[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014122982A1 - 研磨材スラリー - Google Patents

研磨材スラリー Download PDF

Info

Publication number
WO2014122982A1
WO2014122982A1 PCT/JP2014/051062 JP2014051062W WO2014122982A1 WO 2014122982 A1 WO2014122982 A1 WO 2014122982A1 JP 2014051062 W JP2014051062 W JP 2014051062W WO 2014122982 A1 WO2014122982 A1 WO 2014122982A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
shell
abrasive particles
abrasive
particles
Prior art date
Application number
PCT/JP2014/051062
Other languages
English (en)
French (fr)
Inventor
智恵 乾
前澤 明弘
奈津紀 伊藤
啓介 溝口
高橋 篤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014122982A1 publication Critical patent/WO2014122982A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • C09K3/1445Composite particles, e.g. coated particles the coating consisting exclusively of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other

Definitions

  • the present invention relates to an abrasive slurry containing core / shell type abrasive particles having a specific multilayer structure.
  • oxides of rare earth elements that have traditionally been mainly composed of cerium oxide and lanthanum oxide, neodymium oxide, praseodymium oxide, etc. A mixture of is used.
  • Other abrasives include diamond, iron oxide, aluminum oxide, zirconium oxide, colloidal silica, etc., but when compared from the viewpoint of polishing rate and surface smoothness of the polished object, cerium oxide Is known to be effective, and cerium oxide is now widely used.
  • cerium oxide itself is unevenly distributed worldwide, and it is difficult to say that supply is stable. In order to solve such problems, it is desired to develop an abrasive that can perform polishing with high accuracy while reducing the amount of cerium oxide used.
  • a method for producing a high-purity cerium oxide-based abrasive that can be precisely polished in a finishing process such as optical glass a purified aqueous solution of cerium nitrate, cerium chloride, cerium sulfate, etc. , Carbonate, oxalate, acetate, etc. are added to precipitate as a product such as cerium carbonate, cerous oxalate, cerous acetate, etc., and after this precipitate is filtered and dried, A method for obtaining cerium oxide by firing is known.
  • Patent Document 1 discloses that a cerium-based abrasive having a crystallite diameter in the range of 20 to 40 nm is obtained by firing the above product in a temperature range of 850 to 1100 ° C. for 1 to 10 hours. Is described. In this method, a cerium-based abrasive is produced by mixing a mixed rare earth oxide and a mixed rare earth fluoride and pulverizing them. However, since the cerium-based abrasive obtained by the method disclosed in Patent Document 1 has a low cerium concentration on the outermost surface of the particles, the polishing ability is low and a sufficient polishing rate cannot be obtained.
  • These glass substrates have excellent chemical resistance and are difficult to process because they are hard. With the cerium-based abrasive obtained by the method described in Patent Document 1, the polishing rate becomes extremely slow. End up. In addition, since these glass substrates for hard disks are harder than conventional glass substrates, a higher pressure is applied compared to the case of polishing a conventional glass substrate, and therefore the substrate is easily scratched. There's a problem.
  • Non-Patent Document 1 proposes a method of obtaining abrasive particles by heating and stirring an aqueous solution containing a cerium (III) nitrate aqueous solution, an yttrium nitrate (III) aqueous solution and urea.
  • Patent Document 2 discloses that a core formed of base particles made of an inorganic material having a specific gravity smaller than that of cerium oxide and fine particles containing cerium oxide having a particle diameter smaller than that of the base particles are bonded to the outside of the base particles.
  • An abrasive containing composite abrasive grains having a shell formed by being bonded together is described.
  • This abrasive is added to a dispersion in which silicon oxide particles as base particles are dispersed while stirring, and further added to a dispersion in which cerium oxide particles are dispersed while stirring.
  • the obtained solid particles (silicon oxide) and fine particles (cerium oxide) bonded to each other through a binder (aluminum oxide) are subjected to solid-liquid separation, and the separated solid portion is fired at 700 to 900 ° C. It is described that it can be obtained by pulverizing a fired product with a dry jet mill.
  • the polishing rate was low. This is considered to be due to the presence of many elements (yttrium) other than cerium on the particle surface in order to adjust the particle shape and particle size distribution.
  • abrasive particles containing particles produced by the method described in Non-Patent Document 1 and cerium oxide bonded by a binder obtained by the method described in Patent Document 2 have a wide particle size distribution, Abrasive particles tend to agglomerate during the long-term use process or the long-term storage process of the abrasive slurry.
  • scratches may occur on the glass substrate due to the generated aggregates, etc., and surface smoothness Or a tempered glass substrate mainly composed of aluminosilicate as described above or a crystallized glass substrate mainly composed of lithium silicate has a problem of causing a reduction in polishing rate.
  • the problem of the present invention has been made in view of the above problems and situations, and the solution problem is that the amount of cerium oxide used can be reduced, and the abrasive particles can be dispersed without causing aggregation even during long-term storage.
  • An object is to provide an abrasive slurry that is excellent in stability and scratch resistance during polishing and has a high polishing rate.
  • the present inventor has a structure in which the core and the shell have different compositions, the core is mainly composed of an oxide of a specific metal element, and the shell is oxidized as the main component.
  • the abrasive slurry is characterized in that the amount of cerium oxide used can be reduced, the core / shell type abrasive particles do not agglomerate, have excellent dispersion stability and scratch resistance during polishing, and the polishing rate is high.
  • the inventors have found that a fast abrasive slurry can be obtained, and have reached the present invention.
  • An abrasive slurry containing core-shell type abrasive particles each having a core and a shell having different compositions The core of the core-shell type abrasive particle contains an oxide of at least one metal element selected from the following metal element group as a main component, and the shell contains cerium oxide as a main component and the following as a subcomponent: Containing at least one metal element oxide selected from the group of metal elements, The core and shell contain at least one oxide of the same metal element (including cerium oxide), and the coefficient of variation in the particle size distribution of the core-shell type abrasive particles represented by the following formula (1) 20% or less, An abrasive slurry, wherein an average value of zeta potential of the core-shell type abrasive particles is in a range of ⁇ 120 to ⁇ 30 mV.
  • Coefficient of variation of particle size distribution of core / shell type abrasive particles (standard deviation of particle size distribution of core / shell type abrasive particles / average particle size of core / shell type abrasive particles) ⁇ 100 2.
  • the cerium oxide concentration profile in the shell of the core-shell type abrasive particles has a concentration gradient in which the cerium oxide concentration increases from the interface region between the core and the shell toward the outermost surface region of the shell.
  • the average content of cerium oxide in the outermost surface region of the core-shell type abrasive particles is in the range of 60 to 90% by mass, according to any one of items 1 to 4 The abrasive slurry described.
  • the average particle diameter of primary particles of the core-shell type abrasive particles is in a range of 0.02 to 2.00 ⁇ m, according to any one of items 1 to 6, Abrasive slurry.
  • the core-shell type abrasive particles are characterized in that the ratio of spherical particles to the total number of core-shell type abrasive particles in the abrasive slurry is 80% by number or more.
  • the abrasive slurry according to any one of the above.
  • the primary particle ratio (particle%) of the core / shell type abrasive particles is 85% or more within a pH range of 3.0 to 11.0 in terms of 25 ° C.
  • the graph which shows an example of the other profile of the composition ratio of the element in the process in which the abrasive particle of the core-shell type and the shell composition according to the present invention has a constant metal concentration and the abrasive particle is formed An example of a photograph near the center of a particle obtained by performing cross-section processing on a core-shell type abrasive particle having a structure in which the composition of the shell according to the present invention continuously changes.
  • Element profile showing an example of an elemental analysis result in the vicinity of the particle center obtained by performing cross-sectional processing on the LL plane of the core-shell type abrasive particles having a configuration in which the shell composition according to the present invention continuously changes Example of scanning micrograph of core / shell type abrasive particles according to the present invention
  • the abrasive slurry of the present invention is an abrasive slurry containing core-shell type abrasive particles each composed of a core and a shell having different compositions, wherein the core of the core-shell type abrasive particles is the metal An oxide of at least one metal element selected from an element group as a main component, and the shell includes cerium oxide as a main component and an oxide of at least one metal element selected from the metal element group as a subcomponent.
  • the core and shell contain at least one oxide of the same metal element (including cerium oxide), and the particle size distribution of the core-shell type abrasive particles represented by the above formula (1) And the average value of the zeta potential of the core-shell type abrasive particles is in the range of ⁇ 120 to ⁇ 30 mV.
  • This feature is a technical feature common to the inventions according to claims 1 to 9.
  • the core-shell type abrasive particles contained in the abrasive slurry of the present invention can form core particles with extremely high monodispersity by forming an oxide of a specific metal element as a main component as a core. .
  • the main component is cerium oxide having excellent polishing ability, and the core and shell are formed by the presence of the same kind of metal element oxide (including cerium oxide). By doing so, crystal growth of the core and the shell can be performed stably, and abrasive particles having extremely high monodispersibility and excellent polishing ability can be obtained.
  • the zeta potential of the core-shell type abrasive particles in the abrasive slurry is set to ⁇ 120 to ⁇ 30 mV from the viewpoint of sufficiently exhibiting the characteristics of such highly monodispersed core-shell type abrasive particles.
  • the core-shell type abrasive particles are prevented from agglomerating in the polishing process, and the core-shell type abrasive particles are not agglomerated and excellent in dispersion stability and scratch resistance during polishing.
  • an abrasive slurry having a high polishing rate could be obtained.
  • the amount of cerium oxide used can be reduced by using core-shell type abrasive particles having the above composition.
  • the zeta potential of the core / shell type abrasive particles according to the present invention by setting the zeta potential of the core / shell type abrasive particles according to the present invention to ⁇ 30 mV or less, aggregation of the core / shell type abrasive particles in the polishing step can be prevented, and at the time of polishing. Excellent scratch resistance can be obtained. Further, if the zeta potential is ⁇ 120 mV or more, the repulsive force with the glass substrate which is the object to be polished and the surface is negatively charged can be suppressed, efficient polishing can be performed, and sufficient polishing speed can be achieved. Can be obtained.
  • the range of the zeta potential of the core-shell type abrasive particles according to the present invention is preferably in the range of ⁇ 90 to ⁇ 40 mV from the viewpoint of further manifesting the above effects.
  • the pH of the abrasive slurry in terms of 25 ° C. is adjusted within a range of 3.0 to 11.0 with a pH adjuster. preferable.
  • a pH adjuster preferable.
  • the core / shell type abrasive particles in the abrasive slurry can exist in a stable state, and damage to the core / shell type abrasive particles by strong acid or strong alkali is caused. Can be prevented.
  • the surfactant within a concentration range of 0.1 to 20% by mass.
  • the zeta potential of the core-shell type abrasive particles in the abrasive slurry can be adjusted within the range of the zeta potential specified above, and dispersion stability can be improved. An abrasive slurry containing excellent abrasive particles can be obtained.
  • the cerium oxide concentration profile in the shell of abrasive particles has a concentration gradient in which the cerium oxide concentration increases from the interface region between the core and the shell toward the outermost surface region of the shell, or polishing.
  • the average content of cerium oxide in the outermost surface region of the material particles is preferably in the range of 60 to 85% by mass.
  • the core / shell type abrasive particles have an average primary particle diameter within the range of 0.02 to 2.00 ⁇ m, and the core / shell type abrasive particles have a ratio of 80 spherical particles. % Or more, and the primary particle ratio (particle%) of the core-shell type abrasive particles is 85% or more within a pH range of 3.0 to 11.0 in terms of 25 ° C. This is a preferred embodiment from the viewpoint of obtaining stable abrasive particles.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the core-shell type abrasive particles according to the present invention are core-shell type abrasive particles each composed of a core and a shell having different compositions, and the core is made of Ti, Sr, Y, Ba, Sm, Eu, Gd. And an oxide of at least one metal element selected from the metal atom group of Tb as a main component, and the shell is at least one selected from the metal element group constituting the core as a subcomponent and cerium oxide as the main component.
  • the core and the shell contain at least one oxide (including cerium oxide) of the same metal element.
  • the main component in the core or shell is defined as a state in which the content ratio of the metal element is 55 atomic% or more with respect to the total element ratio (number of atomic%), preferably 70% or more. It is.
  • the subcomponent is defined as a state in which the content ratio of the metal element is less than 45 atomic% with respect to the total element ratio (number of atomic%).
  • FIG. 1 is a schematic view showing the structure of core / shell type abrasive particles according to the present invention (hereinafter also simply referred to as abrasive particles according to the present invention).
  • the core-shell type abrasive particles P having a structure in which the shell 2 is formed on the surface of the core 1 according to the present invention are the cores 1 that constitute the inside including the central part of the core-shell type abrasive particles P (
  • an inorganic crystal having a crystal structure having a shell 2 hereinafter also referred to as a shell layer) that constitutes an inner core portion or a core portion
  • an outer shell portion also referred to as an “outermost layer” of abrasive particles.
  • the core 1 may have a multilayer structure having a plurality of layers.
  • the boundary line serving as the interface between the core 1 and the shell 2 is clearly separated as shown in FIGS. 1, 5A and 5B, the core as shown in FIGS. 3A and 3B.
  • the constituent components of 1 and the constituent components of the shell 2 may be mixed in the vicinity of the boundary and the boundary line may be unclear.
  • the elemental analysis in the particles is carried out by using a focused ion beam (FB-2000A) manufactured by Hitachi High-Technologies for the obtained abrasive particles. Then, the cross-section of the particle center was cut out, and a surface passing through the vicinity of the center of the particle (for example, the cut surface LL shown in FIG. 6) was cut out. From the cut surface LL, elemental analysis is performed using STEM-EDX (HD-2000) manufactured by Hitachi High-Technologies to determine the distribution of particle composition, for example, the element profile in the particle as shown in FIG. it can.
  • FB-2000A focused ion beam
  • HD-2000 STEM-EDX
  • the feature of the element profile of the abrasive particles according to the present invention is that the core is composed mainly of an oxide of at least one metal element selected from the metal element group, the shell is composed of cerium oxide as a main component, It is comprised with the oxide of the at least 1 type of metal element chosen from the said metal element group used for a structure of a core as a subcomponent. Further, the core and the shell are characterized by containing at least one oxide (including cerium oxide) of the same metal element.
  • the configuration of the abrasive particles is not particularly limited as long as the above conditions are satisfied, but the abrasive particles having the following configuration are more preferable.
  • the first form of the typical particle profile of the abrasive particles according to the present invention is that the core is formed with a uniform composition in the entire region, and the shell is continuously formed from the core interface toward the shell outermost surface region. Is a configuration that changes. Such a particle profile is referred to as Type A.
  • the core is formed with a uniform composition in the entire region as in Type A, and the shell is formed with a uniform composition in the entire region as well.
  • Such a particle profile is referred to as Type B.
  • abrasive particles composed of yttrium oxide as an oxide of at least one metal element selected from a metal element group and cerium oxide as a main component forming a shell will be described as an example. To do.
  • Type A abrasive particles The type A in which the shell continuously changes in composition from the core interface toward the outermost surface region of the shell will be described later in detail, but as an example, as shown in FIG. , Shell formation step B, solid-liquid separation step C, and baking step D.
  • FIG. 3A and FIG. 3B show typical element profiles of abrasive particles produced by the production flow shown in FIG.
  • FIG. 3A is a profile of the composition ratio of elements in the course of forming abrasive particles, with the abrasive particles having a core-shell structure according to the present invention and the composition of the shell continuously changing.
  • the graph indicated by reference numeral 3 represents the ratio of yttrium elements to the total element concentration (yttrium + cerium) (atomic%)
  • the graph indicated by reference numeral 4 represents the ratio of cerium elements to the total element concentration (yttrium + cerium) (atomic atoms). Several percent).
  • the display of the element profile is common to FIGS. 3B, 5A, and 5B.
  • the core formation step A As a profile of the composition ratio of the element shown in FIG. 3A, in the core formation step A, only the yttrium element is supplied without supplying the cerium element and the yttrium oxide element ratio (reference numeral 3) is 100%. Form. Subsequently, in the shell forming step B, a solution containing yttrium element: cerium element in a ratio of 30:70 (molar ratio) is supplied to the solution containing the core particles, and the reference numeral 3 indicates from the interface between the core and the shell. The yttrium element ratio (atomic number%) shown continuously decreases, and conversely, the cerium element ratio (atomic number%) indicated by reference numeral 4 increases continuously, and finally, the surface composition of the particles is oxidized. Abrasive particles of 30% yttrium and 70% cerium oxide are formed.
  • the surface composition referred to in the present invention is expressed as the average content of each element constituting the region from the outermost surface to 2.5 mass% in the depth direction out of the total mass constituting the abrasive particles.
  • the element profile shown in FIG. 3B is different from that shown in FIG. 3A in that the core is formed not with yttrium oxide alone (100%) but with an yttrium oxide element ratio (reference numeral 3) of 80% and a cerium oxide element ratio (reference numeral 4) of 20. An example formed at a ratio of% is shown.
  • the abrasive particles having the profile of FIG. 3B are more stable than the abrasive particles having the profile of FIG. 3A, although the ratio of the cerium element in the entire particle is high, but the composition change width between the core and the shell is small. It has the characteristics that the crystal growth and the relaxation of stress received on the particle surface can be performed more smoothly.
  • the core and the shell are configured to contain at least one oxide of the same metal element (including cerium oxide).
  • the same metal element including cerium oxide.
  • yttrium oxide is a common oxide
  • yttrium oxide and cerium oxide are common oxides.
  • Type B abrasive particles The type B in which the core and the shell are formed in a uniform composition ratio in each region will be described later in detail, but as an example, as shown in FIG. It is manufactured through a separation step C1, a shell formation step B, a solid-liquid separation step C2, and a firing step D.
  • FIG. 5A and FIG. 5B show typical element profiles of abrasive particles produced by the production flow shown in FIG.
  • FIG. 5A is a graph showing an element profile of the core-shell type abrasive particles according to the present invention, wherein the core and shell compositions are composed of metal element concentrations having a constant composition.
  • the cerium element is not supplied, but only the yttrium element is supplied to form a core in which the yttrium oxide indicated by reference numeral 3 is 100% throughout the core.
  • the core (core particles) once formed is separated in the solid-liquid separation step C1, and after adding excess yttrium components, the core is hydrated, and in the next shell formation step B, the yttrium element: cerium element is 30:70.
  • a solution containing (molar ratio) is supplied, and from the interface between the core and shell to the shell surface, the yttrium element ratio (broken line indicated by reference numeral 3, atomic number%) is 30%, and the cerium element ratio (indicated by reference numeral 4)
