[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014204151A1 - 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판 - Google Patents

연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판 Download PDF

Info

Publication number
WO2014204151A1
WO2014204151A1 PCT/KR2014/005251 KR2014005251W WO2014204151A1 WO 2014204151 A1 WO2014204151 A1 WO 2014204151A1 KR 2014005251 W KR2014005251 W KR 2014005251W WO 2014204151 A1 WO2014204151 A1 WO 2014204151A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
stretching
polyvinyl alcohol
thermoplastic polyurethane
laminate
Prior art date
Application number
PCT/KR2014/005251
Other languages
English (en)
French (fr)
Inventor
남성현
정종현
나균일
유혜민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140071686A external-priority patent/KR101575489B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/387,070 priority Critical patent/US10254457B2/en
Priority to CN201480000932.4A priority patent/CN104395794B/zh
Priority to EP14766090.6A priority patent/EP2840419B1/en
Priority to JP2015542981A priority patent/JP6077669B2/ja
Publication of WO2014204151A1 publication Critical patent/WO2014204151A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a stretched laminate, a method for producing a thin polarizer, a thin polarizer manufactured using the same, and a polarizing plate including such a thin polarizer.
  • the polarizer used in the polarizing plate is an optical element for making natural light or arbitrary polarization into a polarized light in a specific direction, and is widely used in a display device such as a liquid crystal display device and an organic light emitting device (OLED).
  • a polarizer used in the display device a polyvinyl alcohol polarizing film in which molecular chains containing an iodine compound or a dichroic dye are oriented in a constant direction is generally used.
  • the polyvinyl alcohol-based polarizing film is prepared by dyeing a polyvinyl alcohol-based film with iodine or dichroic dye, and then stretching and crosslinking in a predetermined direction, wherein the stretching process is an aqueous solution of boric acid or an iodine solution. Wet drawing carried out in solution or dry drawing carried out in air, and the like, and the draw ratio is generally at least 5 times.
  • stretching exceeds 60 micrometers.
  • polarizers are also required to have a thinner thickness.
  • a polyvinyl alcohol-based film having a thickness before stretching is more than 60 ⁇ m as in the prior art there is a limit in reducing the thickness of the polarizer. Therefore, in recent years, many studies have been attempted to produce thinner thinner polarizers. For example, in recent years, a method of coating and drying a polyvinyl alcohol-based resin on a substrate to form a resin layer to form a thin polarizer, and then a method of stretching has been proposed.
  • a crystalline ester resin or an amorphous ester resin is used as the base material, and in particular, a crystalline polyethylene terephthalate resin is used as one of the crystalline ester resins, or an amorphous polyethylene terephthalate is used as the amorphous ester resin. Resin is used.
  • the draw ratio of 5 times is the limit
  • the draw ratio of 5.5 times is the limit.
  • the crystallinity and tensile strength is high due to the structure and properties of the material itself, and the manufacturing process of drawing and stretching after solution casting through melting (melting) Because of its size, dry stretching is possible only at a high temperature of about 120 ° C to 170 ° C. In this case, in order to dry draw at a high temperature of about 120 ° C.
  • the transition temperature is about 70 ° C. to 80 ° C., dry stretching at a high temperature may damage the polyvinyl alcohol film, and may also cause problems such as changes in physical properties.
  • the present invention is to solve the above problems, it is possible to wet drawing in both dry and boric acid aqueous solution at low temperature, high magnification stretching, easy to peel off the laminate and excellent optical properties using the same
  • a method of manufacturing a thin polarizer of 10 ⁇ m or less, a thin polarizer manufactured using the same, and a polarizing plate including the same is provided.
  • the invention provides an unstretched thermoplastic polyurethane film; And a stretched laminate in which a laminate including an unstretched polyvinyl alcohol-based film laminated on at least one surface of the unstretched thermoplastic polyurethane film is stretched, wherein the stretched laminate having a thickness of the polyvinyl alcohol-based film after stretching is 10 ⁇ m or less.
  • a stretched laminate in which a laminate including an unstretched polyvinyl alcohol-based film laminated on at least one surface of the unstretched thermoplastic polyurethane film is stretched, wherein the stretched laminate having a thickness of the polyvinyl alcohol-based film after stretching is 10 ⁇ m or less.
  • the unstretched thermoplastic polyurethane film preferably has a thickness of 4 to 70 ⁇ m after stretching, for example, may be 6 ⁇ m to 70 ⁇ m, 6 ⁇ m to 56 ⁇ m or 9 ⁇ m to 35 ⁇ m.
  • the glass transition temperature (Tg) of the unstretched thermoplastic polyurethane film is about 20 °C to 60 °C, preferably about 30 °C to 50 °C
  • the modulus at room temperature (25 °C) is about 200 MPa to 1500 MPa
  • it is about 350 MPa to 1300 MPa
  • the breaking force at room temperature (25 ° C.) may be about 5N to 40N, preferably about 10N to 30N.
  • the present invention comprises the steps of laminating an unoriented polyvinyl alcohol-based film on at least one side of the unoriented thermoplastic polyurethane film to form a laminate; And stretching the laminate such that the polyvinyl alcohol-based film has a thickness of 10 ⁇ m or less.
  • the step of forming the laminate using an attractive force or an adhesive between the unstretched thermoplastic polyurethane film and the unstretched polyvinyl alcohol-based film, attaching the unstretched thermoplastic polyurethane film and the unstretched polyvinyl alcohol-based film is preferably carried out by the method.
  • the stretching of the laminate may be performed at a draw ratio of 5 to 15 times at a temperature of 20 ° C. to 80 ° C., preferably in an aqueous boric acid solution having a boric acid concentration of 1% to 5% by weight. Can be performed.
  • the stretching may be performed by dry stretching at a draw ratio of 5 to 15 times at a temperature of 20 ° C to 80 ° C.
  • the width of the direction perpendicular to the stretching direction of the thermoplastic polyurethane film is reduced by 30% to 80% compared to before stretching by stretching the laminate.
  • the thickness of the thermoplastic polyurethane film is reduced by 30% to 80% compared to before stretching.
  • the adhesion between the stretched polyvinyl alcohol-based film and the stretched thermoplastic polyurethane film after the stretching of the laminate is 2N / 2 cm or less, preferably 0.1N / 2cm To about 2N / 2cm, more preferably about 0.1N / 2cm to about 1N / 2cm.
  • the manufacturing method of the thin polarizer of the present invention may further comprise the step of dyeing at least one of iodine and dichroic dye on the unstretched polyvinyl alcohol-based film before the stretching of the laminate, preferably Swelling the unstretched polyvinyl alcohol-based film and dyeing iodine and / or dichroic dye on the swollen unstretched polyvinyl alcohol-based film may be further performed.
  • the manufacturing method of the thin polarizer of the present invention may further comprise the step of separating the stretched polyvinyl alcohol-based film from the stretched thermoplastic polyurethane film after the stretching of the laminate.
  • the step of separating the stretched polyvinyl alcohol-based film from the stretched thermoplastic polyurethane film may be performed by applying a peel force of about 2N / 2cm or less, preferably 0.1N / 2cm to 2N / 2cm.
  • the present invention is prepared by the above production method, the thickness is 10 ⁇ m or less, the single transmittance of 40% to 45%, the degree of polarization is 99.0% or more, the degree of polarization measured at 10 points at equal intervals along the polarizer width direction Provided is a thin polarizer having a standard deviation of 0.002% or less, and a polarizing plate including the same.
  • the present invention it is possible to produce both a wet stretching in a dry and boric acid aqueous solution at a low temperature, high magnification stretching and excellent optical properties, and can produce a thin polarizer having a thickness of 10 ⁇ m or less.
  • thermoplastic polyurethane film and the polyvinyl alcohol-based film are not separated in the stretching process, and the surface damage is minimized in the separation process after stretching, and thus the process stability in the stretching process is also excellent.
  • FIG. 1 is a schematic diagram showing a method of measuring the peeling strength (Peeling Strenghth) using a texture analyzer (Texture Analyzer).
  • Comparative Example 2 is a photograph showing that breakage occurs in a polyvinyl alcohol-based film when the high-stretch stretching of Comparative Example 2 is performed.
  • the inventors of the present invention have made a long study to produce a thin polarizer having a thickness of 10 ⁇ m or less, which is capable of both stretching at a low temperature and wet drawing in an aqueous solution of boric acid, capable of high magnification stretching, and has excellent optical properties.
  • a thermoplastic polyurethane film as a film and laminating
  • the stretched laminate of the present invention is an unstretched thermoplastic polyurethane film; And a stretched laminate in which a laminate including an unstretched polyvinyl alcohol-based film laminated on at least one surface of the thermoplastic polyurethane film is stretched, wherein the stretched laminate of the present invention is stretched and has a thickness of a polyvinyl alcohol-based film. Is 10 micrometers or less.
  • thermoplastic polyurethane film included in the laminate of the present invention is for preventing the polyvinyl alcohol-based film from breaking in the stretching process
  • the present invention uses a thermoplastic polyurethane film as the base film, as described above
  • the heat shrinkage characteristics of the thermoplastic polyurethane-based film are similar to those of the polyvinyl alcohol-based film so that the width shrinkage of the polyvinyl alcohol-based film stretched during the drying process is not inhibited and the smooth shrinkage is achieved. Since it can be induced, there is an advantage that the orientation of the polyvinyl alcohol-iodine complex can be further increased.
  • the thermoplastic polyurethane film has a thickness before stretching is about 20 ⁇ m to 100 ⁇ m, preferably 30 ⁇ m to 80 ⁇ m or 30 ⁇ m to about 60 ⁇ m.
  • the thickness of the thermoplastic polyurethane film is thinner than the above range, the laminate structure may not be sufficiently supported when the stretching process is performed, which may cause problems such as breakage in the process.
  • the increase in the elongation is lowered, and also the free width shrinkage in the drying section of the polyvinyl alcohol-based film can be prevented to inhibit the optical properties of the finally obtained polarizer.
  • the thermoplastic polyurethane film is preferably 4 ⁇ m to 70 ⁇ m thickness after stretching, for example, 6 ⁇ m to 70 ⁇ m, 6 ⁇ m to 56 ⁇ m or 9 ⁇ m to 35 ⁇ m.
  • the thermoplastic polyurethane film can effectively prevent breakage when the polyvinyl alcohol-based film is stretched at a high magnification.
  • the thermoplastic polyurethane film may have a glass transition temperature of about 20 ° C. to 60 ° C., for example, about 30 ° C. to about 50 ° C.
  • the thermoplastic polyurethane film serving as the base film has a lower glass transition temperature than the polyvinyl alcohol-based film having a glass transition temperature of 70 ° C. to 80 ° C., the softer property at the stretching temperature condition It can have, and as a result can be better stretched polyvinyl alcohol-based film.
  • the glass transition temperature of the thermoplastic polyurethane film is too low, there is a problem that the breakage is likely to occur when performing high magnification stretching, it is preferable to have a glass transition temperature of the appropriate range as described above.
  • the glass transition temperature may be measured by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the sample of about 10 mg is sealed in a dedicated pan and heated to a constant temperature condition, the endothermic and calorific value of the material according to the phase change occurs according to the temperature.
  • the transition temperature can be measured.
  • the modulus (Modulus) at room temperature (25 °C) of the thermoplastic polyurethane film is preferably 200MPa to 1500MPa, for example, may be 350MPa to 1300MPa.
  • the modulus of the thermoplastic polyurethane film is larger than the above range, stretching of high magnification may be difficult, and when smaller than the above range, there is a problem that breakage is likely to occur in the stretching process.
  • the modulus is fixed to both ends of the sample prepared according to the JIS-K6251-1 standard, and then applied a force in a direction perpendicular to the thickness direction of the film stress (Stress) per unit area according to the tensile rate (Strain) It refers to the value obtained by measuring the, in this case, for example, Zwick / Roell Z010 UTM equipment and the like can be used as a measuring device.
  • the breaking force at room temperature (25 °C) of the thermoplastic polyurethane film may be about 5N to 40N, preferably 10N to 30N.
  • the breaking force of the thermoplastic polyurethane film is larger than the above range, high magnification stretching may be difficult.
  • the breaking force of the thermoplastic polyurethane film is less than the above range, breakage is likely to occur in the stretching process.
  • the breaking force refers to a force applied to the film or a tensile force at the time of breaking when the breakage of the film occurs, and in this case, Zwick / Roell Z010 UTM equipment may be used as a measuring device.
  • the tensile force at the time of dry stretching at a draw ratio of 6 times at room temperature (25 °C) of the thermoplastic polyurethane film is 5N To about 200N, preferably 10N To about 100N.
  • the tensile force at the time of wet stretching at a draw ratio of 6 times at 52 °C may be about 1N to 100N, preferably about 2N to 80N.
  • the tensile force of the thermoplastic polyurethane film is larger than the above range, stretching of high magnification may be difficult, and when smaller than the above range, breakage is likely to occur in the stretching process.
  • the tensile force refers to a tension force, and as the measuring device, for example, Zwick / Roell Z010 UTM equipment or the like may be used.
  • the polyvinyl alcohol-based film laminated on at least one surface of the thermoplastic polyurethane film is used as a polyvinyl alcohol-based thin polarizer after passing through a dyeing and stretching process, and if it includes a polyvinyl alcohol resin or derivatives thereof Can be used without
  • examples of the derivative of the polyvinyl alcohol resin include, but are not limited to, polyvinyl formal resin, polyvinyl acetal resin, and the like.
  • the polyvinyl alcohol-based film is a commercially available polyvinyl alcohol-based film used in the manufacture of polarizers in the art, for example, M2000, M2001, M2005, M3000, M6000, P30, PE20, PE30, manufactured by Nippon Synthetic. , PE60 or the like can also be used.
  • the polyvinyl alcohol-based film has a thickness before stretching is 60 ⁇ m or less, for example, about 5 ⁇ m to 60 ⁇ m, preferably about 10 ⁇ m to 40 ⁇ m. If the thickness of the polyvinyl alcohol-based film is too thin, problems such as breakage may easily occur when the stretching process is performed by forming a laminate structure, and if the thickness is too thick, the thickness of the finally obtained polarizer is thickened to have a thickness of 10 ⁇ m. It is not suitable for manufacture of the following thin polarizer.
  • the polyvinyl alcohol-based film has a thickness of 10 ⁇ m or less, for example, 1 ⁇ m to 10 ⁇ m, or 3 ⁇ m to 8 ⁇ m after stretching for thinning.
  • the polyvinyl alcohol-based film may be laminated and stretched on one surface of the thermoplastic polyurethane film, may be laminated and stretched on both surfaces, and may be stretched to 10 ⁇ m or less.
  • the polyvinyl alcohol-based film is not limited to this, but the degree of polymerization is preferably about 1,000 to 10,000, preferably 1,500 to 5,000. This is because when the degree of polymerization satisfies the above range, the molecular motion is free and can be mixed flexibly with iodine or dichroic dye.
  • the polyvinyl alcohol-based film is preferably a film in the state of the iodine and / or dichroic dye is dyed, more preferably the polyvinyl alcohol-based film may be a film subjected to the swelling process and the dyeing process have.
