WO2014139231A1 - 光源光强均一性测调系统及测调方法 - Google Patents
光源光强均一性测调系统及测调方法 Download PDFInfo
- Publication number
- WO2014139231A1 WO2014139231A1 PCT/CN2013/077405 CN2013077405W WO2014139231A1 WO 2014139231 A1 WO2014139231 A1 WO 2014139231A1 CN 2013077405 W CN2013077405 W CN 2013077405W WO 2014139231 A1 WO2014139231 A1 WO 2014139231A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light intensity
- light source
- uniformity
- light
- microprocessor
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000001105 regulatory effect Effects 0.000 title abstract 5
- 238000009826 distribution Methods 0.000 claims abstract description 5
- 230000008859 change Effects 0.000 claims description 40
- 238000005259 measurement Methods 0.000 claims description 31
- 239000000758 substrate Substances 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims description 3
- 239000004408 titanium dioxide Substances 0.000 claims 2
- 238000004737 colorimetric analysis Methods 0.000 claims 1
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000005530 etching Methods 0.000 abstract description 7
- 238000007789 sealing Methods 0.000 abstract description 4
- 239000003292 glue Substances 0.000 abstract description 3
- 238000005266 casting Methods 0.000 abstract 1
- 238000007747 plating Methods 0.000 abstract 1
- 230000004075 alteration Effects 0.000 description 15
- 239000010408 film Substances 0.000 description 11
- 238000001723 curing Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005286 illumination Methods 0.000 description 6
- 239000011229 interlayer Substances 0.000 description 6
- 238000000691 measurement method Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- 238000000576 coating method Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229910018661 Ni(OH) Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003709 image segmentation Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- AIBQNUOBCRIENU-UHFFFAOYSA-N nickel;dihydrate Chemical compound O.O.[Ni] AIBQNUOBCRIENU-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/429—Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/10—Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
- G01J1/16—Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/10—Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
- G01J1/20—Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle
- G01J1/28—Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source
- G01J1/30—Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors
- G01J1/32—Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors adapted for automatic variation of the measured or reference value
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/44—Electric circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/48—Photometry, e.g. photographic exposure meter using chemical effects
- G01J1/50—Photometry, e.g. photographic exposure meter using chemical effects using change in colour of an indicator, e.g. actinometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/44—Electric circuits
- G01J2001/444—Compensating; Calibrating, e.g. dark current, temperature drift, noise reduction or baseline correction; Adjusting
Definitions
- Embodiments of the present invention relate to a light source intensity uniformity measurement system and a measurement and adjustment method. Background technique
- the traditional measurement and measurement system for measuring the uniformity of ultraviolet light intensity can only perform point measurement.
- measuring the uniformity of light intensity (uniformity of light irradiation) of the ultraviolet curing machine it is necessary to measure multiple times, and then perform data sorting. Finally, the uniformity of the light intensity is analyzed. This has the disadvantage of not being able to measure multiple points at the same time.
- the measured data is measured at different times, which not only wastes a lot of time, but also has low precision and is not intuitive. .
- Photochromism refers to the fact that certain compounds undergo a change in molecular structure under the action of light of a certain wavelength and intensity, resulting in a corresponding change in the peak of light absorption, i.e., color, and such changes are generally reversible.
- FIG. 1 shows a light intensity test structure made of a color-changing material in the prior art, which is provided with a first metal oxide film 2 and a second metal oxide film 3 between two substrates 1
- the thin films are respectively plated on the two substrates and the ?? faces of the two substrates face each other, thereby forming a metal oxide film interlayer between the two substrates 1.
- electrons are transferred between the two films, causing the valence state of the metal oxide to change, the color of the interlayer to change, and photochromic and electrochromic properties.
- embodiments of the present invention propose a new system and method for measuring the uniformity of light intensity based on the above techniques. Summary of the invention
- Embodiments of the present invention provide a light source uniformity measurement system and a measurement and adjustment method, which can quickly and accurately test and adjust the uniformity of light intensity.
- an embodiment of the present invention provides a light source intensity uniformity measurement system, including: a light intensity test board including a first substrate, a second substrate, and between the first and second substrates Photochromic material; light source, illuminating light to the light intensity test panel; image acquisition module, mining The chromatic aberration change image of the light intensity test board; the microprocessor is connected to the image acquisition module, receives the chromatic aberration change image, and compares the chromatic aberration change image with the colorimetric standard stored in the microprocessor to obtain the entire surface of the light intensity test board.
- the intensity distribution on the upper side determines the uniformity of the light intensity emitted by the light source; and the control module, the microprocessor is connected to the light source through the control module and adjusts the light intensity of the light source by the control module according to the judgment result.
- a surface of the first substrate of the light intensity test plate may be formed with a nickel hydroxide film, and a surface of the second substrate may be formed with a titanium oxide film, and the surfaces of the two substrates forming the film The surfaces are joined to each other; the light source can be an ultraviolet light source.
- the light source intensity uniformity measurement system may further include a detector connected to the processor, measuring the light intensity information illuminated by the light source, and transmitting the light intensity information to the processor to correct the microprocessor.
- the colorimetric standard of storage may be used to calculate the color intensity information for the processor to correct the microprocessor.
- the detector may be multiple, spaced apart above the placement area of the light intensity test board, and multi-point acquisition of the light intensity information illuminated by the light source.
- the detector and the microprocessor can be connected by a signal processing module, and the signal processing module analyzes and processes the multi-point light intensity information collected by the detector, and the light intensity value collected by the detector and the corresponding The location information is transmitted to the processor.
- An embodiment of the present invention further provides a light source uniformity measurement method, the method comprising the steps of: S1: acquiring a color difference change image; S2, analyzing and processing the color difference change image, obtaining light intensity information, and determining the Light intensity information uniformity; S3, ⁇ According to the judgment result, adjust the light intensity of the light source.
- the chromatic aberration change image may be acquired continuously in a period of time.
- the step S2 may include: comparing the color difference change image with a colorimetric standard to obtain a light intensity value corresponding to each position and a curve of a light intensity value corresponding to each position as a function of time.
- the method for measuring the uniformity of the light source intensity may further comprise the steps of: measuring the intensity information of the illumination of the light source, and correcting by the contrast color standard.
- the step S3 may include: adjusting the light intensity of the light source by adjusting the supply voltage.
- the light intensity test board can measure the light intensity of the entire illumination surface at one time, and obtain the light intensity of the entire illumination surface with time. The image thus accurately shows the uniformity of the light intensity of the entire illuminated surface.
- the light source uniformity measurement system and method according to the embodiments of the present invention can be applied to the uniformity of light intensity uniformity of the frame sealant curing, coating, etching, etc., which can save time and manpower and the data is detailed and accurate.
- FIG. 1 is a schematic view of a light intensity test structure made of a color changing material in the prior art
- FIG. 2 is a schematic view showing a process of preparing a light intensity test board according to an embodiment of the present invention
- FIG. 3 is a schematic structural diagram of a light source uniformity measurement system according to an embodiment of the present invention. detailed description
- the measurement and adjustment system includes a light intensity test board, a light source, an image acquisition module, and a microprocessor; wherein the light source is used to illuminate the light intensity test board, and the image acquisition module is used to collect the color difference of the light intensity test board.
- the microprocessor is connected to the image acquisition module, receives the color difference change image of the light intensity test board, and compares the color difference change image with the colorimetric standard stored in the microprocessor to obtain light on the entire surface of the light intensity test board. Strong distribution, to determine the uniformity of the light intensity emitted by the light source; the microprocessor is also connected to the light source through the control module, and the light intensity of the light source is adjusted by the control module.
- the light source is an ultraviolet light source
- the light intensity test board is an ultraviolet light intensity test board.
- the UV intensity test panel can be designed based on a new type of photochromic material that transitions from transparent to opaque as the intensity of the light is increased or a small voltage is applied.
- the structure of the ultraviolet light intensity test board used in this embodiment is as shown in FIG. 1, and a nickel hydroxide (Ni(OH) 2 ) film and a titanium oxide (Ti0 2 ) film are respectively plated on the surfaces of the two substrates 1, and then The surface of the two substrates is attached to form a titanium-nickel interlayer between the two substrates 1.
- Ni(OH) 2 When ultraviolet light is irradiated on the titanium-nickel interlayer, electrons are transferred from the Ni(OH) 2 film to the Ti0 2 film, and Ni(OH) 2 is converted into a high-valent nickel oxide (Ni 3+ and Ni 4+ ). Make the interlayer change from gray to black.
- the ultraviolet light source intensity uniformity measurement and adjustment system can be used for measuring and adjusting the uniformity of the light source uniformity of the ultraviolet light source of the frame sealing glue curing and etching equipment on the production line of the liquid crystal display device. Accordingly, the preparation of the ultraviolet light intensity test panel can be performed using a TFT-LCD production line. As shown in Fig.
- the coating process is carried out in the machine in the array process, and the substrates of two identical generation lines are respectively carried out (0 2
- the ultraviolet light sources For different ultraviolet light sources, such as ultraviolet xenon lamps, ultraviolet metallization lamps, ultraviolet LED light-emitting diodes, etc., when the same voltage is supplied, the ultraviolet light sources have different illumination light intensity at the same time; for the same light source, the illumination light is the same Strong will change as the length of time it opens. Therefore, the colorimetric standards stored in the microprocessor are versatile to meet the needs of different ultraviolet light sources. In addition, because environmental changes (mainly temperature changes) affect the speed of electron transfer from Ni(OH) 2 to Ti0 2 l3 ⁇ 4, which will cause small changes in the color change of the light intensity test board, so it is necessary to periodically The colorimetric standard stored in the processor is corrected.
- the ultraviolet light source uniformity measurement system of the embodiment may further include: an ultraviolet detector located above the placement area of the ultraviolet light intensity test board, connected to the microprocessor, and measuring the light intensity information irradiated by the ultraviolet light source, and The light intensity information is transmitted to the microprocessor to correct the colorimetric criteria stored in the microprocessor.
- the UV illumination lamp can work simultaneously with the image acquisition module, and the two can also work at different times.
- the ultraviolet light source, the ultraviolet detector, the control module and the microprocessor are installed at the relevant equipment position of the production line, and can be directly used in the process of sealing, curing, coating, etching and the like.
- the ultraviolet light intensity test board can be moved under the ultraviolet light source and the ultraviolet detector, and the image acquisition module is set above the ultraviolet light intensity test board. , Connect the image acquisition module to the microprocessor. After the measurement of the uniformity of the intensity of the ultraviolet light source is completed, the ultraviolet light intensity test board and the image acquisition module can be evacuated.
- the image acquisition module may include a CCD camera, preferably a CCD camera having an asynchronous shooting function to continuously take a picture of the ultraviolet light intensity test board.
- the ultraviolet detector can be multiple, spaced above the placement area of the ultraviolet light intensity test board, and multi-point acquisition of the light intensity information illuminated by the ultraviolet light source.
- the UV detector and the microprocessor can be connected by a signal processing module.
- the signal processing module can analyze the multi-point light intensity information collected by the ultraviolet detector, and transmit the light intensity value and the position value collected by the ultraviolet detector to the microprocessor.
- the microprocessor mainly completes the information processing, and can select a single-chip computer or a PC connected to the display screen, and the microprocessor changes the color difference of the ultraviolet light intensity test board (that is, the ultraviolet light intensity test board will be because of the light intensity)
- the microprocessor changes the color difference of the ultraviolet light intensity test board (that is, the ultraviolet light intensity test board will be because of the light intensity)
- the difference between the different shades of color produces related image processing
- the color difference change image is compared with the colorimetric standard to obtain the light intensity information of the entire ultraviolet light intensity test panel surface, and the uniformity of the distribution of the entire light intensity information can also be accurate. Displayed; Using a CCD lens to capture the chromatic aberration change image of the UV intensity test board at different times, an image of the light intensity surface changing with time can be obtained.
- the uniformity of the intensity of one surface is obtained, and it is easy to judge whether the uniformity of the light intensity of the ultraviolet light source is good, and the supply voltage of the ultraviolet light source can be adjusted by the control module to realize the ultraviolet light source.
- Light intensity has good uniformity to meet the needs of production lines and related equipment.
- the ultraviolet light source and the ultraviolet detector can be simultaneously turned on, and the ultraviolet light detector acquires the light intensity information of the multiple points irradiated by the ultraviolet light source, by means of the storage in the microprocessor.
- the color difference change image of the ultraviolet light intensity test plate was obtained, and the difference between the light intensity value obtained by the colorimetric standard control and the light intensity value measured by the ultraviolet detector at the same position on the ultraviolet light intensity test plate was obtained, and then the contrast color standard was corrected.
- the embodiment provides a light source uniformity measurement method for a light source, which includes the following steps: Sl: acquiring a color difference change image;
- the chromatic aberration change image can be acquired continuously in a period of time.
- the above step S2 may specifically include: comparing the color difference change image with the colorimetric standard to obtain a light intensity value corresponding to each position value and a curve of the light intensity value corresponding to each position value as a function of time.
- the above step S3 may include: adjusting the light intensity of the light source by adjusting the supply voltage.
- the above method may further comprise the steps of: measuring light intensity information illuminated by the light source, and correcting by comparing the color standards.
- the light source uniformity measurement method of the above-mentioned light source can be implemented based on the light source uniformity measurement and adjustment system provided in Embodiment 1, and the specific operation process is as follows:
- the light source illuminating the light intensity test board, and obtaining the color difference change image of the light intensity test board; transmitting the color difference change image to the microprocessor for analysis processing, obtaining the light intensity information of each position of the light intensity test board, and Judging the uniformity of the light intensity information;
- the light intensity of the light source is adjusted by the microprocessor through the control module.
- the following is an example of testing and adjusting the uniformity of the ultraviolet light source, when the light source changes.
- the method can include the following steps:
- the ultraviolet light source is turned on, the ultraviolet light intensity test plate is irradiated, and the color difference change image of the ultraviolet light intensity test plate is obtained.
- the chromatic aberration change image can be continuously acquired by an image acquisition module (such as a CCD camera) disposed above the ultraviolet light intensity test panel for a period of time.
- an image acquisition module such as a CCD camera
- the ultraviolet light intensity test plate needs to be moved to the production line before the above steps are performed. In the appropriate position, then turn on the UV light source.
- the color difference change image is transmitted to the microprocessor for analysis processing, and the light intensity information of each position on the ultraviolet light intensity test board is obtained, and it is judged whether the uniformity of the light intensity information satisfies the preset standard.
- the microprocessor can compare the color difference change image of the ultraviolet light intensity test board with the colorimetric standard stored therein to obtain the light intensity value corresponding to each position on the entire surface of the ultraviolet light intensity test board, and combine the continuous The multi-frame image is taken to obtain a curve of the light intensity value corresponding to each position of the ultraviolet light intensity test board with time. Further, it is judged whether the uniformity of the light intensity of the ultraviolet light source is good by the microprocessor in combination with the curve in which the light intensity changes over time is compared with a preset standard.
- the brightness of the ultraviolet light source is adjusted by the microprocessor through the control module.
- the microprocessor can adjust the ultraviolet light intensity by adjusting the supply voltage of the ultraviolet light source through the control module.
- the processor analyzes and processes the entire color difference image of the ultraviolet light intensity test board and the light intensity information at the multi-point position to determine whether the uniformity of the light intensity of the ultraviolet light source is good.
- image acquisition and processing can use machine vision technology.
- the machine vision inspection system is based on high-resolution industrial cameras and vision software for visual inspection, dimensional measurement, angle measurement, character recognition and more.
- Many software companies at home and abroad have also developed a number of color difference detection software according to market needs.
- the color difference detection system can automatically detect according to user requirements and set technical indicators, and identify the parts with color difference, or automatically sort according to needs. Eliminate, provide the best solution for industry testing, and improve the automation of the system.
- the color difference detection system based on machine vision technology, because it is not contact detection measurement, can detect spots, pits, scratches, chromatic aberrations, defects, etc. on the surface of the workpiece, which has a high standard.
- the accuracy and wide range of optical response can stabilize the work for a long time, save a lot of labor resources, and greatly improve work efficiency.
- Machine vision color difference detection is based on the comparison and matching of the color difference library to determine whether the color difference exceeds the requirement.
- the color difference detection needs to establish a color difference library of the detected object, and judge whether the human eye is qualified by quickly comparing the physical object and the color difference library.
- Chromatic aberration detection requires as large an optical field of view as possible to distinguish the minimum chromatic aberration requirement as the standard of the ultimate resolution (since the limit resolution of the human eye is 0.1 mm, the chromatic aberration inspection generally only needs to pick out the chromatic aberration greater than 0.1 mm. Even a few millimeters of chromatic aberration characteristics). In practical applications, chromatic aberration detection requires as large an optical field of view as possible, that is, the optical magnification as small as possible and the depth of field as much as possible to improve efficiency, which is exactly the opposite of the requirement for dimensional measurement.
- image preprocessing is to reduce the noise in the image, and the original image captured by the camera will have noise interference. Noise tends to degrade the quality of the image, blurring the image, and overwhelming the image features, making image analysis difficult.
- the main cause of image noise is the environmental disturbances and human factors in the process of image acquisition and transmission.
- an efficient median filtered image processing algorithm can be employed to eliminate noise in the image.
- the image processing process may include image segmentation, which refers to techniques and processes for dividing an image into distinct regions and extracting objects of interest. Commonly used image segmentation algorithms are divided into threshold segmentation, edge segmentation and region segmentation. In the present embodiment, the threshold division method can be preferably employed. In order to ensure the accuracy and processing speed of the uniformity of the light intensity uniformity of the ultraviolet light source, the modules involved are required to be fast and timely.
- image segmentation refers to techniques and processes for dividing an image into distinct regions and extracting objects of interest. Commonly used image segmentation algorithms are divided into threshold segmentation, edge segmentation and region segmentation. In the present embodiment, the threshold division method can be preferably employed.
- the modules involved are required to be fast and timely.
- a CCD camera with asynchronous shooting function can be used to continuously take a picture of the ultraviolet light intensity test board, and the image obtained by the image capture card is digitized and transmitted to a digital image in the microprocessor.
- the processing and judgment sections perform recognition and judgment.
- an instruction is sent to the control module to execute a command to adjust the UV source voltage value.
- the microprocessor can also receive the user's instructions, complete the software parameter configuration of the system, etc., including the setting of the image processing and judgment parameters in the microprocessor, that is, the preset standard value, the ultraviolet light source voltage value, and the ultraviolet The detector is turned on, etc.
- the colorimetric standard stored in the microprocessor needs to be periodically corrected to overcome environmental changes (mainly temperature changes) on the light intensity test board.
- environmental changes mainly temperature changes
- the effect of the electron transfer velocity between the layers which in turn causes a slight change in the color change of the light intensity test panel.
