |
WO2007049725A1 (en) | 2005-10-26 | 2007-05-03 | Daio Paper Corporation | Absorbable article |
CN101299979B (en) | 2005-11-02 | 2012-04-18 | 尤妮佳股份有限公司 | Absorbent article |
JP4953618B2 (en) | 2005-11-02 | 2012-06-13 | ユニ・チャーム株式会社 | Absorbent articles |
US7737324B2 (en) | 2005-11-23 | 2010-06-15 | The Procter & Gamble Company | Disposable absorbent article having deployable chassis ears |
JP5024918B2 (en) | 2005-11-25 | 2012-09-12 | 大王製紙株式会社 | Absorbent articles |
US20070123834A1 (en) | 2005-11-28 | 2007-05-31 | Kimberly-Clark Worldwide, Inc. | Flexible absorbent article |
JP4587947B2 (en) | 2005-12-08 | 2010-11-24 | ユニ・チャーム株式会社 | Absorbent articles |
JP2007152033A (en) | 2005-12-08 | 2007-06-21 | Uni Charm Corp | Absorbent article |
EP1959903B1 (en) | 2005-12-15 | 2014-02-12 | SCA Hygiene Products AB | Absorbent article |
EP1965740B1 (en) | 2005-12-21 | 2017-03-29 | SCA Hygiene Products AB | Absorbent article comprising a liquid-permeable material layer |
JP4739942B2 (en) | 2005-12-22 | 2011-08-03 | ユニ・チャーム株式会社 | Absorbent articles |
JP4974524B2 (en) | 2005-12-27 | 2012-07-11 | 花王株式会社 | Absorbent articles |
US20070156110A1 (en) | 2006-01-05 | 2007-07-05 | Kevin Thyfault | Diaper with baffle overflow protection |
JP4757039B2 (en) | 2006-01-25 | 2011-08-24 | 花王株式会社 | Absorbent articles |
JP2007202575A (en) | 2006-01-30 | 2007-08-16 | Livedo Corporation | Absorbing laminated body and disposable absorbing article |
US8148598B2 (en) | 2006-02-22 | 2012-04-03 | Dsg Technology Holdings Limited | Method of making an absorbent composite and absorbent articles employing the same |
US7803145B2 (en) | 2006-03-16 | 2010-09-28 | Mcneil-Ppc, Inc. | Drapeable absorbent article |
US20070219521A1 (en) | 2006-03-17 | 2007-09-20 | The Procter & Gamble Company | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
JP2007267763A (en) | 2006-03-30 | 2007-10-18 | Kao Corp | Absorbent article and manufacturing method thereof |
US8664467B2 (en) | 2006-03-31 | 2014-03-04 | The Procter & Gamble Company | Absorbent articles with feedback signal upon urination |
JP5074703B2 (en) | 2006-04-06 | 2012-11-14 | ユニ・チャーム株式会社 | Disposable diapers |
JP4836639B2 (en) | 2006-04-12 | 2011-12-14 | 花王株式会社 | Absorbent articles |
US7718021B2 (en) | 2006-04-21 | 2010-05-18 | Kimberly-Clark Worldwide, Inc. | Method for making a stabilized absorbent composite |
US8198506B2 (en) | 2006-04-21 | 2012-06-12 | Kimberly-Clark Worldwide, Inc. | Stabilized absorbent composite |
JP5154143B2 (en) | 2006-06-02 | 2013-02-27 | ユニ・チャーム株式会社 | Absorbent articles |
JP4890947B2 (en) | 2006-06-02 | 2012-03-07 | ユニ・チャーム株式会社 | Absorbent articles |
WO2007141744A1 (en) | 2006-06-09 | 2007-12-13 | The Procter & Gamble Company | Stretch laminate, method of making, and absorbent article |
JP5123512B2 (en) | 2006-06-23 | 2013-01-23 | ユニ・チャーム株式会社 | Non-woven |
KR20090042241A (en) | 2006-07-05 | 2009-04-29 | 유니챰 가부시키가이샤 | Absorptive article |
JP5656403B2 (en) | 2006-07-19 | 2015-01-21 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Method for producing water-absorbing polymer particles having high permeability by polymerization of droplets of monomer solution |
BRPI0714450B1 (en) | 2006-07-19 | 2018-02-14 | Basf Se | PROCESS FOR PREPARING WATER-ABSORBING POLYMERIC PARTICULARS, WATER-ABSORBING POLYMERIC PARTICULARS, USE OF POLYMERIC PARTICULES, AND HYGIENE ARTICLES |
MY157687A (en) | 2006-07-19 | 2016-07-15 | Basf Se | Process for preparing water-absorbing polymer particle having high permeability by polymerization |
DE102006035945B4 (en) | 2006-07-31 | 2011-03-03 | Harald Dr. Schmidt | Dehydrable personal care article, method of dehydrating a personal care article and device of dehydrating a personal care article |
WO2008018922A1 (en) | 2006-08-04 | 2008-02-14 | Litvay John D | Absorbent product with dehydration detection system |
US7910797B2 (en) | 2006-09-18 | 2011-03-22 | The Procter & Gamble Company | Absorbent articles having a sensation aspect |
JP4785693B2 (en) | 2006-09-27 | 2011-10-05 | 花王株式会社 | Absorbent articles |
JP2008104850A (en) | 2006-09-29 | 2008-05-08 | Toyo Ink Mfg Co Ltd | Wetness indicator composition |
JP4439504B2 (en) | 2006-10-05 | 2010-03-24 | 花王株式会社 | Sanitary napkin |
JP4315970B2 (en) | 2006-10-05 | 2009-08-19 | 花王株式会社 | Absorbent articles |
JP5080189B2 (en) | 2006-10-06 | 2012-11-21 | 花王株式会社 | Sanitary napkin |
JP2008093289A (en) | 2006-10-13 | 2008-04-24 | Kao Corp | Absorbent article |
JP4889451B2 (en) | 2006-11-09 | 2012-03-07 | 花王株式会社 | Absorbent articles |
US8173858B2 (en) | 2006-11-22 | 2012-05-08 | Uni-Charm Corporation | Absorptive article and method of producing the same |
US8998871B2 (en) | 2006-11-22 | 2015-04-07 | Uni-Charm Corporation | Absorbent article with compressed channel portions |
JP5054963B2 (en) | 2006-11-27 | 2012-10-24 | ユニ・チャーム株式会社 | Absorbent articles |
US8258367B2 (en) | 2006-11-29 | 2012-09-04 | The Procter & Gamble Company | Disposable absorbent articles having an interior design signal |
JP2008136739A (en) | 2006-12-04 | 2008-06-19 | Kao Corp | Absorbent article |
CA2670783A1 (en) | 2006-12-07 | 2008-06-12 | Uni-Charm Corporation | Absorbing article |
JP4776516B2 (en) | 2006-12-11 | 2011-09-21 | 花王株式会社 | Absorbent articles |
MY150090A (en) | 2006-12-12 | 2013-11-29 | Uni Charm Corp | Composite sheet and absorbent article using the composite sheet |
WO2008072675A1 (en) | 2006-12-13 | 2008-06-19 | Uni-Charm Corporation | Absorbent article |
JP4931572B2 (en) | 2006-12-18 | 2012-05-16 | 花王株式会社 | Disposable diapers |
JP4789793B2 (en) | 2006-12-20 | 2011-10-12 | 花王株式会社 | Absorbent articles |
RU2434618C2 (en) | 2006-12-28 | 2011-11-27 | Дайо Пейпер Корпорейшн | Disposable diaper |
JP5105884B2 (en) | 2007-01-17 | 2012-12-26 | 花王株式会社 | Absorbent articles |
JP4364247B2 (en) | 2007-02-05 | 2009-11-11 | ユニ・チャーム株式会社 | Absorbent articles |
JP4825149B2 (en) | 2007-02-16 | 2011-11-30 | ユニ・チャーム株式会社 | Disposable body fluid treatment article |
US7736688B2 (en) | 2007-02-23 | 2010-06-15 | Procter & Gamble | Printed web and method for making |
US7935207B2 (en) | 2007-03-05 | 2011-05-03 | Procter And Gamble Company | Absorbent core for disposable absorbent article |
US20080221539A1 (en) | 2007-03-05 | 2008-09-11 | Jean Jianqun Zhao | Absorbent core for disposable absorbent article |
US8502013B2 (en) | 2007-03-05 | 2013-08-06 | The Procter And Gamble Company | Disposable absorbent article |
US7935099B2 (en) | 2007-03-14 | 2011-05-03 | The Procter & Gamble Company | Absorbent article with patterned SBS based adhesive |
ES2455500T3 (en) | 2007-03-26 | 2014-04-15 | Fameccanica.Data S.P.A. | Absorbent element for hygienic products, which has expandable cavities containing superabsorbent material and manufacturing process |
JP4922802B2 (en) | 2007-03-26 | 2012-04-25 | ユニ・チャーム株式会社 | Absorbent articles |
JP5060815B2 (en) | 2007-03-30 | 2012-10-31 | ユニ・チャーム株式会社 | Absorbent articles |
US7914723B2 (en) | 2007-04-24 | 2011-03-29 | Ahlstrom Corporation | Nonwoven bonding patterns producing fabrics with improved abrasion resistance and softness |
JP4261593B2 (en) | 2007-04-27 | 2009-04-30 | ユニ・チャーム株式会社 | Absorbent articles |
US8383877B2 (en) | 2007-04-28 | 2013-02-26 | Kimberly-Clark Worldwide, Inc. | Absorbent composites exhibiting stepped capacity behavior |
US20080281287A1 (en) | 2007-05-08 | 2008-11-13 | Marcelo Ana Maria Elena R | Sanitary napkin including body-facing protrusions for preventing side leakage and obliquely arranged embossed channels |
AU2007353890B2 (en) | 2007-05-21 | 2013-01-10 | Essity Hygiene And Health Aktiebolag | Absorbent article with improved fit |
ATE513536T1 (en) | 2007-05-25 | 2011-07-15 | Procter & Gamble | ITEM FOR FEMALE HYGIENE WITH PRINTED PATTERN AND EMBOSSED PATTERN |
JP4754528B2 (en) | 2007-05-28 | 2011-08-24 | ユニ・チャーム株式会社 | Absorbent articles |
JP5007156B2 (en) | 2007-05-29 | 2012-08-22 | 大王製紙株式会社 | Absorbent articles |
JP5007157B2 (en) | 2007-05-31 | 2012-08-22 | 大王製紙株式会社 | Absorbent articles |
CN101795648A (en) | 2007-06-12 | 2010-08-04 | 德科技控股有限公司 | Absorbent article with a slit absorbent core |
EP2157956B1 (en) | 2007-06-18 | 2013-07-17 | The Procter and Gamble Company | Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material |
CN101677891B (en) | 2007-06-18 | 2013-11-27 | 宝洁公司 | Tri-folded disposable absorbent article, packaged absorbent article, and array of packaged absorbent articles with substantially continuously distributed absorbent particulate polymer material |
CN101677890A (en) | 2007-06-18 | 2010-03-24 | 宝洁公司 | Disposable absorbent article with enhanced absorption properties with substantially continuously distributed absorbent particulate polymer material |
MX2009013907A (en) | 2007-06-18 | 2010-04-09 | Procter & Gamble | Disposable absorbent article with improved acquisition system with substantially continuously distributed absorbent particulate polymer material. |
US20080312620A1 (en) | 2007-06-18 | 2008-12-18 | Gregory Ashton | Better Fitting Disposable Absorbent Article With Absorbent Particulate Polymer Material |
DE112008000013T5 (en) | 2007-06-18 | 2009-04-16 | The Procter & Gamble Company, Cincinnati | Better disposable absorbent article having substantially continuously dispersed polymer particle absorbent material |
US20080312628A1 (en) | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Sealed Absorbent Core With Absorbent Particulate Polymer Material |
US8017827B2 (en) | 2007-06-18 | 2011-09-13 | The Procter & Gamble Company | Disposable absorbent article with enhanced absorption properties |
JP4540126B2 (en) | 2007-06-28 | 2010-09-08 | 大王製紙株式会社 | Individual absorbent articles |
JP5123583B2 (en) | 2007-06-29 | 2013-01-23 | ユニ・チャーム株式会社 | Absorbent articles |
JP5089269B2 (en) | 2007-06-29 | 2012-12-05 | 大王製紙株式会社 | Absorbent pad and absorbent article |
US7942858B2 (en) | 2007-07-03 | 2011-05-17 | Mcneil-Ppc, Inc. | Sanitary napkin including body-facing protrusions and arcuately arranged embossed channels |
SA08290402B1 (en) * | 2007-07-04 | 2014-05-22 | نيبون شوكوباي كو. ، ليمتد | Particulate Water Absorbing Agent and Manufacturing Method of Same |
ATE553735T1 (en) | 2007-07-05 | 2012-05-15 | Sca Hygiene Prod Ab | ABSORBENT ITEM |
JP5054454B2 (en) | 2007-07-25 | 2012-10-24 | 王子ネピア株式会社 | Absorbent articles |
JP5210565B2 (en) | 2007-07-30 | 2013-06-12 | ユニ・チャーム株式会社 | Absorbent articles |
CN101377571A (en) | 2007-08-28 | 2009-03-04 | 鸿富锦精密工业(深圳)有限公司 | Stereo projection optical system |
GB2452260A (en) | 2007-08-28 | 2009-03-04 | Simon Rhys David | Nappy having an uneven outer surface when wet |
JP5053765B2 (en) | 2007-09-04 | 2012-10-17 | 花王株式会社 | Single body of sanitary napkin |
JP5043569B2 (en) | 2007-09-04 | 2012-10-10 | 花王株式会社 | Sanitary napkin |
JP4481325B2 (en) | 2007-09-06 | 2010-06-16 | 花王株式会社 | Sanitary napkin |
JP5139017B2 (en) | 2007-09-26 | 2013-02-06 | ユニ・チャーム株式会社 | Absorbent articles |
US8360977B2 (en) | 2007-09-27 | 2013-01-29 | Baxter International Inc. | Continuity circuits for detecting access disconnection |
JP5129537B2 (en) | 2007-09-28 | 2013-01-30 | 大王製紙株式会社 | Absorbent articles |
JP5129536B2 (en) | 2007-09-28 | 2013-01-30 | 大王製紙株式会社 | Sanitary napkin |
JP5043591B2 (en) | 2007-10-22 | 2012-10-10 | 花王株式会社 | Sanitary napkin |
JP5084442B2 (en) | 2007-10-25 | 2012-11-28 | 花王株式会社 | Sanitary napkin |
US20090112173A1 (en) | 2007-10-30 | 2009-04-30 | Kofi Ayensu Bissah | Absorbent article including an absorbent layer having a plurality of spaced beam elements |
US20090112175A1 (en) | 2007-10-30 | 2009-04-30 | Kofi Ayensu Bissah | Absorbent article including an absorbent layer having a plurality of spaced beam elements |
JP5132264B2 (en) | 2007-11-07 | 2013-01-30 | 花王株式会社 | Absorbent articles |
JP4801035B2 (en) | 2007-11-30 | 2011-10-26 | 大王製紙株式会社 | Absorbent article and manufacturing method thereof |
JP5084476B2 (en) | 2007-12-05 | 2012-11-28 | 花王株式会社 | Absorbent articles |
JP5070022B2 (en) | 2007-12-10 | 2012-11-07 | 花王株式会社 | Absorbent articles |
JP2009142401A (en) | 2007-12-12 | 2009-07-02 | Kao Corp | Absorbent article |
US20090157022A1 (en) | 2007-12-13 | 2009-06-18 | Kimberly-Clark Worldwide, Inc. | Absorbent articles having a wetness indicator |
EP2235093B1 (en) | 2007-12-19 | 2015-04-22 | Basf Se | Process for producing surface-crosslinked superabsorbents |
CN101903001A (en) | 2007-12-21 | 2010-12-01 | Sca卫生用品公司 | Absorbent article with ventilated topsheet |
JP4969437B2 (en) | 2007-12-28 | 2012-07-04 | 花王株式会社 | Absorbent articles |
JP4615026B2 (en) | 2008-01-18 | 2011-01-19 | 花王株式会社 | Absorbent articles |
JP5091698B2 (en) | 2008-01-30 | 2012-12-05 | ユニ・チャーム株式会社 | Absorbent articles |
JP5164602B2 (en) | 2008-02-25 | 2013-03-21 | ユニ・チャーム株式会社 | Absorbent articles |
KR20100126761A (en) | 2008-02-29 | 2010-12-02 | 유니 참 코포레이션 | Absorptive article |
JP2009201878A (en) | 2008-02-29 | 2009-09-10 | Uni Charm Corp | Absorbent article |
JP5383064B2 (en) | 2008-03-04 | 2014-01-08 | ユニ・チャーム株式会社 | Absorbent article with pattern |
JP5383063B2 (en) | 2008-03-04 | 2014-01-08 | ユニ・チャーム株式会社 | Absorbent articles |
JP5185665B2 (en) | 2008-03-14 | 2013-04-17 | ユニ・チャーム株式会社 | Absorbent articles |
US20090240220A1 (en) | 2008-03-20 | 2009-09-24 | Kimberly-Clark Worldwide, Inc | Compressed Substrates Configured to Deliver Active Agents |
JP5075703B2 (en) | 2008-03-26 | 2012-11-21 | 王子ネピア株式会社 | Absorbent articles |
JP5328203B2 (en) | 2008-03-31 | 2013-10-30 | ユニ・チャーム株式会社 | Disposable absorbent wearing articles |
JP5279318B2 (en) | 2008-03-31 | 2013-09-04 | ユニ・チャーム株式会社 | Absorbent article and manufacturing method thereof |
JP5730013B2 (en) | 2008-04-25 | 2015-06-03 | 株式会社日本触媒 | Polyacrylic acid (salt) water-absorbing resin and method for producing the same |
JP5264270B2 (en) | 2008-04-28 | 2013-08-14 | 花王株式会社 | Absorbent articles |
WO2009134780A1 (en) | 2008-04-29 | 2009-11-05 | The Procter & Gamble Company | Process for making an absorbent core with strain resistant core cover |
US9044359B2 (en) | 2008-04-29 | 2015-06-02 | The Procter & Gamble Company | Disposable absorbent article with absorbent particulate polymer material distributed for improved isolation of body exudates |
JP5258379B2 (en) | 2008-05-15 | 2013-08-07 | ユニ・チャーム株式会社 | Absorbent articles |
JP5197147B2 (en) | 2008-05-15 | 2013-05-15 | ユニ・チャーム株式会社 | Absorbent articles |
JP5258380B2 (en) | 2008-05-15 | 2013-08-07 | ユニ・チャーム株式会社 | Absorbent articles |
JP5075980B2 (en) | 2008-05-28 | 2012-11-21 | ユニ・チャーム株式会社 | Absorbent article and sanitary napkin |
US20090299312A1 (en) | 2008-05-30 | 2009-12-03 | Kimberly-Clark Worldwide, Inc. | Twisted, Compressed Substrates as Wetness Indicators in Absorbent Articles |
JP5189901B2 (en) | 2008-06-06 | 2013-04-24 | 花王株式会社 | Absorbent articles |
JP5173616B2 (en) | 2008-06-10 | 2013-04-03 | 花王株式会社 | Absorbent articles |
CN102065816A (en) | 2008-06-13 | 2011-05-18 | 宝洁公司 | Better fitting diaper or pant with absorbent particulate polymer material and preformed crotch |
JP5572928B2 (en) | 2008-07-25 | 2014-08-20 | 住友金属鉱山株式会社 | Method for hydrometallizing nickel oxide ore |
JP2010017342A (en) | 2008-07-10 | 2010-01-28 | Oji Nepia Co Ltd | Absorbent article |
JP5230289B2 (en) | 2008-07-18 | 2013-07-10 | 大王製紙株式会社 | Absorbent articles |
CN201263750Y (en) | 2008-08-07 | 2009-07-01 | 江苏紫荆花纺织科技股份有限公司 | Feminine napkin |
JP2010046155A (en) | 2008-08-19 | 2010-03-04 | Kami Shoji Kk | Disposable diaper |
JP5175147B2 (en) | 2008-08-29 | 2013-04-03 | 花王株式会社 | Absorbent articles |
JP5306753B2 (en) | 2008-09-12 | 2013-10-02 | ユニ・チャーム株式会社 | Body fluid absorbent article |
AU2009292460B2 (en) | 2008-09-12 | 2015-04-02 | Unicharm Corporation | Absorbent article |
JP5328273B2 (en) | 2008-09-17 | 2013-10-30 | ユニ・チャーム株式会社 | Body fluid absorbent article |
JP5336138B2 (en) | 2008-09-26 | 2013-11-06 | 花王株式会社 | Absorbent articles |
JP5305812B2 (en) | 2008-09-30 | 2013-10-02 | 大王製紙株式会社 | Absorbent articles |
JP4937225B2 (en) | 2008-10-02 | 2012-05-23 | ユニ・チャーム株式会社 | Sanitary napkin |
JP5306773B2 (en) | 2008-10-29 | 2013-10-02 | ユニ・チャーム株式会社 | Liquid absorbing structure for worn articles |
JP5250386B2 (en) | 2008-10-30 | 2013-07-31 | 花王株式会社 | Absorbent article and manufacturing method thereof |
JP5270301B2 (en) | 2008-10-30 | 2013-08-21 | 花王株式会社 | Absorbent article and manufacturing method thereof |
US8205066B2 (en) | 2008-10-31 | 2012-06-19 | Convey Computer | Dynamically configured coprocessor for different extended instruction set personality specific to application program with shared memory storing instructions invisibly dispatched from host processor |
JP5384909B2 (en) | 2008-11-07 | 2014-01-08 | ユニ・チャーム株式会社 | Liquid absorbing structure and wearing article including the same |
JP5243195B2 (en) | 2008-11-17 | 2013-07-24 | 花王株式会社 | Absorbent articles |
JP5384915B2 (en) | 2008-11-19 | 2014-01-08 | ユニ・チャーム株式会社 | Wearing article |
JP5199040B2 (en) | 2008-11-21 | 2013-05-15 | 花王株式会社 | Absorbent article and manufacturing method thereof |
JP5329930B2 (en) | 2008-12-03 | 2013-10-30 | 花王株式会社 | Absorbent article and manufacturing method thereof |
JP5243212B2 (en) | 2008-12-03 | 2013-07-24 | 花王株式会社 | Absorbent articles |
JP5590790B2 (en) | 2008-12-04 | 2014-09-17 | 大王製紙株式会社 | Absorbent articles |
JP5452910B2 (en) | 2008-12-08 | 2014-03-26 | 花王株式会社 | Absorbent articles |
JP5319263B2 (en) | 2008-12-12 | 2013-10-16 | 花王株式会社 | Absorbent articles |
JP5503867B2 (en) | 2008-12-15 | 2014-05-28 | 花王株式会社 | Absorbent article and manufacturing method thereof |
WO2010071508A1 (en) | 2008-12-16 | 2010-06-24 | Sca Hygiene Products Ab | Absorbent article with improved waste containment |
JP5317685B2 (en) | 2008-12-25 | 2013-10-16 | ユニ・チャーム株式会社 | Absorbent articles |
JP5294837B2 (en) | 2008-12-25 | 2013-09-18 | ユニ・チャーム株式会社 | Absorbent articles |
JP5455363B2 (en) | 2008-12-25 | 2014-03-26 | ユニ・チャーム株式会社 | Thin absorbent article |
CN102317329B (en) | 2009-02-17 | 2014-10-08 | 株式会社日本触媒 | Polyacrylic acid-based water-absorbing resin powder and method for producing the same |
JP5407413B2 (en) | 2009-02-25 | 2014-02-05 | 王子ホールディングス株式会社 | Disposable diapers |
JP5544100B2 (en) | 2009-02-27 | 2014-07-09 | 大王製紙株式会社 | Absorbent articles |
JP5243308B2 (en) | 2009-03-05 | 2013-07-24 | 花王株式会社 | Absorbent articles |
BRPI1006461A2 (en) | 2009-03-19 | 2018-02-27 | Uni-Charm Corporation | Absorptive article |
JP5414099B2 (en) * | 2009-03-31 | 2014-02-12 | ユニ・チャーム株式会社 | Absorbent articles |
JP4850272B2 (en) | 2009-05-29 | 2012-01-11 | 大王製紙株式会社 | Absorbent articles |
JP5815916B2 (en) | 2009-03-31 | 2015-11-17 | ユニ・チャーム株式会社 | Absorbent articles |
US8283516B2 (en) | 2009-04-01 | 2012-10-09 | Litvay John D | Absorbent product with low dryness index |
GB0906056D0 (en) | 2009-04-08 | 2009-05-20 | Brightwake Ltd | Absorbent wound dressing for wrapping around jointed limbs |
EP2238957A1 (en) | 2009-04-10 | 2010-10-13 | The Procter & Gamble Company | Absorbent core |
JP5602382B2 (en) | 2009-04-10 | 2014-10-08 | ユニ・チャーム株式会社 | Absorbent articles |
US8927801B2 (en) | 2009-04-13 | 2015-01-06 | The Procter & Gamble Company | Absorbent articles comprising wetness indicators |
US8034991B2 (en) | 2009-04-29 | 2011-10-11 | Johnson & Johnson Ind. E Com. Ltda | Absorbent article including a plurality of longitudinally extending channels |
US8975466B2 (en) | 2009-04-29 | 2015-03-10 | Eveready Battery Company, Inc. | Absorbent article including a plurality of longitudinally extending channels |
US8124828B2 (en) | 2009-05-19 | 2012-02-28 | The Procter & Gamble Company | Attachment areas for wearable absorbent articles |
EP2432511B1 (en) | 2009-05-20 | 2013-07-24 | Basf Se | Water-absorbent storage layers |
JP5775250B2 (en) | 2009-05-28 | 2015-09-09 | 王子ホールディングス株式会社 | Method for manufacturing absorbent article |
US20100305537A1 (en) | 2009-06-02 | 2010-12-02 | Gregory Ashton | Better Fitting Diaper Or Pant With Absorbent Particulate Polymer Material And Preformed Crotch |
US20100312208A1 (en) | 2009-06-03 | 2010-12-09 | Eric Bryan Bond | Fluid Permeable Structured Fibrous Web |
JP5444864B2 (en) | 2009-06-15 | 2014-03-19 | 王子ホールディングス株式会社 | Absorbent articles |
JP5390976B2 (en) | 2009-07-31 | 2014-01-15 | 大王製紙株式会社 | Absorbent articles |
US8764719B2 (en) | 2009-09-04 | 2014-07-01 | Johnson & Johnson Ind. E Com. Ltda | Absorbent article including an absorbent core layer having a material free zone and a transfer layer arranged below the absorbent core layer |
JP2011067484A (en) | 2009-09-28 | 2011-04-07 | Kao Corp | Absorbent article |
JP2011072720A (en) | 2009-10-01 | 2011-04-14 | Livedo Corporation | Absorbent article |
KR101651675B1 (en) | 2009-10-30 | 2016-08-29 | 유한킴벌리 주식회사 | Absorbent article with annular absorbent member |
JP5548431B2 (en) | 2009-11-13 | 2014-07-16 | 花王株式会社 | Absorbent articles |
JP5566666B2 (en) | 2009-11-13 | 2014-08-06 | ユニ・チャーム株式会社 | Absorbent articles |
JP5411663B2 (en) | 2009-11-17 | 2014-02-12 | 花王株式会社 | Absorbent articles |
JP5258736B2 (en) | 2009-11-30 | 2013-08-07 | ユニ・チャーム株式会社 | Disposable diapers |
EP2329803B1 (en) | 2009-12-02 | 2019-06-19 | The Procter & Gamble Company | Apparatus and method for transferring particulate material |
JP5374345B2 (en) | 2009-12-09 | 2013-12-25 | 花王株式会社 | Sanitary napkin |
JP5340903B2 (en) | 2009-12-10 | 2013-11-13 | 株式会社リブドゥコーポレーション | Absorbent articles |
US20110144602A1 (en) | 2009-12-11 | 2011-06-16 | Andrew Mark Long | Absorbent Article With Shorter Rise And Tactile Training Cue |
JP5341738B2 (en) | 2009-12-15 | 2013-11-13 | 花王株式会社 | Absorbent articles |
US20110152813A1 (en) | 2009-12-17 | 2011-06-23 | Daniel Lee Ellingson | Absorbent Article with Channel Portion |
JP5394909B2 (en) | 2009-12-18 | 2014-01-22 | 白十字株式会社 | Disposable absorbent article |
JP5475431B2 (en) | 2009-12-22 | 2014-04-16 | 花王株式会社 | Absorbent articles |
JP5548439B2 (en) | 2009-12-22 | 2014-07-16 | 花王株式会社 | Absorbent articles |
JP5016020B2 (en) | 2009-12-25 | 2012-09-05 | 花王株式会社 | Cage sheet |
JP4969640B2 (en) | 2009-12-25 | 2012-07-04 | 花王株式会社 | Absorbent articles |
JP5113146B2 (en) | 2009-12-25 | 2013-01-09 | 花王株式会社 | Sanitary napkin |
JP5070275B2 (en) | 2009-12-25 | 2012-11-07 | 花王株式会社 | Absorbent article surface sheet |
JP4914487B2 (en) | 2009-12-25 | 2012-04-11 | 花王株式会社 | Absorbent articles |
JP5457829B2 (en) | 2009-12-28 | 2014-04-02 | ユニ・チャーム株式会社 | Disposable wearing items |
US8052454B2 (en) | 2009-12-31 | 2011-11-08 | Hon Hai Precision Ind. Co., Ltd. | Electrical connector with improved feature for securing solder ball thereon |
US9549858B2 (en) | 2010-01-06 | 2017-01-24 | Ching-Yun Morris Yang | Ultra-thin absorbent article |
CN201591689U (en) | 2010-01-19 | 2010-09-29 | 重庆丝爽卫生用品有限公司 | Novel sanitary napkin |
JP5503988B2 (en) | 2010-01-29 | 2014-05-28 | 大王製紙株式会社 | Absorbent articles |
JP5530733B2 (en) | 2010-01-29 | 2014-06-25 | 大王製紙株式会社 | Absorbent articles |
JP5575496B2 (en) | 2010-02-03 | 2014-08-20 | 花王株式会社 | Absorbent articles |
JP4979780B2 (en) | 2010-02-09 | 2012-07-18 | 花王株式会社 | Sanitary napkin |
JP2013518701A (en) | 2010-02-11 | 2013-05-23 | ザ プロクター アンド ギャンブル カンパニー | Absorbent article with fluid treatment zone |
JP5649313B2 (en) | 2010-02-26 | 2015-01-07 | ユニ・チャーム株式会社 | Absorbent article and method for manufacturing absorbent article |
US20130060218A1 (en) | 2010-03-23 | 2013-03-07 | Jun Kudo | Absorbent article |
JP5665338B2 (en) | 2010-03-24 | 2015-02-04 | ユニ・チャーム株式会社 | Body fluid treatment article and method for producing the same |
JP5391140B2 (en) | 2010-04-30 | 2014-01-15 | ユニ・チャーム株式会社 | Absorbent articles |
US8186296B2 (en) | 2010-05-05 | 2012-05-29 | The Procter & Gamble Company | Methods and apparatus for applying adhesives in patterns to an advancing substrate |
JP5504049B2 (en) | 2010-05-17 | 2014-05-28 | 株式会社リブドゥコーポレーション | Diapers |
JP5624801B2 (en) | 2010-05-20 | 2014-11-12 | 花王株式会社 | Absorbent articles |
JP5383589B2 (en) | 2010-05-20 | 2014-01-08 | ユニ・チャーム株式会社 | Body fluid absorber and method for producing the same |
WO2011150955A1 (en) | 2010-05-31 | 2011-12-08 | Sca Hygiene Products Ab | Disposable absorbent article and set for forming an absorbent article |
JP5737873B2 (en) | 2010-06-30 | 2015-06-17 | ユニ・チャーム株式会社 | Disposable diapers |
JP2010221067A (en) | 2010-07-09 | 2010-10-07 | Uni Charm Corp | Absorbent article |
WO2012009591A1 (en) | 2010-07-15 | 2012-01-19 | The Procter & Gamble Company | Absorbent core |
JP4980450B2 (en) | 2010-07-26 | 2012-07-18 | ユニ・チャーム株式会社 | Disposable absorbent article |
JP5619516B2 (en) | 2010-08-04 | 2014-11-05 | 古河電気工業株式会社 | Optical fiber |
JP5800520B2 (en) | 2010-09-16 | 2015-10-28 | ユニ・チャーム株式会社 | Body fluid absorbent article |
US8710293B2 (en) | 2010-09-21 | 2014-04-29 | Basf Se | Ultrathin fluid-absorbent cores |
JP5769398B2 (en) | 2010-09-29 | 2015-08-26 | ユニ・チャーム株式会社 | Disposable wearing items |
JP5773604B2 (en) | 2010-09-30 | 2015-09-02 | ユニ・チャーム株式会社 | Absorbent articles and disposable diapers |
JP5602568B2 (en) | 2010-09-30 | 2014-10-08 | ユニ・チャーム株式会社 | Disposable wearing items |
JP5627978B2 (en) | 2010-09-30 | 2014-11-19 | ユニ・チャーム株式会社 | Disposable wearing items |
JP5847999B2 (en) | 2010-09-30 | 2016-01-27 | ユニ・チャーム株式会社 | Pants-type diapers |
JP4855533B2 (en) | 2010-10-05 | 2012-01-18 | ユニ・チャーム株式会社 | Absorbent articles |
JP2011000480A (en) | 2010-10-05 | 2011-01-06 | Uni Charm Corp | Absorptive article |
JP5031082B2 (en) | 2010-10-12 | 2012-09-19 | ユニ・チャーム株式会社 | Method for manufacturing absorbent article |
ES2668649T3 (en) | 2010-10-13 | 2018-05-21 | Drylock Technologies Nv | Absorbent structure |
JP4971491B2 (en) | 2010-10-15 | 2012-07-11 | ユニ・チャーム株式会社 | Sanitary napkin |
JP5868110B2 (en) | 2010-10-18 | 2016-02-24 | 花王株式会社 | Absorbent articles |
JP5688271B2 (en) | 2010-11-10 | 2015-03-25 | 花王株式会社 | Disposable diapers |
JP5042351B2 (en) | 2010-11-17 | 2012-10-03 | 花王株式会社 | Absorbent articles |
JP5679777B2 (en) | 2010-11-19 | 2015-03-04 | ユニ・チャーム株式会社 | Absorbent articles |
US20120136329A1 (en) | 2010-11-30 | 2012-05-31 | Sca Hygiene Products Ab | Absorbent article with an acquisition distribution layer with channels |
JP5701027B2 (en) | 2010-11-30 | 2015-04-15 | ユニ・チャーム株式会社 | Disposable wearing items |
JP5715806B2 (en) | 2010-11-30 | 2015-05-13 | 花王株式会社 | Disposable diapers |
KR101803594B1 (en) | 2010-11-30 | 2017-12-01 | 킴벌리-클라크 월드와이드, 인크. | Absorbent article having asymmetric printed patterns for providing a functional cue |
JP5766944B2 (en) | 2010-12-16 | 2015-08-19 | 花王株式会社 | Absorbent articles |
MY164278A (en) | 2010-12-21 | 2017-11-30 | Kao Corp | Absorptive article |
US20120165771A1 (en) | 2010-12-22 | 2012-06-28 | Kimberly-Clark Worldwide, Inc. | Absorbent Articles With Multiple Active Graphics |
JP5697439B2 (en) | 2010-12-27 | 2015-04-08 | ユニ・チャーム株式会社 | Absorbent article package and method for folding absorbent article package |
JP5783719B2 (en) | 2010-12-28 | 2015-09-24 | ユニ・チャーム株式会社 | Body fluid absorbent article including body fluid absorbent core |
JP2012152471A (en) | 2011-01-27 | 2012-08-16 | Unicharm Corp | Pad-shaped absorbent article |
JP5769432B2 (en) | 2011-01-27 | 2015-08-26 | ユニ・チャーム株式会社 | Water-absorbent article having a pad form |
JP5390550B2 (en) | 2011-02-28 | 2014-01-15 | 大王製紙株式会社 | Disposable diapers |
JP5695445B2 (en) | 2011-02-28 | 2015-04-08 | ユニ・チャーム株式会社 | Absorbent articles |
JP5760515B2 (en) | 2011-03-02 | 2015-08-12 | 王子ホールディングス株式会社 | Absorbent articles |
JP5818483B2 (en) | 2011-03-31 | 2015-11-18 | ユニ・チャーム株式会社 | Water-absorbing articles |
US8884769B2 (en) | 2011-04-05 | 2014-11-11 | Guy R. Novak | Dimensionally-sensitive moisture sensor and an alarm system for an absorbent article |
JP2012223231A (en) | 2011-04-15 | 2012-11-15 | Kao Corp | Disposable diaper |
JP5922339B2 (en) | 2011-04-15 | 2016-05-24 | 花王株式会社 | Disposable diapers |
PL2532328T3 (en) | 2011-06-10 | 2014-07-31 | Procter & Gamble | Method and apparatus for making absorbent structures with absorbent material |
EP2532334B1 (en) | 2011-06-10 | 2016-10-12 | The Procter and Gamble Company | Absorbent core for disposable absorbent article |
PL2532332T5 (en) | 2011-06-10 | 2018-07-31 | The Procter And Gamble Company | Disposable diaper having reduced attachment between absorbent core and backsheet |
EP2723292A1 (en) | 2011-06-21 | 2014-04-30 | The Procter and Gamble Company | Absorbent article with waistband having contraction |
JP5851128B2 (en) | 2011-06-27 | 2016-02-03 | ユニ・チャーム株式会社 | Disposable wearing items |
JP5085770B2 (en) | 2011-06-27 | 2012-11-28 | 大王製紙株式会社 | Absorbent articles |
JP5885963B2 (en) | 2011-08-11 | 2016-03-16 | ユニ・チャーム株式会社 | Disposable wearing items |
US9681996B2 (en) | 2011-08-11 | 2017-06-20 | 3M Innovative Properties Company | Wetness sensors |
US10828204B2 (en) | 2011-09-08 | 2020-11-10 | Curt G. Joa, Inc. | Apparatus and method for forming absorbent cores |
JP5814063B2 (en) | 2011-09-30 | 2015-11-17 | ユニ・チャーム株式会社 | Disposable wearing items |
JP6129191B2 (en) | 2011-10-18 | 2017-05-17 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Fluid absorbent article |
EP2586409A1 (en) | 2011-10-24 | 2013-05-01 | Bostik SA | New absorbent article and process for making it |
EP2586410A1 (en) | 2011-10-24 | 2013-05-01 | Bostik SA | Novel process for preparing an absorbent article |
JP6324724B2 (en) | 2011-11-15 | 2018-05-16 | 株式会社日本触媒 | Water-absorbing agent composition, production method thereof, and storage and inventory method thereof |
CN107080619A (en) | 2011-11-21 | 2017-08-22 | 宝洁公司 | Absorbent article with improved absorbent properties |
JP6222886B2 (en) | 2011-11-25 | 2017-11-01 | ユニ・チャーム株式会社 | Absorbent article and manufacturing method thereof |
JP6045795B2 (en) | 2012-02-23 | 2016-12-14 | 株式会社リブドゥコーポレーション | Water absorbing body and absorbent article using the same |
KR101657487B1 (en) | 2012-03-15 | 2016-09-19 | 다이오세이시가부시끼가이샤 | Absorber article |
JP5270776B2 (en) | 2012-03-30 | 2013-08-21 | 大王製紙株式会社 | Sanitary napkin |
EP2679209B1 (en) | 2012-06-28 | 2015-03-04 | The Procter & Gamble Company | Absorbent articles with improved core |
EP2679210B1 (en) | 2012-06-28 | 2015-01-28 | The Procter & Gamble Company | Absorbent articles with improved core |
EP2905072B1 (en) | 2012-10-03 | 2018-05-30 | Nippon Shokubai Co., Ltd. | Absorbent and manufacturing method therefor |
WO2014062550A1 (en) | 2012-10-15 | 2014-04-24 | The Procter & Gamble Company | Method for evaluating absorbency of an absorbent article |
US20140121625A1 (en) | 2012-10-31 | 2014-05-01 | Kimberly-Clark Worldwide, Inc. | Absorbent Article |
US9474660B2 (en) | 2012-10-31 | 2016-10-25 | Kimberly-Clark Worldwide, Inc. | Absorbent article with a fluid-entangled body facing material including a plurality of hollow projections |
JP5255150B1 (en) | 2012-11-09 | 2013-08-07 | ユニ・チャーム株式会社 | Disposable diapers |
WO2014078247A2 (en) | 2012-11-13 | 2014-05-22 | The Procter & Gamble Company | Absorbent articles with channels and signals |
JP5291238B1 (en) | 2012-11-27 | 2013-09-18 | ユニ・チャーム株式会社 | Disposable diapers |
US8979815B2 (en) | 2012-12-10 | 2015-03-17 | The Procter & Gamble Company | Absorbent articles with channels |
PL2740449T3 (en) | 2012-12-10 | 2019-07-31 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
EP2740450A1 (en) | 2012-12-10 | 2014-06-11 | The Procter & Gamble Company | Absorbent core with high superabsorbent material content |
PL2740452T3 (en) | 2012-12-10 | 2022-01-31 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US9216116B2 (en) | 2012-12-10 | 2015-12-22 | The Procter & Gamble Company | Absorbent articles with channels |
US9216118B2 (en) | 2012-12-10 | 2015-12-22 | The Procter & Gamble Company | Absorbent articles with channels and/or pockets |
ITBO20130176A1 (en) | 2013-04-18 | 2014-10-19 | Gdm Spa | ABSORBENT HYGIENIC ITEM AND MACHINE TO REALIZE THIS ITEM. |
PL3254656T3 (en) | 2013-06-14 | 2022-01-10 | The Procter & Gamble Company | Absorbent article and absorbent core forming channels when wet |
US20150065981A1 (en) | 2013-08-27 | 2015-03-05 | The Procter & Gamble Company | Absorbent Articles With Channels |
US9987176B2 (en) | 2013-08-27 | 2018-06-05 | The Procter & Gamble Company | Absorbent articles with channels |
EP3046526B1 (en) | 2013-09-16 | 2018-04-11 | The Procter and Gamble Company | Absorbent articles with channels and signals |
EP2851048B1 (en) | 2013-09-19 | 2018-09-05 | The Procter and Gamble Company | Absorbent cores having material free areas |
EP2886093B1 (en) | 2013-12-19 | 2016-09-21 | The Procter and Gamble Company | Absorbent Article comprising one or more colored areas |
US9789009B2 (en) | 2013-12-19 | 2017-10-17 | The Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
US20150250663A1 (en) | 2014-03-06 | 2015-09-10 | The Procter & Gamble Company | Three-dimensional substrates |
CN106061454A (en) | 2014-03-06 | 2016-10-26 | 宝洁公司 | Three-dimensional substrates |
EP2944376B1 (en) | 2014-05-13 | 2019-11-13 | The Procter and Gamble Company | Agglomerated superabsorbent polymer particles |
WO2016040091A1 (en) | 2014-09-12 | 2016-03-17 | The Procter & Gamble Company | Process for making an absorbent article comprising a topsheet/acquisition layer laminate |
-
2014
- 2014-05-13 EP EP14168157.7A patent/EP2851048B1/en not_active Revoked
- 2014-05-13 EP EP18159482.1A patent/EP3351225B1/en active Active
- 2014-08-19 WO PCT/US2014/051584 patent/WO2015041784A1/en active Application Filing
- 2014-08-19 US US14/462,621 patent/US10130527B2/en active Active
- 2014-08-19 FR FR1457871A patent/FR3010632B1/en active Active
- 2014-08-19 RU RU2016113767A patent/RU2016113767A/en not_active Application Discontinuation
- 2014-08-19 BR BR112016006099A patent/BR112016006099A2/en not_active IP Right Cessation
- 2014-08-19 JP JP2016541985A patent/JP6490694B2/en active Active
- 2014-08-19 MX MX2016003666A patent/MX2016003666A/en unknown
- 2014-08-19 CA CA2924800A patent/CA2924800A1/en not_active Abandoned
- 2014-08-19 CN CN201480051587.7A patent/CN105579008B/en active Active
-
2016
- 2016-03-18 CL CL2016000640A patent/CL2016000640A1/en unknown
-
2018
- 2018-10-15 US US16/159,780 patent/US11154437B2/en active Active
-
2021
- 2021-09-23 US US17/482,657 patent/US11944526B2/en active Active
-
2024
- 2024-03-04 US US18/594,123 patent/US20240207109A1/en active Pending
Patent Citations (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3911173A (en) | 1973-02-05 | 1975-10-07 | Usm Corp | Adhesive process |
US3848594A (en) | 1973-06-27 | 1974-11-19 | Procter & Gamble | Tape fastening system for disposable diaper |
US3860003A (en) | 1973-11-21 | 1975-01-14 | Procter & Gamble | Contractable side portions for disposable diaper |
US3860003B2 (en) | 1973-11-21 | 1990-06-19 | Contractable side portions for disposable diaper | |
US3860003B1 (en) | 1973-11-21 | 1989-04-18 | ||
US3929135A (en) | 1974-12-20 | 1975-12-30 | Procter & Gamble | Absorptive structure having tapered capillaries |
US4342314A (en) | 1979-03-05 | 1982-08-03 | The Procter & Gamble Company | Resilient plastic web exhibiting fiber-like properties |
US4324246A (en) | 1980-05-12 | 1982-04-13 | The Procter & Gamble Company | Disposable absorbent article having a stain resistant topsheet |
US4463045A (en) | 1981-03-02 | 1984-07-31 | The Procter & Gamble Company | Macroscopically expanded three-dimensional plastic web exhibiting non-glossy visible surface and cloth-like tactile impression |
US4808178A (en) | 1981-07-17 | 1989-02-28 | The Proctor & Gamble Company | Disposable absorbent article having elasticized flaps provided with leakage resistant portions |
US4515595A (en) | 1982-11-26 | 1985-05-07 | The Procter & Gamble Company | Disposable diapers with elastically contractible waistbands |
US4710189A (en) | 1983-03-18 | 1987-12-01 | The Procter & Gamble Company | Shaped disposable diapers with shaped elastically contractible waistbands |
EP0149880A2 (en) | 1983-05-26 | 1985-07-31 | BASF Aktiengesellschaft | Non-woven webs of synthetic fibres consolidated by means of carboxylated styrene-butadiene latices, and disposable articles made therefrom |
US4909803A (en) | 1983-06-30 | 1990-03-20 | The Procter And Gamble Company | Disposable absorbent article having elasticized flaps provided with leakage resistant portions |
US4731066A (en) | 1984-03-30 | 1988-03-15 | Personal Products Company | Elastic disposable diaper |
US4573986A (en) | 1984-09-17 | 1986-03-04 | The Procter & Gamble Company | Disposable waste-containment garment |
US4681793A (en) | 1985-05-31 | 1987-07-21 | The Procter & Gamble Company | Non-occluding, liquid-impervious, composite backsheet for absorptive devices |
US4629643A (en) | 1985-05-31 | 1986-12-16 | The Procter & Gamble Company | Microapertured polymeric web exhibiting soft and silky tactile impression |
US4609518A (en) | 1985-05-31 | 1986-09-02 | The Procter & Gamble Company | Multi-phase process for debossing and perforating a polymeric web to coincide with the image of one or more three-dimensional forming structures |
US4695278A (en) | 1985-10-11 | 1987-09-22 | The Procter & Gamble Company | Absorbent article having dual cuffs |
US4662875A (en) | 1985-11-27 | 1987-05-05 | The Procter & Gamble Company | Absorbent article |
US4662875B1 (en) | 1985-11-27 | 1989-04-18 | ||
US4699622A (en) | 1986-03-21 | 1987-10-13 | The Procter & Gamble Company | Disposable diaper having an improved side closure |
US4795454A (en) | 1986-10-10 | 1989-01-03 | The Procter & Gamble Company | Absorbent article having leakage-resistant dual cuffs |
US4795454C1 (en) | 1986-10-10 | 2001-06-26 | Procter & Gamble | Absorbent article having leakage resistant dual cuffs |
US4846815A (en) | 1987-01-26 | 1989-07-11 | The Procter & Gamble Company | Disposable diaper having an improved fastening device |
US4842666A (en) | 1987-03-07 | 1989-06-27 | H. B. Fuller Company | Process for the permanent joining of stretchable threadlike or small ribbonlike elastic elements to a flat substrate, as well as use thereof for producing frilled sections of film or foil strip |
US4842666B1 (en) | 1987-03-07 | 1992-10-13 | Fuller H B Co | |
US4785996A (en) | 1987-04-23 | 1988-11-22 | Nordson Corporation | Adhesive spray gun and nozzle attachment |
US4963140A (en) | 1987-12-17 | 1990-10-16 | The Procter & Gamble Company | Mechanical fastening systems with disposal means for disposable absorbent articles |
US4894060A (en) | 1988-01-11 | 1990-01-16 | Minnesota Mining And Manufacturing Company | Disposable diaper with improved hook fastener portion |
US5006394A (en) | 1988-06-23 | 1991-04-09 | The Procter & Gamble Company | Multilayer polymeric film |
US4946527A (en) | 1989-09-19 | 1990-08-07 | The Procter & Gamble Company | Pressure-sensitive adhesive fastener and method of making same |
US5137537A (en) | 1989-11-07 | 1992-08-11 | The Procter & Gamble Cellulose Company | Absorbent structure containing individualized, polycarboxylic acid crosslinked wood pulp cellulose fibers |
US5300565A (en) | 1990-04-02 | 1994-04-05 | The Procter & Gamble Company | Particulate, absorbent, polymeric compositions containing interparticle crosslinked aggregates |
US5149334A (en) | 1990-04-02 | 1992-09-22 | The Procter & Gamble Company | Absorbent articles containing interparticle crosslinked aggregates |
US5180622A (en) | 1990-04-02 | 1993-01-19 | The Procter & Gamble Company | Absorbent members containing interparticle crosslinked aggregates |
US5102597A (en) | 1990-04-02 | 1992-04-07 | The Procter & Gamble Company | Porous, absorbent, polymeric macrostructures and methods of making the same |
US5492962A (en) | 1990-04-02 | 1996-02-20 | The Procter & Gamble Company | Method for producing compositions containing interparticle crosslinked aggregates |
US5507736A (en) | 1991-06-13 | 1996-04-16 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature comprising an expansive tummy panel |
US5591152A (en) | 1991-06-13 | 1997-01-07 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
US5242436A (en) | 1991-06-13 | 1993-09-07 | The Procter & Gamble Company | Absorbent article with fastening system providing dynamic elasticized waistband fit |
US5499978A (en) | 1991-06-13 | 1996-03-19 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
US5151092A (en) | 1991-06-13 | 1992-09-29 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
US5221274A (en) | 1991-06-13 | 1993-06-22 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
WO1995010996A1 (en) | 1993-10-21 | 1995-04-27 | The Procter & Gamble Company | Catamenial absorbent structures |
WO1995011652A1 (en) | 1993-10-29 | 1995-05-04 | Kimberly-Clark Corporation | Absorbent article which includes superabsorbent material located in discrete pockets having water-sensitive and water-insensitive containment structures |
US6004306A (en) | 1993-11-19 | 1999-12-21 | The Procter & Gamble Company | Absorbent article with multi-directional extensible side panels |
WO1995016746A1 (en) | 1993-12-13 | 1995-06-22 | E.I. Du Pont De Nemours And Company | Breathable film |
US5554145A (en) | 1994-02-28 | 1996-09-10 | The Procter & Gamble Company | Absorbent article with multiple zone structural elastic-like film web extensible waist feature |
WO1995024173A2 (en) | 1994-03-10 | 1995-09-14 | The Procter & Gamble Company | Absorbent articles containing antibacterial agents in the topsheet for odor control |
US5599335A (en) | 1994-03-29 | 1997-02-04 | The Procter & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
US5700254A (en) | 1994-03-31 | 1997-12-23 | Kimberly-Clark Worldwide, Inc. | Liquid distribution layer for absorbent articles |
WO1995034329A1 (en) | 1994-06-15 | 1995-12-21 | The Procter & Gamble Company | Absorbent structure containing individualized cellulosic fibers crosslinked with polyacrylic acid polymers |
US5549791A (en) | 1994-06-15 | 1996-08-27 | The Procter & Gamble Company | Individualized cellulosic fibers crosslinked with polyacrylic acid polymers |
US5968025A (en) | 1994-11-28 | 1999-10-19 | The Procter & Gamble Company | Absorbent article having a lotioned topsheet |
US5643588A (en) | 1994-11-28 | 1997-07-01 | The Procter & Gamble Company | Diaper having a lotioned topsheet |
US5635191A (en) | 1994-11-28 | 1997-06-03 | The Procter & Gamble Company | Diaper having a lotioned topsheet containing a polysiloxane emollient |
US5580411A (en) | 1995-02-10 | 1996-12-03 | The Procter & Gamble Company | Zero scrap method for manufacturing side panels for absorbent articles |
US5569234A (en) | 1995-04-03 | 1996-10-29 | The Procter & Gamble Company | Disposable pull-on pant |
US5609587A (en) | 1995-08-03 | 1997-03-11 | The Procter & Gamble Company | Diaper having a lotioned topsheet comprising a liquid polyol polyester emollient and an immobilizing agent |
US5607760A (en) | 1995-08-03 | 1997-03-04 | The Procter & Gamble Company | Disposable absorbent article having a lotioned topsheet containing an emollient and a polyol polyester immobilizing agent |
US5571096A (en) | 1995-09-19 | 1996-11-05 | The Procter & Gamble Company | Absorbent article having breathable side panels |
US5865823A (en) | 1996-11-06 | 1999-02-02 | The Procter & Gamble Company | Absorbent article having a breathable, fluid impervious backsheet |
WO1998043684A1 (en) * | 1997-03-27 | 1998-10-08 | Kimberly-Clark Gmbh | Absorbent item |
US6432098B1 (en) | 1997-09-04 | 2002-08-13 | The Procter & Gamble Company | Absorbent article fastening device |
US5938648A (en) | 1997-12-03 | 1999-08-17 | The Procter & Gamble Co. | Absorbent articles exhibiting improved internal environmental conditions |
US6716441B1 (en) | 1998-03-12 | 2004-04-06 | The Procter & Gamble Company | Compositions for efficient release of active ingredients |
WO2000059430A1 (en) | 1999-04-03 | 2000-10-12 | Kimberly-Clark Worldwide, Inc. | Intake/distribution material for personal care products |
US20030105190A1 (en) | 1999-08-05 | 2003-06-05 | Diehl David F. | Latex binder for nonwoven fibers and article made therewith |
US6632504B1 (en) | 2000-03-17 | 2003-10-14 | Bba Nonwovens Simpsonville, Inc. | Multicomponent apertured nonwoven |
US6946585B2 (en) | 2000-10-23 | 2005-09-20 | Mcneil-Ppc, Inc. | Absorbent article |
WO2002067809A2 (en) | 2000-12-07 | 2002-09-06 | Weyerhaeuser Company | Distribution layer having improved liquid transfer to a storage layer |
US6645569B2 (en) | 2001-01-30 | 2003-11-11 | The Procter & Gamble Company | Method of applying nanoparticles |
WO2002064877A2 (en) | 2001-01-30 | 2002-08-22 | The Procter & Gamble Company | Coating compositions for modifying surfaces |
US6863933B2 (en) | 2001-01-30 | 2005-03-08 | The Procter And Gamble Company | Method of hydrophilizing materials |
US7112621B2 (en) | 2001-01-30 | 2006-09-26 | The Proctor & Gamble Company | Coating compositions for modifying surfaces |
US20030148684A1 (en) | 2002-01-30 | 2003-08-07 | The Procter & Gamble Company | Method for hydrophilizing materials using charged particles |
US20050008839A1 (en) | 2002-01-30 | 2005-01-13 | Cramer Ronald Dean | Method for hydrophilizing materials using hydrophilic polymeric materials with discrete charges |
EP1447067A1 (en) * | 2003-02-12 | 2004-08-18 | The Procter & Gamble Company | Thin and dry diaper |
EP1447066A1 (en) | 2003-02-12 | 2004-08-18 | The Procter & Gamble Company | Comfortable diaper |
US7744576B2 (en) | 2003-02-12 | 2010-06-29 | The Procter & Gamble Company | Thin and dry diaper |
US7786341B2 (en) | 2003-08-07 | 2010-08-31 | The Procter & Gamble Company | Diaper providing temperature insensitive liquid handling |
US20060024433A1 (en) | 2004-07-28 | 2006-02-02 | The Procter & Gamble Company | Indirect printing of AGM |
WO2006083584A2 (en) | 2005-02-04 | 2006-08-10 | The Procter & Gamble Company | Absorbent structure with improved water-absorbing material |
WO2007046052A1 (en) | 2005-10-21 | 2007-04-26 | The Procter & Gamble Company | Absorbent article having improved absorption and retention capacity for proteinaceous or serous body fluids |
WO2007047598A1 (en) | 2005-10-21 | 2007-04-26 | The Procter & Gamble Company | Absorbent article having increased absorption and retention capacity for proteinaceous or serous body fluids |
US20070118087A1 (en) | 2005-11-21 | 2007-05-24 | The Procter & Gamble Company | Fluid acquisition layer |
US20080312617A1 (en) | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Substantially Continuously Distributed Absorbent Particulate Polymer Material And Method |
US20080312622A1 (en) | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Improved Acquisition System |
WO2008155699A1 (en) | 2007-06-18 | 2008-12-24 | The Procter & Gamble Company | Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method |
WO2009011717A1 (en) * | 2007-07-16 | 2009-01-22 | Evonik Stockhausen, Inc. | Superabsorbent polymer compositions having color stability |
WO2009155264A2 (en) | 2008-06-20 | 2009-12-23 | The Procter & Gamble Company | Absorbent structures with immobilized absorbent material |
WO2009155265A2 (en) | 2008-06-20 | 2009-12-23 | The Procter & Gamble Company | Absorbent structures including coated absorbent material |
US20100051166A1 (en) | 2008-08-26 | 2010-03-04 | Harald Hermann Hundorf | Method And Apparatus For Making Disposable Absorbent Article With Absorbent Particulate Polymer Material And Article Made Therewith |
US20110250413A1 (en) | 2010-02-25 | 2011-10-13 | Lu Jon Aaron | Bond patterns for fibrous webs |
US20110268932A1 (en) | 2010-04-30 | 2011-11-03 | Kemal Vatansever Catalan | Nonwoven Having Durable Hydrophilic Coating |
WO2011163582A1 (en) | 2010-06-25 | 2011-12-29 | The Procter & Gamble Company | Disposable diaper with reduced bulk |
US20110319848A1 (en) | 2010-06-28 | 2011-12-29 | Mckiernan Robin Lynn | Substrate Coated With A Hydrophilic Elastomer |
WO2012052172A1 (en) | 2010-10-20 | 2012-04-26 | Vynka Bvba | Environmentally friendly absorbent structure |
DE102010043113A1 (en) * | 2010-10-29 | 2012-05-03 | Evonik Stockhausen Gmbh | Process for the preparation of improved absorbent polymers by cryogenic milling |
US20120316528A1 (en) * | 2011-06-10 | 2012-12-13 | Carsten Heinrich Kreuzer | Disposable Diapers |
WO2012170779A1 (en) | 2011-06-10 | 2012-12-13 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US20120312491A1 (en) | 2011-06-10 | 2012-12-13 | The Procter & Gamble Company | Method and Apparatus for Making Absorbent Structures with Absorbent Material |
WO2012170778A1 (en) | 2011-06-10 | 2012-12-13 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
WO2012170808A1 (en) | 2011-06-10 | 2012-12-13 | The Procter & Gamble Company | Absorbent core for disposable absorbent articles |
WO2012170781A1 (en) | 2011-06-10 | 2012-12-13 | The Procter & Gamble Company | Disposable diapers |
WO2012174026A1 (en) | 2011-06-17 | 2012-12-20 | The Procter & Gamble Company | Absorbent articles with improved absorption properties |
Non-Patent Citations (3)
Title |
---|
J.M. COULSON; J.F. RICHARDSON: "Chemical Engineering, 3rd ed.", vol. II, 1978, PERGAMON PRESS, pages: 122 - 127 |
P.K. CHATTERJEE: "Absorbency", 1982, ELSEVIER, pages: 42 - 43 |
ROBERT F. GOULD: "Contact angle, wettability and adhesion", 1964 |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10335768B2 (en) | 2016-03-23 | 2019-07-02 | Lg Chem, Ltd. | Super absorbent polymer |
EP3238679A1 (en) | 2016-04-29 | 2017-11-01 | The Procter and Gamble Company | Absorbent article with a distribution layer comprising channels |
EP3238676A1 (en) | 2016-04-29 | 2017-11-01 | The Procter and Gamble Company | Absorbent core with profiled distribution of absorbent material |
EP3238677A1 (en) | 2016-04-29 | 2017-11-01 | The Procter and Gamble Company | Absorbent core with profiled distribution of absorbent material |
WO2017189152A1 (en) | 2016-04-29 | 2017-11-02 | The Procter & Gamble Company | Absorbent core with transversal folding lines |
WO2017189150A1 (en) | 2016-04-29 | 2017-11-02 | The Procter & Gamble Company | Absorbent core with profiled distribution of absorbent material |
WO2017189188A1 (en) | 2016-04-29 | 2017-11-02 | The Procter & Gamble Company | Absorbent article with a distribution layer comprising channels |
WO2017189151A1 (en) | 2016-04-29 | 2017-11-02 | The Procter & Gamble Company | Absorbent core with profiled distribution of absorbent material |
EP3238678A1 (en) | 2016-04-29 | 2017-11-01 | The Procter and Gamble Company | Absorbent core with transversal folding lines |
EP3315106A1 (en) | 2016-10-31 | 2018-05-02 | The Procter and Gamble Company | Absorbent article with an intermediate layer comprising channels and back pocket |
WO2018081333A1 (en) | 2016-10-31 | 2018-05-03 | The Procter & Gamble Company | Absorbent article with an intermediate layer comprising channels and back pocket |
US11000829B2 (en) | 2016-12-23 | 2021-05-11 | Lg Chem, Ltd. | Super absorbent polymer and method for producing same |
US11633720B2 (en) | 2016-12-23 | 2023-04-25 | Lg Chem, Ltd. | Super absorbent polymer and method for producing same |
WO2018155591A1 (en) | 2017-02-22 | 2018-08-30 | 株式会社日本触媒 | Water absorbent sheet, elongated water absorbent sheet, and absorbent article |
EP3406235A1 (en) | 2017-05-24 | 2018-11-28 | The Procter and Gamble Company | Absorbent article with raisable topsheet |
EP3406233A1 (en) | 2017-05-24 | 2018-11-28 | The Procter and Gamble Company | Absorbent article with raisable topsheet |
WO2018217591A1 (en) | 2017-05-24 | 2018-11-29 | The Procter & Gamble Company | Absorbent article with raisable topsheet |
EP3406234A1 (en) | 2017-05-24 | 2018-11-28 | The Procter and Gamble Company | Absorbent article with raisable topsheet |
WO2019198821A1 (en) | 2018-04-13 | 2019-10-17 | 株式会社日本触媒 | Water absorbent sheet, water absorbent sheet production method, and absorbent article |
WO2020032280A1 (en) | 2018-08-09 | 2020-02-13 | 株式会社日本触媒 | Water absorbent sheet and water absorbent article comprising same |
EP3881814A1 (en) | 2020-03-17 | 2021-09-22 | The Procter & Gamble Company | Absorbent core comprising a high loft central layer and superabsorbent particles |
WO2021188330A1 (en) | 2020-03-17 | 2021-09-23 | The Procter & Gamble Company | Absorbent core comprising a high loft central layer and superabsorbent particles |
WO2022120693A1 (en) | 2020-12-10 | 2022-06-16 | The Procter & Gamble Company | Absorbent core comprising a high loft central layer and two different superabsorbent polymers |
EP4088697A1 (en) | 2021-05-10 | 2022-11-16 | The Procter & Gamble Company | Process for forming composite absorbent material and composite absorbent material made by the process |
WO2023168616A1 (en) | 2022-03-09 | 2023-09-14 | The Procter & Gamble Company | Absorbent article with high permeability sap |
Also Published As
Publication number | Publication date |
---|---|
FR3010632A1 (en) | 2015-03-20 |
FR3010632B1 (en) | 2018-08-31 |
US20150080821A1 (en) | 2015-03-19 |
US20220008264A1 (en) | 2022-01-13 |
JP2016536084A (en) | 2016-11-24 |
CN105579008A (en) | 2016-05-11 |
US10130527B2 (en) | 2018-11-20 |
EP3351225B1 (en) | 2021-12-29 |
CA2924800A1 (en) | 2015-03-26 |
US11154437B2 (en) | 2021-10-26 |
US20190046368A1 (en) | 2019-02-14 |
RU2016113767A (en) | 2017-10-23 |
CL2016000640A1 (en) | 2016-11-11 |
EP3351225A1 (en) | 2018-07-25 |
EP2851048B1 (en) | 2018-09-05 |
US20240207109A1 (en) | 2024-06-27 |
JP6490694B2 (en) | 2019-03-27 |
EP2851048A1 (en) | 2015-03-25 |
BR112016006099A2 (en) | 2017-08-01 |
CN105579008B (en) | 2019-07-12 |
MX2016003666A (en) | 2016-07-08 |
US11944526B2 (en) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11944526B2 (en) | Absorbent cores having material free areas | |
US20230062312A1 (en) | Absorbent articles having channel-forming areas and wetness indicator | |
EP2813201B1 (en) | Absorbent article and absorbent core forming channels when wet | |
EP2679209B1 (en) | Absorbent articles with improved core | |
EP2679210B1 (en) | Absorbent articles with improved core | |
CA2894677C (en) | Absorbent article with high absorbent material content | |
EP3205318A1 (en) | Absorbent article with high absorbent capacity | |
EP3175832B1 (en) | Absorbent article with improved core | |
EP3278782A1 (en) | Absorbent article with improved fluid storage | |
EP3251648A1 (en) | Absorbent article with improved fluid distribution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480051587.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14759079 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016541985 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2924800 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/003666 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016006099 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2016113767 Country of ref document: RU Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14759079 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112016006099 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160318 |