  • the method for producing a thin polarizer of the present invention comprises the steps of laminating an unoriented polyvinyl alcohol-based film on at least one surface of the unoriented thermoplastic polyurethane film to form a laminate; And stretching the laminate such that the polyvinyl alcohol-based film has a thickness of 10 ⁇ m or less.
  • the lamination method of the thermoplastic polyurethane film and the polyvinyl alcohol-based film is not particularly limited.
  • an aqueous solution containing a forming material of a polyvinyl alcohol-based film in a thermoplastic polyurethane film is generally known in the art as coating, reverse coating, gravure coating, spin coating, screen coating, fountain coating, spray coating,
  • the laminate can be obtained by drying after coating using a coating method such as comma coating, and a co-extruder generally used in the art for forming a thermoplastic polyurethane film and a polyvinyl alcohol-based film. It is also possible to obtain a laminate by controlling the thickness of the thermoplastic polyurethane film and the polyvinyl alcohol-based film to be injected into and coextruded to an appropriate range.
  • the thermoplastic polyurethane film and the polyvinyl alcohol-based film may be attached by using an adhesive to form a laminate.
  • the adhesive is not particularly limited in material, and various adhesives known in the art may be used without limitation.
  • the adhesive may be a water based adhesive or an ultraviolet curable adhesive.
  • the adhesive may be an aqueous adhesive including one or more selected from the group consisting of polyvinyl alcohol-based resins, acrylic resins, and vinyl acetate-based resins.
  • the adhesive may be an aqueous adhesive including a polyvinyl alcohol resin having an acrylic group and a hydroxyl group.
  • the polyvinyl alcohol-based resin having an acrylic group and a hydroxyl group may have a degree of polymerization of about 500 to 1800.
  • the adhesive may be an aqueous adhesive including a polyvinyl alcohol resin containing an acetacetyl group and an amine metal compound crosslinking agent.
  • a polyvinyl alcohol resin containing an acetacetyl group and an amine metal compound crosslinking agent.
  • the adhesive layer after curing Its water resistance is remarkably improved, and as a result, the phenomenon that the adhesive dissolves in water during wet drawing can be minimized, so that it can be particularly useful when performing wet drawing.
  • the adhesive used in the present invention may be an aqueous solution containing a polyvinyl alcohol-based resin and an amine-based metal compound crosslinking agent containing an acetacetyl group
  • the pH of the aqueous solution is preferably about 4.5 to 9.
  • fills the said numerical range it is because it is more advantageous in storage property and durability in a high humidity environment.
  • the pH of the adhesive can be adjusted by a method of containing an acid such as nitric acid, hydrochloric acid, sulfuric acid or acetic acid in an aqueous solution.
  • the adhesive preferably 100 parts by weight of the polyvinyl alcohol-based resin containing the acetacetyl group and 1 to 50 parts by weight of the amine-based metal compound crosslinking agent.
  • the polymerization degree and saponification degree of the polyvinyl alcohol-based resin are not particularly limited as long as they contain an acetacetyl group, but the polymerization degree is 200 to 4,000, and the saponification degree is preferably 70 mol% to 99.9 mol%.
  • the degree of polymerization is 1,500 to 2,500, and the degree of saponification is more preferably 90 mol% to 99.9 mol%.
  • the polyvinyl alcohol-based resin preferably contains 0.1 to 30 mol% of the acetacetyl group.
  • the reaction with the amine-based metal compound crosslinking agent may be smooth, and may be sufficiently significant for the water resistance of the desired adhesive.
  • the amine-based metal compound crosslinking agent is preferably in the form of a metal complex containing an amine-based ligand as a water-soluble crosslinking agent having a functional group having reactivity with the polyvinyl alcohol-based resin.
  • Possible metals include zirconium (Zr), titanium (Ti), hafnium (Hf), tungsten (W), iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), osmium (Os), Transition metals such as rhodium (Rh), iridium (Ir), palladium (Pd) and platinum (Pt) are possible, and ligands bound to the central metal are primary amines, secondary amines (diamines), tertiary amines or ammonium hydrides.
  • amine groups such as a lockside
  • Its amount is preferably adjusted in the range of 1 part by weight to 50 parts by weight based on 100 parts by weight of the polyvinyl alcohol-based resin. It is possible to give a significant adhesive strength to the desired adhesive in the above range, it is possible to improve the storage life (pot life) of the adhesive.
  • the solid content of the polyvinyl alcohol-type resin containing the acetacetyl group in the said adhesive agent is about 1 to 10 weight%. If the solid content of the polyvinyl alcohol-based resin is less than 1% by weight, the water resistance is not sufficiently secured, so that the effect of lowering the breakage rate in the stretching process is less. If the content is more than 10% by weight, the workability is deteriorated. This is because damage may occur on the alcohol-based film surface.
  • the adhesive may be an ultraviolet curable adhesive, for example, a first epoxy compound having a glass transition temperature of homopolymer of 120 ° C. or more, a second epoxy compound having a glass transition temperature of homopolymer of 60 ° C. or less and a cationic photopolymerization initiator.
  • It may be an ultraviolet curable adhesive comprising a.
  • the ultraviolet curable adhesive includes 100 parts by weight of the first epoxy compound having a glass transition temperature of homopolymer of 120 ° C. or higher, 30-100 parts by weight of a second epoxy compound having a glass transition temperature of homopolymer of 60 ° C. or less and cationic photopolymerization. It may include 0.5 to 20 parts by weight of the initiator.
  • an epoxy compound refers to a compound having one or more epoxy groups in a molecule, preferably a compound having two or more epoxy groups in a molecule, and is in the form of a monomer, a polymer, or a resin.
  • the concept includes all of the compounds.
  • the epoxy compound of the present invention may be in the form of a resin.
  • the first epoxy compound may be used without particular limitation as long as the glass transition temperature of the homopolymer is 120 ° C. or higher, for example, an alicyclic epoxy compound having a glass transition temperature of 120 ° C. or higher and / or Aromatic epoxy can be used as the first epoxy compound of the present invention.
  • Specific examples of the epoxy compound having a glass transition temperature of homopolymer of 120 ° C or higher include 3,4-epoxycyclohexylmethyl-3,4'-epoxycyclohexanecarboxylate, vinylcyclohexenedioxide dicyclopentadiene dioxide, and bisepoxycyclo.
  • a pentyl ether, a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, etc. are mentioned.
  • the first epoxy compound is more preferably the glass transition temperature of the homopolymer is about 120 °C to 200 °C.
  • the second epoxy compound may be used without particular limitation so long as it is an epoxy compound having a glass transition temperature of 60 ° C. or less.
  • an alicyclic epoxy compound, an aliphatic epoxy compound, or the like may be used as the second epoxy compound.
  • the alicyclic epoxy compound it is preferable to use a bifunctional epoxy compound, i.e., a compound having two epoxy, and it is more preferable to use a compound in which the two epoxy groups are both alicyclic epoxy groups. It is not limited.
  • an aliphatic epoxy compound the epoxy compound which has an aliphatic epoxy group which is not an alicyclic epoxy group can be illustrated.
  • polyglycidyl ether of aliphatic polyhydric alcohol polyglycidyl ethers of alkylene oxide adducts of aliphatic polyhydric alcohols; Polyglycidyl ethers of polyester polyols of aliphatic polyhydric alcohols and aliphatic polyhydric carboxylic acids; Polyglycidyl ethers of aliphatic polyvalent carboxylic acids; Polyglycidyl ethers of polyester polycarboxylic acids of aliphatic polyhydric alcohols and aliphatic polyhydric carboxylic acids; Dimers, oligomers or polymers obtained by vinyl polymerization of glycidyl acrylate or glycidyl methacrylate; Or oligomers or polymers obtained by vinyl polymerization of glycidyl acrylate or glycidyl methacrylate with other vinyl monomers, preferably polyglycidyl of aliphatic polyhydric alcohols or their alkylene oxide a
  • the second epoxy compound of the present invention may be one containing one or more glycidyl ether groups, for example, 1,4-cyclohexanedimethanol diglycidyl ether, 1,4-butanediol diggle Cydyl ether, 1,6-hexanediol diglycidyl ether, neopentyl diglycidyl ether, resorcinol diglycidyl ether, diethylene glycol diglycidyl ether, ethylene glycol diglycidyl ether, One selected from the group consisting of trimethylolpropanetriglycidyl ether, n-butyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and o-cresyl glycidyl ether The above can be used as the second epoxy compound of the present invention.
  • the second epoxy compound is more preferably the glass transition temperature of the homopolymer is about 0 °C to 60 °C.
  • the weight ratio of the first epoxy compound and the second epoxy compound is about 1: 1 to 3: 1, more preferably, the weight ratio of 1: 1 to 2: 1, most preferably the first
  • the epoxy compound and the second epoxy compound may be mixed and used in a weight ratio of 1: 1.
  • the thickness of the adhesive layer before stretching is about 20nm to 4000nm, preferably 20nm to 1000nm, more preferably 20nm to It may be about 500nm.
  • the thickness of the adhesive layer after the stretching of the laminate may be about 10nm to 1000nm, preferably, about 10nm to 500nm, more preferably about 10nm to 200nm.
  • the thermoplastic polyurethane film and the polyvinyl alcohol-based film may be attached by using an attractive force between the thermoplastic polyurethane film and the polyvinyl alcohol-based film without a separate medium to form a laminate.
  • an attractive force between the thermoplastic polyurethane film and the polyvinyl alcohol-based film without a separate medium
  • thermoplastic polyurethane film when attaching using a attraction force between the thermoplastic polyurethane film and the polyvinyl alcohol-based film without a separate medium as described above, it is easy to implement the uniform physical properties of the thin polarizer to be manufactured, and furthermore, such as breaking during the stretching process There is an advantage that the process stability is excellent, such that hardly occurs.
  • thermoplastic polyurethane before lamination may be performed on one or both surfaces of the film or polyvinyl alcohol-based film.
  • the surface treatment may be performed through various surface treatment methods well known in the art, for example, corona treatment, plasma treatment, or surface modification treatment using a strong base aqueous solution such as NaOH or KOH.
  • the laminate When the laminate is formed by laminating a polyvinyl alcohol-based film on the thermoplastic polyurethane film, the laminate is stretched. At this time, the stretching is preferably carried out so that the thickness of the polyvinyl alcohol-based film is less than 10 ⁇ m, for example, the thickness of the polyvinyl alcohol-based film is 1 ⁇ m to 10 ⁇ m, or 3 ⁇ m to 8 ⁇ m It is preferable to carry out as much as possible.
  • stretching method is not specifically limited,
  • the said laminated body can be uniaxially stretched with respect to a longitudinal direction MD, or the said laminated body is with respect to a horizontal direction TD. Uniaxial stretching can also be performed.
  • stretching method of the said laminated body the fixed end uniaxial stretching method etc. which fixed one end through the tenter etc. are mentioned, for example, The longitudinal direction (MD) extending
  • the method include an inter-roll stretching method, a compression stretching method, a free end uniaxial stretching method, and the like.
  • stretching process may be performed in multiple stages, or may be performed by giving biaxial stretching, diagonal stretching, etc.
  • the stretching may be performed by wet stretching.
  • wet stretching stretching is stably performed because the surface adhesion of the base film and the polyvinyl alcohol-based film is stronger than dry stretching.
  • the wet stretching is preferably carried out in an aqueous boric acid solution, wherein the boric acid concentration of the aqueous boric acid solution is preferably about 1.0% to 5.0% by weight.
  • the breakage occurrence rate of the PVA film decreases due to the boric acid crosslinking, thereby increasing process stability and controlling wrinkles of the PVA film that is easily generated during the wet process.
  • the manufacturing process of the polarizing element is a process of washing with water, swelling, dyeing, washing, stretching, complementary color, drying and the like
  • the washing and stretching process is preferably carried out in an aqueous boric acid solution.
  • the boric acid concentration may be about 0.1 wt% to 2.5 wt%, preferably about 0.5 wt% to 2.0 wt%
  • the boric acid concentration is about 1.0 wt% to 5.0 wt%.
  • it may be about 1.5% to 4.5% by weight.
  • the wet stretching may be performed at a draw ratio of 5 times to 15 times at a temperature of 20 ° C. to 80 ° C., and more preferably 5 times to 40 ° C. to 60 ° C., or at a temperature of 45 ° C. to 55 ° C. It may be performed at a draw ratio of 12 times, or 6 to 9 times.
  • the stretching is at least one or more of the steps of dyeing iodine and / or dichroic dye on the polyvinyl alcohol-based film and / or cross-linking the dyed iodine and / or dichroic dye to the polyvinyl alcohol-based film It can also be performed with.
  • thermoplastic polyurethane film when used as the base film as in the present invention, dry stretching is also possible at low temperatures, thus, it is possible to reduce the use of a separate heating device, and as a result, reduce manufacturing costs by reducing energy consumption in the process. There is an advantage that can be lowered.
  • the conventional thin polarizer manufacturing method it was stretched using a base film such as crystalline polyethylene terephthalate film or amorphous polyethylene terephthalate film, but using crystalline polyethylene terephthalate or amorphous polyethylene terephthalate In this case, there is a problem that the stretching of high magnification is difficult, and the peeling between the base film and the polyvinyl alcohol-based resin is not easy after the stretching, and thus there is a problem that breakage may occur in the polarizer in the process of peeling the polarizer.
  • polyethylene terephthalate due to the structure of the polyethylene terephthalate material itself and the nature of the manufacturing process, polyethylene terephthalate has a high degree of crystallinity and a large tensile force, it is difficult to low-temperature stretching, there is a problem that dry stretching is possible only at a high temperature of about 120 to 170 °C.
  • thermoplastic polyurethane film when used as in the present invention, dry stretching is possible at a low temperature of about 20 ° C. to 80 ° C., preferably 50 ° C. to 80 ° C., and as a result, the stretching process is simpler than in the related art. Therefore, the energy consumption is low during the manufacturing process has the advantage of lowering the manufacturing cost.
  • thermoplastic polyurethane film when used as the base film as in the present invention, it is possible to stretch at high magnification, and thus there is an advantage in that a thin polarizer having a thickness of 10 ⁇ m or less can be easily produced.
  • the manufacturing method of the thin polarizer of the present invention has a width in the direction perpendicular to the stretching direction of the thermoplastic polyurethane film compared to before stretching by 30% to 80%, or 30% to 70% by stretching the laminate It is desirable to reduce, and the thickness preferably decreases by 30% to 80%, or 30% to 70%.
  • the polymer film and the polyvinyl alcohol-based film may exhibit similar stretching behavior and width shrinkage behavior in the drying step after the stretching step and the stretching step, and may increase the orientation of the polyvinyl alcohol-iodine complex.
  • the adhesion between the stretched polyvinyl alcohol-based film and the stretched thermoplastic polyurethane film after the stretching of the laminate is 2 N / 2 cm or less.
  • it may be about 0.1N / 2cm to 2N / 2cm, more preferably about 0.1N / 2cm to 1N / 2cm.
  • the adhesive layer when the adhesive layer is formed between the polyvinyl alcohol-based film and the thermoplastic polyurethane film, the adhesive layer as well as the polyvinyl alcohol-based film and the thermoplastic polyurethane film are stretched together by stretching. Therefore, the thickness of the adhesive layer is reduced to a level of 10 to 50% compared to before stretching, and as a result, the adhesive force between the polyvinyl alcohol-based film and the thermoplastic polyurethane film is lowered to 2N / 2 cm or less, so that it is easy to separate.
  • the adhesive force is an adhesive force measured when the sample films of 2 cm width are attached. More specifically, the adhesive force is a polyvinyl alcohol-based film (A) of the laminate as shown in FIG. After fixing to H), it refers to Peel Strength measured while peeling the polyvinyl alcohol-based film (A) from the thermoplastic polyurethane film (B) by applying a force in a direction perpendicular to the plane direction of the laminate, In this case, a texture analyzer (model name: TA-XT Plus) manufactured by Stable Micro Systems was used.
  • the manufacturing method of the thin polarizer of the present invention may further perform a step of dyeing iodine and / or dichroic dye on the unstretched polyvinyl alcohol-based film before stretching the laminate. Swelling the unstretched polyvinyl alcohol-based film and dyeing iodine and / or dichroic dye on the swollen unstretched polyvinyl alcohol-based film may be further performed.
  • the step of swelling the unstretched polyvinyl alcohol-based film is to promote the adsorption and diffusion of the iodine and / or dichroic dye to the polyvinyl alcohol-based film, to improve the stretchability of the polyvinyl alcohol-based film
  • the unstretched polyvinyl alcohol-based film or the laminate including the same for 5 seconds to 30 seconds, more preferably 10 seconds to 20 seconds in a pure water of 25 °C to 30 °C It may be carried out by a method of dipping.
  • the swelling is preferably performed so that the swelling degree of the unstretched polyvinyl alcohol-based film is about 36% to 44%, preferably about 38% to 42%.
  • the swelling degree of the unstretched polyvinyl alcohol-based film satisfies the above numerical range, optical properties such as the degree of polarization of the finally produced thin polarizer appear very excellent. Meanwhile, the swelling degree was calculated as ⁇ (weight of polyvinyl alcohol-based film after swelling-weight of polyvinyl alcohol-based film before swelling) / weight of polyvinyl alcohol-based film before swelling ⁇ ⁇ 100.
  • the step of dyeing is impregnated in the dyeing bath containing the unstretched polyvinyl alcohol-based film or a laminate comprising the same in the dyeing solution containing iodine and / or dichroic dye, or the iodine and / or dichroic dye It may be carried out by a method of applying a dyeing solution containing on the unstretched polyvinyl alcohol-based film, wherein, as the solvent of the dyeing solution is generally used water, an organic solvent having compatibility with water is mixed It may be. Meanwhile, the content of iodine and / or dichroic dye in the dyeing solution may be about 0.06 parts by weight to about 0.25 parts by weight based on 100 parts by weight of the solvent.
  • the dyeing solution may further contain an adjuvant for improving the dyeing efficiency in addition to the iodine and / or dichroic dye
  • the adjuvant includes potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide Iodide compounds such as copper iodide, iodide and barium, calcium iodide, tin iodide, titanium iodide or mixtures thereof can be used.
  • the content of the adjuvant may be about 0.3 parts by weight to about 2.5 parts by weight with respect to 100 parts by weight of the solvent, and more preferably, the weight ratio of iodine to iodide compound may be about 1: 5 to 1:10.
  • the dyeing step is preferably carried out at a temperature of about 25 °C to 40 °C, the dyeing bath immersion time is preferably about 30 seconds to 120 seconds, but is not limited thereto.
  • the manufacturing method of the thin polarizer of the present invention can be carried out a step of drying the stretched laminate, if necessary, after stretching the laminate.
  • the drying is not limited thereto, but considering the optical properties of the polarizer, it is preferable that the drying is performed at a temperature of about 20 ° C. to 100 ° C., more preferably about 40 ° C. to 90 ° C., and the drying time is 1 It is preferable that it is minutes to about 10 minutes.
  • the drying process prevents the deterioration of the physical properties of the polyvinyl alcohol polarizer due to moisture during the production of the blunt plate through the removal of water from the surface and the inside of the polyvinyl alcohol, and smoothly shrinks the width of the polyvinyl alcohol film stretched during the drying process. Induced to increase the orientation of the complex composed of polyvinyl alcohol and iodine to improve the polarization degree of the polarizer.
  • the manufacturing method of the thin polarizer of the present invention may be carried out a step of separating the polyvinyl alcohol-based film from the thermoplastic polyurethane film, if necessary, after stretching the laminate.
  • the separating step may be performed by applying a weak peel force to the polyvinyl alcohol-based film to be separated from the thermoplastic polyurethane film.
  • the peel force is preferably 2N / 2cm or less, for example, may be 0.1N / 2cm to 2N / 2cm, or 0.1N / 2cm to 1N / 2cm.
  • the required peel force is very weak, not only the two films can be easily separated without a separate process or equipment, but also the damage of the polyvinyl alcohol-based film in the separation process shows very good optical performance.
  • the method of manufacturing a polarizer of the present invention sheet-to-sheet process, sheet-to-roll process or roll-to-roll is well known in the art It may be performed through a roll-to-roll process.
  • the sheet-to-sheet process is a method of using a sheet-like film cut to a certain size as a raw film, the sheet-to-roll process is used as a part of the raw film is a roll-type film wound with a long film
  • disconnected to a fixed size is said.
  • a roll-to-roll process is a method of using a rolled film as a raw film. In view of the continuity and productivity of the process, it is particularly preferred to use a roll-to-roll process among these.
  • the manufacturing method of the polarizer of this invention unwinds an unextended thermoplastic polyol, unwinding an unextended thermoplastic polyurethane film and an unstretched polyvinyl alcohol-type film from an unstretched thermoplastic polyurethane film roll and an unstretched polyvinyl alcohol-type film roll. Attaching a urethane film and an unstretched polyvinyl alcohol-based film to form a laminate, stretching the laminate so that the thickness of the polyvinyl alcohol-based film is 10 ⁇ m or less, and thermoplasticizing the polyvinyl alcohol-based film And separating from the polyurethane film.
  • the unstretched thermoplastic polyurethane film and the unstretched polyvinyl alcohol-based film may be attached and then rewound in a roll shape, and then unloaded from the rewound laminate roll to be introduced into the stretching process. Or it can be directly put into the stretching process without rewinding.
  • the separating may be performed by inserting a peeling means, for example, a peeling roll or the like, between the thermoplastic polyurethane film and the polyvinyl alcohol-based film to separate the interface between the thermoplastic polyurethane film and the polyvinyl alcohol-based film.
  • a peeling means for example, a peeling roll or the like
  • the thermoplastic polyurethane film and the polyvinyl alcohol-based film may be performed by winding the rolls with each other.
  • the polarizer of the present invention produced by the above method is very thin, the thickness of about 10 ⁇ m or less, preferably about 1 ⁇ m to 10 ⁇ m, more preferably about 3 ⁇ m to 8 ⁇ m.
  • the unitary transmittance is about 40% to 45%, and the polarization degree is very excellent at 99.0% or more, preferably 99.5% or more, more preferably 99.7% or more, particularly preferably 99.9% or more. It shows optical properties.
  • the polarizer of this invention manufactured by the above method is excellent in the uniformity of the polarization degree to the width direction. More specifically, the polarizer of the present invention has a standard deviation of the degree of polarization measured at ten points located at equal intervals along the width direction of the polarizer at 0.002% or less.
  • the polarizing plate can be formed by laminating a protective film on one side or both sides to the polarizer of the present invention as described above.
  • the structure of the polarizing plate is not particularly limited as long as it includes the polarizer of the present invention, for example, may be a polarizer / protective film, a protective film / polarizer, or a protective film / polarizer / protective film.
  • the protective film is for supporting and protecting the polarizer
  • protective films of various materials generally known in the art for example, cellulose-based film, polyethylene terephthalate (PET, Polyethylene terephthalate (CET) films, cycloolefin polymer (COP) films, acrylic films, and the like can be used without limitation.
  • PET polyethylene terephthalate
  • CET Polyethylene terephthalate
  • COP cycloolefin polymer
  • acrylic films and the like
  • the manufacturing method of the polarizing plate is also known in the art sheet-to-sheet (sheet-to-sheet) process, sheet-to-roll (sheet-to-roll) process or roll-to-roll (roll-to-roll) -to-roll) process or the like, and it is preferable to use a roll-to-roll process, among others. Since the method of manufacturing a polarizing plate by laminating a polarizer and a protective film by a roll-to-roll process is well known in the art, detailed description is abbreviate
  • the polarizing plate may include a retardation film for compensating for the optical retardation.
  • the retardation film usable in the present invention is not particularly limited, and a retardation film generally used in the art may be used according to various liquid crystal modes.
  • the polarizing plate may further include other functional optical layers such as a brightness enhancing film, a primer layer, a hard coating layer, an antiglare layer, an antireflection layer, or an adhesive layer for attachment to a liquid crystal panel.
  • a brightness enhancing film such as a primer layer, a hard coating layer, an antiglare layer, an antireflection layer, or an adhesive layer for attachment to a liquid crystal panel.
  • the formation method of these optical layers is not specifically limited, The well-known method well known in the art can be used.
  • the polarizer according to the present invention may be included in various display devices.
  • the polarizer may be applied to various display devices such as a liquid crystal display (LCD) and an organic light emitting diode (OLED).
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • thermoplastic polyurethane film was prepared by reacting methylene diphenyl diisocyanate, 1,4-butanediol, neopentyl glycol and adipic acid, the modulus is 1000MPa at 25 °C, the breaking force is 30N, The glass transition temperature was 40 degreeC.
  • the laminate was subjected to a swelling process in a 25 ° C. pure solution for 15 seconds, followed by a dyeing process for 60 seconds in a 0.3 wt% concentration and a 25 ° C.
  • the stretched laminate was prepared by stretching the laminate at a draw ratio of 7 times in 2.5wt% solution of boric acid at 52 °C. After stretching, a 5 wt% potassium iodide (KI) solution was subjected to a complementary color process, and then dried in an 80 ° C. oven for 5 minutes. The thin polarizer was finally manufactured by peeling a PVA film from a thermoplastic polyurethane film after a drying process.
  • KI potassium iodide
  • thermoplastic polyurethane film was prepared by reacting methylene diphenyl diisocyanate, 1,4-butanediol, neopentyl glycol and adipic acid, the modulus at 900 °C 900MPa, breaking force is 24N, The glass transition temperature was 40 degreeC.
  • the laminate was subjected to a swelling process in a 25 ° C. pure solution for 15 seconds, followed by a dyeing process for 60 seconds in a 0.3 wt% concentration and a 25 ° C. iodine solution.
  • the stretched laminate was prepared by stretching the laminate at a draw ratio of 7 times in 2.5wt% solution of boric acid at 52 °C. After stretching, a 5 wt% potassium iodide (KI) solution was subjected to a complementary color process, and then dried in an 80 ° C. oven for 5 minutes. The thin polarizer was finally manufactured by peeling a PVA film from a thermoplastic polyurethane film after a drying process.
  • KI potassium iodide
  • a 4% by weight aqueous solution was prepared by dissolving polyvinyl alcohol (average degree of polymerization 2000, degree of 94%, Japanese Synthetic) containing acetacetyl group (5% by weight) in pure water. Titanium amine complex crosslinking agent (product name: TYZOR TE, DuPont) was added at a ratio of 6.7 parts by weight per 100 parts by weight of polyvinyl alcohol and mixed with stirring to prepare an adhesive. After applying the adhesive on both sides of the thermoplastic polyurethane substrate having a thickness of 40 ⁇ m, M2000 grade 20 ⁇ m PVA film manufactured by Nippon Synthesis was laminated and passed through a laminator to form a laminate.
  • polyvinyl alcohol average degree of polymerization 2000, degree of 94%, Japanese Synthetic
  • Titanium amine complex crosslinking agent product name: TYZOR TE, DuPont
  • thermoplastic polyurethane film was prepared by reacting methylene diphenyl diisocyanate, 1,4-butanediol, neopentyl glycol and adipic acid, the modulus is 950MPa at 25 °C, 18N breaking force, The glass transition temperature was 39 ° C.
  • the laminate was subjected to a swelling process in a 25 ° C. pure solution for 15 seconds, followed by a dyeing process for 60 seconds in a 0.3 wt% concentration and a 25 ° C. iodine solution.
  • the stretched laminate was prepared by stretching the laminate at 7 times the draw ratio in 2.5wt% solution of boric acid at 52 °C. After stretching, a 5 wt% potassium iodide (KI) solution was subjected to a complementary color process, and then dried in an 80 ° C. oven for 5 minutes. The thin polarizer was finally manufactured by peeling a PVA film from a thermoplastic polyurethane film after a drying process.
  • KI potassium iodide
  • Example 2 Except for forming a laminate having a polyvinyl alcohol-based polymer film attached to both sides of a polyethylene terephthalate film (MGC Corporation NOVA-Clear SG007 grade) of 40 ⁇ m thickness, except that the draw ratio is 4.8 times the same as in Example 1 Finally, a thin polarizer having a thickness of 8.6 ⁇ m was prepared.
  • the remaining manufacturing method was carried out except that a laminate having a polyvinyl alcohol-based polymer film was formed on both sides of a 40 ⁇ m-thick polyethylene terephthalate film (NOVA-Clear SG007 grade of MCC) and stretched at a high magnification of 6 times or more.
  • a thin polarizer was prepared in the same manner as in Example 1, but high magnification stretching was not possible, such that the polyvinyl alcohol polymer film was damaged as shown in FIG. 2.
  • the width before and after the stretching of the base film and the PVA film of Examples 1 to 3 and Comparative Example 1 was measured using a common ruler, and the thickness before and after stretching was measured using a TESA Mu-hite Electronic Height Gauge 100 mm. Table 1 shows.
  • PVA film means a polyvinyl alcohol-based film
  • TPU film means a thermoplastic polyurethane film
  • PET film means a polyethylene terephthalate film.
  • the optical properties of the thin polarizers prepared in Examples 1 to 3 and Comparative Example 1 were measured by a JASCO V-7100 Spectrophotometer, and the results are shown in Table 2 below.
  • the single transmittance means transmittance of a single polarizer, and the degree of polarization is [(Tp-Tc) / (Tp + Tc)] 0.5 , where Tp is the parallel transmittance of two polarizers and Tc is the orthogonality of two polarizers. Transmittance.
  • a group color represents the measurement of the color of a single polarizer using a color difference meter
  • a cross color represents a pair of polarizers in a state where the absorption axis is orthogonal.
  • the color is measured using a color difference meter.
  • the group colors a and b values refer to the color a and b values in the CIE coordinate system measured by using a colorimeter with a single polarizer color
  • the orthogonal colors a and b values indicate that a pair of polarizers are orthogonal to the absorption axis.
  • Example 1 40.48 99.9837 -0.48 1.75 0.87 -1.50
  • Example 2 40.80 99.9521 -0.84 1.38 1.21 -3.45
  • Example 3 40.85 99.9931 -0.87 2.01 0.71 -1.10 Comparative Example 1 41.99 99.3510 0.05 0.79 2.33 -5.37