- the ultraviolet light detector is periodically used to measure the light intensity information irradiated by the ultraviolet light source to correct the colorimetric standard stored in the microprocessor.
- the ultraviolet light source and the ultraviolet detector can be simultaneously turned on, and the ultraviolet light detector obtains the light intensity information of the multiple points irradiated by the ultraviolet light source, by means of the ultraviolet light stored in the microprocessor.
- the chromatic aberration change image of the strong test plate was obtained, and the difference between the light intensity value obtained by the colorimetric standard control and the light intensity value measured by the ultraviolet detector at the same position on the ultraviolet light intensity test plate was obtained, and then the contrast color standard was corrected.
- the embodiment of the present invention can measure the light intensity on the entire illuminated surface at a time, obtain an image of the light intensity over time on the entire surface of the light intensity test panel, thereby accurately displaying the entire illuminated surface.
- the light source uniformity measurement system and the measurement method according to the embodiments of the present invention can be applied to the uniformity of light intensity uniformity of the frame sealing glue curing device and the etching device, which can save time and manpower and the data is detailed and accurate.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
一种光源光强均一性的测调系统及测调方法。该光源光强均一性的测调系统包括:光强测试板;光源,向测试板照射光;图像采集模块,采集光强测试板上的色差变化图像;微处理器,与图像采集模块连接,通过控制模块与光源连接,微处理器将色差变化图像与其内部存储的比色标准进行比较,获得测试板上整个表面上的光强分布,从而判断光源所发出的光强均一性是否良好,并通过控制模块对光源的光强进行调整。通过光强测试板能够一次测定整个照射面的光强,获得整个照射面的光强随时间变化的图像,从而精确地显示整个光强的均匀程度,可用于封框胶固化、镀膜、刻蚀等设备的光强均一度调试。
Description
光源光强均一性测调系统及测调方法 技术领域
本发明的实施例涉及一种光源光强均一性测调系统及测调方法。 背景技术
传统测量紫外线光强均一性的测调系统只能进行点测量, 在对紫外线固 化机的光强均一性(光线照射的均匀度)进行测调时, 需要多次测量, 然后 再进行数据整理, 最后分析调解光强的均一性, 这样存在艮大的弊端, 即不 能同时对多点进行测量, 测量出的数据是在不同时间的测定数据, 不仅浪费 大量时间, 而且精度很低, 也不直观。
现有技术中的一种光强测试结构利用了光致变色现象。 光致变色指的是 某些化合物在一定波长和强度的光作用下分子结构会发生变化, 从而导致其 对光的吸收峰值即颜色的相应改变, 且这种改变一般是可逆的。
图 1示出现有技术中由变色材料制成的光强测试结构, 该光强测试结构 在两个基板 1之间设置第一金属氧化物薄膜 2和第二金属氧化物薄膜 3 , 这 两个薄膜分别镀设在这两个基板上且这两个基板的! ¾ 面彼此面对, 从而在 这两个基板 1之间形成金属氧化物薄膜夹层。 当光照射在夹层上时, 电子在 这两个薄膜之间进行转移, 使得金属氧化物的价态发生转变, 夹层的颜色随 之发生改变, 同时具有光致变色和电致变色特性。
因此, 本发明的实施例基于上述技术提出一种新的测调光强均一性的系 统和方法。 发明内容
本发明的实施例提供一种光源光强均一性测调系统及测调方法, 能够快 速、 精确地对光强的均一度进行测试和调整。
根据本发明的一个方面, 本发明的实施例提供了一种光源光强均一性测 调系统, 包括: 光强测试板, 包括第一基板、 第二基板以及位于第一和第二 基板之间的光致变色材料; 光源, 向光强测试板照射光; 图像采集模块, 采
集光强测试板的色差变化图像; 微处理器, 与图像采集模块连接, 接收色差 变化图像并将色差变化图像与微处理器内部存储的比色标准进行比较, 获得 光强测试板的整个表面上的光强分布, 判断光源所发出的光强均一性情况; 以及控制模块, 微处理器通过该控制模块与光源连接并根据判断结果由该控 制模块对光源的光强进行调整。
在实施例中, 光强测试板的第一基板的一个表面上可以形成有氢氧化镍 薄膜, 第二基板的一个表面上可以形成有二氧化钛薄膜, 并且这两个基板的 形成所述薄膜的表面彼此面对接合; 光源可以为紫外光源。
在实施例中, 光源光强均一性测调系统还可以包括探测器, 该探测器与 处理器相连, 测量光源照射的光强信息, 将光强信息传送至 处理器, 以 校正微处理器内存储的比色标准。
在实施例中,探测器可以为多个, 间隔分布在光强测试板放置区域上方, 对光源照射的光强信息进行多点采集。
在实施例中, 探测器与微处理器之间可以通过信号处理模块连接, 信号 处理模块对探测器采集的多点光强信息进行分析处理, 并将探测器所采集的 光强值和相应的位置信息传送至 处理器。
本发明的实施例还提供了一种光源光强均一性测调方法, 该方法包括以 下步骤: S1 , 获取色差变化图像; S2, 分析处理所述色差变化图像, 获得光 强信息, 并判断该光强信息均一性情况; S3 , ^^据判断结果, 调整光源的光 强。
在实施例中, 色差变化图像可以在一个时间段内连续采集获得。
在实施例中, 所述步骤 S2 可以包括: 将所述色差变化图像与比色标准 进行对照, 获得各个位置所对应的光强值、 以及各个位置所对应的光强值随 时间变化的曲线。
在实施例中, 光源光强均一性测调方法还可以包括以下步骤: 测量光源 照射的光强信息, 以对比色标准进行校正。
在实施例中, 所述步骤 S3 可以包括: 通过调整供应电压来调整光源的 光强。
在本发明的实施例所提供的光源光强均一性测调系统及方法中, 光强测 试板能够一次测定整个照射面的光强, 并获得整个照射面的光强随时间变化
的图像, 从而精确地显示整个照射面的光强的均匀程度。 根据本发明实施例 的光源光强均一性测调系统及方法可以应用于封框胶固化、 镀膜、 刻蚀等设 备的光强均一度调试, 能够节省时间和人力并且数据详实精确。 附图说明
图 1是现有技术中由变色材料制成的光强测试结构的示意图;
图 2是本发明实施例中制备光强测试板的过程示意图;
图 3是本发明实施例中的光源光强均一性测调系统的结构示意图。 具体实施方式
下面结合附图和实施例, 对本发明的具体实施方式作进一步详细描述。 以下实施例用于说明本发明, 但不用来限制本发明的范围。
实施例 1
本实施例提供了一种光源光强均一性测调系统。 如图 3所示, 该测调系 统包括光强测试板、 光源、 图像采集模块和微处理器; 其中光源用于向光强 测试板照射光, 图像采集模块用于采集光强测试板的色差变化图像; 微处理 器与图像采集模块连接, 接收光强测试板的色差变化图像并将色差变化图像 与微处理器内部存储的比色标准进行比较, 获得光强测试板的整个表面上的 光强分布, 从而判断光源所发出的光强的均一性情况; 微处理器还通过控制 模块与光源连接, 由控制模块对光源的光强进行调整。
下面以对紫外光源的光强均一性进行测试和调整为例进行详细介绍。 在 示例中, 光源为紫外光源, 相应地, 光强测试板为紫外光强测试板。 紫外光 强测试板可以基于一种新型光致变色材料来设计, 这种材料随着光线照射强 度加大或施加微小电压, 能够从透明向不透明状态过渡。 本实施例所采用的 紫外光强测试板的结构如图 1所示, 在两个基板 1的表面上分别镀上氢氧化 镍(Ni(OH)2 )薄膜和二氧化钛(Ti02 )薄膜, 然后将这两个基板的 莫面相 贴附, 以在两个基板 1之间形成钛-镍夹层。 当紫外光照射在钛-镍夹层上时, 电子从 Ni(OH)2薄膜向 Ti02薄膜转移, Ni(OH)2转变为高价态的镍的氧化物 ( Ni3+和 Ni4+ ), 使得夹层由灰色变为黑色。
本实施例中紫外光源光强均一性测调系统可以用于液晶显示装置的生产 线上的封框胶固化、 刻蚀等设备的紫外光源的光源光强均一性的测调。
相应地, 可以利用 TFT-LCD生产线进行紫外光强测试板的制备。 如图 2所 示, 首先在阵列工序中的 莫机内进行镀膜工艺, 将两张相同世代生产线的 基板分别进行 (0 2|¾莫和1102|¾莫; 然后到成盒工序内, 在完成镀膜的 一个基板上涂覆封框胶, 对两个基板进行真空对合; 然后进行紫外线固化与 高温热固化, 从而形成上述紫外光强测试板。
对于不同的紫外光源,如紫外线氙灯、紫外线金属 化物灯、紫外线 LED 发光二极管等, 在供给相同电压的情况下, 这些紫外光源在同一时刻的照射 光强不同; 对于同一种光源, 其照射的光强随着其开启的时间长短也会产生 变化。 因此, 微处理器内存储的比色标准具有多样性, 以满足不同紫外光源 的需要。 此外, 因为环境变化(主要是温度的变化)会影响电子从 Ni(OH)2 莫向 Ti02l¾ 转移的速度,从而会对光强测试板的颜色变化产生微小的变 化, 所以需要定期对微处理器内存储的比色标准进行校正。 因此, 本实施例 的紫外光源光强均一性测调系统还可以包括: 紫外探测器, 位于紫外光强测 试板的放置区域上方, 与微处理器相连, 测量紫外光源照射的光强信息, 并 将光强信息传送至微处理器, 以校正微处理器内存储的比色标准。 紫外照射 灯可以与图像采集模块同时工作, 两者也可以不同时工作。
在液晶显示装置的生产线上, 紫外光源、 紫外探测器、 控制模块以及微 处理器都安装在生产线的相关设备位置处, 在进行封框胶固化、 镀膜、 刻蚀 等工艺时可以直接使用。 在设备工作一段时间后需要对紫外光源的光强均一 性进行测试及调整时, 可以将紫外光强测试板移动到紫外光源及紫外探测器 下方, 并在紫外光强测试板上方设置图像采集模块, 将图像采集模块连接微 处理器。 在完成紫外光源光强均一性的测调之后, 可以将紫外光强测试板及 图像采集模块撤离。
本实施例中, 图像采集模块可以包括 CCD摄像头, 优选地使用具有异 步拍摄功能的 CCD摄像头, 以连续地对被紫外光强测试板进行拍照。 紫外 探测器可以为多个, 间隔分布在紫外光强测试板的放置区域上方, 对紫外光 源照射的光强信息进行多点采集。 紫外探测器与微处理器之间可以通过信号 处理模块连接。 信号处理模块可以对紫外探测器采集的多点光强信息进行分 析处理, 并将所述紫外探测器所采集的光强值和位置值传送至微处理器。
微处理器主要完成信息处理,可以选用单片机或者连接显示屏的 PC机, 微处理器将紫外光强测试板的色差变化图像(即紫外光强测试板会因为光强
的不同产生深浅不同的颜色)进行相关图像处理, 将色差变化图像与比色标 准进行对照而获得整个紫外光强测试板面的光强信息, 对整个光强信息分布 的均匀程度也可以精确的显示出来; 利用 CCD镜头拍摄紫外光强测试板在 不同时刻的色差变化图像, 就可以得到一个随时间变化的光强面的图像。 根 据光学分析光强颜色数据比对, 得到一个面的光强均一性情况, 可以 4艮容易 地判断紫外光源光强均一性是否良好, 进一步可以通过控制模块调整紫外光 源的供给电压, 实现紫外光源光强具有良好的均一性, 满足生产线及相关设 备的需要。 在需要对微处理器内的比色标准进行校正时, 可以同时开启紫外 光源和紫外探测器, 由紫外探测器获取紫外光源所照射的多点的光强信息, 借助于微处理器内存储的紫外光强测试板的色差变化图像, 获得紫外光强测 试板上同一位置由比色标准对照得到的光强值与紫外探测器测得的光强值之 间的差别, 进而对比色标准进行校正。
实施例 2
本实施例提供了一种光源光强均一性测调方法, 包括以下步骤: Sl、 获取色差变化图像;
52、 分析处理所述色差变化图像, 获得光强信息, 并判断该光强信息均 一性情况;
53、 ^据判断结果, 调整光源光强。
色差变化图像可以在一个时间段内连续采集获得。 以上步骤 S2可以具 体包括: 将色差变化图像与比色标准进行对照, 获得各个位置值所对应的光 强值、 以及各个位置值所对应的光强值随时间变化的曲线。 以上步骤 S3 可 以包括: 通过调整供应电压来调整光源的光强。
上述方法还可以包括以下步骤: 测量光源照射的光强信息, 以对比色标 准进行校正。
上述光源光强均一性测调方法可以基于实施例 1中提供的光源光强均一 性测调系统来实现, 具体操作过程如下:
开启光源, 照射光强测试板, 并获取光强测试板的色差变化图像; 将色差变化图像传送至微处理器进行分析处理, 获得光强测试板上的各 个位置被照射的光强信息, 并判断该光强信息的均一性情况;
根据判断结果, 由微处理器通过控制模块调整所述光源的光强。
下面以对紫外光源的均一性测试和调整为例进行介绍, 当光源发生变化
时, 可以选择对应的光强测试板、 探测器、 比色标准等。 该方法可以包括以 下步骤:
首先, 开启紫外光源, 照射紫外光强测试板, 并获取紫外光强测试板的 色差变化图像。
具体地, 色差变化图像可以由设置在紫外光强测试板上方的图像采集模 块(如 CCD摄像头)在一个时间段内连续采集获得。
如果是对液晶显示装置生产线上的封框胶固化、 莫、 刻蚀等工艺中的 紫外光源的光强均一性进行测试和调整, 在进行上述步骤之前, 需要将紫外 光强测试板移动到生产线中合适的位置, 然后再开启紫外光源。
接下来, 将色差变化图像传送至微处理器进行分析处理, 获得紫外光强 测试板上的各个位置被照射的光强信息, 并判断该光强信息的均一性是否满 足预设标准。
具体地, 微处理器可以通过将紫外光强测试板的色差变化图像与其内部 存储的比色标准进行对照, 获得紫外光强测试板的整个表面上各个位置所对 应的光强值, 并结合连续拍摄的多帧图像以获得紫外光强测试板各个位置所 对应的光强值随时间变化的曲线。 进一步地, 由微处理器结合上述光强随时 间变化的曲线与预设标准比较, 判断紫外光源的光强均一性是否良好。
然后, 根据判断结果, 由微处理器通过控制模块调整紫外光源的光强。 具体地, 微处理器可以通过控制模块调整紫外光源的供应电压来调整紫 外光强。
本实施例中, 最关键的部分就是 处理器对紫外光强测试板的整个色差 变化图像以及其上多点位置的光强信息进行分析处理以得出紫外光源光强均 一性是否良好的判断。
其中, 图像采集和处理可以采用机器视觉技术。 机器视觉检测系统基于 高分辨率工业相机和视觉软件, 可以对产品进行外观检测、 尺寸测量、 角度 测量、 字符识别等。 国内外很多软件企业也根据市场需要开发了不少色差检 测类软件, 色差检测系统可以根据用户需求及设定的技术指标要求自动进行 检测, 并对有色差部位进行标识, 或者根据需要自动分拣、 剔除, 为行业检 测提供最佳解决方案, 提高系统的自动化程度。
基于机器视觉技术的色差检测系统, 由于其不是接触检测测量, 所以可 以对工件表面的斑点、 凹坑、 划痕、 色差、 缺损等进行检测, 具有较高的准
确度、 较宽的光语响应范围, 可长时间稳定工作, 节省大量劳动力资源, 极 大地提高了工作效率。
机器视觉色差检测是基于色差库的比对和匹配来判别色差是否超出要 求, 色差检测需要建立被检测物品的色差库, 并通过快速比对实物与色差库 来代替人眼作出是否合格的判别。 色差检测需要尽可能大的光学视场, 以能 分辨出最小色差要求为极限分辨率的标准(由于人眼的极限分辨率是 0.1mm, 因此色差检查一般仅需要挑出大于 0.1mm 的色差, 甚至是数毫米的色差特 征)。 实际应用中, 色差检测需要尽可能大的光学视场, 即尽可能小的光学倍 率和尽量大的景深来提高效率, 这与尺寸测量的要求正好相反。
具体地, 在本实施例中, 图像采集模块采集的色差变化图像传送至微处 理器之后, 需要进行相关的图像预处理和图像处理。 图像预处理的目的是减 弱图像中的噪声, 摄像机拍摄的原图会带有噪声干扰。 噪声易恶化图像的质 量, 模糊图像, 淹没图像特征, 给图像分析带来困难。 图像噪声产生的主要 原因是来源于图像的采集和传输过程中环境的扰动以及人为的因素。优选地, 可以采用一种基于高效的中值滤波图像处理算法消除图像中的噪声。
图像处理过程可以包括图像分割, 图像分割是指将图像分成各具特色的 区域并提取感兴趣目标的技术和过程。 常用的图像分割算法分为阈值分割、 边缘分割和区域分割等。 在本实施例中, 可以优选地采用阈值分割法。 为保 证紫外光源光强均一性测调的精度和处理速度, 对所涉及的各个模块均要求 速度快、控制及时。在拍摄紫外光强测试板时,可以采用异步拍摄功能的 CCD 摄像机, 连续地对紫外光强测试板进行拍照, 通过图像采集卡对获得图像进 行数字化并将其传送到微处理器内的数字图像处理与判断部分进行识别判 断。 当判断哪个部分的光强值低时, 将会发送指令给控制模块执行将紫外光 源电压值调整的命令。 在系统待命时, 微处理器也可以接收用户的指令, 完 成对系统的软件参数配置等, 包括微处理器中图像处理与判断部分参数的设 置, 即预设标准值、 紫外光源电压值、 紫外探测器开启等。
此外, 为了保证紫外光源光强均一性测调方法的准确无误执行, 微处理 器内存储的比色标准需要定期进行校正, 以克服环境变化(主要是温度的变 化)对光强测试板内两层 莫之间电子迁移速度的影响, 进而导致的光强测 试板的颜色变化产生微小变化的现象。 具体地, 定期利用紫外探测器测量紫 外光源照射的光强信息, 以对微处理器内存储的比色标准进行校正。 在需要
对微处理器内的比色标准进行校正时,可以同时开启紫外光源和紫外探测器, 由紫外探测器获取紫外光源所照射的多点的光强信息, 借助于微处理器内存 储的紫外光强测试板的色差变化图像, 获得紫外光强测试板上同一位置由比 色标准对照得到的光强值与紫外探测器测得的光强值之间的差别, 进而对比 色标准进行校正。
由以上实施例可以看出, 本发明的实施例能够一次测定整个照射面上的 光强, 获得光强测试板的整个表面上的光强随时间变化的图像, 从而精确地 显示整个照射面上的光强的均勾程度; 在测试光源光强均一性的同时, 还能 够对其均一性进行调试。 根据本发明实施例的光源光强均一性测调系统及测 调方法可以应用于封框胶固化设备、 刻蚀等设备的光强均一度调试, 能够节省时间和人力并且数据详实精确。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明技术原理的前提下, 还可以做出若干改进 和替换, 这些改进和替换也应视为本发明的保护范围。
Claims
1、 一种光源光强均一性的测调系统, 包括:
光强测试板, 包括第一基板、 第二基板以及位于所述第一基板与所述第 二基板之间的光致变色材料;
光源, 向所述光强测试板照射光;
图像采集模块, 采集所述光强测试板的色差变化图像;
微处理器, 与所述图像采集模块连接, 接收所述色差变化图像并将所述 色差变化图像与所述微处理器内部存储的比色标准进行比较, 以获得所述光 强测试板的整个表面上的光强分布, 从而判断所述光源所发出的光强的均一 性情况; 以及
控制模块, 所述微处理器通过该控制模块与所述光源连接并根据判断结 果由该控制模块对所述光源的光强进行调整。
2、如权利要求 1所述的测调系统,其中所述光强测试板的所述第一基板 的一个表面上形成有氢氧化镍薄膜, 所述第二基板的一个表面上形成有二氧 化钛薄膜, 所述第一基板的形成氢氧化镍薄膜的表面和所述第二基板的形成 二氧化钛薄膜的表面彼此面对接合, 所述光源为紫外光源。
3、 如权利要求 1-2中任一项所述的测调系统, 还包括:
探测器, 与所述微处理器相连, 测量所述光源照射的光强信息, 并将所 述光强信息传送至所述微处理器, 以校正所述微处理器内存储的所述比色标 准。
4、如权利要求 3所述的测调系统, 其中所述探测器为多个, 间隔分布在 所述光强测试板放置区域上方, 对所述光源照射的光强信息进行多点采集。
5、如权利要求 1-4中任一项所述的测调系统, 其中所述探测器与所述微 处理器之间通过信号处理模块连接, 所述信号处理模块对所述探测器采集的 多点光强信息进行分析处理, 并将所述探测器所采集的光强值和相应的位置 信息传送至所述微处理器。
6、 一种光源光强均一性的测调方法, 包括以下步骤:
S1 获取色差变化图像;
S2 分析处理所述色差变化图像, 获得光强信息, 并判断该光强信息均 一性情况;
S3 ^据判断结果, 调整光源的光强。
7、如权利要求 6所述的测调方法,其中所述色差变化图像是一个时间段 内连续采集获得。
8、 如权利要求 6或 7所述的测调方法, 其中所述步骤 S2包括: 将所述 色差变化图像与比色标准进行对照, 获得各个位置所对应的光强值、 以及各 个位置所对应的光强值随时间变化的曲线。
9、 如权利要求 6-8中任一项所述的测调方法, 还包括以下步骤: 测量光 源照射的光强信息, 以对所述比色标准进行校正。
10、 如权利要求 6-9中任一项所述的测调方法, 其中所述步骤 S2包括: 通过调整供应电压来调整光源的光强。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/236,264 US9448108B2 (en) | 2013-03-14 | 2013-06-18 | Measuring and adjusting system and method on uniformity of light intensity of light source |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310081790.6A CN103196554B (zh) | 2013-03-14 | 2013-03-14 | 光源光强均一性测调系统及测调方法 |
CN201310081790.6 | 2013-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014139231A1 true WO2014139231A1 (zh) | 2014-09-18 |
Family
ID=48719253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/077405 WO2014139231A1 (zh) | 2013-03-14 | 2013-06-18 | 光源光强均一性测调系统及测调方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9448108B2 (zh) |
CN (1) | CN103196554B (zh) |
WO (1) | WO2014139231A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114152410A (zh) * | 2021-11-29 | 2022-03-08 | 苏州凌云视界智能设备有限责任公司 | 一种视觉光源检测系统及检测方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103196554B (zh) * | 2013-03-14 | 2015-02-25 | 合肥京东方光电科技有限公司 | 光源光强均一性测调系统及测调方法 |
CN103713472B (zh) * | 2013-12-18 | 2016-03-30 | 合肥京东方光电科技有限公司 | 一种自动安装掩模板系统 |
CN106124048B (zh) * | 2016-08-31 | 2018-12-14 | 胡伟良 | 一种数字式紫外光能量测试方法 |
EP3395406A1 (en) | 2017-04-28 | 2018-10-31 | EFSEN Engineering A/S | A system and a method for irradiating an object |
JP6640160B2 (ja) * | 2017-09-07 | 2020-02-05 | 東京エレクトロン株式会社 | 成膜装置及び成膜方法 |
CN107389320A (zh) * | 2017-09-08 | 2017-11-24 | 北京奥博泰科技有限公司 | 一种大口径激光光斑均匀性的检测装置及其使用方法 |
CN107891596A (zh) * | 2017-12-15 | 2018-04-10 | 博纳云智(天津)科技有限公司 | 一种dlp光固化3d打印机的光强均匀校正方法 |
CN108303373B (zh) * | 2018-02-01 | 2021-01-22 | 京东方科技集团股份有限公司 | 一种检测消影等级的装置及其控制方法 |
CN108037137A (zh) * | 2018-02-01 | 2018-05-15 | 山东山大天维新材料有限公司 | 复合材料防弹头盔结构均匀性的无损检测装置及检测方法 |
CN113218631A (zh) * | 2021-04-29 | 2021-08-06 | 常州联影智融医疗科技有限公司 | 一种光源光强分布测试装置及测试方法 |
CN113702001A (zh) * | 2021-08-19 | 2021-11-26 | Oppo广东移动通信有限公司 | 变色器件变色响应时间检测方法、检测装置、存储介质 |
CN114623768B (zh) * | 2022-03-10 | 2024-03-19 | 长江水利委员会长江科学院 | 一种基于线阵ccd的自适应调光方法及系统 |
CN114698182B (zh) * | 2022-05-31 | 2022-08-12 | 江苏邑文微电子科技有限公司 | Uv led面光源光强均匀性的控制方法和系统 |
CN115165089B (zh) * | 2022-08-03 | 2023-11-14 | 中南大学 | 一种矩形均匀片光源调试方法及装置 |
CN115824595B (zh) * | 2023-02-13 | 2023-04-28 | 东莞市雅光机械有限公司 | 一种uv固化光源均匀性检测调整系统 |
CN117073989B (zh) * | 2023-10-13 | 2023-12-15 | 江苏邑文微电子科技有限公司 | 一种汞灯光源检测组件及uv固胶机 |
CN117133674B (zh) * | 2023-10-26 | 2024-01-30 | 英利能源发展(天津)有限公司 | 一种组件功率测试仪光强均匀性调节装置及方法 |
CN117939751B (zh) * | 2024-03-25 | 2024-06-04 | 济宁医学院附属医院 | 一种紫外线的灯光控制系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0536478A (ja) * | 1991-07-30 | 1993-02-12 | Mitsubishi Alum Co Ltd | エレクトロルミネツセンス素子 |
JPH08159868A (ja) * | 1994-12-07 | 1996-06-21 | Mitsubishi Heavy Ind Ltd | 紫外線受光素子及び紫外線強度分布測定装置 |
CN101556381A (zh) * | 2008-04-10 | 2009-10-14 | 东捷科技股份有限公司 | 检测装置及其影像照明度补偿方法 |
CN101852593A (zh) * | 2010-05-06 | 2010-10-06 | 深南电路有限公司 | 自动光学检查设备及其测光工具板和调光方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000340478A (ja) * | 1999-05-27 | 2000-12-08 | Shibaura Mechatronics Corp | 紫外線照射装置 |
JP4834465B2 (ja) * | 2006-06-06 | 2011-12-14 | 株式会社リコー | 撮像装置 |
WO2010015990A2 (en) * | 2008-08-07 | 2010-02-11 | Koninklijke Philips Electronics N.V. | Lighting device with dynamic light effects |
CA3090848A1 (en) * | 2011-10-20 | 2013-05-16 | Oakley, Inc. | Eyewear with chroma enhancement |
CN103196554B (zh) * | 2013-03-14 | 2015-02-25 | 合肥京东方光电科技有限公司 | 光源光强均一性测调系统及测调方法 |
-
2013
- 2013-03-14 CN CN201310081790.6A patent/CN103196554B/zh active Active
- 2013-06-18 US US14/236,264 patent/US9448108B2/en not_active Expired - Fee Related
- 2013-06-18 WO PCT/CN2013/077405 patent/WO2014139231A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0536478A (ja) * | 1991-07-30 | 1993-02-12 | Mitsubishi Alum Co Ltd | エレクトロルミネツセンス素子 |
JPH08159868A (ja) * | 1994-12-07 | 1996-06-21 | Mitsubishi Heavy Ind Ltd | 紫外線受光素子及び紫外線強度分布測定装置 |
CN101556381A (zh) * | 2008-04-10 | 2009-10-14 | 东捷科技股份有限公司 | 检测装置及其影像照明度补偿方法 |
CN101852593A (zh) * | 2010-05-06 | 2010-10-06 | 深南电路有限公司 | 自动光学检查设备及其测光工具板和调光方法 |
Non-Patent Citations (1)
Title |
---|
TAKAHASHI, Y. ET AL.: "Remote energy storage in Ni(OH)2 with TiO2 photocatalyst", PHYS. CHEM. CHEM. PHYS., vol. 8, no. 23, 12 May 2006 (2006-05-12), pages 2716 - 2719 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114152410A (zh) * | 2021-11-29 | 2022-03-08 | 苏州凌云视界智能设备有限责任公司 | 一种视觉光源检测系统及检测方法 |
Also Published As
Publication number | Publication date |
---|---|
US9448108B2 (en) | 2016-09-20 |
CN103196554A (zh) | 2013-07-10 |
CN103196554B (zh) | 2015-02-25 |
US20150330833A1 (en) | 2015-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014139231A1 (zh) | 光源光强均一性测调系统及测调方法 | |
CN106198568B (zh) | 一种具有透明基底的薄膜的测量装置及测量方法 | |
CN103245670B (zh) | 一种光学元件的缺陷检测装置及其缺陷检测方法 | |
CN103257465A (zh) | 一种检测装置及检测方法 | |
CN211347985U (zh) | 一种应用于表面检测行业的机器视觉检测装置 | |
CN103630554B (zh) | 一种镜片双面疵病检测装置及方法 | |
CN110208269A (zh) | 一种玻璃表面异物与内部异物区分的方法及系统 | |
CN101539529A (zh) | 基于led的小型水果在线检测光源系统 | |
US20140152808A1 (en) | Method and device for the reliable detection of material defects in transparent material | |
CN115629079A (zh) | 一种薄膜表面缺陷检测系统及方法 | |
CN110186937A (zh) | 剔除灰尘影响的镜面物体表面二维缺陷检测方法及系统 | |
JP5842373B2 (ja) | 表面欠陥検出方法、および表面欠陥検出装置 | |
CN110570412B (zh) | 一种零件误差视觉判断系统 | |
TWI495867B (zh) | Application of repeated exposure to multiple exposure image blending detection method | |
CN104458758A (zh) | 一种人造蓝宝石晶片缺陷检测装置 | |
CN113624458B (zh) | 基于双路全投射光的薄膜均匀性检测系统 | |
CN101435697B (zh) | 一种通孔的位置检测方法及系统 | |
US11255798B1 (en) | Method of detecting lens cleanliness using out-of-focus differential flat field correction | |
US11300527B1 (en) | Method for detecting lens cleanliness using spectral differential flat field correction | |
CN208350678U (zh) | 透明容器口部裂纹在线检测装置 | |
CN103091332B (zh) | 一种基于机器视觉的u型粉管的检测方法及其检测系统 | |
KR101188404B1 (ko) | 디스플레이 패널 글라스 표면의 결함 검사 방법 | |
KR20100093213A (ko) | 휘도값을 이용한 글래스 기판 상의 이물 감지 시스템 및 그방법 | |
CN106989905A (zh) | 一种发光面板多功能检测方法及设备 | |
CN203587517U (zh) | 一种用以撷取一物件影像的撷取装置以及影像检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14236264 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13878411 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13878411 Country of ref document: EP Kind code of ref document: A1 |