[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014188985A1 - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
WO2014188985A1
WO2014188985A1 PCT/JP2014/063151 JP2014063151W WO2014188985A1 WO 2014188985 A1 WO2014188985 A1 WO 2014188985A1 JP 2014063151 W JP2014063151 W JP 2014063151W WO 2014188985 A1 WO2014188985 A1 WO 2014188985A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectifying element
secondary winding
capacitor
circuit
power supply
Prior art date
Application number
PCT/JP2014/063151
Other languages
English (en)
French (fr)
Inventor
武藤高見
松本匡彦
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015518226A priority Critical patent/JP6032357B2/ja
Priority to CN201480016917.9A priority patent/CN105144562B/zh
Publication of WO2014188985A1 publication Critical patent/WO2014188985A1/ja
Priority to US14/881,230 priority patent/US9748851B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer

Definitions

  • the present invention relates to a switching power supply device including a switching element on a primary side of a transformer and an inductor and a rectifying element on a secondary side.
  • Patent Document 1 shows an example in which a commutation diode is provided with a snubber circuit.
  • FIG. 11 is a diagram illustrating an example of a secondary circuit of a switching power supply device including a snubber circuit disclosed in Patent Document 1.
  • a secondary side circuit including a rectifying diode Da, a commutation diode Db, an inductor Lo, and an output capacitor Co is configured on the secondary side of the transformer T.
  • An RC snubber circuit composed of a series circuit of a capacitor C and a resistor R is connected to both ends of the commutation diode Db.
  • Patent Document 1 in order to solve the problem of the RC snubber circuit, the resistor R is not used, the transistor is turned on at the timing when the surge voltage is generated in the rectifier circuit, and the energy of the surge voltage is stored in the capacitor.
  • An active snubber circuit that is to be released later is also shown.
  • it is possible to regenerate the surge voltage energy but the entire circuit configuration becomes complicated, resulting in a problem that the occupied area on the substrate increases.
  • An object of the present invention is to provide a switching power supply device that has a simple circuit configuration but avoids a loss due to the consumption of surge voltage energy in a snubber circuit and has improved power conversion efficiency.
  • the switching power supply device of the present invention is configured as follows.
  • corresponds to the code
  • the switching power supply device of the present invention includes a transformer having a primary winding and a secondary winding, a primary side circuit including a switching element connected to the primary winding and intermittently supplying a DC power supply voltage to the primary winding.
  • An inductor connected in series to a current path between the output terminal or the negative output terminal and the secondary winding, a first rectifier (Q1) and a second rectifier for rectifying the current flowing through the secondary winding and the inductor
  • a secondary side circuit including a rectifying element (Q2), A first series circuit connected between a positive output terminal and a negative output terminal and comprising a third rectifier element (D3) and a fourth rectifier element (D4); A first end is connected to a connection point of the third rectifying element (D3) and the fourth rectifying element (D4), and the first rectifying element (Q1) or the end of the second rectifying element (Q2), A first capacitor (C1) having a second end connected to one end not connected to the first series circuit;
  • a surge voltage generated between both ends of the first and second rectifier elements (Q1, Q2) is stored as electric energy in a snubber circuit including a capacitor and a rectifier element, and the energy stored in the capacitor is stored in the rectifier element. Since regeneration occurs when (Q1, Q2) is on, loss due to the snubber circuit can be reduced.
  • the first rectifier element (Q1) is a rectifier element (rectifier side rectifier element) connected in series with a secondary winding of a transformer
  • the second rectifier element (Q2) is a secondary winding.
  • a rectifying element (commutation side rectifying element) connected in parallel to the first capacitor (C1) has a second end connected to a connection point between the first rectifying element (Q1) and the secondary winding. ing.
  • the first rectifying element (Q1) is a rectifying element connected in series with a secondary winding of a transformer, and the second rectifying element (Q2) is connected in parallel with a secondary winding.
  • the second end of the first capacitor (C1) is connected to a connection point between the second rectifier element (Q2) and the inductor.
  • the switching element includes a low-side switching element and a high-side switching element that are alternately turned on / off, and the secondary winding includes a first secondary winding and a second secondary winding connected in series,
  • the inductor is connected between the connection point of the first secondary winding and the second secondary winding and the positive output terminal or the negative output terminal, and the first rectifier element (Q1) is connected to the first secondary winding.
  • the fifth rectifying element (D5) and the sixth rectifying element (D5) connected in series, connected in series with the second secondary winding, and connected between the positive output terminal and the negative output terminal.
  • the first end is connected to the connection point of the second series circuit by the rectifying element (D6) and the fifth rectifying element (D5) and the sixth rectifying element (D6) of the second series circuit, and the second rectifying element (Q2 ) And the second secondary winding, and a second capacitor (C2) having a second end connected to the connection point of the second secondary winding. It is preferable that another snubber circuit is constituted by the second capacitor.
  • a so-called center tap secondary circuit is configured on the secondary side of the transformer.
  • this secondary circuit has a larger transformer leakage inductor component, so the generated surge voltage energy is high, and loss reduction due to energy regeneration in the snubber circuit High effect.
  • the first rectifier element (Q1) and the second rectifier element (Q2) are, for example, a MOS-FET provided with a body diode, or a rectifier element having characteristics equivalent to a MOS-FET.
  • a surge voltage generated between both ends of the first and second rectifying elements is stored as electric energy in a snubber circuit including a capacitor and a rectifying element, and the energy stored in the capacitor is stored when the rectifying element is turned on. Since regeneration is performed, consumption of surge voltage energy is avoided, and as a result, loss can be reduced.
  • FIG. 1 is a circuit diagram of a switching power supply device 101 according to the first embodiment.
  • FIG. 2 is a circuit diagram in which switching elements in the circuit of FIG. 1 are represented by switch symbols.
  • FIG. 3 is a diagram showing the current flowing in each state of the switching power supply apparatus 101.
  • FIG. 4 is a circuit diagram of the switching power supply apparatus 102 according to the second embodiment.
  • FIG. 5 is a circuit diagram in which switching elements in the circuit of FIG. 4 are represented by switch symbols.
  • FIG. 6 is a diagram showing the current flowing in each state of the switching power supply 102.
  • FIG. 7 is a circuit diagram of the switching power supply device 103 according to the third embodiment.
  • FIG. 8 is a circuit diagram in which switching elements in the circuit of FIG. 7 are represented by switch symbols.
  • FIG. 8 is a circuit diagram in which switching elements in the circuit of FIG. 7 are represented by switch symbols.
  • FIG. 9 is a waveform diagram of each part of the switching power supply apparatus 103 shown in FIGS.
  • FIG. 10 is a diagram showing the current flowing in each state of the switching power supply device 103.
  • FIG. 11 is a diagram illustrating an example of a secondary circuit of a switching power supply device including a snubber circuit disclosed in Patent Document 1. In FIG.
  • FIG. 1 is a circuit diagram of a switching power supply device 101 according to the first embodiment.
  • FIG. 2 is a circuit diagram in which switching elements in the circuit of FIG. 1 are represented by switch symbols.
  • This switching power supply device 101 includes a transformer T having a primary winding n1 and a secondary winding n2, and a primary side including a switching element Qa that is connected to the primary winding n1 and intermittently applies a DC voltage to the primary winding n1.
  • an inductor (choke coil) Lo connected between the secondary winding n2 and the output terminal Po (+), a first rectifier element Q1 for rectifying a current flowing in the secondary winding n2 and the inductor Lo, and the second A secondary side circuit including two rectifying elements Q2.
  • the first rectifier element Q1 is a rectifier element on the rectification side
  • the second rectifier element Q2 is a rectifier element on the commutation side.
  • the forward converter circuit is configured.
  • a DC power source is connected to the positive input terminal Pi (+) and the negative input terminal Pi ( ⁇ ).
  • the inductor (choke coil) Lo may be connected in series to the current path between the positive output terminal Po (+) or the negative output terminal Po ( ⁇ ) and the secondary winding n2. Therefore, it may be connected between the source of the first rectifying element Q1 and the output terminal Po ( ⁇ ). The same applies to other embodiments described later.
  • the input capacitor Ci is connected between the positive input terminal Pi (+) and the negative input terminal Pi ( ⁇ ) of the primary circuit.
  • An output capacitor Co is connected between the positive output terminal Po (+) + and the negative output terminal Po ( ⁇ ) of the secondary circuit.
  • a first series circuit including a third rectifier element D3 and a fourth rectifier element D4 is connected between the positive output terminal Po (+) and the negative output terminal Po ( ⁇ ) of the secondary circuit.
  • the first end of the first capacitor C1 is connected to the connection point of the third rectifier element D3 and the fourth rectifier element D4, and the first end of the first capacitor C1 is connected to the connection point of the first rectifier element Q1 and the secondary winding n2. Two ends are connected.
  • a snubber circuit 11 is constituted by the first capacitor C1, the third rectifier element D3, and the fourth rectifier element D4.
  • the switching element Qa, the first rectifying element Q1, and the second rectifying element Q2 are all MOS-FETs, each having a body diode (parasitic diode) between the drain and source.
  • a switching control circuit (not shown) is connected between the gate and source of the switching element Qa.
  • the first rectifier element Q1 is turned on when the switching element Qa on the primary side is turned on.
  • the second rectifier element Q2 is turned on when the primary side switching element Qa is turned off.
  • the gate of the first rectifying element Q1 is connected to the secondary winding n2, and the gate of the second rectifying element Q2 is connected to the secondary winding n2.
  • FIG. 3 is a diagram showing the current flowing in each state of the switching power supply apparatus 101.
  • the operation of the switching power supply apparatus 101 is as follows.
  • the surge voltage energy is stored in the first capacitor C1, the first capacitor C1, the secondary winding n2, the inductor Lo, the load, the fourth rectifying element D4, and the first capacitor C1.
  • the current I2r flows through the path. Thereby, the surge voltage energy once accumulated in the first capacitor C1 is regenerated.
  • the current I2c flows (commutates) through the second rectifier element Q2 by the energy stored in the inductor Lo.
  • the state After that, if necessary, after passing through a dead time in which all of the switching element Qa, the first rectifying element Q1 and the second rectifying element Q2 are turned off, the state returns to the state (1).
  • FIG. 4 is a circuit diagram of the switching power supply apparatus 102 according to the second embodiment.
  • FIG. 5 is a circuit diagram in which switching elements in the circuit of FIG. 4 are represented by switch symbols.
  • the switching power supply 102 includes a transformer T having a primary winding n1 and a secondary winding n2, and a primary side including a switching element Qa connected to the primary winding n1 and intermittently applying a DC voltage to the primary winding n1.
  • the first rectifier element Q1 is a rectifier element on the rectification side
  • the second rectifier element Q2 is a rectifier element on the commutation side.
  • the first embodiment differs from the switching power supply device 101 shown in FIGS. 1 and 2 in the connection position of the first capacitor C1.
  • the first end of the first capacitor C1 is connected to the connection point of the third rectifier element D3 and the fourth rectifier element D4, and the second rectifier element Q2 and the secondary winding are connected.
  • a second end of the first capacitor C1 is connected to a connection point with n2.
  • the configuration of other parts is the same as that of the switching power supply apparatus 101 shown in FIGS.
  • FIG. 6 is a diagram showing the current flowing in each state of the switching power supply apparatus 102.
  • the operation of the switching power supply apparatus 102 is as follows.
  • the second rectifier element Q2 when the second rectifier element Q2 is turned off, a surge is generated due to the parasitic inductance of the circuit and the reverse recovery characteristic of the body diode of the second rectifier element Q2. Therefore, the current I2b flows through the path of inductor Lo ⁇ first capacitor C1 ⁇ third rectifier element D3 ⁇ inductor Lo. Thereby, surge voltage energy is accumulated in the first capacitor C1.
  • the state After that, if necessary, after passing through a dead time in which all of the switching element Qa, the first rectifying element Q1 and the second rectifying element Q2 are turned off, the state returns to the state (1).
  • FIG. 7 is a circuit diagram of the switching power supply device 103 according to the third embodiment.
  • FIG. 8 is a circuit diagram in which switching elements in the circuit of FIG. 7 are represented by switch symbols.
  • This switching power supply device 103 includes a transformer T having a primary winding n1 and secondary windings n21 and n22, a primary circuit connected to the primary winding n1, and a secondary connected to the secondary windings n21 and n22. A side circuit is provided.
  • the primary circuit includes a series circuit of a high-side switching element Qa and a low-side switching element Qb, and a series circuit of capacitors Ca and Cb, which are connected between input terminals Pi (+)-Pi (-). ing.
  • the primary winding n1 of the transformer T is connected between the connection point of the switching elements Qa and Qb and the connection point of the capacitors Ca and Cb.
  • the secondary side circuit includes a first rectifier element Q1, a second rectifier element Q2, an inductor Lo, a third rectifier element D3, a fourth rectifier element D4, a fifth rectifier element D5, a sixth rectifier element D6, a first capacitor C1, A second capacitor C2 is provided.
  • the inductor Lo is connected between the connection point of the first secondary winding n21 and the second secondary winding n22 and the output terminal Po (+).
  • the first rectifier element Q1 is connected in series to the first secondary winding n21, and the second rectifier element Q2 is connected in series to the second secondary winding n22. In this way, a half bridge converter circuit is configured.
  • a third series rectifier element D3 and a fourth rectifier element D4 constitute a first series circuit, and this first series circuit is connected between the positive output terminal Po (+) and the negative output terminal Po ( ⁇ ).
  • a second series circuit is configured by the fifth rectifying element D5 and the sixth rectifying element D6, and this second series circuit is formed by a positive output terminal Po (+) and a negative output terminal Po ( ⁇ ). Connected between.
  • the first end of the first capacitor C1 is connected to the connection point between the fifth rectifier element D5 and the sixth rectifier element D6, and the first capacitor C1 is connected to the connection point between the first rectifier element Q1 and the first secondary winding n21.
  • the 2nd end of is connected.
  • the first end of the second capacitor C2 is connected to the connection point between the third rectification element D3 and the fourth rectification element D4, and the second connection point between the second rectification element Q2 and the second secondary winding n22.
  • a second end of the capacitor C2 is connected.
  • FIG. 9 is a waveform diagram of each part of the switching power supply apparatus 103 shown in FIGS.
  • FIG. 10 is a diagram showing the current flowing in each state of the switching power supply device 103.
  • the operation of the switching power supply device 103 is as follows.
  • the first rectifier element Q1 is turned off, and the switching element Qa and the second rectifier element Q2 are turned on, whereby a current I1f is applied to the primary winding n1 of the transformer T as shown in the state (1) of FIG.
  • Current I2f flows through the secondary winding n22.
  • Energy is stored in the inductor Lo by this current I2f.
  • the first rectifier element Q1 is turned off by the transition from the state (4) to the state (1), a surge due to the back electromotive force of the parasitic inductance of the circuit is generated.
  • the current I2b flows through the path of the secondary winding n21 ⁇ the first capacitor C1 ⁇ the fifth rectifying element D5 ⁇ the inductor Lo ⁇ the secondary winding n21. Thereby, surge voltage energy is accumulated in the first capacitor C1.
  • the surge energy generated in the secondary winding n21 when the first rectifying element Q1 is turned off is absorbed by the snubber circuit 11, and the energy is regenerated immediately after. Further, the surge energy generated when the second rectifying element Q2 is turned off is absorbed by the snubber circuit 12, and the energy is regenerated immediately after.
  • the configuration of the snubber circuit differs depending on the connection form (topology) of the secondary circuit of the transformer of the switching power supply device, but the positive output terminal and the negative output terminal A series circuit composed of two rectifying elements (D3, D4) or (D5, D6) connected in between, and a first end connected to a connection point of the two rectifying elements; It is common to have a capacitor (C1) or (C2) with the second end connected to one end of the end of Q1) or the second rectifier (Q2) that is not connected to the series circuit. Yes.
  • the third rectifier element D3, the fourth rectifier element D4, the fifth rectifier element D5, and the sixth rectifier element D6 are each constituted by a diode. You may comprise with an element.
  • the first rectifier element Q1 and the second rectifier element Q2 are configured by MOS-FETs, and are configured to perform synchronous rectification by switching in synchronization with the switching of the primary side circuit. These may be configured using a rectifying element having characteristics equivalent to a MOS-FET.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

 正の出力端子Po(+) と負の出力端子Po(-) との間に接続され、第3整流素子(D3)および第4整流素子(D4)による第1直列回路と、第3整流素子(D3)および第4整流素子(D4)の接続点に第1端が接続され、第1整流素子(Q1)または第2整流素子(Q2)の端部のうち、第1直列回路には繋がらない一方の端部に第2端が接続された第1容量(C1)と、を備え、第1直列回路および第1容量(C1)によってスナバ回路(11)が構成されている。

Description

スイッチング電源装置
 本発明は、トランスの一次側にスイッチング素子を備え、二次側にインダクタおよび整流素子を備えるスイッチング電源装置に関するものである。
 従来、スイッチング電源装置において、整流素子のON/OFFの切り替わり時に発生するサージ電圧のピークを抑制するため、スイッチング素子に対して並列にスナバ回路が接続されている。例えば特許文献1には転流用ダイオードにスナバ回路を設けた例が示されている。
 図11は特許文献1に示されているスナバ回路を含むスイッチング電源装置の二次側回路の例を示す図である。図11に示す例では、トランスTの二次側に、整流用ダイオードDa、転流用ダイオードDb、インダクタLoおよび出力コンデンサCoを含む二次側回路が構成されている。そして、転流用ダイオードDbの両端に、キャパシタCおよび抵抗Rの直列回路によるRCスナバ回路が接続されている。
 このような構成により、転流用ダイオードDbのターンオフ時に、この転流用ダイオードDbの両端間に生じるサージのエネルギーが上記RCスナバ回路で消費されて、サージ電圧のピーク値が抑制される。
特開平1-202161号公報
 図11に示されるようなRCスナバ回路では、サージ電圧エネルギーが抵抗Rで消費されるため、当然ながらRCスナバ回路で損失が発生する。そのため、RCスナバ回路を設けることで、スイッチング電源装置の効率が低下することになる。
 特許文献1には、上記RCスナバ回路の問題点を解決するため、抵抗Rを使用せず、整流回路にサージ電圧が発生するタイミングでトランジスタをオンさせて、サージ電圧のエネルギーをコンデンサに蓄えた後に放出するようにしたアクティブスナバ回路についても示されている。しかし、このようなアクティブスナバ回路においては、サージ電圧エネルギーを回生することが可能であるが、全体の回路構成が複雑となり、その結果、基板上の占有面積が大きくなるという問題が生じる。
 本発明の目的は、簡素な回路構成がありながらも、スナバ回路でのサージ電圧エネルギーの消費による損失を回避して、電力変換効率を高めたスイッチング電源装置を提供することにある。
 本発明のスイッチング電源装置は、次のように構成される。なお、括弧付き符号は、後に示す実施の形態の説明で用いる符号に対応している。
 本発明のスイッチング電源装置は、一次巻線および二次巻線を有するトランスと、一次巻線に接続され、一次巻線に直流電源電圧を断続的に与えるスイッチング素子を含む一次側回路と、正の出力端子または負の出力端子と二次巻線との間の電流経路に直列接続されたインダクタ、前記二次巻線および前記インダクタに流れる電流を整流する第1整流素子(Q1)および第2整流素子(Q2)を含む二次側回路と、を備え、
 正の出力端子と負の出力端子との間に接続され、第3整流素子(D3)および第4整流素子(D4)による第1直列回路と、
 前記第3整流素子(D3)および第4整流素子(D4)の接続点に第1端が接続され、前記第1整流素子(Q1)または前記第2整流素子(Q2)の端部のうち、前記第1直列回路には繋がらない一方の端部に第2端が接続された第1容量(C1)と、を備え、
 前記第1直列回路および前記第1容量によってスナバ回路が構成されたことを特徴とする。
 上記構成により、容量と整流素子によるスナバ回路で第1、第2整流素子(Q1,Q2)の両端間に発生するサージ電圧を電気エネルギーとして蓄積し、この容量に蓄積されたエネルギーが、整流素子(Q1,Q2)のオン時に回生されるので、スナバ回路を設けることによる損失が低減できる。
 例えば、前記第1整流素子(Q1)はトランスの二次巻線に対して直列に接続された整流素子(整流側整流素子)であり、前記第2整流素子(Q2)は二次巻線に対して並列に接続された整流素子(転流側整流素子)であり、前記第1容量(C1)の第2端は第1整流素子(Q1)と二次巻線との接続点に接続されている。この構成により、トランスの二次側にフォワード回路が構成され、第1整流素子(Q1)のターンオフ時に発生するサージ電圧エネルギーを回生することができる。
 例えば、前記第1整流素子(Q1)はトランスの二次巻線に対して直列に接続された整流素子であり、前記第2整流素子(Q2)は二次巻線に対して並列に接続された整流素子であり、前記第1容量(C1)の第2端は第2整流素子(Q2)と前記インダクタとの接続点に接続されている。この構成により、トランスの二次側にフォワード回路が構成され、第2整流素子(Q2)のターンオフ時に発生するサージ電圧エネルギーを回生することができる。
 上記スイッチング素子は、交互にオン/オフされるローサイドスイッチング素子およびハイサイドスイッチング素子で構成され、二次巻線は、直列接続された第1二次巻線および第2二次巻線を含み、インダクタは第1二次巻線および第2二次巻線の接続点と正の出力端子または負の出力端子との間に接続され、第1整流素子(Q1)は第1二次巻線に直列接続され、第2整流素子(Q2)は第2二次巻線に直列接続され、正の出力端子と負の出力端子との間に接続された、第5整流素子(D5)および第6整流素子(D6)による第2直列回路と、第2直列回路の第5整流素子(D5)と第6整流素子(D6)との接続点に第1端が接続され、第2整流素子(Q2)と第2二次巻線との接続点に第2端が接続された第2容量(C2)と、を備え、第2直列回路および第2容量によってもう一つのスナバ回路が構成されていることが好ましい。
 上記構成により、トランスの二次側にいわゆるセンタータップ二次側回路が構成される。この二次側回路は上記(2)(3)に記載のフォワード回路に比べて、トランスの漏れインダクタ成分が大きくなるので、発生するサージ電圧のエネルギーが高く、スナバ回路でのエネルギー回生による損失低減効果が高い。
 上記第1整流素子(Q1)および第2整流素子(Q2)は、例えばボディダイオードを備えたMOS-FET、またはMOS-FET相当の特性を有する整流素子である。
 本発明によれば、容量と整流素子によるスナバ回路で第1、第2整流素子の両端間に発生するサージ電圧を電気エネルギーとして蓄積し、この容量に蓄積されたエネルギーが、整流素子のオン時に回生されるので、サージ電圧エネルギーの消費が回避され、その結果、損失が低減できる。
図1は第1の実施形態に係るスイッチング電源装置101の回路図である。 図2は、図1の回路内のスイッチング素子をスイッチ記号で表した回路図である。 図3はスイッチング電源装置101の各状態において流れる電流等について示す図である。 図4は第2の実施形態に係るスイッチング電源装置102の回路図である。 図5は、図4の回路内のスイッチング素子をスイッチ記号で表した回路図である。 図6はスイッチング電源装置102の各状態において流れる電流等について示す図である。 図7は第3の実施形態に係るスイッチング電源装置103の回路図である。 図8は、図7の回路内のスイッチング素子をスイッチ記号で表した回路図である。 図9は、図7、図8に示したスイッチング電源装置103の各部の波形図である。 図10はスイッチング電源装置103の各状態において流れる電流等について示す図である。 図11は特許文献1に示されているスナバ回路を含むスイッチング電源装置の二次側回路の例を示す図である。
 以降、幾つかの具体的な例を挙げて、本発明を実施するための形態を示す。各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせによって更なる他の実施形態とし得ることは言うまでもない。
《第1の実施形態》
 図1は第1の実施形態に係るスイッチング電源装置101の回路図である。図2は、図1の回路内のスイッチング素子をスイッチ記号で表した回路図である。このスイッチング電源装置101は、一次巻線n1および二次巻線n2を有するトランスTと、一次巻線n1に接続され、一次巻線n1に直流電圧を断続的に与えるスイッチング素子Qaを含む一次側回路と、二次巻線n2と出力端子Po(+) との間に接続されたインダクタ(チョークコイル)Lo、二次巻線n2およびインダクタLoに流れる電流を整流する第1整流素子Q1および第2整流素子Q2を含む二次側回路と、を備える。第1整流素子Q1は整流側の整流素子、第2整流素子Q2は転流側の整流素子である。このようにしてフォワードコンバータ回路が構成されている。なお、正の入力端子Pi(+)と負の入力端子Pi(-)には、直流電源が接続されている。インダクタ(チョークコイル)Loは、正の出力端子Po(+) または負の出力端子Po(-) と二次巻線n2との間の電流経路に直列接続されていればよい。したがって、第1整流素子Q1のソースと出力端子Po(-) との間に接続されていてもよい。このことは後に示す他の実施形態についても同様である。
 一次側回路の正の入力端子Pi(+) と負の入力端子Pi(-) との間には入力コンデンサCiが接続されている。また、二次側回路の正の出力端子Po(+) と負の出力端子Po(-) との間には出力コンデンサCoが接続されている。
 二次側回路の正の出力端子Po(+) と負の出力端子Po(-) との間には、第3整流素子D3および第4整流素子D4による第1直列回路が接続されている。第3整流素子D3および第4整流素子D4の接続点には第1容量C1の第1端が接続され、第1整流素子Q1と二次巻線n2との接続点に第1容量C1の第2端が接続されている。上記第1容量C1、第3整流素子D3および第4整流素子D4によってスナバ回路11が構成されている。
 スイッチング素子Qa、第1整流素子Q1、第2整流素子Q2はいずれもMOS-FETであり、それぞれドレイン・ソース間にボディダイオード(寄生ダイオード)を備えている。スイッチング素子Qaのゲート・ソース間には図外のスイッチング制御回路が接続されている。第1整流素子Q1は、一次側のスイッチング素子Qaのターンオン時にターンオンする。また、第2整流素子Q2は、一次側のスイッチング素子Qaのターンオフ時にターンオンする。そのために、例えば、第1整流素子Q1のゲートは二次巻線n2に接続されていて、第2整流素子Q2のゲートは二次巻線n2に接続されている。
 図3はスイッチング電源装置101の各状態において流れる電流等について示す図である。スイッチング電源装置101の動作は次のとおりである。
(1)先ず、スイッチング素子Qaおよび第1整流素子Q1がオンすれば、図3の状態(1)に示すように、トランスTの一次巻線n1に電流I1fが流れ、二次巻線n2に電流I2fが流れる。この電流I2fによってインダクタLoにエネルギーが蓄積される。
 そして、後述されているように、第1容量C1にサージ電圧エネルギーが蓄積されているので、第1容量C1→二次巻線n2→インダクタLo→負荷→第4整流素子D4→第1容量C1、の経路で電流I2rが流れる。これにより、第1容量C1に一旦蓄積されたサージ電圧エネルギーが回生される。
(2)次に、スイッチング素子Qaおよび第1整流素子Q1がターンオフすれば、図3の状態(2)に示すように、回路の寄生インダクタンスの逆起電力によるサージが発生する。詳細には、Q1のボディダイオードの逆回復時間(リカバリー時間)だけ逆方向に電流が流れ、この逆回復時間の終了直後にサージが発生する。このサージ電圧により、二次巻線n2→第1容量C1→第3整流素子D3→インダクタLo→二次巻線n2の経路で電流I2bが流れる。これにより、第1容量C1にサージ電圧エネルギーが蓄積される。
 また、第2整流素子Q2がターンオンすると、図3の状態(2)に示すように、インダクタLoの蓄積エネルギーによって、第2整流素子Q2を介して電流I2cが流れる(転流される)。
 その後、必要に応じて、スイッチング素子Qa、第1整流素子Q1および第2整流素子Q2のすべてがオフとなるデッドタイムを経由した後、状態(1)に戻る。
 以降、上記(1),(2)の状態を繰り返す。
 このようにして、第1整流素子Q1のターンオフ時に二次巻線n2に生じるサージエネルギーはスナバ回路11によって吸収され、そのエネルギーは、後に回生される。
《第2の実施形態》
 図4は第2の実施形態に係るスイッチング電源装置102の回路図である。図5は、図4の回路内のスイッチング素子をスイッチ記号で表した回路図である。このスイッチング電源装置102は、一次巻線n1および二次巻線n2を有するトランスTと、一次巻線n1に接続され、一次巻線n1に直流電圧を断続的に与えるスイッチング素子Qaを含む一次側回路と、二次巻線n2と出力端子Po(+) との間に接続されたインダクタ(チョークコイル)Lo、二次巻線n2およびインダクタLoに流れる電流を整流する第1整流素子Q1および第2整流素子Q2を含む二次側回路と、を備える。第1整流素子Q1は整流側の整流素子、第2整流素子Q2は転流側の整流素子である。
 第1の実施形態で図1、図2に示したスイッチング電源装置101と異なるのは、第1容量C1の接続位置である。この第2の実施形態のスイッチング電源装置102では、第3整流素子D3および第4整流素子D4の接続点に第1容量C1の第1端が接続され、第2整流素子Q2と二次巻線n2との接続点に第1容量C1の第2端が接続されている。その他の部分の構成については、図1、図2に示したスイッチング電源装置101と同じである。
 図6はスイッチング電源装置102の各状態において流れる電流等について示す図である。スイッチング電源装置102の動作は次のとおりである。
(1)先ず、スイッチング素子Qaおよび第1整流素子Q1がオンすれば、図6の状態(1)に示すように、トランスTの一次巻線n1に電流I1fが流れ、二次巻線n2に電流I2fが流れる。この電流I2fによってインダクタLoにエネルギーが蓄積される。
 また、第2整流素子Q2がターンオフすることにより、回路の寄生インダクタンスおよび第2整流素子Q2のボディダイオードの逆回復特性によりサージが発生する。そのため、インダクタLo→第1容量C1→第3整流素子D3→インダクタLo、の経路で電流I2bが流れる。これにより、第1容量C1にサージ電圧エネルギーが蓄積される。
(2)その後、スイッチング素子Qaおよび第1整流素子Q1がターンオフすれば、図6の状態(2)に示すように、第1容量C1→インダクタLo→負荷→第4整流素子D4→第1容量C1、の経路で電流I2rが流れる。これにより、第1容量C1に一旦蓄積されたサージ電圧エネルギーが回生される。また、第2整流素子Q2のオンにより、インダクタLoの蓄積エネルギーによって、第2整流素子Q2を介して電流I2cが流れる(転流される)。
 その後、必要に応じて、スイッチング素子Qa、第1整流素子Q1および第2整流素子Q2のすべてがオフとなるデッドタイムを経由した後、状態(1)に戻る。
 以降、上記(1),(2)の状態を繰り返す。
 このようにして、第2整流素子Q2のターンオフ時に生じるサージエネルギーはスナバ回路12によって吸収され、そのエネルギーは後に回生される。
《第3の実施形態》
 図7は第3の実施形態に係るスイッチング電源装置103の回路図である。図8は、図7の回路内のスイッチング素子をスイッチ記号で表した回路図である。このスイッチング電源装置103は、一次巻線n1および二次巻線n21,n22を有するトランスTと、一次巻線n1に接続された一次側回路、二次巻線n21,n22に接続された二次側回路を備えている。
 一次側回路は、ハイサイドスイッチング素子Qaおよびローサイドスイッチング素子Qbの直列回路と、コンデンサCa,Cbの直列回路とを備えていて、これらが入力端子Pi(+)-Pi(-) 間に接続されている。スイッチング素子Qa,Qbの接続点と、コンデンサCa,Cbの接続点との間にトランスTの一次巻線n1が接続されている。
 二次側回路は、第1整流素子Q1、第2整流素子Q2、インダクタLo、第3整流素子D3、第4整流素子D4、第5整流素子D5、第6整流素子D6、第1容量C1、第2容量C2を備えている。
 インダクタLoは、第1二次巻線n21および第2二次巻線n22の接続点と出力端子Po(+) との間に接続されている。第1整流素子Q1は第1二次巻線n21に直列接続されていて、第2整流素子Q2は第2二次巻線n22に直列接続されている。このようにしてハーフブリッジコンバータ回路が構成されている。
 第3整流素子D3および第4整流素子D4により第1直列回路が構成されていて、この第1直列回路が正の出力端子Po(+) と負の出力端子Po(-) との間に接続されている。同様に、第5整流素子D5および第6整流素子D6により第2直列回路が構成されていて、この第2直列回路が正の出力端子Po(+) と負の出力端子Po(-) との間に接続されている。
 第5整流素子D5と第6整流素子D6との接続点に第1容量C1の第1端が接続され、第1整流素子Q1と第1二次巻線n21との接続点に第1容量C1の第2端が接続されている。また、第3整流素子D3と第4整流素子D4との接続点に第2容量C2の第1端が接続され、第2整流素子Q2と第2二次巻線n22との接続点に第2容量C2の第2端が接続されている。
 図9は、図7、図8に示したスイッチング電源装置103の各部の波形図である。図10はスイッチング電源装置103の各状態において流れる電流等について示す図である。スイッチング電源装置103の動作は次のとおりである。
(1)先ず、第1整流素子Q1がターンオフし、スイッチング素子Qaおよび第2整流素子Q2のオンにより、図10の状態(1)に示すように、トランスTの一次巻線n1に電流I1fが流れ、二次巻線n22に電流I2fが流れる。この電流I2fによってインダクタLoにエネルギーが蓄積される。また、後に述べるように、状態(4)から状態(1)への遷移によって第1整流素子Q1がターンオフすることにより、回路の寄生インダクタンスの逆起電力によるサージが発生する。そのため、二次巻線n21→第1容量C1→第5整流素子D5→インダクタLo→二次巻線n21の経路で電流I2bが流れる。これにより、第1容量C1にサージ電圧エネルギーが蓄積される。
(2)次に、スイッチング素子Qaがターンオフし、第1整流素子Q1がターンオンすれば、図10の状態(2)に示すように、インダクタLoの蓄積エネルギーによって、第1整流素子Q1、第2整流素子Q2を介して二次巻線n21,n22に電流I2cが流れる。また、第1容量C1→二次巻線n21→インダクタLo→負荷→第6整流素子D6→第1容量C1、の経路で電流I2rが流れる。これにより、第1容量C1に一旦蓄積されたサージ電圧エネルギーが回生される。
(3)その後、スイッチング素子Qbがターンオンし、第2整流素子Q2がターンオフすれば、図10の状態(3)に示すように、トランスTの一次巻線n1に電流I1fが流れ、二次巻線n21に電流I2fが流れる。この電流I2fによってインダクタLoにエネルギーが蓄積される。また、第2整流素子Q2のターンオフにより、二次巻線n22の逆起電力によるサージが発生する。そのため、二次巻線n22→第2容量C2→第3整流素子D3→インダクタLo→二次巻線n22、の経路で電流I2bが流れる。これにより、第2容量C2にサージ電圧エネルギーが蓄積される。
(4)続いて、スイッチング素子Qbがターンオフし、第2整流素子Q2がターンオンすれば、図10の状態(4)に示すように、インダクタLoの蓄積エネルギーによって、第1整流素子Q1、第2整流素子Q2を介して二次巻線n21,n22に電流I2cが流れる。また、第2容量C2→二次巻線n22→インダクタLo→負荷→第4整流素子D4→第2容量C2、の経路で電流I2rが流れる。これにより、第2容量C2に一旦蓄積されたサージ電圧エネルギーが回生される。
 以降、上記(1)~(4)の状態を繰り返す。
 このようにして、第1整流素子Q1のターンオフ時に二次巻線n21に生じるサージエネルギーはスナバ回路11によって吸収され、そのエネルギーは直後に回生される。また、第2整流素子Q2のターンオフ時に生じるサージエネルギーはスナバ回路12によって吸収され、そのエネルギーは直後に回生される。
 以上の3つの実施形態で示したように、スイッチング電源装置のトランスの二次側回路の接続形態(トポロジー)に応じてスナバ回路の構成は異なるが、正の出力端子と負の出力端子との間に接続された、2つの整流素子(D3,D4)または(D5,D6)による直列回路を備えることと、この2つの整流素子の接続点に第1端が接続され、第1整流素子(Q1)または第2整流素子(Q2)の端部のうち、上記直列回路には繋がらない一方の端部に第2端が接続された容量(C1)または(C2)を備えることは共通している。
 なお、以上に示した実施形態では、第3整流素子D3、第4整流素子D4、第5整流素子D5および第6整流素子D6、をそれぞれダイオードで構成したが、これらをMOS-FET等のスイッチング素子で構成してもよい。
 また、以上に示した実施形態では、第1整流素子Q1および第2整流素子Q2をMOS-FETで構成し、一次側回路のスイッチングと同期してスイッチングすることで同期整流するように構成したが、これらをMOS-FET相当の特性を有する整流素子を用いて構成してもよい。
C1…第1容量
C2…第2容量
Ca,Cb…コンデンサ
Ci…入力コンデンサ
Co…出力コンデンサ
D3…第3整流素子
D4…第4整流素子
D5…第5整流素子
D6…第6整流素子
Da…整流用ダイオード
Db…転流用ダイオード
Lo…インダクタ
n1…一次巻線
n2…二次巻線
n21…第1二次巻線
n22…第2二次巻線
Pi(+) …正の入力端子
Pi(-) …負の入力端子
Po(+) …正の出力端子
Po(-) …負の出力端子
Q1…第1整流素子
Q2…第2整流素子
Qa,Qb…スイッチング素子
T…トランス
11,12…スナバ回路
101,102,103…スイッチング電源装置

Claims (7)

  1.  一次巻線および二次巻線を有するトランスと、
     前記一次巻線に接続され、前記一次巻線に直流電圧を断続的に与えるスイッチング素子を含む一次側回路と、
     正の出力端子または負の出力端子と前記二次巻線との間の電流経路に直列接続されたインダクタ、前記二次巻線および前記インダクタに流れる電流を整流する第1整流素子および第2整流素子を含む二次側回路と、を備えたスイッチング電源装置において、
     正の出力端子と負の出力端子との間に接続され、第3整流素子および第4整流素子による第1直列回路と、
     前記第3整流素子および第4整流素子の接続点に第1端が接続され、前記第1整流素子または前記第2整流素子の端部のうち、前記第1直列回路には繋がらない一方の端部に第2端が接続された第1容量と、を備え、
     前記第1直列回路および前記第1容量によってスナバ回路が構成されたことを特徴とするスイッチング電源装置。
  2.  前記第1整流素子は前記二次巻線に対して直列に接続された整流素子であり、前記第2整流素子は前記二次巻線に対して並列に接続された整流素子であり、
     前記第1容量の第2端は前記第1整流素子と二次巻線との接続点に接続されている、請求項1に記載のスイッチング電源装置。
  3.  前記第1整流素子は前記二次巻線に対して直列に接続された整流素子であり、前記第2整流素子は前記二次巻線に対して並列に接続された整流素子であり、
     前記第1容量の第2端は前記第2整流素子と前記インダクタとの接続点に接続されている、請求項1に記載のスイッチング電源装置。
  4.  前記スイッチング素子は、交互にオン/オフされるローサイドスイッチング素子およびハイサイドスイッチング素子で構成され、
     前記二次巻線は、直列接続された第1二次巻線および第2二次巻線を含み、

     前記第1整流素子は前記第1二次巻線に直列接続され、
     前記第2整流素子は前記第2二次巻線に直列接続され、
     前記正の出力端子と前記負の出力端子との間に接続された、第5整流素子および第6整流素子による第2直列回路と、
     前記第5整流素子と第6整流素子との接続点に第1端が接続され、前記第2整流素子と前記第2二次巻線との接続点に第2端が接続された第2容量と、を備え、
     前記第2直列回路および前記第2容量によってスナバ回路が構成された、請求項1に記載のスイッチング電源装置。
  5.  前記第1整流素子および前記第2整流素子は、ボディダイオードを備えたMOS-FETである、請求項1~4のいずれかに記載のスイッチング電源装置。
  6.  前記第3整流素子および前記第4整流素子はダイオード素子である、請求項1~5のいずれかに記載のスイッチング電源装置。
  7.  前記第5整流素子および第6整流素子はダイオード素子である、請求項4に記載のスイッチング電源装置。
PCT/JP2014/063151 2013-05-21 2014-05-19 スイッチング電源装置 WO2014188985A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015518226A JP6032357B2 (ja) 2013-05-21 2014-05-19 スイッチング電源装置
CN201480016917.9A CN105144562B (zh) 2013-05-21 2014-05-19 开关电源装置
US14/881,230 US9748851B2 (en) 2013-05-21 2015-10-13 Switching power supply apparatus with snubber circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-107110 2013-05-21
JP2013107110 2013-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/881,230 Continuation US9748851B2 (en) 2013-05-21 2015-10-13 Switching power supply apparatus with snubber circuit

Publications (1)

Publication Number Publication Date
WO2014188985A1 true WO2014188985A1 (ja) 2014-11-27

Family

ID=51933539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063151 WO2014188985A1 (ja) 2013-05-21 2014-05-19 スイッチング電源装置

Country Status (4)

Country Link
US (1) US9748851B2 (ja)
JP (1) JP6032357B2 (ja)
CN (1) CN105144562B (ja)
WO (1) WO2014188985A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135119A1 (ja) * 2017-01-23 2018-07-26 Ntn株式会社 スイッチング電源

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108900083B (zh) * 2018-06-05 2020-09-18 华为技术有限公司 功率转换器及相关系统
CN111525802B (zh) * 2019-02-01 2021-08-06 台达电子工业股份有限公司 变换装置
US11646652B1 (en) * 2022-02-09 2023-05-09 L3Harris Technologies, Inc. Switching power supply rectifier with voltage clamps to clamp voltage transients on output coil of transformer
SE2250581A1 (en) * 2022-05-16 2023-11-17 Northvolt Ab Bi-directional dc/dc converter, cycler and micro grid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213260A (ja) * 2011-03-31 2012-11-01 Denso Corp スイッチング電源装置
JP2012249351A (ja) * 2011-05-25 2012-12-13 Hitachi Ltd 直流電源装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202161A (ja) 1988-02-05 1989-08-15 Fanuc Ltd スナバ回路
KR0164098B1 (ko) * 1996-04-02 1999-04-15 이준 스위치 결합형 능동 포워드 컨버터
US5907481A (en) * 1997-10-31 1999-05-25 Telefonaktiebolaget Lm Ericsson Double ended isolated D.C.--D.C. converter
JP2991181B2 (ja) * 1998-02-27 1999-12-20 富士電機株式会社 スイッチング電源
JP3673075B2 (ja) * 1998-03-09 2005-07-20 新電元工業株式会社 スイッチング電源装置
JP3475925B2 (ja) * 2000-09-27 2003-12-10 株式会社村田製作所 スイッチング電源装置
ATE349098T1 (de) * 2000-10-17 2007-01-15 Omron Tateisi Electronics Co Dämpferschaltung und leistungswandler der diese anwendet
JP3760379B2 (ja) * 2000-12-28 2006-03-29 株式会社村田製作所 スイッチング電源装置
US6650552B2 (en) * 2001-05-25 2003-11-18 Tdk Corporation Switching power supply unit with series connected converter circuits
TWI263395B (en) * 2001-11-02 2006-10-01 Delta Electronics Inc Power supply device
JP4043321B2 (ja) * 2002-08-29 2008-02-06 松下電器産業株式会社 スイッチング電源装置
US6771521B1 (en) * 2003-02-20 2004-08-03 Delta Electronics, Inc. Active snubber for synchronous rectifier
JP4274353B2 (ja) * 2003-03-13 2009-06-03 本田技研工業株式会社 双方向dc−dcコンバータ
JP2005151796A (ja) * 2003-09-30 2005-06-09 Sony Corp スイッチング電源回路
JP4013995B2 (ja) * 2005-06-29 2007-11-28 株式会社村田製作所 Dc−dcコンバータ
JP5012807B2 (ja) * 2006-10-02 2012-08-29 株式会社村田製作所 ダブルエンド絶縁型dc−dcコンバータ
JP4803262B2 (ja) * 2009-01-27 2011-10-26 株式会社村田製作所 絶縁型スイッチング電源装置
WO2012101907A1 (ja) * 2011-01-26 2012-08-02 株式会社村田製作所 電力伝送システム
JP5314724B2 (ja) * 2011-03-03 2013-10-16 株式会社日立製作所 直流電源装置
US8929103B2 (en) * 2011-03-23 2015-01-06 Pai Capital Llc Integrated magnetics with isolated drive circuit
CN102594112A (zh) * 2012-03-01 2012-07-18 杭州乐图光电科技有限公司 一种开关电源的防雷击浪涌电路及应用其的开关电源
KR101558662B1 (ko) * 2013-10-10 2015-10-08 현대자동차주식회사 스위칭 전원 장치 및 이를 포함하는 배터리 충전 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213260A (ja) * 2011-03-31 2012-11-01 Denso Corp スイッチング電源装置
JP2012249351A (ja) * 2011-05-25 2012-12-13 Hitachi Ltd 直流電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135119A1 (ja) * 2017-01-23 2018-07-26 Ntn株式会社 スイッチング電源

Also Published As

Publication number Publication date
CN105144562B (zh) 2017-10-31
US9748851B2 (en) 2017-08-29
JP6032357B2 (ja) 2016-11-24
US20160036337A1 (en) 2016-02-04
JPWO2014188985A1 (ja) 2017-02-23
CN105144562A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
JP6180126B2 (ja) 力率改善回路及び力率改善制御方法
JP5125607B2 (ja) 電力変換装置
JP6032357B2 (ja) スイッチング電源装置
US20140157015A1 (en) Clamp circuits for power converters
JP5018960B2 (ja) 絶縁型スイッチング電源装置
US11095227B2 (en) Interleaved LLC resonant converter
JP2004201482A (ja) スイッチング電源装置
KR20140032576A (ko) 전원 공급 장치
JP2009247121A (ja) 電力変換装置
US20110199802A1 (en) Single ended power converters operating over 50% duty cycle
JP4323049B2 (ja) 電力変換装置
US8711588B1 (en) Power supply device
US20040052094A1 (en) Power converter employing switched split transformer primary
JP5516055B2 (ja) 電力変換装置
JP4543174B2 (ja) タップインダクタ降圧形コンバータ
WO2011048680A1 (ja) スイッチング電源装置
JP4438885B2 (ja) 絶縁型スイッチング電源装置
KR20160101808A (ko) 풀브리지 dc-dc 컨버터
JP2006191706A (ja) 直流変換装置
JP2988405B2 (ja) スイッチング電源回路
JP4096696B2 (ja) 整流装置
JP6485366B2 (ja) 位相シフト方式フルブリッジ型電源回路
JP2009065741A (ja) Dc−dcコンバータ
JP4688358B2 (ja) 汎用切換え電力変換器
KR101421020B1 (ko) 브리지리스 역률 보상 회로

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016917.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800250

Country of ref document: EP

Kind code of ref document: A1