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 미연신 열가소성 폴리우레탄 필름; 및 상기 미연신 열가소성 폴리우레탄 필름의 적어도 일면에 적층되는 미연신 폴리비닐알코올계 필름을 포함하는 적층체가 연신 처리되어 있는 연신 적층체로서, 연신 후 폴리비닐알코올계 필름의 두께가 10㎛ 이하인 연신 적층체, 상기 연신 적층체를 이용하는 박형 편광자의 제조 방법, 이를 이용하여 제조된 박형 편광자 및 이를 포함하는 편광판에 관한 것이다.

Description

연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
본 발명은 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이러한 박형 편광자를 포함하는 편광판에 관한 것이다.
편광판에 사용되는 편광자는 자연광 또는 임의의 편광을 특정 방향의 편광으로 만들기 위한 광학 소자로, 액정표시소자, 유기발광소자(OLED)와 같은 디스플레이 장치에 널리 이용되고 있다. 현재 상기 디스플레이 장치에 사용되는 편광자로는 요오드계 화합물 또는 이색성 염료를 함유하는 분자 사슬이 일정한 방향으로 배향된 폴리비닐알코올계 편광 필름이 일반적으로 사용되고 있다.
상기 폴리비닐알코올계 편광 필름은 폴리비닐알코올계 필름에 요오드 또는 이색성 염료를 염착시킨 후, 일정 방향으로 연신하고 가교하는 방법에 의해 제조되고 있으며, 이때 상기 연신 공정은 붕산 수용액 또는 요오드 수용액과 같은 용액 상에서 수행되는 습식 연신 또는 대기 중에서 수행되는 건식 연신 등으로 수행될 수 있고, 연신 배율은 일반적으로 5배 이상이다. 그런데, 이와 같은 종래의 제조 공정에서, 파단 발생 없이 연신이 수행되기 위해서는, 연신 전의 폴리비닐알코올계 필름의 두께가 60㎛를 초과할 것이 요구된다. 연신 전 폴리비닐알코올계 필름의 두께가 60㎛ 이하일 경우, 폴리비닐알코올계 필름의 팽윤도가 높아지고, 얇은 두께로 인해 연신 공정에서 단위 면적 당 작용하는 모듈러스가 커져 파단이 쉽게 발생할 수 있기 때문이다.
한편, 최근 디스플레이 장치들의 박형화 경향에 따라 편광판 역시 보다 얇은 두께를 가질 것이 요구되고 있다. 그러나 종래와 같이 연신 전 두께가 60㎛을 넘는 폴리비닐알코올계 필름을 사용할 경우에 편광자의 두께를 줄이는데 한계가 있다. 따라서, 최근에는 보다 얇은 두께의 박형 편광자를 제조하기 위한 연구들이 많이 시도되고 있다. 예를 들면, 최근에는 박형 편광자를 제조하기 위해 기재 위에 폴리비닐알코올계 수지를 코팅 및 건조하여 수지층을 형성한 이후, 연신하는 방법이 제안된 바 있다. 이때, 기재로 결정성 에스테르계 수지나 비정성 에스테르계 수지를 사용하며, 구체적으로는, 결정성 에스테르계 수지의 하나로 결정성 폴리에틸렌테레프탈레이트 수지를 쓰거나, 비정성 에스테르계 수지로 비정성 폴리에틸렌테레프탈레이트 수지를 사용하고 있다.
그러나, 결정성 폴리에틸렌테레프탈레이트 수지를 사용하는 경우 5배의 연신 배율이 한계이고, 비정성 폴리에틸렌테레프탈레이트 수지를 사용하는 경우 5.5배의 연신 배율이 한계인바, 고배율 연신이 불가능하며, 따라서 광학 특성을 향상시키는데 한계가 있다. 또한, 상기와 같이 폴리에틸렌테레프탈레이트 수지를 사용하는 경우, 재료 자체의 구조 및 특성, 그리고 멜팅(melting)을 통한 솔루션 캐스팅(solution casting) 이후 연신하여 성형을 하는 제조 공정의 특성상, 결정화도가 높고 인장력이 크기 때문에, 120℃ 내지 170℃ 정도의 고온에서만 건식 연신이 가능하다. 이때, 120℃ 내지 170℃ 정도의 고온에서 건식 연신을 하기 위해서는 온도를 상승시키기 위한 별도의 공정이 필요하거나, 공정상 비용이 증가하는 문제점이 있으며, 또한 기재상에 형성된 폴리비닐알코올 필름의 경우 유리전이온도가 70℃ 내지 80℃ 정도이기 때문에 고온에서의 건식 연신을 할 경우 폴리비닐알코올 필름이 손상될 수 있고, 나아가 물성이 변화하는 등의 문제점이 발생할 수 있다.
또한, 상기와 같이 폴리에틸렌테레프탈레이트 수지를 사용하는 경우, 이를 통하여 제조되는 기재 자체가 이미 연신 하기 힘든 기재가 되므로, 일반적인 붕산 수용액 상에서의 습식 연신 시에 붕산에 의한 폴리비닐알코올의 가교도가 증가하여 연신 비가 감소하는 경향을 보인다. 또한, 상기와 같이 폴리에틸렌테레프탈레이트 수지를 사용하는 경우, 고배율로 연신할 경우 기재상에 폴리비닐알코올계 수지가 밀착되어, 연신 이후 기재로부터 제조된 편광자를 박리하는 것이 어려운 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 저온에서의 건식 및 붕산 수용액에서의 습식 연신이 모두 가능하고, 고배율 연신이 가능하며, 박리가 용이한 연신 적층체와, 이를 이용하는 광학 물성이 우수한 10㎛ 이하의 박형 편광자의 제조 방법, 이를 이용하여 제조된 박형 편광자 및 이를 포함하는 편광판을 제공하고자 한다.
일 측면에서, 본 발명은 미연신 열가소성 폴리우레탄 필름; 및 상기 미연신 열가소성 폴리우레탄 필름의 적어도 일면에 적층되는 미연신 폴리비닐알코올계 필름을 포함하는 적층체가 연신 처리되어 있는 연신 적층체로서, 연신 후 폴리비닐알코올계 필름의 두께가 10㎛ 이하인 연신 적층체를 제공한다.
이때, 상기 미연신 열가소성 폴리우레탄 필름은 연신 후 두께가 4 내지 70㎛인 것이 바람직하며, 예를 들면, 6㎛ 내지 70㎛, 6㎛ 내지 56㎛ 또는 9㎛ 내지 35㎛일 수 있다
또한, 상기 미연신 열가소성 폴리우레탄 필름의 유리전이온도(Tg)는 20℃ 내지 60℃ 정도, 바람직하게는 30℃ 내지 50℃ 정도이고, 상온(25℃)에서의 모듈러스가 200 MPa 내지 1500 MPa 정도, 바람직하게는 350 MPa 내지 1300 MPa 정도이며, 상온(25℃)에서의 파단력은 5N 내지 40N, 바람직하게는 10N 내지 30N 정도일 수 있다.
다른 측면에서, 본 발명은 미연신 열가소성 폴리우레탄 필름의 적어도 일면에 미연신 폴리비닐알코올계 필름을 적층하여 적층체를 형성하는 단계; 및 상기 폴리비닐알코올계 필름의 두께가 10㎛ 이하가 되도록 상기 적층체를 연신하는 단계를 포함하는 박형 편광자의 제조 방법을 제공한다.
한편, 상기 적층체를 형성하는 단계는 미연신 열가소성 폴리우레탄 필름과 미연신 폴리비닐알코올계 필름 사이의 인력 또는 접착제를 이용하여, 미연신 열가소성 폴리우레탄 필름과 미연신 폴리비닐알코올계 필름을 부착하는 방법으로 수행되는 것이 바람직하다.
한편, 상기 적층체를 연신하는 단계는 20℃ 내지 80℃의 온도에서 5배 내지 15배의 연신 배율로 수행될 수 있으며, 바람직하게는 붕산 농도가 1중량% 내지 5중량%인 붕산 수용액 내에서 수행될 수 있다. 또는, 상기 연신은 20℃ 내지 80℃의 온도에서 5배 내지 15배의 연신 배율로 건식 연신으로 수행될 수도 있다.
한편, 본 발명의 박형 편광자의 제조 방법은 상기 적층체를 연신하는 단계에 의하여 상기 열가소성 폴리우레탄 필름의 연신 방향에 수직한 방향의 폭이 연신 전 대비 30% 내지 80% 감소하는 것이 바람직하며, 상기 열가소성 폴리우레탄 필름의 두께가 연신 전 대비 30% 내지 80% 감소하는 것이 바람직하다.
한편, 본 발명의 박형 편광자의 제조 방법은 상기 적층체를 연신하는 단계 이후에 연신된 폴리비닐알코올계 필름과 연신된 열가소성 폴리우레탄 필름 사이의 부착력이 2N/2cm 이하, 바람직하게는 0.1N/2cm 내지 2N/2cm 정도, 더욱 바람직하게는 0.1N/2cm 내지 1N/2cm 정도일 수 있다.
한편, 본 발명의 박형 편광자의 제조 방법은 상기 적층체를 연신하는 단계 전에 미연신 폴리비닐알코올계 필름에 요오드 및 이색성 염료 중 적어도 하나를 염착시키는 단계를 더 포함할 수 있으며, 바람직하게는 상기 미연신 폴리비닐알코올계 필름을 팽윤시키는 단계 및 상기 팽윤된 미연신 폴리비닐알코올계 필름에 요오드 및/또는 이색성 염료를 염착하는 단계를 추가로 실시할 수 있다.
한편, 본 발명의 박형 편광자의 제조 방법은 상기 적층체를 연신하는 단계 이후에 연신된 폴리비닐알코올계 필름을 연신된 열가소성 폴리우레탄 필름으로부터 분리하는 단계를 더 포함할 수 있다. 이때, 상기 연신된 폴리비닐알코올계 필름을 연신된 열가소성 폴리우레탄 필름으로부터 분리하는 단계는 2N/2cm 이하, 바람직하게는 0.1N/2cm 내지 2N/2cm 정도의 박리력을 가하여 수행될 수 있다.
다른 측면에서. 본 발명은 상기 제조 방법으로 제조되며, 두께가 10㎛ 이하이고, 단체 투과도 40% 내지 45%이며, 편광도가 99.0% 이상이고, 편광자 폭 방향을 따라 등 간격으로 위치하는 10개의 점에서 측정된 편광도의 표준편차가 0.002% 이하인 박형 편광자, 및 이를 포함하는 편광판을 제공한다.
본 발명에 따르면, 저온에서의 건식 및 붕산 수용액에서의 습식 연신이 모두 가능하고, 고배율 연신이 가능하며, 광학 물성이 매우 우수한, 두께 10㎛ 이하의 박형 편광자를 제조할 수 있다.
또한, 본 발명에 따르면, 연신 과정에서 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름이 분리되지 않고, 연신 후 분리 과정에서 표면 손상을 최소화할 수 있는 등, 연신 과정에서의 공정 안정성 역시 우수하다.
도 1은 질감 분석기(Texture Analyzer)를 이용하여 부착력(Peeling Strenghth)을 측정하는 방법을 나타낸 모식도이다.
도 2는 비교예 2를 고배율 연신 하였을 경우, 폴리비닐알코올계 필름에 파단이 발생하는 것을 나타낸 사진이다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 발명자들은 저온에서의 건식 및 붕산 수용액에서의 습식 연신이 모두 가능하고, 고배율 연신이 가능하며, 광학 물성이 매우 우수한, 두께 10㎛ 이하의 박형 편광자를 제조하기 위해 오랜 연구를 거듭한 결과, 기재 필름으로 열가소성 폴레우레탄 필름을 사용하고, 이러한 기재 필름 상에 폴리비닐알코올계 필름을 적층한 후, 이들을 동시에 연신함으로써 상기와 같은 목적을 달성할 수 있음을 알아내고, 본 발명을 완성하였다.
이하에서는, 본 발명의 발명자들이 완성한 발명에 대하여 보다 구체적으로 설명한다.
[연신 적층체]
먼저, 본 발명의 연신 적층체는 미연신 열가소성 폴리우레탄 필름; 및 상기 열가소성 폴리우레탄 필름의 적어도 일면에 적층되는 미연신 폴리비닐알코올계 필름을 포함하는 적층체가 연신 처리되어 있는 연신 적층체이며, 이때 본 발명의 연신 적층체는 연신 후 폴리비닐알코올계 필름의 두께가 10㎛ 이하이다.
(열가소성 폴리우레탄 필름)
본 발명의 상기 적층체에 포함되는 상기 열가소성 폴리우레탄 필름은 연신 과정에서 폴리비닐알코올계 필름이 파단되는 것을 방지하기 위한 것으로, 본 발명은 기재 필름으로 열가소성 폴리우레탄 필름을 사용하며, 이와 같이 기재 필름으로 열가소성 폴리우레탄계 필름을 사용하는 경우에는, 열가소성 폴리우레탄계 필름의 경우 열 수축 특성이 폴리비닐알코올계 필름과 유사하여 건조 과정에서 연신 된 폴리비닐알코올계 필름의 폭 수축을 저해하지 않고, 원활한 폭 수축을 유도할 수 있어, 폴리비닐알코올-요오드 착체의 배향성을 더욱 증대시킬 수 있다는 장점이 있다.
한편, 상기 열가소성 폴리우레탄 필름은 연신 전 두께가 20㎛ 내지 100㎛ 정도, 바람직하게는 30㎛ 내지 80㎛ 또는 30㎛ 내지 60㎛ 정도인 것이 좋다. 열가소성 폴리우레탄 필름의 두께가 상기 범위보다 얇으면 적층체 구조를 이루어 연신 공정을 진행할 때 폴리비닐알코올계 필름을 충분히 지지하지 못하여 공정상의 파단 등의 문제점이 야기될 수 있으며, 상기 범위보다 두꺼우면 모듈러스가 증가하여 연신성이 저하되며, 또한 폴리비닐알코올계 필름의 건조 구간에서의 자유로운 폭 수축을 방해하여 최종적으로 얻어진 편광자의 광학 물성을 저해할 수 있다.
또한, 연신 된 비율에 따라 다를 수 있으나, 상기 열가소성 폴리우레탄 필름은 연신 후 두께가 4㎛ 내지 70㎛인 것이 바람직하며, 예를 들면, 6㎛ 내지 70㎛, 6㎛ 내지 56㎛ 또는 9㎛ 내지 35㎛일 수 있다. 이 경우, 상기 열가소성 폴리우레탄 필름은 폴리비닐알코올계 필름이 고배율로 연신 될 때, 파단이 발생하는 것을 효과적으로 방지할 수 있다.
한편, 상기 열가소성 폴리우레탄 필름은 유리전이온도는 20℃ 내지 60℃ 정도인 것이 바람직하며, 예를 들면, 30℃ 내지 50℃ 정도일 수 있다. 기재 필름의 역할을 하는 열가소성 폴리우레탄 필름이, 일반적으로 유리전이온도가 70℃ 내지 80℃인 폴리비닐알코올계 필름보다 더 낮은 유리전이온도를 가지는 경우, 연신 온도 조건에서 좀더 소프트(soft)한 특성을 가질 수 있으며, 그 결과 폴리비닐알코올계 필름을 더 잘 연신 시킬 수 있다. 다만, 열가소성 폴리우레탄 필름의 유리전이온도가 너무 낮을 경우에는, 고배율 연신을 수행할 때에 파단이 발생할 가능성이 크다는 문제점이 있는바, 상기와 같은 적절한 범위의 유리전이온도를 가지는 것이 바람직하다. 한편, 상기 유리전이온도는 시차주사형 열량계(DSC)에 의해 측정될 수 있다. 예컨대, 시차주사형 열량계(DSC)를 이용하는 경우, 약 10mg의 시료를 전용 팬(pan)에 밀봉하고 일정 승온 조건으로 가열할 때 상변이가 일어남에 따른 물질의 흡열 및 발열량을 온도에 따라 그려 유리전이온도를 측정할 수 있다.
또한, 상기 열가소성 폴리우레탄 필름의 상온(25℃)에서의 모듈러스(Modulus)는 200MPa 내지 1500MPa인 것이 바람직하며, 예를 들면, 350MPa 내지 1300MPa일 수 있다. 열가소성 폴리우레탄 필름의 모듈러스가 상기 범위보다 클 경우, 고배율의 연신이 어려울 수 있으며, 상기 범위 보다 작을 경우, 연신 과정에서 파단이 발생할 가능성이 크다는 문제점이 있다. 이때, 상기 모듈러스는 JIS-K6251-1 규격에 따라 준비한 샘플의 양 끝 단을 고정시킨 후, 필름의 두께 방향에 수직한 방향으로 힘을 가하여 인장율(Strain)에 따른 단위 면적당의 응력(Stress)을 측정하여 얻어진 값을 말하며, 이때 측정 기기로는, 예컨대, Zwick/Roell社 Z010 UTM 장비 등을 사용할 수 있다.
또한, 상기 열가소성 폴리우레탄 필름의 상온(25℃)에서 파단력은 5N 내지 40N, 바람직하게는 10N 내지 30N 정도일 수 있다. 열가소성 폴리우레탄 필름의 파단력이 상기 범위보다 클 경우, 고배율 연신이 어려울 수 있으며, 상기 범위보다 작을 경우, 연신 과정에서 파단이 발생할 가능성이 크다. 이때, 상기 파단력은 필름의 파단이 발생하는 시점에서 필름에 걸리는 힘 혹은 파단 시점의 인장력을 말하며, 이때 측정 기기로는, 예컨대, Zwick/Roell社 Z010 UTM 장비 등을 사용할 수 있다.
또한, 상기 열가소성 폴리우레탄 필름의 상온(25℃)에서 6배 연신 배율로 건식 연신시의 인장력은 5N 내지 200N 정도, 바람직하게는 10N 내지 100N 정도일 수 있다. 또한, 52℃에서 6배 연신 배율로 습식 연신시의 인장력은 1N 내지 100N 정도, 바람직하게는 2N 내지 80N 정도일 수 있다. 마찬가지로, 열가소성 폴리우레탄 필름의 인장력이 상기 범위보다 클 경우, 고배율의 연신이 어려울 수 있으며, 상기 범위보다 작을 경우, 연신 과정에서 파단이 발생할 가능성이 크다. 이때, 상기 인장력은 인장하는 힘을 말하며, 이때 측정 기기로는, 예컨대, Zwick/Roell社 Z010 UTM 장비 등을 사용할 수 있다.
(폴리비닐알코올계 필름)
상기 열가소성 폴리우레탄 필름의 적어도 일면에 적층되는 상기 폴리비닐알코올계 필름은 염착 및 연신 공정 등을 거친 후 폴리비닐알코올계 박형 편광자로 사용되는 것으로, 폴리비닐알코올 수지 또는 그 유도체를 포함하는 것이면 특별한 제한 없이 사용이 가능하다. 이때, 상기 폴리비닐알코올 수지의 유도체로는, 이에 한정되는 것은 아니나, 폴리비닐포르말 수지, 폴리비닐아세탈 수지 등을 들 수 있다. 또는, 상기 폴리비닐알코올계 필름은 당해 기술분야에 있어서 편광자 제조에 사용되는 시판되는 폴리비닐알코올계 필름, 예컨대, 일본합성社의 M2000, M2001, M2005, M3000, M6000 Kurary社의 P30, PE20, PE30, PE60 등을 사용할 수도 있다.
한편, 상기 폴리비닐알코올계 필름은 연신 전 두께가 60㎛ 이하, 예를 들면, 5㎛ 내지 60㎛ 정도, 바람직하게는 10㎛ 내지 40㎛ 정도인 것이 좋다. 폴리비닐알코올계 필름의 두께가 너무 얇으면 적층체 구조를 이루어 연신 공정을 진행할 때 쉽게 파단이 일어나는 등의 문제점이 야기될 수 있으며, 너무 두꺼우면 최종적으로 얻어지는 편광자의 두께가 두꺼워져 두께가 10㎛ 이하인 박형 편광자의 제조에 적합하지 않다.
또한, 상기 폴리비닐알코올계 필름은 박형화를 위하여 연신 후 두께가 10㎛ 이하, 예를 들면 1㎛ 내지 10㎛, 또는 3㎛ 내지 8㎛ 정도인 것이 바람직하다. 상기 폴리비닐알코올계 필름은 열가소성 폴리우레탄 필름의 일면에 적층되어 연신되어 있을 수 있고, 양면에 적층되어 연신되어 있을 수도 있으며, 10㎛ 이하로 연신되어 있으면 된다.
또한, 상기 폴리비닐알코올계 필름은, 이로써 한정되는 것은 아니나, 중합도가 1,000 내지 10,000 정도, 바람직하게는 1,500 내지 5,000 정도인 것이 좋다. 중합도가 상기 범위를 만족할 때, 분자 움직임이 자유롭고, 요오드 또는 이색성 염료 등과 유연하게 혼합될 수 있기 때문이다.
또한, 상기 폴리비닐알코올계 필름은, 요오드 및/또는 이색성 염료가 염착된 상태의 필름인 것이 바람직하며, 보다 바람직하게는 상기 폴리비닐알코올계 필름은 팽윤 공정 및 염착 공정이 수행된 필름일 수 있다.
[박형 편광자 제조 방법]
다음으로, 본 발명의 박형 편광자의 제조 방법은 미연신 열가소성 폴리우레탄 필름의 적어도 일면에 미연신 폴리비닐알코올계 필름을 적층하여 적층체를 형성하는 단계; 및 상기 폴리비닐알코올계 필름의 두께가 10㎛ 이하가 되도록 상기 적층체를 연신하는 단계를 포함한다.
(적층체 형성 단계)
본 발명에 있어서, 상기 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름의 적층 방법은 특별히 제한되지 않는다. 예를 들면, 열가소성 폴리우레탄 필름에 폴리비닐알코올계 필름의 형성재를 함유하는 수용액을 당해 기술분야에 일반적으로 알려진 바 코팅, 리버스 코팅, 그라비어 코팅, 스핀 코팅, 스크린 코팅, 파운틴 코팅, 스프레이 코팅, 콤마 코팅 등의 코팅 방법을 이용하여 도공 한 후에 건조시킴으로써 적층체를 얻을 수 있으며, 또한, 열가소성 폴리우레탄 필름의 형성재와 폴리비닐알코올계 필름의 형성재를 당해 기술분야에서 일반적으로 사용되는 공압출기에 주입하고, 공압출되는 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름의 두께가 적절한 범위가 되도록 제어함으로써 적층체를 얻을 수도 있다.
한편, 본 발명의 경우, 상기 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름을 접착제를 이용하여 부착하여 적층체를 형성하는 것일 수도 있다. 이때, 상기 접착제는 그 재질이 특별히 한정되는 것은 아니며, 당해 기술 분야에 알려진 다양한 접착제들이 제한 없이 사용될 수 있다. 예를 들어, 상기 접착제는 수계 접착제 또는 자외선 경화형 접착제일 수 있다.
보다 구체적으로, 상기 접착제는 폴리비닐알코올계 수지, 아크릴계 수지 및 비닐아세테이트계 수지로 이루어진 군으로부터 선택된 1종 이상을 포함하는 수계 접착제일 수 있다.
또는, 상기 접착제는 아크릴기 및 히드록시기를 갖는 폴리비닐알코올계 수지를 포함하는 수계 접착제일 수 있다. 이때, 상기 아크릴기 및 히드록시기를 갖는 폴리비닐알코올계 수지는 중합도가 500 내지 1800 정도일 수 있다.
또는, 상기 접착제는 아세트아세틸기를 함유하는 폴리비닐알코올계 수지 및 아민계 금속 화합물 가교제를 포함하는 수계 접착제일 수 있다. 아세트아세틸기 함유 폴리비닐알코올계 수지에 아민계 금속 화합물 가교제를 포함하는 접착제의 경우, 접착제 경화 시에 아민계 금속 화합물과 폴리비닐알코올계 수지의 아세트아세틸기의 가교 반응이 일어나기 때문에, 경화 후 접착층의 내수성이 현저하게 향상되며, 그 결과 습식 연신 시에 접착제가 물에 녹아 나오는 현상을 최소화할 수 있어, 습식 연신을 수행하는 경우에 특히 유용하게 사용될 수 있다.
보다 구체적으로, 본 발명에서 사용되는 상기 접착제는 아세트아세틸기를 함유하는 폴리비닐알코올계 수지 및 아민계 금속 화합물 가교제를 포함하는 수용액일 수 있으며, 상기 수용액의 pH는 4.5 내지 9 정도인 것이 바람직하다. 접착제의 pH가 상기 수치 범위를 만족할 경우, 저장성, 고습 환경에서의 내구성에 있어서 보다 유리하기 때문이다. 이때, 상기 접착제의 pH는 수용액 중에 질산, 염산, 황산 또는 아세트산 등의 산을 함유시키는 방법으로 조절할 수 있다.
한편, 본 발명에 있어서, 상기 접착제는, 바람직하게는 상기 아세트아세틸기를 함유하는 폴리비닐알코올계 수지 100 중량부 및 상기 아민계 금속화합물 가교제 1 내지 50 중량부를 포함할 수 있다.
여기서, 상기 폴리비닐알코올계 수지의 중합도 및 검화도는 아세트아세틸기를 함유하기만 하면 특별히 한정되지 않으나, 중합도가 200 내지 4,000이며, 검화도가 70몰% 내지 99.9몰%인 것이 바람직하다. 분자 움직임의 자유로움에 따른 함유 물질과의 유연한 혼합을 고려하면 중합도는 1,500 내지 2,500이며, 검화도는 90몰% 내지 99.9몰%인 것이 더욱 바람직하다. 이때, 상기 폴리비닐알코올계 수지는 상기 아세트아세틸기를 0.1몰% 내지 30몰%로 포함하는 것이 바람직하다. 상기한 범위에서 아민계 금속화합물 가교제와의 반응이 원활할 수 있으며, 목적하는 접착제의 내수성에 충분히 유의적일 수 있다.
또한, 상기 아민계 금속화합물 가교제는 상기 폴리비닐알코올계 수지와의 반응성을 갖는 관능기를 가지는 수용성 가교제로서 아민계 리간드를 함유하는 금속 착물 형태인 것이 바람직하다. 가능한 금속으로는 지르콘늄(Zr), 타이타늄(Ti), 하프늄(Hf), 텅스텐(W), 철(Fe), 코발트(Co), 니켈(Ni), 루테늄(Ru), 오스뮴(Os), 로듐(Rh), 이리듐(Ir), 팔라듐(Pd), 백금(Pt) 등의 전이 금속이 가능하며, 중심 금속에 결합된 리간드로는 일차아민, 이차아민(다이아민), 삼차아민 이나 암모늄하이드록사이드 등의 적어도 하나 이상의 아민기를 포함한 것이면 모두 가능하다. 그 사용량은 상기 폴리비닐알콜계 수지 100 중량부에 대하여 1 중량부 내지 50 중량부의 범위로 조절되는 것이 바람직하다. 상기 범위에서 목적하는 접착제에 충분히 유의적인 접착력을 부여할 수 있으며, 접착제의 저장 안정성(pot life)을 향상시킬 수 있다.
또한, 본 발명에 있어서, 상기 접착제에 있어서, 상기 아세트아세틸기를 함유하는 폴리비닐알코올계 수지의 고형분 함량은 1중량% 내지 10중량%정도인 것이 바람직하다. 폴리비닐알코올계 수지의 고형분 함량이 1중량% 미만인 경우에는 내수성이 충분히 확보되지 않아 연신 공정에서의 파단 발생율 저하 효과가 적고, 10중량%를 초과할 경우에는 작업성이 떨어지고, 박리 시에 폴리비닐알코올계 필름 표면에 손상이 발생할 수 있기 때문이다.
또는, 상기 접착제는 자외선 경화형 접착제일 수 있으며, 예를 들면, 호모폴리머의 유리전이온도가 120℃ 이상인 제 1 에폭시 화합물, 호모폴리머의 유리전이온도가 60℃ 이하인 제 2 에폭시 화합물 및 양이온 광 중합 개시제를 포함하는 자외선 경화형 접착제일 수 있다. 구체적으로, 상기 자외선 경화형 접착제는 호모폴리머의 유리전이온도가 120℃ 이상인 제 1 에폭시 화합물 100 중량부, 호모폴리머의 유리전이온도가 60℃ 이하인 제 2 에폭시 화합물 30 내지 100 중량부 및 양이온성 광 중합 개시제 0.5 내지 20 중량부를 포함할 수 있다.
본 명세서에서 에폭시 화합물은 분자 내에 1개 이상의 에폭시기를 갖는 화합물을 의미하는 것으로, 바람직하게는 분자 내에 2개 이상의 에폭시기를 갖는 화합물이며, 단량체(monomer), 중합체(polymer) 또는 수지(resin)의 형태의 화합물들을 모두 포함하는 개념이다. 바람직하게는 본 발명의 에폭시 화합물은 수지 형태일 수 있다.
이때, 상기 제 1 에폭시 화합물은, 호모폴리머의 유리전이온도가 120℃ 이상인 에폭시 화합물이면 특별한 제한 없이 사용될 수 있으며, 예를 들면, 호모 폴리머의 유리전이온도가 120℃ 이상인 지환족 에폭시 화합물 및/또는 방향족 에폭시가 본 발명의 제 1 에폭시 화합물로 사용될 수 있다. 호모폴리머의 유리전이온도가 120℃ 이상인 에폭시 화합물의 구체적인 예로는, 3,4-에폭시시클로헥실메틸-3,4'-에폭시시클로헥산카복실레이트, 비닐사이클로헥센디옥사이드 디시클로펜타디엔디옥사이드, 비스에폭시사이클로펜틸에테르, 비스페놀 A 계 에폭시 화합물, 비스페놀 F 계 에폭시 화합물 등을 들 수 있다. 한편, 상기 제1에폭시 화합물은 호모폴리머의 유리전이온도가 120℃ 내지 200℃ 정도인 것이 보다 바람직하다.
또한, 상기 제 2 에폭시 화합물은, 호모폴리머의 유리전이온도가 60℃ 이하인 에폭시 화합물이면 특별한 제한 없이 사용될 수 있다. 예를 들면, 상기 제2에폭시 화합물로 지환족 에폭시 화합물, 지방족 에폭시 화합물 등이 사용될 수 있다. 이때, 상기 지환식 에폭시 화합물로는, 2관능형 에폭시 화합물, 즉 2개의 에폭시를 가지는 화합물을 사용하는 것이 바람직하고, 상기 2개의 에폭시기가 모두 지환식 에폭시기인 화합물을 사용하는 것이 보다 바람직하지만, 이에 제한되는 것은 아니다. 또한, 지방족 에폭시 화합물로는, 지환식 에폭시기가 아닌 지방족 에폭시기를 가지는 에폭시 화합물이 예시될 수 있다. 예를 들면, 지방족 다가 알코올의 폴리글리시딜에테르; 지방족 다가 알코올의 알킬렌옥시드 부가물의 폴리글리시딜에테르; 지방족 다가 알코올과 지방족 다가 카복실산의 폴리에스테르 폴리올의 폴리글리시딜에테르; 지방족 다가 카복실산의 폴리글리시딜에테르; 지방족 다가 알코올과 지방족 다가 카복실산의 폴리에스테르 폴리카복실산의 폴리글리시딜에테르; 글리시딜 아크릴레이트 또는 글리시딜 메타크릴레이트의 비닐 중합에 의해 얻어지는 다이머, 올리고머 또는 폴리머; 또는 글리시딜 아크릴레이트 또는 글리시딜 메타크릴레이트와 다른 비닐계 단량체의 비닐 중합에 의해 얻어지는 올리고머 또는 폴리머가 예시될 수 있고, 바람직하게는 지방족 다가 알코올 또는 그 알킬렌옥시드 부가물의 폴리글리시딜에테르가 사용될 수 있으나, 이에 제한되는 것은 아니다.
바람직하게는, 본 발명의 상기 제 2 에폭시 화합물은 글리시딜 에테르기를 하나 이상 포함하는 것일 수 있으며, 예를 들면, 1,4-시클로헥산디메탄올 디글리시딜 에테르, 1,4-부탄디올디글시딜에테르, 1,6-헥산디올디글리시딜에테르, 네오펜틸디글시딜에테르, 레조시놀디글리시딜에테르, 디에틸렌글라이콜디글리시딜에테르, 에틸렌글라이콜디글리시딜에테르, 트리메틸올프로판트리글리시딜에테르, n-부틸 글리시딜 에테르, 2-에틸헥실 글리시딜 에테르, 페닐 글리시딜 에테르, 및 o-크레실(Cresyl) 글리시딜 에테르로 이루어진 그룹으로부터 선택된 1종 이상이 본 발명의 제2에폭시 화합물로 사용될 수 있다.
한편, 상기 제 2 에폭시 화합물은 호모폴리머의 유리전이온도가 0℃ 내지 60℃ 정도인 것이 보다 바람직하다
한편, 이로써 한정되는 것은 아니나, 상기 에폭시 화합물로 에폭시화 지방족 고리기를 하나 이상 포함하는 제 1 에폭시 화합물 및 글리시딜에테르기를 하나 이상 포함하는 제 2 에폭시 화합물의 조합을 사용하는 것이 특히 바람직하다. 보다 바람직하게는, 상기 제 1 에폭시 화합물과 제 2 에폭시 화합물의 중량비가 1:1 내지 3:1 정도이며, 보다 바람직하게는, 1:1 내지 2:1의 중량비, 가장 바람직하게는 상기 제 1 에폭시 화합물과 제 2 에폭시 화합물이 1:1의 중량비로 혼합되어 사용될 수 있다.
한편, 상기와 같이 접착제를 이용하여 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름을 부착하는 경우, 연신 전 접착제층의 두께는 20nm 내지 4000nm 정도, 바람직하게는 20nm 내지 1000nm 정도, 더욱 바람직하게는 20nm 내지 500nm 정도일 수 있다. 한편, 상기 적층체의 연신 후 접착제층의 두께는 10nm 내지 1000nm 정도, 바람직하게는, 10nm 내지 500nm 정도, 더욱 바람직하게는 10nm 내지 200nm 정도일 수 있다. 연신 전 및 후의 접착제층의 두께가 상기 범위를 만족하는 경우, 연신 및 건조 공정 이후에 폴리비닐알코올계 필름을 손상 없이 박리하는데 유리하다.
한편, 본 발명의 경우, 상기 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름을 별도의 매개물 없이 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름 사이의 인력을 이용하여 부착하여 적층체를 형성하는 것일 수도 있다. 이와 같이, 별도의 매개물 없이 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름 사이의 인력을 이용하여 부착하는 경우, 연신 후 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름의 분리가 쉬우며, 분리를 위해 낮은 박리력이 요구되기 때문에, 분리 과정에서 폴리비닐알코올계 필름의 손상 등이 거의 발생하지 않으며, 그 결과 폴리비닐알코올계 필름의 편광도 등의 광학 물성에 영향을 거의 미치지 않는다는 장점이 있다.
또한, 상기와 같이 별도의 매개물 없이 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름 사이의 인력을 이용하여 부착하는 경우, 제조되는 박형 편광자의 균일한 물성을 구현하기에 용이하며, 나아가 연신 공정 중 파단 등이 거의 발생하지 않는 등 공정 안정성이 우수하다는 장점이 있다.
한편, 상기와 같이 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름의 인력을 이용하여 필름을 부착하는 경우, 상기 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름의 부착력을 향상시키기 위해서, 적층하기 전에 열가소성 폴리우레탄 필름이나 폴리비닐알코올계 필름의 일면 또는 양면에 표면처리를 수행할 수 있다. 이때, 상기 표면처리는 당해 기술 분야에 잘 알려져 있는 다양한 표면처리 방법, 예를 들면, 코로나 처리, 플라즈마 처리 또는 NaOH나 KOH와 같은 강염기 수용액을 이용한 표면 개질 처리 등을 통해 수행될 수 있다.
(적층체 연신 단계)
열가소성 폴리우레탄 필름 상에 폴리비닐알코올계 필름을 적층하여 적층체가 형성되면 상기 적층체를 연신 한다. 이때, 상기 연신은 폴리비닐알코올계 필름의 두께가 10㎛이하가 되도록 수행하는 것이 바람직하며, 예를 들면, 폴리비닐알코올계 필름의 두께가 1㎛ 내지 10㎛, 또는 3㎛ 내지 8㎛ 정도가 되도록 수행하는 것이 바람직하다.
한편, 본 발명에 있어서, 연신 방법은 특별히 한정되지 않으며, 예를 들면, 상기 적층체를 종 방향(MD)에 대하여 일축 연신을 실시할 수 있고, 또는 상기 적층체를 횡 방향(TD)에 대하여 일축 연신을 실시할 수도 있다. 또한, 상기 적층체를 횡 방향(TD) 연신 시 동시 이축으로 종 방향(MD) 수축을 유발할 수도 있다. 한편, 상기 적층체의 횡 방향(TD) 연신 방법으로는 예를 들어, 텐터를 통해 일단(一端)을 고정시킨 고정단 일축 연신 방법 등을 들 수 있으며, 상기 적층체의 종 방향(MD) 연신 방식으로는, 롤간 연신 방법, 압축 연신 방법, 자유단 일축 연신 방법 등을 들 수 있다. 한편, 연신 처리는 다단으로 실시할 수도 있으며, 또는 이축 연신, 경사 연신 등을 실시함으로써 이루어질 수도 있다.
한편, 상기 연신은 습식 연신으로 수행될 수 있다. 습식 연신을 실시하는 경우, 건식 연신에 비해 기재 필름과 폴리비닐알코올계 필름의 표면 부착력이 강해지기 때문에 안정적으로 연신을 수행할 수 있다는 장점이 있다. 한편, 상기 습식 연신은 붕산 수용액 내에서 수행되는 것이 바람직하며, 이때, 상기 붕산 수용액의 붕산 농도는 1.0 중량% 내지 5.0 중량% 정도인 것이 바람직하다. 이와 같이 붕산 수용액에서 연신이 수행될 경우, 붕산 가교로 인해 PVA 필름의 파단 발생율이 저하되어 공정 안정성이 증대되며, 습식 공정 중 발생하기 쉬운 PVA 필름의 주름 발생을 제어할 수 있다.
한편, 일반적으로 편광소자 제조 공정은, 수세, 팽윤, 염착, 세정, 연신, 보색, 건조 등의 과정으로 이루어지는데, 본 발명의 경우, 세정 및 연신 공정이 붕산 수용액에서 수행되는 것이 바람직하다. 보다 바람직하게는, 세정 공정의 경우 붕산 농도가 0.1 중량% 내지 2.5 중량% 정도, 바람직하게는 0.5 중량% 내지 2.0 중량% 정도일 수 있으며, 연신 공정의 경우 붕산 농도는 1.0 중량% 내지 5.0 중량% 정도, 바람직하게는 1.5 중량% 내지 4.5 중량% 정도일 수 있다.
한편, 상기 습식 연신은 20℃ 내지 80℃의 온도에서 5배 내지 15배의 연신 배율로 수행될 수 있으며, 보다 바람직하게는 40℃ 내지 60℃, 또는 45℃ 내지 55℃의 온도에서 5배 내지 12배, 또는 6배 내지 9배의 연신 배율로 수행될 수 있다.
한편, 상기 연신은 폴리비닐알코올계 필름에 요오드 및/또는 이색성 염료를 염착시키는 단계 및/또는 상기 염착된 요오드 및/또는 이색성 염료를 폴리비닐알코올계 필름에 가교시키는 단계 중 적어도 하나 이상의 단계와 함께 수행될 수도 있다.
한편, 본 발명과 같이 기재 필름으로 열가소성 폴리우레탄 필름을 사용하는 경우, 저온에서 건식 연신 역시 가능하며, 따라서, 별도의 승온 장비의 사용을 줄일 수 있고, 그 결과 공정상 에너지 소모를 줄여 제조 단가를 낮출 수 있는 장점이 있다.
보다 구체적으로, 기존의 박형 편광자 제조 방법의 경우, 결정성 폴리에틸렌테레프탈레이트 필름 또는 비정성 폴리에틸렌테레프탈레이트 필름과 같은 기재 필름을 사용하여 연신 하였으나, 결정성 폴리에틸렌테레프탈레이트 또는 비정성 폴리에틸렌테레프탈레이트를 사용하는 경우, 고배율의 연신이 어려운 문제점이 있으며, 연신 이후에 기재 필름과 폴리비닐알코올계 수지 간의 박리가 쉽지 않아, 편광자를 박리하는 과정에서 편광자에 파단이 발생할 수 있는 문제점이 있다. 또한, 폴리에틸렌테레프탈레이트 재료 자체의 구조 및 제조 공정의 특성상 폴리에틸렌테레프탈레이트는 결정화도가 높고 인장력이 크기 때문에, 저온 연신이 힘들고, 120 내지 170℃ 정도의 고온에서만 건식 연신이 가능한 문제점이 있다.
따라서, 결정성 폴리에틸렌테레프탈레이트 필름 또는 비정성 폴리에틸렌테레프탈레이트 필름을 기재 필름으로 사용할 경우, 고온으로 승온 시키기 위한 별도의 장비가 필요하며, 이러한 별도의 승온 장비에 의해 불필요한 에너지의 소모가 많다. 상기와 같은 별도의 장비와 승온 하는데 필요한 에너지는 결과적으로 박형 편광자의 제조 단가를 상승시키며, 승온 장치를 조절하는 것에 별도의 관리가 필요하고, 공정이 복잡한 문제점이 있다. 결정적으로 폴리에틸렌테레프탈레이트 필름을 기재로 사용하여서는 고배율의 연신이 어려운 문제점이 있다.
반면에, 본 발명과 같이, 열가소성 폴리우레탄 필름을 사용할 경우, 20℃ 내지 80℃ 정도, 바람직하게는 50℃ 내지 80℃의 저온에서도 건식 연신이 가능하며, 그 결과 종래에 비하여 연신 과정이 간편하고, 제조과정 중에 에너지 소모가 적어 제조 단가를 낮출 수 있는 장점이 있는 것이다.
또한, 본 발명과 같이 기재 필름으로 열가소성 폴리우레탄 필름을 사용하는 경우, 고배율의 연신이 가능하며, 따라서 10㎛ 이하의 두께를 가지는 박형 편광자를 쉽게 제조할 수 있다는 장점도 있다.
보다 구체적으로, 기존과 같이 기재 필름으로 결정성 폴리에틸렌테레프탈레이트 필름 또는 비정성 폴리에틸렌테레프탈레이트 필름을 사용할 경우, 5배 내지 5.5배 정도의 연신만이 가능하였으나, 열가소성 폴리우레탄 필름을 사용할 경우, 5배 내지 15배 정도, 바람직하게는 5배 내지 12배, 또는 6배 내지 9배의 고배율의 연신이 가능하다. 본 발명과 같이 고배율의 연신이 가능할 경우, 기존의 편광자에 비해 편광도가 향상되는 효과가 있다.
한편, 본 발명의 박형 편광자의 제조 방법은 상기 적층체를 연신하는 단계에 의하여 연신 전 대비 열가소성 폴리우레탄 필름의 연신 방향에 수직한 방향의 폭이 30% 내지 80%, 또는 30% 내지 70% 정도 감소하는 것이 바람직하며, 두께가 30% 내지 80%, 또는 30% 내지 70% 정도 감소하는 것이 바람직하다. 이 경우 연신하는 단계 및 연신하는 단계 이후 건조 단계에서 고분자 필름과 폴리비닐알코올계 필름이 유사한 연신 거동 및 폭 수축 거동을 보일 수 있으며, 폴리비닐알코올-요오드 착체의 배향성을 증대시킬 수 있다.
또한, 본 발명의 박형 편광자의 제조 방법은 상기 적층체를 연신하는 단계 이후에 연신된 폴리비닐알코올계 필름과 연신된 열가소성 폴리우레탄 필름 사이의 부착력이 2N/2cm 이하. 바람직하게는 0.1N/2cm 내지 2N/2cm 정도, 더욱 바람직하게는 0.1N/2cm 내지 1N/2cm 정도일 수 있다. 부착력이 상기 범위를 만족하는 경우, 연신 후 분리 과정에서 표면 손상을 최소화할 수 있다. 본 발명의 제조 방법에 따르면, 폴리비닐알코올계 필름과 열가소성 폴리우레탄 필름 사이에 접착제층이 형성되어 있는 경우, 연신에 의해 폴리비닐알코올계 필름 및 열가소성 폴리우레탄 필름뿐 아니라 접착제층도 함께 연신이 되기 때문에, 접착제층의 두께가 연신 전 대비 10~50% 수준으로 감소하게 되며, 그 결과 폴리비닐알코올계 필름과 열가소성 폴리우레탄 필름 사이의 부착력이 2N/2cm 이하로 저하되어 분리하기 쉬운 상태가 된다.
이때, 상기 부착력은 2cm 폭의 샘플 필름들을 부착하였을 때 측정되는 부착력이며, 보다 구체적으로, 상기 부착력은 하기 도 1에서 도시한 바와 같이, 적층체의 폴리비닐알코올계 필름(A)을 샘플 홀더(H)로 고정한 후, 적층체의 면 방향에 대해 수직한 방향으로 힘을 가하여 열가소성 폴리우레탄 필름(B)으로부터 폴리비닐알코올계 필름(A)을 박리하면서 측정한 박리력(Peel Strength)을 말하며, 이때 측정 기기로는 Stable Micro Systems사의 Texture Analyzer (모델명: TA-XT Plus)를 사용하였다.
(기타 단계)
한편, 본 발명의 박형 편광자의 제조 방법은 상기 적층체를 연신하기 전에, 미연신 폴리비닐알코올계 필름에 요오드 및/또는 이색성 염료를 염착하는 단계를 추가로 실시할 수 있으며, 바람직하게는 상기 미연신 폴리비닐알코올계 필름을 팽윤시키는 단계 및 상기 팽윤된 미연신 폴리비닐알코올계 필름에 요오드 및/또는 이색성 염료를 염착하는 단계를 추가로 실시할 수 있다.
이때, 상기 미연신 폴리비닐알코올계 필름을 팽윤시키는 단계는 요오드 및/또는 이색성 염료가 폴리비닐알코올계 필름에 흡착, 확산되는 것을 촉진시키고, 폴리비닐알코올계 필름의 연신성을 향상시키기 위한 것으로써, 이로써 한정되는 것은 아니나, 예를 들면, 미연신 폴리비닐알코올계 필름 또는 이를 포함하는 적층체를 25℃ 내지 30℃의 순수에서 5초 내지 30초, 더 바람직하게는 10초 내지 20초 동안 침지시키는 방법으로 수행될 수 있다. 또한, 상기 팽윤은 미연신 폴리비닐알코올계 필름의 팽윤도가 36% 내지 44% 정도, 바람직하게는 38% 내지42% 정도가 되도록 수행되는 것이 바람직하다. 미연신 폴리비닐알코올계 필름의 팽윤도가 상기 수치 범위를 만족할 경우, 최종적으로 제조되는 박형 편광자의 편광도 등과 같은 광학 특성이 매우 우수하게 나타난다. 한편, 상기 팽윤도는 {(팽윤 후 폴리비닐알코올계 필름의 중량 - 팽윤 전 폴리비닐알코올계 필름의 중량) / 팽윤 전 폴리비닐알코올계 필름의 중량}x100으로 계산하였다.
또한, 상기 염착하는 단계는 미연신 폴리비닐알코올계 필름 또는 이를 포함하는 적층체를 요오드 및/또는 이색성 염료를 함유하는 염착 용액이 담긴 염착조에 함침시키거나, 요오드 및/또는 이색성 염료를 함유하는 염착 용액을 미연신 폴리비닐알코올계 필름 상에 도포하는 방법으로 수행될 수 있으며, 이때, 상기 염착 용액의 용매로는 일반적으로 물이 사용되지만, 물과 상용성을 갖는 유기 용매가 혼합되어 있어도 무방하다. 한편, 상기 염착 용액 내의 요오드 및/또는 이색성 염료의 함량은 용매 100 중량부에 대해서, 0.06 중량부 내지 0.25 중량부 정도일 수 있다. 또한, 상기 염착 용액에는 요오드 및/또는 이색성 염료 외에 염착 효율을 향상시키기 위한 보조제가 추가로 함유될 수 있으며, 상기 보조제로는 요오드화 칼륨, 요오드화 리튬, 요오드화 나트륨, 요오드화 아연, 요오드화 알루미늄, 요오드화 납, 요오드화 구리, 요오드와 바륨, 요오드화 칼슘, 요오드화 주석, 요오드화 티탄 또는 이들의 혼합물과 같은 요오드화 화합물이 사용될 수 있다. 이때, 상기 보조제의 함량은 용매 100 중량부에 대하여 0.3 중량부 내지 2.5 중량부 정도일 수 있으며, 보다 바람직하게는 요오드 대 요오드화 화합물의 중량비가 1:5 내지 1:10 정도일 수 있다. 한편, 상기 염착 단계는 25℃ 내지 40℃ 정도의 온도에서 수행되는 것이 바람직하며, 염착조 침지 시간은 30초 내지 120초 정도인 것이 바람직하나, 이로써 한정되는 것은 아니다.
한편, 본 발명의 박형 편광자의 제조 방법은 상기 적층체를 연신한 이후에 필요에 따라, 상기 연신 적층체를 건조하는 단계를 수행할 수 있다. 이때, 상기 건조는, 이로써 한정되는 것은 아니나, 편광자의 광학 특성을 고려할 때, 20℃ 내지 100℃, 더 바람직하게는 40℃ 내지 90℃ 정도의 온도에서 수행되는 것이 바람직하며, 상기 건조 시간은 1분 내지 10분 정도인 것이 바람직하다. 건조 공정은 폴리비닐알코올의 표면 및 내부의 수분 제거를 통해 편관판 제조공정 중 수분에 의한 폴리비닐알코올계 편광자의 물성 저하를 방지하고, 건조 과정에서 연신된 폴리비닐알코올계 필름의 폭수축을 원활하게 유도해주어 폴리비닐알코올 및 요오드로 구성된 착체의 배향성을 증대시켜 편광자의 편광도를 향상시키는 역할을 한다.
한편, 본 발명의 박형 편광자의 제조 방법은 상기 적층체를 연신한 이후에 필요에 따라, 폴리비닐알코올계 필름을 열가소성 폴리우레탄 필름으로부터 분리하는 단계를 수행할 수 있다. 상기 분리 단계는 폴리비닐알코올계 필름에 약한 박리력을 가하여 열가소성 폴리우레탄 필름으로부터 이탈시키는 방법으로 수행될 수 있다. 이때, 상기 박리력은 2N/2cm 이하인 것이 바람직하며, 예를 들면, 0.1N/2cm 내지 2N/2cm, 또는 0.1N/2cm 내지 1N/2cm 정도일 수 있다. 본 발명의 경우, 이와 같이 요구되는 박리력이 매우 약하기 때문에 별다른 공정이나 장비 없이도 두 필름을 쉽게 분리할 수 있을 뿐 아니라, 분리 공정에서 폴리비닐알코올계 필름의 손상이 적어 매우 우수한 광학 성능을 나타낸다.
한편, 본 발명의 편광자 제조 방법은, 당해 기술 분야에 잘 알려져 있는 시트-투-시트(sheet-to-sheet) 공정, 시트-투-롤(sheet-to-roll) 공정 또는 롤-투-롤(roll-to-roll) 공정 등을 통해 수행될 수 있다. 이때, 시트-투-시트 공정은 원료 필름으로 일정한 크기로 재단되어 있는 매엽형 필름을 사용하는 방법이며, 시트-투-롤 공정은 원료 필름 중 일부로는 길이가 긴 필름이 권취된 롤형 필름을 사용하고, 다른 원료 필름으로는 일정한 크기로 재단되어 있는 매엽형 필름을 사용하는 방법을 말한다. 또한, 롤-투-롤 공정은 원료 필름으로 롤형 필름을 사용하는 방법이다. 공정의 연속성 및 생산성을 고려할 때, 이 중에서도 롤-투-롤 공정을 사용하는 것이 특히 바람직하다.
예를 들면, 본 발명의 편광자 제조 방법은, 미연신 열가소성 폴리우레탄 필름 롤과 미연신 폴리비닐알코올계 필름 롤로부터 미연신 열가소성 폴리우레탄 필름과 미연신 폴리비닐알코올계 필름을 권출하면서 미연신 열가소성 폴레우레탄 필름과 미연신 폴리비닐알코올계 필름을 부착시켜 적층체를 형성하는 단계, 상기 폴리비닐알코올계 필름의 두께가 10㎛ 이하가 되도록 적층체를 연신하는 단계, 및 상기 폴리비닐알코올계 필름을 열가소성 폴리우레탄 필름으로부터 분리하는 단계를 포함할 수 있다.
이때, 상기 미연신 열가소성 폴리우레탄 필름과 미연신 폴리비닐알코올계 필름은 부착된 후, 롤 형상으로 재권취된 다음, 재권취된 적층체 롤로부터 적층체를 권출하여 연신 공정에 투입될 수도 있고, 또는 재권취 없이 바로 연신 공정에 투입될 수 있다.
또한, 상기 분리하는 단계는 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름 사이에 박리 수단, 예를 들면 박리 롤 등을 삽입하여, 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름의 계면을 분리시킨 다음, 분리된 열가소성 폴리우레탄 필름과 폴리비닐알코올계 필름을 서로 롤에 권취하는 방법으로 수행될 수 있다.
[박형 편광자, 편광판]
상기와 같은 방법에 의해 제조된 본 발명의 편광자는 그 두께가 10㎛ 이하, 바람직하게는 1㎛ 내지 10㎛ 정도, 보다 바람직하게는 3㎛ 내지 8㎛ 정도로 매우 얇다. 또한, 이와 같이 얇은 두께에서도, 단체 투과도가 40% 내지 45% 정도이며, 편광도가 99.0% 이상, 바람직하게는 99.5% 이상, 더 바람직하게는 99.7% 이상, 특히 바람직하게는 99.9% 이상으로 매우 우수한 광학 물성을 나타낸다.
또한, 상기와 같은 방법에 의해 제조된 본 발명의 편광자는 폭 방향에 대한 편광도 균일성이 매우 우수하다. 보다 구체적으로는, 본 발명의 편광자는, 편광자의 폭 방향을 따라 등 간격으로 위치하는 10개의 점에서 측정된 편광도의 표준편차가 0.002% 이하이다.
한편, 상기와 같은 본 발명의 편광자에 일면 또는 양면에 보호 필름을 적층하여 편광판을 형성할 수 있다. 이때, 편광판의 구조는 본 발명의 상기 편광자를 포함하는 것이면 특별히 제한되지 않으며, 예를 들면, 편광자/보호 필름, 보호 필름/편광자, 또는 보호 필름/편광자/보호 필름 등일 수 있다.
이때, 상기 보호 필름으로는, 상기 보호 필름은 편광자를 지지 및 보호하기 위한 것으로, 당해 기술 분야에 일반적으로 알려져 있는 다양한 재질의 보호 필름들, 예를 들면, 셀룰로오스계 필름, 폴리에틸렌테레프탈레이트(PET, polyethylene terephthalate) 필름, 싸이클로올레핀 폴리머(COP, cycloolefin polymer) 필름, 아크릴계 필름 등이 제한없이 사용될 수 있다. 이 중에서도 광학 특성, 내구성, 경제성 등을 고려할 때, 아크릴계 필름을 사용하는 것이 특히 바람직하다.
한편, 상기 편광판의 제조 방법 역시 당해 기술 분야에 잘 알려져 있는 시트-투-시트(sheet-to-sheet) 공정, 시트-투-롤(sheet-to-roll) 공정 또는 롤-투-롤(roll-to-roll) 공정 등을 통해 수행될 수 있으며, 역시 그 중에서도 롤-투-롤 공정을 사용하는 것이 바람직하다. 롤-투-롤 공정으로 편광자와 보호 필름을 적층하여 편광판을 제조하는 방법은 당해 기술 분야에 잘 알려져 있으므로, 구체적인 설명은 생략한다. 이와 같이 롤-투-롤 공정으로 편광판을 제조할 경우, 장척의 롤형 편광판을 얻을 수 있다.
한편, 상기 편광판에는 광학 위상차를 보상시켜 주기 위한 위상차 필름이 포함될 수도 있다. 이때, 본 발명에 사용 가능한 위상차 필름은 특별히 제한되지 않으며, 다양한 액정 모드에 따라 당해 기술분야에서 일반적으로 사용되고 있는 위상차 필름이 사용될 수 있다.
또한, 상기 편광판에는 그 외에도 휘도향상필름, 프라이머층, 하드코팅층, 방현층, 반사방지층 또는 액정 패널과의 부착을 위한 점착층 등과 같은 다른 기능성 광학층을 추가로 포함할 수 있다. 이들 광학층의 형성 방법은 특별히 한정되지 않으며, 당해 기술분야에 잘 알려진 공지의 방법을 이용할 수 있다.
한편, 본 발명에 따른 상기 편광판은 다양한 디스플레이 장치에 포함될 수 있다. 예를 들어, 상기 편광판은 액정표시장치(LCD), 유기발광소자(OLED)와 같은 다양한 디스플레이 장치에 적용될 수 있다.
이하 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다.
실시예 1
두께 60㎛의 열가소성 폴리우레탄 필름 양면에, Kuraray社의 PE30 grade 30㎛ PVA 필름을 부착하여 적층체를 형성하였다. 한편, 상기 열가소성 폴리우레탄 필름은 메틸렌디페닐디이소시아네이트, 1,4-부탄디올, 네오펜틸글리콜 및 아디프산을 반응시켜 제조한 것을 사용하였으며, 25℃에서 모듈러스가 1000MPa이고, 파단력이 30N이며, 유리전이온도는 40℃이었다. 상기 적층체에 대해, 25℃ 순수 용액에서 팽윤(swelling) 공정을 15초간 거친 후, 0.3wt% 농도 및 25℃의 요오드 용액에서 60초간 염착 공정을 진행하였다. 이후 25℃의 붕산 1wt% 용액에서 15초간 세정 공정을 거친 후 52℃의 붕산 2.5wt% 용액에서 7배 연신 배율로 상기 적층체를 연신하여 연신 적층체를 제조하였다. 연신 이후 5wt%의 요오드화 칼륨(KI) 용액에서 보색 공정을 거친 후, 80℃ 오븐에서 5분간 건조 공정을 진행하였다. 건조 공정 이후 열가소성 폴리우레탄 필름으로부터 PVA 필름을 박리시킴으로써 최종적으로 박형 편광자를 제조하였다.
실시예 2
두께 30㎛의 열가소성 폴리우레탄 필름 양면에, Kuraray社의 PE30 grade 30㎛ PVA 필름을 부착하여 적층체를 형성하였다. 한편, 상기 열가소성 폴리우레탄 필름은 메틸렌디페닐디이소시아네이트, 1,4-부탄디올, 네오펜틸글리콜 및 아디프산을 반응시켜 제조한 것을 사용하였으며, 25℃에서 모듈러스가 900MPa이고, 파단력이 24N이며, 유리전이온도는 40℃이었다. 상기 적층체에 대해, 25℃ 순수 용액에서 팽윤(swelling) 공정을 15초간 거친 후, 0.3wt% 농도 및 25℃의 요오드 용액에서 60초간 염착 공정을 진행하였다. 이후 25℃의 붕산 1wt% 용액에서 15초간 세정 공정을 거친 후 52℃의 붕산 2.5wt% 용액에서 7배 연신 배율로 상기 적층체를 연신하여 연신 적층체를 제조하였다. 연신 이후 5wt%의 요오드화 칼륨(KI) 용액에서 보색 공정을 거친 후, 80℃ 오븐에서 5분간 건조 공정을 진행하였다. 건조 공정 이후 열가소성 폴리우레탄 필름으로부터 PVA 필름을 박리시킴으로써 최종적으로 박형 편광자를 제조하였다.
실시예 3
순수에 아세트아세틸기 (5중량%)를 함유하는 폴리비닐알코올(평균 중합도 2000, 감화도 94%, 일본 합성사)를 녹여 4중량% 수용액을 제조하였다. 여기에 티타늄 아민 콤플렉스 가교제(제품명: TYZOR TE, 듀폰사)를 폴리비닐알코올 100중량부당 6.7 중량부의 비로 첨가하여 교반하면서 혼합하여 접착제를 제조하였다. 두께 40㎛ 두께의 열가소성 폴리우레탄 기재 양면에 상기 접착제를 도포한 후, 일본합성사의 M2000 grade 20㎛ PVA 필름을 적층하고 라미네이터를 통과시켜 적층체를 형성하였다. 한편, 상기 열가소성 폴리우레탄 필름은 메틸렌디페닐디이소시아네이트, 1,4-부탄디올, 네오펜틸글리콜 및 아디프산을 반응시켜 제조한 것을 사용하였으며, 25℃에서 모듈러스가 950MPa이고, 파단력이 18N이며, 유리전이온도는 39℃이었다. 상기 적층체에 대해, 25℃ 순수 용액에서 팽윤(swelling) 공정을 15초간 거친 후, 0.3wt% 농도 및 25℃의 요오드 용액에서 60초간 염착 공정을 진행하였다. 이후 25℃의 붕산 1wt% 용액에서 15초간 세정 공정을 거친 후 52℃의 붕산 2.5wt% 용액에서 7배 연신 배율로 상기 적층체를 연신하여 연신 적층체를 제조하였다. 연신 이후 5wt%의 요오드화 칼륨(KI) 용액에서 보색 공정을 거친 후, 80℃ 오븐에서 5분간 건조 공정을 진행하였다. 건조 공정 이후 열가소성 폴리우레탄 필름으로부터 PVA 필름을 박리시킴으로써 최종적으로 박형 편광자를 제조하였다.
비교예 1
40㎛ 두께의 폴리에틸렌테레프탈레이트 필름(MGC社 NOVA-Clear SG007 grade)의 양면에 폴리비닐알코올계 폴리머 필름을 부착한 적층체를 형성하고, 연신비가 4.8배인 것을 제외한 나머지 제조 방법은 실시예 1과 동일하게 하여 최종적으로 두께 8.6㎛의 박형 편광자를 제조 하였다.
비교예 2
40㎛ 두께의 폴리에틸렌테레프탈레이트 필름(MGC社 NOVA-Clear SG007 grade)의 양면에 폴리비닐알코올계 폴리머 필름을 부착한 적층체를 형성하고, 6배 이상의 고배율로 연신을 한 것을 제외한 나머지 제조 방법은 실시예 1과 동일하게 하여 박형 편광자를 제조하였으나, 고배율 연신이 불가능하여 하기 도 2와 같이 폴리비닐알코올계 폴리머 필름이 손상되었다.
실험예 1 - 폭, 두께, 박리력 비교
상기 실시예 1 내지 3 및 비교예 1의 기재 필름 및 PVA 필름의 연신 전 후의 폭을 통상의 자를 이용하여 측정하고, 연신 전 후의 두께를 TESA Mu-hite Electronic Height Gauge 100mm를 이용하여 측정하여, 하기 표 1에 나타내었다.
또한, 상기 실시예 1 내지 3 및 비교예 1에 의하여 제조된 편광자의 박리력을 Texture Analyzer(모델명: TA-XT Plus, 제조사: Stable Micro Systems)를 이용하여 측정하여 하기 표 1에 나타내었다.
표 1
구분 샘플 폭(㎜) 두께(㎛) 박리력(N/2cm)
연신 전 연신 후 연신 전 연신 후
실시예 1 PVA 필름 81 48 30 7.5 0.2
TPU 필름 90 48 60 16
실시예 2 PVA 필름 80 48 30 6.7 0.5
TPU 필름 90 48 30 10.1
실시예 3 PVA 필름 80 30.2 20 7.5 0.7
TPU 필름 80 30.2 40 13.3
비교예 1 PVA 필름 81 47 30 8.6 2.5
PET 필름 90 51 40 10.8
상기 표 1에서, PVA 필름은 폴리비닐알코올계 필름을 의미하고, TPU 필름은 열가소성 폴리우레탄 필름을 의미하며, PET 필름은 폴리에틸렌테레프탈레이트 필름을 의미한다.
상기 표 1에서 볼 수 있듯이, 비교예 1과 달리, 실시예 1 내지 3의 경우는 기재 필름과 폴리비닐알코올계 필름의 폭 수축 거동이 유사한 것을 알 수 있다. 또한, 비교예 1과 달리, 본 발명의 실시예 1 내지 3에 의하여 제조되는 편광자는 모두 10㎛ 이하로 박형이며, 박리력(또는 부착력)이 2N/2cm 이하로 매우 용이하게 최종적으로 박형 편광자를 박리할 수 있음을 알 수 있다.
실험예 2 - 광학 특성 비교
상기 실시예 1 내지 3 및 비교예 1에서 제조된 박형 편광자의 광학 특성을 JASCO V-7100 Spectrophotometer로 측정하였으며, 그 결과는 하기 표 2에 나타내었다. 한편, 하기 표 2에서 단체 투과율은 단일 편광자의 투과율을 의미하며, 편광도는 [(Tp-Tc)/(Tp+Tc)]0.5 이며, 이때 Tp는 편광판 2장의 평행 투과율, Tc는 편광판 2장의 직교 투과율이다.
또한, 단체색상 a, b 및 직교색상 a, b 값에서 단체색상이란, 단일의 편광자 색상을 색차계를 사용하여 측정한 것을 나타내며, 직교색상이란, 한쌍의 편광자를 흡수축이 직교하는 상태로 배치하였을 때 색상을 색차계를 사용하여 측정한 것을 나타낸다. 또한, 상기 색상 a 및 색상 b는 CIE 좌표계에서 색상을 표현하는 값을 말하는 것으로, 보다 구체적으로는 상기 색상 a값은 a=500[(X/Xn)1/3-(Y/Yn)1/3]으로 계산되며, +a는 빨강, -a는 녹색을 의미한다. 또한 상기 색상 b값은 b=200[(Y/Yn)1/3-(Z/Zn)1/3]으로 계산되며, +b는 노랑, -b는 파랑을 의미한다. (여기서 Xn, Yn, Zn은 기준이 되는 화이트 색상의 X, Y, Z에 해당한다.)
즉, 단체색상 a, b값은 단일의 편광자 색상을 색차계를 사용하여 측정한 CIE 좌표계에서의 색상 a, b값을 의미하며, 직교색상 a, b값은 한쌍의 편광자를 흡수축이 직교하는 상태로 배치하였을 때의 색상을 색차계를 사용하여 측정한 CIE 좌표계에서의 색상 a, b값을 의미한다.
표 2
구분 단체 투과율(%) 편광도(%) 단체색상 직교색상
a b a b
실시예 1 40.48 99.9837 -0.48 1.75 0.87 -1.50
실시예 2 40.80 99.9521 -0.84 1.38 1.21 -3.45
실시예 3 40.85 99.9931 -0.87 2.01 0.71 -1.10
비교예 1 41.99 99.3510 0.05 0.79 2.33 -5.37
상기 표 2에서 볼 수 있듯이, 열가소성 폴리우레탄 필름을 사용하는 실시예 1 내지 3의 경우, 폴리에틸렌테레프탈레이트 필름을 사용하는 비교예 1에 비하여 편광도가 높은 결과를 보임으로써, 더 우수한 광학성능을 가짐을 알 수 있다.
실험예 3 - PVA 필름의 파단 여부
비교예 2에서와 같이 실시예 1 내지 3과 동일한 제조 공정 조건 하에서 폴리에틸렌테레프탈레이트 필름을 기재로 사용하여 박형 편광자를 제조하는 경우, 하기 도 2에 도시된 바와 같이, 고배율 연신 과정에서 PVA 필름에 파단이 발생하여, 박형 편광자의 제조가 불가능하였다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.
[부호의 설명]
H: 홀더
A: 폴리비닐알코올계 필름
B: 고분자 필름
MD: 종연신 방향

Claims (17)

  1. 미연신 열가소성 폴리우레탄 필름; 및 상기 미연신 열가소성 폴리우레탄 필름의 적어도 일면에 적층되는 미연신 폴리비닐알코올계 필름을 포함하는 적층체가 연신 처리되어 있는 연신 적층체로서,
    연신 후 폴리비닐알코올계 필름의 두께가 10㎛ 이하인 연신 적층체.
  2. 제 1 항에 있어서,
    연신 후 열가소성 폴리우레탄 필름의 두께가 4㎛ 내지 70㎛인 연신 적층체.
  3. 제 1 항에 있어서,
    상기 미연신 열가소성 폴리우레탄 필름의 유리전이온도(Tg)는 20℃ 내지 60℃인 연신 적층체.
  4. 제 1 항에 있어서,
    상기 미연신 열가소성 폴리우레탄 필름의 상온(25℃)에서의 모듈러스는 200MPa 내지 1500 MPa인 연신 적층체.
  5. 제 1 항에 있어서,
    상기 미연신 열가소성 폴리우레탄 필름의 상온(25℃)에서의 파단력은 5N 내지 40N 인 연신 적층체.
  6. 미연신 열가소성 폴리우레탄 필름의 적어도 일면에 미연신 폴리비닐알코올계 필름을 적층하여 적층체를 형성하는 단계; 및
    상기 폴리비닐알코올계 필름의 두께가 10㎛ 이하가 되도록 상기 적층체를 연신하는 단계를 포함하는 박형 편광자의 제조 방법.
  7. 제 6 항에 있어서,
    상기 적층체를 형성하는 단계는 미연신 열가소성 폴리우레탄 필름과 미연신 폴리비닐알코올계 필름 사이의 인력 또는 접착제를 이용하여, 미연신 열가소성 폴리우레탄 필름과 미연신 폴리비닐알코올계 필름을 부착하는 것인 박형 편광자의 제조 방법.
  8. 제 6 항에 있어서,
    상기 적층체를 연신하는 단계는 20℃ 내지 80℃의 온도에서 5배 내지 15배의 연신 배율로 수행되는 것인 박형 편광자의 제조 방법.
  9. 제 6 항에 있어서,
    상기 적층체를 연신하는 단계는 붕산 농도가 1중량% 내지 5중량%인 붕산 수용액 내에서 수행되는 것인 박형 편광자의 제조 방법.
  10. 제 6 항에 있어서,
    상기 적층체를 연신하는 단계에 의하여 상기 열가소성 폴리우레탄 필름의 연신 방향에 수직한 방향의 폭이 연신 전 대비 30% 내지 80% 감소하고, 두께가 연신 전 대비 30% 내지 80% 감소하는 박형 편광자의 제조 방법.
  11. 제 6 항에 있어서,
    상기 적층체를 연신하는 단계 이후에 연신된 폴리비닐알코올계 필름과 연신된 열가소성 폴리우레탄 필름 사이의 부착력이 2N/2cm 이하인 박형 편광자의 제조 방법.
  12. 제 6 항에 있어서,
    상기 적층체를 연신하는 단계 전에 미연신 폴리비닐알코올계 필름에 요오드 및 이색성 염료 중 적어도 하나를 염착시키는 단계를 더 포함하는 박형 편광자의 제조 방법.
  13. 제 6 항에 있어서,
    상기 적층체를 연신하는 단계 이후에 연신된 폴리비닐알코올계 필름을 연신된 열가소성 폴리우레탄 필름으로부터 분리하는 단계를 더 포함하는 박형 편광자의 제조 방법.
  14. 제 13 항에 있어서,
    상기 연신된 폴리비닐알코올계 필름을 연신된 열가소성 폴리우레탄 필름으로부터 분리하는 단계는 2N/2cm 이하의 박리력을 가하여 수행되는 것인 박형 편광자의 제조 방법.
  15. 제 6 항 내지 제 14 항 중 어느 한 항의 제조 방법으로 제조되며,
    두께가 10㎛ 이하이고, 단체 투과도가 40 내지 45%이며, 편광도가 99.0% 이상인 박형 편광자.
  16. 제 15 항에 있어서,
    상기 박형 편광자는, 편광자 폭 방향을 따라 등 간격으로 위치하는 10개의 점에서 측정한 편광도의 표준편차가 0.002% 이하인 박형 편광자.
  17. 제 15 항의 박형 편광자를 포함하는 편광판.
PCT/KR2014/005251 2013-06-18 2014-06-16 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판 WO2014204151A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/387,070 US10254457B2 (en) 2013-06-18 2014-06-16 Stretched laminate, method of manufacturing thin polarizer, thin polarizer manufactured by the method, and polarizing plate including the thin polarizer
CN201480000932.4A CN104395794B (zh) 2013-06-18 2014-06-16 拉伸层压体、制造薄偏光片的方法、通过该方法制造的薄偏光片、以及包含该薄偏光片的偏光板
EP14766090.6A EP2840419B1 (en) 2013-06-18 2014-06-16 Stretched laminated body, method for manufacturing thin polarizer, thin polarizer manufactured thereby, and polarizing plate containing same
JP2015542981A JP6077669B2 (ja) 2013-06-18 2014-06-16 延伸積層体、薄型偏光子の製造方法、これを用いて製造される薄型偏光子及びこれを含む偏光板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130069832 2013-06-18
KR10-2013-0069832 2013-06-18
KR1020140071686A KR101575489B1 (ko) 2013-06-18 2014-06-12 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
KR10-2014-0071686 2014-06-12

Publications (1)

Publication Number Publication Date
WO2014204151A1 true WO2014204151A1 (ko) 2014-12-24

Family

ID=52104829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005251 WO2014204151A1 (ko) 2013-06-18 2014-06-16 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판

Country Status (3)

Country Link
EP (1) EP2840419B1 (ko)
CN (1) CN104395794B (ko)
WO (1) WO2014204151A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361804A (zh) * 2018-04-09 2019-10-22 日东电工株式会社 偏振片的制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101813755B1 (ko) * 2015-05-28 2017-12-29 삼성에스디아이 주식회사 편광판 및 이를 포함하는 표시장치
US10921364B2 (en) 2018-12-12 2021-02-16 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Structure and testing device for measuring the bonding strength of the light-emitting panel
CN109671638A (zh) * 2018-12-12 2019-04-23 武汉华星光电半导体显示技术有限公司 用于测量发光面板粘接强度的结构及检测设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040095378A (ko) * 2003-04-28 2004-11-15 주식회사 코오롱 산업용 고강도 막재료
KR100659573B1 (ko) * 2005-03-09 2006-12-19 주식회사 에이스 디지텍 편광필름 제조방법
KR20100038147A (ko) * 2008-10-03 2010-04-13 스미또모 가가꾸 가부시키가이샤 편광판 및 액정 표시 장치
JP2011081399A (ja) * 2010-11-11 2011-04-21 Sumitomo Chemical Co Ltd 偏光板の製造方法
JP2012203211A (ja) * 2011-03-25 2012-10-22 Sumitomo Chemical Co Ltd 偏光板および液晶表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4279944B2 (ja) * 1999-06-01 2009-06-17 株式会社サンリッツ 偏光板の製造方法
EP1881349A1 (en) * 2005-04-21 2008-01-23 Mitsubishi Chemical Corporation Composition for anisotropic dye film, anisotropic dye film, and polarizing device
CN102736165B (zh) * 2009-03-05 2016-08-10 日东电工株式会社 薄型高功能偏振膜及其制造方法
EP2481580B1 (en) * 2009-09-23 2014-01-15 Mitsubishi Plastics, Inc. Laminated polyester film
WO2012011319A1 (ja) * 2010-07-23 2012-01-26 三菱樹脂株式会社 積層ポリエステルフィルム
JP5616318B2 (ja) * 2011-12-12 2014-10-29 日東電工株式会社 偏光膜の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040095378A (ko) * 2003-04-28 2004-11-15 주식회사 코오롱 산업용 고강도 막재료
KR100659573B1 (ko) * 2005-03-09 2006-12-19 주식회사 에이스 디지텍 편광필름 제조방법
KR20100038147A (ko) * 2008-10-03 2010-04-13 스미또모 가가꾸 가부시키가이샤 편광판 및 액정 표시 장치
JP2011081399A (ja) * 2010-11-11 2011-04-21 Sumitomo Chemical Co Ltd 偏光板の製造方法
JP2012203211A (ja) * 2011-03-25 2012-10-22 Sumitomo Chemical Co Ltd 偏光板および液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361804A (zh) * 2018-04-09 2019-10-22 日东电工株式会社 偏振片的制造方法

Also Published As

Publication number Publication date
EP2840419A4 (en) 2015-12-02
CN104395794B (zh) 2017-12-29
CN104395794A (zh) 2015-03-04
EP2840419B1 (en) 2019-10-23
EP2840419A1 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
WO2014204148A1 (ko) 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
WO2014204150A1 (ko) 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
WO2014204134A1 (ko) 박형 편광판 및 그의 제조 방법
WO2014204154A1 (ko) 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
WO2011105878A9 (ko) 점착제 조성물
WO2016105017A1 (ko) 광학필름 및 이를 구비한 oled 표시장치
WO2014204151A1 (ko) 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
WO2014204205A1 (ko) 편광판 및 이를 포함하는 화상표시장치
WO2014035117A1 (ko) 편광판
WO2014148684A1 (ko) 보호필름 및 이를 포함하는 편광판
WO2018043851A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2014077636A1 (ko) 박형 편광자의 제조 방법, 이를 이용하여 제조된 박형 편광자 및 편광판
WO2014204132A1 (ko) 광학 물성이 우수한 박형 편광자, 그 제조 방법, 이를 포함하는 편광판 및 디스플레이 장치
WO2013094969A2 (ko) 편광판 및 이를 구비한 화상표시장치
KR101575489B1 (ko) 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
WO2016171389A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2016159645A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2016048016A1 (ko) 내수성 및 내용제성이 우수한 광학 필름, 및 이를 포함하는 편광판
WO2015178741A1 (ko) 폴리에틸렌테레프탈레이트 보호 필름을 포함하는 편광판, 그 제조 방법, 이를 포함하는 화상표시장치 및 액정표시장치
WO2020145712A1 (ko) 편광판
WO2016052952A1 (ko) 편광판 및 이를 포함하는 디스플레이장치
WO2011162499A2 (ko) 아크릴계 공중합체 및 이를 포함하는 광학필름
WO2013125837A1 (ko) 태양광모듈용 백시트 및 이의 제조방법
WO2016052813A1 (ko) 광학 필름 및 그 제조방법
WO2014204133A1 (ko) 박형 편광자, 그의 제조 방법, 이를 포함하는 편광판 및 디스플레이 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14387070

Country of ref document: US

Ref document number: 2014766090

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015542981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE