WO2014129304A1 - 半導体ウェーハの加工方法 - Google Patents
半導体ウェーハの加工方法 Download PDFInfo
- Publication number
- WO2014129304A1 WO2014129304A1 PCT/JP2014/052540 JP2014052540W WO2014129304A1 WO 2014129304 A1 WO2014129304 A1 WO 2014129304A1 JP 2014052540 W JP2014052540 W JP 2014052540W WO 2014129304 A1 WO2014129304 A1 WO 2014129304A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wafer
- grinding
- double
- less
- coating layer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B27/00—Other grinding machines or devices
- B24B27/06—Grinders for cutting-off
- B24B27/0633—Grinders for cutting-off using a cutting wire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/07—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
- B24B37/08—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/07—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
- B24B37/10—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
- B24B37/105—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping the workpieces or work carriers being actively moved by a drive, e.g. in a combined rotary and translatory movement
- B24B37/107—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping the workpieces or work carriers being actively moved by a drive, e.g. in a combined rotary and translatory movement in a rotary movement only, about an axis being stationary during lapping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B7/00—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
- B24B7/20—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
- B24B7/22—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
- B24B7/228—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
- B28D5/04—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
- B28D5/045—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02008—Multistep processes
- H01L21/0201—Specific process step
- H01L21/02013—Grinding, lapping
Definitions
- the present invention relates to a method for processing a semiconductor wafer, and more particularly to a method for flattening the surface of a semiconductor wafer.
- This international application claims priority based on Japanese Patent Application No. 029719 (Japanese Patent Application No. 2013-029719) filed on Feb. 19, 2013. The entire contents of Japanese Patent Application No. 2013-029719 are hereby incorporated by reference. Incorporated into this international application.
- one surface of a wafer sliced from an ingot is sucked and held on a horizontal holding surface of a chuck table, and after grinding the second surface of the wafer, the second surface of the wafer is A primary grinding process for holding and sucking on the horizontal holding surface and grinding one surface of the wafer, a resin coating process for covering the entire second surface of the wafer with a resin following the primary grinding process, and following this resin coating process
- the second surface of the wafer is sucked and held on the horizontal holding surface with the second surface of the wafer as a reference surface, the one surface of the wafer is ground, the resin is removed, and then the second surface of the wafer is defined as the first surface of the wafer.
- a processing method including a grinding step is disclosed (for example, Patent Document 1).
- the wafer is sucked and held on the holding surface in order to remove distortion components at the time of slicing, so that a large undulation generated in the slicing process is forcibly corrected.
- the wafer surface on the non-adsorption surface side is ground with the reference surface built in.
- An object of the present invention is to manufacture a semiconductor wafer having excellent nanotopography characteristics (small value) by subjecting a wafer whose waviness is reduced in the primary grinding process to surface grinding in the secondary grinding process.
- the inventors of the present invention have finally obtained a nanotopography of a semiconductor wafer depending on the surface state (size of waviness) of the wafer before coating with a soft material and surface grinding.
- the present invention has been completed by finding out that the quality greatly changes. Specifically, immediately after slicing, double-sided flattening without a reference surface, such as lapping or double-head grinding, is performed to relax the waviness component in a specific wavelength range (10 to 100 mm) in advance and then coat with a soft material Grinding is to improve the quality level of the nanotopography of the wafer by removing the slice undulation pattern.
- a first aspect of the present invention is a slicing step in which a semiconductor single crystal ingot is sliced using a wire saw device to obtain a thin disc-shaped wafer, and both sides of the wafer after the slicing step are simultaneously flattened.
- a first surface grinding step in which the wafer is placed on the table so as to abut on the reference surface of the table, and then the other surface of the wafer is surface ground by a grinding device, and the coating layer after the surface grinding step is applied to one of the wafers.
- a second aspect of the present invention is an invention based on the first aspect, in that the wire saw apparatus employs a slicing method using a fixed abrasive wire.
- a third aspect of the present invention is an invention based on the first aspect, and is that a double-sided lapping process or a double-sided grinding process is employed in the double-sided flattening process.
- a fourth aspect of the present invention is an invention based on the first aspect, wherein the thickness of the coating layer applied to the wafer surface in the coating layer forming step is 10 to 40 ⁇ m.
- a fifth aspect of the present invention is the invention based on the first aspect, wherein when the surface height of the wafer after the double-side planarization process is analyzed by frequency analysis, the amplitude of the swell in a wavelength region of 100 mm or less is obtained.
- the range is 1.0 ⁇ m or less.
- a sixth aspect of the present invention is an invention based on the second aspect, wherein when the surface height of the wafer after the double-side planarization processing step is subjected to frequency analysis, the amplitude of undulation in a wavelength region of 100 mm or less is obtained.
- the range is 1.0 ⁇ m or less.
- a seventh aspect of the present invention is an invention based on the third aspect, wherein when the surface height of the wafer after the double-side planarization process is analyzed by frequency analysis, the amplitude of undulation in a wavelength region of 100 mm or less is obtained.
- the range is 1.0 ⁇ m or less.
- An eighth aspect of the present invention is the invention based on the fourth aspect, wherein when the surface height of the wafer after the double-side planarization process is analyzed by frequency analysis, the amplitude of undulation in a wavelength region of 100 mm or less is obtained.
- the range is 1.0 ⁇ m or less.
- the semiconductor wafer processing method of the present invention it is possible to reduce the waviness of the wavelength region that affects the nanotopography quality as much as possible by simultaneously planarizing both sides of the wafer after slicing. It is possible to provide a semiconductor wafer having excellent nanotopography quality.
- FIG. 6 is a schematic diagram illustrating a state of a wafer in each process according to Comparative Example 1.
- FIG. It is the nanotopography after the mirror polishing of an Example and Comparative Examples 1 and 2.
- FIG. It is the figure which showed the nanotopography after the mirror polishing of an Example and Comparative Examples 1 and 2.
- FIG. It is the figure which showed the frequency analysis result before the mirror polishing of an Example and Comparative Examples 1 and 2.
- FIG. It is the figure which showed the frequency analysis result after the mirror polishing of an Example and Comparative Examples 1 and 2.
- the present invention includes a slicing process in which a semiconductor single crystal ingot is sliced using a wire saw device to obtain a thin disk-shaped wafer, and a wafer after the slicing process is obtained.
- a double-sided flattening process for flattening both sides simultaneously, a coating layer forming process for forming a flat coating layer by applying a curable material to one whole surface of the wafer after the double-sided flattening process, and flattening A first surface grinding step of placing the wafer on the table so that one surface of the finished wafer is in contact with a reference surface of the table of the grinding device, and then surface grinding the other surface of the wafer by the grinding device; The coated layer removing step for removing the coated layer after the process from one surface of the wafer, and the wafer is set so that the other surface of the wafer from which the coated layer has been removed is in contact with the reference surface of the table of the grinding apparatus.
- the characteristic configuration of the present invention is provided with a double-side flattening process for simultaneously flattening both surfaces of the wafer after the slicing process before the coating layer forming process. That is.
- a double-sided flattening process that does not have a reference surface before the coating layer forming step, the convex portions on both surfaces of the wafer are simultaneously removed, and the waviness component in the wavelength region of 100 mm or less is reduced as much as possible.
- the nanotopography characteristic of the wafer surface can be improved, and the thickness of the coating layer applied to the wafer surface in the coating layer forming step can be reduced.
- FIG. 2A shows the state of the wafer 200 immediately after slicing.
- a known multi-wire saw device (not shown) is used for slicing, and a plurality of wafers 200 can be manufactured at a time from an ingot.
- the multi-wire saw device spans a guide roller provided with a plurality of grooves for guiding the wire and a roller for rotating the wire, and a plurality of wires of ultra fine steel wire are wound around the wire.
- This is a device that rotates a roller at a high speed and presses the object to be cut against a plurality of wires exposed between the guide roller and the roller to cut the object to be cut into a plurality of sheets.
- the wire saw apparatus has a fixed abrasive grain system and a free abrasive grain system depending on how to use abrasive grains for cutting.
- a steel wire having diamond abrasive grains or the like attached thereto by vapor deposition is used for the wire.
- the loose abrasive method is used while applying a slurry in which abrasive particles and an oil agent are mixed to a wire.
- the wire itself to which the abrasive particles are fixed cuts the workpiece, so that the cutting time is short and the productivity is excellent.
- no slurry since no slurry is used, it is not necessary to discard the slurry mixed with chips after cutting, which is environmentally friendly and economical.
- Either method can be used in the present invention, but a fixed abrasive method that is advantageous in terms of environment and economy is desirable.
- a fixed abrasive wire saw when used, the processing damage given to the wafer surface is large, and the undulation generated on the wafer surface after cutting is also large, so that there is a problem that nanotopography is further deteriorated.
- the processing method it is possible to manufacture a semiconductor wafer having excellent nanotopography characteristics (small value).
- FIG. 2A shows the state of the wafer 200 immediately after slicing with a fixed abrasive wire saw.
- processing distortion (processing damage layer) 201 In the sliced wafer 200, processing distortion (processing damage layer) 201, uneven waviness 202 that periodically undulates, and warpage 203 are generated by wire saw cutting.
- the upper surface of FIG. 2A that is the convex surface side of the warp 203 of the wafer 200 is the first surface 204
- the lower surface of FIG. 2A that is the concave surface side of the warp 203 of the wafer 200 is the second surface 205.
- FIG. 2 (b) is a diagram showing an example of a wrapping apparatus 210 used for lapping in the double-side flattening process.
- the wafer 200 set on the processing carrier 211 is sandwiched between two surface plates of the lapping device 210, and a slurry 214 containing abrasive grains is supplied between the upper surface plate 212 and the lower surface plate 213, and is pressed by the upper and lower surface plates.
- a slurry 214 containing abrasive grains is supplied between the upper surface plate 212 and the lower surface plate 213, and is pressed by the upper and lower surface plates.
- the spindles 215 and 216 installed in the upper part of the upper surface plate 212 and the lower surface of the lower surface plate 213 in the opposite directions, the first surface 204 and the second surface 205 are caused by the abrasive grains contained in the slurry 214. At the same time, it is flattened.
- the wafer 200 is removed from the surface plate and removed from the processing carrier 211.
- the wafer 200 in the lapping process Since the wafer 200 that has undergone the lapping process (double-side planarization process) is subsequently planarized again by the surface grinding process (first surface grinding and second surface grinding), the wafer 200 in the lapping process.
- the processing amount (removal allowance) with respect to the wafer does not need to be flattened until all the processing strain 201 of the wafer 200 generated in the slicing process is removed, and as will be apparent from the examples described later, the wafer after lapping When frequency analysis is performed on the surface height of 200, lapping processing may be performed so that the amplitude of undulation in a wavelength region of 100 mm or less is 1.0 ⁇ m or less.
- the double-sided flattening process is not limited to the lapping process described above.
- a known double-head grinding process in which a wafer 200 is mounted on a processing carrier 211 and both surfaces of the wafer 200 are ground simultaneously with a grinding wheel that is installed on the upper and lower sides of the wafer 200 is used.
- a known fixed abrasive lapping process in which pads including fixed abrasive grains are mounted on the upper and lower surface plates, and both surfaces of the wafer 200 are ground simultaneously with fixed abrasive grains with or without using the slurry 214. Good.
- FIG. 2 (c) shows an example of the holding / pressing device 220 used in the coating layer forming step.
- a curable material 221 serving as a coating layer is dropped onto the flattened flat plate 222 of the holding / pressing device 220.
- the wafer 200 is sucked and held on the first surface 204 of the wafer 200 by the pressing table 224 of the holding means 223 and moves the pressing table 224 downward to press the second surface 205 of the wafer 200 against the curable material 221. .
- the pressure of the pressing table 224 is released, and the curable material 221 is cured on the second surface 205 of the wafer 200 in a state where the warp 203 and the undulation 202 remaining on the wafer 200 are not elastically deformed.
- the surface of the curable material 221 that comes into contact with the flat plate 222 becomes a highly planarized surface, and can be used as a reference surface 225 when the first surface 205 of the wafer 200 is ground.
- the curable material 221 is dropped on the second surface 205 with the second surface 205 of the wafer 200 as the upper surface, and the wafer 200 is rotated to apply the curable material 221 to the second surface 205.
- a screen film is placed on the second surface 205 spread over the entire surface, or a screen printing method in which a curable material 221 is placed on the screen film and pressed with a squeegee, and further, an electric spray deposition method is used.
- one surface of the wafer 200 is flattened not only by the above method but also by the curable material 221.
- the method is applicable.
- the curable material 221 is preferably a soft material such as a thermosetting resin, a thermoreversible resin, or a photosensitive resin in terms of ease of peeling after processing.
- the photosensitive resin is also preferable in that it is not subjected to heat stress.
- a UV curable resin was used as the curable material 221.
- Other specific examples of the curable material 221 include synthetic rubber and an adhesive (wax or the like).
- the thickness of the curable material 221 applied to the wafer 200 must be increased as the convex portion of the surface of the wafer 200 is larger (the swell component in the wavelength region of 100 mm or less is larger). In general, it is known that the thickness is set in the range of 50 to 150 ⁇ m.
- the curable material 221 is expensive, and the amount of the curable material 221 used is increased, resulting in an increase in manufacturing cost. There is.
- the thickness of the curable material 221 applied to the wafer 200 can be reduced, and in the present invention, the thickness of the curable material 221 can be set in the range of 10 to 40 ⁇ m.
- the thickness of the curable material 221 is less than 10 ⁇ m, the nanotopography quality is deteriorated due to the influence of the convex portion on the surface of the wafer 200.
- FIG. 2 (d) shows an example of a surface grinding device 230 used in the first surface grinding process.
- the reference surface 225 made of the curable material 221 created in the coating layer flattening step is placed on the highly flattened reference surface 232 of the vacuum chuck table 231 of the surface grinding device 230 and sucked and held.
- a surface plate 234 on which a grindstone 233 is installed is installed on the upper surface of the installed wafer 200.
- the grindstone 233 and the first surface 204 of the wafer 200 are brought into contact with each other, and the spindle 235 on the upper surface of the surface plate 234 and the spindle 236 installed on the lower portion of the vacuum chuck table 231 rotate to rotate the grindstone 233 and the first surface of the wafer 200.
- the first surface 204 of the wafer 200 is ground by rotating the contact points of 204 to make the first surface 204 highly flat.
- FIG. 2 (e) shows the coating layer removal step.
- the curable material 221 applied to the second surface 205 of the wafer 200 in which the first surface 204 of the wafer 200 is highly planarized in the first surface grinding process is peeled off from the wafer 200.
- the removal of the curable material 221 as the coating layer may be chemically removed using a solvent.
- FIG. 2 (f) shows an example of the second surface grinding process.
- the surface grinding apparatus is the same as the surface grinding apparatus 230 used in the first surface grinding process.
- the first surface 204 of the wafer 200 that has been highly flattened in the first surface grinding step is used as a reference surface 251 that is placed on the highly flattened reference surface 232 of the vacuum chuck table 231 and held by suction.
- the second surface 205 of the wafer 200 is ground until it is flattened similarly to the first surface grinding step. As shown in FIG. 2G, both surfaces of the wafer 200 are highly planarized.
- the wafer 200 used for the Example and the comparative examples 1 and 2 used the wafer 200 of diameter 300mm sliced on the same conditions from the silicon single crystal ingot using the fixed abrasive system wire saw apparatus.
- FIG. 3A An embodiment of the present invention is shown in FIG. The processing steps of the embodiment will be described with reference to FIG.
- the wafer 200 after slicing (FIG. 3A) was lapped on both sides of the wafer 200 at the same time to reduce waviness 202 (FIG. 3B).
- the UV curable resin 321 was applied to the second surface 205 of the wafer 200 in which the undulation 202 was reduced, and the surface of the cured resin having a thickness of 35 ⁇ m was used as a reference surface 225 (FIG. 3C).
- the first surface 204 of the wafer 200 sucked and held using the resin surface as the reference surface 225 was surface ground until the waviness 202 disappeared (up to the surface of the broken line 331) (FIG.
- Comparative Example 1 is shown in FIG. The processing steps of Comparative Example 1 will be described based on the drawings.
- a UV curable resin 321 was applied to the second surface 205 of the sliced wafer 200 (FIG. 4A), and the cured resin surface having a thickness of 70 ⁇ m was used as the reference surface 225 (FIG. 4B).
- the first surface 204 of the wafer 200 sucked and held using the resin surface as the reference surface 225 was surface ground to the surface of the broken line 421 (FIG. 4C).
- the resin is peeled off (FIG.
- ⁇ Evaluation Test 1> The influence of the surface shape of each wafer 200 obtained in the example and the comparative examples 1 and 2 on the nanotopography on the wafer surface after the subsequent mirror polishing process was investigated. Specifically, first, as a common mirror polishing process for each wafer 200 obtained in the example and the comparative examples 1 and 2, a rough polishing under the same conditions is performed on the front and back surfaces of each wafer using a double-side polishing apparatus. After performing the polishing process, a single-side polishing apparatus was used to subject the surface of each wafer to a final polishing process under the same conditions to create a wafer in which the surface of each wafer 200 was mirror-polished. FIG.
- FIG. 5 is a nanotopography map obtained by measuring the height distribution (height difference) of each wafer surface using an optical interference flatness measuring device (KLA Tencor: Wafersight 2) on each mirror-polished wafer surface. The measurement results of each wafer after mirror polishing are filtered to remove long wavelength components, and the nanotopography measurement results are illustrated in shades of color.
- FIG. 5 (d) is a diagram showing the height difference of the nanotopography shown in FIGS. 5 (a) to 5 (c). The darker the color, the lower the altitude, and the darkest part is ⁇ 20 nm from the central altitude. The altitude is higher as the color becomes lighter, and the thinnest part is +20 nm from the central altitude.
- the difference in height from the lowest altitude to the highest altitude is 40 nm.
- the nanotopography was measured by fixing three arbitrary points on the outer edge of the wafer. Therefore, the nanotopography map represents the height difference of the surface in the non-adsorption state of the wafer.
- the result of the example is shown in FIG. It can be seen that the density is almost uniform and there is little difference in height across the entire surface. The reason for this is that even if the first surface 204 of the wafer 200 is ground and the first surface 204 of the wafer 200 becomes a highly flat surface, the undulation 202 having a wavelength region of 100 mm or less, particularly 50 mm or less, is caused by lapping. Because of the reduction, the first surface 204 of the wafer 200 maintains a highly flat surface, the first surface 204 of the wafer 200 is attracted as the reference surface 251, and the second surface 205 of the wafer 200 is surface ground. However, when the first surface 204 of the wafer 200 is attracted, the wafer 200 is not elastically deformed. Therefore, the undulation 202 does not occur on the second surface 205 of the wafer 200 after the suction release of the first surface 204 of the wafer 200. Can think.
- Comparative Example 1 The result of Comparative Example 1 is shown in FIG. Although the central portion of FIG. 5B is slightly flattened, the undulation 202 remains. This is because the first surface 204 of the wafer 200 is flattened immediately after surface grinding of the first surface 204 of the wafer 200 in FIG. 4C, but is due to the undulation 202 applied to the first surface 204. It is considered that the first surface 204 was deformed because the balance with the stress caused by the swell 202 remaining on the second surface 205 of the wafer 200 was lost after the stress disappeared and the resin was peeled off.
- the wafer 200 When the first surface 204 of the wafer 200 is sucked as the reference surface 251, the wafer 200 is elastically deformed by the suction, and the wafer 200 is released from the suction even when the second surface 205 is flattened by surface grinding. Then, it can be considered that the first surface 204 of the wafer 200 is released from the elastic deformation due to adsorption, and the undulation 202 appears on the second surface 205 of the wafer 200.
- Comparative Example 2 The result of Comparative Example 2 is shown in FIG. The swell 202 remains throughout.
- FIG. 6 is a graph showing the nanotopography of each wafer surface measured by using an optical interference flatness measuring device (KLA Tencor: Wafersight 2) on each mirror-polished wafer surface. .
- KLA Tencor Wafersight 2
- the maximum PV value is calculated for each site partitioned by a circular region having a diameter of 2 mm with respect to each mirror-polished wafer surface, and the largest PV value among the maximum PV values calculated for each site is calculated. Is plotted as a representative value.
- the height difference in the example was 5.4 to 7.2 nm
- the comparative example 1 was 9.0 to 10.7 nm
- the comparative example 2 was 9.8 to 13.0 nm.
- the wafer of the example was able to obtain a highly flat surface having a nanotopography of 8 nm or less over the entire surface.
- the analysis method is to cut off the wavelength band of the short-wavelength periodic component less than 10 mm and the long-wavelength periodic component over 100 mm in the wafer surface height measurement data, and perform band-pass filtering processing to obtain the wavelength of the swell component in the wavelength region of 10 mm to 100 mm
- the amplitude was determined.
- the wafer (A) after slicing had an amplitude of 1.7 ⁇ m at the maximum, and an amplitude generation region exceeding 1 ⁇ m was observed, whereas the wafer was wrapped (Comparative Example 2).
- the maximum is 0.4 ⁇ m
- the amplitude is 1 ⁇ m or less in all wavelength regions of 100 mm or less.
- the amplitude can be greatly reduced by the lapping process.
- the amplitude of the wafer (D) that was ground with resin after lapping (Example) was reduced more than the wafer (B) that was ground with resin after slicing (Comparative Example 1).
- each of the wafers 200 is subjected to a mirror polishing process similar to the mirror polishing process performed in the evaluation test 1, and then the frequency of the surface height of each mirror-polished wafer 200 is analyzed. The amplitude was investigated. The result is shown in FIG. FIG. After the slice shown in FIG. 4 (f), the resin paste was ground (Comparative Example 1) wafer (B), Wafer (C) after lapping (Comparative Example 2) shown in FIG. Example 3) Wafer (D) after resin lapping and grinding after lapping shown in FIG. For each, the result of frequency analysis of the wafer surface height after mirror polishing using an optical interference type shape measuring device (KLA Tencor: Wafersight 2) is shown.
- KLA Tencor Wafersight 2
- the analysis method uses a Gaussian filter process with a cut-off value of 20 mm on the wafer surface height measurement data to cut the long wavelength periodic component of the waviness, Fourier transforms the filtered wafer surface height, and waviness in the wavelength region of 100 mm or less. The amplitude of the wavelength of the component is obtained.
- the result of the frequency analysis of the wafer surface after the mirror polishing treatment is swelled in a wavelength region of 10 to 100 mm.
- the semiconductor wafer processing method of the present invention can be used in a process of flattening the surface of a wafer sliced with an ingot such as silicon or gallium.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
Abstract
Description
これまで、ウェーハ表面にうねりが残留していても、その後、樹脂塗布工程でウェーハ表面に塗布した樹脂により平坦な基準面が造り込まれた状態でうねりを除去するように研削処理が行われるため、樹脂塗布工程前のウェーハの表面状態については問題視されていなかった。ところが、本発明者らの実験によれば、特許文献1で記載されるような樹脂塗布処理と研削処理を組み合わせた処理(樹脂貼り研削)を行っても、樹脂塗布工程前のウェーハ表面のうねりが大きい場合には、鏡面研磨処理後のウェーハ表面のナノトポグラフィー品質は十分ではないことを知見した。
させることができ、塗布層形成工程におけるウェーハ表面に塗布する塗布層の厚みも軽減することができる。
本発明の実施例を図3に示す。図3を基に実施例の加工工程を説明する。スライス後のウェーハ200(図3(a))をラッピングによってウェーハ200の両面を同時に研削し、うねり202を軽減した(図3(b))。うねり202が軽減されたウェーハ200の第二面205にUV硬化性樹脂321を塗布し、厚み35μmの硬化させた樹脂の面を基準面225とした(図3(c))。樹脂の面を基準面225として吸引保持したウェーハ200の第一面204をうねり202がなくなるまで(破線331の面まで)平面研削した(図3(d))。次に、樹脂を引き剥がし(図3(e))、平面研削したウェーハ200の第一面204を基準面251として吸引保持したウェーハ200の第二面205を破線351の面まで平面研削した(図3(f))。全工程を終了し、ウェーハの両面ともに高平坦化されたウェーハ200が得られた。このウェーハ200を実施例のウェーハ200とした(図3(g))。
比較例1を図4に示す。図面を基に比較例1の加工工程を説明する。スライス後のウェーハ200(図4(a))の第二面205にUV硬化性樹脂321を塗布し、厚み70μmの硬化させた樹脂の面を基準面225とした(図4(b))。樹脂の面を基準面225として吸引保持したウェーハ200の第一面204を破線421の面まで平面研削した(図4(c))。樹脂を引き剥がし(図4(d))、ウェーハ200の第一面204を基準面251として吸引保持したウェーハ200の第二面205を破線451の面まで平面研削した(図4(e))。この状態のウェーハ200を比較例1のウェーハ200とした(図4(f))。
比較例2は、実施例の図3(b)で示したラッピング後のウェーハ200を比較例2のウェーハ200とした。
実施例と比較例1、2で得られた各ウェーハ200の表面形状が、その後に行われる鏡面研磨処理後のウェーハ表面におけるナノトポグラフィーにどのような影響を与えるのかを調査した。具体的には、まず、実施例と比較例1、2で得られた各ウェーハ200それぞれに対して、共通の鏡面研磨処理として、両面研磨装置を用いて各ウェーハの表裏面に同一条件の粗研磨処理を施した後、片面研磨装置を用いて各ウェーハ表面に同一条件の仕上げ研磨処理を施して、各ウェーハ200の表面が鏡面研磨されたウェーハを作成した。図5は、鏡面研磨された各ウェーハ表面を光学干渉式の平坦度測定装置(KLA Tencor社:Wafersight2)を用いて各ウェーハ表面の高さ分布(高低差)を測定したナノトポグラフィーマップであり、鏡面研磨処理後の各ウェーハの測定結果をフィルタリング処理して長波長成分を除去した後、ナノトポグラフィーの測定結果を濃淡色で図示化したものである。図5(d)は、図5(a)~(c)に示されるナノトポグラフィーの高低差を表す図であって、濃い色になるほど高度が低く、一番濃い部分は中心高度から-20nmになり、薄い色になるほど高度は高く、一番薄い部分は中心高度から+20nmになっている。最低高度から最高高度までの高低差は40nmとなる。なお、ナノトポグラフィーの測定は、ウェーハの外縁の任意の3点を固定して測定した。従って、ナノトポグラフィーマップは、ウェーハを非吸着状態で表面の高低差を表している。
評価試験1と同様に、各ウェーハ200の表面形状が鏡面研磨処理後のウェーハ表面のナノトポグラフィーにどのような影響を与えるのかを調査した。本試験では、実施例、比較例1、2と同条件のウェーハ200をそれぞれ複数枚製造し、その複数のウェーハ200それぞれについて、評価試験1と同条件の鏡面研磨処理(両面研磨装置を用いた粗研磨処理+片面研磨装置を用いた仕上げ研磨処理)を施して、各ウェーハ200の表面が鏡面研磨されたウェーハを作成した。図6は、鏡面研磨された各ウェーハ表面を光学干渉式の平坦度測定装置(KLA Tencor社:Wafersight2)を用いて各ウェーハ表面のナノトポグラフィーを測定し、個々のグラフに表したものである。具体的には、鏡面研磨された各ウェーハ表面に対して直径2mmの円形領域で区切られたサイト毎に最大PV値を算出し、各サイト毎で算出された最大PV値のうち最も大きなPV値を代表値としてプロットしたものである。
図6から明らかなように、実施例では高低差が5.4~7.2nm、比較例1では9.0~10.7nm、比較例2では9.8~13.0nmの範囲となった。実施例のウェーハは表面全体のナノトポグラフィーが8nm以下の高平坦な面を得ることができた。
次に、鏡面研磨処理を施す前の各ウェーハ200の表面高さを周波数解析し、うねり成分の波長の振幅を調査した。その結果を図7に示す。
図7は、
図3(a)で示すスライス後のウェーハ(A)、
図4(f)で示すスライス後に樹脂貼り研削した(比較例1)ウェーハ(B)、
図3(b)で示すラッピング後(比較例2)のウェーハ(C)及び、
図3(g)で示すラッピング後に樹脂貼り研削した(実施例)ウェーハ(D)
それぞれについて、静電容量方式の形状測定装置(株式会社コベルコ科研:SBW)を用いてウェーハ表面高さの周波数解析を行った結果を示している。解析方法は、ウェーハ表面高さ測定データに短波長周期成分10mm未満、長波長周期成分100mm超の波長帯域をカットオフしてバンドパスフィルタリング処理し、10mm~100mmの波長領域におけるうねり成分の波長の振幅を求めた。
図7から明らかなように、スライス後のウェーハ(A)では最大1.7μmの振幅が観察され、1μmを超える振幅発生領域が観察されたのに対して、ラッピング処理した(比較例2)のウェーハ(C)では、最大でも0.4μmであり、100mm以下の波長領域全てにおいて1μm以下の振幅であり、ラッピング処理により振幅を大幅に低減できることが分かる。また、スライス後に樹脂貼り研削した(比較例1)ウェーハ(B)よりも、ラッピング後に樹脂貼り研削した(実施例)ウェーハ(D)の方がより振幅が低減されることが分かる。
次に、各ウェーハ200それぞれについて、評価試験1で行った鏡面研磨処理と同様の鏡面研磨処理を施した後、鏡面研磨された各ウェーハ200の表面高さを周波数解析し、うねり成分の波長の振幅を調査した。その結果を図8に示す。
図8は、
図4(f)で示すスライス後に樹脂貼り研削した(比較例1)ウェーハ(B)、
図3(b)で示すラッピング後(比較例2)のウェーハ(C)及び、
図3(g)で示すラッピング後に樹脂貼り研削した(実施例)ウェーハ(D)
それぞれについて、光学干渉式の形状測定装置(KLA Tencor社:Wafersight2)を用いて鏡面研磨後のウェーハ表面高さの周波数解析を行った結果を示している。解析方法は、ウェーハ表面高さ測定データにカットオフ値20mmのガウシアンフィルタ処理により、うねりの長波長周期成分をカットし、フィルタリングしたウェーハ表面高さに対しフーリエ変換し、100mm以下の波長領域におけるうねり成分の波長の振幅を求めたものである。
図8から明らかなように、ラッピング後に樹脂貼り研削した(実施例)ウェーハ(D)を用いた場合は、鏡面研磨処理後のウェーハ表面の周波数解析の結果において、10~100mmの波長領域のうねりの振幅は0.4nm以下と極めて良好であったのに対して、スライス後に樹脂貼り研削した(比較例1)ウェーハ(B)を用いた場合は最大で1.7nm、ラッピング処理した(比較例2)のウェーハ(C)を用いた場合は最大で2nmの振幅が観察された。
221 硬化性材料
232 基準面
Claims (8)
- 半導体単結晶インゴットをワイヤーソー装置を用いてスライスして薄円板状のウェーハを得るスライス工程と、
前記スライス工程後の前記ウェーハの両面を同時に平坦化加工する両面平坦化加工工程と、
前記両面平坦化加工工程後の前記ウェーハの一方の面全体に硬化性材料を塗布して平坦な塗布層を形成する塗布層形成工程と、
前記平坦化したウェーハの一方の面が研削装置のテーブルの基準面に当接するように前記ウェーハを前記テーブルに載置し続いて前記研削装置により前記ウェーハの他方の面を平面研削する第1の平面研削工程と、
前記平面研削工程後の前記塗布層を前記ウェーハの一方の面から除去する塗布層除去工程と、
前記塗布層が除去された前記ウェーハの他方の面が前記研削装置のテーブルの基準面に当接するように前記ウェーハを前記テーブルに載置し続いて前記研削装置により前記ウェーハの一方の面を平面研削する第2の平面研削工程とを含むことを特徴とする半導体ウェーハの加工方法。 - 前記ワイヤーソー装置が固定砥粒ワイヤーを用いたスライス方式であることを特徴とする請求項1記載の半導体ウェーハの加工方法。
- 前記両面平坦化加工工程が両面ラッピング処理或いは両頭研削処理であることを特徴とする請求項1記載の半導体ウェーハの加工方法。
- 前記塗布層形成工程における前記ウェーハ表面に塗布する塗布層の厚みが10~40μmであることを特徴とする請求項1記載の半導体ウェーハの加工方法。
- 前記両面平坦化加工工程後の前記ウェーハの表面高さを周波数解析した場合に、100mm以下の波長域におけるうねりの振幅が1.0μm以下の範囲であることを特徴とする請求項1記載の半導体ウェーハの加工方法。
- 前記両面平坦化加工工程後の前記ウェーハの表面高さを周波数解析した場合に、100mm以下の波長域におけるうねりの振幅が1.0μm以下の範囲であることを特徴とする請求項2記載の半導体ウェーハの加工方法。
- 前記両面平坦化加工工程後の前記ウェーハの表面高さを周波数解析した場合に、100mm以下の波長域におけるうねりの振幅が1.0μm以下の範囲であることを特徴とする請求項3記載の半導体ウェーハの加工方法。
- 前記両面平坦化加工工程後の前記ウェーハの表面高さを周波数解析した場合に、100mm以下の波長域におけるうねりの振幅が1.0μm以下の範囲であることを特徴とする請求項4記載の半導体ウェーハの加工方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157005423A KR101638888B1 (ko) | 2013-02-19 | 2014-02-04 | 반도체 웨이퍼의 가공 방법 |
US14/439,893 US9881783B2 (en) | 2013-02-19 | 2014-02-04 | Method for processing semiconductor wafer |
CN201480002327.0A CN104769704B (zh) | 2013-02-19 | 2014-02-04 | 半导体晶片的加工方法 |
JP2015501387A JP6187579B2 (ja) | 2013-02-19 | 2014-02-04 | 半導体ウェーハの加工方法 |
DE112014000276.3T DE112014000276B4 (de) | 2013-02-19 | 2014-02-04 | Verfahren zum Prozessieren von Halbleiterwafern |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-029719 | 2013-02-19 | ||
JP2013029719 | 2013-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014129304A1 true WO2014129304A1 (ja) | 2014-08-28 |
Family
ID=51391101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/052540 WO2014129304A1 (ja) | 2013-02-19 | 2014-02-04 | 半導体ウェーハの加工方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9881783B2 (ja) |
JP (1) | JP6187579B2 (ja) |
KR (1) | KR101638888B1 (ja) |
CN (1) | CN104769704B (ja) |
DE (1) | DE112014000276B4 (ja) |
TW (1) | TWI515783B (ja) |
WO (1) | WO2014129304A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017134925A1 (ja) * | 2016-02-03 | 2017-08-10 | 株式会社Sumco | ウェーハの製造方法およびウェーハ |
WO2018079222A1 (ja) * | 2016-10-31 | 2018-05-03 | 株式会社Sumco | ウェーハの製造方法およびウェーハ |
KR20180064518A (ko) * | 2015-10-20 | 2018-06-14 | 가부시키가이샤 사무코 | 반도체 웨이퍼의 가공 방법 |
JP7072180B1 (ja) | 2021-12-20 | 2022-05-20 | 有限会社サクセス | 半導体結晶ウェハの製造方法および製造装置 |
JP2023015134A (ja) * | 2018-12-17 | 2023-01-31 | ジルトロニック アクチエンゲゼルシャフト | ワイヤソーによって半導体ウェハを製造するための方法、ワイヤソー、および、単結晶シリコンの半導体ウェハ |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6323515B2 (ja) * | 2016-08-31 | 2018-05-16 | 株式会社Sumco | 半導体ウェーハのラッピング方法および半導体ウェーハ |
CN108400081A (zh) * | 2017-02-08 | 2018-08-14 | 上海新昇半导体科技有限公司 | 硅片的制作方法 |
CN108735590A (zh) * | 2017-04-20 | 2018-11-02 | 上海新昇半导体科技有限公司 | 晶圆表面平坦化方法 |
CN108735591A (zh) * | 2017-04-20 | 2018-11-02 | 上海新昇半导体科技有限公司 | 晶圆表面平坦化方法 |
JP2019033134A (ja) * | 2017-08-04 | 2019-02-28 | 株式会社ディスコ | ウエーハ生成方法 |
JP6878676B2 (ja) * | 2018-02-21 | 2021-06-02 | 株式会社Sumco | ウェーハの製造方法 |
JP7208759B2 (ja) * | 2018-10-16 | 2023-01-19 | 株式会社ディスコ | ウエーハ保持装置を用いたウエーハの加工方法 |
CN110216531B (zh) * | 2019-06-28 | 2024-05-24 | 深圳市圆梦精密技术研究院 | 双头超声波加工设备及应用其的双面加工方法 |
CN110465846A (zh) * | 2019-07-25 | 2019-11-19 | 江苏吉星新材料有限公司 | 一种大尺寸蓝宝石衬底晶圆片的面型修复方法 |
CN111390750B (zh) * | 2020-03-25 | 2021-09-03 | 福建北电新材料科技有限公司 | 晶片面型加工装置 |
CN114290132A (zh) * | 2021-12-30 | 2022-04-08 | 北京天科合达半导体股份有限公司 | 碳化硅晶片的表面处理方法 |
CN116276405A (zh) * | 2023-05-18 | 2023-06-23 | 扬州韩思半导体科技有限公司 | 一种晶圆片加工用抛光装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10256203A (ja) * | 1997-03-11 | 1998-09-25 | Super Silicon Kenkyusho:Kk | 鏡面仕上げされた薄板状ウェーハの製造方法 |
WO2011105255A1 (ja) * | 2010-02-26 | 2011-09-01 | 株式会社Sumco | 半導体ウェーハの製造方法 |
JP2011249652A (ja) * | 2010-05-28 | 2011-12-08 | Disco Abrasive Syst Ltd | ウェーハの平坦加工方法 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60160763U (ja) | 1984-04-05 | 1985-10-25 | 清水 良一 | 可変寝床 |
JP3055401B2 (ja) * | 1994-08-29 | 2000-06-26 | 信越半導体株式会社 | ワークの平面研削方法及び装置 |
JP3328193B2 (ja) * | 1998-07-08 | 2002-09-24 | 信越半導体株式会社 | 半導体ウエーハの製造方法 |
JP2000114216A (ja) * | 1998-10-01 | 2000-04-21 | Sumitomo Metal Ind Ltd | 半導体ウェーハの製造方法 |
JP3664593B2 (ja) * | 1998-11-06 | 2005-06-29 | 信越半導体株式会社 | 半導体ウエーハおよびその製造方法 |
JP2002231665A (ja) * | 2001-02-06 | 2002-08-16 | Sumitomo Metal Ind Ltd | エピタキシャル膜付き半導体ウエーハの製造方法 |
US6613591B1 (en) | 2002-03-07 | 2003-09-02 | Memc Electronic Materials, Inc. | Method of estimating post-polishing waviness characteristics of a semiconductor wafer |
JP2004063883A (ja) * | 2002-07-30 | 2004-02-26 | Toshiba Ceramics Co Ltd | 半導体ウェーハの製造方法 |
US7134947B2 (en) * | 2003-10-29 | 2006-11-14 | Texas Instruments Incorporated | Chemical mechanical polishing system |
JP4420023B2 (ja) * | 2004-08-17 | 2010-02-24 | 信越半導体株式会社 | 半導体ウェーハの測定方法、その製造工程の管理方法、及び半導体ウェーハの製造方法 |
JP4728023B2 (ja) | 2005-03-24 | 2011-07-20 | 株式会社ディスコ | ウェハの製造方法 |
JP4820108B2 (ja) * | 2005-04-25 | 2011-11-24 | コマツNtc株式会社 | 半導体ウエーハの製造方法およびワークのスライス方法ならびにそれらに用いられるワイヤソー |
JP4744250B2 (ja) * | 2005-09-14 | 2011-08-10 | 株式会社岡本工作機械製作所 | 角形状基板の両面研磨装置および両面研磨方法 |
US7930058B2 (en) * | 2006-01-30 | 2011-04-19 | Memc Electronic Materials, Inc. | Nanotopography control and optimization using feedback from warp data |
JP2007221030A (ja) | 2006-02-20 | 2007-08-30 | Disco Abrasive Syst Ltd | 基板の加工方法 |
JP5089370B2 (ja) | 2007-12-21 | 2012-12-05 | 株式会社ディスコ | 樹脂被覆方法および装置 |
JP5504412B2 (ja) * | 2008-05-09 | 2014-05-28 | 株式会社ディスコ | ウェーハの製造方法及び製造装置、並びに硬化性樹脂組成物 |
JP2010016078A (ja) * | 2008-07-02 | 2010-01-21 | Shin Etsu Handotai Co Ltd | シリコン単結晶ウェーハ及びシリコン単結晶ウェーハの製造方法並びにシリコン単結晶ウェーハの評価方法 |
JP2010021394A (ja) * | 2008-07-11 | 2010-01-28 | Sumco Corp | 半導体ウェーハの製造方法 |
CN102484188B (zh) * | 2009-07-31 | 2015-02-18 | 电气化学工业株式会社 | Led搭载用晶片及其制造方法、以及使用该晶片的led搭载结构体 |
WO2011032602A1 (en) | 2009-09-18 | 2011-03-24 | Applied Materials, Inc. | Pulley for a wire saw device, wire saw device and method for operating same |
JP2011103379A (ja) * | 2009-11-11 | 2011-05-26 | Sumco Corp | ウェーハの平坦化加工方法 |
JP5541681B2 (ja) | 2010-01-20 | 2014-07-09 | 株式会社ディスコ | ウエーハの平坦化方法 |
JP2012115911A (ja) * | 2010-11-29 | 2012-06-21 | Sharp Corp | 基板の研削方法およびそれを用いて作製された半導体素子 |
JP5882577B2 (ja) | 2010-12-06 | 2016-03-09 | スリーエム イノベイティブ プロパティズ カンパニー | フィルム貼付方法、裏面研削方法、半導体チップ作製方法及びフィルム貼付装置 |
JP2013029719A (ja) | 2011-07-29 | 2013-02-07 | Koiwa Nobuhide | 蛍光灯型led照明 |
JP5907081B2 (ja) * | 2012-02-02 | 2016-04-20 | 信越化学工業株式会社 | 合成石英ガラス基板の製造方法 |
JP6111893B2 (ja) * | 2013-06-26 | 2017-04-12 | 株式会社Sumco | 半導体ウェーハの加工プロセス |
-
2014
- 2014-02-04 CN CN201480002327.0A patent/CN104769704B/zh active Active
- 2014-02-04 DE DE112014000276.3T patent/DE112014000276B4/de active Active
- 2014-02-04 JP JP2015501387A patent/JP6187579B2/ja active Active
- 2014-02-04 WO PCT/JP2014/052540 patent/WO2014129304A1/ja active Application Filing
- 2014-02-04 KR KR1020157005423A patent/KR101638888B1/ko active IP Right Grant
- 2014-02-04 US US14/439,893 patent/US9881783B2/en active Active
- 2014-02-12 TW TW103104550A patent/TWI515783B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10256203A (ja) * | 1997-03-11 | 1998-09-25 | Super Silicon Kenkyusho:Kk | 鏡面仕上げされた薄板状ウェーハの製造方法 |
WO2011105255A1 (ja) * | 2010-02-26 | 2011-09-01 | 株式会社Sumco | 半導体ウェーハの製造方法 |
JP2011249652A (ja) * | 2010-05-28 | 2011-12-08 | Disco Abrasive Syst Ltd | ウェーハの平坦加工方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180064518A (ko) * | 2015-10-20 | 2018-06-14 | 가부시키가이샤 사무코 | 반도체 웨이퍼의 가공 방법 |
KR102110850B1 (ko) | 2015-10-20 | 2020-05-14 | 가부시키가이샤 사무코 | 반도체 웨이퍼의 가공 방법 |
WO2017134925A1 (ja) * | 2016-02-03 | 2017-08-10 | 株式会社Sumco | ウェーハの製造方法およびウェーハ |
JP2017139323A (ja) * | 2016-02-03 | 2017-08-10 | 株式会社Sumco | ウェーハの製造方法およびウェーハ |
WO2018079222A1 (ja) * | 2016-10-31 | 2018-05-03 | 株式会社Sumco | ウェーハの製造方法およびウェーハ |
JP2018074019A (ja) * | 2016-10-31 | 2018-05-10 | 株式会社Sumco | ウェーハの製造方法およびウェーハ |
JP2023015134A (ja) * | 2018-12-17 | 2023-01-31 | ジルトロニック アクチエンゲゼルシャフト | ワイヤソーによって半導体ウェハを製造するための方法、ワイヤソー、および、単結晶シリコンの半導体ウェハ |
JP7475414B2 (ja) | 2018-12-17 | 2024-04-26 | ジルトロニック アクチエンゲゼルシャフト | ワイヤソーによって半導体ウェハを製造するための方法、ワイヤソー、および、単結晶シリコンの半導体ウェハ |
JP7072180B1 (ja) | 2021-12-20 | 2022-05-20 | 有限会社サクセス | 半導体結晶ウェハの製造方法および製造装置 |
JP2023091696A (ja) * | 2021-12-20 | 2023-06-30 | 有限会社サクセス | 半導体結晶ウェハの製造方法および製造装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6187579B2 (ja) | 2017-08-30 |
US9881783B2 (en) | 2018-01-30 |
US20150303049A1 (en) | 2015-10-22 |
JPWO2014129304A1 (ja) | 2017-02-02 |
CN104769704A (zh) | 2015-07-08 |
TWI515783B (zh) | 2016-01-01 |
DE112014000276T5 (de) | 2015-10-15 |
KR20150038541A (ko) | 2015-04-08 |
KR101638888B1 (ko) | 2016-07-12 |
TW201436018A (zh) | 2014-09-16 |
DE112014000276B4 (de) | 2022-03-31 |
CN104769704B (zh) | 2017-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6187579B2 (ja) | 半導体ウェーハの加工方法 | |
JP6111893B2 (ja) | 半導体ウェーハの加工プロセス | |
JP6418130B2 (ja) | 半導体ウェーハの加工方法 | |
JP6878676B2 (ja) | ウェーハの製造方法 | |
WO2015037188A1 (ja) | 鏡面研磨ウェーハの製造方法 | |
JP2004096112A (ja) | 半導体ウェーハの処理法 | |
CN118402045A (zh) | 半导体结晶晶圆的制造方法及制造装置 | |
WO2018079105A1 (ja) | ウェーハの製造方法およびウェーハ | |
WO2017134925A1 (ja) | ウェーハの製造方法およびウェーハ | |
JP2011103379A (ja) | ウェーハの平坦化加工方法 | |
US20130149941A1 (en) | Method Of Machining Semiconductor Substrate And Apparatus For Machining Semiconductor Substrate | |
WO2023228787A1 (ja) | 研削ウェーハの製造方法及びウェーハの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14753877 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015501387 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157005423 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14439893 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014000276 Country of ref document: DE Ref document number: 1120140002763 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14753877 Country of ref document: EP Kind code of ref document: A1 |