WO2014127499A1 - 加工系统 - Google Patents
加工系统 Download PDFInfo
- Publication number
- WO2014127499A1 WO2014127499A1 PCT/CN2013/001640 CN2013001640W WO2014127499A1 WO 2014127499 A1 WO2014127499 A1 WO 2014127499A1 CN 2013001640 W CN2013001640 W CN 2013001640W WO 2014127499 A1 WO2014127499 A1 WO 2014127499A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing system
- bearing
- dust suction
- processing
- vacuum
- Prior art date
Links
- 239000000428 dust Substances 0.000 claims description 35
- 238000001179 sorption measurement Methods 0.000 claims description 23
- 230000005484 gravity Effects 0.000 claims description 15
- 230000005855 radiation Effects 0.000 claims description 5
- 239000013598 vector Substances 0.000 claims description 5
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 238000004891 communication Methods 0.000 description 5
- 238000003698 laser cutting Methods 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
- B23K37/04—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
- B23K37/04—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
- B23K37/047—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work moving work to adjust its position between soldering, welding or cutting steps
Definitions
- the invention relates to a processing system. Background technique
- the disc platform can be rotated to allow the workpieces on the platform to be processed sequentially through different workstations.
- the workpieces can be sequentially loaded and unloaded (load/unload) workstations, alignment workstations, laser cutting workstations, and dust removal workstations, each with a corresponding machine.
- the loading and unloading station can have a loading and mechanical loading machine
- the laser station can have a laser source to perform laser cutting of the workpiece to obtain the desired pattern.
- an aspect of the present invention is to provide a three-dimensional processing apparatus that can utilize different surfaces of a polyhedron to carry a workpiece to be processed, instead of using a single disk surface of the disc platform to carry a workpiece to be processed. It can reduce the space required for processing operations and facilitate the space planning of the plant.
- a processing system includes a rotary table, at least one rotary shaft, a rotary drive, a plurality of load platforms, and a plurality of processing machines.
- the turntable has opposing end surfaces and a plurality of load bearing surfaces between the end surfaces.
- the rotating shaft is connected to the end surface of the rotary table. Rotate the drive to the shaft.
- the carriers are respectively located on the bearing surfaces of the rotary table.
- the end surface of the rotary table is coupled to the rotating shaft, and the bearing surface is located between the end surfaces.
- the bearing surface will be rotated upward to face the side, then rotated to face downward, and then rotated to face the other side, and finally return to the upward position. . Therefore, the bearing surface does not rotate only at the same level, but rotates to Different levels of height can reduce the space required for processing operations and facilitate the spatial planning of the plant.
- FIG. 1 is a side elevational view of a processing system in accordance with an embodiment of the present invention.
- Figure 2 is a perspective view of the rotary table of Figure 1.
- Figure 3 is a perspective view of the rotary drive of Figure 2;
- FIG. 4 is a perspective view of the inside of a rotary table according to an embodiment of the present invention.
- Figure 5 is a partial enlarged view of a carrier according to an embodiment of the present invention.
- Figure 6 is a front elevational view of the interior of a rotary table in accordance with an embodiment of the present invention.
- Figure 7 is a partial side elevational view of the interior of a rotary table in accordance with an embodiment of the present invention.
- Figure 8 is a side elevational view of the interior of a rotary table in accordance with an embodiment of the present invention.
- Fig. 9 is a schematic view showing the cutting operation of the rotary table and the processing machine according to an embodiment of the present invention.
- Figure 10 is a front elevational view of a rotary table in accordance with another embodiment of the present invention.
- ⁇ angle is the best way to achieve the present invention
- FIG. 1 is a side elevational view of a processing system in accordance with an embodiment of the present invention.
- Figure 2 is a perspective view of the rotary table 100 of Figure 1 .
- the processing system of the present embodiment may include a rotary table 100, a rotary drive machine 300, a plurality of carrier platforms 400, and processing machines 510 and 520.
- the rotary table 100 has opposing end surfaces 102 and a plurality of load bearing surfaces 104 interposed between the end surfaces 102.
- the carrier platforms 400 are located on the load bearing surfaces 104 of the rotary table 100, respectively.
- Processors 510 and 520 can be configured with respect to Figure 1) relative to the carrier 400.
- FIG. 3 is a perspective view of the rotary drive machine 300 of FIG. 2.
- the processing system of the present embodiment further includes a rotating shaft 210 connected to the rotary driving machine 300 and configured with the end surface 102 of the rotating table 100. See Figure 2) Connection.
- the rotating shaft 210 can drive the rotary table 100 to rotate by the end surface 102.
- the rotating shaft 210 has an axial direction 200, and the axial direction 200 may represent an extending direction along the central axis of the rotating shaft 210.
- the axial direction 200 of the rotating shaft 210 intersects the direction of gravity G.
- the axial direction 200 is not parallel to the direction of gravity G.
- each bearing surface 104 can be rotated to different levels, instead of rotating only at the same level. Therefore, the space required for processing operations can be reduced, which is conducive to the spatial planning of the plant.
- the rotary table 100 has six surfaces, two of which are end surfaces 102, and the other four are bearing surfaces that are coupled between the end surfaces 102. 104.
- the bearing surface 104 located above the rotary table 100 can be rotated upward to face the right side, then rotated to face downward, then rotated to face the left, and finally return to the upward position.
- the rotary table 100 of FIG. 2 is illustrated as a rectangular parallelepiped, the present invention is not limited thereto. In fact, any polyhedron (eg, a triangular cylinder, a pentagonal cylinder, a hexagonal cylinder, etc.) can be used.
- the rotary table 100 of the present invention is used.
- the "gravity direction G" described throughout the specification refers to the direction in which the object is free to fall.
- the "facing up”, “facing down”, “facing to the right” and “facing to the left” as described in the full text of this manual are only for helping the reader to understand the relationship between components in the drawing, and do not represent a component. It must be in a certain direction.