  • a shell having a uniform composition with a solid line (atomic number%) of 70% is formed.
  • FIG. 5B shows an example in which the core is formed with a uniform element ratio of 80% yttrium oxide and 20% cerium oxide, instead of yttrium oxide alone (100%), compared to FIG. 5A.
  • the elemental composition of the shell is the same as 5A.
  • the core and the shell are configured to contain at least one oxide of the same metal element (including cerium oxide).
  • the same metal element including cerium oxide.
  • yttrium oxide is a common oxide
  • yttrium oxide and cerium oxide are common oxides.
  • the core is mainly composed of an oxide of at least one metal element selected from the following metal element group.
  • Metal element group Ti (titanium), Sr (strontium), Y (yttrium), Ba (barium), Sm (samarium), Eu (europium), Gd (gadolinium), Tb (terbium)
  • “having a metal element oxide as a main component” means that the ratio of the metal element oxide to the total element ratio (number of atoms%) constituting the core is 55% or more, preferably 70. % Or more.
  • the metal element is supplied in the form of a salt.
  • a salt for example, nitrates, hydrochlorides, sulfates and the like can be used, but it is preferable to use nitrates with less impurities mixed into the core.
  • the main metal elements include yttrium (yttrium oxide), samarium (samarium oxide), europium (europium oxide), gadolinium (gadolinium oxide), and terbium (terbium oxide). More preferably.
  • the oxide of the metal element constituting the core two or more of the above metal element oxides may be used in combination, and cerium may be used in combination, but preferably, as shown in FIG. 3B or FIG. 5B
  • the main component is composed of yttrium oxide and the subcomponent is cerium oxide.
  • the ratio of cerium oxide in the core is preferably set within an element concentration range of 5 to 30%.
  • the shell according to the present invention is characterized by containing cerium oxide as a main component and an oxide of at least one metal atom selected from the metal atom group as a subcomponent.
  • the main component means that the constituent ratio of cerium oxide in the shell is 55% or more, preferably in the range of 60 to 90%, and more preferably in the range of 60 to 85%. It is.
  • the shell according to the present invention has a concentration gradient in which the cerium oxide concentration increases from the interface region with the core toward the outermost surface region of the shell, as shown in FIGS. 3A and 3B. 5A or 5B, it may be type B, which is a uniform element concentration throughout the shell, but the monodispersity of the particles, crystal growth, composition continuity and cerium From the viewpoint of efficiently reducing the amount of use, type A is more preferable.
  • the average content (number of atoms%) of cerium oxide in the outermost surface region of the particles is preferably in the range of 60 to 90%.
  • the average content of subcomponents (number of atoms%) is in the range of 10 to 40%.
  • the outermost surface region of the particle in the present invention refers to a region from the outermost surface to 5% by mass in the depth direction out of the total mass constituting the abrasive particle, and the cerium oxide in the components constituting this region. Expressed as average content.
  • the shell according to the present invention is characterized in that the subcomponent is an oxide of at least one metal element selected from Ti, Sr, Y, Ba, Sm, Eu, Gd and Tb. Is Y (yttrium).
  • the average content (number of atoms) of subcomponents in the shell is in the range of 10 to 45%, preferably in the range of 10 to 40%.
  • FIG. 7 shows an elemental analysis result (element profile) of abrasive particles in which the cerium oxide ratio in the shell described in FIG. 3A according to the present invention is continuously changed.
  • the element profile in the cross section of the abrasive particle shown in FIG. 7 confirms that the ratio of cerium is high in the region corresponding to the shell near 0.05 ⁇ m and near 0.6 ⁇ m near the surface of the abrasive particle. .
  • the abrasive slurry of the present invention is constituted by dispersing abrasive particles (dispersoid) having the above-described element profiles in a medium (dispersion medium).
  • concentration of the abrasive particles in the abrasive slurry of the present invention cannot be generally defined by setting the required polishing accuracy or polishing rate, but is preferably in the range of about 0.5 to 30% by mass. More preferably, it is in the range of 1.0 to 20% by mass, and particularly preferably in the range of 2.0 to 10% by mass.
  • the medium As the medium (dispersion medium), water is mainly used to form an aqueous dispersion. Moreover, it is preferable to add a surfactant, a pH adjuster, etc. to the abrasive slurry as appropriate.
  • the above-described abrasive particles according to the present invention are present in a controlled manner within the range of ⁇ 120 to ⁇ 30 mV as the average value of the zeta potential in the medium. .
  • the zeta potential as used in the present invention can be explained as follows.
  • the abrasive particles When the abrasive particles are present in a dispersed state in the dispersion medium, an electric double layer is formed between the abrasive particles and the dispersion medium.
  • an ion-fixed layer also referred to as an adsorption layer
  • the ion diffusion layer is formed, and the potential of the ion diffusion layer is referred to as a zeta potential and is usually expressed in mV.
  • the average value of the zeta potential of the abrasive particles in the abrasive slurry of the present invention is in the range of ⁇ 120 to ⁇ 30 mV, and more preferably in the range of ⁇ 90 to ⁇ 40 mV.
  • the characteristics of the core-shell type abrasive particles according to the present invention are extremely excellent in monodispersity, and as a result, have high polishing ability and can impart uniform polishing performance. In order to achieve the maximum effect, it is an important factor to strictly control the aggregation of the abrasive particles.
  • the present inventors have determined the zeta potential of the abrasive particles in the abrasive slurry. Controlling the average value within the range of ⁇ 120 to ⁇ 30 mV suppresses the aggregation of abrasive particles in the abrasive slurry and causes a decrease in polishing ability (polishing rate) even when used for a long time. Thus, an abrasive slurry excellent in stability could be obtained.
  • the abrasive particles in the abrasive slurry is ⁇ 30 mV or less, the abrasive particles are excellent in agglomeration in the abrasive slurry even when used for a long period of time. Dispersion stability can be realized in the abrasive particles, and generation of polishing scratches and the like during polishing by the aggregate can be suppressed. Further, if the zeta potential of the abrasive particles is ⁇ 120 mV or more, the surface of many glass substrates is negatively charged, and excessive electrical repulsion between the abrasive particles and the glass substrate surface can be suppressed. As a result, a sufficient polishing rate can be achieved.
  • the method for applying the zeta potential defined in the present invention to the abrasive particles present in the dispersion medium is not particularly limited.
  • the selection of a surfactant with optimal characteristics, adjustment of the amount of addition, addition of an additive having a charge, setting of the pH value of the abrasive slurry, etc. are appropriately selected or combined to achieve a desired zeta potential. Can be controlled.
  • the zeta potential according to the present invention can be measured using, for example, an electrophoretic Doppler method using a nano particle analyzer “HORIBA nano Partica SZ-100 (manufactured by Horiba, Ltd.)”.
  • the zeta potential of 500 or more abrasive particles can be measured and obtained from the arithmetic average value.
  • a dispersion medium whose pH is adjusted with an acid or a base so as to have a pH equivalent to the abrasive slurry to be used, or a medium solution in which abrasive particles are separated from the abrasive slurry are used. Then, a 5.0 mass% abrasive slurry is diluted 1000 times, and the zeta potential is measured with respect to 500 or more particles using the diluted solution, and obtained from the arithmetic average value.
  • the abrasive particles according to the present invention are characterized by excellent monodispersibility and a narrow particle size distribution. Specifically, the coefficient of variation of the particle size distribution of the abrasive particles is 20% or less. Characteristic, preferably 15% or less. The lower limit is desirably 0%, but is practically 1% or more.
  • the coefficient of variation of the particle size distribution referred to in the present invention can be determined according to the following method.
  • the particle diameter referred to in the present invention is represented by the diameter in the case of a circle, and if it is an irregular shape other than a circle, the projected area is converted into a circle and displayed as the diameter at that time.
  • the arithmetic average particle size ( ⁇ m) of 100 abrasive particles is obtained, and the standard deviation of the particle size distribution is obtained based on the data.
  • the average particle size ( ⁇ m) of the abrasive particles and the standard deviation of the particle size distribution are obtained by the above measurement, and the coefficient of variation (%) of the particle size distribution can be obtained according to the following formula.
  • Coefficient of variation of particle size distribution (%) (standard deviation of particle size distribution / average particle size) ⁇ 100 If the variation coefficient (%) of the particle size distribution is 20% or less, it is an abrasive particle having an extremely narrow particle size distribution, and when the abrasive slurry is prepared, the variation in abrasiveness due to the variation in particle size, etc. Therefore, uniform polishing can be performed.
  • the pH in terms of 25 ° C. is preferably adjusted within the range of 3.0 to 11.0 with a pH adjuster, more preferably 5.0 to 9. It is in the range of 0.
  • the pH of the abrasive slurry of the present invention By controlling the pH of the abrasive slurry of the present invention within the range specified above, the influence on the abrasive particles in a strong acid environment or a strong alkali environment can be suppressed.
  • the zeta potential of the abrasive particles defined in the present invention can be easily controlled within a desired range.
  • the pH value according to the present invention can be determined by measuring at 25 ° C. using, for example, a Lacom Tester desktop PH & conductivity meter (PH1500 manufactured by ASONE Co., Ltd.).
  • a pH adjuster used for adjusting the pH of the abrasive slurry to a desired pH value range for example, hydrochloric acid, phosphoric acid, phosphate, citric acid, sodium citrate, adipic acid, sodium acetate, Sodium carbonate, sodium sulfite, sodium acetate, triethanolamine, sodium hydroxide and the like can be appropriately selected and used.
  • a surfactant in the abrasive slurry of the present invention, can be contained from the viewpoint of adjusting the dispersion stability of the abrasive particles contained therein and the zeta potential within a desired range. It is preferably in the range of 1 to 20% by mass, more preferably in the range of 0.2 to 10% by mass. If the surfactant content is 0.1% by mass or more, it can contribute to the dispersion stability of the abrasive particles, a zeta potential of ⁇ 30 mV or less can be obtained, and if it is 20% by mass or less, A zeta potential of ⁇ 120 mV or more can be obtained, and adverse effects on the polishing performance due to the surfactant can be eliminated.
  • Surfactants applicable to the present invention include anionic surfactants (anionic surfactants), cationic surfactants (cationic surfactants), and nonionic surfactants (nonionic interfaces). Activators), betaine surfactants (amphoteric surfactants) and the like, and also polymer dispersants. Among them, the abrasive particle surface is negatively charged (zeta potential). Is in the range of ⁇ 120 to ⁇ 30 mV), it is preferable to select from the above surfactants and polymer dispersants excluding the cationic surfactant (cationic surfactant).
  • anionic surfactant examples include fatty acid soap, N-acyl-N-methylglycine salt, N-acyl-N-methyl- ⁇ -alanine salt, N-acyl glutamate, alkyl ether carboxylate, acylation Peptides, alkyl sulfonates, alkyl benzene sulfonates, alkyl naphthalene sulfonates, dialkyl sulfosuccinates, alkyl sulfoacetates, ⁇ -olefin sulfonates, N-acyl methyl taurines, sulfated oils, higher alcohol sulfates Salts, secondary higher alcohol sulfates, alkyl ether sulfates, secondary higher alcohol ethoxy sulfates, polyoxyethylene alkylphenyl ether sulfates, monoglycolates, fatty acid alkylolamide sulfates, alkyl ethers Examples include acid ester
  • betaine type surfactant examples include carboxybetaine type and sulfobetaine type. Specifically, aminocarboxylate, imidazolinium betaine, lauryldimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, dodecylaminomethyldimethyl.
  • Sulfopropylbetaine octadecylaminomethyldimethylsulfopropylbetaine, cocamidopropylbetaine, cocamidopropylhydroxysultain, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, sodium lauroylglutamate, potassium lauroylglutamate, Examples include lauroylmethyl- ⁇ -alanine, lauryldimethylamine-N-oxide, oleyldimethylamine-N-oxide.
  • Nonionic surfactants include, for example, glyceryl laurate, glyceryl monostearate, sorbitan fatty acid ester, sucrose fatty acid ester, polyoxyethylene alkyl ether, pentaethylene glycol monododecyl ether, octaethylene glycol monododecyl ether, polyoxy Ethylene alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene hexitan fatty acid ester, sorbitan fatty acid ester polyethylene glycol, lauric acid diethanolamide, oleic acid diethanolamide, stearic acid diethanolamide, octyl Glucoside, decylglucoside, laurylglucoside, cetanol, steari Alcohol, oleyl alcohol, and the like.
  • the following water-soluble resin can be used as the water-soluble polymer dispersant.
  • the water-soluble resin styrene-acrylic acid-acrylic acid alkyl ester copolymer, styrene-acrylic acid copolymer, styrene-maleic acid copolymer, styrene-maleic acid-acrylic acid alkyl ester copolymer are preferably used.
  • Polymer styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid alkyl ester copolymer, styrene-maleic acid half ester copolymer, vinyl naphthalene-acrylic acid copolymer, vinyl naphthalene-maleic acid copolymer It is a water-soluble resin such as.
  • anionic polymer dispersant examples include polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymers, and potassium acrylate-acrylonitrile copolymers.
  • Acrylic resins such as vinyl acetate-acrylic acid ester copolymer, acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester Copolymers, styrene-acrylic resins such as styrene- ⁇ -methylstyrene-acrylic acid copolymer, styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-maleic acid copolymer, styrene- Maleic anhydride copolymer, vinylnaphthalene-acrylic Rylic acid copolymer, vinyl naphthalene-maleic acid copolymer, vinyl acetate-ethylene copolymer, vinyl acetate-fatty acid vinyl ethylene copolymer, vinyl acetate-maleic
  • the average particle diameter of the primary particles is preferably in the range of 0.10 to 2.00 ⁇ m.
  • the average particle size according to the present invention is a method similar to that described for the coefficient of variation of the particle size distribution, and a scanning micrograph (SEM image) is used to take a particle image of about 100 abrasive particles. And it can obtain
  • SEM image scanning micrograph
  • the abrasive particles according to the present invention preferably have an average particle diameter of the core (core particles) in the range of 0.01 to 0.9 ⁇ m. By setting it within this range, it is possible to maintain high durability against pressure applied during polishing.
  • the thickness of the shell is preferably within the range of 0.005 to 0.55 ⁇ m. By setting the thickness of the shell within this range, it is possible to obtain excellent monodispersity, and it is possible to obtain core / shell type abrasive particles excellent in polishing rate and polishing uniformity.
  • the abrasive particles contained in the abrasive slurry differ in the required level for the average particle diameter depending on the application, but as the surface finish accuracy of the polished glass substrate and the like increases, the abrasive contained in the abrasive slurry used It is necessary to make the particles fine.
  • an average particle diameter is 2.0 micrometers or less.
  • the polishing rate of the abrasive particles according to the present invention is higher than that of an abrasive such as colloidal silica.
  • the average particle size of the core-shell type abrasive particles according to the present invention is preferably in the range of 0.02 to 2.0 ⁇ m, and more preferably 0.05 to 1.5 ⁇ m. Within the range is more preferable.
  • the shape of the abrasive particles according to the present invention is not particularly limited, and may be spherical, elliptical, rectangular or indeterminate, but a high surface finish accuracy can be obtained for the substrate to be polished.
  • the abrasive particles preferably have a ratio of spherical particles of 80% by number or more.
  • the spherical particle as used in the present invention is a photomicrograph (SEM image) taken of abrasive particles, and has a circular shape, where a is the short axis and b is the short axis. If the ratio is in the range of 0.80 to 1.00, it is defined as a spherical particle.
  • the primary particle ratio (particle%) of the abrasive particles is preferably 85% or more, more preferably 90% or more within a pH range of 3.0 to 11.0. It is.
  • the abrasive slurry of the present invention is composed of abrasive particles excellent in monodispersity and has a high polishing rate.
  • the polishing rate (polishing rate) is preferably in the range of 0.30 to 0.80 ⁇ m / min.
  • the polishing rate referred to in the present invention can be determined by measuring, for example, according to the following method.
  • the polishing machine used for polishing is a machine that polishes the surface to be polished with a polishing cloth while supplying abrasive slurry in which core / shell type abrasive particles are dispersed in a dispersion medium such as water to the surface to be polished. It is.
  • the abrasive slurry has only a water dispersion medium and a concentration of 100 g / L.
  • polishing is performed by circulatingly supplying abrasive slurry at a flow rate of 5 L / min.
  • a 65 mm ⁇ glass substrate is used as an object to be polished, and a polishing cloth made of polyurethane is used as the polishing cloth.
  • the polishing pressure on the polished surface is set to 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester is set to 100 min ⁇ 1 (rpm), and polishing is performed for 30 minutes.
  • the thickness ( ⁇ m) before and after polishing is measured by Nikon Digimicro (MF501), the polishing amount ( ⁇ m) per minute is calculated from the thickness displacement, and the polishing rate ( ⁇ m / min) can be obtained.
  • type A abrasive particles (FIGS. 3A and 3B) that form a uniform core and a shell in which the composition changes continuously are used.
  • Examples include a manufacturing method, and a manufacturing method of type B abrasive particles (FIGS. 5A and 5B) that form a uniform composition core and a uniform composition shell.
  • the production method of type A abrasive particles according to the present invention is a production of an embodiment comprising four steps of a core formation step A, a shell formation step B, a solid-liquid separation step C, and a firing step D.
  • This is a method for producing abrasive particles having an element profile as shown in FIG. 3A or 3B.
  • the core formation step A is at least one selected from Ti (titanium), Sr (strontium), Y (yttrium), Ba (barium), Sm (samarium), Eu (europium), Gd (gadolinium), and Tb (terbium).
  • the metal element salt is formed, and the core 1 of the precursor of the abrasive particles mainly composed of the salt of the element is formed.
  • a yttrium salt and a precipitant are dissolved in water to prepare a solution having a predetermined concentration.
  • the seed crystal of the core 1 is formed by heating and stirring the solution at 80 ° C. or higher.
  • a solution prepared with a yttrium salt is further added to the prepared solution, and the mixture is heated and stirred at 80 ° C. or higher.
  • a solution that starts heating and stirring is referred to as a reaction solution.
  • core formation step A from Ti (titanium), Sr (strontium), Y (yttrium), Ba (barium), Sm (samarium), Eu (europium), Gd (gadolinium) and Tb (terbium) dissolved in water
  • nitrates, hydrochlorides, sulfates, and the like can be used, but it is preferable to use nitrates that are less contaminated with products.
  • the precipitating agent may be an alkaline compound that generates a basic carbonate when mixed with water together with the element salt and heated, and urea compounds, ammonium carbonate, ammonium hydrogen carbonate, and the like are preferable.
  • urea compounds include urea salts (eg, nitrates and hydrochlorides) such as N, N′-dimethylacetylurea, N, N′-dibenzoylurea, benzenesulfonylurea, p-toluenesulfonylurea, trimethylurea. Tetraethylurea, tetramethylurea, triphenylurea, tetraphenylurea, N-benzoylurea, methylisourea, ethylisourea and the like, and urea alone is also included.
  • urea-based compounds urea is particularly preferable in that a precipitate is slowly generated by being gradually hydrolyzed and a uniform precipitate is obtained.
  • a basic carbonate insoluble in water for example, a basic carbonate of yttrium
  • the deposited precipitate can be dispersed in a monodispersed state.
  • a basic carbonate of cerium is also formed in the shell formation step described later, a continuous layer structure of basic carbonate can be formed.
  • the addition rate of the aqueous solution containing yttrium is preferably within the range of 0.003 to 5.5 mol / L per minute, and is added to the reaction solution while heating and stirring at 80 ° C. or higher. Is preferred. By setting the addition rate within the above range, spherical abrasive particles excellent in monodispersibility are easily formed.
  • the added urea is easily decomposed by heating and stirring at 80 ° C. or higher.
  • the concentration of urea to be added is preferably 5 to 50 times the yttrium ion concentration, for example. This is because it is possible to synthesize spherical abrasive particles exhibiting monodispersity by setting the ion concentration and urea concentration in the aqueous solution of yttrium within the ranges.
  • the shape of the stirrer is not particularly specified, but in order to obtain higher stirring efficiency, a rotor / stator type axial flow stirrer is used. It is preferable to do.
  • Shell formation process B In the method for producing type A abrasive particles, the shell forming step B is performed continuously following the core forming step A.
  • an aqueous solution prepared from yttrium nitrate (III) and cerium nitrate (III) is added to a reaction solution in which a basic carbonate of yttrium is dispersed for a predetermined time at a constant rate, and the basic yttrium is outside the core 1.
  • cerium salt used for the preparation of the aqueous solution it is preferable to use a nitrate with less contamination of the product, so the case where cerium (III) nitrate is used is shown, but this is not a limitation. If necessary, hydrochloride, sulfate, etc. can be used.
  • the addition rate of the aqueous solution added in the shell formation step B is preferably in the range of 0.003 to 5.5 mol / L per minute. This is because by setting the addition rate within the above range, spherical abrasive particles having excellent monodispersibility are easily formed.
  • the concentration ratio of cerium contained in the aqueous solution to be added is preferably 85% or less. This is because, when the ratio of the cerium concentration in the aqueous solution to be added is greater than 85%, when the addition is performed for the same addition time as in the case of adding an aqueous solution prepared to 85% or less, the formed abrasive particles are monodispersed. This is because it does not show properties and tends to aggregate in a plate shape.
  • the reaction solution is preferably heated and stirred at 80 ° C. or higher while being added to the aqueous solution at the addition rate. This is because when heated and stirred at 80 ° C. or higher, decomposition of urea added in the core formation step A easily proceeds.
  • Solid-liquid separation process C is a step of solid-liquid separation of the precursor of the core / shell type abrasive particles in which the shell 2 is formed in the shell formation step B from the reaction solution.
  • the obtained core / shell type abrasive particle precursor may be dried and then transferred to the firing step D as necessary.
  • Firing step D In the firing step D, the precursor of the core / shell type abrasive particles obtained in the solid-liquid separation step C is in the range of 500 to 1200 ° C. for 1 to 5 hours in air or in an oxidizing atmosphere. Bake with.
  • the precursor of the core / shell type abrasive particles is a desired core / shell type polishing composed of a metal element oxide by converting carbon dioxide from the basic carbonate into an oxide by calcination. Material particles are obtained.
  • the method for producing type B abrasive particles in which the core and the shell according to the present invention are both composed of a uniform composition comprises a core formation step A, a solid-liquid separation step C1, a shell formation step B, This is a manufacturing method comprising five steps of a solid-liquid separation step C2 and a firing step D, and is a method for manufacturing abrasive particles having an element profile as shown in FIG. 5A or FIG. 5B.
  • Core formation process A The core forming step A in type B is the same as the core forming step A in type A, and forms a core having a uniform composition as shown in FIG. 5A or 5B.
  • the solid-liquid separation step C1 is a step in which the core (core particles) formed in the core formation step A is solid-liquid separated from the reaction solution and dried.
  • Shell formation process B In the shell formation step B, the core (core particles) separated in the solid-liquid separation step C1 is redispersed in water or the like, and then a shell having a uniform composition is formed by the same method as the shell formation step B in type A. It is a process to do.
  • Solid-liquid separation process C2 The solid-liquid separation step C2 is performed by the same method as the solid-liquid separation step C in Type A.
  • Firing step D The firing step D is performed by the same method as the firing step D in type A, and produces type B abrasive particles having a uniform composition core and a uniform composition shell.
  • the core / shell type abrasive particles according to the present invention are added to and dispersed in a solvent such as water to prepare the abrasive slurry of the present invention.
  • a surfactant also referred to as a dispersant
  • the abrasive slurry is circulated and supplied to the polishing machine using a supply pump.
  • polishing process The glass substrate is brought into contact with the upper and lower surface plates of the polishing machine to which the polishing pad (polishing cloth) is applied, and the pad and the glass are moved relative to each other under pressure while supplying the abrasive slurry to the contact surface. It is polished by that.
  • Abrasive Particle Degradation Abrasive particles are used under pressure as shown in the polishing step. For this reason, the core-shell type abrasive particles contained in the abrasive slurry gradually collapse and become finer as the polishing time elapses. Since the miniaturization of the core / shell type abrasive particles causes a decrease in the polishing rate, the core / shell type abrasive particles according to the present invention having a small change in the particle size distribution before and after polishing can be suitably used. .
  • Example 1 Preparation of abrasive particles >> [Preparation of abrasive particles 1] According to the method described below, abrasive particles 1 having a structure in which the elemental composition of the shell as shown in FIG. 3A continuously changes were prepared according to the steps shown in FIG.
  • (1) Core formation process A a) Preparation of reaction solution After preparing 10 L of 0.01 mol / L yttrium nitrate (III) aqueous solution (hereinafter simply referred to as yttrium nitrate), urea is added to the yttrium nitrate aqueous solution at a concentration of 0.25 mol / L.
  • the reaction solution was prepared in such a manner as to prepare a reaction solution, and after sufficiently stirring, heating and stirring were started at 90 ° C.
  • Shell formation step B Preparation of dispersion 1B With respect to dispersion 1A containing core particles prepared in (1)
  • Core formation step A ⁇ 1 liquid> A 1.0 mol / L yttrium nitrate aqueous solution was added at a rate of 0.30 ml / min.
  • 1st liquid and 2nd liquid were added simultaneously to prepare dispersion 1B containing a precursor of abrasive particles in which a shell was formed on core particles.
  • abrasive particles 2 In the preparation of the abrasive particles 1, (1) the core forming step A was changed to the following conditions, and the core portion as shown in FIG. 3B was composed of yttrium oxide and cerium oxide, and the composition of the shell Abrasive material particles 2 having a structure in which the thickness continuously changes were prepared.
  • (1) Core formation process A a) Preparation of reaction solution After preparing 10 L of an aqueous solution containing 0.008 mol / L yttrium nitrate and 0.002 mol / L cerium nitrate, the concentration of urea is 0.25 mol / L in the aqueous yttrium nitrate solution. After stirring sufficiently, heating and stirring were started at 90 ° C.
  • abrasive particles 3 Preparation of abrasive particles 3
  • an abrasive particle 3 having a uniform composition of the core and shell as shown in FIG. 5A in the entire region was prepared according to the process shown in FIG.
  • Shell formation step B Preparation of dispersion 3B
  • the core particles separated in the above (2) solid-liquid separation step C1 are uniformly dispersed in a primary particle state in 10 L of pure water using a homogenizer.
  • Add urea to an aqueous solution containing 003 mol / L yttrium nitrate and 0.007 mol / L cerium nitrate so that the concentration of urea is 0.25 mol / L, stir well, and then start heating and stirring at 90 ° C did.
  • Firing step D The precursor of the abrasive particles separated in the above (4) solid-liquid separation step C2 was fired at 600 ° C. to obtain core / shell type abrasive particles 3 having the element profile shown in FIG. 5A.
  • abrasive particles 4 In the preparation of the abrasive particles 3, (1) the core forming step A was changed to the following conditions in the same manner, and the core and shell as shown in FIG. 5B had a uniform composition and different element ratios. Abrasive particles 4 composed of yttrium oxide and cerium oxide were prepared.
  • Core formation process A a) Preparation of reaction solution After preparing 10 L of an aqueous solution containing 0.008 mol / L yttrium nitrate and 0.002 mol / L cerium nitrate, the mixed solution of yttrium nitrate / cerium nitrate contains urea at 0.25 mol / L. After adding to a concentration and stirring sufficiently, heating and stirring were started at 90 ° C.
  • aqueous urea solution 10 L of water was prepared, urea was added so as to have a concentration of 0.20 mol / L, and the mixture was sufficiently stirred and then heated and stirred until it reached 90 ° C.
  • abrasive particles Preparation of abrasive particles
  • the precursor of abrasive particles was separated from the dispersion 5A obtained in b) above with a membrane filter, and the separated precursor of abrasive particles was calcined at 600 ° C to obtain cerium oxide.
  • cerium oxide was obtained, and abrasive particles 5 composed of one layer composed of 50% yttrium oxide were obtained.
  • reaction solution 10 L of water was prepared, urea was added to this water so as to have a concentration of 0.20 mol / L, and after sufficient stirring, heating and stirring were started at 90 ° C.
  • Dispersion 6B To Dispersion 6A containing the core particles obtained in b) above, 1.0 mol / L cerium nitrate aqueous solution was heated at 90 ° C. for 10 minutes at an addition rate of 1.0 ml / min. The mixture was added with stirring to form a shell to prepare dispersion 6B containing a precursor of abrasive particles.
  • abrasive particles Preparation of abrasive particles
  • the precursor of abrasive particles is separated from the dispersion 6B obtained in the above c) by a membrane filter and fired at 600 ° C., and the core is composed of yttrium oxide and the shell is composed of cerium oxide.
  • Abrasive particles 6 to be prepared were prepared.
  • abrasive particles 7 In the preparation of the abrasive particles 4, (1) in place of the dispersion 4A in the core forming step A, a dispersion 7A in which the concentrations of the yttrium nitrate aqueous solution and the cerium nitrate aqueous solution are changed to 10 times as follows is used. In the same manner, abrasive particles 7 having a wide particle size distribution (coefficient of variation: 136%) were prepared.
  • Dispersion 7A In the preparation of abrasive particles 4, (1) In the reaction solution containing the seed crystal obtained in the core formation step A, ⁇ 1 liquid> 10.0 mol / L yttrium nitrate aqueous solution at an addition rate of 0.8 ml / min, ⁇ Part 2> A 10.0 mol / L cerium nitrate aqueous solution. At an addition rate of 0.2 ml / min, While heating and stirring at 90 ° C., 60 minutes was added at the same time to prepare dispersion 7A containing a core composed of basic carbonate.
  • abrasive particles 8 In the preparation of the abrasive particles 4 described above, (3) Shell formation step B was carried out in the same manner except that the dispersion 8B prepared by changing the concentration of the yttrium nitrate aqueous solution and the cerium nitrate aqueous solution to 10 times as described below was used. Thus, abrasive particles 8 having a wide particle size distribution (coefficient of variation: 148%) were prepared.
  • Shell formation process B a) Preparation of aqueous solution
  • (2) the core particles separated in the solid-liquid separation step C1 are uniformly dispersed in 10 L of pure water in a primary particle state using a homogenizer; Urea was added to an aqueous solution containing 003 mol / L yttrium nitrate and 0.007 mol / L cerium nitrate so that the concentration of urea was 0.25 mol / L, stirred sufficiently, and then heated and stirred at 90 ° C. for 1 hour. .
  • abrasive particles 9 were prepared in the same manner except that gadolinium (III) nitrate was used instead of yttrium (III) nitrate as the metal element used for forming the core.
  • the abrasive particles 9 are core / shell type abrasive particles that do not contain a metal element common to the core and the shell.
  • abrasive particles 10 In the preparation of the abrasive particles 2, (2) the addition rate of the 1.0 mol / L yttrium nitrate aqueous solution in the shell formation step B was 0.40 ml / min, and the addition rate of the 1.0 mol / L cerium nitrate aqueous solution was 0. Abrasive particles 10 were prepared in the same manner except that each was changed to 60 ml / min.
  • abrasive particles 11 In the preparation of the abrasive particles 2, (2) the addition rate of the 1.0 mol / L yttrium nitrate aqueous solution in the shell formation step B was 0.15 ml / min, and the addition rate of the 1.0 mol / L cerium nitrate aqueous solution was 0. Abrasive particles 11 were prepared in the same manner except that each was changed to .85 ml / min.
  • abrasive particles 12 Preparation of abrasive particles 12
  • the addition rate of the 1.0 mol / L yttrium nitrate aqueous solution in the shell formation step B was 0.10 ml / min
  • the addition rate of the 1.0 mol / L cerium nitrate aqueous solution was 0.
  • Abrasive particles 12 were prepared in the same manner except that each was changed to 90 ml / min.
  • Table 1 shows the composition of each abrasive particle prepared as described above.
  • the coefficient of variation (%) of the particle size distribution was determined from the average particle size ( ⁇ m) of the abrasive particles determined by the above measurement and the standard deviation of the particle size distribution according to the following formula.
  • Preparation of abrasive slurry >> [Preparation of abrasive slurry 1] After the following constituent materials were mixed, a dispersion treatment was performed with a homogenizer to prepare an abrasive slurry 1.
  • Abrasive particles 1 (average particle size: 0.56 ⁇ m, coefficient of variation of particle size distribution: 14%) 5.0 parts by mass Pure water 95.0 parts by mass [Preparation of abrasive slurry 2] After the following constituent materials were mixed, a dispersion treatment was performed with a homogenizer to prepare an abrasive slurry 2.
  • Abrasive particles 1 (average particle size: 0.56 ⁇ m, coefficient of variation of particle size distribution: 14%) 5.0 parts by mass Surfactant (polymer dispersant: Polyty A550, acrylic acid-maleic acid copolymer, lion 0.15 parts by mass Pure water 94.8 parts by mass [Preparation of abrasive slurry 3 to 42]
  • abrasive slurries 3 to 42 were prepared in the same manner except that the types of abrasive particles and the addition amount of the surfactant were changed to the combinations shown in Tables 2 and 3. .
  • pH value the addition of a pH adjuster was not performed in particular. As a tendency, the pH value shifted to the alkali side with the addition of the surfactant.
  • Abrasive slurries 43 to 48 were prepared in the same manner as in the preparation of the abrasive slurry 9 except that the pH value was changed to the values shown in Table 3 using a pH adjuster.
  • the pH adjustment to the acid side was performed using acetic acid or hydrochloric acid, and the adjustment to the alkali side was performed using sodium hydroxide.
  • a medium solution obtained by separating abrasive particles from the abrasive slurry to be measured 5.0 mass% of the abrasive slurry was diluted 1000 times, and 500 pieces at a liquid temperature of 25 ° C.
  • the zeta potential of the abrasive particles was measured, and the average zeta potential (mV) was measured from the arithmetic average value.
  • Each abrasive slurry was stored immediately after preparation and after stirring for 3 days at 40 ° C., and then the primary particle ratio was measured according to the following method to evaluate the storage stability of the abrasive slurry.
  • the primary particle ratio is a scale for measuring the presence or absence of aggregates, and the higher the primary particle ratio, the better the particle uniformity, and the change in the primary particle ratio after stirring and storage at 40 ° C. for 3 days compared to immediately after preparation. The smaller the value, the better the storage stability of the abrasive slurry.
  • the primary particle ratio is measured by taking a scanning micrograph (for example, FIG. 8) of the abrasive slurry and presenting the primary particles independently without causing aggregation (secondary particles or more). The abrasive particle ratio was measured.
  • the measured primary particle ratio was ranked according to the following criteria.
  • Primary particle ratio is 95% or more ⁇ : Primary particle ratio is 85% or more and less than 95% ⁇ : Primary particle ratio is 75% or more and less than 85% ⁇ : Primary particle ratio is 65% or more and less than 75% XX: Primary particle ratio is less than 65% [Evaluation of abrasion scratch resistance] Using the abrasive slurry immediately after preparation used in the evaluation of the storage stability of the abrasive slurry and the abrasive slurry which was stirred and stored at 40 ° C. for 3 days, the polishing scratch resistance was evaluated according to the following method.
  • the above polishing slurry was circulated and supplied at a flow rate of 5 L / min for polishing.
  • a polishing object a 65 mm ⁇ glass substrate was used, and a polishing cloth made of polyurethane was used as the polishing cloth.
  • the polishing pressure on the polished surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 100 min ⁇ 1 (rpm), and polishing was performed for 30 minutes.
  • polishing scratch resistance was evaluated according to the following criteria.
  • There is no scratch that can be visually recognized. ⁇ : There is only one very weak scratch, and there is no problem. ⁇ : Two weak scratches are generated. A: The occurrence of weak scratches is 3 or more and 10 or less, which is a quality of practical concern. XX: 11 or more obvious scratches are generated, and the quality is not practical. (Evaluation of speed) Each abrasive slurry immediately after preparation was circulated and supplied at a flow rate of 5 L / min for polishing. A 65 mm ⁇ glass substrate was used as the object to be polished, and a polishing cloth made of polyurethane was used as the polishing cloth.
  • the polishing pressure on the polished surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 100 min ⁇ 1 (rpm), and polishing was performed for 30 minutes.
  • the thickness ( ⁇ m) before and after polishing was measured with Nikon Digimicro (MF501), and the polishing amount per minute ( ⁇ m) was calculated from the thickness displacement to determine the polishing rate 1 ( ⁇ m / min).
  • the thickness ( ⁇ m) before and after the polishing was measured with Nikon Digimicro (MF501) in the same manner, and the polishing amount per minute ( ⁇ m) from the thickness displacement. was calculated, and a polishing rate 2 ( ⁇ m / min) after 10 polishing operations was determined.
  • the measured polishing rate 1 and polishing rate 2 were ranked according to the following criteria, respectively. If the polishing speed 2 rank is not lowered with respect to the polishing speed 1 or within the range of the reduction width 1 rank and the polishing speed 2 rank is ⁇ or more, the maintainability (sustainability) of the polishing performance is excellent. Represents that.
  • the polishing rate is 0.60 ⁇ m or more.
  • O The polishing rate is 0.50 ⁇ m or more and less than 0.60 ⁇ m.
  • The polishing rate is 0.40 ⁇ m or more and less than 0.50 ⁇ m.
  • Polishing rate is less than 0.30 ⁇ m Table 2 and Table 3 show the results obtained as described above.
  • the cores and shells having different compositions defined in the present invention are included, the core is composed mainly of an yttrium oxide, and the shell is composed of the main components. And the core and shell have at least one oxide of the same metal element (including cerium oxide), and the variation coefficient of the particle size distribution is 20 % Of the abrasive particles having an average zeta potential in the range of ⁇ 120 to ⁇ 30 mV, the storage stability of the slurry, the polishing It can be seen that the scratch resistance and the polishing rate are excellent.
  • the abrasive slurry having an average value of zeta potential in the range of ⁇ 120 to ⁇ 30 mV is the storage stability of the slurry, Excellent effect on polishing scratch resistance and polishing rate, but when the data potential exceeds -30 mV, the abrasive particles aggregate and the slurry storage stability, polishing scratch resistance and polishing rate are degraded. I understand.
  • the data potential is less than ⁇ 120 mV, electrical repulsion with a negatively charged glass substrate is particularly high, which causes a reduction in polishing rate.
  • abrasive slurries 25 to 27 including abrasive particles 5 having a uniform composition which are comparative examples
  • abrasive slurries 28 to 30 each including abrasive particles 6 each having a core made of yttrium alone and a shell made of cerium alone.
  • Abrasive particles 9 to 36 having a coefficient of variation of particle size distribution exceeding 20% and containing polydisperse abrasive particles 7 and 8, and abrasive particles 9 containing no common element between the core composition and the shell composition
  • the abrasive slurry 37 to 39 containing, even when the zeta potential of the particles is within the range of ⁇ 120 to ⁇ 30 mV as defined in the present invention, sufficient slurry storage stability, abrasion scratch resistance and polishing rate are obtained. Can't get.
  • Example 2 Preparation of abrasive particles >>
  • the yttrium nitrate used in the formation of the core and shell was samarium (III) nitrate, europium (III) nitrate, gadolinium (III) nitrate, and terbium nitrate (III), respectively.
  • Abrasive particles 13 to 16 were prepared in the same manner except for changing to.
  • abrasive slurries 49 to 49 were similarly performed except that the above-prepared abrasive particles 13 to 16 were used in place of the abrasive particles 2, respectively. 60 was prepared.
  • abrasive particles formed using titanium (IV) nitrate, strontium nitrate (II), and barium nitrate (II) in the same manner as described above instead of yttrium oxide as the metal element oxide are also shown in Table 5 below. It was confirmed that the same characteristics as described in 1) can be obtained.
  • the abrasive slurry of the present invention can reduce the amount of cerium oxide used, without causing the abrasive particles to agglomerate, excellent dispersion stability and scratch resistance at the time of polishing, and a core with a high polishing rate. It contains shell-type abrasive particles and can be suitably used as an abrasive slurry used for precision polishing in the finishing process of optical glass and semiconductor devices such as glass substrates for hard disks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 本発明の課題は、酸化セリウムの使用量を低減でき、研磨材粒子が長期間にわたる保存で凝集を起こすことなく、分散安定性及び研磨時の耐傷性に優れ、かつ研磨速度が速い研磨材スラリーを提供することである。 本発明の研磨材スラリーは、それぞれで組成が異なるコア・シェル型研磨材粒子を含有し、コア・シェル型研磨材粒子のコアは、特定の金属元素群から選ばれる少なくとも一種の金属元素の酸化物を主成分として含有し、記シェルは、主成分として酸化セリウムと、副成分として特定の金属元素群から選ばれる少なくとも一種の金属元素の酸化物とを含有し、コアとシェルとは、同一の金属元素の酸化物(酸化セリウムを含む)を少なくとも一種含有し、コア・シェル型研磨材粒子の粒子径分布の変動係数が20%以下で、かつ、前記コア・シェル型研磨材粒子のゼータ電位の平均値が、-120~-30mVの範囲内であることを特徴とする。

Description

研磨材スラリー
 本発明は、特定の多層構造を有するコア・シェル型研磨材粒子を含有する研磨材スラリーに関する。
 光学ガラスや半導体デバイスを仕上げ工程で、精密研磨する際に用いられる研磨材としては、従来、酸化セリウムを主成分とし、これに酸化ランタン、酸化ネオジム、酸化プラセオジムなどが加わった希土類元素の酸化物の混合物が使用されている。この他の研磨材としては、ダイヤモンド、酸化鉄、酸化アルミニウム、酸化ジルコニウム、コロイダルシリカ等が挙げられるが、研磨速度、研磨後の被研磨物の表面平滑性の観点から比較したときに、酸化セリウムが有効であることは公知であり、現在、広範囲で酸化セリウムが用いられている。
 しかしながら、酸化セリウム自身は、世界的に偏在化しており、供給が安定化しているとは言い難いのが現状である。このような問題に対し、酸化セリウムの使用量を削減しつつ、高い精度で研磨を行うことができる研磨材の開発が望まれている。
 光学ガラス等の仕上げ工程で精密研磨を行うことのできる、高純度の酸化セリウム系研磨材の製造方法としては、精製された硝酸第一セリウム、塩化第一セリウム、硫酸第一セリウム等の水溶液に、炭酸塩、シュウ酸塩、酢酸塩等を添加して、炭酸第一セリウム、シュウ酸第一セリウム、酢酸第一セリウム等の生成物として沈殿させ、この沈殿物をろ過し、乾燥したのち、焼成して酸化セリウムを得る方法が知られている。
 例えば、特許文献1には、上記生成物を、850~1100℃の温度範囲内で、1~10時間焼成することにより、結晶子径が20~40nmの範囲内にあるセリウム系研磨材が得られる方法が記載されている。この方法では、混合希土類酸化物と混合希土類フッ素化物を混合し、これらを粉砕することで、セリウム系研磨材を製造している。しかしながら、特許文献1で開示されている方法で得られたセリウム系研磨材は、粒子の最表面のセリウム濃度が低いため、研磨能が低く、十分な研磨速度を得ることができていない。
 特に、近年、被研磨物として、ハードディスク用ガラス基板が多く用いられるようになってきたが、ハードディス用ガラス基板に対しては、高速回転で回転した際のディスクのぶれを抑えるため、機械的な特性、特に、硬さと剛性の向上等の要求が年々増加している。これらの機械的特性の要求を満たすために、アルミノシリケートを主成分とする強化ガラス基板やリチウムシリケートを主成分とする結晶化ガラス基板が多く使用されるようになっている。
 これらのガラス基板は、耐薬品性に優れており、硬質であるため加工がしづらく、特許文献1で記載されている方法で得られたセリウム系研磨材では、研磨速度が極端に遅くなってしまう。また、これらのハードディスク用ガラス基板は、従来のガラス基板よりも硬質であるため、従来のガラス基板を研磨する場合と比較して高い圧力をかけることになり、そのため、基板にキズがつきやすいという問題がある。
 一方、非特許文献1では、硝酸セリウム(III)水溶液、硝酸イットリウム(III)水溶液、尿素を混合した水溶液を加熱撹拌して研磨材粒子を得る方法が提案されている。
 また、特許文献2には、酸化セリウムよりも比重が小さい無機材料からなる基粒子により形成されたコアと当該基粒子よりも粒径が小さい酸化セリウムを含む微粒子が当該基粒子の外側に、バインダーにより結合されて形成されたシェルとを有する複合砥粒を含有している研磨材が記載されている。
 この研磨材は、基粒子である酸化ケイ素粒子を分散させた分散液中にバインダーとなる酸化アルミニウムゾルを撹拌しつつ加え、更に、酸化セリウム粒子を分散させた分散液を撹拌しつつ加えて、得られた基粒子(酸化ケイ素)と微粒子(酸化セリウム)がバインダー(酸化アルミニウム)を介して結合した固体を固液分離し、分離された固体部分を700~900℃で焼成した後、得られた焼成物を乾式ジェットミルで粉砕することにより得られることが記載されている。
 この方法では、粒子に、酸化ケイ素からなる基粒子(コア)と、基粒子の外側にバインダーにより結合されて形成された酸化セリウムを含むシェルと、を有するコア/シェル構造を採用することで、酸化セリウムの使用量を削減しながら、従来品と同程度の研磨精度と研磨速度を得ることができるとされている。
 一方、上記非特許文献1に記載されている方法で製造された粒子を焼成し、研磨材としての効果を確認した結果、研磨速度が低かった。これは、粒子形状と粒子径分布を調整するために、粒子表面にセリウム以外の元素(イットリウム)が多く存在していることが原因であると考えられる。
 また、非特許文献1に記載の方法で製造された粒子や特許文献2に記載の方法で得られたバインダーにより結合された酸化セリウムを含む研磨材粒子は、粒度分布が広く、研磨材スラリーの長期間にわたる使用過程、あるいは研磨材スラリーの長期保存過程で研磨材粒子が凝集を起こしやすく、その結果、研磨工程において、発生した凝集体等によりガラス基板等に傷を発生させたり、表面平滑性を損ねたり、あるいは上記のようなアルミノシリケートを主成分とする強化ガラス基板やリチウムシリケートを主成分とする結晶化ガラス基板に対しては、研磨速度の低下を引き起こすという問題を抱えている。
特許第3949147号公報 特開2012-11525号公報
J.Am.Ceram.Soc.,71巻、10号、845~853頁(1988年)
 本発明の課題は、上記問題・状況に鑑みてなされたものであり、その解決課題は、酸化セリウムの使用量を低減でき、研磨材粒子が長期間にわたる保存においても凝集を起こすことなく、分散安定性及び研磨時の耐傷性に優れ、かつ研磨速度が速い研磨材スラリーを提供することである。
 本発明者は、上記課題に鑑み鋭意検討を進めた結果、コアとシェルでそれぞれ組成が異なる構造を有し、コアが特定の金属元素の酸化物を主成分とし、シェルは、主成分として酸化セリウムと、副成分として特定の金属元素の酸化物とを含有し、単分散性が高く、ゼータ電位の平均値が、-120~-30mVの範囲内であるコア・シェル型研磨材粒子を含有することを特徴とする研磨材スラリーにより、酸化セリウムの使用量を低減でき、コア・シェル型研磨材粒子が凝集を起こすことなく、分散安定性及び研磨時の耐傷性に優れ、かつ研磨速度が速い研磨材スラリーを得ることができることを見出し、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.それぞれ組成が異なるコアとシェルとを有するコア・シェル型研磨材粒子を含有する研磨材スラリーであって、
 前記コア・シェル型研磨材粒子の前記コアは、下記金属元素群から選ばれる少なくとも一種の金属元素の酸化物を主成分として含有し、前記シェルは、主成分として酸化セリウムと、副成分として下記金属元素群から選ばれる少なくとも一種の金属元素の酸化物とを含有し、
 前記コアとシェルとは、同一の金属元素の酸化物(酸化セリウムを含む)を少なくとも一種含有し、下式(1)で表されるコア・シェル型研磨材粒子の粒子径分布の変動係数が20%以下であり、
 かつ、前記コア・シェル型研磨材粒子のゼータ電位の平均値が、-120~-30mVの範囲内であることを特徴とする研磨材スラリー。
 金属元素群:Ti(チタン)、Sr(ストロンチウム)、Y(イットリウム)、Ba(バリウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリニウム)、Tb(テルビウム)
 式(1)
   コア・シェル型研磨材粒子の粒子径分布の変動係数(%)=(コア・シェル型研磨材粒子の粒子径分布の標準偏差/コア・シェル型研磨材粒子の平均粒子径)×100
 2.研磨材スラリーの25℃換算のpHが、pH調整剤により、3.0~11.0の範囲内に調整されていることを特徴とする第1項に記載の研磨材スラリー。
 3.界面活性剤を、0.1~20質量%の濃度範囲内で含有することを特徴とする第1項又は第2項に記載の研磨材スラリー。
 4.前記コア・シェル型研磨材粒子の前記シェルにおける酸化セリウム濃度プロファイルが、前記コアとシェルとの界面領域から、前記シェルの最表面領域に向かって、酸化セリウム濃度が増加する濃度勾配を有していることを特徴とする第1項から第3項までのいずれか一項に記載の研磨材スラリー。
 5.前記コア・シェル型研磨材粒子の最表面領域における酸化セリウムの平均含有率が、60~90質量%の範囲内であることを特徴とする第1項から第4項までのいずれか一項に記載の研磨材スラリー。
 6.前記コア・シェル型研磨材粒子のゼータ電位の平均値が、-90~-40mVの範囲内であることを特徴とする第1項から第5項までのいずれか一項に記載の研磨材スラリー。
 7.前記コア・シェル型研磨材粒子の一次粒子の平均粒子径が、0.02~2.00μmの範囲内であることを特徴とする第1項から第6項までのいずれか一項に記載の研磨材スラリー。
 8.前記コア・シェル型研磨材粒子は、研磨材スラリー中の全コア・シェル型研磨材粒子数に対する球状粒子の比率が、80個数%以上であることを特徴とする第1項から第7項までのいずれか一項に記載の研磨材スラリー。
 9.前記コア・シェル型研磨材粒子の一次粒子比率(粒子%)が、25℃換算のpHが3.0~11.0の範囲内で、85%以上であることを特徴とする第1項から第8項までのいずれか一項に記載の研磨材スラリー。
 本発明の上記手段により、酸化セリウムの使用量を低減でき、研磨材粒子が凝集を起こすことなく、分散安定性及び研磨時の耐傷性に優れ、かつ研磨速度が速い研磨材スラリーを得ることができる。
本発明に係るコア・シェル型研磨材粒子の構造の一例を示す模式図 本発明に係るコア・シェル型研磨材粒子の製造工程フローの一例を示す模式図 本発明に係るコア・シェル型でシェルの組成が連続的に変化する構成の研磨材粒子で、研磨材粒子を形成させる過程での元素の組成比率のプロファイルの一例を示すグラフ 本発明に係るコア・シェル型でシェルの組成が連続的に変化する構成の研磨材粒子で、研磨材粒子を形成させる過程での元素の組成比率の他のプロファイルの一例を示すグラフ 本発明に係るコア・シェル型研磨材粒子の製造工程フローの他の一例を示す模式図 本発明に係るコア・シェル型でシェルの組成が一定金属濃度の研磨材粒子で、研磨材粒子を形成させる過程での元素の組成比率のプロファイルの一例を示すグラフ 本発明に係るコア・シェル型でシェルの組成が一定金属濃度の研磨材粒子で、研磨材粒子を形成させる過程での元素の組成比率の他のプロファイルの一例を示すグラフ 本発明に係るシェルの組成が連続的に変化する構成のコア・シェル型研磨材粒子に断面加工を行った粒子中心付近の写真の一例 本発明に係るシェルの組成が連続的に変化する構成のコア・シェル型研磨材粒子にL-L面で断面加工を行った粒子中心付近の元素分析結果の一例を示す元素プロファイル 本発明に係るコア・シェル型研磨材粒子群の走査型顕微鏡写真の一例
 本発明の研磨材スラリーは、それぞれ組成の異なるコアとシェルから構成されるコア・シェル型研磨材粒子を含有する研磨材スラリーであって、前記コア・シェル型研磨材粒子のコアは、前記金属元素群から選ばれる少なくとも一種の金属元素の酸化物を主成分として含有し、前記シェルは、主成分として酸化セリウムと、副成分として前記金属元素群から選ばれる少なくとも一種の金属元素の酸化物とを含有し、前記コアとシェルとは、同一の金属元素の酸化物(酸化セリウムを含む)を少なくとも一種含有し、前式(1)で表されるコア・シェル型研磨材粒子の粒子径分布の変動係数が20%以下であり、かつ、前記コア・シェル型研磨材粒子のゼータ電位の平均値が、-120~-30mVの範囲内であることを特徴とする。この特徴は、請求項1から請求項9までの請求項に係る発明に共通する技術的特徴である。
 本発明の研磨材スラリーが含有するコア・シェル型研磨材粒子は、コアとして特定の金属元素の酸化物を主成分として形成することにより、極めて単分散性の高いコア粒子を形成することができる。更に、コア粒子表面上にシェルを被覆する方法として、研磨能に優れた酸化セリウムを主成分とし、更にコアとシェルとが同種の金属元素の酸化物(酸化セリウムを含む)を存在させて形成することにより、コアとシェルとの結晶成長を安定して行うことができ、極めて単分散性が高く、研磨能に優れた研磨材粒子を得ることができる。
 一方、このような単分散性の高い研磨材粒子では、研磨材スラリー中において凝集を起こしやすく、凝集により、粒子本来の特性を十分に発揮することができなくなり、凝集体による傷の発生や平面平滑性の損出等を生じる場合がある。
 本発明では、このような単分散性の高いコア・シェル型研磨材粒子の特性を十分に発揮させる観点から、研磨材スラリー中におけるコア・シェル型研磨材粒子のゼータ電位を-120~-30mVの範囲内に制御することにより、研磨工程におけるコア・シェル型研磨材粒子の凝集を抑制し、コア・シェル型研磨材粒子が凝集を起こすことなく、分散安定性及び研磨時の耐傷性に優れ、かつ研磨速度が速い研磨材スラリーを得ることができたものである。加えて、上記のような組成からなるコア・シェル型研磨材粒子とすることにより、酸化セリウムの使用量を低減することができる。
 本発明においては、本発明に係るコア・シェル型研磨材粒子のゼータ電位を-30mV以下とすることにより、研磨工程におけるコア・シェル型研磨材粒子の凝集を防止することができ、研磨時における優れた耐傷性を得ることができる。また、ゼータ電位が-120mV以上であれば、研磨対象であり、表面が負電荷に帯電しているガラス基板との反発力を抑制でき、効率的な研磨を行うことができ、十分な研磨速度を得ることができる。
 本発明に係るコア・シェル型研磨材粒子のゼータ電位の範囲としては、更には、上記効果をより発現できる観点から、-90~-40mVの範囲内であることが好ましい。
 本発明における実施態様としては、本発明の効果発現の観点から、研磨材スラリーの25℃換算のpHが、pH調整剤により、3.0~11.0の範囲内に調整されていることが好ましい。このようなpH範囲とすることにより、研磨材スラリー中のコア・シェル型研磨材粒子が安定した状態で存在することができるとともに、コア・シェル型研磨材粒子に対する強酸あるいは強アルカリ等によるダメージを防止することができる。
 また、界面活性剤を、0.1~20質量%の濃度範囲内で含有することが好ましい。研磨材スラリーに界面活性剤を添加することにより、研磨材スラリー中のコア・シェル型研磨材粒子のゼータ電位を、上記で規定するゼータ電位の範囲内に調整することができ、分散安定性に優れた研磨材粒子を含有する研磨材スラリーを得ることができる。
 また、研磨材粒子のシェルにおける酸化セリウム濃度プロファイルが、コアとシェルとの界面領域から、前記シェルの最表面領域に向かって、酸化セリウム濃度が増加する濃度勾配を有していること、あるいは研磨材粒子の最表面領域における酸化セリウムの平均含有率が、60~85質量%の範囲内である構成を有していることが好ましい。このような組成が連続的に変化するシェル構成とすることにより、コアからシェルへの結晶成長が結晶構造に歪みや欠陥を生じることなく安定して、連続的に成長させることができるとともに、研磨能に寄与する酸化セリウムを、使用量を削減しながら、最表面領域に最大量の酸化セリウムを分配することにより、優れた研磨速度を達成することができる。
 また、コア・シェル型研磨材粒子としては、一次粒子の平均粒子径が、0.02~2.00μmの範囲内であること、コア・シェル型研磨材粒子は、球状粒子の比率が80個数%以上であること、コア・シェル型研磨材粒子の一次粒子比率(粒子%)が、25℃換算のpHが3.0~11.0の範囲内で、85%以上であることが、より安定した研磨材粒子を得ることができる観点から、好ましい態様である。
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 《研磨材粒子の構造》
 本発明に係るコア・シェル型研磨材粒子は、それぞれ組成が異なるコアとシェルから構成されるコア・シェル型研磨材粒子であり、コアは、Ti、Sr、Y、Ba、Sm、Eu、Gd及びTbの金属原子群から選ばれる少なくとも一種の金属元素の酸化物を主成分として構成され、シェルは、主成分として酸化セリウムと、副成分として上記コアを構成する金属元素群から選ばれる少なくとも一種の金属元素の酸化物とを含有し、前記コアとシェルとは、同一の金属元素の酸化物(酸化セリウムを含む)を少なくとも一種含む構成であることを特徴とする。本発明でいうコアあるいはシェルにおける主成分とは、当該金属元素の含有比率が、構成する全元素比率(原子数%)に対し55原子数%以上である状態と定義し、好ましくは70%以上である。また、副成分とは、当該金属元素の含有比率が、構成する全元素比率(原子数%)に対し45原子数%未満である状態と定義する。
 以下、本発明に係るコア・シェル型研磨材粒子の構成を、図を交えて説明する。
 図1は、本発明に係るコア・シェル型研磨材粒子(以下、単に本発明に係る研磨材粒子ともいう。)の構造を示す模式図である。
 本発明に係るコア1の表面にシェル2が形成された構造のコア・シェル型の研磨材粒子Pとは、コア・シェル型の研磨材粒子Pの中心部を含む内部を構成するコア1(以下、内核部あるいはコア部ともいう。)と研磨材粒子の外殻部(「最外層」ともいう。)を構成するシェル2(以下、シェル層ともいう。)を有する結晶構造を持つ無機結晶粒子をいう。
 なお、コア1は、複数の層を有する多層構造であっても良い。また、当該コア1とシェル2との界面となる境界線は、図1、図5A、図5Bに示すように明瞭に分離された構成であっても、図3A、図3Bに示すようにコア1の構成成分とシェル2の構成成分が境界付近で混じり合い境界線が不明瞭な構成であってもよい。
 本発明に係るコアとシェルから構成されるコア・シェル型研磨材粒子における粒子内の元素分析は、得られた研磨材粒子に日立ハイテクノロジーズ製 集束イオンビーム(FB-2000A)により粒子中央分部の断面加工を行い、粒子中心付近を通る面(例えば、図6に示す切断面L-L)を切り出した。切断面L-Lより、日立ハイテクノロジーズ製 STEM-EDX(HD-2000)を使用して元素分析を行い、粒子組成の分布、例えば、図7に示すような粒子中の元素プロファイルを求めることができる。
 〔粒子中の元素プロファイル〕
 本発明に係る研磨材粒子の元素プロファイルの特徴は、コアは前記金属元素群から選ばれる少なくとも一種の金属元素の酸化物を主成分として構成され、シェルは主成分として酸化セリウムにより構成され、更に副成分としてコアの構成に用いる前記金属元素群から選ばれる少なくとも一種の金属元素の酸化物とで構成されることである。更には、当該コアとシェルは、同一の金属元素の酸化物(酸化セリウムを含む)を少なくとも一種含有していることを特徴とする。
 研磨材粒子の構成に関しては、上記条件を満たすものであれば特に制限はないが、以下に示す構成からなる研磨材粒子が、より好ましい。
 本発明に係る研磨材粒子の代表的な粒子プロファイルの第一の形態は、コアが全領域で均一の組成で形成され、シェルが、コア界面からシェル最表面領域に向けて、連続的に組成が変化する構成である。このような粒子プロファイルをタイプAと称す。
 本発明に係る研磨材粒子の代表的な粒子プロファイルの第二の形態は、コアがタイプAと同様に全領域で均一の組成で形成され、シェルも同様に、全領域で均一の組成で形成され構成である。このような粒子プロファイルをタイプBと称す。
 以下、研磨材粒子の代表的なプロファイルとして、金属元素群から選ばれる少なくとも一種の金属元素の酸化物とし酸化イットリウム、シェルを形成する主成分として酸化セリウムから構成される研磨材粒子を一例として説明する。
 (タイプAの研磨材粒子)
 シェルがコア界面からシェルの最表面領域に向けて連続的に組成が変化するタイプAは、その製造方法の詳細については後述するが、一例としては、図2に示すように、コア形成工程A、シェル形成工程B、固液分離工程C、及び焼成工程Dを経て製造される。
 図2で示す製造フローで製造される研磨材粒子の代表的な元素プロファイルを図3A及び図3Bに示す。
 図3Aは、本発明に係るコア・シェル型構造を有し、シェルの組成が連続的に変化する構成の研磨材粒子で、研磨材粒子を形成させる過程での元素の組成比率のプロファイルである。符号3で示すグラフは、全元素濃度(イットリウム+セリウム)に対するイットリウム元素の比率(原子数%)であり、符号4で示すグラフは、全元素濃度(イットリウム+セリウム)に対するセリウム元素の比率(原子数%)である。この元素プロファイルの表示は、図3B、図5A及び図5Bにおいても共通である。
 図3Aに示す元素の組成比率のプロファイルとしては、コア形成工程Aでは、セリウム元素の供給は行わずに、イットリウム元素のみを供給して、酸化イットリウム元素比率(符号3)が100%であるコアを形成する。次いで、連続してシェル形成工程Bで、コア粒子を含む溶液に、イットリウム元素:セリウム元素を30:70(モル比)の比率で含む溶液を供給し、コアとシェルとの界面から符号3で示すイットリウム元素比率(原子数%)が連続的に低下し、逆に、符号4で示すセリウム元素比率(原子数%)が連続的に増加し、最終的には、粒子の表面組成として、酸化イットリウムが30%、酸化セリウムが70%の研磨材粒子が形成される。
 本発明でいう表面組成は、研磨材粒子を構成する全質量のうち、最表面から深さ方向で2.5質量%までの領域を構成する各元素の平均含有量として表示する。
 図3Bに示す元素プロファイルは、図3Aに対し、コアの形成を、酸化イットリウム単独(100%)ではなく、酸化イットリウム元素比率(符号3)が80%、酸化セリウム元素比率(符号4)が20%の比率で形成した例を示してある。
 図3Bのプロファイルからなる研磨材粒子は、図3Aのプロファイルからなる研磨材粒子に対し、粒子全体のセリウム元素の使用比率は高いが、コアとシェル間での組成変化幅が小さく、より安定した結晶成長と、粒子表面で受けた応力緩和をよりスムーズに行うことができるという特性を備えている。
 本発明に係る研磨材粒子においては、図3A及び図3Bに示すように、コアとシェルが、同一の金属元素の酸化物(酸化セリウムを含む)を少なくとも一種含有している構成であることを特徴とする。すなわち、図3Aでは、酸化イットリウムが共通の酸化物であり、図3Bにおいては、酸化イットリウム及び酸化セリウムが共通の酸化物となる。
 (タイプBの研磨材粒子)
 コア及びシェルがそれぞれの領域で均一の組成比率で形成されているタイプBは、その製造方法の詳細については後述するが、一例としては、図4に示すように、コア形成工程A、固液分離工程C1、シェル形成工程B、固液分離工程C2、及び焼成工程Dを経て製造される。
 上記図4で示す製造フローで製造される研磨材粒子の代表的な元素プロファイルを図5A及び図5Bに示す。
 図5Aは、本発明に係るコア・シェル型研磨材粒子で、コア及びシェルの組成が一定の金属元素濃度から構成される元素プロファイルを示すグラフである。
 図5Aに示す元素プロファイルとしては、コア形成工程Aでは、セリウム元素の供給は行わずに、イットリウム元素のみを供給して、符号3で示す酸化イットリウムがコア全域において100%からなるコアを形成する。次いで、一旦形成したコア(コア粒子)を固液分離工程C1で分離し、過剰のイットリウム成分を除去した後に加水し、次工程であるシェル形成工程Bで、イットリウム元素:セリウム元素が30:70(モル比)の比率で含む溶液を供給し、コアとシェルとの界面からシェル表面にかけて、イットリウム元素比率(符号3で示す破線、原子数%)が30%、セリウム元素比率(符号4で示す実線、原子数%)が70%の均一組成からなるシェルを形成する。
 図5Bでは、図5Aに対し、コアの形成を、酸化イットリウム単独(100%)ではなく、酸化イットリウムが80%、酸化セリウムが20%の均一元素比率で形成した例を示してある。シェルの元素組成は、5Aと同様である。
 本発明に係る研磨材粒子においては、図5A及び図5Bで示すように、コアとシェルが、同一の金属元素の酸化物(酸化セリウムを含む)を少なくとも一種含有している構成であることを特徴とする。すなわち、図5Aでは、酸化イットリウムが共通の酸化物であり、図5Bにおいては、酸化イットリウム及び酸化セリウムが共通の酸化物となる。
 〔コアの構成材料〕
 本発明に係る研磨材粒子においては、コアは、下記金属元素群から選ばれる少なくとも一種の金属元素の酸化物を主成分として構成されることを特徴とする。
 金属元素群:Ti(チタン)、Sr(ストロンチウム)、Y(イットリウム)、Ba(バリウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリニウム)、Tb(テルビウム)
 本発明でいう「金属元素の酸化物を主成分とする」とは、コアを構成する全元素比率(原子数%)に対する当該金属元素の酸化物の比率が55%以上であり、好ましくは70%以上である。
 コアの形成において、金属元素としては塩の状態で供給され、例えば、硝酸塩、塩酸塩、硫酸塩等を用いることができるが、コアへの不純物の混入が少ない硝酸塩を使用することが好ましい。
 本発明においては、上記金属元素群の中でも、主成分である金属元素としては、イットリウム(酸化イットリウム)、サマリウム(酸化サマリウム)、ユーロピウム(酸化ユーロピウム)、ガドリニウム(酸化ガドリニウム)、テルビウム(酸化テルビウム)であることが更に好ましい。
 コアを構成する金属元素の酸化物としては、上記金属元素の酸化物を2種以上併用してもよく、またセリウムを併用することができるが、好ましくは、図3Bあるいは図5Bで示すように、主成分としては酸化イットリウムで構成し、副成分として酸化セリウムを用いる構成である。コアにおける酸化セリウムの比率としては、5~30%の元素濃度範囲内で設定することが好ましい。
 〔シェルの構成材料〕
 本発明に係るシェルは、主成分として酸化セリウムを含有し、副成分として前記金属原子群から選ばれる少なくとも一種の金属原子の酸化物とを含有する構成であることを特徴とする。本発明でいう主成分とは、シェルにおける酸化セリウムの構成比率が、55%以上であることをいい、好ましくは60~90%の範囲内であり、更に好ましくは、60~85%の範囲内である。
 本発明に係るシェルは、前述のとおり、図3A及び図3Bで示すように、コアとの界面領域からシェルの最表面領域に向かって、酸化セリウム濃度が増加する濃度勾配を有しているタイプAであっても、図5A及び図5Bで示すように、シェル全域において均一元素濃度であるタイプBであってもよいが、粒子の単分散性、結晶の成長性、組成の連続性及びセリウムの使用量を効率的に削減することができる観点から、タイプAがより好ましい。
 また、タイプAであってもタイプBであっても、粒子の最表面領域における酸化セリウムの平均含有率(原子数%)が、60~90%の範囲内であることが好ましく、同様にして副成分の平均含有率(原子数%)は、10~40%の範囲内である。
 本発明でいう粒子の最表面領域とは、研磨材粒子を構成する全質量のうち、最表面から深さ方向で5質量%までの領域をいい、この領域を構成する成分中の酸化セリウムの平均含有量として表示する。
 本発明に係るシェルにおいて、副成分としては、Ti、Sr、Y、Ba、Sm、Eu、Gd及びTbから選ばれる少なくとも一種の金属元素の酸化物であることを特徴とするが、その中でも好ましくは、Y(イットリウム)である。
 また、シェルにおける副成分の平均含有率(原子数%)は、10~45%の範囲内であり、好ましくは、10~40%の範囲内である。
 〔研磨材粒子の元素分析:粒子内元素プロファイル〕
 図6に示すような本発明に係るコアとシェルから構成される研磨材粒子(P)における元素分析は、調製したコア・シェル型研磨材粒子に日立ハイテクノロジーズ製 集束イオンビーム(FB-2000A)により断面加工を行い、図6に示すように粒子中心付近を通る面L-Lを切り出した。切断面L-Lより、日立ハイテクノロジーズ製 STEM-EDX(HD-2000)を使用して元素分析を行い、粒子組成の分布評価を行うことができる。一例として、本発明に係る図3Aに記載のシェルにおける酸化セリウム比率が連続的に変化している研磨材粒子の元素分析結果(元素プロファイル)を図7に示す。図7に示す研磨材粒子の断面における元素プロファイルは、研磨材粒子の表面に近い0.05μm付近及び0.6μm付近であるシェルに相当する領域におけるセリウムの割合が高くなっていることが確認できる。
 《研磨材スラリー及び研磨材粒子の特性値》
 本発明の研磨材スラリーは、上記説明した各元素プロファイルからなる研磨材粒子(分散質)を、媒体(分散媒)中に分散して構成されている。本発明の研磨材スラリーにおける研磨材粒子の濃度は、要求される研磨精度あるいは研磨速度の設定により一概に規定することはできないが、おおむね0.5~30質量%の範囲内であることが好ましく、更に好ましくは1.0~20質量%の範囲内であり、特に好ましくは、2.0~10質量%の範囲内である。
 媒体(分散媒)としては、主には水が用いられ、水系分散体を構成している。また、研磨材スラリーには、界面活性剤、pH調整剤等を適宜添加することが好ましい。
 〔ゼータ電位〕
 本発明の研磨材スラリーにおいては、上記説明した本発明に係る研磨材粒子を、媒体中におけるゼータ電位の平均値として、-120~-30mVの範囲内に制御して存在させることを特徴とする。
 本発明でいうゼータ電位とは、以下のように説明することができる。
 研磨材粒子が分散媒中に分散状態で存在しているとき、研磨材粒子と分散媒間には電気二重層が形成されている。研磨材粒子においては、研磨材粒子表面の電荷と反対電荷のイオンが固着しているイオン固定層(又は吸着層ともいう)があり、更にその外側に、固定層と媒体との電荷を中和する形でイオン拡散層が形成されており、このイオン拡散層が有する電位をゼータ電位といい、通常はmVで表される。
 本発明の研磨材スラリー中における研磨材粒子のゼータ電位の平均値は、-120~-30mVの範囲内であることを特徴とし、更に好ましくは、-90~-40mVの範囲内である。
 本発明に係るコア・シェル型の研磨材粒子の特徴は、上述のように、極めて単分散性に優れ、その結果、研磨能が高く、均一な研磨性能を付与することができるが、その特性を最大限に発揮させるためには、研磨材粒子の凝集を厳密に制御することが重要な要素となる。
 本発明者は、優れた特性を備えた本発明に係る研磨材粒子の特性をいかんなく発揮することができる条件について、鋭意検討を進めた結果、研磨材スラリー中における研磨材粒子のゼータ電位の平均値を、-120~-30mVの範囲内に制御することが、研磨材スラリー中における研磨材粒子の凝集を抑制し、長時間の使用に際しても、研磨能(研磨速度)の低下を起こすことなく、安定性に優れた研磨材スラリーを得ることができたものである。
 前述のように、研磨材スラリー中における研磨材粒子のゼータ電位が-30mV以下であれば、長期間にわたる使用であっても、研磨材スラリー中において研磨材粒子が凝集を起こすことなく、優れた研磨材粒子に分散安定性を実現でき、凝集体による研磨時の研磨傷等の発生を抑制することができる。また、研磨材粒子のゼータ電位が-120mV以上であれば、多くのガラス基材表面が負電荷であり、研磨材粒子とガラス基材表面間での電気的な過度の反発を抑制することができることにより、十分な研磨速度を達成することができる。
 本発明の研磨材スラリーにおいて、分散媒中に存在している研磨材粒子に対し、本発明で規定するゼータ電位を付与する方法として、特に制限はないが、例えば、研磨材スラリーを調製する際に、最適な特性を備えた界面活性剤の選択や添加量の調整、電荷を有する添加剤の添加、研磨材スラリーのpH値の設定等を適宜選択、あるいは組み合わせることにより、所望のゼータ電位に制御することができる。
 本発明に係るゼータ電位は、例えば、ナノ粒子分析装置である「HORIBA nano Partica SZ-100(株式会社 堀場製作所製)」による電気泳動ドップラー法を用いて測定することができる。測定に際しては、研磨材粒子500個以上についてのゼータ電位を測定し、その算術平均値より求めることができる。
 具体的には、使用する研磨材スラリーと同等のpHとなるように酸又は塩基を用いてpH調整した分散媒、あるいは、研磨材スラリーより研磨材粒子を分離した媒体溶液を用い、その中に、5.0質量%の研磨材スラリーを、1000倍に希釈して、その希釈液を用いてゼータ電位を、500個以上の粒子について測定し、その算術平均値より求める。
 〔粒子径分布の変動係数〕
 本発明に係る研磨材粒子は単分散性に優れ、粒径分布が狭いことが重要な特徴であり、具体的には、研磨材粒子の粒子径分布の変動係数が20%以下であることを特徴とし、好ましくは15%以下である。下限は、限りなく0%であることが望ましいが、現実的には1%以上である。
 本発明でいう粒子径分布の変動係数は、下記の方法に従って求めることができる。
 対象の研磨材粒子について走査型顕微鏡写真(SEM像)を用いて、約100個の粒子について撮影を行い、それぞれの粒子の粒子径を測定する。本発明でいう粒子径とは、円形である場合にはその直径で表し、円形以外の不定形であれば、その投影面積を円相当に換算し、そのときの直径で表示する。
 次いで、100個の研磨材粒子の算術平均粒子径(μm)を求め、更にそのデータを基にして粒子径分布の標準偏差を求める。
 具体的には、上記測定により研磨材粒子の平均粒子径(μm)と粒子径分布の標準偏差を求め、下式に従って、粒子径分布の変動係数(%)を求めることができる。
 粒子径分布の変動係数(%)=(粒子径分布の標準偏差/平均粒子径)×100
 粒子径分布の変動係数(%)が20%以下であれば、極めて粒径分布の狭い研磨材粒子であり、研磨材スラリーを調製した際に、粒径のバラツキに起因する研磨性の変動等が少なく、均一な研磨を行うことができる。
 〔pH値〕
 本発明の研磨材スラリーにおいては、25℃換算におけるpHが、pH調整剤により、3.0~11.0の範囲内に調整されていることが好ましく、より好ましくは、5.0~9.0の範囲内である。
 本発明の研磨材スラリーのpHを上記で規定する範囲内に制御することにより、強酸環境、あるいは強アルカリ環境における研磨材粒子への影響を抑制することができる。加えて、上記pHの範囲内とすることにより、本発明で規定する研磨材粒子のゼータ電位を所望の範囲に制御しやすくなる。
 本発明に係るpH値は、25℃において、例えば、ラコムテスター卓上型PH&導電率計(アズワン(株)製 PH1500)を使用して測定して求めることができる。
 また、研磨材スラリーのpHを所望のpH値の範囲に調整するために用いるpH調整剤としては、例えば、塩酸、リン酸、リン酸塩、クエン酸、クエン酸ナトリウム、アジピン酸、酢酸ナトリウム、炭酸ナトリウム、亜硫酸ナトリウム、酢酸ナトリウム、トリエタノールアミン、水酸化ナトリウム等を、適宜選択して用いることができる。
 〔界面活性剤〕
 本発明の研磨材スラリーにおいては、含有している研磨材粒子の分散安定性及びゼータ電位を所望の範囲内に調整する観点から、界面活性剤を含有することができ、含有量としては0.1~20質量%の範囲内であることが好ましく、より好ましくは0.2~10質量%の範囲内である。界面活性剤の含有量が0.1質量%以上であれば、研磨材粒子の分散安定性に寄与でき、ゼータ電位として-30mV以下の条件を得ることができ、20質量%以下であれば、ゼータ電位として-120mV以上の条件を得ることができるとともに、界面活性剤による研磨性能への悪影響を排除することができる。
 本発明に適用可能な界面活性剤としては、アニオン性界面活性剤(陰イオン性界面活性剤)、カチオン性界面活性剤(陽イオン性界面活性剤)、ノニオン性界面活性剤(非イオン性界面活性剤)、ベタイン型界面活性剤(両性界面活性剤)等を挙げることができ、更には高分子分散剤等も挙げることができるが、その中でも、研磨材粒子表面が負に帯電(ゼータ電位が-120~-30mVの範囲)していることから、カチオン性界面活性剤(陽イオン界面活性剤)を除く上記各界面活性剤及び高分子分散剤から選択することが好ましい。
 アニオン性界面活性剤としては、例えば、脂肪酸石鹸、N-アシル-N-メチルグリシン塩、N-アシル-N-メチル-β-アラニン塩、N-アシルグルタミン酸塩、アルキルエーテルカルボン酸塩、アシル化ペプチド、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α-オレフィンスルホン酸塩、N-アシルメチルタウリン、硫酸化油、高級アルコール硫酸エステル塩、第2級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、第2級高級アルコールエトキシサルフェート、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、モノグリサルフェート、脂肪酸アルキロールアミド硫酸エステル塩、アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等が挙げられる。
 ベタイン型界面活性剤としては、カルボキシベタイン型、スルホベタイン型が挙げられ、具体的には、アミノカルボン酸塩、イミダゾリニウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン、ドデシルアミノメチルジメチルスルホプロピルベタイン、オクタデシルアミノメチルジメチルスルホプロピルベタイン、コカミドプロピルベタイン、コカミドプロピルヒドロキシスルタイン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、ラウロイルグルタミン酸ナトリウム、ラウロイルグルタミン酸カリウム、ラウロイルメチル-β-アラニン、ラウリルジメチルアミン-N-オキシド、オレイルジメチルアミン-N-オキシド等が挙げられる。
 ノニオン性界面活性剤としては、例えば、ラウリン酸グリセリン、モノステアリン酸グリセリン、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ペンタエチレングリコールモノドデシルエーテル、オクタエチレングリコールモノドデシルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンヘキシタン脂肪酸エステル、ソルビタン脂肪酸エステルポリエチレングリコール、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド、ステアリン酸ジエタノールアミド、オクチルグルコシド、デシルグルコシド、ラウリルグルコシド、セタノール、ステアリルアルコール、オレイルアルコール等が挙げられる。
 また、本発明に係る研磨材粒子を研磨材スラリー中に安定に分散するため、水溶性高分子分散剤として下記の水溶性樹脂を用いることができる。水溶性樹脂として好ましく用いられるのは、スチレン-アクリル酸-アクリル酸アルキルエステル共重合体、スチレン-アクリル酸共重合体、スチレン-マレイン酸共重合体、スチレン-マレイン酸-アクリル酸アルキルエステル共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸アルキルエステル共重合体、スチレン-マレイン酸ハーフエステル共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体等のような水溶性樹脂である。
 また、本発明に好ましく用いられるアニオン性高分子分散剤としては、例えば、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸や、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、アクリル酸-アクリル酸エステル共重合体等のアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、スチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体等のスチレン-アクリル樹脂、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、及び酢酸ビニル-エチレン共重合体、酢酸ビニル-脂肪酸ビニルエチレン共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体等の酢酸ビニル系共重合体及びそれらの塩等が挙げられる。
 〔平均粒子径〕
 本発明に係る研磨材粒子においては、一次粒子の平均粒子径が、0.10~2.00μmの範囲内であることが好ましい。
 本発明に係る平均粒子径は、上記粒子径分布の変動係数について記載したのと同様の方法で、走査型顕微鏡写真(SEM像)を用い、約100個の研磨材粒子について、粒子画像を撮影し、それぞれの粒子径を測定し、その平均値を算出することにより求めることができる。
 本発明に係る研磨材粒子は、コア(コア粒子)の平均粒子径としては、0.01~0.9μmの範囲内であることが好ましい。この範囲にすることで、研磨の際にかかる圧力に対して高い耐久性を維持することができる。
 また、シェルの厚さとしては、0.005~0.55μmの範囲内が好ましい。シェルの厚さをこの範囲内にすることで、優れた単分散性を得ることができ、研磨速度及び研磨均一性に優れたコア・シェル型研磨材粒子を得ることができる。
 研磨材スラリーに含有される研磨材粒子は、用途によって平均粒子径に対する要求レベルは異なるが、研磨後のガラス基板等の表面仕上がり精度が高くなるにつれて、使用される研磨材スラリーに含まれる研磨材粒子の微粒子化が必要になる。例えば、半導体デバイスの製造工程で使用するには、平均粒子径が2.0μm以下であることが好ましい。
 一方、研磨材粒子の粒子径が小さくなるほど、研磨後のガラス基板等の表面仕上がり精度は高くなるが、研磨速度は平均粒子径が小さいほど遅くなる傾向にあり、その下限としては0.02μmであり、0.02μm以上の平均粒子径であれば、本発明に係る研磨材粒子の研磨速度が、コロイダルシリカ等の研磨材に比べて速いという優位性を維持することができる。
 以上のような理由より、本発明に係るコア・シェル型研磨材粒子の平均粒子径としては、0.02~2.0μmの範囲内であることが好ましく、さらに0.05~1.5μmの範囲内がより好ましい。
 〔研磨材粒子の形状〕
 本発明に係る研磨材粒子の形状としては、特に制限はなく、球形、楕円形、長方形あるいは不定形であってもよいが、被研磨基材に対し高度の表面仕上がり精度を得ることができ、かつ長期間の研磨材の使用においても研磨材粒子の分散安定性に優れているという観点から、研磨材粒子としては、球状粒子の比率が80個数%以上であることが好ましい。
 本発明でいう球形粒子とは、研磨材粒子について走査型顕微鏡写真(SEM像)撮影を行い、円形の形状を有し、その短軸をa,長軸をbとしたとき、a/bの比の値が、0.80~1.00の範囲内であれば、球状粒子であると定義する。
 〔一次粒子比率〕
 本発明の研磨材スラリーにおいては、研磨材粒子の一次粒子比率(粒子%)が、pHが3.0~11.0の範囲内で85%以上であることが好ましく、より好ましくは90%以上である。
 研磨材スラリーの走査型顕微鏡写真(例えば、図8に例示するような研磨材粒子写真)を撮影し、凝集(二次粒子以上)を起こすことなく、個々に独立して一次粒子の状態で存在している研磨材粒子比率を測定する。この特性値は、pHが3.0~11.0の範囲内において、凝集粒子塊の発生が極めて少なく、研磨時に凝集物による基板表面研磨時の傷等の発生を防止することができる。
 〔研磨速度〕
 本発明の研磨材スラリーは、単分散性に優れた研磨材粒子で構成され、速い研磨速度を備えている。
 本発明において、研磨速度(研磨レート)としては、0.30~0.80μm/minの範囲内であることが好ましい。
 本発明でいう研磨速度は、例えば、下記に示す方法に従って測定して求めることができる。
 研磨加工に使用する研磨機としては、コア・シェル型研磨材粒子を水等の分散媒に分散させた研磨材スラリーを、研磨対象面に供給しながら、研磨対象面を研磨布で研磨するものである。研磨材スラリーは分散媒を水のみとして、濃度は100g/Lとする。
 研磨試験においては、研磨材スラリーを5L/minの流量で循環供給させて研磨加工を行う。研磨対象物として、65mmφのガラス基板を使用し、研磨布は、ポリウレタン製の研磨布を使用する。
 研磨面に対する研磨時の圧力を9.8kPa(100g/cm2)とし、研磨試験機の回転速度は100min-1(rpm)に設定し、30分間研磨加工を行う。研磨前後の厚さ(μm)をNikon Digimicro(MF501)にて測定し、厚さ変位から1分間当たりの研磨量(μm)を算出し、研磨速度(μm/min)を求めることができる。
 《研磨材粒子の製造方法》
 次いで、上記説明した元素プロファイルを有する本発明に係る研磨材粒子の具体的な製造方法について説明する。
 〔研磨材粒子の製造方法の概要〕
 本発明に適用可能な研磨材粒子の製造方法としては、前述のように、均一組成のコアと組成が連続的に変化するシェルを形成するタイプAの研磨材粒子(図3A及び図3B)の製造方法と、均一組成のコアと、同じく均一組成のシェルを形成するタイプBの研磨材粒子(図5A及び図5B)の製造方法が挙げられる。
 (タイプAの研磨材粒子の製造方法)
 本発明に係るタイプAの研磨材粒子の製造方法は、図2に示すように、コア形成工程A、シェル形成工程B、固液分離工程C及び焼成工程Dの四つの工程からなる態様の製造方法であり、図3Aあるいは図3Bに示すような元素プロファイルを有する研磨材粒子を製造する方法である。
 1.コア形成工程A
 コア形成工程Aは、Ti(チタン)、Sr(ストロンチウム)、Y(イットリウム)、Ba(バリウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリニウム)及びTb(テルビウム)から選ばれる少なくとも一種の金属元素の塩を形成させ、当該元素の塩を主成分とする研磨材粒子の前駆体のコア1を形成させる。
 具体的には、コア形成工程Aは、例えば、イットリウムの塩及び沈殿剤を水に溶解させ、所定の濃度の溶液を調製する。当該溶液を80℃以上で加熱撹拌することで、コア1の種結晶を形成する。コア形成工程Aは、調製された溶液に、さらにイットリウムの塩で調製した溶液を加えて80℃以上で加熱撹拌する。これにより、コア形成工程は、水に不溶な塩基性炭酸塩、例えば、イットリウム塩基性炭酸塩(Y(OH)CO3又はY(OH)CO3・xH2O,x=1等)が形成され、種結晶の外側にイットリウム塩基性炭酸塩を成長させることで、研磨材粒子の前駆体のコア1となる。以下の説明においては、加熱撹拌を開始した溶液を反応溶液と称す。
 コア形成工程Aにおいて、水に溶解させるTi(チタン)、Sr(ストロンチウム)、Y(イットリウム)、Ba(バリウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリニウム)及びTb(テルビウム)から選ばれる少なくとも一種の金属元素の塩としては、硝酸塩、塩酸塩、硫酸塩等を用いることができるが、製品への不純物の混入が少ない硝酸塩を使用することが好ましい。
 また、沈殿剤としては、前記元素の塩とともに水に混ぜて加熱した際に、塩基性炭酸塩を生成するアルカリ化合物であればよく、尿素系化合物、炭酸アンモニウム及び炭酸水素アンモニウム等が好ましい。
 尿素系化合物としては、尿素の塩(例えば、硝酸塩及び塩酸塩等)、例えば、N,N′-ジメチルアセチル尿素、N,N′-ジベンゾイル尿素、ベンゼンスルホニル尿素、p-トルエンスルホニル尿素、トリメチル尿素、テトラエチル尿素、テトラメチル尿素、トリフェニル尿素、テトラフェニル尿素、N-ベンゾイル尿素、メチルイソ尿素及びエチルイソ尿素等が挙げられ、尿素単体も包含するものとする。尿素系化合物の中でも、特に尿素は、徐々に加水分解することでゆっくり沈殿物が生成し、均一な沈殿が得られる点で好ましい。
 また、水に不溶な塩基性炭酸塩、例えば、イットリウムの塩基性炭酸塩を生成させることで、析出した沈殿を単分散の状態で分散させることができる。更に、後述するシェル形成工程においてもセリウムの塩基性炭酸塩を形成させるため、塩基性炭酸塩による連続的な層構造を形成させることができる。
 コア形成工程Aにおいて、例えば、イットリウムを含有する水溶液の添加速度は、1分当たり0.003~5.5mol/Lの範囲内が好ましく、80℃以上で加熱撹拌しながら反応溶液に添加することが好ましい。添加速度を当該範囲とすることにより、単分散性の優れた、球状の研磨材粒子が形成されやすくなる。
 加熱温度については、80℃以上で加熱撹拌することにより、添加された尿素の分解が進みやすくなるためである。また、添加する尿素の濃度は、例えば、イットリウムのイオン濃度の5~50倍の濃度が好ましい。これは、イットリウムの水溶液中でのイオン濃度及び尿素の濃度を、当該範囲内とすることで、単分散性を示す球状の研磨材粒子を合成することができるためである。
 なお、加熱撹拌の際には、十分な撹拌効率が得られれば、特に撹拌機の形状等は指定しないが、より高い撹拌効率を得るためには、ローター・ステータータイプの軸流撹拌機を使用することが好ましい。
 2.シェル形成工程B
 タイプAの研磨材粒子の製造方法においては、シェル形成工程Bは、コア形成工程Aに引き続き、連続的に行う。
 以下、シェルの形成を、硝酸イットリウム(III)及び硝酸セリウム(III)を用いて行う例について説明する。
 例えば、イットリウムの塩基性炭酸塩を分散させた反応溶液に、硝酸イットリウム(III)及び硝酸セリウム(III)から調製する水溶液を一定速度で所定時間添加して、コア1の外側にイットリウムの塩基性炭酸塩、例えば、イットリウム塩基性炭酸塩(Y(OH)CO3又はY(OH)CO3・xH2O,x=1等)及びセリウムの塩基性炭酸塩、例えば、セリウム塩基性炭酸塩(Ce(OH)CO3又はCe(OH)CO3・xH2O,x=1等)を含有する研磨材粒子の前駆体のシェル2を形成する。
 なお、水溶液の調製に用いるセリウムの塩として、製品への不純物の混入が少ない硝酸塩を使用することが好ましいため、硝酸セリウム(III)を用いる場合を示したが、これに限定するものではなく、必要に応じて、塩酸塩、硫酸塩等を用いることができる。
 シェル形成工程Bで添加する水溶液の添加速度は、1分間当たり0.003~5.5mol/Lの範囲内であることが好ましい。これは、添加速度を当該範囲とすることにより、単分散性の優れた、球状の研磨材粒子が形成されやすくなるためである。
 また、添加する水溶液が含有するセリウムの濃度の割合としては、85%以下であることが好ましい。これは、添加する水溶液のセリウムの濃度の割合が85%より大きい場合、85%以下に調製された水溶液を添加する場合と同じ添加時間で添加を行うと、形成される研磨材粒子が単分散性を示さず、板状に凝集しやすくなるためである。
 また、反応溶液は、前記添加速度で水溶液に添加されながら、80℃以上で加熱撹拌されることが好ましい。これは、80℃以上で加熱撹拌されると、コア形成工程Aにおいて添加された尿素の分解が進みやすくなるためである。
 3.固液分離工程C
 固液分離工程Cは、シェル形成工程Bによりシェル2が形成されたコア・シェル型研磨材粒子の前駆体を反応溶液から固液分離する工程である。なお、固液分離工程Cにおいては、必要に応じて、得られたコア・シェル型研磨材粒子の前駆体を乾燥した後に、焼成工程Dへ移行してもよい。
 4.焼成工程D
 焼成工程Dは、固液分離工程Cで得られたコア・シェル型研磨材粒子の前駆体を空気中、若しくは酸化性雰囲気中で、500~1200℃の範囲内で1~5時間の範囲内で焼成する。コア・シェル型研磨材粒子の前駆体は、焼成されることにより二酸化炭素が脱離することにより、塩基性炭酸塩から酸化物となり、金属元素酸化物から構成される所望のコア・シェル型研磨材粒子が得られる。
 (タイプBの研磨材粒子の製造方法)
 本発明に係るコアとシェルがいずれも均一組成から構成されるタイプBの研磨材粒子の製造方法は、図4に示すように、コア形成工程A、固液分離工程C1、シェル形成工程B、固液分離工程C2及び焼成工程Dの5つの工程から構成される製造方法で、図5Aあるいは図5Bに示すような元素プロファイルを有する研磨材粒子を製造する方法である。
 1.コア形成工程A
 タイプBにおけるコア形成工程Aは、前記タイプAにおけるコア形成工程Aと同様であり、図5Aあるいは図5Bに示すような均一組成からなるコアを形成する。
 2.固液分離工程C1
 固液分離工程C1は、上記コア形成工程Aで形成したコア(コア粒子)を反応溶液から固液分離して、乾燥する工程である。
 3.シェル形成工程B
 シェル形成工程Bは、上記固液分離工程C1で分離したコア(コア粒子)を水等に再分散させた後、タイプAにおけるシェル形成工程Bと同様の方法で、均一組成からなるシェルを形成する工程である。
 4.固液分離工程C2
 固液分離工程C2は、タイプAにおける固液分離工程Cと同様の方法で行う。
 5.焼成工程D
 焼成工程Dは、タイプAにおける焼成工程Dと同様の方法で行い、均一組成のコアと、同じく均一組成のシェルを有するタイプBの研磨材粒子を製造する。
 《研磨材スラリーの使用方法と研磨材の劣化》
 次いで、ガラス基板の研磨加工を例にとり、本発明の研磨材スラリーの使用方法の一例について説明する。
 1.研磨材スラリーの調製
 本発明に係るコア・シェル型研磨材粒子を水等の溶媒に添加、分散し、本発明の研磨材スラリーを調製する。研磨材スラリーには、界面活性剤(分散剤ともいう。)等を添加することで、粒子の凝集を防止するとともに、撹拌機等を用いて常時撹拌し、粒子の分散状態を維持する。研磨材スラリーは、供給用ポンプを利用して、研磨機に循環供給される。
 2.研磨工程
 研磨パット(研磨布)が貼られた研磨機の上下定盤にガラス基板を接触させ、接触面に対して研磨材スラリーを供給しながら、加圧条件下でパットとガラスを相対運動させることで研磨される。
 3.研磨材粒子の劣化
 研磨材粒子は、上記研磨工程に示したように、加圧条件下で使用される。このため、研磨材スラリーに含まれるコア・シェル型研磨材粒子は、研磨時間が経過するにつれて、徐々に、粒子としての形状が崩壊し微小化してしまう。コア・シェル型研磨材粒子の微小化は研磨速度の減少を引き起こす要因となるため、研磨前後で粒子径分布の変化が小さい本発明に係るコア・シェル型研磨材粒子を好適に用いることができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 実施例1
 《研磨材粒子の調製》
 〔研磨材粒子1の調製〕
 以下に記載の方法に従って、図3Aに示すようなシェルの元素組成が連続的に変化する構成からなる研磨材粒子1を、図2に記載の工程に従って調製した。
 (1)コア形成工程A
 a)反応溶液の調製
 0.01mol/Lの硝酸イットリウム(III)(以下、単に硝酸イットリウムという。)水溶液を10L調製した後、この硝酸イットリウム水溶液に、尿素を0.25mol/Lの濃度となるように添加して反応溶液を調製し、十分に撹拌した後、90℃で加熱撹拌を開始した。
 b)分散液1Aの調製
 上記a)で得られた反応溶液に、1.0mol/Lの硝酸イットリウム水溶液の60mlを、1.0ml/minの添加速度で、90℃で加熱撹拌しながら、60分間を要して添加して、塩基性炭酸塩からなるコア粒子を含む分散液1Aを調製した。
 (2)シェル形成工程B:分散液1Bの調製
 上記(1)コア形成工程Aで調製したコア粒子を含む分散液1Aに対し、
 〈1液〉1.0mol/Lの硝酸イットリウム水溶液を、0.30ml/minの添加速度で、
 〈2液〉1.0mol/Lの硝酸セリウム(III)(以下、単に硝酸セリウムという。)水溶液を、0.70ml/minの添加速度で、
 60分間、90℃で加熱撹拌しながら、1液及び2液を同時添加して、コア粒子上にシェルを形成した研磨材粒子の前駆体を含む分散液1Bを調製した。
 (3)固液分離工程C
 上記(2)シェル形成工程Bで調製した研磨材粒子の前駆体を含む分散液1Bについて、メンブランフィルターを用いて、研磨材粒子の前駆体と溶液(分散媒)に分離した。
 (4)焼成工程D
 上記(3)で分離した研磨材粒子の前駆体を、600℃で焼成して、図3Aに記載の元素プロファイルを有するコア・シェル型の研磨材粒子1を得た。
 〔研磨材粒子2の調製〕
 上記研磨材粒子1の調製において、(1)コア形成工程Aを下記の条件に変更した以外は同様にして、図3Bに示すようなコア部が酸化イットリウムと酸化セリウムで構成され、シェルの組成が連続的に変化する構成からなる研磨材粒子2を調製した。
 (1)コア形成工程A
 a)反応溶液の調製
 0.008mol/Lの硝酸イットリウムと0.002mol/Lの硝酸セリウムを含む水溶液を10L調製した後、この硝酸イットリウム水溶液に、尿素が0.25mol/Lの濃度となるように添加し、十分に撹拌した後、90℃で加熱撹拌を開始した。
 b)分散液2Aの調製
 上記a)で得られた反応溶液に、0.7mol/Lの硝酸イットリウム水溶液を1.0ml/minの添加速度で、0.3mol/Lの硝酸セリウム水溶液を1.0ml/minの添加速度で、90℃で加熱撹拌しながら、60分間同時添加して、塩基性炭酸塩からなるコア1を含む分散液2Aを調製した。
 〔研磨材粒子3の調製〕
 下記に記載の方法に従って、図5Aに示すようなコアとシェルの組成が、それぞれの全域で均一組成からなる研磨材粒子3を、図4に記載の工程に従って調製した。
 (1)コア形成工程A
 a)反応溶液の調製
 0.01mol/Lの硝酸イットリウム水溶液を10L調製した後、この硝酸イットリウム水溶液に、尿素が0.25mol/Lの濃度となるように添加し、十分に撹拌した後、90℃で加熱撹拌を開始した。
 b)分散液3Aの調製
 上記a)で得られた反応溶液に、1.0mol/Lの硝酸イットリウム水溶液を、1.0ml/minの添加速度で、90℃で加熱撹拌しながら、60分間添加して、塩基性炭酸塩からなるコア粒子を含む分散液3Aを調製した。
 (2)固液分離工程C1
 上記(1)コア形成工程Aで調製したコア粒子を含む分散液3Aを、メンブランフィルターを用いて、コア粒子と溶液(分散媒)に分離した。
 (3)シェル形成工程B:分散液3Bの調製
 上記(2)固液分離工程C1で分離したコア粒子を、純水10L中にホモジナイザーを用いて一次粒子状態で均一に分散させた後、0.003mol/Lの硝酸イットリウムと0.007mol/Lの硝酸セリウムを含む水溶液に、尿素が0.25mol/Lの濃度となるように添加し、十分に撹拌した後、90℃で加熱撹拌を開始した。
 次いで、上記水溶液に対し、
 〈1液〉1.0mol/Lの硝酸イットリウム水溶液を、0.3ml/minの添加速度で、
 〈2液〉1.0mol/Lの硝酸セリウム水溶液を、0.7ml/minの添加速度で、
 90℃で加熱撹拌しながら60分間同時添加して、コア粒子上にシェルを形成した研磨材粒子の前駆体を含む分散液3Bを調製した。
 (4)固液分離工程C2
 上記(3)シェル形成工程Bで調製した研磨材粒子の前駆体を含む分散液3Bについて、メンブランフィルターを用いて、研磨材粒子の前駆体と溶液(分散媒)に分離した。
 (5)焼成工程D
 上記(4)固液分離工程C2で分離した研磨材粒子の前駆体を、600℃で焼成して、図5Aに記載の元素プロファイルを有するコア・シェル型の研磨材粒子3を得た。
 〔研磨材粒子4の調製〕
 上記研磨材粒子3の調製において、(1)コア形成工程Aを下記の条件に変更した以外は同様にして、図5Bに示すようなコア部及びシェルが、均一組成で、それぞれ元素比率が異なる酸化イットリウムと酸化セリウムで構成された研磨材粒子4を調製した。
 (1)コア形成工程A
 a)反応溶液の調製
 0.008mol/Lの硝酸イットリウムと0.002mol/Lの硝酸セリウムを含む水溶液を10L調製した後、この硝酸イットリウム/硝酸セリウム混合水溶液に、尿素が0.25mol/Lの濃度となるように添加し、十分に撹拌した後、90℃で加熱撹拌を開始した。
 b)分散液4Aの調製
 上記a)で得られた反応溶液に、
 〈1液〉1.0mol/Lの硝酸イットリウム水溶液を、0.3ml/minの添加速度で、
 〈2液〉1.0mol/Lの硝酸セリウム水溶液を、0.7ml/minの添加速度で、
 90℃で加熱撹拌しながら60分間同時添加して、コア粒子上にシェルを形成した研磨材粒子の前駆体を含む分散液4Aを調製した。
 〔研磨材粒子5の調製〕
 a)尿素水溶液の調製
 水10Lを用意し、尿素が0.20mol/Lの濃度となるように添加し、十分に撹拌した後に90℃になるまで加熱撹拌した。
 b)分散液5Aの調製
 上記a)で得られた尿素水溶液に、
 〈1液〉1.0mol/Lの硝酸イットリウム水溶液を、0.5ml/minの添加速度で、
 〈2液〉1.0mol/Lの硝酸セリウム水溶液を、0.5ml/minの添加速度で、
 90℃で加熱撹拌しながら120分間同時添加して、単一組成からなる研磨材粒子の前駆体を含む分散液5Aを調製した。
 c)研磨材粒子の調製
 上記b)で得られた分散液5Aから研磨材粒子の前駆体をメンブランフィルターにて分離し、分離した研磨材粒子の前駆体を600℃で焼成して、酸化セリウムが50%、酸化イットリウムが50%から構成される1層から構成される研磨材粒子5を得た。
 〔研磨材粒子6の調製〕
 a)反応溶液の調製
 水10Lを用意し、この水に、尿素が0.20mol/Lの濃度となるように添加し、十分に撹拌した後、90℃で加熱撹拌を開始した。
 b)分散液6Aの調製
 上記a)で得られた反応溶液に、1.0mol/Lの硝酸イットリウム水溶液を、1.0ml/minの添加速度で110分間、90℃で加熱撹拌しながら添加して、コア粒子を含む分散液6Aを調製した。
 c)分散液6Bの調製
 上記b)で得られたコア粒子を含む分散液6Aに、1.0mol/Lの硝酸セリウム水溶液を、1.0ml/minの添加速度で10分間、90℃で加熱撹拌しながら添加して、シェルを形成して、研磨材粒子の前駆体を含む分散液6Bを調製した。
 d)研磨材粒子の調製
 上記c)で得られた分散液6Bから研磨材粒子の前駆体をメンブランフィルターにて分離し、600℃で焼成して、コアが酸化イットリウム、シェルが酸化セリウムで構成される研磨材粒子6を調製した。
 〔研磨材粒子7の調製〕
 上記研磨材粒子4の調製において、(1)コア形成工程Aのb)分散液4Aに代えて、下記のように硝酸イットリウム水溶液及び硝酸セリウム水溶液の濃度を10倍に変更した分散液7Aを用いた以外は同様にして、粒径分布が広い(変動係数:136%)研磨材粒子7を調製した。
 b)分散液7Aの調製
 研磨材粒子4の調製における(1)コア形成工程Aで得られた種結晶を含む反応溶液に、
 〈1液〉10.0mol/Lの硝酸イットリウム水溶液を0.8ml/minの添加速度で、
 〈2液〉10.0mol/Lの硝酸セリウム水溶液を.0.2ml/minの添加速度で、
 90℃で加熱撹拌しながら、60分間同時添加して、塩基性炭酸塩からなるコアを含む分散液7Aを調製した。
 〔研磨材粒子8の調製〕
 上記研磨材粒子4の調製において、(3)シェル形成工程Bを、下記のように硝酸イットリウム水溶液及び硝酸セリウム水溶液の濃度を10倍に変更して調製した分散液8Bを用いた以外は同様にして、粒径分布が広い(変動係数:148%)研磨材粒子8を調製した。
 (3)シェル形成工程B
 a)水溶液の調製
 上記研磨材粒子4の調製において、(2)固液分離工程C1で分離したコア粒子を純水10L中にホモジナイザーを用いて一次粒子状態に均一に分散させた後、0.003mol/Lの硝酸イットリウムと0.007mol/Lの硝酸セリウムを含む水溶液に、尿素が0.25mol/Lの濃度となるように添加し、十分に撹拌した後、90℃で1時間加熱撹拌した。
 b)分散液8Bの調製
 次いで、上記水溶液に対し、
 〈1液〉10.0mol/Lの硝酸イットリウム水溶液を、0.3ml/minの添加速度で、
 〈2液〉10.0mol/Lの硝酸セリウム水溶液を、0.7ml/minの添加速度で、
 90℃で加熱撹拌しながら60分間同時添加して、コア粒子上にシェルを形成した研磨材粒子の前駆体を含む分散液8Bを調製した。
 〔研磨材粒子9の調製〕
 上記研磨材粒子3の調製において、コアの形成に用いる金属元素として、硝酸イットリウム(III)に代えて、硝酸ガドリウム(III)を用いた以外は同様にして、研磨材粒子9を調製した。研磨材粒子9は、コアとシェルで共通となる金属元素を含んでいない構成のコア・シェル型研磨材粒子である。
 〔研磨材粒子10の調製〕
 上記研磨材粒子2の調製において、(2)シェル形成工程Bにおける1.0mol/Lの硝酸イットリウム水溶液の添加速度を0.40ml/min、1.0mol/Lの硝酸セリウム水溶液の添加速度を0.60ml/minに、それぞれ変更した以外は同様にして、研磨材粒子10を調製した。
 〔研磨材粒子11の調製〕
 上記研磨材粒子2の調製において、(2)シェル形成工程Bにおける1.0mol/Lの硝酸イットリウム水溶液の添加速度を0.15ml/min、1.0mol/Lの硝酸セリウム水溶液の添加速度を0.85ml/minに、それぞれ変更した以外は同様にして、研磨材粒子11を調製した。
 〔研磨材粒子12の調製〕
 上記研磨材粒子2の調製において、(2)シェル形成工程Bにおける1.0mol/Lの硝酸イットリウム水溶液の添加速度を0.10ml/min、1.0mol/Lの硝酸セリウム水溶液の添加速度を0.90ml/minに、それぞれ変更した以外は同様にして、研磨材粒子12を調製した。
 以上により調製した各研磨材粒子の構成を、表1に示す。
 《研磨材粒子の特性値の測定》
 (粒子の最表面領域におけるセリウム濃度の測定)
 各研磨材粒子について、日立ハイテクノロジーズ製 集束イオンビーム(FB-2000A)により断面加工を行い、粒子中心付近を通る面を切り出した。切断面より、日立ハイテクノロジーズ製 STEM-EDX(HD-2000)を使用して元素分析を行い、粒子の最表面部から深さ方向で、粒子半径に対し5%の領域における平均セリウム濃度を測定した。
 (平均粒子径の測定)
 上記調製した各研磨材粒子について、走査型顕微鏡(SEM)を用いた粒子写真撮影を行い、約100個の粒子について、その粒子径を測定した。対象粒子が球形である場合にはその直径で表し、球形以外の不定形であれば、その投影面積を円相当に換算し、そのときの直径で表示した。次いで、測定した100個の研磨材粒子の算術平均粒子径(μm)を求め、これを平均粒子径とした。
 (粒子形状)
 上記調製した各研磨材粒子について走査型顕微鏡(SEM)を用いて粒子写真撮影を行い、円形の形状を有し、その短軸をa,長軸をbとしたとき、a/bの値が、0.80~1.00の範囲内であれば、球状粒子であると定義し、それ以外を不定形と判定した。
 (粒子径分布の変動係数の測定)
 上記調製した各研磨材粒子について走査型顕微鏡を用いて粒子写真撮影を行い、約100個の粒子について、その粒子径を測定した。対象粒子が球形である場合にはその直径で表し、球形以外の不定形であれば、その投影面積を円相当に換算し、そのときの直径で表示した。次いで、測定した100個の研磨材粒子の算術平均粒子径(μm)を求め、更にそのデータを基にして粒子径分布の標準偏差を算出した。
 次いで、上記測定により求めた研磨材粒子の平均粒子径(μm)と粒子径分布の標準偏差より、下式に従って、粒子径分布の変動係数(%)を求めた。
 粒子径分布の変動係数(%)=(粒子径分布の標準偏差/平均粒子径)×100
 以上により得られた研磨材粒子の各測定結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 《研磨材スラリーの調製》
 〔研磨材スラリー1の調製〕
 下記の各構成材料を混合した後、ホモジナイザーで分散処理を行って、研磨材スラリー1を調製した。
 研磨材粒子1(平均粒子径:0.56μm、粒径分布の変動係数:14%)                           5.0質量部
 純水                        95.0質量部
 〔研磨材スラリー2の調製〕
 下記の各構成材料を混合した後、ホモジナイザーで分散処理を行って、研磨材スラリー2を調製した。
 研磨材粒子1(平均粒子径:0.56μm、粒径分布の変動係数:14%)                           5.0質量部
 界面活性剤(高分子分散剤:ポリティーA550、アクリル酸-マレイン酸共重合体、ライオン(株)製)            0.15質量部
 純水                        94.8質量部
 〔研磨材スラリー3~42の調製〕
 上記研磨材スラリー2の調製において、研磨材粒子の種類、界面活性剤の添加量を、表2及び表3に記載の組み合わせに変更した以外は同様にして、研磨材スラリー3~42を調製した。なお、pH値に関しては、特にpH調整剤の添加は行わなかった。傾向としては、界面活性剤の添加に伴い、pH値はアルカリ側にシフトした。
 〔研磨材スラリー43~48の調製〕
 上記研磨材スラリー9の調製において、pH調整剤を用いて、表3に記載のpH値に変更した以外は同様にして、研磨材スラリー43~48を調製した。なお、酸性側へのpH調整は、酢酸あるいは塩酸を用い、アルカリ側への調整は水酸化ナトリウムを用いて行った。
 《研磨材スラリーの評価》
 〔研磨材粒子のゼータ電位の測定〕
 ナノ粒子分析装置である「HORIBA nano Partica SZ-100(株式会社 堀場製作所製)」による電気泳動ドップラー法を用い、各研磨材粒子500個についてのゼータ電位を測定し、その算術平均値より平均ゼータ電位を測定した。
 具体的には、測定対象の研磨材スラリーより研磨材粒子を分離した媒体溶液を用いて、5.0質量%の研磨材スラリーを1000倍に希釈して、25℃の液温で500個の研磨材粒子のゼータ電位を測定し、その算術平均値より、平均ゼータ電位(mV)を測定した。
 〔pHの測定〕
 各研磨材スラリーの25℃におけるpHを、ラコムテスター卓上型pH&導電率計(アズワン(株)製 PH1500)を使用して測定した。
 〔研磨材スラリーの保存安定性の評価〕
 各研磨材スラリーについて、調製直後及び40℃で3日間撹拌しながら保存した後に、下記の方法に従って、一次粒子比率を測定し、研磨材スラリーの保存安定性を評価した。一次粒子比率は、凝集物の発生の有無を測る尺度であり、一次粒子比率が高いほど粒子均一性に優れ、かつ調製直後に対し、40℃で3日間撹拌保存した後の一次粒子比率の変化が少ないほど、研磨材スラリーの保存安定性に優れていることを表す。
 一次粒子比率の測定は、研磨材スラリーの走査型顕微鏡写真(例えば、図8)を撮影し、凝集(二次粒子以上)を起こすことなく、個々に独立して一次粒子の状態で存在している研磨材粒子比率を計測した。
 次いで、測定した一次粒子比率について、下記の基準に従ってランク付けを行った。
 ◎:一次粒子比率が、95%以上である
 ○:一次粒子比率が、85%以上、95%未満である
 △:一次粒子比率が、75%以上、85%未満である
 ×:一次粒子比率が、65%以上、75%未満である
 ××:一次粒子比率が、65%未満である
 〔研磨傷耐性の評価〕
 上記研磨材スラリーの保存安定性の評価で使用した調製直後の研磨材スラリー及び40℃で3日間撹拌保存した研磨材スラリーを用い、下記の方法に従って研磨傷耐性の評価を行った。
 上記各研磨材スラリーを5L/minの流量で循環供給させて研磨加工を行った。研磨対象物としては、65mmφのガラス基板を使用し、研磨布は、ポリウレタン製の研磨布を使用した。
 研磨面に対する研磨時の圧力を9.8kPa(100g/cm2)とし、研磨試験機の回転速度は100min-1(rpm)に設定し、30分間研磨加工を行った。
 次いで、研磨加工を施したガラス基板表面の50×50mmの範囲について目視観察し、目視で認識することができる研磨傷の有無を確認し、下記の基準に従って、研磨傷耐性の評価を行った。
 ◎:目視で認識できる傷の発生は全くない
 ○:ごく弱い傷の発生が1個であり、問題のない品質である
 △:弱い傷の発生が2個であり、実用上許容される品質である
 ×:弱い傷の発生が3個以上、10個以下であり、実用上懸念される品質である
 ××:明らかな傷が11個以上発生しており、実用に耐えない品質である
 〔研磨速度の評価〕
 調製直後の各研磨材スラリーを5L/minの流量で循環供給させて研磨加工を行った。研磨対象物として、65mmφのガラス基板を使用し、研磨布は、ポリウレタン製の研磨布を使用した。
 研磨面に対する研磨時の圧力を9.8kPa(100g/cm2)とし、研磨試験機の回転速度は100min-1(rpm)に設定し、30分間研磨加工を行った。
 次いで、研磨前後の厚さ(μm)をNikon Digimicro(MF501)にて測定し、厚さ変位から1分間当たりの研磨量(μm)を算出して研磨速度1(μm/min)を求めた。
 次いで、上記30分間の研磨加工を連続10回行った後、同様に研磨前後の厚さ(μm)をNikon Digimicro(MF501)にて測定し、厚さ変位から1分間当たりの研磨量(μm)を算出し、研磨10回後の研磨速度2(μm/min)を求めた。
 次いで、測定した研磨速度1及び研磨速度2について、それぞれ下記の基準に従ってランク付を行った。研磨速度1に対し研磨速度2のランクの低下が無いか、あるいは低下幅1ランク以内で、かつ研磨速度2のランクが△以上であれば、研磨性能の維持性(持続性)に優れていることを表す。
 ◎:研磨速度が0.60μm以上である
 ○:研磨速度が0.50μm以上、0.60μm未満である
 △:研磨速度が0.40μm以上、0.50μm未満である
 ×:研磨速度が0.30μm以上、0.40μm未満である
 ××:研磨速度が0.30μm未満である
 以上により得られた結果を、表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2及び表3に記載の結果より明らかなように、本発明で規定するそれぞれ組成の異なるコアとシェルとを有し、コアがイットリウムの酸化物を主成分として構成し、シェルは、主成分として酸化セリウムと、副成分としてイットリウムの酸化物とで構成し、コアとシェルとは、同一の金属元素の酸化物(酸化セリウムを含む)を少なくとも一種有し、粒子径分布の変動係数が20%以下である研磨材粒子を含有し、該研磨材粒子のゼータ電位の平均値が、-120~-30mVの範囲内である研磨材スラリーは、比較例に対し、スラリーの保存安定性、研磨傷耐性及び研磨速度に優れていることが分かる。
 即ち、本発明で規定する組成からなる研磨材粒子を含む研磨材スラリー1~24において、ゼータ電位の平均値が-120~-30mVの範囲内である研磨材スラリーは、スラリーの保存安定性、研磨傷耐性及び研磨速度に優れた効果を発現するが、データ電位が-30mVを超えると、研磨材粒子が凝集を起こし、スラリーの保存安定性、研磨傷耐性及び研磨速度が劣化していることが分かる。また、データ電位が-120mV未満になると、特に、負に帯電しているガラス基板との電気的な反発が高くなり、研磨速度の低下を引き起こす。
 また、比較例である均一組成からなる研磨材粒子5を含む研磨材スラリー25~27、それぞれコアがイットリウム単独、シェルがセリウム単独で構成されている研磨材粒子6を含む研磨材スラリー28~30、粒子径分布の変動係数が20%を超え、多分散の研磨材粒子7、8を含む研磨材スラリー31~36、コアの組成とシェルの組成間で、共通元素を含まない研磨材粒子9を含む研磨材スラリー37~39においては、粒子のゼータ電位が、本発明で規定する-120~-30mVの範囲内であっても、十分なスラリーの保存安定性、研磨傷耐性及び研磨速度を得ることができない。
 また、研磨材スラリーのpHを3.0~11.0の範囲内に調整することにより、より優れたスラリーの保存安定性、研磨傷耐性及び研磨速度を得ることができた。
 実施例2
 《研磨材粒子の調製》
 実施例1に記載の研磨材粒子2の調製において、コア及びシェルの形成で用いた硝酸イットリウムを、それぞれ硝酸サマリウム(III)、硝酸ユーロピウム(III)、硝酸ガドリニウム(III)、硝酸テルビウム(III)に変更した以外は同様にして、研磨材粒子13~16を調製した。
 上記調製した研磨材粒子13~16について、実施例1に記載の方法と同様にして、最表面領域のセリウム濃度の測定、平均粒子径の測定、及び粒子径分布の変動係数の測定を行い、得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 《研磨材スラリーの調製と特性評価》
 実施例1に記載の研磨材スラリー8、9、11の調製において、研磨材粒子2に代えて、それぞれ上記調製した研磨材粒子13~16を用いた以外は同様にして、研磨材スラリー49~60を調製した。
 次いで、各研磨材スラリーについて、実施例1に記載の方法と同様にして、スラリーの保存安定性、研磨傷耐性及び研磨速度の評価を行い、得られた結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に記載の結果より明らかなように、金属元素の酸化物として、酸化イットリウムに代え、酸化サマリウム、酸化ユーロピウム、酸化ガドリニウム、酸化テルビウムで構成しても、ほぼ同様の効果を得ることができた。
 また、金属元素の酸化物として、酸化イットリウムに代え、上記と同様にして、硝酸チタン(IV)、硝酸ストロンチウム(II)、硝酸バリウム(II)を用いて形成した研磨剤粒子についても、表5に記載したのと同様の特性を得ることができることを確認することができた。
 本発明の研磨材スラリーは、酸化セリウムの使用量を低減でき、研磨材粒子が凝集を起こすことなく、分散安定性及び研磨時の耐傷性に優れ、かつ研磨速度が速い特性を備えたコア・シェル型研磨材粒子を含有し、ハードディスク用ガラス基板等の光学ガラスや半導体デバイスの仕上げ工程で、精密研磨する際に用いられる研磨材スラリーとして好適に利用できる。
 1 コア
 2 シェル
 3 イットリウム元素比率
 4 セリウム元素比率
 A コア形成工程
 B シェル形成工程
 C、C1、C2 固液分離工程
 D 焼成工程
 L 切断面
 P 研磨材粒子

Claims (9)

  1.  それぞれ組成が異なるコアとシェルとを有するコア・シェル型研磨材粒子を含有する研磨材スラリーであって、
     前記コア・シェル型研磨材粒子の前記コアは、下記金属元素群から選ばれる少なくとも一種の金属元素の酸化物を主成分として含有し、前記シェルは、主成分として酸化セリウムと、副成分として下記金属元素群から選ばれる少なくとも一種の金属元素の酸化物とを含有し、
     前記コアとシェルは、同一の金属元素の酸化物(酸化セリウムを含む)を少なくとも一種含有し、下式(1)で表されるコア・シェル型研磨材粒子の粒子径分布の変動係数が20%以下であり、
     かつ、前記コア・シェル型研磨材粒子のゼータ電位の平均値が、-120~-30mVの範囲内であることを特徴とする研磨材スラリー。
     金属元素群:Ti(チタン)、Sr(ストロンチウム)、Y(イットリウム)、Ba(バリウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリニウム)、Tb(テルビウム)
     式(1)
       コア・シェル型研磨材粒子の粒子径分布の変動係数(%)=(コア・シェル型研磨材粒子の粒子径分布の標準偏差/コア・シェル型研磨材粒子の平均粒子径)×100
  2.  研磨材スラリーの25℃換算のpHが、pH調整剤により、3.0~11.0の範囲内に調整されていることを特徴とする請求項1に記載の研磨材スラリー。
  3.  界面活性剤を、0.1~20質量%の濃度範囲内で含有することを特徴とする請求項1又は請求項2に記載の研磨材スラリー。
  4.  前記コア・シェル型研磨材粒子の前記シェルにおける酸化セリウム濃度プロファイルが、前記コアとシェルとの界面領域から、前記シェルの最表面領域に向かって、酸化セリウム濃度が増加する濃度勾配を有していることを特徴とする請求項1から請求項3までのいずれか一項に記載の研磨材スラリー。
  5.  前記コア・シェル型研磨材粒子の最表面領域における酸化セリウムの平均含有率が、60~90質量%の範囲内であることを特徴とする請求項1から請求項4までのいずれか一項に記載の研磨材スラリー。
  6.  前記コア・シェル型研磨材粒子のゼータ電位の平均値が、-90~-40mVの範囲内であることを特徴とする請求項1から請求項5までのいずれか一項に記載の研磨材スラリー。
  7.  前記コア・シェル型研磨材粒子の一次粒子の平均粒子径が、0.02~2.00μmの範囲内であることを特徴とする請求項1から請求項6までのいずれか一項に記載の研磨材スラリー。
  8.  前記コア・シェル型研磨材粒子は、研磨材スラリー中の全コア・シェル型研磨材粒子数に対する球状粒子の比率が、80個数%以上であることを特徴とする請求項1から請求項7までのいずれか一項に記載の研磨材スラリー。
  9.  前記コア・シェル型研磨材粒子の一次粒子比率(粒子%)が、25℃換算のpHが3.0~11.0の範囲内で、85%以上であることを特徴とする請求項1から請求項8までのいずれか一項に記載の研磨材スラリー。
PCT/JP2014/051062 2013-02-05 2014-01-21 研磨材スラリー WO2014122982A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013019999A JP2016055352A (ja) 2013-02-05 2013-02-05 研磨材スラリー
JP2013-019999 2013-02-05

Publications (1)

Publication Number Publication Date
WO2014122982A1 true WO2014122982A1 (ja) 2014-08-14

Family

ID=51299579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051062 WO2014122982A1 (ja) 2013-02-05 2014-01-21 研磨材スラリー

Country Status (3)

Country Link
JP (1) JP2016055352A (ja)
TW (1) TW201444961A (ja)
WO (1) WO2014122982A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084578A1 (ja) * 2014-11-26 2016-06-02 京セラ株式会社 半導体封止用樹脂組成物および半導体装置
WO2016186214A1 (ja) * 2015-05-20 2016-11-24 Hoya株式会社 ガラス基板の研磨方法、研磨液、ガラス基板の製造方法、磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202002314WA (en) * 2017-09-29 2020-04-29 Hitachi Chemical Co Ltd Polishing solution, polishing solution set, and polishing method
JP7187770B2 (ja) * 2017-11-08 2022-12-13 Agc株式会社 研磨剤と研磨方法、および研磨用添加液

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356312A (ja) * 2001-03-24 2002-12-13 Degussa Ag コア、ドーピング成分およびシェルを有する酸化物粒子、その製法およびその使用
WO2004009726A1 (en) * 2002-07-19 2004-01-29 Saint-Gobain Ceramics & Plastics, Inc. Cerium salt coated abrasive particles for glass polishing
WO2005035688A1 (en) * 2003-10-10 2005-04-21 Korea Institute Of Ceramic Engineering & Technology Abrasive for chemical mechanical polishing and method for producing the same
WO2006049197A1 (ja) * 2004-11-08 2006-05-11 Asahi Glass Company, Limited CeO2微粒子の製造方法及び該微粒子を含む研磨用スラリー
WO2008044685A1 (fr) * 2006-10-10 2008-04-17 National Institute Of Advanced Industrial Science And Technology Microparticule d'oxyde de cérium de type noyau-coquille, solution de dispersion comprenant la microparticule et procédé de production de la microparticule ou de la solution de dispersion
JP2008182179A (ja) * 2006-12-27 2008-08-07 Hitachi Chem Co Ltd 研磨剤用添加剤、研磨剤、基板の研磨方法及び電子部品
WO2010139603A1 (en) * 2009-06-05 2010-12-09 Basf Se RASPBERRY-TYPE METAL OXIDE NANOSTRUCTURES COATED WITH CeO2 NANOPARTICLES FOR CHEMICAL MECHANICAL PLANARIZATION (CMP)
JP2012011526A (ja) * 2010-07-02 2012-01-19 Admatechs Co Ltd 研磨材およびその製造方法
WO2012101871A1 (ja) * 2011-01-25 2012-08-02 コニカミノルタホールディングス株式会社 研磨材微粒子及びその製造方法
WO2014038536A1 (ja) * 2012-09-05 2014-03-13 コニカミノルタ株式会社 研磨材粒子の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356312A (ja) * 2001-03-24 2002-12-13 Degussa Ag コア、ドーピング成分およびシェルを有する酸化物粒子、その製法およびその使用
WO2004009726A1 (en) * 2002-07-19 2004-01-29 Saint-Gobain Ceramics & Plastics, Inc. Cerium salt coated abrasive particles for glass polishing
WO2005035688A1 (en) * 2003-10-10 2005-04-21 Korea Institute Of Ceramic Engineering & Technology Abrasive for chemical mechanical polishing and method for producing the same
WO2006049197A1 (ja) * 2004-11-08 2006-05-11 Asahi Glass Company, Limited CeO2微粒子の製造方法及び該微粒子を含む研磨用スラリー
WO2008044685A1 (fr) * 2006-10-10 2008-04-17 National Institute Of Advanced Industrial Science And Technology Microparticule d'oxyde de cérium de type noyau-coquille, solution de dispersion comprenant la microparticule et procédé de production de la microparticule ou de la solution de dispersion
JP2008182179A (ja) * 2006-12-27 2008-08-07 Hitachi Chem Co Ltd 研磨剤用添加剤、研磨剤、基板の研磨方法及び電子部品
WO2010139603A1 (en) * 2009-06-05 2010-12-09 Basf Se RASPBERRY-TYPE METAL OXIDE NANOSTRUCTURES COATED WITH CeO2 NANOPARTICLES FOR CHEMICAL MECHANICAL PLANARIZATION (CMP)
JP2012011526A (ja) * 2010-07-02 2012-01-19 Admatechs Co Ltd 研磨材およびその製造方法
WO2012101871A1 (ja) * 2011-01-25 2012-08-02 コニカミノルタホールディングス株式会社 研磨材微粒子及びその製造方法
WO2014038536A1 (ja) * 2012-09-05 2014-03-13 コニカミノルタ株式会社 研磨材粒子の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084578A1 (ja) * 2014-11-26 2016-06-02 京セラ株式会社 半導体封止用樹脂組成物および半導体装置
US10696840B2 (en) 2014-11-26 2020-06-30 Kyocera Corporation Resin composition for semiconductor encapsulation and semiconductor device
WO2016186214A1 (ja) * 2015-05-20 2016-11-24 Hoya株式会社 ガラス基板の研磨方法、研磨液、ガラス基板の製造方法、磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法

Also Published As

Publication number Publication date
TW201444961A (zh) 2014-12-01
JP2016055352A (ja) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6493207B2 (ja) 酸化セリウム研磨材の製造方法
JP6191608B2 (ja) 研磨材粒子の製造方法
JP6447499B2 (ja) 研磨材の製造方法及び研磨加工方法
WO2014122982A1 (ja) 研磨材スラリー
JP6102922B2 (ja) 研磨材粒子及びその製造方法
JP5979340B1 (ja) 研磨用複合粒子、研磨用複合粒子の製造方法及び研磨用スラリー
JP6225909B2 (ja) 研磨材粒子の製造方法
JP6237650B2 (ja) コア・シェル型無機粒子
JP2018187759A (ja) 研磨装置、研磨方法、及び組成物
JP6512096B2 (ja) 研磨材、研磨材スラリー及び研磨材の製造方法
WO2014122976A1 (ja) 研磨材スラリー
JP2016092045A (ja) 研磨材、研磨材スラリー及び研磨加工方法
WO2014122978A1 (ja) 研磨材の製造方法
JP2016175948A (ja) Cmp用研磨液
JP2014101488A (ja) 異種金属元素を添加したマンガン酸化物遊離砥粒研磨用研磨剤及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14748491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP