[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014128835A1 - レーダ及び物体検出方法 - Google Patents

レーダ及び物体検出方法 Download PDF

Info

Publication number
WO2014128835A1
WO2014128835A1 PCT/JP2013/054009 JP2013054009W WO2014128835A1 WO 2014128835 A1 WO2014128835 A1 WO 2014128835A1 JP 2013054009 W JP2013054009 W JP 2013054009W WO 2014128835 A1 WO2014128835 A1 WO 2014128835A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
code generator
data
reflected wave
sampling
Prior art date
Application number
PCT/JP2013/054009
Other languages
English (en)
French (fr)
Inventor
南 義明
悠司 小田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020157021914A priority Critical patent/KR20150106948A/ko
Priority to JP2015501114A priority patent/JP5892288B2/ja
Priority to US14/768,091 priority patent/US10031219B2/en
Priority to BR112015019881A priority patent/BR112015019881A2/pt
Priority to CN201380073335.XA priority patent/CN104995529A/zh
Priority to PCT/JP2013/054009 priority patent/WO2014128835A1/ja
Priority to EP13875341.3A priority patent/EP2960674B1/en
Publication of WO2014128835A1 publication Critical patent/WO2014128835A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/284Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • G01S7/2921Extracting wanted echo-signals based on data belonging to one radar period

Definitions

  • One embodiment of the present invention relates to a radar and an object detection method.
  • Patent Document 1 discloses an example in which equivalent time sampling is applied to a pulse radar.
  • Patent Document 1 discloses a power control signal generator that generates a power control signal having a variable amplitude, and a gain that is adjusted according to the amplitude of the power control signal in order to equalize the signal strength of the received signal.
  • an amplifying unit for controlling the transmission power of the pulse train transmission signal is provided on the transmission side.
  • the sampling period is longer than the period (code length) of the radar transmission signal, and the time required to acquire all the data of the code included in the reflected wave is proportional to the square of the code length. As a result, it takes a long time to detect an object.
  • One embodiment of the present invention has been made in view of the above problems, a radar capable of reducing the time required to acquire all data included in a reflected wave, and detecting an object earlier, and An object is to provide an object detection method.
  • One embodiment of the present invention includes a code generator, a transmission unit that repeatedly transmits a transmission signal modulated with a code of a predetermined period generated by the code generator, and a reflected wave of the transmission signal reflected by an object at a predetermined period Correlation between a receiving unit that samples at the following sampling cycle, rearranged data corresponding to data obtained by rearranging codes generated by the code generator at intervals corresponding to the sampling cycle, and a reflected wave sampled by the receiving unit
  • the radar includes a detection unit that detects an object.
  • the transmission unit has a code generator, repeatedly transmits a transmission signal modulated with a code of a predetermined period generated by the code generator, and the reception unit transmits a transmission signal reflected by an object.
  • the reflected wave is sampled at a sampling period equal to or less than a predetermined period, and the detection unit reorders the data generated by the code generator at the interval corresponding to the sampling period, and the reflection sampled by the reception unit.
  • the object is detected by taking a correlation with the wave sampling data.
  • the code is an M-sequence code
  • the sampling period can be set to a period obtained by multiplying a power of 2 Nsp of a code length N or less of the code by the width of 1 chip of the code.
  • the sampling cycle is set to a cycle obtained by multiplying the power of 2 Nsp of the code length N or less of the code by the width of 1 chip of the code.
  • the sampled data or the code rearranged data obtained by rearranging the codes at the sampling period is equal to the cyclically shifted original code. Therefore, by acquiring sampling data with such a sampling period, it is possible to reduce the time required to acquire all data included in the reflected wave, and to compare the obtained sampling data and code rearrangement data Thus, it becomes possible to detect the object earlier.
  • the detection unit can further output data obtained by rearranging the correlation output data obtained by taking the correlation between the rearranged data and the reflected wave at an interval of (N + 1) / Nsp.
  • the detection unit further outputs data obtained by rearranging the correlation output data obtained by obtaining the correlation between the rearranged data and the reflected wave at an interval of (N + 1) / Nsp.
  • correlation output data can be output in the order of distance.
  • the reference code generator is provided separately from the code generator, and the reference code generator generates rearranged data corresponding to data obtained by rearranging the codes generated by the code generator at intervals corresponding to the sampling period,
  • the detection unit can detect the object by obtaining a correlation between the rearranged data generated by the reference code generator and the reflected wave sampled by the reception unit.
  • the code is an M-sequence code
  • the sampling period can be set to a period obtained by multiplying a power of 2 Nsp of a code length N or less of the code by the width of 1 chip of the code.
  • the correlation output data obtained by obtaining the correlation between the rearranged data and the reflected wave can be further output with data rearranged at an interval of (N + 1) / Nsp.
  • the method further comprises a reference code generating step for generating rearranged data corresponding to data obtained by rearranging the codes generated by the code generator at intervals corresponding to the sampling period, from a reference code generator separate from the code generator,
  • a reference code generating step for generating rearranged data corresponding to data obtained by rearranging the codes generated by the code generator at intervals corresponding to the sampling period, from a reference code generator separate from the code generator,
  • an object can be detected by obtaining a correlation between the rearranged data generated in the reference code generation step and the reflected wave sampled in the reception step.
  • the radar and the object detection method of the embodiment of the present invention it is possible to reduce the time required to acquire all the data included in the reflected wave and detect the object earlier.
  • (A) is a figure which shows the arrangement
  • (b) is a figure which shows the output which rearranged (a) by the (N + 1) / Nsp space
  • a DS-SS radar 10 includes a code generator 21, a mixer 22, an amplifier 23, an antenna 24, a rearranger 31, an oscillator 32, an antenna 41, an amplifier 42, and a mixer. 43, an LPF 44, an A / D converter 45, a correlator 46, and a rearranger 47.
  • the code generator 21 generates M sequence codes continuously.
  • the oscillator 32 generates a carrier frequency signal for carrying the signal.
  • the mixer 22 modulates the carrier frequency signal generated by the oscillator 32 with the M-sequence code generated by the code generator 21 to generate a transmission signal.
  • the amplifier 23 amplifies the power of the transmission signal generated by the mixer 22.
  • the antenna 24 transmits the transmission signal amplified by the amplifier 23 to the outside of the DS-SS radar 10.
  • the antenna 41 receives a transmission signal reflected by an object outside the DS-SS radar 10 as a reception signal.
  • the amplifier 42 amplifies the power of the reception signal received by the antenna 41.
  • the mixer 43 performs frequency conversion of the reception signal amplified by the amplifier 42 using the carrier frequency signal generated by the oscillator 32.
  • the LPF 44 removes high frequency components included in the output of the mixer 43 to obtain a baseband signal.
  • the A / D converter 45 samples the baseband signal extracted via the mixer 43 and the LPF 44 with a period of a width of Nsp ⁇ chip and generates sampling data.
  • chip is one element of the code.
  • the width of 1 chip is the time during which a 1 chip code (0 or 1) is generated.
  • Nsp is an integer that is a power of 2 that is N or less.
  • N is the code length of the code.
  • the rearranger 31 rearranges the M sequence codes generated by the code generator 21 at intervals of Nsp, and generates a reference code for correlation processing used by the correlator 46. Because the M-sequence code is rearranged at intervals of Nsp due to the characteristics of the M-sequence code, the original M-sequence code is cyclically shifted, so that the original M-sequence code is cyclically shifted is the correlator 46. May be used as a reference code for correlation processing.
  • the correlator 46 correlates the sampling data sampled by the A / D converter 45 and the correlation processing reference code generated by the rearranger 31 and outputs correlation output data.
  • the rearranger 47 rearranges the correlation output data output from the correlator 46 at an interval of (N + 1) / Nsp to obtain a radar output.
  • the code generator 21, the oscillator 32, the mixer 22, the amplifier 23, and the antenna 24 repeatedly transmit M-sequence codes as transmission signals (S11).
  • the A / D converter 45 uses a period of a width of Nsp ⁇ chip, which is an integer that is a power of 2 that is equal to or less than the code length N, of the received signal received via the antenna 41, the amplifier 42, the oscillator 32, the mixer 43, and the LPF 44. Sampling is performed (S12).
  • the rearranger 31 rearranges the M sequence codes generated by the code generator 21 at intervals of Nsp to generate a reference code for correlation processing.
  • a code obtained by rearranging M-sequence codes at intervals of Nsp is a cyclic shift of the original code.
  • the correlator 46 correlates the sampling data sampled by the A / D converter 45 and the correlation processing reference code generated by the rearranger 31 and outputs correlation output data (S13).
  • the order of the correlation outputs to be arranged in the order of distances “0” to “14” is rearranged at intervals of Nsp. The result is as shown in FIG.
  • the rearranger 47 rearranges the correlation output data output from the correlator 46 at an interval of (N + 1) / Nsp to obtain a radar output (S14).
  • the code generator 21, the oscillator 32, the antenna 24, and the like repeatedly transmit a transmission signal modulated by a code of a predetermined period generated by the code generator 21, and an A / D converter
  • Reference numeral 45 samples the code included in the reflected wave of the transmission signal reflected by the object at a sampling period equal to or less than the code period, and the correlator 46 reorders the codes generated by the code generator 21 at intervals of Nsp.
  • An object is detected by correlating the code with the sampling data converted by the A / D converter 45. Thereby, in the equivalent time sampling, the time required to acquire all the data included in the reflected wave can be shortened, and the object can be detected earlier.
  • the distance r1 between the object T1 and the DS-SS radar 1 is calculated from the time difference between the code included in the transmission signal and the code included in the reception signal.
  • the code generator 21 generates a code having a good autocorrelation characteristic, as shown in FIG. 5, even if there are a plurality of objects T1 to T3, they are separated, and the objects T1 to T3 and the DS-SS are separated. Distances r1 to r3 with the radar 1 are calculated.
  • the conventional sampling method it is necessary to perform sampling with a period of a width of (N + 1) ⁇ chip while repeatedly transmitting a code having a code length N.
  • the time required to acquire data necessary for detecting an object can be reduced to a time of Nsp ⁇ N ⁇ chip width. Further, in the present embodiment, in addition to shortening the time for acquiring data, it is possible to simultaneously detect the speed of the object.
  • the DS-SS radar 10 detects the relative velocity with respect to the object using the phase change (frequency) of the received signal due to the Doppler shift. In the present embodiment, until the correlation processing by the correlator 46 can be performed without changing the arrangement of the acquired data, the continuity of the phase change is maintained, and the velocity of the object is detected. Is possible. Further, in the present embodiment, sampling can be performed at a sampling period corresponding to the performance of the A / D converter 45 used. Therefore, the performance of the A / D converter 45 can be utilized to the maximum.
  • the sampling period is set to a period obtained by multiplying a power of 2 Nsp of a code length N or less by a width of 1 chip of the code, and sampling is performed at the sampling period.
  • Sampling data or a reference code in which codes are rearranged in the sampling period is equal to a cyclic shift of the original code. Therefore, by acquiring sampling data with such a sampling period, it is possible to reduce the time required to acquire all the data included in the reflected wave, and by obtaining a correlation between the obtained sampling data and the reference code The object can be detected earlier.
  • the rearranger 47 further rearranges the correlation output data obtained by taking the correlation between the reference code and the sampling data at an interval of (N + 1) / Nsp, To do. Thereby, correlation output data can be output in the order of distance.
  • the reference code for correlation processing is generated by directly rearranging the code actually generated by the code generator 21 by the rearranger 21.
  • the code of the code length N generated by the code generator 21 can be provided with a reference code generator 51 that generates a reference code corresponding to the data rearranged at the sampling interval Nsp separately from the code generator 21 and the rearranger 21.
  • the radar and the object detection method of the embodiment of the present invention it is possible to reduce the time required to acquire all the data included in the reflected wave and detect the object earlier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 DS‐SSレーダ10において、符号発生器21、発振器32及びアンテナ24等は、符号発生器21が発する所定周期の符号により変調された送信信号を繰り返し送信し、A/Dコンバータ45は、物体に反射した送信信号の反射波に含まれる符号を符号の周期以下のサンプリング周期でサンプリングし、相関器46は、符号発生器21が発した符号をNspの間隔で並べ替えた参照符号と、A/Dコンバータ45が変換したサンプリングデータとの相関を取ることにより、物体を検出する。

Description

レーダ及び物体検出方法
 本発明の一実施形態は、レーダ及び物体検出方法に関する。
 等価時間サンプリングをレーダに適用した技術が提案されている。例えば、特許文献1には、等価時間サンプリングをパルスレーダに適用する例が開示されている。特許文献1のものは、受信信号の信号強度を等化するために、振幅が可変である電力制御信号を生成する電力制御信号発生部と、電力制御信号の振幅に応じて利得を調整することによって、パルス列状の送信信号の送信電力を制御する増幅部とが送信側に設けられている。
特開2008-145236号公報
 ところで、等価時間サンプリングにおいては、レーダの送信信号の周期(符号長)よりもサンプリング周期が長く、反射波に含まれる符号の全データを取得するために要する時間が符号長の約2乗に比例して長くなるため、物体の検出に時間がかかるという欠点がある。
 本発明の一実施形態は上記課題に鑑みてなされたものであり、反射波に含まれる全てのデータを取得するのに要する時間を短縮し、物体をより早期に検出することが可能なレーダ及び物体検出方法を提供することを目的とする。
 本発明の一実施形態は、符号発生器を有し、符号発生器が発する所定周期の符号で変調された送信信号を繰り返し送信する送信部と、物体に反射した送信信号の反射波を所定周期以下のサンプリング周期でサンプリングする受信部と、符号発生器が発する符号をサンプリング周期に対応する間隔で並べ替えたデータに相当する並べ替えデータと、受信部がサンプリングした反射波との相関を取ることにより、物体を検出する検出部とを備えたレーダである。
 この構成によれば、レーダにおいて、送信部は、符号発生器を有し、符号発生器が発する所定周期の符号で変調された送信信号を繰り返し送信し、受信部は、物体に反射した送信信号の反射波を所定周期以下のサンプリング周期でサンプリングし、検出部は、符号発生器が発する符号をサンプリング周期に対応する間隔で並べ替えたデータに相当する並べ替えデータと、受信部がサンプリングした反射波のサンプリングデータとの相関を取ることにより、物体を検出する。これにより、等価時間サンプリングにおいて、反射波に含まれる全てのデータを取得するのに要する時間を短縮し、物体をより早期に検出することが可能となる。
 この場合、符号は、M系列符号であり、サンプリング周期は、符号の符号長N以下の2のべき乗数Nspに、符号の1chipの幅を乗じた周期とできる。
 この構成によれば、符号はM系列符号であるため、サンプリング周期を符号の符号長N以下の2のべき乗数Nspに符号の1chipの幅を乗じた周期とすることにより、当該サンプリング周期でサンプリングしたサンプリングデータや、符号をサンプリング周期で並べ替えた符号並べ替えデータは、元の符号を巡回シフトしたものに等しくなる。従って、このようなサンプリング周期によりサンプリングデータを取得することにより、反射波に含まれる全てのデータを取得するのに要する時間を短縮でき、得られたサンプリングデータと符号並べ替えデータとを比較することにより、物体をより早期に検出することが可能となる。
 この場合、検出部は、並べ替えデータと反射波との相関を取ることにより得られた相関出力データについて、さらに、(N+1)/Nspの間隔で並べ替えたデータを出力することができる。
 この構成によれば、検出部は、並べ替えデータと反射波との相関を取ることにより得られた相関出力データについて、さらに、(N+1)/Nspの間隔で並べ替えたデータを出力する。これにより、相関出力データを距離順の並びで出力することができる。
 また、符号発生器とは別個の参照符号発生器を備え、参照符号発生器は、符号発生器が発する符号をサンプリング周期に対応する間隔で並べ替えたデータに相当する並べ替えデータを発生し、検出部は、参照符号発生器が発生した並べ替えデータと、受信部がサンプリングした反射波との相関を取ることにより、物体を検出することができる。
 この構成によれば、符号発生器が実際に発した符号を直接に並べ替えて並べ替えデータを発生せずに、符号発生器とは別個の参照符号発生器から並べ替えデータを発生することができる。
 また、本発明の一実施形態は、符号発生器が発する所定周期の符号で変調された送信信号を繰り返し送信する送信工程と、物体に反射した送信信号の反射波を所定周期以下のサンプリング周期でサンプリングする受信工程と、符号発生器が発する符号をサンプリング周期に対応する間隔で並べ替えたデータに相当する並べ替えデータと、受信工程でサンプリングした反射波との相関を取ることにより、物体を検出する検出工程とを備えた物体検出方法である。
 この場合、符号は、M系列符号であり、サンプリング周期は、符号の符号長N以下の2のべき乗数Nspに、符号の1chipの幅を乗じた周期にできる。
 この場合、検出工程では、並べ替えデータと反射波との相関を取ることにより得られた相関出力データについて、さらに、(N+1)/Nspの間隔で並べ替えたデータを出力することができる。
 また、符号発生器とは別個の参照符号発生器から、符号発生器が発する符号をサンプリング周期に対応する間隔で並べ替えたデータに相当する並べ替えデータを発生する参照符号発生工程をさらに備え、検出工程では、参照符号発生工程で発生した並べ替えデータと、受信工程でサンプリングした反射波との相関を取ることにより、物体を検出することができる。
 本発明の一実施形態のレーダ及び物体検出方法によれば、反射波に含まれる全てのデータを取得するのに要する時間を短縮し、物体をより早期に検出することが可能となる。
実施形態のDS‐SSレーダを示すブロック図である。 実施形態のDS‐SSレーダの動作を示すフローチャートである。 (a)は相関出力の並びを示す図であり、(b)は(a)を(N+1)/Nsp間隔で並べ替えた出力を示す図である。 従来のDS‐SSレーダが単数の物体を検出する原理を示す図である。 従来のDS‐SSレーダが複数の物体を検出する原理を示す図である。 等価時間サンプリングの原理を示す図である。 等価時間サンプリングに要するデータの取得時間を示す図である。 他の実施形態のDS‐SSレーダを示すブロック図である。
 図面を参照して、本発明の実施形態に係るレーダ及び物体検出方法の一例について説明する。図1に示すように、本発明の実施形態に係るDS‐SSレーダ10は、符号発生器21、ミキサ22、アンプ23、アンテナ24、並べ替え器31、発振器32、アンテナ41、アンプ42、ミキサ43、LPF44、A/Dコンバータ45、相関器46及び並べ替え器47を備えている。
 符号発生器21は、M系列符号を連続的に発生させる。発振器32は、信号を搬送するためのキャリア周波数信号を発生させる。ミキサ22は、符号発生器21で発生されたM系列符号で、発振器32で発生されたキャリア周波数信号を変調し、送信信号を発生させる。アンプ23は、ミキサ22で発生された送信信号の電力を増幅する。アンテナ24は、アンプ23で増幅された送信信号をDS‐SSレーダ10の外部に送信する。
 アンテナ41は、DS‐SSレーダ10の外部の物体に反射した送信信号を受信信号として受信する。アンプ42は、アンテナ41が受信した受信信号の電力を増幅する。ミキサ43は、発振器32で発生されたキャリア周波数信号を用いて、アンプ42で増幅された受信信号の周波数変換を行う。LPF44は、ミキサ43の出力に含まれる高周波成分を除去してベースバンド信号を得る。
 A/Dコンバータ45は、ミキサ43とLPF44とを経由して抽出されたベースバンド信号をNsp×chipの幅の周期でサンプリングし、サンプリングデータを発生させる。ここで、chipは符号の1要素である。なお、1chipの幅は、1chipの符号(0or1)を発生している時間である。また、後述するように、Nspは、N以下である2のべき乗の整数である。ここで、Nは符号の符号長である。
 並べ替え器31は、符号発生器21で発生されたM系列符号をNspの間隔で並べ替えて、相関器46で用いられる相関処理用の参照符号を発生させる。M系列符号の特徴により、M系列符号をNspの間隔で並べ替えたものは、元のM系列符号を巡回シフトしたものに等しいので、元のM系列符号を巡回シフトしたものが、相関器46で用いられる相関処理用の参照符号とされても良い。
 相関器46は、A/Dコンバータ45でサンプリングされたサンプリングデータと、並べ替え器31で発生された相関処理用の参照符号とを相関を取り、相関出力データを出力する。
 並べ替え器47は、相関器46により出力された相関出力データを(N+1)/Nspの間隔で並べ替えて、レーダ出力とする。
 以下、本実施形態のDS‐SSレーダ10の動作について説明する。図2に示すように、符号発生器21、発振器32、ミキサ22、アンプ23及びアンテナ24は、送信信号としてM系列符号を繰り返し送信する(S11)。
 A/Dコンバータ45は、符号長N以下の2のべき乗の整数であるNsp×chipの幅の周期により、アンテナ41、アンプ42、発振器32、ミキサ43及びLPF44を介して受信された受信信号のサンプリングを行う(S12)。
 並べ替え器31は、符号発生器21で発生されたM系列符号をNspの間隔で並べ替えて、相関処理用の参照符号を発生させる。M系列符号をNspの間隔で並べ替えた符号は、元の符号を巡回シフトしたものになる。相関器46は、A/Dコンバータ45でサンプリングされたサンプリングデータと、並べ替え器31で発生された相関処理用の参照符号とを相関を取り、相関出力データを出力する(S13)。この結果、相関出力データは、例えば、Nsp=4、N=15である場合に、「0」~「14」の距離順で配列されるべき相関出力の並びがNspの間隔で並べ替えられた図3(a)に示すようなものになる。
 並べ替え器47は、相関器46により出力された相関出力データを(N+1)/Nspの間隔で並べ替えて、レーダ出力とする(S14)。この場合のレーダ出力は、例えば、Nsp=4、N=15であり、図3(a)に示した相関出力データを、(N+1)/Nsp=4の間隔で並べ替えた図3(b)に示すようなものになり、「0」~「14」の順で配列された相関出力(=検出結果)が再現される。
 本実施形態では、DS‐SSレーダ10において、符号発生器21、発振器32及びアンテナ24等は、符号発生器21が発する所定周期の符号により変調された送信信号を繰り返し送信し、A/Dコンバータ45は、物体に反射した送信信号の反射波に含まれる符号を符号の周期以下のサンプリング周期でサンプリングし、相関器46は、符号発生器21が発した符号をNspの間隔で並べ替えた参照符号と、A/Dコンバータ45が変換したサンプリングデータとの相関を取ることにより、物体を検出する。これにより、等価時間サンプリングにおいて、反射波に含まれる全てのデータを取得するのに要する時間を短縮し、物体をより早期に検出することが可能となる。
 図4に示すように、従来のDS‐SSレーダ1では、符号発生器21が発生した符号を使って位相変調した送信信号が送信される。相関器46が物体T1から反射してきた受信信号と変調に用いた符号との相関を取る。これにより、送信信号に含まれる符号と受信信号に含まれる符号との時間差から、物体T1とDS‐SSレーダ1との距離r1が算出される。符号発生器21が自己相関特性の良い符号を発生することにより、図5に示すように、複数の物体T1~T3が存在しても、これらを分離して、物体T1~T3とDS‐SSレーダ1との距離r1~r3が算出される。
 図6に示すように、例えば、符号長N=7であり、符号要素「1」~「7」の順で配列された符号については、従来は、(符号の周期+1chipの幅)=(N+1)×chip=8×chipの幅の周期で等価時間サンプリングが行われる。これにより、低速サンプリングでも符号列が復元される。しかしながら、従来のサンプリングの方法では、符号長Nの符号を繰り返し送出しながら、(N+1)×chipの幅の周期でサンプリングを行う必要がある。
 そのため、図7に示すように、全データを取得するためには、(N+1)×N×chipの幅の時間が必要となる。DS‐SSレーダでは、長い符号を使用するほど拡散利得が上がり検出性能は向上する。しかし、従来の等価時間サンプリングでは、符号長Nの約二乗に比例して全データを取得するための時間が増加することから、符号長Nが長い符号を使用すると、全データを取得するための時間が極端に長くなる。
 一方、本実施形態では、物体を検出するために必要なデータを取得するためにかかる時間をNsp×N×chipの幅の時間に短縮することができる。また、本実施形態では、データを取得するための時間の短縮に加え、物体の速度の検出を同時に実現することができる。DS‐SSレーダ10では、ドップラーシフトによる受信信号の位相変化(周波数)を用いて物体との相対速度を検出する。本実施形態では、相関器46による相関処理までの間、取得されたデータの配列を入れ替えることなく処理することができるため、位相変化の連続性が保たれており、物体の速度を検出することが可能である。また、本実施形態では、使用されるA/Dコンバータ45の性能に見合ったサンプリング周期でサンプリングを行うことができる。そのため、A/Dコンバータ45の性能を最大限に活用することができる。
 また、本実施形態では、符号はM系列符号であるため、サンプリング周期を符号長N以下の2のべき乗数Nspに符号の1chipの幅を乗じた周期とすることにより、当該サンプリング周期でサンプリングしたサンプリングデータや、符号をサンプリング周期で並べ替えた参照符号は、元の符号を巡回シフトしたものに等しくなる。従って、このようなサンプリング周期によりサンプリングデータを取得することにより、反射波に含まれる全てのデータを取得するのに要する時間を短縮でき、得られたサンプリングデータと参照符号との相関を取ることにより、物体をより早期に検出することが可能となる。
 さらに、本実施形態では、並べ替え器47は、参照符号とサンプリングデータとの相関を取ることにより得られた相関出力データについて、さらに、(N+1)/Nspの間隔で並べ替えて、レーダ出力とする。これにより、相関出力データを距離順の並びで出力することができる。
 本発明は上記実施形態に限定されず、様々な変形態様が可能である。例えば、上記実施形態では、符号発生器21が実際に発生した符号を並べ替え器21で直接に並べ替えることで相関処理用の参照符号を発生させている。しかし、例えば、図8のDS‐SSレーダ11に示すように、符号長Nとサンプリングの間隔のNspとが設計で固定値とされていれば、符号発生器21が発生した符号長Nの符号をサンプリングの間隔のNspで並べ替えたデータに相当する参照符号を符号発生器21や並べ替え器21とは別個に発生する参照符号発生器51を備えることができる。相関器46において参照符号発生器51からの参照符号と反射波との相関を取ることにより、上記実施形態と同様に物体の検出が可能である。
 本発明の一実施形態のレーダ及び物体検出方法によれば、反射波に含まれる全てのデータを取得するのに要する時間を短縮し、物体をより早期に検出することが可能となる。
1 DS‐SSレーダ
10,11 DS‐SSレーダ
21 符号発生器
22 ミキサ
23 アンプ
24 アンテナ
31 並べ替え器
32 発振器
41 アンテナ
42 アンプ
43 ミキサ
44 LPF
45 A/Dコンバータ
46 相関器
47 並べ替え器
51 参照符号発生器
 

Claims (8)

  1.  符号発生器を有し、前記符号発生器が発する所定周期の符号で変調された送信信号を繰り返し送信する送信部と、
     物体に反射した前記送信信号の反射波を前記所定周期以下のサンプリング周期でサンプリングする受信部と、
     前記符号発生器が発する前記符号を前記サンプリング周期に対応する間隔で並べ替えたデータに相当する並べ替えデータと、前記受信部がサンプリングした前記反射波との相関を取ることにより、前記物体を検出する検出部と、を備えたレーダ。
  2.  前記符号は、M系列符号であり、
     前記サンプリング周期は、前記符号の符号長N以下の2のべき乗数Nspに、前記符号の1chipの幅を乗じた周期である、請求項1に記載のレーダ。
  3.  前記検出部は、前記並べ替えデータと前記反射波との相関を取ることにより得られた相関出力データについて、さらに、前記(N+1)/Nspの間隔で並べ替えたデータを出力する、請求項2に記載のレーダ。
  4.  前記符号発生器とは別個の参照符号発生器を備え、
     前記参照符号発生器は、前記符号発生器が発する前記符号を前記サンプリング周期に対応する間隔で並べ替えたデータに相当する前記並べ替えデータを発生し、
     前記検出部は、前記参照符号発生器が発生した前記並べ替えデータと、前記受信部がサンプリングした前記反射波との相関を取ることにより、前記物体を検出する、請求項1~3のいずれか1項に記載のレーダ。
  5.  符号発生器が発する所定周期の符号で変調された送信信号を繰り返し送信する送信工程と、
     物体に反射した前記送信信号の反射波を前記所定周期以下のサンプリング周期でサンプリングする受信工程と、
     前記符号発生器が発する前記符号を前記サンプリング周期に対応する間隔で並べ替えたデータに相当する並べ替えデータと、前記受信工程でサンプリングした前記反射波との相関を取ることにより、前記物体を検出する検出工程と、を備えた物体検出方法。
  6.  前記符号は、M系列符号であり、
     前記サンプリング周期は、前記符号の符号長N以下の2のべき乗数Nspに、前記符号の1chipの幅を乗じた周期である、請求項5に記載の物体検出方法。
  7.  前記検出工程では、前記並べ替えデータと前記反射波との相関を取ることにより得られた相関出力データについて、さらに、前記(N+1)/Nspの間隔で並べ替えたデータを出力する、請求項6に記載の物体検出方法。
  8.  前記符号発生器とは別個の参照符号発生器から、前記符号発生器が発する前記符号を前記サンプリング周期に対応する間隔で並べ替えたデータに相当する前記並べ替えデータを発生する参照符号発生工程をさらに備え、
     前記検出工程では、前記参照符号発生工程で発生した前記並べ替えデータと、前記受信工程でサンプリングした前記反射波との相関を取ることにより、前記物体を検出する、請求項5~7のいずれか1項に記載の物体検出方法。
PCT/JP2013/054009 2013-02-19 2013-02-19 レーダ及び物体検出方法 WO2014128835A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157021914A KR20150106948A (ko) 2013-02-19 2013-02-19 레이더 및 물체 검출 방법
JP2015501114A JP5892288B2 (ja) 2013-02-19 2013-02-19 レーダ及び物体検出方法
US14/768,091 US10031219B2 (en) 2013-02-19 2013-02-19 Radar and object detection method
BR112015019881A BR112015019881A2 (pt) 2013-02-19 2013-02-19 radar e método de detecção de objetos
CN201380073335.XA CN104995529A (zh) 2013-02-19 2013-02-19 雷达和物体检测方法
PCT/JP2013/054009 WO2014128835A1 (ja) 2013-02-19 2013-02-19 レーダ及び物体検出方法
EP13875341.3A EP2960674B1 (en) 2013-02-19 2013-02-19 Radar and object detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054009 WO2014128835A1 (ja) 2013-02-19 2013-02-19 レーダ及び物体検出方法

Publications (1)

Publication Number Publication Date
WO2014128835A1 true WO2014128835A1 (ja) 2014-08-28

Family

ID=51390669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054009 WO2014128835A1 (ja) 2013-02-19 2013-02-19 レーダ及び物体検出方法

Country Status (7)

Country Link
US (1) US10031219B2 (ja)
EP (1) EP2960674B1 (ja)
JP (1) JP5892288B2 (ja)
KR (1) KR20150106948A (ja)
CN (1) CN104995529A (ja)
BR (1) BR112015019881A2 (ja)
WO (1) WO2014128835A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462430B (zh) * 2017-03-31 2023-10-20 三菱电机株式会社 雷达装置
KR102093363B1 (ko) * 2018-04-12 2020-03-25 주식회사 만도 레이더 시스템 및 이를 위한 송신 장치
CN115913841B (zh) * 2022-11-25 2024-06-04 中北大学 一种用于等效时间采样信号的数据均衡方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305163A (ja) * 1990-12-28 1992-10-28 Yokogawa Electric Corp ディジタルオシロスコープの自動掃引機構
JP2008145236A (ja) 2006-12-08 2008-06-26 Fuji Heavy Ind Ltd 等価時間サンプリング方式レーダ
JP2008232668A (ja) * 2007-03-16 2008-10-02 Fujitsu Ltd 直接シーケンススペクトル拡散方式のレーダー、レーダーで使用される方法及びコンピュータプログラム
JP2013003071A (ja) * 2011-06-21 2013-01-07 Seiko Epson Corp 検出装置及び検出方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663935A (en) * 1967-06-05 1972-05-16 Hughes Aircraft Co Pulse compression code sequencing system
FR2353185A1 (fr) * 1976-04-09 1977-12-23 Thomson Csf Dispositif correlateur rapide, et systeme de traitement des signaux d'un recepteur comportant un tel dispositif
FR2374651A1 (fr) * 1976-12-16 1978-07-13 Labo Cent Telecommunicat Dispositif d'elimination des lobes secondaires d'auto-correlation d'un signal continu periodique code en phase
JPS586156B2 (ja) * 1977-03-24 1983-02-03 電子工業株式会社 距離計測装置
JPH06103873B2 (ja) * 1988-09-01 1994-12-14 三菱電機株式会社 直交系列発生方式
JP2718222B2 (ja) * 1989-11-24 1998-02-25 ダイキン工業株式会社 距離測定方法、その装置および相対位置測定装置
JPH04315978A (ja) * 1991-04-16 1992-11-06 Mitsubishi Electric Corp 受信装置
JPH0587913A (ja) * 1991-09-30 1993-04-09 Omron Corp 距離測定装置および方法
JPH07151850A (ja) * 1993-11-26 1995-06-16 Furukawa Electric Co Ltd:The 移動体用レーダ装置
JP2659340B2 (ja) * 1994-11-22 1997-09-30 防衛庁技術研究本部長 レーダ装置
US6651739B2 (en) * 2001-02-21 2003-11-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Medium frequency pseudo noise geological radar
JP3611115B2 (ja) * 2001-10-03 2005-01-19 三菱電機株式会社 測距装置及びこの測距装置を備えたレーダ装置
WO2007116890A1 (ja) * 2006-04-04 2007-10-18 Panasonic Corporation 符号発生装置
JP2008249693A (ja) * 2007-03-02 2008-10-16 Matsushita Electric Ind Co Ltd スペクトル拡散型レーダ装置
JP2009074856A (ja) * 2007-09-19 2009-04-09 Panasonic Corp スペクトル拡散型レーダ装置
JP5382765B2 (ja) * 2008-09-19 2014-01-08 三井造船株式会社 位置情報検出装置および位置情報検出方法
US8629799B2 (en) * 2011-03-30 2014-01-14 Sandia Research Corporation Surface penetrating radar system and target zone investigation methodology
US8576116B2 (en) * 2011-10-20 2013-11-05 Panasonic Corporation High speed high resolution wide range low power analog correlator and radar sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305163A (ja) * 1990-12-28 1992-10-28 Yokogawa Electric Corp ディジタルオシロスコープの自動掃引機構
JP2008145236A (ja) 2006-12-08 2008-06-26 Fuji Heavy Ind Ltd 等価時間サンプリング方式レーダ
JP2008232668A (ja) * 2007-03-16 2008-10-02 Fujitsu Ltd 直接シーケンススペクトル拡散方式のレーダー、レーダーで使用される方法及びコンピュータプログラム
JP2013003071A (ja) * 2011-06-21 2013-01-07 Seiko Epson Corp 検出装置及び検出方法

Also Published As

Publication number Publication date
BR112015019881A2 (pt) 2017-07-18
EP2960674A1 (en) 2015-12-30
JPWO2014128835A1 (ja) 2017-02-02
EP2960674A4 (en) 2016-03-02
US10031219B2 (en) 2018-07-24
JP5892288B2 (ja) 2016-03-23
CN104995529A (zh) 2015-10-21
KR20150106948A (ko) 2015-09-22
EP2960674B1 (en) 2018-10-03
US20160011308A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
US7564400B2 (en) Spread spectrum radar apparatus
JP5342099B2 (ja) 測距・通信複合システム
JP5703441B2 (ja) レーダ装置
JP5810287B2 (ja) レーダ装置
US11067679B2 (en) Narrow-band radar device and operation method thereof
JPWO2009125843A1 (ja) 超音波伝搬時間測定システム
JP4704968B2 (ja) 相関型探知装置
JP5892288B2 (ja) レーダ及び物体検出方法
JP6375250B2 (ja) レーダ装置
KR102096531B1 (ko) 표적의 거리 및 도플러 추정을 위한 송수신 방법 및 장치
JP2010060520A (ja) 超音波の変復調方法並びに距離検出方法、通信方法
CN108594216A (zh) 一种混沌码调相线性调频复合探测系统及信号处理方法
JP6921045B2 (ja) 近接検知装置
JP2006226847A (ja) 無線センシング装置及び無線センシング方法
JP4437804B2 (ja) レーダ装置および距離測定方法
JP2015224917A (ja) 信号検出装置、及び信号検出方法
JP6865674B2 (ja) 近接検知装置
JP2005156393A (ja) レーダ装置
JP2001305218A (ja) レーダ装置
JP2703790B2 (ja) 測距装置
JP5342604B2 (ja) 測距・通信複合システム
JP4019640B2 (ja) Cwレーダ装置
KR102142503B1 (ko) Fmcw 레이더의 와이드밴드 신호 송신 장치 및 방법
JP4219219B2 (ja) 受信時刻計測装置及びこれを用いた測距装置
JP2005303886A (ja) 位置特定システム、並びに受信機及び受信方法及び受信方法及び受信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501114

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157021914

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14768091

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013875341

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015019881

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015019881

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150818