- a single carrier surface 104 can be configured with a plurality of carriers 400 that can be aligned along the axial direction 200. In this way, if the number of objects to be processed is to be increased, it is only necessary to increase the number of the stages 400 in the axial direction 200 without increasing the radius of rotation of the rotary table 100, so that the machining accuracy is not affected.
- the processing machine 510 is disposed relative to the left-facing bearing surface 104, while the processing machine 520 is opposed to the right-facing bearing surface 104.
- a loading mechanism 530 and an unloading mechanism 540 are selectively disposed on the upward facing carrier surface 104. Since the partial load bearing surfaces 104 are located at different levels, the processing machines 510, 520 and the loading machine 530 and the unloading machine 540 can be disposed at different levels, thereby reducing the space required for the machining operation and facilitating the spatial planning of the plant. For example, the level of the highest point of the processing machines 510 and 520 can be lower than the level of the lowest point of the loading machine 530 and the unloading machine 540.
- the processing machine 510 can be a laser source, and the laser source has There is a radial direction 512 through which the radial direction 512 passes.
- the processing machine 510 that is, the radiation direction 512 of the laser source:) passes through the carrying platform 400 on the carrying surface 104, so that the workpiece to be processed (not shown) on the carrying platform 400 can be laser cut. .
- the bearing surface 104 through which the radial direction 512 passes has a normal direction N, and the normal direction N and the gravity direction G define an angle in the form of a common starting point of the vector. 9, where 0° ⁇ 90°.
- the bearing surface 104 of the processing machine 510 is non-horizontal, and the normal direction N of the bearing surface 104 is perpendicular to the direction of gravity G, i.e., the angle 9 is 90 degrees.
- the included angle ⁇ may be less than 90 degrees, such that the load bearing surface 104 through which the radial direction 512 passes may be tilted further downward to facilitate debris falling.
- the processing machine 520 is an image capturing device, and the image capturing device and the processing machine 510 (ie, the laser source) are respectively located on opposite sides of the rotating table 100. That is, the rotary table 100 is positioned between the processing machine 510 and the processing machine 520.
- the processing system can also include a calibration device 550 that is electrically coupled to the processing machine 520 (i.e., image capture device) and the processing machine 510 (i.e., the laser source).
- the processing machine 520 is configured to capture an image of the object to be processed on the bearing surface 104 that it faces, and the correcting device 550 can be used to correct the moving path of the processing machine 510 according to the image.
- the processing machine 510 can still be cut to the correct pattern by the correcting device 550.
- the image capturing device may be a charge-coupled device (CCD), but the invention is not limited thereto.
- loading machine 530 is used to place at least one object to be processed on bearing surface 104 that is perpendicular to the direction of gravity G (see Figure 2). That is, the load bearing surface 104 of the loading machine 530 is horizontal so as to place the object to be processed without causing the object to be processed to slip.
- the loading mechanism 530 can be a robotic arm, but the invention is not limited thereto.
- the unloading mechanism 540 is configured to remove at least one workpiece located above the load bearing surface 104 that is perpendicular to the direction of gravity G. That is, the opposite load bearing surface 104 of the unloading mechanism 540 is horizontal.
- the unloading mechanism 540 can be a robot Arm, but the invention is not limited thereto.
- the loading mechanism 530 and the unloading mechanism 540 are simultaneously actuated, that is, when the unloading mechanism 540 takes out the processed object, the loading mechanism 530 can simultaneously place the object to be processed on the bearing surface 104. Can speed up the work.
- the load bearing surface 404 of the loading mechanism 530 and the unloading machine 540 are facing upward.
- the rotary table 100 rotates, causing the load bearing surface 104 to rotate to a position facing the right.
- the processing machine 520 that is, the image capturing device: can take a picture of the object to be processed on the bearing surface 104 facing to the right, and the correcting device 550 corrects the processing machine 510 according to the image taken. The path of the source:).
- the rotary table 100 is rotated, and the bearing surface 104 is rotated to a position facing downward, and then rotated to a position facing leftward.
- the processing machine 510 i.e., the laser source:
- the processing machine 510 can cut the object to be processed on the bearing surface 104 facing the left.
- the rotary table 100 is rotated to return the load bearing surface 104 to the upwardly facing position.
- the unloading mechanism 540 can take the cut processed object out of the rotary table 100.
- the processing system may also include the loading machine 530 and the unloading machine 540, and manually load the workpiece and remove the processed object.
- Fig. 4 is a perspective view showing the inside of a rotary table 100 according to an embodiment of the present invention.
- the processing system can also include a light source 560.
- the light source 560 is located in the rotating table 100 to provide light to the processing machine 520 (i.e., the image capturing device, see Fig. 1), which facilitates the processing of the image by the processing machine 520.
- the bearing surface 104 is preferably light transmissive.
- FIG. 5 is a partial enlarged view of a carrier 400 in accordance with an embodiment of the present invention.
- each of the stages 400 includes a processing surface 402 and at least one vacuum adsorption aperture 410.
- the machined surface 402 faces away from the rotary table 100.
- the vacuum adsorption holes 410 are located in the processing surface 402, and the plurality of vacuum adsorption holes 410 are preferably distributed over different edge regions of the processing surface 402 to assist in the adsorption of the workpiece.
- Figure 6 is a front elevational view of the interior of a rotary table 100 in accordance with an embodiment of the present invention.
- the processing system can also include a vacuum source 710.
- the vacuum source 710 is connected to the vacuum suction holes 410 of the stage 400 to provide vacuum suction force to the vacuum suction holes 410 of each of the stages 400.
- the object to be processed can be placed on the processing surface 402 and covered.
- Vacuum adsorption holes 410 penetrates the processing surface 402 and is connected to the vacuum source 710. In this way, the vacuum source 710 can absorb the object to be processed on the processing surface 402 through the vacuum adsorption hole 410, thereby preventing the object to be processed from being separated from the processing surface 402 when the rotary table 100 rotates.
- each of the loading platforms 400 further has at least one vacuum adsorption tank 420.
- the vacuum suction groove 420 is located in the processing surface 402, and the vacuum suction hole 410 is opened on the inner wall of the vacuum suction groove 420.
- the vacuum adsorption groove 420 may be a rectangular groove or an L-shaped groove.
- the vacuum adsorption grooves 420 may form a rectangular-like dotted line contour on the processing surface 402, and the vacuum adsorption hole 410 may be located in the vacuum adsorption groove 420. Any position on the inner wall.
- the vacuum source 710 can evacuate the air in the vacuum adsorption tank 420 to enhance the adsorption effect on the workpiece.
- the processing system may further include a plurality of solenoid valves 720 coupled between the vacuum source 710 and the vacuum suction holes 410 of the carrier 400, respectively.
- Solenoid valve 720 can be used to open or block the connection between vacuum source 710 and vacuum suction port 410.
- the solenoid valve 720 blocks the connection between the vacuum source 710 and the vacuum suction hole 410 of the stage 400 to facilitate the unloading of the machine 540 to remove the workpiece.
- Each of the solenoid valves 720 can communicate with the vacuum suction holes 410 by means of a vacuum connection pipe 730.
- Each of the vacuum connection tubes 730 can include a plurality of manifolds 732 to facilitate communication with a plurality of vacuum adsorption apertures 410 in the carrier 400.
- Vacuum source 710 can be coupled to solenoid valve 720 using at least one vacuum supply tube 740.
- FIG. 7 is a partial side elevational view of the interior of a rotary table 100 in accordance with an embodiment of the present invention.
- the processing system can further include a vacuum source 810 and a plurality of vacuum interfaces 820.
- the suction source 810 is selectively in communication with at least one suction interface 820.
- each of the carriers 400 includes at least one dust suction hole 430.
- a plurality of suction interfaces 820 are connected to the plurality of suction holes 430 of the stage 400.
- the different suction interfaces 820 correspond to the suction holes 430 of the carrier 400 on the different load bearing surfaces 104.
- the dust suction hole 430 on the bearing surface 104 corresponding to the dust suction interface 820 can absorb debris or dust, thereby achieving the function of dust removal.
- FIG. 8 is a side elevational view of the interior of a rotary table 100 in accordance with an embodiment of the present invention.
- each of the dust suction ports 820 can be connected to a dust suction pipe 840, and the different dust suction pipes 840 are connected to the dust suction holes 430 on the different bearing surfaces 104.
- the dust to be processed on the bearing surface 104 can be controlled by selecting the dust suction interface 820.
- the dust source 810 corresponding to the processing machine 510 can be configured as shown in FIG. 1). That is, the dust suction source 810 is communicated to the dust suction hole 430 of the stage 400 opposite to the processing machine 510 through one of the suction interfaces 820.
- the dust suction source 810 is in communication with a dust suction hole 430 on the load bearing surface 104 facing the processing machine 510, that is, the laser source:). In this way, when the processing machine 510 performs laser cutting on the workpiece to generate debris, the dust source 810 can help absorb the debris.
- the processing system can also include an actuator 830.
- Actuator 830 can be coupled to a source of vacuum 810 to selectively drive a source of suction 810 into communication with one of the suction interfaces 820.
- the source 810 can have a movable interface 812 that can drive the movable interface 812 to communicate with the suction interface 820 or to be detached from the suction interface 820.
- the actuator 830 and the movable interface 812 can both be magnetic elements, and the actuator 830 can utilize the principle of magnetic attraction and repulsive, so that the movable interface 812 moves back and forth, thereby making the movable type
- the interface 812 is connected to or disconnected from the suction interface 820.
- the actuator 830 can drive the movable interface 812 out of the suction interface 820 of the corresponding processing machine 510 to prevent the suction tube 840 from being torn off by rotation (see Fig. 8).
- the actuator 830 can drive the movable interface 812 to communicate with the suction interface 820.
- the vacuum source 810 can be a vacuum extraction device, but the invention is not limited thereto. In practice, any device capable of extracting air can be used as the vacuum source 810.
- Fig. 9 is a schematic view showing the cutting operation of the rotary table 100 and the processing machine 510 according to an embodiment of the present invention.
- the path 514 of the processing machine 510 i.e., the laser source
- the debris generated by the workpiece to be cut can be directly dropped into the dust suction hole 430 to be sucked.
- Figure 10 is a front elevational view of a rotary table 100a in accordance with another embodiment of the present invention.
- the rotary table 100a of the present embodiment is a triangular cylinder instead of the rectangular parallelepiped shown in Fig. 2.
- the plurality of bearing surfaces 104a of the rotary table 100a form a triangle in a front view.
- At least one loading platform 400a is disposed above each of the bearing surfaces 104a to carry the object to be processed.
- the loading and unloading mechanism may be disposed relative to the upwardly facing bearing surface 104a, and the laser source (not shown) may be disposed relative to the lower left bearing surface 104a, and the image is
- the picking device (not shown:) can be configured relative to the bearing surface 104a facing the lower right.
- the invention can utilize different surfaces of the polyhedron to carry the workpiece to be processed, instead of using a single disk surface of the disc platform to carry the object to be processed, which can reduce the space required for the processing operation, and is advantageous for the space gauge of the factory building.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
- Plasma & Fusion (AREA)
- Machine Tool Units (AREA)
Abstract
一种加工系统,包含一旋转台(100、100a)、至少一转轴(210)、一旋转驱动机(300)、多个承载台(400、400a)以及多个加工机(510、520)。旋转台(100、100a)具有相对的两端表面(102)以及介于端表面(102)之间的多个承载表面(104、104a)。转轴(210)连接旋转台(100、100a)的端表面(102)。旋转驱动机(300)连接转轴(210)。多个承载台(400、400a)分别位于旋转台(100、100a)的多个承载表面(104、104a)上。多个加工机(510、520)分别相对多个承载台(400、400a)配置。可利用多面体的不同表面来承载待加工物,而非利用圆盘式平台的单一盘面来承载待加工物,可降低加工作业所需的空间,利于厂房的空间规划。
Description
加工系统 技术领域
本发明关于一种加工系统。 背景技术
目前的镭射加工系统是在一圆盘式平台上承载待加工物。 此圆盘式平台可 被旋转, 以使平台上的待加工物依序通过不同的工作站而进行加工作业。 举例 来说, 待加工物可依序通过装卸 (load/unload)工作站、 校准 (alignment)工作站、 镭射切割工作站及除尘工作站, 每一工作站均设有对应的机械。 举例来说, 装 卸工作站可具有装载及械载用的机械, 而镭射工作站可具有镭射源, 以对待加 工物进行镭射切割, 而得到所需的图案。
由于平台的盘面面积大, 造成加工作业需要较大的空间方能进行, 而不利 于厂房空间的规划。 此外, 若欲增加待加工物的数量, 势必要采用盘面面积更 大的平台, 又由于盘面直径的增加, 会使得靠近盘面边缘处与靠近盘面中心处 的待加工物的位移量不一致, 而导致加工精度的下降。 发明公开
有鉴于此, 本发明的一技术态样是在于提供一种立体加工设备, 其可利用 多面体的不同表面来承载待加工物, 而非利用圆盘式平台的单一盘面来承载待 加工物, 故可降低加工作业所需的空间, 而利于厂房的空间规划。
依据本发明的一实施方式, 一种加工系统包含一旋转台、 至少一转轴、 一 旋转驱动机、 多个承载台以及多个加工机。 旋转台具有相对的两端表面以及介 于端表面之间的多个承载表面。 转轴连接旋转台的端表面。 旋转驱动机连接转 轴。 此些承载台分别位于旋转台的此些承载表面上。 此些加工机分别相对此些 承载台配置。
于上述实施方式中, 旋转台的端表面连接转轴, 而承载表面则位于两端表 面之间。 如此一来, 当旋转台旋转时, 承载表面会由面向上方的位置, 旋转成 面向侧方, 再旋转成面向下方, 之后再旋转成面向另一侧方后, 最后会回到面 向上方的位置。 因此, 承载表面不是仅仅在同一水平高度旋转, 而是会旋转至
不同水平高度, 故可降低加工作业所需的空间, 而利于厂房的空间规划。
以下结合附图和具体实施例对本发明进行详细描述, 但不作为对本发明的 限定。 附图简要说明
图 1为依据本发明一实施方式的加工系统的侧视图。
图 2为图 1的旋转台的立体图。
图 3为图 2的旋转驱动机的立体图。
图 4为依据本发明一实施方式的旋转台内部的立体图。
图 5为依据本发明一实施方式的承载台的局部放大图。
图 6为依据本发明一实施方式的旋转台内部的正视图。
图 7为依据本发明一实施方式的旋转台内部的局部侧视图。
图 8为依据本发明一实施方式的旋转台内部的侧视图。
图 9为依据本发明一实施方式的旋转台与加工机的切割作业示意图。
图 10为依据本发明另一实施方式的旋转台的正视图。
其中, 附图标记
100、 100a: 旋转台
102: 端表面
104、 104a: 承载表面
200: 轴向方向
210: 转轴
300: 旋转驱动机
400、 400a: 承载台
402: 加工面
410: 真空吸附孔
420: 真空吸附槽
430: 吸尘孔
510、 520: 加工机
512: 放射方向
514: 移动路径
530 装载机械
540 卸载机械
550 校正装置
560 光源
710 真空源
720 电磁阀
730
732
740
810 吸尘源
812 可移动式接口
820 吸尘接口
830 致动器
840 吸尘管
N: 法线方向
G: 重力方向
Θ: 夹角 实现本发明的最佳方式
下面结合附图和具体实施例对本发明技术方案进行详细的描述, 以更进一 歩了解本发明的目的、 方案及功效, 但并非作为本发明所附权利要求保护范围 的限制。
图 1为依据本发明一实施方式的加工系统的侧视图。 图 2为图 1的旋转台 100的立体图。如图 1及图 2所示,本实施方式的加工系统可包含一旋转台 100、 一旋转驱动机 300、 多个承载台 400以及加工机 510及 520。 如图 2所示, 旋转 台 100具有相对的两端表面 102 以及介于两端表面 102之间的多个承载表面 104。 此些承载台 400分别位于旋转台 100的此些承载表面 104上。 加工机 510 及 520可参阅图 1)相对承载台 400配置。
图 3为图 2的旋转驱动机 300的立体图。 如图 3所示, 本实施方式的加工 系统还包含一转轴 210,其连接旋转驱动机 300,并与旋转台 100的端表面 102可
参阅图 2)连接。 如此, 当旋转驱动机 300驱动转轴 210旋转时, 转轴 210可藉 由端表面 102带动旋转台 100旋转。
如图 3所示, 转轴 210具有一轴向方向 200, 轴向方向 200可代表沿转轴 210的中心轴的延伸方向。如图 2所示,转轴 210的轴向方向 200与重力方向 G 相交, 换句话说, 轴向方向 200是与重力方向 G不平行。 如此, 当旋转驱动机 300驱动转轴 210旋转, 而带动旋转台 100沿轴向方向 200旋转时, 便能使每 个承载表面 104都能旋转至不同水平高度, 而不是仅仅在同一水平高度旋转, 故可降低加工作业所需的空间, 而利于厂房的空间规划。 举例来说, 图 2中的 旋转台 100为一长方体, 也就是说, 旋转台 100具有六个表面, 其中两者为端 表面 102, 而另外四者为连接于端表面 102之间的承载表面 104。 位于旋转台 100上方的承载表面 104可由面向上方的位置, 旋转成面向右方, 再旋转成面 向下方, 之后再旋转成面向左方后, 最后再回到面向上方的位置。
应了解到, 虽然图 2的旋转台 100绘示为长方体, 但本发明并不以此为限, 实际上, 任何多面体 (例如三角柱体、 五角柱体、六角柱体等等:)均可用来做为本 发明的旋转台 100。 应了解到, 本说明书全文所述的 「重力方向 G」 代表物体 自由落下所沿的方向。 应了解到, 本说明书全文所述的 「面向上方」 、 「面向 下方」 、 「面向右方」 及 「面向左方」 等等仅为了帮助读者了解图式中元件间 的关系, 并非代表某元件必然朝向某个特定方向。
于部分实施方式中, 如图 2所示, 单一承载表面 104上可配置有多个承载 台 400, 这些承载台 400可沿着轴向方向 200所排列。 如此一来, 若欲增加待 加工物的数量, 仅需沿着轴向方向 200增加承载台 400的数量, 而无须增加旋 转台 100的旋转半径, 故不会影响加工精度。
于部分实施方式中, 如图 1所示, 加工机 510相对于面向左方的承载表面 104所配置, 而加工机 520相对于面向右方的承载表面 104。 面向上方的承载表 面 104上可选择性地配置有一装载机械 530及一卸载机械 540。 由于部分承载 表面 104位于不同水平高度, 故可利于加工机 510、 520与装载机械 530及卸载 机械 540配置于不同水平高度, 从而降低加工作业所需的空间, 并利于厂房的 空间规划。 举例来说, 加工机 510及 520的最高点的水平高度可低于装载机械 530及卸载机械 540的最低点的水平高度。
于部分实施方式中, 如图 1所示, 加工机 510可为一镭射源, 此镭射源具
有一放射方向 512, 放射方向 512通过其中一承载表面 104。 具体来说, 加工机 510亦即, 镭射源:)的放射方向 512会通过承载表面 104上的承载台 400, 如此 便能够对承载台 400上的待加工物 (未绘示:)进行镭射切割。
于部分实施方式中, 如图 1及图 2所示, 放射方向 512所通过的承载表面 104具有一法线方向 N, 法线方向 N与重力方向 G以向量共起点的形式定义出 一夹角 9, 其中 0° Θ 90°。 具体来说, 如图 1所示, 加工机 510所相对的承 载表面 104非水平的, 且承载表面 104的法线方向 N与重力方向 G垂直, 亦即 夹角 9为 90度。如此一来, 当加工机 510对此承载台 400上的待加工物进行镭 射切割而产生碎屑时, 这些碎屑会沿着重力方向 G落下, 从而帮助除尘。 于其 他实施方式中, 夹角 Θ可小于 90度, 如此一来, 放射方向 512所通过的承载表 面 104可更进一歩地朝下倾斜, 从而利于碎屑落下。
应了解到, 本说明书全文所述的 「以向量共起点的形式定义出夹角」 是代 表在沿第一方向的向量与沿第二方向的向量在起点重合的情况下, 两者之间所 夹的角度。
于部分实施方式中, 如图 1所示, 加工机 520为一影像撷取装置, 此影像 撷取装置与加工机 510(亦即, 镭射源)分别位于旋转台 100的相对两侧。 也就是 说, 旋转台 100位在加工机 510及加工机 520之间。 加工系统还可包含一校正 装置 550, 其电性连接加工机 520(亦即, 影像撷取装置)及加工机 510(亦即, 镭 射源 )。 加工机 520用以撷取其所面对的承载表面 104上的待加工物的影像, 校 正装置 550可用以根据前述影像而校正加工机 510的移动路径。 如此一来, 即 便待加工物在旋转台 100 的旋转过程中可能产生位移, 仍可藉由校正装置 550 使加工机 510切割出正确的图案。 于部分实施方式中, 影像撷取装置可为感光 耦合元件 (Charge-coupled Device, CCD), 但本发明并不以此为限。
于部分实施方式中, 如图 1所示, 装载机械 530用以将至少一待加工物放 置于与重力方向 G可参阅图 2)垂直的承载表面 104上。也就是说,装载机械 530 所相对的承载表面 104呈水平的, 以便放置待加工物而不会使待加工物滑落。 于部分实施方式中, 装载机械 530可为一机械手臂, 但本发明并不以此为限。
于部分实施方式中, 如图 1所示, 卸载机械 540用以取出位在与重力方向 G垂直的承载表面 104上方的至少一已加工物。 也就是说, 卸载机械 540所相 对的承载表面 104呈水平的。 于部分实施方式中, 卸载机械 540可为一机械手
臂, 但本发明并不以此为限。
于部分实施方式中, 装载机械 530及卸载机械 540同时作动的, 也就是说, 当卸载机械 540将已加工物取出时, 装载机械 530可同时将待加工物放置于承 载表面 104上, 如此便能加快作业速度。
于部分实施方式中, 装载机械 530及卸载机械 540所相对的承载表面 104 面向上方的。当装载机械 530将待加工物放置于面向上方的承载表面 104上后, 旋转台 100会旋转, 而使该承载表面 104旋转至面向右方的位置。 此时, 加工 机 520亦即, 影像撷取装置:)可对面向右方的承载表面 104上的待加工物拍照, 并由校正装置 550根据拍照的影像, 来校正加工机 510亦即, 镭射源:)的移动路 径。 接着, 旋转台 100会旋转, 而使该承载表面 104旋转至面向下方的位置后, 并接着旋转至面向左方的位置。 此时, 加工机 510亦即, 镭射源:)可对面向左方 的承载表面 104上的待加工物进行切割。 最后, 旋转台 100会旋转, 而使该承 载表面 104回到面向上方的位置, 此时, 卸载机械 540可将切割后的已加工物 取下旋转台 100外。
于部分实施方式中, 加工系统亦可不包含装载机械 530及卸载机械 540, 而采用人工的方式来装载待加工物及卸下已加工物。
图 4为依据本发明一实施方式的旋转台 100内部的立体图。 于部分实施方 式中, 如图 4所示, 加工系统还可包含一光源 560。 光源 560位于旋转台 100 内, 以便提供光线给加工机 520(亦即, 影像撷取装置, 可参阅图 1), 而利于加 工机 520撷取影像。 另外, 为了利于光源 560所放射的光线能够穿透至旋转台 100外, 承载表面 104较佳为透光的。
图 5为依据本发明一实施方式的承载台 400的局部放大图。 于部分实施方 式中, 如图 5所示, 每一承载台 400包含一加工面 402以及至少一真空吸附孔 410。 加工面 402背对旋转台 100。 真空吸附孔 410位于加工面 402中, 且多个 真空吸附孔 410较佳可分布于加工面 402的不同边缘区域, 以帮助吸附待加工 物。 图 6为依据本发明一实施方式的旋转台 100内部的正视图。 于部分实施方 式中, 如图 6所示, 加工系统还可包含一真空源 710。 真空源 710连接承载台 400的真空吸附孔 410, 以便对每一承载台 400的真空吸附孔 410提供真空吸附 力。
具体来说, 如第 5及图 6所示, 待加工物可被放置于加工面 402上并罩住
真空吸附孔 410。 真空吸附孔 410贯穿于加工面 402并连接真空源 710。 如此, 真空源 710便能透过真空吸附孔 410来吸住位于加工面 402上的待加工物, 从 而避免待加工物在旋转台 100旋转时, 脱离加工面 402外。
于部分实施方式中, 如图 5所示, 每一承载台 400更具有至少一真空吸附 槽 420。 真空吸附槽 420位于加工面 402中, 且真空吸附孔 410开设于真空吸 附槽 420的内壁。 具体来说, 真空吸附槽 420可为矩形凹槽或是 L形凹槽, 这 些真空吸附槽 420可在加工面 402上共同构成类似矩形的虚线轮廓, 而真空吸 附孔 410可位于真空吸附槽 420的内壁上的任意位置。 藉此, 当待加工物放置 于加工面 402上,并罩住真空吸附槽 420时,真空源 710可抽走真空吸附槽 420 中的空气, 而提升对待加工物的吸附效果。
于部分实施方式中, 如图 6所示, 加工系统还可包含多个电磁阀 720, 分 别连接于真空源 710与承载台 400的真空吸附孔 410之间。 电磁阀 720可用以 开通或阻隔真空源 710与真空吸附孔 410之间的连接。举例来说, 当承载台 400 面向上方时, 电磁阀 720可阻隔真空源 710与此承载台 400的真空吸附孔 410 之间的连接, 以利卸载机械 540卸下已加工物。
每一电磁阀 720可利用一真空连接管 730与真空吸附孔 410连通。 每一真 空连接管 730可包含多条歧管 732, 以利连通承载台 400中的多个真空吸附孔 410。 真空源 710可利用至少一真空供应管 740连接至电磁阀 720。
图 7为依据本发明一实施方式的旋转台 100内部的局部侧视图。 于部分实 施方式中,如图 7所示,加工系统还可包含一吸尘源 810以及多个吸尘接口 820。 吸尘源 810选择性地与至少一吸尘接口 820相连通。 请复参阅图 5, 每一承载 台 400均包含至少一吸尘孔 430。 多个吸尘接口 820连通至承载台 400的多个 吸尘孔 430。 换句话说, 不同吸尘接口 820对应至不同承载表面 104上的承载 台 400的吸尘孔 430。 当吸尘源 810与某一吸尘接口 820连通时, 此吸尘接口 820所对应的承载表面 104上的吸尘孔 430可吸走碎屑或灰尘, 从而实现除尘 的功能。
图 8为依据本发明一实施方式的旋转台 100内部的侧视图。 于部分实施方 式中, 如图 8所示, 每一吸尘接口 820可连接一吸尘管 840, 不同吸尘管 840 连接至不同承载表面 104上的吸尘孔 430。如此一来,可藉由选择吸尘接口 820, 来控制对那个承载表面 104上的待加工物进行吸尘。
于部分实施方式中, 吸尘源 810对应加工机 510可参阅图 1)所配置。 也就 是说, 吸尘源 810通过其中一吸尘接口 820, 连通至与加工机 510相对的承载 台 400的吸尘孔 430。 具体来说, 吸尘源 810与面向加工机 510亦即, 镭射源:) 的承载表面 104上的吸尘孔 430相连通。 如此一来, 当加工机 510对待加工物 进行镭射切割而产生碎屑时, 吸尘源 810可帮助吸除这些碎屑。
请复参阅图 7, 于部分实施方式中, 加工系统还可包含一致动器 830。 致动 器 830可连接吸尘源 810, 以推动吸尘源 810选择性地与其中一吸尘接口 820 相连通。 具体来说, 吸尘源 810可具有一可移动式接口 812, 致动器 830可驱 动可移动式接口 812连通吸尘接口 820, 或是脱离吸尘接口 820。 举例来说, 致 动器 830及可移动式接口 812均可为磁性元件, 而致动器 830可利用磁性相吸 及相斥的原理, 使得可移动式接口 812前后移动, 从而让可移动式接口 812连 通或脱离吸尘接口 820。 当旋转台 100欲进行旋转时, 致动器 830可驱使可移 动式接口 812脱离对应加工机 510的吸尘接口 820, 以免因旋转而扯掉吸尘管 840可参阅图 8)。 当旋转台 100旋转而使下一个吸尘接口 820抵达对应加工机 510的位置时, 致动器 830可驱使可移动式接口 812连通此吸尘接口 820。
于部分实施方式中, 吸尘源 810可为一真空抽取装置, 但本发明并不以此 为限, 实务上, 任何能够抽取空气的装置均可用来做为吸尘源 810。
图 9为依据本发明一实施方式的旋转台 100与加工机 510的切割作业示意 图。 如图 9所示, 加工机 510(亦即, 镭射源)的移动路径 514会使得加工机 510 的放射方向 512通过吸尘孔 430。 如此一来, 待加工物被切割所产生的碎屑可 直接落入吸尘孔 430而被吸除。
图 10为依据本发明另一实施方式的旋转台 100a的正视图。 本实施方式与 图 2的实施方式间的主要差异系在于: 本实施方式的旋转台 100a为三角柱体, 而非图 2所示的长方体。 具体来说, 旋转台 100a的多个承载表面 104a在正视 视角中构成三角形。每一承载表面 104a上方均设置有至少一承载台 400a, 以便 承载待加工物。于本实施方式中,承载及卸载机械 (未绘示)可相对于面向上方的 承载表面 104a所配置,镭射源 (未绘示:)可相对于面向左下方的承载表面 104a所 配置, 而影像撷取装置 (未绘示:)可相对于面向右下方的承载表面 104a所配置。
当然, 本发明还可有其它多种实施例, 在不背离本发明精神及其实质的情 况下, 熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形, 但
这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。 工业应用性
本发明可利用多面体的不同表面来承载待加工物, 而非利用圆盘式平台的 单一盘面来承载待加工物, 可降低加工作业所需的空间, 而利于厂房的空间规
Claims
1. 一种加工系统, 其特征在于, 包含:
一旋转台, 该旋转台具有相对的两端表面, 以及介于该些端表面之间的多 个承载表面;
至少一转轴, 连接该旋转台的该些端表面;
一旋转驱动机, 连接该转轴;
多个承载台, 分别位于该旋转台的该些承载表面上; 以及
多个加工机, 分别相对该些承载台配置。
2. 如权利要求 1 所述的加工系统, 其特征在于, 该转轴与一重力方向相 交。
3. 如权利要求 1 所述的加工系统, 其特征在于, 该些加工机其中之一为 一镭射源,该镭射源具有一放射方向,该放射方向通过该些承载表面其中之一。
4. 如权利要求 3所述的加工系统, 其特征在于, 该放射方向所通过的该 承载表面具有一法线方向,该法线方向与一重力方向以向量共起点的形式定义 出一夹角 Θ, 其中 0° Θ 90°。
5. 如权利要求 3所述的加工系统, 其特征在于, 该些加工机其中另一者 为一影像撷取装置, 该影像撷取装置与该镭射源分别位于该旋转台的相对两 侧, 用以撷取至少一影像。
6. 如权利要求 5所述的加工系统, 其特征在于, 更包含:
一校正装置, 电性连接该影像撷取装置及该镭射源,用以根据该影像而校 正该镭射源的移动路径。
7. 如权利要求 5所述的加工系统, 其特征在于, 更包含:
一光源, 位于该旋转台内。
8. 如权利要求 1所述的加工系统, 其特征在于, 更包含:
一装载机械, 其中该些承载表面其中至少一者与一重力方向垂直, 该装载 机械用以将至少一待加工物放置于与该重力方向垂直的该承载表面上方。
9. 如权利要求 1所述的加工系统, 其特征在于, 更包含:
一卸载机械, 其中该些承载表面其中至少一者与一重力方向垂直, 该卸载 机械用以取出位在与该重力方向垂直的该承载表面上方的至少一已加工物。
10. 如权利要求 1所述的加工系统, 其特征在于, 每一该些承载台均包含
背对该旋转台的一加工面, 以及位于该加工面中的至少一真空吸附孔; 而该加 工系统更包含一真空源, 连接该些承载台的该些真空吸附孔。
11. 如权利要求 10所述的加工系统, 其特征在于, 更包含:
多个电磁阀, 分别连接于该真空源与该些承载台的该些真空吸附孔之间。
12. 如权利要求 10所述的加工系统, 其特征在于, 每一该些承载台更具 有至少一真空吸附槽, 该真空吸附槽位于该加工面中, 其中该真空吸附孔开设 于该真空吸附槽的内壁。
13. 如权利要求 1所述的加工系统, 其特征在于, 更包含:
一吸尘源; 以及
多个吸尘接口, 该吸尘源选择性地与该些吸尘接口其中至少一者相连通, 且每一该些承载台均包含至少一吸尘孔,该些吸尘接口分别连通至该些承载台 的该些吸尘孔。
14. 如权利要求 13所述的加工系统, 其特征在于, 更包含:
一致动器, 连接该吸尘源, 以推动该吸尘源选择性地与该些吸尘接口其中 至少一者相连通。
15. 如权利要求 13所述的加工系统, 其特征在于, 该些加工机其中之一 为一镭射源, 该吸尘源通过该些吸尘接口其中之一, 连通至与该镭射源相对的 该承载台的该吸尘孔。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310058770.7 | 2013-02-25 | ||
CN2013100587707A CN103170730A (zh) | 2013-02-25 | 2013-02-25 | 加工系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014127499A1 true WO2014127499A1 (zh) | 2014-08-28 |
Family
ID=48631155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/001640 WO2014127499A1 (zh) | 2013-02-25 | 2013-12-24 | 加工系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140238959A1 (zh) |
CN (1) | CN103170730A (zh) |
TW (1) | TW201433401A (zh) |
WO (1) | WO2014127499A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103170730A (zh) * | 2013-02-25 | 2013-06-26 | 友达光电股份有限公司 | 加工系统 |
CN105252199B (zh) * | 2015-10-30 | 2017-02-01 | 上海德梅柯汽车装备制造有限公司 | 一种多车身共用的多面体旋转焊装工装 |
US10642132B1 (en) * | 2019-04-02 | 2020-05-05 | Ortery Technologies, Inc. | Turntable and light box for ring photography |
CN113001038B (zh) * | 2021-03-05 | 2022-11-25 | 赣州市恒邦金属制品有限公司 | 一种具有废屑收集功能的激光切割装置 |
CN114367753A (zh) * | 2021-12-17 | 2022-04-19 | 浙江嘉泰激光科技股份有限公司 | 一种激光切管机机体的水平调节机构及其调节方法 |
CN115922091A (zh) * | 2023-03-15 | 2023-04-07 | 中国科学院长春光学精密机械与物理研究所 | 快速制备超疏液表面的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030089690A1 (en) * | 2001-09-10 | 2003-05-15 | Semiconductor Energy Laboratory Co., Ltd. | Laser apparatus, laser irradiation method, semiconductor manufacturing method, semiconductor device, and electronic equipment |
WO2007012056A2 (en) * | 2005-07-19 | 2007-01-25 | Hansen Thomas C | Tangential manufacturing system |
US20100147811A1 (en) * | 2008-12-11 | 2010-06-17 | Sobey Mark S | Apparatus for laser scribing of dielectric-coated semiconductor wafers |
CN202607073U (zh) * | 2012-04-23 | 2012-12-19 | 吴周令 | 一种全自动半导体晶片激光加工装置 |
CN103170730A (zh) * | 2013-02-25 | 2013-06-26 | 友达光电股份有限公司 | 加工系统 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2531808B2 (ja) * | 1988-12-02 | 1996-09-04 | ゼネラル・エレクトリック・カンパニイ | 管理された環境中において部品集合体を自動的に溶接するための装置 |
JPH0758191A (ja) * | 1993-08-13 | 1995-03-03 | Toshiba Corp | ウェハステージ装置 |
US6403916B1 (en) * | 2000-05-12 | 2002-06-11 | Isostar International, Inc. | System and automated method for producing welded end closures in thin-walled metal tubes |
JP2002172479A (ja) * | 2000-09-20 | 2002-06-18 | Seiko Epson Corp | レーザ割断方法、レーザ割断装置、液晶装置の製造方法並びに液晶装置の製造装置 |
CN2480097Y (zh) * | 2000-12-13 | 2002-03-06 | 中国科学院力学研究所 | 用于辊类表面毛化的具有可控分布毛化点的激光加工装置 |
JP2003340666A (ja) * | 2002-05-27 | 2003-12-02 | Dainippon Screen Mfg Co Ltd | 吸着テーブルとこれを用いた処理装置 |
CN100495751C (zh) * | 2007-12-03 | 2009-06-03 | 重庆大学 | 一种带led缺陷检测装置的焊线机 |
US8378252B2 (en) * | 2009-05-29 | 2013-02-19 | Electro Scientific Industries, Inc. | Method and apparatus for hybrid resolution feedback of a motion stage |
CN102442142A (zh) * | 2010-09-30 | 2012-05-09 | 富泰华工业(深圳)有限公司 | 镭射雕刻机台 |
CN202701611U (zh) * | 2012-06-12 | 2013-01-30 | 武汉帝尔激光科技有限公司 | 一种真空吸盘 |
CN102785050A (zh) * | 2012-08-14 | 2012-11-21 | 安徽巨一自动化装备有限公司 | 多面体旋转机构 |
CN102825392A (zh) * | 2012-09-12 | 2012-12-19 | 昆山允可精密工业技术有限公司 | 一种新型真空吸附工作台 |
-
2013
- 2013-02-25 CN CN2013100587707A patent/CN103170730A/zh active Pending
- 2013-04-03 TW TW102112112A patent/TW201433401A/zh unknown
- 2013-11-13 US US14/078,938 patent/US20140238959A1/en not_active Abandoned
- 2013-12-24 WO PCT/CN2013/001640 patent/WO2014127499A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030089690A1 (en) * | 2001-09-10 | 2003-05-15 | Semiconductor Energy Laboratory Co., Ltd. | Laser apparatus, laser irradiation method, semiconductor manufacturing method, semiconductor device, and electronic equipment |
WO2007012056A2 (en) * | 2005-07-19 | 2007-01-25 | Hansen Thomas C | Tangential manufacturing system |
US20100147811A1 (en) * | 2008-12-11 | 2010-06-17 | Sobey Mark S | Apparatus for laser scribing of dielectric-coated semiconductor wafers |
CN202607073U (zh) * | 2012-04-23 | 2012-12-19 | 吴周令 | 一种全自动半导体晶片激光加工装置 |
CN103170730A (zh) * | 2013-02-25 | 2013-06-26 | 友达光电股份有限公司 | 加工系统 |
Also Published As
Publication number | Publication date |
---|---|
CN103170730A (zh) | 2013-06-26 |
TW201433401A (zh) | 2014-09-01 |
US20140238959A1 (en) | 2014-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014127499A1 (zh) | 加工系统 | |
TWI719055B (zh) | 加工裝置的搬運機構 | |
JP5833959B2 (ja) | 基板処理装置および基板処理方法 | |
US8376428B2 (en) | Integrated gripper for workpiece transfer | |
KR101982354B1 (ko) | 로봇 핸드 | |
US20120237682A1 (en) | In-situ mask alignment for deposition tools | |
KR101155534B1 (ko) | 진공처리장치 | |
KR101013019B1 (ko) | 웨이퍼 이송 시스템 및 이송 방법 | |
JP2015032617A (ja) | 搬送ロボットの教示データ補正方法、および搬送システム | |
TWI667726B (zh) | 工件搬送裝置、電子零件的製造裝置、工件搬送方法以及電子零件的製造方法 | |
JP6491017B2 (ja) | 被加工物の搬送トレー | |
KR101409752B1 (ko) | 기판 이송 로봇을 이용한 멀티 챔버 기판 처리 장치 | |
JP2007157996A (ja) | ワーク搬送装置及びワーク搬送方法 | |
TW201347935A (zh) | 機器人系統 | |
TW201611154A (zh) | 晶圓負載及卸載 | |
TW201738995A (zh) | 基板搬送裝置、基板處理裝置及基板處理方法 | |
TWI730134B (zh) | 機器人、機器人之控制方法、教示用治具及機器人之教示方法 | |
KR102401361B1 (ko) | 다이 본딩 장치 | |
JP6154130B2 (ja) | 電子部品装着装置及び電子部品装着方法 | |
JP4315788B2 (ja) | 半導体装置の製造方法及び製造装置 | |
TW201601206A (zh) | 脆性材料基板之邊材分離方法及邊材分離裝置 | |
JP6468856B2 (ja) | 移載装置 | |
JP2012023302A (ja) | ウエハ並べ替え装置 | |
CN116403953A (zh) | 一种mocvd晶圆集成上下片装置 | |
JP2019087546A (ja) | コレット調整装置、コレット調整方法、およびダイボンダ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13875524 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13875524 Country of ref document: EP Kind code of ref document: A1 |