[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014196497A1 - ターボ冷凍機 - Google Patents

ターボ冷凍機 Download PDF

Info

Publication number
WO2014196497A1
WO2014196497A1 PCT/JP2014/064607 JP2014064607W WO2014196497A1 WO 2014196497 A1 WO2014196497 A1 WO 2014196497A1 JP 2014064607 W JP2014064607 W JP 2014064607W WO 2014196497 A1 WO2014196497 A1 WO 2014196497A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
refrigerant
economizer
phase component
turbo
Prior art date
Application number
PCT/JP2014/064607
Other languages
English (en)
French (fr)
Inventor
兼太郎 小田
信義 佐久間
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP14807005.5A priority Critical patent/EP3006860B8/en
Priority to CN201480030557.8A priority patent/CN105393067B/zh
Priority to US14/895,605 priority patent/US9879886B2/en
Priority to JP2015521437A priority patent/JP6123889B2/ja
Publication of WO2014196497A1 publication Critical patent/WO2014196497A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a turbo refrigerator.
  • This application claims priority based on Japanese Patent Application No. 2013-117737 for which it applied to Japan on June 4, 2013, and uses the content here.
  • refrigerant is circulated between a condenser and an evaporator, the refrigerant compressed by the turbo compressor is condensed by the condenser, and the condensed refrigerant is evaporated by the evaporator.
  • refrigerant is circulated between a condenser and an evaporator, the refrigerant compressed by the turbo compressor is condensed by the condenser, and the condensed refrigerant is evaporated by the evaporator.
  • Patent Document 1 In order to efficiently vaporize the refrigerant in the evaporator, it is desirable that the vapor phase component contained in the refrigerant supplied to the evaporator is small. For this reason, for example, as shown in Patent Document 1, an economizer is installed in front of the evaporator, the vapor phase component of the refrigerant supplied to the economizer is removed, and the vapor phase component of the removed refrigerant is returned to the turbo compressor. is doing.
  • Patent Document 2 and Patent Document 3 disclose detailed configurations of the parts where the gas phase component of the refrigerant removed from the economizer in Patent Document 1 is returned to the turbo compressor.
  • the pipe for supplying the gas phase component of the refrigerant separated by the economizer to the turbo compressor has the same diameter up to the turbo compressor and is connected to the turbo compressor at a right angle.
  • the pipe when the pipe is thick, the flow velocity in the pipe becomes slow, and acceleration loss is generated when it joins the main stream flowing in the turbo compressor.
  • the pressure loss in the pipe is increased, and the pressure in the economizer is not sufficiently lowered (the pressure cannot be pulled), so that the refrigerant is not sufficiently evaporated in the economizer.
  • the present invention has been made in view of the above-described circumstances, and in a turbo refrigerator equipped with an economizer, the gas-liquid separation in the economizer is satisfactorily performed and the acceleration loss when supplying the gas phase component of the refrigerant to the turbo compressor is reduced.
  • the purpose is to reduce.
  • a first aspect of the present invention is a turbo refrigerator including a turbo compressor to which a gas phase component of a refrigerant from an economizer is supplied, wherein the turbo compressor includes a first flow path through which a compressed refrigerant gas flows, A connection pipe connected to the first flow path and a second flow path through which the gas phase component of the refrigerant flows, and the diameter of the connection pipe is from the second flow path toward the first flow path. It is a turbo refrigerator that is shrinking.
  • the overall pressure loss of the second flow path and the connection pipe is such that the gas phase component of the refrigerant flows from the economizer into the second flow path.
  • This is a turbo refrigerator that has a possible value.
  • a third aspect of the present invention is the turbo refrigerator according to the first aspect, wherein the pipes constituting the second flow path have the same diameter.
  • the turbo refrigerator in which the gas phase components of the refrigerant flowing through the second flow path merge along the compressed refrigerant gas flowing through the first flow path. It is.
  • a fifth aspect of the present invention is the turbo refrigerator according to the first aspect, wherein the first flow path is constituted by an elbow pipe.
  • a sixth aspect of the present invention is the turbo refrigerator according to the fifth aspect, wherein the angle of the outlet with respect to the inlet of the elbow pipe is 180 degrees.
  • a seventh aspect of the present invention is the turbo refrigerator according to the fifth aspect, wherein the refrigerant gas phase component flowing in the second flow path is spirally supplied to the elbow pipe.
  • the elbow pipe is provided separately from the third flow path through which the gas phase component of the refrigerant from an economizer different from the economizer flows, and the connecting pipe. It is a turbo refrigerator which further has another connecting pipe connected with.
  • the turbo refrigerator includes a turbo compressor to which a gas phase component of the refrigerant from the economizer is supplied, and the turbo compressor includes a compressed refrigerant gas.
  • a connection pipe connected to the first flow path and the second flow path through which the gas phase component of the refrigerant flows, and the diameter of the connection pipe on the first flow path side is the connection pipe on the second flow path side. This is a centrifugal chiller smaller than the diameter.
  • the return part has a throttle part. For this reason, the flow path area can be widened at the inlet portion of the return flow portion on the economizer side, and the speed of the gas phase component of the refrigerant discharged from the return flow portion can be increased. Therefore, according to the present invention, it is possible to suppress an increase in pressure loss in the return portion and perform gas-liquid separation in the economizer satisfactorily, and to reduce acceleration loss when merging with the main flow in the turbo compressor.
  • turbo refrigerator in one embodiment of the present invention. It is an expansion schematic diagram including the channel and economizer connection pipe with which the turbo refrigerator in one embodiment of the present invention is provided.
  • FIG. 1 is a system diagram of a turbo refrigerator 1 in an embodiment of the present invention.
  • the turbo refrigerator 1 includes a condenser 2, an economizer 3, an evaporator 4, a turbo compressor 5, an expansion valve 6, and an expansion valve 7.
  • the condenser 2 is connected to the gas discharge pipe 5a of the turbo compressor 5 through the flow path R1.
  • the refrigerant (compressed refrigerant gas X1) compressed by the turbo compressor 5 is supplied to the condenser 2 through the flow path R1.
  • the condenser 2 liquefies this compressed refrigerant gas X1.
  • the condenser 2 includes a heat transfer tube 2a through which cooling water flows, and cools and liquefies the compressed refrigerant gas X1 by heat exchange between the compressed refrigerant gas X1 and the cooling water.
  • a refrigerant chlorofluorocarbon or the like can be used.
  • the compressed refrigerant gas X1 is cooled by heat exchange with the cooling water, liquefied, becomes refrigerant liquid X2, and accumulates at the bottom of the condenser 2.
  • the bottom of the condenser 2 is connected to the economizer 3 via the flow path R2.
  • the flow path R2 is provided with an expansion valve 6 for decompressing the refrigerant liquid X2.
  • the economizer 3 is supplied with the refrigerant liquid X2 decompressed by the expansion valve 6 through the flow path R2.
  • the economizer 3 temporarily stores the refrigerant liquid X2 that has been discharged from the condenser 2 and decompressed by the expansion valve 6, and separates the refrigerant into a liquid phase and a gas phase.
  • the top of the economizer 3 is connected to the economizer connecting pipe 5b of the turbo compressor 5 through the flow path R3.
  • the refrigerant gas phase component X3 separated by the economizer 3 is supplied to the second compression stage 12 (described later) through the flow path R3 without passing through the evaporator 4 and the first compression stage 11 (described later). Increase efficiency.
  • the bottom of the economizer 3 is connected to the evaporator 4 via a flow path R4.
  • the flow path R4 is provided with an expansion valve 7 for further reducing the pressure of the refrigerant liquid X2.
  • the evaporator 4 is supplied with the refrigerant liquid X2 further decompressed by the expansion valve 7 through the flow path R4.
  • the evaporator 4 evaporates the refrigerant liquid X2 and cools the cold water with the heat of vaporization.
  • the evaporator 4 includes a heat transfer tube 4a through which cold water flows, and cools the cold water and evaporates the refrigerant liquid X2 by heat exchange between the refrigerant liquid X2 and the cold water.
  • Refrigerant liquid X2 takes heat by heat exchange with cold water and evaporates to become refrigerant gas X4.
  • the top of the evaporator 4 is connected to a gas suction pipe 5c of the turbo compressor 5 via a flow path R5.
  • the refrigerant gas X4 evaporated in the evaporator 4 is supplied to the turbo compressor 5 through the flow path R5.
  • the turbo compressor 5 compresses the evaporated refrigerant gas X4 and supplies it to the condenser 2 as the compressed refrigerant gas X1.
  • the turbo compressor 5 is a two-stage compressor that includes a first compression stage 11 that compresses the refrigerant gas X4 and a second compression stage 12 that further compresses the refrigerant compressed in one stage.
  • the first compression stage 11 is provided with an impeller 13, and the second compression stage 12 is provided with an impeller 14, which are connected by a rotating shaft 15.
  • the turbo compressor 5 has a motor 10, and the impeller 13 and the impeller 14 are rotated by the motor 10 to compress the refrigerant.
  • the impeller 13 and the impeller 14 are radial impellers, and lead out the refrigerant sucked in the axial direction in the radial direction.
  • the gas intake pipe 5c is provided with an inlet guide vane 16 for adjusting the intake amount of the first compression stage 11.
  • the inlet guide vane 16 is rotatable so that the apparent area from the flow direction of the refrigerant gas X4 can be changed.
  • a diffuser flow path is provided around each of the impeller 13 and the impeller 14, and the refrigerant led out in the radial direction is compressed and boosted in the diffuser flow path. Further, the refrigerant can be supplied to the next compression stage through a scroll passage provided around the diffuser passage.
  • An outlet throttle valve 17 is provided around the impeller 14, and the discharge amount from the gas discharge pipe 5a can be controlled.
  • the turbo compressor 5 includes a sealed casing 20.
  • the interior of the housing 20 is partitioned into a compression flow path space S1, a first bearing housing space S2, a motor housing space S3, a gear unit housing space S4, and a second bearing housing space S5.
  • the impeller 13 and the impeller 14 are provided in the compression flow path space S1.
  • the rotating shaft 15 that connects the impeller 13 and the impeller 14 is provided so as to be inserted into the compression flow path space S1, the first bearing housing space S2, and the gear unit housing space S4.
  • a bearing 21 that supports the rotary shaft 15 is provided in the first bearing housing space S2.
  • a stator 22, a rotor 23, and a rotating shaft 24 connected to the rotor 23 are provided in the motor housing space S3, a stator 22, a rotor 23, and a rotating shaft 24 connected to the rotor 23 are provided.
  • the rotating shaft 24 is provided so as to be inserted into the motor housing space S3, the gear unit housing space S4, and the second bearing housing space S5.
  • a bearing 31 that supports the non-load side of the rotary shaft 24 is provided in the second bearing housing space S5.
  • a gear unit 25, a bearing 26 and a bearing 27, and an oil tank 28 are provided in the gear unit housing space S4.
  • the gear unit 25 has a large-diameter gear 29 fixed to the rotary shaft 24 and a small-diameter gear 30 fixed to the rotary shaft 15 and meshed with the large-diameter gear 29.
  • the gear unit 25 transmits the rotational force so that the rotation speed of the rotation shaft 15 increases (acceleration) with respect to the rotation speed of the rotation shaft 24.
  • the bearing 26 supports the rotating shaft 24.
  • the bearing 27 supports the rotating shaft 15.
  • the oil tank 28 stores lubricating oil supplied to each sliding portion such as the bearing 21, the bearing 26, the bearing 27, and the bearing 31.
  • Such a casing 20 is provided with a seal mechanism 32 and a seal mechanism 33 for sealing the periphery of the rotary shaft 15 between the compression flow path space S1 and the first bearing housing space S2.
  • the casing 20 is provided with a seal mechanism 34 that seals the periphery of the rotary shaft 15 between the compression flow path space S1 and the gear unit accommodation space S4.
  • the casing 20 is provided with a seal mechanism 35 that seals the periphery of the rotary shaft 24 between the gear unit accommodation space S4 and the motor accommodation space S3.
  • the casing 20 is provided with a seal mechanism 36 that seals the periphery of the rotary shaft 24 between the motor housing space S3 and the second bearing housing space S5.
  • the motor housing space S3 is connected to the condenser 2 via a flow path R6.
  • the refrigerant liquid X2 is supplied from the condenser 2 to the motor housing space S3 through the flow path R6.
  • the refrigerant liquid X2 supplied to the motor housing space S3 circulates around the stator 22, and cools the motor housing space S3 by heat exchange between the stator 22 and its surroundings.
  • the motor housing space S3 is connected to the evaporator 4 via the flow path R6.
  • the evaporator 4 is supplied with the refrigerant liquid X2 that has lost heat in the motor housing space S3 through the flow path R7.
  • the oil tank 28 has an oil supply pump 37.
  • the oil supply pump 37 is connected to the second bearing housing space S5 via a flow path R8, for example.
  • Lubricating oil is supplied from the oil tank 28 to the second bearing housing space S5 through the flow path R8.
  • Lubricating oil supplied to the second bearing housing space S5 is supplied to the bearing 31 to ensure lubricity of the sliding portion of the rotating shaft 24 and to suppress (cool) heat generation of the sliding portion.
  • the second bearing housing space S5 is connected to the oil tank 28 via the flow path R9.
  • the lubricating oil supplied to the second bearing housing space S5 returns to the oil tank 28 through the flow path R9.
  • the compressed refrigerant gas X1 is cooled and condensed by the cooling water in the condenser 2 and is exhausted by heating the cooling water.
  • the refrigerant liquid X2 generated by condensing in the condenser 2 is decompressed by the expansion valve 6 and supplied to the economizer 3, and after the vapor phase component X3 of the refrigerant has been separated, the refrigerant liquid X2 is further decompressed by the expansion valve 7 and is evaporated. To be supplied.
  • the gas phase component X3 of the refrigerant is supplied to the turbo compressor 5 via the flow path R3.
  • the refrigerant liquid X2 supplied to the evaporator 4 evaporates in the evaporator 4 and thereby takes the heat of the cold water to cool the cold water. Thereby, the heat of the cold water before cooling is substantially transported to the cooling water supplied to the condenser 2.
  • the refrigerant gas X4 generated by evaporating the refrigerant liquid X2 is supplied to the turbo compressor 5 and compressed, and then supplied to the condenser 2 again.
  • a part of the refrigerant liquid X2 accumulated in the condenser 2 is supplied to the motor housing space S3 via the flow path R6.
  • the refrigerant liquid X2 supplied to the motor housing space S3 through the flow path R6 cools the motor 10 housed in the motor housing space S3, and then returns to the evaporator 4 through the flow path R7.
  • the lubricating oil flowing through the flow path R8 is supplied to the first bearing housing space S2, the second bearing housing space S5, and the gear unit housing space S4, and reduces the sliding resistance of the bearing 21, the gear unit 25, and the like.
  • the flow path R3 and the economizer connecting pipe 5b merge the gas phase component X3 of the refrigerant separated by the economizer 3 with the flow (main flow) of the compressed refrigerant gas X1 in the turbo compressor 5.
  • the flow path R3 and the economizer connecting pipe 5b function as a return section that returns the gas phase component X3 of the refrigerant separated by the economizer 3 to the turbo compressor 5.
  • the flow path R3 is a pipe having the same diameter, and the pressure loss of the flow path R3 and the economizer connecting pipe 5b as a whole is almost equal to the amount of the gas phase component X3 of the refrigerant gas-liquid separated by the economizer 3 from the economizer 3.
  • the diameter is set to a value that can flow into R3.
  • the return portion of the turbo compressor 5 to which the gas phase component X3 of the refrigerant separated by the economizer 3 is returned is the elbow pipe 20a.
  • elbow pipe 20a be the 1st channel R10.
  • the elbow pipe 20a is a 180 ° elbow pipe in which the inlet 20b and the outlet 20c face in opposite directions.
  • the economizer connection pipe 5b is connected to the elbow pipe 20a from the tangential direction.
  • the economizer connecting pipe 5b is directly connected to the elbow pipe 20a and has a throttle flow path whose diameter is reduced from the flow path R3 side toward the elbow pipe 20a.
  • Such an economizer connecting pipe 5b increases the flow rate of the gas phase component X3 of the refrigerant flowing from the flow path R3, and is tangential to the elbow pipe 20a along the compressed refrigerant gas X1 flowing in the elbow pipe 20a.
  • the gas phase component X3 of the refrigerant is supplied. Therefore, the gas phase component X3 of the refrigerant flowing through the flow path R3 merges along the compressed refrigerant gas flowing through the elbow pipe 20a.
  • the turbo refrigerator 1 of this embodiment having such a configuration includes an economizer connecting pipe 5b having a throttle channel. That is, in the turbo refrigerator 1 of the present embodiment including the turbo compressor 5 to which the refrigerant gas phase component X3 from the economizer 3 is supplied, the turbo compressor 5 includes an elbow pipe 20a through which the compressed refrigerant gas X1 flows, The economizer connecting pipe 5b connected to the pipe 20a and the flow path R3 through which the gas phase component X3 of the refrigerant flows. The diameter of the economizer connecting pipe 5b is reduced from the flow path R3 toward the elbow pipe 20a.
  • the turbo compressor 5 in the turbo refrigerator 1 of the present embodiment including the turbo compressor 5 to which the refrigerant gas phase component X3 from the economizer 3 is supplied, the turbo compressor 5 includes an elbow pipe 20a through which the compressed refrigerant gas X1 flows, And an economizer connecting pipe 5b connected to the flow path R3 through which the gas phase component X3 of the refrigerant flows.
  • the economizer connecting pipe 5b on the elbow pipe 20a side has an economizer connecting pipe 5b on the flow path R3 side. Smaller than the diameter.
  • the flow path area of the flow path R3 on the economizer 3 side corresponding to the entrance portion can be increased, and the speed of the gas phase component X3 of the refrigerant discharged toward the elbow pipe 20a can be increased. Therefore, according to the turbo refrigerator 1 of the present embodiment, the gas-liquid separation in the economizer 3 is satisfactorily performed while suppressing increase in the overall pressure loss of the economizer connecting pipe 5b and the flow path R3, and the elbow pipe 20a. Acceleration loss when merging with the mainstream can be reduced.
  • the gas phase component X3 of the refrigerant supplied from the economizer connecting pipe 5b to the elbow pipe 20a is supplied along the flow of the compressed refrigerant gas X1 flowing through the elbow pipe 20a. .
  • it can suppress that a turbulent flow generate
  • the return portion of the turbo compressor 5 to which the gas phase component X3 of the refrigerant separated by the economizer 3 is returned is the elbow pipe 20a.
  • This elbow pipe The refrigerant gas phase component X3 is supplied into the elbow 20a from the tangential direction of 20a. For this reason, it becomes possible to join the gas phase component X3 of the refrigerant along the flow of the compressed refrigerant gas X1 with a simple configuration.
  • the configuration in which the elbow pipe 20a is the place where the gas phase component X3 of the refrigerant separated by the economizer 3 is returned is not limited to this.
  • the straight pipe can be used as a return portion of the gas phase component X3 of the refrigerant. It is desirable to supply the vapor phase component X3 of the returned refrigerant to the straight pipe as much as possible along the main flow in the straight pipe.
  • tube 20a was demonstrated.
  • the present invention is not limited to this, and the gas phase component X3 of the refrigerant may be spirally supplied to a pipe through which the main flow such as the elbow pipe 20a flows.
  • tube 20a was demonstrated.
  • the present invention is not limited to this, and a plurality of economizer connecting pipes 5b may be connected to the elbow pipe 20a, and the flow path R3 may be branched so as to be connected to each economizer connecting pipe 5b.
  • the third flow path through which the gas phase component X3 of the refrigerant flows from the economizer connecting pipe 5x different from the economizer connecting pipe 5b, and the elbow pipe 20a are connected separately from the economizer connecting pipe 5b.
  • You may further have a pipe
  • the elbow pipe 20a is the first flow path R10.
  • the first flow path R10 is not limited to the elbow pipe 20a, and a joint or the like normally used in this field may be used.
  • the return portion has the throttle portion. For this reason, the flow path area can be widened at the inlet portion of the return flow portion on the economizer side, and the speed of the gas phase component of the refrigerant discharged from the return flow portion can be increased. Therefore, according to the present invention, it is possible to suppress an increase in pressure loss in the return portion and perform gas-liquid separation in the economizer satisfactorily, and to reduce acceleration loss when merging with the main flow in the turbo compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

エコノマイザ(3)からの冷媒の気相成分(X3)が供給されるターボ圧縮機(5)を含むターボ冷凍機(1)であって、ターボ圧縮機(5)は、圧縮冷媒ガス(X1)が流れる第1流路(R10)と、第1流路(R10)及び冷媒の気相成分(X3)が流れる第2流路(R3)と接続された連結管(5b)と、を含み、連結管(5b)の径は、第2流路(R3)から第1流路(R10)に向かって縮小している。

Description

ターボ冷凍機
本発明は、ターボ冷凍機に関する。
本願は、2013年6月4日に日本国に出願された特願2013-117737号に基づき優先権を主張し、その内容をここに援用する。
 従来から、ターボ冷凍機では、凝縮器と蒸発器との間で冷媒を循環させ、ターボ圧縮機で圧縮した冷媒を凝縮器で凝縮し、その凝縮された冷媒を蒸発器で蒸発させることにより熱輸送を行っている。
 蒸発器において効率的に冷媒を気化させるためには、蒸発器に供給される冷媒に含まれる気相成分が少ないことが望ましい。このため、例えば特許文献1に示すように、蒸発器の手前にエコノマイザを設置し、エコノマイザに供給される冷媒の気相成分を取り除き、この取り除いた冷媒の気相成分をターボ圧縮機に返流している。
 特許文献2や特許文献3には、特許文献1において、エコノマイザから取り除いた冷媒の気相成分がターボ圧縮機に返流される部位の詳細な構成が、それぞれ開示されている。
日本国特開2009-186033号公報 日本国特開2013-76389号公報 日本国特開2007-177695号公報
 しかしながら、エコノマイザで分離された冷媒の気相成分をどのようにしてターボ圧縮機に供給するかについての提案はなされていない。例えば、特許文献1においては、エコノマイザで分離された冷媒の気相成分をターボ圧縮機に供給するための配管は、ターボ圧縮機まで同一径であり、かつ、ターボ圧縮機に対して直角に接続されている。このようなターボ冷凍機では、上記配管が太い場合には配管内での流速が遅くなりターボ圧縮機内を流れる主流と合流するときに加速損失を発生させる。また、上記配管が細い場合には配管内の圧力損失が大きくなりエコノマイザ内の圧力が十分に下がらない(圧力を引けない)ため、エコノマイザ内で冷媒の蒸発が十分に行われない。
 本発明は、上述する事情に鑑みてなされたもので、エコノマイザを備えるターボ冷凍機において、エコノマイザにおける気液分離を良好に行うと共に冷媒の気相成分をターボ圧縮機に供給するときの加速損失を低減させることを目的とする。
 本発明の第1の態様は、エコノマイザからの冷媒の気相成分が供給されるターボ圧縮機を含むターボ冷凍機であって、上記ターボ圧縮機が、圧縮冷媒ガスが流れる第1流路と、上記第1流路及び上記冷媒の気相成分が流れる第2流路と接続された連結管と、を含み、上記連結管の径が、上記第2流路から上記第1流路に向かって縮小している、ターボ冷凍機である。
本発明の第2の態様は、上記第一の態様において、上記第2流路及び上記連結管の全体の圧力損失が、上記冷媒の気相成分が上記エコノマイザから上記第2流路に流れ込むことが可能な値であるターボ冷凍機である。
本発明の第3の態様は、上記第一の態様において、上記第2流路を構成する配管が、同一の径を有するターボ冷凍機である。
本発明の第4の態様は、上記第一の態様において、上記第2流路を流れる上記冷媒の気相成分が、上記第1流路を流れる上記圧縮冷媒ガスに沿って合流するターボ冷凍機である。
本発明の第5の態様は、上記第一の態様において、上記第1流路がエルボ管で構成されるターボ冷凍機である。
本発明の第6の態様は、上記第5の態様において、上記エルボ管の入口に対する出口の角度が180度であるターボ冷凍機である。
本発明の第7の態様は、上記第5の態様において、上記第2流路を流れる上記冷媒の気相成分が、上記エルボ管に対して螺旋状に供給されるターボ冷凍機。
本発明の第8の態様は、上記第5の態様において、上記エコノマイザとは別のエコノマイザからの上記冷媒の気相成分が流れる第3流路、及び上記連結管とは別に設けられ上記エルボ管と接続された別の連結管をさらに有するターボ冷凍機である。
本発明の第9の態様は、上記第5の態様において、エコノマイザからの冷媒の気相成分が供給されるターボ圧縮機を含むターボ冷凍機であって、上記ターボ圧縮機が、圧縮冷媒ガスが流れる第1流路、及び上記冷媒の気相成分が流れる第2流路と接続された連結管を含み、上記第1流路側の上記連結管の径が、上記第2流路側の上記連結管の径よりも小さいターボ冷凍機である。
 本発明によれば、返流部が絞り部を有している。このため、エコノマイザ側の返流部の入口部分においては流路面積を広くし、かつ、返流部から吐出される冷媒の気相成分の速度を増加させることができる。したがって、本発明によれば、返流部における圧力損失の増大を抑えてエコノマイザにおける気液分離を良好に行うと共に、ターボ圧縮機内の主流と合流するときの加速損失を低減させることができる。
本発明の一実施形態におけるターボ冷凍機の系統図である。 本発明の一実施形態におけるターボ冷凍機が備える流路及びエコノマイザ連結管を含む拡大模式図である。
 以下、図面を参照して、本発明に係るターボ冷凍機の一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更する。
 図1は、本発明の一実施形態におけるターボ冷凍機1の系統図である。ターボ冷凍機1は、図1に示すように、凝縮器2と、エコノマイザ3と、蒸発器4と、ターボ圧縮機5と、膨張弁6と、膨張弁7とを備えている。
 凝縮器2は、流路R1を介してターボ圧縮機5のガス吐出管5aと接続されている。凝縮器2には、ターボ圧縮機5によって圧縮された冷媒(圧縮冷媒ガスX1)が流路R1を通って供給される。凝縮器2は、この圧縮冷媒ガスX1を液化する。凝縮器2は、冷却水が流通する伝熱管2aを備え、圧縮冷媒ガスX1と冷却水との熱交換によって、圧縮冷媒ガスX1を冷却して液化する。なお、このような冷媒としては、フロン等を用いることができる。
圧縮冷媒ガスX1は、冷却水との間の熱交換によって冷却され、液化し、冷媒液X2となって凝縮器2の底部に溜まる。凝縮器2の底部は、流路R2を介してエコノマイザ3と接続されている。また、流路R2には、冷媒液X2を減圧するための膨張弁6が設けられている。エコノマイザ3には、膨張弁6によって減圧された冷媒液X2が流路R2を通って供給される。
 エコノマイザ3は、凝縮器2から排出された後に膨張弁6で減圧された冷媒液X2を一時的に貯留し、冷媒を液相と気相とに分離する。エコノマイザ3の頂部は、流路R3を介してターボ圧縮機5のエコノマイザ連結管5bと接続されている。エコノマイザ3によって分離した冷媒の気相成分X3が、蒸発器4及び後述の第1圧縮段11を経ることなく、流路R3を通って後述の第2圧縮段12に供給され、ターボ圧縮機5の効率を高める。一方、エコノマイザ3の底部は、流路R4を介して蒸発器4と接続されている。流路R4には、冷媒液X2をさらに減圧するための膨張弁7が設けられている。蒸発器4には、膨張弁7によってさらに減圧された冷媒液X2が流路R4を通って供給される。
 蒸発器4は、冷媒液X2を蒸発させてその気化熱によって冷水を冷却する。
蒸発器4は、冷水が流通する伝熱管4aを備え、冷媒液X2と冷水との熱交換によって、冷水を冷却すると共に冷媒液X2を蒸発させる。冷媒液X2は、冷水との間の熱交換によって熱を奪って蒸発し、冷媒ガスX4となる。蒸発器4の頂部は、流路R5を介してターボ圧縮機5のガス吸入管5cと接続されている。ターボ圧縮機5には、蒸発器4において蒸発した冷媒ガスX4が流路R5を通って供給される。
 ターボ圧縮機5は、蒸発した冷媒ガスX4を圧縮し、圧縮冷媒ガスX1として凝縮器2に供給する。ターボ圧縮機5は、冷媒ガスX4を圧縮する第1圧縮段11と、一段階圧縮された冷媒をさらに圧縮する第2圧縮段12と、を備える2段圧縮機である。
 第1圧縮段11にはインペラ13が設けられ、第2圧縮段12にはインペラ14が設けられており、それらが回転軸15で接続されている。ターボ圧縮機5は、モータ10を有しており、モータ10によってインペラ13及びインペラ14を回転させて冷媒を圧縮する。インペラ13及びインペラ14は、ラジアルインペラであり、軸方向で吸気した冷媒を半径方向に導出する。
 ガス吸入管5cには、第1圧縮段11の吸入量を調節するためのインレットガイドベーン16が設けられている。インレットガイドベーン16は、冷媒ガスX4の流れ方向からの見かけ上の面積が変更可能なように回転可能とされている。インペラ13及びインペラ14の周りには、それぞれディフューザ流路が設けられており、半径方向に導出した冷媒を、このディフューザ流路において圧縮及び昇圧する。また、さらに、このディフューザ流路の周りに設けられたスクロール流路によって次の圧縮段に冷媒を供給することができる。インペラ14の周りには、出口絞り弁17が設けられており、ガス吐出管5aからの吐出量を制御できる。
 また、ターボ圧縮機5は、密閉型の筐体20を備える。筐体20の内部は、圧縮流路空間S1と、第1軸受収容空間S2と、モータ収容空間S3と、ギアユニット収容空間S4と、第2軸受収容空間S5とに区画されている。
 圧縮流路空間S1には、インペラ13及びインペラ14が設けられている。インペラ13及びインペラ14を接続する回転軸15は、圧縮流路空間S1、第1軸受収容空間S2、ギアユニット収容空間S4に挿通して設けられている。第1軸受収容空間S2には、回転軸15を支持する軸受21が設けられている。
 モータ収容空間S3には、ステータ22と、ロータ23と、ロータ23に接続された回転軸24とが設けられている。この回転軸24は、モータ収容空間S3、ギアユニット収容空間S4、第2軸受収容空間S5に挿通して設けられている。第2軸受収容空間S5には、回転軸24の反負荷側を支持する軸受31が設けられている。ギアユニット収容空間S4には、ギアユニット25と、軸受26及び軸受27と、油タンク28とが設けられている。
 ギアユニット25は、回転軸24に固定される大径歯車29と、回転軸15に固定されると共に大径歯車29と噛み合う小径歯車30とを有する。ギアユニット25は、回転軸24の回転数に対して回転軸15の回転数が増加(増速)するように、回転力を伝達する。軸受26は、回転軸24を支持する。軸受27は、回転軸15を支持する。油タンク28は、軸受21、軸受26、軸受27及び軸受31等の各摺動部位に供給される潤滑油を貯溜する。
 このような筐体20には、圧縮流路空間S1と第1軸受収容空間S2との間において、回転軸15の周囲をシールするシール機構32及びシール機構33が設けられている。また、筐体20には、圧縮流路空間S1とギアユニット収容空間S4との間において、回転軸15の周囲をシールするシール機構34が設けられている。また、筐体20には、ギアユニット収容空間S4とモータ収容空間S3との間において、回転軸24の周囲をシールするシール機構35が設けられている。また、筐体20には、モータ収容空間S3と第2軸受収容空間S5との間において、回転軸24の周囲をシールするシール機構36が設けられている。
 モータ収容空間S3は、流路R6を介して凝縮器2と接続されている。モータ収容空間S3には、凝縮器2から冷媒液X2が流路R6を通って供給される。モータ収容空間S3に供給された冷媒液X2は、ステータ22の周りを流通し、ステータ22及びその周囲との間の熱交換によって、モータ収容空間S3を冷却する。モータ収容空間S3は、流路R6を介して蒸発器4と接続されている。蒸発器4には、モータ収容空間S3において熱を奪った冷媒液X2が流路R7を通って供給される。
 油タンク28は、給油ポンプ37を有する。給油ポンプ37は、例えば流路R8を介して第2軸受収容空間S5と接続されている。第2軸受収容空間S5には、油タンク28から潤滑油が流路R8を通って供給される。第2軸受収容空間S5に供給された潤滑油は、軸受31に供給され、回転軸24の摺動部位の潤滑性の確保と共に摺動部位の発熱を抑制(冷却)する。第2軸受収容空間S5は、流路R9を介して油タンク28と接続されている。油タンク28には、第2軸受収容空間S5に供給された潤滑油が流路R9を通って帰還する。
 このような構成を有する本実施形態のターボ冷凍機1では、凝縮器2において圧縮冷媒ガスX1が冷却水によって冷却されて凝縮し、冷却水が加熱されることで排熱される。凝縮器2で凝縮することによって生じた冷媒液X2は、膨張弁6によって減圧されてエコノマイザ3に供給され、冷媒の気相成分X3が分離された後に膨張弁7でさらに減圧されて蒸発器4に供給される。なお、冷媒の気相成分X3は、流路R3を介してターボ圧縮機5に供給される。
 蒸発器4に供給された冷媒液X2は、蒸発器4において蒸発することにより冷水の熱を奪い、冷水を冷却する。これによって、冷却前の冷水の熱が凝縮器2に供給された冷却水に実質的に輸送される。冷媒液X2が蒸発することによって生じた冷媒ガスX4は、ターボ圧縮機5に供給されて圧縮された後、再び凝縮器2に供給される。
 また、凝縮器2に溜った冷媒液X2の一部が流路R6を介してモータ収容空間S3に供給される。流路R6を介してモータ収容空間S3に供給された冷媒液X2は、モータ収容空間S3に収容されたモータ10を冷却した後、流路R7を介して蒸発器4に戻される。
 また、流路R8を流れる潤滑油は、第1軸受収容空間S2、第2軸受収容空間S5、及びギアユニット収容空間S4に供給され、軸受21やギアユニット25等の摺動抵抗を減少させる。
 次に、図2を参照して、流路R3及びエコノマイザ連結管5bについて詳細に説明する。流路R3及びエコノマイザ連結管5bは、ターボ圧縮機5内の圧縮冷媒ガスX1の流れ(主流)に対して、エコノマイザ3で分離された冷媒の気相成分X3を合流させる。これらの流路R3及びエコノマイザ連結管5bは、エコノマイザ3で分離された冷媒の気相成分X3をターボ圧縮機5に返流する返流部として機能する。
 流路R3は、同一径の配管であり、流路R3及びエコノマイザ連結管5b全体としての圧力損失が、エコノマイザ3で気液分離された冷媒の気相成分X3のほぼ全量がエコノマイザ3から流路R3に流れ込むことができる値となるように直径が設定されている。
図2に示すように、本実施形態のターボ冷凍機1では、エコノマイザ3で分離された冷媒の気相成分X3が返流されるターボ圧縮機5の返流箇所が、エルボ管20aとされている。ここで、エルボ管20aを第1流路R10とする。このエルボ管20aは、入口20bと出口20cとが反対方向を向く180°エルボ管である。このようなエルボ管20aに対して、エコノマイザ連結管5bは、接線方向から接続されている。エコノマイザ連結管5bは、エルボ管20aに直接接続されると共に流路R3側からエルボ管20aに向けて縮径する絞り流路を有している。このようなエコノマイザ連結管5bは、流路R3から流れ込む冷媒の気相成分X3の流速を増加させ、エルボ管20a内を流れる圧縮冷媒ガスX1に沿うように、エルボ管20aに対して接線方向から上記冷媒の気相成分X3を供給する。従って、流路R3を流れる冷媒の気相成分X3は、エルボ管20aを流れる圧縮冷媒ガスに沿って合流する。
このような構成を有する本実施形態のターボ冷凍機1は、絞り流路を有するエコノマイザ連結管5bを備えている。
即ち、エコノマイザ3からの冷媒の気相成分X3が供給されるターボ圧縮機5を含む本実施形態のターボ冷凍機1では、ターボ圧縮機5は、圧縮冷媒ガスX1が流れるエルボ管20aと、エルボ管20a及び冷媒の気相成分X3が流れる流路R3と接続されたエコノマイザ連結管5bと、を含み、エコノマイザ連結管5bの径は、流路R3からエルボ管20aに向かって縮小している。
換言すると、エコノマイザ3からの冷媒の気相成分X3が供給されるターボ圧縮機5を含む本実施形態のターボ冷凍機1では、ターボ圧縮機5は、圧縮冷媒ガスX1が流れるエルボ管20aと、エルボ管20a及び冷媒の気相成分X3が流れる流路R3と接続されたエコノマイザ連結管5bと、を含み、エルボ管20a側のエコノマイザ連結管5bの径は、流路R3側のエコノマイザ連結管5bの径よりも小さい。
このため、入り口部分に相当するエコノマイザ3側の流路R3の流路面積を広くし、かつ、エルボ管20a内に向けて吐出される冷媒の気相成分X3の速度を増加させることができる。したがって、本実施形態のターボ冷凍機1によれば、エコノマイザ連結管5bと流路R3とを合わせた全体の圧力損失の増大を抑えてエコノマイザ3における気液分離を良好に行うと共に、エルボ管20aの主流と合流するときの加速損失を低減させることができる。
また、本実施形態のターボ冷凍機1によれば、エコノマイザ連結管5bからエルボ管20aに供給される冷媒の気相成分X3がエルボ管20aを流れる圧縮冷媒ガスX1の流れに沿って供給される。このため、冷媒の気相成分X3が圧縮冷媒ガスX1と混合するときに乱流が発生することを抑制し、エルボ管20a内の損失が高まることを抑制することができる。
また、本実施形態のターボ冷凍機1においては、エコノマイザ3で分離された冷媒の気相成分X3が返流されるターボ圧縮機5の返流箇所がエルボ管20aとされており、このエルボ管20aの接線方向から上記冷媒の気相成分X3をエルボ管20a内に供給している。このため、簡易な構成にて、冷媒の気相成分X3を圧縮冷媒ガスX1の流れに沿って合流させることが可能となる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上記実施形態においては、エコノマイザ3で分離された冷媒の気相成分X3が返流される箇所がエルボ管20aである構成について説明した。しかしながら、本発明はこれに限定されず、例えば、ターボ圧縮機が直管を備えるときには、この直管を冷媒の気相成分X3の返流箇所とすることも可能である。このときも返流される冷媒の気相成分X3は、可能な限り上記直管内の主流に沿うように直管内に供給することが望ましい。
また、上記実施形態においては、エルボ管20aに対して接線方向から冷媒の気相成分X3を供給する構成について説明した。しかしながら、本発明はこれに限定されず、冷媒の気相成分X3をエルボ管20a等の主流が流れる配管に対して螺旋状に供給しても良い。
 また、上記実施形態においては、エルボ管20aに対して、エコノマイザ連結管5bが一か所のみ設けられた構成について説明した。しかしながら、本発明はこれに限定されず、複数のエコノマイザ連結管5bをエルボ管20aと接続し、各エコノマイザ連結管5bに接続されるように流路R3を分岐しても良い。
 換言すると、エコノマイザ連結管5bとは別のエコノマイザ連結管5xから冷媒の気相成分X3が流れる第3流路、及びエルボ管20aと接続され、エコノマイザ連結管5bとは別に設けられた別の連結管をさらに有しても良い。
 上記実施形態においては、エルボ管20aを第1流路R10としたが、第1流路R10はエルボ管20aに限定されず、当分野において通常用いられる継手等を使用しても良い。
本発明によれば、返流部が絞り部を有している。このため、エコノマイザ側の返流部の入口部分においては流路面積を広くし、かつ、返流部から吐出される冷媒の気相成分の速度を増加させることができる。したがって、本発明によれば、返流部における圧力損失の増大を抑えてエコノマイザにおける気液分離を良好に行うと共に、ターボ圧縮機内の主流と合流するときの加速損失を低減させることができる。
1 ターボ冷凍機、2 凝縮器、2a、4a 伝熱管、3 エコノマイザ、4 蒸発器、5 ターボ圧縮機、5a ガス吐出管、5b      エコノマイザ連結管(返流部)、5c ガス吸入管、6、7 膨張弁、10 モータ、11 第1圧縮段、12 第2圧縮段、13、14 インペラ、15、24 回転軸、16 インレットガイドベーン、17 出口絞り弁、20 筐体、20a エルボ管、20b 入口、20c 出口、21、26、27、31 軸受、22 ステータ、23 ロータ、25 ギアユニット、28 油タンク、29 大径歯車、30 小径歯車、32、33、34、35、36 シール機構、37 給油ポンプ、R1、R2、R4、R5、R6、R7、R8、R9 流路、R3 流路(返流部)、S1 圧縮流路空間、S2 第1軸受収容空間、S3 モータ収容空間、S4 ギアユニット収容空間、S5 第2軸受収容空間、X1 圧縮冷媒ガス、X2    冷媒液、X3 冷媒の気相成分、X4 冷媒ガス
 
 

Claims (9)

  1. エコノマイザからの冷媒の気相成分が供給されるターボ圧縮機を含むターボ冷凍機であって、
    前記ターボ圧縮機は、圧縮冷媒ガスが流れる第1流路と、前記第1流路及び前記冷媒の気相成分が流れる第2流路と接続された連結管と、を含み、前記連結管の径は、前記第2流路から前記第1流路に向かって縮小している、ターボ冷凍機。
  2. 前記第2流路及び前記連結管の全体の圧力損失は、前記冷媒の気相成分が前記エコノマイザから前記第2流路に流れ込むことが可能な値である、請求項1に記載のターボ冷凍機。
  3. 前記第2流路を構成する配管は、同一の径を有する、請求項1に記載のターボ冷凍機。
  4. 前記第2流路を流れる前記冷媒の気相成分は、前記第1流路を流れる前記圧縮冷媒ガスに沿って合流する、請求項1に記載のターボ冷凍機。
  5. 前記第1流路は、エルボ管で構成される、請求項1に記載のターボ冷凍機。
  6. 前記エルボ管の入口に対する出口の角度が180度である、請求項5に記載のターボ冷凍機。
  7. 前記第2流路を流れる前記冷媒の気相成分は、前記エルボ管に対して螺旋状に供給される、請求項5に記載のターボ冷凍機。
  8. 前記エコノマイザとは別のエコノマイザからの冷媒の気相成分が流れる第3流路、及び
    前記連結管とは別に設けられ前記エルボ管と接続された別の連結管をさらに有する、請求項5に記載のターボ冷凍機。
  9. エコノマイザからの冷媒の気相成分が供給されるターボ圧縮機を含むターボ冷凍機であって、
    前記ターボ圧縮機は、圧縮冷媒ガスが流れる第1流路及び前記冷媒の気相成分が流れる第2流路と接続された連結管を含み、前記第1流路側の前記連結管の径は、前記第2流路側の前記連結管の径よりも小さい、ターボ冷凍機。
     
     
     
     
     
     
PCT/JP2014/064607 2013-06-04 2014-06-02 ターボ冷凍機 WO2014196497A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14807005.5A EP3006860B8 (en) 2013-06-04 2014-06-02 Turbo refrigerator
CN201480030557.8A CN105393067B (zh) 2013-06-04 2014-06-02 涡轮冷冻机
US14/895,605 US9879886B2 (en) 2013-06-04 2014-06-02 Turbo refrigerator
JP2015521437A JP6123889B2 (ja) 2013-06-04 2014-06-02 ターボ冷凍機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-117737 2013-06-04
JP2013117737 2013-06-04

Publications (1)

Publication Number Publication Date
WO2014196497A1 true WO2014196497A1 (ja) 2014-12-11

Family

ID=52008139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064607 WO2014196497A1 (ja) 2013-06-04 2014-06-02 ターボ冷凍機

Country Status (6)

Country Link
US (1) US9879886B2 (ja)
EP (1) EP3006860B8 (ja)
JP (1) JP6123889B2 (ja)
CN (1) CN105393067B (ja)
MY (1) MY177829A (ja)
WO (1) WO2014196497A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11105544B2 (en) 2016-11-07 2021-08-31 Trane International Inc. Variable orifice for a chiller

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979192A (ja) * 1995-09-14 1997-03-25 Hitachi Ltd 多段遠心圧縮機とその段間注入流路構造
JP2002327700A (ja) * 2001-04-27 2002-11-15 Mitsubishi Heavy Ind Ltd 遠心圧縮機および冷凍機
JP2007177695A (ja) 2005-12-28 2007-07-12 Ishikawajima Harima Heavy Ind Co Ltd ターボ圧縮機
JP2007255748A (ja) * 2006-03-22 2007-10-04 Hitachi Ltd ヒートポンプシステム,ヒートポンプシステムの軸封方法,ヒートポンプシステムの改造方法
JP2009138996A (ja) * 2007-12-05 2009-06-25 Hitachi Ltd 冷凍サイクルシステム、天然ガス液化設備、ヒートポンプシステム、及び冷凍サイクルシステムの改造方法
JP2009186033A (ja) 2008-02-01 2009-08-20 Daikin Ind Ltd 二段圧縮式冷凍装置
JP2011257036A (ja) * 2010-06-07 2011-12-22 Mitsubishi Heavy Ind Ltd 温度調整装置
JP2013076389A (ja) 2011-09-30 2013-04-25 Daikin Industries Ltd 遠心圧縮機、及び冷凍装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594858A (en) * 1984-01-11 1986-06-17 Copeland Corporation Highly efficient flexible two-stage refrigeration system
JP4947405B2 (ja) 2005-12-28 2012-06-06 株式会社Ihi ターボ圧縮機
JP4973976B2 (ja) 2006-02-13 2012-07-11 株式会社Ihi 密閉型ターボ圧縮冷凍機
JP5176574B2 (ja) * 2008-02-06 2013-04-03 株式会社Ihi ターボ圧縮機及び冷凍機
JP5577762B2 (ja) * 2010-03-09 2014-08-27 株式会社Ihi ターボ圧縮機及びターボ冷凍機
CN103062077B (zh) * 2011-10-24 2014-05-07 珠海格力电器股份有限公司 多级制冷压缩机及其中间补气结构
CN202441619U (zh) * 2012-01-12 2012-09-19 珠海格力电器股份有限公司 多级制冷压缩机及其中间补气结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979192A (ja) * 1995-09-14 1997-03-25 Hitachi Ltd 多段遠心圧縮機とその段間注入流路構造
JP2002327700A (ja) * 2001-04-27 2002-11-15 Mitsubishi Heavy Ind Ltd 遠心圧縮機および冷凍機
JP2007177695A (ja) 2005-12-28 2007-07-12 Ishikawajima Harima Heavy Ind Co Ltd ターボ圧縮機
JP2007255748A (ja) * 2006-03-22 2007-10-04 Hitachi Ltd ヒートポンプシステム,ヒートポンプシステムの軸封方法,ヒートポンプシステムの改造方法
JP2009138996A (ja) * 2007-12-05 2009-06-25 Hitachi Ltd 冷凍サイクルシステム、天然ガス液化設備、ヒートポンプシステム、及び冷凍サイクルシステムの改造方法
JP2009186033A (ja) 2008-02-01 2009-08-20 Daikin Ind Ltd 二段圧縮式冷凍装置
JP2011257036A (ja) * 2010-06-07 2011-12-22 Mitsubishi Heavy Ind Ltd 温度調整装置
JP2013076389A (ja) 2011-09-30 2013-04-25 Daikin Industries Ltd 遠心圧縮機、及び冷凍装置

Also Published As

Publication number Publication date
EP3006860A4 (en) 2017-03-29
EP3006860A1 (en) 2016-04-13
CN105393067A (zh) 2016-03-09
US9879886B2 (en) 2018-01-30
MY177829A (en) 2020-09-23
EP3006860B8 (en) 2021-09-15
JP6123889B2 (ja) 2017-05-10
JPWO2014196497A1 (ja) 2017-02-23
CN105393067B (zh) 2018-01-23
US20160138835A1 (en) 2016-05-19
EP3006860B1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6056270B2 (ja) ターボ圧縮機及びターボ冷凍機
CN104823360B (zh) 电动机转子和气隙冷却
US10227995B2 (en) Turbo compressor and turbo refrigerating machine
WO2015008733A1 (ja) ターボ圧縮機及びターボ冷凍機
CN101963161B (zh) 涡轮压缩机及冷冻机
WO2014196465A1 (ja) シール機構及びターボ冷凍機
CN108469128B (zh) 流体机械和制冷循环装置
US8756954B2 (en) Turbo compressor and turbo refrigerator
JP2005312272A (ja) ターボ冷凍機及びターボ冷凍機用モータ
JP5983188B2 (ja) ターボ圧縮機及びターボ冷凍機
US10234175B2 (en) Turbo refrigerator
JP2015190662A (ja) ターボ冷凍機
US10487833B2 (en) Method of improving compressor bearing reliability
JP6123889B2 (ja) ターボ冷凍機
JP5272941B2 (ja) ターボ圧縮機及び冷凍機
JP2020159294A (ja) ターボ圧縮機及び冷凍サイクル装置
JP2011075254A (ja) ターボ冷凍機
JP2002155896A (ja) ターボ形圧縮機及びそれを備えた冷凍装置
WO2020129326A1 (ja) ターボ圧縮機及び冷凍サイクル装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480030557.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521437

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14895605

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014807005

Country of ref document: EP