[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014209043A1 - 이미지 획득 방법 및 이를 이용한 이미지 획득 장치 - Google Patents

이미지 획득 방법 및 이를 이용한 이미지 획득 장치 Download PDF

Info

Publication number
WO2014209043A1
WO2014209043A1 PCT/KR2014/005714 KR2014005714W WO2014209043A1 WO 2014209043 A1 WO2014209043 A1 WO 2014209043A1 KR 2014005714 W KR2014005714 W KR 2014005714W WO 2014209043 A1 WO2014209043 A1 WO 2014209043A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
region
area
moving
image acquisition
Prior art date
Application number
PCT/KR2014/005714
Other languages
English (en)
French (fr)
Inventor
조아진
이주석
정상한
노한얼
Original Assignee
파크시스템스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 파크시스템스 주식회사 filed Critical 파크시스템스 주식회사
Priority to US14/650,237 priority Critical patent/US10133052B2/en
Priority to EP14818687.7A priority patent/EP3015850B1/en
Priority to JP2016511690A priority patent/JP6161798B2/ja
Publication of WO2014209043A1 publication Critical patent/WO2014209043A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20216Image averaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Definitions

  • the present invention relates to an image acquisition method and an image acquisition device using the same, and more particularly, to an image acquisition method and an image acquisition device using the same that can be imaged in detail the defects of the surface of the flat measurement target, such as a wafer. .
  • Scanning Probe Microscope refers to a microscope that measures 3D images by measuring the surface characteristics of the sample while scanning (scanning) the microscopic probes produced by MEMS process on the surface of the sample.
  • Such scanning probe microscopes are subdivided into atomic force microscopes (AFMs), scanning tunneling microscopes (STM), and the like according to the measurement method.
  • An optical vision system includes a digital camera using an image sensor such as a charged-coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS), and a surface side of the object to be measured. And an objective lens and a barrel for optically connecting the camera and the objective lens to transfer an image formed on the objective lens to the image sensor of the camera.
  • CCD charged-coupled device
  • CMOS complementary metal-oxide-semiconductor
  • the above-mentioned optical vision system When measuring the surface of a measurement object using a scanning probe microscope, the above-mentioned optical vision system is first moved in the Z direction (up and down direction) using a precision stage to focus on the surface of the measurement object. Accordingly, the image sensor forms an image on the surface of the object to be measured, and by displaying a signal output from the camera on a display device such as a monitor, the user can check the surface of the object to be magnified according to the magnification of the objective lens. have.
  • the object to be measured is moved to a desired position by using an XY stage that moves the object to be measured in the XY direction while checking the surface of the object to be measured by the optical vision system, and the measurement is performed by a scanning probe microscope.
  • Such scanning probe microscopes in particular atomic microscopes, are widely used for defect review of flat measurement objects such as wafers.
  • This defect review is performed by identifying the location of the defect with an optical vision system and moving the probe to that location (actually moving the object to be measured) to image the detailed shape of the defect through the probe.
  • FIG. 1A is a surface image of a wafer viewed with an optical vision system
  • FIG. 1B is a background image obtained by processing the surface image of FIG. 1A using a low pass filter
  • FIG. 1C is an image obtained by subtracting a background image from the image of FIG. 1A
  • 1D is an image in which the image of FIG. 1C is overlapped 32 times
  • FIG. 1E is an image in which the image of FIG. 1C is overlapped 512 times.
  • the noise component of the high frequency region is generally removed using a low pass filter to obtain a background image as shown in FIG. 1B, and then the background in the image of FIG. 1A.
  • the process of obtaining the image as shown in Fig. 1C by removing the image is performed.
  • FIG. 1C it can be seen that even in this case, it is difficult to visually identify the defect located at the portion indicated by the arrow.
  • the image of FIG. 1C is overlapped several times (32 times) to obtain an image as shown in FIG. 1D.
  • SNR signal-to-noise ratio
  • the present invention has been made to solve the above problems, the problem to be solved in the present invention, the image acquisition method and the image acquisition method that can image the defect of the surface of the flat measurement target, such as a wafer in more detail In providing a device.
  • An image acquisition method for solving the above problems, the image acquisition means for obtaining an image of the surface of the measurement target in units of pixels of a predetermined size, and to move the measurement target CLAIMS 1.
  • a method of obtaining an image using a measuring device comprising a movable means, the method comprising: obtaining an image of a first area of a surface of the measurement object by the image obtaining means; Moving the measurement object by the moving means to obtain an image of a second area different from the first area; Subtracting another image from one of the images of the first region and the second region to obtain a differential image; Overlapping the differential image a plurality of times; Characterized in that it comprises a.
  • a method for obtaining an image using a measuring device including a moving means comprising: obtaining, by the image obtaining means, N times an image of a first area of the surface of the measurement object, where N is an integer of 2 or more; Summing images of the N first regions to obtain a first summed image; Moving the measurement object to a second area different from the first area by the moving means; Obtaining, by the image acquisition means, an image of a second region of the surface of the measurement object M times, where M is an integer of 2 or more; Summing images of the M second regions to obtain a second summed image; Subtracting one from the first summed image and the second summed image to obtain a differential image; Characterized in that it comprises a.
  • the first area and the second area are characterized in that separated by more than the size of the resolution of the image acquisition means.
  • the first area and the second area is characterized in that separated by a size smaller than the size of the sensing object to be detected.
  • the N and the M is characterized in that the same.
  • An image acquisition apparatus for solving the above problems, Image acquisition means for obtaining an image of the surface of the measurement target in units of pixels of a predetermined size; Moving means capable of moving the measurement object; And a control unit which receives an image obtained by the image obtaining unit, performs image processing, and controls driving of the moving unit.
  • the control unit obtains an image of a first area of the surface of the measurement object by the image acquisition means, moves the measurement object by the moving means, and an image of a second area different from the first area. After obtaining, subtract one image from one of the images of the first region and the second region to obtain a differential image, and superimpose the differential images a plurality of times to obtain a surface of the measurement target. Characterized in processing images.
  • An image acquisition apparatus for solving the above problems, Image acquisition means for obtaining an image of the surface of the measurement target in units of pixels of a predetermined size; Moving means capable of moving the measurement object; And a control unit which receives an image obtained by the image obtaining unit, performs image processing, and controls driving of the moving unit.
  • control unit obtains, by the image acquisition means, an image of the first region N times (where N is an integer of 2 or more) of the surface of the measurement target, and adds N images of the first region to add the image; 1 calculates a summed image, moves the measurement object to a second area different from the first area by the moving means, and transfers the image of the second area of the surface of the measurement object M times by the image acquisition means ( Where M is an integer of 2 or more), and add the images of the M second regions to calculate a second summed image, and subtract one of the first summed image and the second summed image to obtain a differential image. (differential image) is calculated to process an image of the surface of the measurement target.
  • the image acquisition means is characterized in that the image device using a CCD or CMOS.
  • An atomic force microscope according to an embodiment of the present invention for solving the above problems is characterized in that it comprises the image acquisition device described above.
  • the image capturing method and the image capturing apparatus using the same it is possible to image defects on the surface of a flat measurement target such as a wafer in more detail, thereby effectively performing defect review.
  • 1A is a surface image of a wafer viewed with an optical vision system.
  • FIG. 1B is a background image obtained by processing the surface image of FIG. 1A using a low pass filter.
  • FIG. 1C is an image obtained by subtracting a background image from the image of FIG. 1B.
  • FIG. 1D is an image of the image of FIG. 1C overlapping 32 times.
  • FIG. 1E is an image of the image of FIG. 1C superimposed 512 times.
  • FIG. 2 is a schematic conceptual diagram of an image acquisition device according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of the image acquisition method according to an embodiment of the present invention.
  • FIG. 4A is an image of the first region of the wafer
  • FIG. 4B is an image of the second region of the wafer.
  • FIG. 5 is a differential image of the image of FIG. 4A and the image of FIG. 4B.
  • FIG. 6A illustrates an image in which the differential image of FIG. 5 is overlapped 32 times
  • FIG. 6B illustrates an image in which the differential image of FIG. 5 is overlapped 512 times.
  • FIG. 8 is a view illustrating the defects of the measurement targets in a side view when the distance between the first area and the second area is smaller than the resolution.
  • FIG. 9 is a view illustrating the defects of the measurement object in a side view when the distance between the first region and the second region is larger than the size of the defect.
  • FIG. 10 is a flowchart of an image acquisition method according to another embodiment of the present invention.
  • FIG. 11 is a time flow diagram illustrating various modifications of the image acquisition method of FIG. 10.
  • references to elements or layers "on" other elements or layers include all instances where another layer or other element is directly over or in the middle of another element.
  • first, second, etc. are used to describe various components, these components are of course not limited by these terms. These terms are only used to distinguish one component from another. Therefore, of course, the first component mentioned below may be a second component within the technical spirit of the present invention.
  • each of the features of the various embodiments of the present invention may be combined or combined with each other in part or in whole, various technically interlocking and driving as can be understood by those skilled in the art, each of the embodiments may be implemented independently of each other It may be possible to carry out together in an association.
  • FIG. 2 is a schematic conceptual diagram of an image acquisition device according to an embodiment of the present invention. Referring to FIG. 2, first, an image acquisition apparatus 100 to which an image acquisition method of the present invention may be applied will be described.
  • the image acquisition apparatus 100 includes an image acquisition unit 110, a moving unit 130, a control unit 150, and a display device 170.
  • the image acquiring means 110 is a means for optically acquiring an image of the surface of the measurement object 1 in units of pixels of a predetermined size.
  • the digital camera 111 refers to a camera equipped with an image sensor such as a CCD or a CMOS, and digitizes an image by a pixel unit and transmits the image to the controller 150.
  • the camera 111 may use any image sensor as long as it is digital, and cameras of various resolutions may be applied.
  • the model name XCL-5005CR of Sony Corporation of Japan can be used as the digital camera 111.
  • the barrel 112 has a camera 111 mounted on an upper portion thereof, and an objective lens 113 mounted on a lower portion thereof, and serves to transfer an image enlarged to the objective lens 113 to an image sensor of the camera 111. Do it. It is also connected to the optical fiber 115, so that light from the light source 114 can be irradiated therein so that the image of the surface of the measurement object 1 can be visually recognized.
  • the objective lens 113 serves to enlarge the image of the surface of the measurement object 1, and the magnification can be set in various ways. That is, an objective lens having a magnification of 5 times, 10 times, or 20 times may be variously applied according to its use. For example, an object lens having a magnification of 10 times may be used for observing a wafer surface.
  • the image acquisition means 100 can be moved up and down by the Z stage 120.
  • the Z stage 120 is a linear moving stage, and various moving stages can be used, for example, a ball screw transfer stage can be used. Using this Z stage 120, the position of the image acquisition means 100 is adjusted up and down so that an image is formed on the objective lens 113.
  • the movement means 130 means the means which can move the measurement object 1 in an XY plane, and can be comprised including the long distance conveyance apparatus 131 and the short distance conveyance apparatus 132. As shown in FIG.
  • the long-distance conveying apparatus 131 is a device capable of conveying a long distance within a short time although the conveying accuracy is not relatively high, and may be, for example, a known ball screw type conveying stage.
  • the short-range conveying device 132 is a device having high conveying accuracy and capable of short-distance conveying, and may be, for example, an XY scanner device used in an atomic force microscope.
  • the XY scanner device refers to a piezo-driven scanner that is in charge of XY scanning of a measurement target in an atomic force microscope, and may be an XY scanner device of Park Systems. Details are posted on the website of www.parkafm.com.
  • the long-distance feeder 131 and the short-range feeder 132 may be configured using only one, but it is preferable to use both together to satisfy both fast and accurate feed.
  • the controller 150 controls the image acquisition means 110 and the movement means 130, processes the image data obtained by the image acquisition means 110, and displays the surface image of the measurement object 1 on the display device 170. do. A detailed control method using the controller 150 will be described later.
  • the display device 170 refers to a device that displays an image processed by the controller 150 so that an external user can recognize it, and a known LCD monitor, CRT monitor, OLED monitor, or the like may be used.
  • FIG. 3 is a flow chart of the image acquisition method according to an embodiment of the present invention.
  • 4A is an image of the first region of the wafer
  • FIG. 4B is an image of the second region of the wafer.
  • 5 is a differential image of the image of FIG. 4A and the image of FIG. 4B.
  • 6A is an image of overlapping 32 differential images of FIG. 5
  • FIG. 6B is an image of overlapping 512 differential images of FIG. 5.
  • the images of FIGS. 4A and 4B to be described below are obtained by using a model name XCL-5005CR manufactured by Sony Inc. as a camera 111, and is obtained by enlarging through an objective lens 113 of 10 times magnification.
  • the cell size of the camera 111 is 3.45 ⁇ m in width and length, and the image size is 2448 ⁇ 2050 (5,018,400 pixels), and the frame rate is 15 fps.
  • the image acquisition step S110 of the first region, the image acquisition step S120 of the second region, the differential image acquisition step S130, and the differential are different.
  • the image acquisition step S110 of the first area is a step of obtaining an image of any first area of the surface of the measurement object 1.
  • An image of the first region may be obtained as shown in FIG. 4A.
  • An image as shown in FIG. 4A was obtained by capturing an image of one frame obtained by the camera 111 of the image acquisition means 110 described above by the display device 170.
  • the second area refers to an area different from the first area.
  • the second area may be referred to as a second area if only a part of the first area overlaps most of the area.
  • the transfer means 130 is responsible for transferring the measurement object from the first area to the second area, in particular the short-range transfer device 132 can be used more suitably.
  • the second area is an area corresponding to the image obtained by the image acquiring means 110 after moving the measurement object 1 to the right by 1 m by the conveying means 130 based on FIG. 4A. Was set.
  • various setting methods of the second region will be described later.
  • control unit 150 performs image processing to be described later.
  • a differential image is obtained by subtracting the other image from one of the obtained image of the first region and the image of the second region (S130).
  • the subtraction of the image is performed for each pixel, and the raw data value of the pixel located at the (i, j) point of the first area is converted to the pixel located at the (i, j) point of the second area.
  • By dividing by the data value In the case of Fig. 5, an image was obtained by dividing the grayscale values from each other using the data of Figs. 4A and 4B previously converted to gray scale.
  • the subtraction may be performed in various ways. For example, the R, G, and B values may be divided and averaged to convert to gray scale, or the G channel may be divided. .
  • step S140 a step of overlapping the differential images as shown in FIG. 5 is performed (S140).
  • the superimposition of the image in this step is performed by summing the gradation values of each cell. As the number of superpositions increases, the defects appear more sharp. More defects can be recognized when 512 overlaps are performed as in FIG. 6B than when 32 overlaps are performed as in FIG. 6A. The number of overlaps may be variously determined in consideration of the size of a defect to be visually recognized.
  • FIG. 7A is a diagram showing a defect corresponding to FIGS. 4A and 4B
  • FIG. 7B is a diagram showing a differential image thereof.
  • the defects 2 are imaged so that some overlap and some do not overlap.
  • the background image due to the nonuniformity of the sensor and the optical system is measured so as to be superimposed as it is, so that only the defect 2 is measured as it is moved.
  • a differential image may be obtained by dividing an image of a second region from an image of the first region.
  • the background image is completely removed so that the signal intensity I of the baseline (3) outside the defect (2) converges to zero, and in the case of the differential image, the point where the image is high and the low image is compared with the baseline (3).
  • These are positioned adjacent to each other, and between them, there is a point (4) where the gradation value of the image changes drastically, thereby showing the shape of the inverted image. That is, the area 5 displayed brighter and the area displayed darker than the reference line 3 are located adjacent to each other.
  • the background image is flatly deformed like the baseline 3, and the brightest point 7 and the darkest point 8 are adjacent to each other.
  • the background image is not amplified by the overlap when the image is superimposed, only the difference in the gradation value of the defect (2) portion is amplified. Therefore, even if a small number of overlapping is performed as compared with the conventional method of obtaining and superimposing one image, a larger difference in gradation values, that is, a difference in brightness, can be obtained while reducing the curvature of the background, which is excellent in visibility.
  • FIG. 8 is a view illustrating the defect of a measurement object in a side view when the distance between the first region and the second region is smaller than the resolution
  • FIG. 9 illustrates the distance between the first region and the second region.
  • the defect of the measurement target is outlined from the side.
  • the area displayed on one cell of the camera 111 is an area of 3.45 ⁇ m, respectively, horizontally and vertically, and the measurement object 1 is enlarged and displayed by the objective lens 113 of 10 times.
  • the area displayed in one cell of the camera 111 is an area of 0.345 ⁇ ⁇ each in width and length.
  • the size of a pixel may be referred to as a minimum unit that can be identified, that is, a resolution. Therefore, the resolution of the image acquisition device 100 of the present embodiment may theoretically be 0.345 ⁇ m.
  • the resolution means the minimum length unit identifiable by the image acquisition means 100. That is, the resolution may be theoretically calculated as described above, but may be limited by the optical characteristics of the objective lens 113, the quality of the optical system, and the like. For example, if the resolution of the objective lens 113 is limited to 1 ⁇ m due to various known causes (airy disk diameter according to the opening NA, etc.), even if the resolution of the camera 111 is smaller, the image acquisition device 100 ) May be limited to 1 ⁇ m, which is the resolution of the objective lens 113.
  • the image of the first region and the image of the second region are subtracted, as shown in FIG. 8B.
  • the difference in brightness i.e., the magnitude of the signal
  • the image of the first area and the image of the second area be at least larger than the resolution of the image acquisition apparatus 100.
  • the measurement object 1 it is preferable to move the measurement object 1 by at least the resolution of the image acquisition means 110 by the moving means 130, and also consider the size of the defect 2 to be measured (that is, the width in the XY direction). Therefore, it is preferable to move the measurement object 1 by the moving means 130 below the magnitude
  • the resolution changes according to the kind of the camera 111 and the magnification of the objective lens 113, it can be determined by the specifications of the camera 111 and the objective lens 113.
  • the resolution of the camera 111 itself is 0.345 ⁇ m, but the resolution of the objective lens 113 is 1 ⁇ m, and the resolution of the image acquisition device 100 is determined to be 1 ⁇ m.
  • the measurement target 1 was moved to the right by ⁇ ⁇ to image the second region, thereby improving visibility of defects of 1 ⁇ ⁇ or more.
  • the distance between the first region and the second region may be variously set according to the size of the defect to be measured.
  • first region and the second region has been described in the present embodiment as being spaced apart to the left and right, but is not limited to this, may be positioned up and down, and may be spaced apart at a certain angle.
  • FIG. 10 is a flowchart of an image acquisition method according to another embodiment of the present invention
  • FIG. 11 is a time flow diagram illustrating various modifications of the image acquisition method of FIG. 10.
  • obtaining an image of the first area N times (where N is an integer of 2 or more) S210
  • summing images of the first area Obtaining a first summed image (S220), moving the measurement object 1 to a second region different from the first region by the moving means 130 (S230), M-times the image of the second region (where M is an integer of 2 or more) (S240), summing the images of the second area to obtain a second summed image (S250) and subtracting the other one from any one of the first summed image and the second summed image.
  • obtaining a differential image S260
  • the image acquisition method of FIG. 3 is characterized in that a differential image is first obtained and overlapped.
  • the image acquisition method of the present embodiment has only a difference in obtaining a differential image after performing an overlap first. do.
  • an image of the first region is obtained N times (where N is an integer of 2 or more) (S210). This is done by obtaining images of N frames in succession through the camera 111.
  • N is an integer of 2 or more
  • the present step is performed by obtaining an image in units of frames through the camera 111 for a predetermined time.
  • step S210 the image of each frame obtained in step S210 is summed by pixel unit by image processing to obtain a first summed image (S220). This can be done by the controller 150.
  • the measuring object 1 is moved to the 2nd area
  • M images of the second region (where M is an integer of 2 or more) are obtained (S240). Since the method of acquiring the image is the same as in step S210, a detailed description thereof will be omitted.
  • step S240 the image of each frame obtained in step S240 is summed by pixel unit by image processing to obtain a second summed image (S250). This can be done by the controller 150.
  • a differential image is obtained by subtracting the other from either one of the first summed image and the second summed image (S260). Since the method of obtaining the differential image is the same as that of step S130 of FIG. 3, a detailed description thereof will be omitted.
  • N and M need not be identical to each other, but N and M are preferably the same for accurate inversion effect as shown in FIG.
  • the embodiment of FIG. 10 may be performed by a method of obtaining an image.
  • an image of N frames is obtained after positioning the first region to the west, and continuously obtaining an image of M frame after positioning the second region to the east, and then to the west.
  • the embodiment of FIG. 10 may be performed by imaging the first region located again during the P frame and the second region located east again during the Q frame.
  • a third 10 is a method of acquiring an image of a P frame after positioning the region to the north (ie, the upper side), and subsequently obtaining an image of the Q frame after positioning the fourth region to the south (ie, the bottom side).
  • the differential image may be obtained by selecting two or more of an image obtained by summing the first region, an image summing the second region, an image summing the third region, and an image summing the fourth region.
  • M, N, P, and Q described above are integers of 2 or more, they may not be the same as each other, but for the accurate inversion effect as shown in FIG.
  • first region and the second region are spaced apart from side to side, and the third region and the fourth region are spaced apart from each other up and down, the present embodiment has been described, but is not limited thereto.
  • the second regions may be positioned up and down, or may be spaced apart at a constant angle, and the third region and the fourth region may be positioned left and right, or may be spaced apart at a constant angle. That is, the positional relationship between the first area and the fourth area can be freely set.
  • the image acquisition method described above and the image acquisition device using the same can be used in an atomic force microscope.
  • the atomic force microscope includes an optical vision system that optically observes where the cantilever comes into contact with the surface of the object to be measured, and the above-described image acquisition method may be applied to such an optical vision system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Quality & Reliability (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Processing (AREA)

Abstract

본 발명은 웨이퍼와 같은 평탄한 측정 대상의 표면의 결함을 보다 상세하게 이미지할 수 있는 이미지 획득 방법 및 이를 이용한 이미지 획득 장치에 관한 것이다. 본 발명의 일 실시예에 따른 이미지 획득 방법은, 일정 크기의 픽셀 (pixel) 단위로 측정 대상의 표면의 이미지 (image) 를 얻는 이미지 획득 수단과, 상기 측정 대상을 이동시킬 수 있는 이동 수단을 포함하는 측정 장치를 이용하여 이미지를 얻는 방법에 있어서, 상기 이미지 획득 수단에 의해 상기 측정 대상의 표면 중 제1 영역의 이미지를 얻는 단계; 상기 이동 수단에 의해 상기 측정 대상을 이동시켜 상기 제1 영역과 다른 제2 영역의 이미지를 얻는 단계; 상기 제1 영역 및 상기 제2 영역의 이미지 중 어느 하나의 이미지에서 다른 하나의 이미지를 감산하여 디퍼렌셜 이미지 (differential image) 를 얻는 단계; 및 상기 디퍼렌셜 이미지를 복수 회 중첩시키는 단계; 를 포함하는 것을 특징으로 한다.

Description

이미지 획득 방법 및 이를 이용한 이미지 획득 장치
본 발명은 이미지 획득 방법 및 이를 이용한 이미지 획득 장치에 관한 것으로서, 보다 구체적으로는 웨이퍼와 같은 평탄한 측정 대상의 표면의 결함을 보다 상세하게 이미지할 수 있는 이미지 획득 방법 및 이를 이용한 이미지 획득 장치에 관한 것이다.
주사탐침현미경 (SPM, Scanning Probe Microscope) 은 MEMS공정 등을 통하여 제작된 미세한 프로브를 시료의 표면 위로 훑고 지나가게 하면서 (Scanning), 그 시료의 표면 특성을 측정하여 3D 이미지로 보여주는 현미경을 말한다. 이러한 주사탐침 현미경은 측정 방식에 따라, 원자현미경 (AFM, Atomic Force Microscope), 주사터널링현미경 (STM, Scanning Tunneling Microscope) 등으로 세분화된다.
일반적으로, 원자현미경과 같은 주사탐침현미경은 탐침의 측정 위치를 결정하기 위해, 광학 비젼 시스템 (Optical Vision System) 을 사용한다. 광학 비젼 시스템은, CCD (Charged-coupled device, 전하결합소자) 나 CMOS (Complementary metal-oxide-semiconductor, 상보성 금속 산화막 반도체) 와 같은 이미지 센서를 이용한 디지털 방식의 카메라와, 측정 대상의 표면 측을 향한 대물 렌즈와, 카메라와 대물 렌즈를 광학적으로 연결하여 대물 렌즈에 맺힌 상을 카메라의 이미지 센서로 전달하는 경통 (鏡筒) 을 포함하여 구성된다.
주사탐침현미경을 이용하여 측정 대상의 표면을 측정할 때에는, 먼저 정밀 스테이지를 이용하여 상술한 광학 비젼 시스템을 Z 방향 (상하 방향) 으로 이동시켜 측정 대상의 표면에 초점을 맞춘다. 이에 따라, 이미지 센서에는 측정 대상의 표면의 상 (象) 이 맺히게 되며, 카메라에서 출력되는 신호를 모니터와 같은 표시 장치에 표시함으로써, 사용자는 대물 렌즈의 배율대로 확대된 측정 대상의 표면을 확인할 수 있다.
이후, 광학 비전 시스템으로 측정 대상의 표면을 확인하면서, 측정 대상을 XY 방향으로 이동시키는 XY 스테이지를 이용하여, 측정 대상을 원하는 위치로 이동시키고, 주사탐침현미경에 의한 측정을 행한다.
이러한 주사탐침현미경, 특히 원자현미경은 웨이퍼와 같은 평탄한 측정 대상의 결함 리뷰 (defect review) 에 많이 활용되고 있다. 이러한 결함 리뷰는 광학 비젼 시스템으로 결함의 위치를 확인하고 그 위치로 탐침을 이동시켜 (실제로는 측정 대상을 이동한다), 결함의 자세한 형상을 탐침을 통해 이미지함으로써 행하게 된다.
그런데, 웨이퍼와 같이 평탄한 측정 대상의 표면의 결함이 너비가 크지 않은 경우에는 광학 비젼 시스템으로 결함의 존재를 확인하기 어려워, 결국에는 주사탐침현미경에 의한 결함 리뷰가 불가능하거나 제한적으로 행하여지게 되는 경우가 종종 발생한다.
도 1a는 광학 비젼 시스템으로 본 웨이퍼의 표면 이미지이고, 도 1b는 도 1a의 표면 이미지를 로우 패스 필터를 사용하여 이미지 처리한 백그라운드 이미지이고, 도 1c는 도 1a의 이미지에서 백그라운드 이미지를 감산한 이미지이며, 도 1d는 도 1c의 이미지를 32번 중첩한 이미지이고, 도 1e는 도 1c의 이미지를 512번 중첩한 이미지이다.
도 1a를 참조하면, 육안으로는 웨이퍼 상의 결함을 발견하기 어렵다. 이에 따라, 결함을 두드러 보이게 하고자 통상은 로우 패스 필터 (low pass filter) 를 사용하여 고주파 영역의 노이즈 성분을 제거하여, 도 1b와 같은 백그라운드 이미지 (background image) 를 얻은 후, 도 1a의 이미지에서 백그라운드 이미지를 제거하여 도 1c와 같은 이미지를 얻는 처리를 행한다. 그러나, 도 1c를 참조하면, 이 경우에도 화살표로 표시된 부분에 위치하는 결함을 육안으로 확인하기는 어렵다는 점을 알 수 있다.
이에 따라, 애버리징 (averaging) 효과를 얻기 위해, 도 1c의 이미지를 여러 번 (32번) 중첩하여 도 1d와 같은 이미지를 얻는다. 신호 대 잡음비 (SNR; Signal-to-noise ratio) 가 중첩 횟수의 제곱근에 비례하기 때문에, 중첩을 반복할 경우에 노이즈에 비해 결함이 두드러져 보이게 된다. 따라서, 도 1d에 화살표로 표시된 정도의 결함은 더 두드러지게 보이게 되나, 이보다 작은 결함은 여전히 시인 불가능한 문제점을 가진다.
더욱이, 도 1e를 참조하면, 이러한 중첩도 효과는 미미하여, 이미지를 512번을 중첩하더라도 32번을 중첩한 경우에 비해 결함이 크게 두드러지게 보이지는 않는다.
따라서, 이미지의 중첩 처리를 행할 경우에도, 광학 비젼 시스템으로 시인할 수 있는 결함에는 한계가 분명히 존재하며, 이로 인하여 결함 리뷰를 행하여야 하는 결함임에도 불구하고 간과하는 경우가 많이 발생한다. 이는 이미지 센서의 픽셀 간 불균일성, 광학 시스템의 위치에 따른 불균일성 등이 원인일 것으로 생각된다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명에서 해결하고자 하는 과제는, 웨이퍼와 같은 평탄한 측정 대상의 표면의 결함을 보다 상세하게 이미지할 수 있는 이미지 획득 방법 및 이를 이용한 이미지 획득 장치를 제공함에 있다.
본 발명의 과제는 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 이미지 획득 방법은, 일정 크기의 픽셀 (pixel) 단위로 측정 대상의 표면의 이미지 (image) 를 얻는 이미지 획득 수단과, 상기 측정 대상을 이동시킬 수 있는 이동 수단을 포함하는 측정 장치를 이용하여 이미지를 얻는 방법에 있어서, 상기 이미지 획득 수단에 의해 상기 측정 대상의 표면 중 제1 영역의 이미지를 얻는 단계; 상기 이동 수단에 의해 상기 측정 대상을 이동시켜 상기 제1 영역과 다른 제2 영역의 이미지를 얻는 단계; 상기 제1 영역 및 상기 제2 영역의 이미지 중 어느 하나의 이미지에서 다른 하나의 이미지를 감산하여 디퍼렌셜 이미지 (differential image) 를 얻는 단계; 및 상기 디퍼렌셜 이미지를 복수 회 중첩시키는 단계; 를 포함하는 것을 특징으로 한다.
상기 과제를 해결하기 위한 본 발명의 다른 실시예에 따른 이미지 획득 방법은, 일정 크기의 픽셀 (pixel) 단위로 측정 대상의 표면의 이미지 (image) 를 얻는 이미지 획득 수단과, 상기 측정 대상을 이동시킬 수 있는 이동 수단을 포함하는 측정 장치를 이용하여 이미지를 얻는 방법에 있어서, 상기 이미지 획득 수단에 의해 상기 측정 대상의 표면 중 제1 영역의 이미지를 N 회 (여기서 N은 2 이상의 정수) 얻는 단계; N 개의 상기 제1 영역의 이미지를 합산하여 제1 합산 이미지를 얻는 단계; 상기 이동 수단에 의해 상기 측정 대상을 상기 제1 영역과 다른 제2 영역으로 이동시키는 단계; 상기 이미지 획득 수단에 의해 상기 측정 대상의 표면 중 제2 영역의 이미지를 M 회 (여기서 M은 2 이상의 정수) 얻는 단계; M 개의 상기 제2 영역의 이미지를 합산하여 제2 합산 이미지를 얻는 단계; 상기 제1 합산 이미지 및 상기 제2 합산 이미지 중 어느 하나에서 다른 하나를 감산하여 디퍼렌셜 이미지 (differential image) 를 얻는 단계; 를 포함하는 것을 특징으로 한다.
또한, 본 발명의 다른 특징에 의하면, 상기 제1 영역과 상기 제2 영역은 상기 이미지 획득 수단의 해상도의 크기 이상으로 떨어져 있는 것을 특징으로 한다.
또한, 본 발명의 또 다른 특징에 의하면, 상기 제1 영역과 상기 제2 영역은 감지하고자 하는 감지대상의 크기보다 작은 크기만큼 떨어져 있는 것을 특징으로 한다.
또한, 본 발명의 또 다른 특징에 의하면, 상기 N과 상기 M은 동일한 것을 특징으로 한다.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 이미지 획득 장치는, 일정 크기의 픽셀 (pixel) 단위로 측정 대상의 표면의 이미지 (image) 를 얻는 이미지 획득 수단; 상기 측정 대상을 이동시킬 수 있는 이동 수단; 및 상기 이미지 획득 수단에서 얻은 이미지를 수신하여 이미지 처리를 행하고, 상기 이동 수단의 구동을 제어하는 제어부; 를 포함하며, 상기 제어부는, 상기 이미지 획득 수단에 의해 상기 측정 대상의 표면 중 제1 영역의 이미지를 얻고, 상기 이동 수단에 의해 상기 측정 대상을 이동시켜 상기 제1 영역과 다른 제2 영역의 이미지를 얻은 후, 상기 제1 영역 및 상기 제2 영역의 이미지 중 어느 하나의 이미지에서 다른 하나의 이미지를 감산하여 디퍼렌셜 이미지 (differential image) 를 얻고, 상기 디퍼렌셜 이미지를 복수 회 중첩시켜, 측정 대상의 표면의 이미지를 처리하는 것을 특징으로 한다.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 이미지 획득 장치는, 일정 크기의 픽셀 (pixel) 단위로 측정 대상의 표면의 이미지 (image) 를 얻는 이미지 획득 수단; 상기 측정 대상을 이동시킬 수 있는 이동 수단; 및 상기 이미지 획득 수단에서 얻은 이미지를 수신하여 이미지 처리를 행하고, 상기 이동 수단의 구동을 제어하는 제어부; 를 포함하며, 상기 제어부는, 상기 이미지 획득 수단에 의해 상기 측정 대상의 표면 중 제1 영역의 이미지를 N 회 (여기서 N은 2 이상의 정수) 얻고, N 개의 상기 제1 영역의 이미지를 합산하여 제1 합산 이미지를 산출하며, 상기 이동 수단에 의해 상기 측정 대상을 상기 제1 영역과 다른 제2 영역으로 이동시키고, 상기 이미지 획득 수단에 의해 상기 측정 대상의 표면 중 제2 영역의 이미지를 M 회 (여기서 M은 2 이상의 정수) 얻고, M 개의 상기 제2 영역의 이미지를 합산하여 제2 합산 이미지를 산출하며, 상기 제1 합산 이미지 및 상기 제2 합산 이미지 중 어느 하나에서 다른 하나를 감산하여 디퍼렌셜 이미지 (differential image) 를 산출하여, 측정 대상의 표면의 이미지를 처리하는 것을 특징으로 한다.
또한, 본 발명의 다른 특징에 의하면, 상기 이미지 획득 수단은 CCD 또는 CMOS 를 이용한 이미지 장치인 것을 특징으로 한다.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 원자현미경은, 상술한 이미지 획득 장치를 포함하는 것을 특징으로 한다.
본 발명에 따른 이미지 획득 방법과 이를 이용한 이미지 획득 장치에 따르면, 웨이퍼와 같은 평탄한 측정 대상의 표면의 결함을 보다 상세하게 이미지할 수 있게 되어, 결함 리뷰를 효과적으로 행할 수 있다.
도 1a는 광학 비젼 시스템으로 본 웨이퍼의 표면 이미지이다.
도 1b는 도 1a의 표면 이미지를 로우 패스 필터를 사용하여 이미지 처리한 백그라운드 이미지이다.
도 1c는 도 1b의 이미지에서 백그라운드 이미지를 감산한 이미지이다.
도 1d는 도 1c의 이미지를 32번 중첩한 이미지이다.
도 1e는 도 1c의 이미지를 512번 중첩한 이미지이다.
도 2는 본 발명의 일 실시예에 따른 이미지 획득 장치의 개략적인 개념도이다.
도 3은 본 발명의 일 실시예에 따른 이미지 획득 방법의 플로우 챠트이다.
도 4a는 웨이퍼의 제1 영역의 이미지이고, 도 4b는 웨이퍼의 제2 영역의 이미지이다.
도 5는 도 4a의 이미지와 도 4b의 이미지의 디퍼렌셜 이미지이다.
도 6a는 도 5의 디퍼렌셜 이미지를 32번 중첩한 이미지이며, 도 6b는 도 5의 디퍼렌셜 이미지를 512번 중첩한 이미지이다.
도 7은 측정 대상의 결함을 측면에서 개략화하여 본 도면이다.
도 8은 제1 영역과 제2 영역이 떨어져 있는 거리를 해상도보다 작게 한 경우에 측정 대상의 결함을 측면에서 개략화하여 본 도면이다.
도 9는 제1 영역과 제2 영역이 떨어져 있는 거리를 결함의 크기보다 크게 하였을 경우에 측정 대상의 결함을 측면에서 개략화하여 본 도면이다.
도 10은 본 발명의 다른 실시예에 따른 이미지 획득 방법의 플로우 챠트이며다.
도 11은 도 10의 이미지 획득 방법의 다양한 변형예들을 나타낸 시간 흐름도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
소자(elements) 또는 층이 다른 소자 또는 층"위(on)"로 지칭되는 것은 다른 소자 바로 위에 또는 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 도시된 것이며, 본 발명이 도시된 구성의 크기 및 두께에 반드시 한정되는 것은 아니다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하며, 당업자가 충분히 이해할 수 있듯이 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시 가능할 수도 있다.
이하, 첨부된 도면을 참고로 하여 본 발명에 따른 이미지 획득 방법 및 이를 이용한 이미지 획득 장치에 대해 설명한다.
도 2는 본 발명의 일 실시예에 따른 이미지 획득 장치의 개략적인 개념도이다. 도 2를 참조하여, 먼저 본 발명의 이미지 획득 방법이 적용될 수 있는 이미지 획득 장치 (100) 에 대해 설명한다.
본 발명의 일 실시예에 따른 이미지 획득 장치 (100) 는, 이미지 획득 수단 (110) 과, 이동 수단 (130) 과, 제어부 (150) 와, 표시 장치 (170) 를 포함하여 구성된다.
이미지 획득 수단 (110) 은 일정 크기의 픽셀 (pixel) 단위로 측정 대상 (1) 의 표면의 이미지를 광학적으로 얻는 수단으로서, 본 실시예에서는 디지털 방식의 카메라 (111) 와, 경통 (112) 과, 대물 렌즈 (113) 와, 광원 (114) 을 포함하여 구성된다.
디지털 방식의 카메라 (111) 는 CCD나 CMOS 와 같은 이미지 센서를 장착한 카메라를 의미하며, 이미지를 픽셀 단위로 디지털화하여 제어부 (150) 로 송신한다. 이러한 카메라 (111) 는 디지털 방식이라면 어떠한 이미지 센서를 사용하여도 무방하며, 다양한 해상도의 카메라가 적용 가능하다. 예를 들어, 디지털 방식의 카메라 (111) 로서, 일본의 소니 (SONY) 사의 모델명 XCL-5005CR을 사용할 수 있다.
경통 (112) 은 카메라 (111) 가 그 상부에 장착되고, 그 하부에는 대물 렌즈 (113) 가 장착되어, 대물 렌즈 (113) 로 확대된 상을 카메라 (111) 의 이미지 센서로 전달하는 역할을 행한다. 또한, 광 파이버 (115) 와도 연결되어, 광원 (114) 으로부터 빛을 그 내부에 조사하여 측정 대상 (1) 의 표면의 이미지를 시인할 수 있게 해준다.
대물 렌즈 (113) 는 측정 대상 (1) 의 표면의 이미지를 확대하는 역할을 하며, 배율은 다양하게 설정될 수 있다. 즉, 5배, 10배, 20배의 배율의 대물 렌즈가 그 용도에 따라 다양하게 적용될 수 있으며, 예를 들어 웨이퍼 표면의 관찰의 경우 10배 배율의 대물 렌즈가 사용될 수 있다.
이미지 획득 수단 (100) 은 Z 스테이지 (120) 에 의해 상하로 이동될 수 있다. Z 스테이지 (120) 는 직선 이동 스테이지로서, 다양한 방식의 이동 스테이지가 사용될 수 있으며, 예를 들어 볼 스크류 방식의 이송 스테이지가 사용될 수 있다. 이러한 Z 스테이지 (120) 를 이용하여 대물 렌즈 (113) 에 상이 맺히도록 이미지 획득 수단 (100) 의 위치를 상하로 조정한다.
이동 수단 (130) 은, 측정 대상 (1) 을 XY 평면에서 이동시킬 수 있는 수단을 의미하며, 장거리 이송장치 (131) 와, 단거리 이송장치 (132) 를 포함하여 구성될 수 있다.
장거리 이송장치 (131) 는, 이송 정확도는 비교적 높지 않으나, 빠른 시간 내에 긴 거리의 이송이 가능한 장치로서, 예를 들어 공지의 볼 스크류 방식의 이송 스테이지일 수 있다.
반면, 단거리 이송장치 (132) 는, 이송 정확도가 높고, 짧은 거리의 이송이 가능한 장치로서, 예를 들어 원자현미경에서 사용되는 XY 스캐너 장치일 수 있다. 여기서 XY 스캐너 장치란, 원자현미경에서 측정 대상의 XY 스캔을 담당하는 피에조 구동 스캐너를 말하며, ㈜ 파크 시스템스의 XY 스캐너 장치일 수 있다. 자세한 사항은 ㈜ 파크 시스템스의 홈페이지 (www.parkafm.com) 에 개시되어 있다.
장거리 이송장치 (131) 와 단거리 이송장치 (132) 는 어느 하나만을 사용하여 구성될 수도 있으나, 같이 사용하는 것이 빠른 이송과 정확한 이송 모두를 만족할 수 있어 바람직하다.
제어부 (150) 는 이미지 획득 수단 (110) 및 이동 수단 (130) 을 제어하고, 이미지 획득 수단 (110) 에서 얻어진 이미지 데이터를 처리하여 표시 장치 (170) 에 측정 대상 (1) 의 표면 이미지를 표시한다. 제어부 (150) 를 이용한 자세한 제어 방법은 후술한다.
표시 장치 (170) 는, 제어부 (150) 에서 처리한 이미지를 외부의 사용자가 시인할 수 있도록 표시하는 장치를 의미하며, 공지의 LCD 모니터, CRT 모니터, OLED 모니터 등이 사용될 수 있다.
이하에서는 상술한 바와 같은 구성을 가진 이미지 획득 장치 (100) 를 이용하여 이미지를 획득하는 방법에 대해 구체적으로 설명하도록 한다.
도 3은 본 발명의 일 실시예에 따른 이미지 획득 방법의 플로우 챠트이다. 또한, 도 4a는 웨이퍼의 제1 영역의 이미지이고, 도 4b는 웨이퍼의 제2 영역의 이미지이다. 또한, 도 5는 도 4a의 이미지와 도 4b의 이미지의 디퍼렌셜 이미지이다. 또한, 도 6a는 도 5의 디퍼렌셜 이미지를 32번 중첩한 이미지이며, 도 6b는 도 5의 디퍼렌셜 이미지를 512번 중첩한 이미지이다.
참고로 이하에서 설명할 도 4a, 도 4b의 이미지는 소니 사의 모델명 XCL-5005CR을 카메라 (111) 로 사용하여 얻은 것이며, 10배 배율의 대물 렌즈 (113) 를 통해 확대하여 얻은 것이다. 카메라 (111) 의 셀 사이즈 (cell size) 는 가로, 세로 3.45 ㎛ 이며, 화상 사이즈는 2448 X 2050 (5,018,400 픽셀) 이며, 프레임 레이트 (frame rate) 는 15 fps 이다.
도 3을 참조하면, 본 실시예의 일 실시예에 따른 이미지 획득 방법은, 제1 영역의 이미지 획득 단계 (S110), 제2 영역의 이미지 획득 단계 (S120), 디퍼렌셜 이미지 획득 단계 (S130) 및 디퍼렌셜 이미지 중첩 단계 (S140) 를 포함하여 구성된다.
제1 영역의 이미지 획득 단계 (S110) 는, 측정 대상 (1) 의 표면 중 임의의 제1 영역의 이미지를 얻는 단계이다. 제1 영역의 이미지는 도 4a와 같이 얻어질 수 있다. 도 4a와 같은 이미지는 상술한 이미지 획득 수단 (110) 의 카메라 (111) 에서 얻어진 1개의 프레임의 이미지를 표시 장치 (170) 에 의해 나타낸 것을 캡쳐함으로써 얻어졌다.
이후, 도 4b와 같은 제2 영역의 이미지를 얻는다 (S120). 제2 영역은 제1 영역과 다른 영역을 의미하는데, 제1 영역과 대부분의 영역이 겹치더라도 일부만이라도 겹치지 않는다면 제2 영역이라고 할 수 있다. 또한, 제1 영역에서 제2 영역으로 측정 대상을 이송시키는 것은 이송 수단 (130) 이 담당하는데, 특히 단거리 이송장치 (132) 가 더욱 적합하게 이용될 수 있다.
본 실시예에서 제2 영역은, 이송 수단 (130) 에 의해 측정 대상 (1) 을 도 4a를 기준으로 할 때 우측으로 1 ㎛ 이동시킨 후에 이미지 획득 수단 (110) 에 의해 얻어진 이미지와 대응하는 영역으로 설정되었다. 여기서, 제2 영역의 다양한 설정 방법에 대해서는 후술하기로 한다.
도 4a 및 도 4b를 참조하면, 육안으로는 측정 대상 (1) 인 웨이퍼 상의 결함을 발견하기는 어렵다. 이에 따라 제어부 (150) 에 의해 후술할 이미지 처리 (image processing) 를 행하게 된다.
단계 S120 이후에, 얻어진 제1 영역의 이미지 및 제2 영역의 이미지 중 어느 하나의 이미지에서 다른 하나의 이미지를 감산하여 디퍼렌셜 이미지 (differential image) 를 얻는다 (S130).
이미지를 감산하는 것은 각 픽셀 별로 이루어지게 되는데, 제1 영역의 (i, j) 지점에 위치하는 픽셀의 로 데이터 (raw data) 값을 제2 영역의 (i, j) 지점에 위치하는 픽셀의 로 데이터 값으로 제산함으로써 이루어질 수 있다. 도 5의 경우, 그레이 스케일 (gray scale) 로 미리 변환된 도 4a 및 도 4b의 데이터를 이용하여 계조값을 서로 제산함으로써, 이미지가 얻어졌다. 이러한 감산은 다양한 방법으로 이루어질 수 있으며, 예를 들어 R값, G값, B값을 각각 제산한 후에 평균을 내어 그레이 스케일로 변환하는 방법도 가능하며, G 채널의 값만을 제산하는 방법도 가능하다.
감산에 의해 도 5와 같이 평탄화된 이미지가 얻어졌으나, 이에 의하더라도 육안으로 결함을 확인하기가 어렵기 때문에, 단계 S130 이후에, 도 5와 같은 디퍼렌셜 이미지를 중첩하는 단계를 행한다 (S140).
본 단계의 이미지의 중첩은 각 셀의 계조값을 합하는 방식으로 행하여 지게 되는데, 중첩의 횟수가 많아질수록 결함이 더 도드라지게 보이게 된다. 도 6a와 같이 32번의 중첩을 행한 경우보다 도 6b와 같이 512번의 중첩을 행한 경우에 더 많은 결함을 시인할 수 있게 된다. 이러한, 중첩의 횟수는 시인하고자 하는 결함의 크기를 고려하여 다양하게 결정할 수 있다.
도 6b를 참고하면, 도 4a 및 도 4b에서 도저히 시인할 수 없었던 결함까지 시인할 수 있게 되어, 작은 결함도 원자현미경으로 결함 리뷰를 행할 수 있게 되므로, 더욱 자세한 결함 리뷰가 가능하다.
도 7은 측정 대상의 결함을 측면에서 개략화하여 본 도면이다. 특히, 도 7(a) 는 도 4a 및 도 4b에 대응하는 결함을 나타낸 도면이며, 도 7(b) 는 이의 디퍼렌셜 이미지를 나타낸 도면이다.
도 7을 참조하여, 상술한 본 발명의 이미지 획득 방법에 의해 얻어진 이미지에 의해 결함이 더욱 자세하게 시인 가능한 이유를 설명한다.
도 7(a) 를 참조하면, 제1 영역에서의 이미지 (실선으로 도시) 와 제2 영역에서의 이미지 (점선으로 도시) 에 있어서, 결함 (2) 은 일부는 겹쳐지도록 일부는 겹치지 않도록 이미지 된다. 여기서, 측정 대상 (1) 을 이동하더라도, 센서 및 광학시스템 등의 불균일성에 의한 백그라운드 이미지는 그대로 겹쳐지게 측정되므로, 결함 (2) 만이 이동되는 것과 같이 측정된다.
도 7(b) 를 참조하면, 제1 영역의 이미지에서 제2 영역의 이미지를 제산하여, 디퍼렌셜 이미지를 얻을 수 있다. 디퍼렌셜 이미지는 백그라운드 이미지가 완전히 제거되어 결함 (2) 외곽의 기준선 (3) 의 신호 강도 I가 0으로 수렴되고, 또한 이 디퍼렌셜 이미지의 경우 기준선 (3) 에 비해 높게 이미지되는 지점과 낮게 이미지되는 지점이 서로 인접하여 위치하게 되며, 그 사이에는 이미지의 계조값이 급격하게 변화하는 지점 (4) 이 존재하게 되어 반전된 이미지의 형태를 보인다. 즉, 기준선 (3) 에 비해 밝게 표시되는 영역 (5) 과 어둡게 표시되는 영역 (6) 이 서로 인접하여 위치하게 된다.
다시 도 7(b) 를 참조하면, 디퍼렌셜 이미지에서, 백그라운드 이미지가 기준선 (3) 과 같이 편평하게 변형되고, 또한 가장 밝게 표시되는 지점 (7) 과 가장 어둡게 표시되는 지점 (8) 이 서로 인접하여 위치됨에 따라, 이미지 중첩을 행할 경우에 백그라운드 이미지는 중첩에 의해 증폭되지 않고, 결함 (2) 부분의 계조값의 차이만이 증폭된다. 따라서, 하나의 이미지를 얻어 중첩하는 기존의 방법에 비하여 적은 수의 중첩을 행하고도, 백그라운드의 굴곡을 줄이면서 더 큰 계조값의 차, 즉 밝기의 차이를 얻을 수 있어, 시인성이 우수한 것이다.
도 8은 제1 영역과 제2 영역이 떨어져 있는 거리를 해상도보다 작게 한 경우에 측정 대상의 결함을 측면에서 개략화하여 본 도면이며, 도 9는 제1 영역과 제2 영역이 떨어져 있는 거리를 결함의 크기보다 크게 하였을 경우에 측정 대상의 결함을 측면에서 개략화하여 본 도면이다.
이하 도 8 및 도 9를 참조하여, 제1 영역과 제2 영역이 어느 정도 떨어져 있어야 효과적으로 결함 (2) 을 시인 가능한지에 대해 설명하도록 한다.
본 실시예에서는 이론적으로 카메라 (111) 의 셀 하나에 표시되는 영역은 가로, 세로 각각 3.45 ㎛ 의 영역이며, 측정 대상 (1) 은 10배의 대물 렌즈 (113) 에 의해 확대되어 표시되므로, 실제적으로 카메라 (111) 의 셀 하나에 표시되는 영역은 가로, 세로 각각 0.345 ㎛ 의 크기의 영역이다. 카메라 (111) 에서는 픽셀 단위로 데이터가 얻어지게 되므로, 픽셀의 크기가 식별이 가능한 최소 단위, 즉 해상도 (resolution) 라 할 수 있다. 따라서, 본 실시예의 이미지 획득 장치 (100) 의 해상도는 이론적으로 0.345 ㎛ 가 될 수 있다.
그러나, 이는 해상도를 구하는 하나의 예시에 불과하고, 해상도란 이미지 획득 수단 (100) 에 의해 식별 가능한 최소 길이 단위를 의미한다. 즉 해상도는 상술한 바와 같이 이론적으로 계산되어질 수도 있으나, 대물 렌즈 (113) 의 광학적 특성, 광학 시스템의 품질 등에 의해 제한될 수 있다. 예를 들어, 여러가지 알려진 원인 (개구수 NA에 따른 Airy disk 지름 등) 에 의하여 대물 렌즈 (113) 의 해상도가 1 ㎛ 로 제한된다면, 카메라 (111) 의 해상도가 더 작다 하더라도, 이미지 획득 장치 (100) 의 해상도는 대물 렌즈 (113) 의 해상도인 1 ㎛ 로 제한될 수 있다.
도 8과 같이, 해상도 범위의 이내의 범위에서 제1 영역 (실선) 과 제2 영역 (점선) 이 떨어져 있다면, 제1 영역의 이미지와 제2 영역의 이미지를 감산하여 도 8(b) 와 같이 디퍼렌셜 이미지를 얻을 경우, 가장 밝게 표시되는 지점 (7) 과 가정 어둡게 표시되는 지점 (8) 간의 밝기 차이 (즉 신호의 크기 차이) 가 미세하게 됨에 따라, 결함을 그대로 측정하는 것에 비하여도 구별이 더욱 힘들어진다. 따라서, 제1 영역의 이미지와 제2 영역의 이미지는 최소한 이미지 획득 장치 (100) 의 해상도보다는 크게 떨어져 있는 것이 바람직하다.
반면, 도 9와 같이, 결함 (2) 이 서로 겹쳐지지 않도록 제1 영역 (실선) 과 제2 영역 (점선) 이 떨어져 있다면, 도 9(b) 와 같이 디퍼렌셜 이미지에서 가장 밝게 표시되는 지점 (7) 과 가장 어둡게 표시되는 지점 (8) 이 인접하지 않게 되어, 도 7(b) 에서와 같은 이미지의 계조값이 급격하게 변화하는 지점 (4) 이 존재하지 않게 됨에 따라, 시인성이 저하된다.
따라서, 최소한 이미지 획득 수단 (110) 의 해상도 이상 측정 대상 (1) 을 이동 수단 (130) 에 의해 이동시키는 것이 바람직하며, 또한 측정하고자 하는 결함 (2) 의 크기 (즉 XY 방향의 너비) 를 고려하여, 결함 (2) 의 크기 이하로 측정 대상 (1) 을 이동 수단 (130) 에 의해 이동시키는 것이 바람직하다. 여기서, 해상도는 카메라 (111) 의 종류 및 대물 렌즈 (113) 의 배율에 따라 변화되므로, 카메라 (111) 및 대물 렌즈 (113) 의 사양 (仕樣) 에 의해 결정될 수 있다.
본 실시예에서는 카메라 (111) 자체의 해상도는 0.345 ㎛ 이나, 대물렌즈 (113) 의 해상도가 1 ㎛ 로서, 이미지 획득 장치 (100) 의 해상도가 1 ㎛ 로 정해짐에 따라, 제1 영역에서 1 ㎛ 만큼 우측으로 측정 대상 (1) 을 이동시켜 제2 영역을 이미지하였으며, 이에 따라 1 ㎛ 이상의 결함의 시인성을 우수하게 하였다. 이러한 제1 영역과 제2 영역 간의 거리는 측정하고자 하는 결함의 크기에 따라 다양하게 설정할 수 있다.
한편, 제1 영역과 제2 영역이 좌우로 이격되어 위치하는 것으로 본 실시예에서 설명하였으나, 이에 국한되는 것은 아니며, 상하로 위치되어도 되며, 일정한 각도를 가지고 이격되어 위치되어도 상관없다.
도 10은 본 발명의 다른 실시예에 따른 이미지 획득 방법의 플로우 챠트이며, 도 11은 도 10의 이미지 획득 방법의 다양한 변형예들을 나타낸 시간 흐름도이다.
도 10을 참조하면, 본 발명의 다른 실시예에 따른 이미지 획득 방법은, 제1 영역의 이미지를 N회 (여기서 N은 2 이상의 정수) 획득하는 단계 (S210), 제1 영역의 이미지들을 합산하여 제1 합산 이미지를 얻는 단계 (S220), 이동 수단 (130) 에 의해 측정 대상 (1) 을 제1 영역과 다른 제2 영역으로 이동시키는 단계 (S230), 제2 영역의 이미지를 M회 (여기서 M은 2 이상의 정수) 획득하는 단계 (S240), 제2 영역의 이미지들을 합산하여 제2 합산 이미지를 얻는 단계 (S250) 및 제1 합산 이미지 및 제2 합산 이미지 중 어느 하나에서 다른 하나를 감산하여 디퍼렌셜 이미지를 얻는 단계 (S260) 를 포함하여 구성된다.
도 3의 이미지 획득 방법은 디퍼렌셜 이미지를 먼저 얻고, 이를 중첩하는 것을 특징으로 하나, 본 실시예의 이미지 획득 방법은 중첩을 먼저 행한 후에 디퍼렌셜 이미지를 얻는 것에서 차이가 있을 뿐이므로, 차이점을 중심으로 설명하도록 한다.
먼저, 제1 영역의 이미지를 N회 (여기서 N은 2 이상의 정수) 획득한다 (S210). 이는 카메라 (111) 를 통해 연속으로 N 개의 프레임의 이미지를 얻는 것으로 행하여진다. 본 실시예의 카메라 (111) 의 경우 프레임 레이트가 15 fps이므로, 1초에 15 프레임의 이미지를 얻을 수 있다. 즉, 일정 시간 동안 카메라 (111) 를 통해 프레임 단위의 이미지를 얻음으로써 본 단계를 행한다.
그 다음으로, 이미지 처리에 의해 S210 단계에서 얻어진 각 프레임의 이미지를 픽셀 단위로 합산하여, 제1 합산 이미지를 얻는다 (S220). 이는 제어부 (150) 에 의해 행하여질 수 있다.
그 다음으로, 이동 수단 (130) 에 의해 측정 대상 (1) 을 제1 영역과 다른 제2 영역으로 이동시킨다 (S230). 이에 대해서는 자세한 설명은 상술한 바와 같으므로 생략한다.
그 다음으로. 제2 영역의 이미지를 M회 (여기서 M은 2 이상의 정수) 를 획득한다 (S240). 이미지의 획득 방법은 S210 단계와 동일하므로 자세한 설명은 생략한다.
그 다음으로, 이미지 처리에 의해 S240 단계에서 얻어진 각 프레임의 이미지를 픽셀 단위로 합산하여, 제2 합산 이미지를 얻는다 (S250). 이는 제어부 (150) 에 의해 행하여질 수 있다.
이후, 제1 합산 이미지 및 제2 합산 이미지 중 어느 하나에서 다른 하나를 감산하여 디퍼렌셜 이미지를 얻는다 (S260). 디퍼렌셜 이미지를 얻는 방법은 도 3의 S130 단계와 동일하므로, 자세한 설명은 생략한다.
이에 따라 결과적으로 도 3과 같은 효과를 기대할 수 있어, 도 6b와 같은 이미지를 얻을 수 있게 된다.
한편, N과 M은 서로 동일할 필요는 없으나, 도 7(b) 와 같은 정확한 반전 효과를 위해서는 N과 M이 동일한 것이 바람직하다.
도 11(a) 를 참조하면, 제1 영역을 서쪽 (즉, 왼쪽) 에 위치시킨 후 N 프레임의 이미지를 획득하고, 연속적으로 제2 영역을 동쪽 (즉, 오른쪽) 에 위치시킨 후 M 프레임의 이미지를 획득하는 방법으로 도 10의 실시예를 행할 수 있다.
또한, 도 11(b) 를 참조하면, 제1 영역을 서쪽에 위치시킨 후 N 프레임의 이미지를 획득하고, 연속적으로 제2 영역을 동쪽에 위치시킨 후 M 프레임의 이미지를 획득하며, 이어서 서쪽에 위치한 제1 영역을 다시 P 프레임 동안 이미지하고, 또한 동쪽에 위치한 제2 영역을 다시 Q 프레임 동안 이미지하는 방법으로 도 10의 실시예를 행할 수 있다.
또한, 도 11(c) 를 참조하면, 제1 영역을 서쪽에 위치시킨 후 N 프레임의 이미지를 획득하고, 연속적으로 제2 영역을 동쪽에 위치시킨 후 N 프레임의 이미지를 획득하며, 이어서 제3 영역을 북쪽 (즉, 위쪽) 에 위치시킨 후 P 프레임의 이미지를 획득하고, 연속적으로 제4 영역을 남쪽 (즉, 아래쪽) 에 위치시킨 후 Q 프레임의 이미지를 획득하는 방법으로 도 10의 실시예를 행할 수 있다. 여기서 제1 영역을 합산한 이미지, 제2 영역을 합산한 이미지, 제3 영역을 합산한 이미지 및 제4 영역을 합산한 이미지 중 두 개 이상을 선택하여 디퍼렌셜 이미지를 획득할 수 있다.
상술한 M, N, P, Q 는 2 이상의 정수로서, 서로 동일하지 않아도 무방하나, 도 7(b) 와 같은 정확한 반전 효과를 위해서는 서로 동일한 것이 바람직하다.
한편, 제1 영역과 제2 영역이 좌우로 이격되어 위치하는 것으로, 제3 영역과 제4 영역이 상하로 이격되어 위치하는 것으로 본 실시예에서 설명하였으나, 이에 국한되는 것은 아니며, 제1 영역과 제2 영역 간이 상하로 위치되거나, 일정한 각도를 가지고 이격되어 위치되어도 무방하며, 또한 제3 영역과 제4 영역 간이 좌우로 위치되어도 되며, 일정한 각도를 가지고 이격되어 위치되어도 상관없다. 즉, 제1 영역 내지 제4 영역 간의 위치 관계는 자유롭게 설정될 수 있다.
이상과 같이 설명한 이미지 획득 방법과 이를 이용한 이미지 획득 장치는 원자현미경에 이용될 수 있다. 원자현미경에는 캔틸레버가 측정 대상의 표면의 어느 지점에 접촉하게 되는지 광학적으로 관찰하는 광학 비젼 시스템이 포함되는데, 상술한 이미지 획득 방법은 이러한 광학 비젼 시스템에 적용될 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (9)

  1. 일정 크기의 픽셀 (pixel) 단위로 측정 대상의 표면의 이미지 (image) 를 얻는 이미지 획득 수단과, 상기 측정 대상을 이동시킬 수 있는 이동 수단을 포함하는 측정 장치를 이용하여 이미지 획득 방법에 있어서,
    상기 이미지 획득 수단에 의해 상기 측정 대상의 표면 중 제1 영역의 이미지를 얻는 단계;
    상기 이동 수단에 의해 상기 측정 대상을 이동시켜 상기 제1 영역과 다른 제2 영역의 이미지를 얻는 단계;
    상기 제1 영역 및 상기 제2 영역의 이미지 중 어느 하나의 이미지에서 다른 하나의 이미지를 감산하여 디퍼렌셜 이미지 (differential image) 를 얻는 단계; 및
    상기 디퍼렌셜 이미지를 복수 회 중첩시키는 단계; 를
    포함하는 것을 특징으로 하는 이미지 획득 방법.
  2. 일정 크기의 픽셀 (pixel) 단위로 측정 대상의 표면의 이미지 (image) 를 얻는 이미지 획득 수단과, 상기 측정 대상을 이동시킬 수 있는 이동 수단을 포함하는 측정 장치를 이용하여 이미지 획득 방법에 있어서,
    상기 이미지 획득 수단에 의해 상기 측정 대상의 표면 중 제1 영역의 이미지를 N 회 (여기서 N은 2 이상의 정수) 얻는 단계;
    N 개의 상기 제1 영역의 이미지를 합산하여 제1 합산 이미지를 얻는 단계;
    상기 이동 수단에 의해 상기 측정 대상을 상기 제1 영역과 다른 제2 영역으로 이동시키는 단계;
    상기 이미지 획득 수단에 의해 상기 측정 대상의 표면 중 제2 영역의 이미지를 M 회 (여기서 M은 2 이상의 정수) 얻는 단계;
    M 개의 상기 제2 영역의 이미지를 합산하여 제2 합산 이미지를 얻는 단계;
    상기 제1 합산 이미지 및 상기 제2 합산 이미지 중 어느 하나에서 다른 하나를 감산하여 디퍼렌셜 이미지 (differential image) 를 얻는 단계; 를
    포함하는 것을 특징으로 하는 이미지 획득 방법.
  3. 제1 항 또는 제2 항에 있어서,
    상기 제1 영역과 상기 제2 영역은 상기 이미지 획득 수단의 해상도의 크기 이상으로 떨어져 있는 것을 특징으로 하는 이미지 획득 방법.
  4. 제1 항 또는 제2 항에 있어서,
    상기 제1 영역과 상기 제2 영역은 감지하고자 하는 감지대상의 크기보다 작은 크기만큼 떨어져 있는 것을 특징으로 하는 이미지 획득 방법.
  5. 제2 항에 있어서,
    상기 N과 상기 M은 동일한 것을 특징으로 하는 이미지 획득 방법.
  6. 일정 크기의 픽셀 (pixel) 단위로 측정 대상의 표면의 이미지 (image) 를 얻는 이미지 획득 수단;
    상기 측정 대상을 이동시킬 수 있는 이동 수단; 및
    상기 이미지 획득 수단에서 얻은 이미지를 수신하여 이미지 처리를 행하고, 상기 이동 수단의 구동을 제어하는 제어부; 를 포함하며,
    상기 제어부는, 상기 이미지 획득 수단에 의해 상기 측정 대상의 표면 중 제1 영역의 이미지를 얻고, 상기 이동 수단에 의해 상기 측정 대상을 이동시켜 상기 제1 영역과 다른 제2 영역의 이미지를 얻은 후, 상기 제1 영역 및 상기 제2 영역의 이미지 중 어느 하나의 이미지에서 다른 하나의 이미지를 감산하여 디퍼렌셜 이미지 (differential image) 를 얻고, 상기 디퍼렌셜 이미지를 복수 회 중첩시켜, 측정 대상의 표면의 이미지를 처리하는 것을 특징으로 하는 이미지 획득 장치.
  7. 일정 크기의 픽셀 (pixel) 단위로 측정 대상의 표면의 이미지 (image) 를 얻는 이미지 획득 수단;
    상기 측정 대상을 이동시킬 수 있는 이동 수단; 및
    상기 이미지 획득 수단에서 얻은 이미지를 수신하여 이미지 처리를 행하고, 상기 이동 수단의 구동을 제어하는 제어부; 를 포함하며,
    상기 제어부는, 상기 이미지 획득 수단에 의해 상기 측정 대상의 표면 중 제1 영역의 이미지를 N 회 (여기서 N은 2 이상의 정수) 얻고, N 개의 상기 제1 영역의 이미지를 합산하여 제1 합산 이미지를 산출하며, 상기 이동 수단에 의해 상기 측정 대상을 상기 제1 영역과 다른 제2 영역으로 이동시키고, 상기 이미지 획득 수단에 의해 상기 측정 대상의 표면 중 제2 영역의 이미지를 M 회 (여기서 M은 2 이상의 정수) 얻고, M 개의 상기 제2 영역의 이미지를 합산하여 제2 합산 이미지를 산출하며, 상기 제1 합산 이미지 및 상기 제2 합산 이미지 중 어느 하나에서 다른 하나를 감산하여 디퍼렌셜 이미지 (differential image) 를 산출하여, 측정 대상의 표면의 이미지를 처리하는 것을 특징으로 하는 이미지 획득 장치.
  8. 제6 항 또는 제7 항에 있어서,
    상기 이미지 획득 수단은 CCD 또는 CMOS 를 이용한 이미지 장치인 것을 특징으로 하는 이미지 획득 장치.
  9. 제6 항 또는 제7 항에 따른 이미지 획득 장치를 포함하는 것을 특징으로 하는 원자현미경.
PCT/KR2014/005714 2013-06-27 2014-06-26 이미지 획득 방법 및 이를 이용한 이미지 획득 장치 WO2014209043A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/650,237 US10133052B2 (en) 2013-06-27 2014-06-26 Image acquiring method and image acquiring apparatus using the same
EP14818687.7A EP3015850B1 (en) 2013-06-27 2014-06-26 Image acquiring method and image acquiring apparatus using same
JP2016511690A JP6161798B2 (ja) 2013-06-27 2014-06-26 イメージ取得方法及びこれを利用したイメージ取得装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0074792 2013-06-27
KR1020130074792A KR101520835B1 (ko) 2013-06-27 2013-06-27 이미지 획득 방법 및 이를 이용한 이미지 획득 장치

Publications (1)

Publication Number Publication Date
WO2014209043A1 true WO2014209043A1 (ko) 2014-12-31

Family

ID=52142288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005714 WO2014209043A1 (ko) 2013-06-27 2014-06-26 이미지 획득 방법 및 이를 이용한 이미지 획득 장치

Country Status (5)

Country Link
US (1) US10133052B2 (ko)
EP (1) EP3015850B1 (ko)
JP (1) JP6161798B2 (ko)
KR (1) KR101520835B1 (ko)
WO (1) WO2014209043A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013371A (ja) * 2015-07-01 2017-01-19 キヤノン株式会社 画像処理装置および画像処理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10504213B2 (en) 2016-11-22 2019-12-10 Kla-Tencor Corporation Wafer noise reduction by image subtraction across layers
CN108665436B (zh) * 2018-05-10 2021-05-04 湖北工业大学 一种基于灰度均值参照的多聚焦图像融合方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663984B2 (ja) * 1988-03-31 1994-08-22 住友特殊金属株式会社 欠陥検出方法
JPH08146137A (ja) * 1994-11-25 1996-06-07 Fine Ceramics Center 差分画像処理を用いた放射線透視法
US6236057B1 (en) * 1997-05-21 2001-05-22 Hitachi, Ltd. Method of inspecting pattern and apparatus thereof with a differential brightness image detection
JP2009115613A (ja) * 2007-11-06 2009-05-28 Hitachi High-Tech Control Systems Corp 異物検査装置
JP2010151697A (ja) * 2008-12-26 2010-07-08 Konica Minolta Sensing Inc 3次元形状計測装置および方法
KR20100092014A (ko) * 2007-11-12 2010-08-19 마이크로닉 레이저 시스템즈 에이비 패턴 에러들을 검출하기 위한 방법들 및 장치들

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201556A (ja) * 1987-02-17 1988-08-19 Mazda Motor Corp ギヤの打痕判別方法
JPH01140271A (ja) * 1987-11-26 1989-06-01 Oki Electric Ind Co Ltd パターン欠陥検出装置
JP2635758B2 (ja) * 1989-03-28 1997-07-30 株式会社東芝 欠陥判別装置
JP2005077272A (ja) * 2003-09-01 2005-03-24 Olympus Corp 欠陥検査方法
JP3851907B2 (ja) * 2004-02-18 2006-11-29 株式会社ソニー・コンピュータエンタテインメント 画像表示システム及びビデオゲームシステム
US8597716B2 (en) 2009-06-23 2013-12-03 Abbott Cardiovascular Systems Inc. Methods to increase fracture resistance of a drug-eluting medical device
JP4450776B2 (ja) * 2005-07-22 2010-04-14 株式会社日立ハイテクノロジーズ 欠陥検査方法及び外観検査装置
JP4810659B2 (ja) * 2006-03-17 2011-11-09 国立大学法人宇都宮大学 外観検査装置、外観検査方法、外観検査プログラム及びそれを記録した情報記録媒体
JP2012169571A (ja) * 2011-02-17 2012-09-06 Hitachi High-Technologies Corp 欠陥抽出走査電子顕微鏡検査装置及びその抽出方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663984B2 (ja) * 1988-03-31 1994-08-22 住友特殊金属株式会社 欠陥検出方法
JPH08146137A (ja) * 1994-11-25 1996-06-07 Fine Ceramics Center 差分画像処理を用いた放射線透視法
US6236057B1 (en) * 1997-05-21 2001-05-22 Hitachi, Ltd. Method of inspecting pattern and apparatus thereof with a differential brightness image detection
JP2009115613A (ja) * 2007-11-06 2009-05-28 Hitachi High-Tech Control Systems Corp 異物検査装置
KR20100092014A (ko) * 2007-11-12 2010-08-19 마이크로닉 레이저 시스템즈 에이비 패턴 에러들을 검출하기 위한 방법들 및 장치들
JP2010151697A (ja) * 2008-12-26 2010-07-08 Konica Minolta Sensing Inc 3次元形状計測装置および方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013371A (ja) * 2015-07-01 2017-01-19 キヤノン株式会社 画像処理装置および画像処理方法

Also Published As

Publication number Publication date
EP3015850A4 (en) 2016-08-31
US20150301329A1 (en) 2015-10-22
KR20150002964A (ko) 2015-01-08
KR101520835B1 (ko) 2015-05-18
US10133052B2 (en) 2018-11-20
JP6161798B2 (ja) 2017-07-12
JP2016524696A (ja) 2016-08-18
EP3015850A1 (en) 2016-05-04
EP3015850B1 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
WO2014101281A1 (zh) 检测设备中镜头的光轴偏移的装置和方法
JP2004012325A (ja) 欠陥検査方法および欠陥検査装置
WO2015080480A1 (ko) 웨이퍼 영상 검사 장치
WO2014209043A1 (ko) 이미지 획득 방법 및 이를 이용한 이미지 획득 장치
WO2013137637A1 (en) Imaging apparatus and image sensor thereof
JP2011220932A (ja) 撮像装置
WO2020040468A1 (ko) 유기발광소자의 혼색 불량 검출장치 및 검출방법
WO2014069962A1 (ko) 증착 박막의 표면 거칠기 측정방법 및 장치
EP1676238B1 (en) A method for measuring dimensions by means of a digital camera
KR20040045331A (ko) 패턴검출방법 및 패턴검출장치
JPH0979946A (ja) 表示装置の検査装置
JPH11351834A (ja) ビデオ式非接触伸び計
JP2006245891A (ja) カメラモジュールの画像検査用チャート、この画像検査用チャートを用いたカメラモジュールの画像検査方法および画像検査装置
WO2023033366A1 (ko) 2차원 대상체 검출 시스템
WO2013151191A1 (ko) 평판패널 기판의 자동광학검사 방법 및 그 장치
WO2024143652A1 (ko) 렌즈 모듈, 광학 장치 및 그를 이용한 3차원 영상 수집 방법
KR20040088691A (ko) 면적센서를 이용한 티디아이(tdi) 방식의 디텍터 시스템
KR100890050B1 (ko) 패턴 검사 장치
TW298628B (ko)
Tzu Effectiveness of Electrical and Optical Detection at Pixel Circuit on Thin-Film Transistors. Micromachines 2021, 12, 135
JPH04100094A (ja) 表示試験装置
JPH0854349A (ja) カメラ及び該カメラを用いた画質検査装置
CN115577495A (zh) 基于图像分析同步获取材料力学实验应力应变数据的方法
KR20040040865A (ko) 화상 검사 시스템 및 그 방법
JP2018063376A (ja) 顕微鏡システム、画像処理方法、および、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14650237

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016511690

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014818687

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE