[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014185249A1 - 紫外線散乱剤を含有する樹脂粉体及びその製造方法並びに化粧料 - Google Patents

紫外線散乱剤を含有する樹脂粉体及びその製造方法並びに化粧料 Download PDF

Info

Publication number
WO2014185249A1
WO2014185249A1 PCT/JP2014/061596 JP2014061596W WO2014185249A1 WO 2014185249 A1 WO2014185249 A1 WO 2014185249A1 JP 2014061596 W JP2014061596 W JP 2014061596W WO 2014185249 A1 WO2014185249 A1 WO 2014185249A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin powder
particles
ultraviolet scattering
scattering agent
Prior art date
Application number
PCT/JP2014/061596
Other languages
English (en)
French (fr)
Inventor
六田 充輝
浩文 井口
Original Assignee
ダイセル・エボニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル・エボニック株式会社 filed Critical ダイセル・エボニック株式会社
Priority to KR1020157032259A priority Critical patent/KR102164862B1/ko
Priority to EP14798119.5A priority patent/EP2997954B1/en
Priority to JP2015517017A priority patent/JP6502254B2/ja
Priority to CN201480028050.9A priority patent/CN105228578A/zh
Priority to US14/786,758 priority patent/US20160096946A1/en
Publication of WO2014185249A1 publication Critical patent/WO2014185249A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0254Platelets; Flakes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0283Matrix particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/88Polyamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/74Biological properties of particular ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc

Definitions

  • the present invention relates to a resin powder containing an ultraviolet scattering agent (or an ultraviolet ray preventing agent), a method for producing the same, and a cosmetic containing the resin powder.
  • UV scattering agents such as titanium oxide and zinc oxide as additives in cosmetics.
  • Such UV scattering agents are considered to have a higher UV scattering effect as the particle size is smaller, and those used in cosmetics are generally of nano-order particle size.
  • the nano-order products are not yet fully verified for their harmfulness when they come into contact with the skin.
  • the fields are different, the fact that the development of lung cancer by asbestos, a nanowhisker, has become a major social problem, is not too much attention to the effects of these fine particles on the human body. This is a recent trend.
  • zinc oxide when it is incorporated in a lot of cosmetics, there is a demerit that zinc ions cause pseudo-crosslinking of cosmetic additives and increase the viscosity of the cosmetics.
  • JP 2013-56860 A discloses a skin cosmetic containing zinc oxide and titanium oxide as ultraviolet ray preventing components, wherein the zinc oxide is a thermoplastic resin, Skin cosmetics are disclosed that are contained as composite particles encapsulated in a matrix component selected from thermoplastic elastomers and rubbers.
  • the matrix component since zinc oxide is included in the matrix component, it is possible to prevent zinc oxide from directly touching the skin, and even nanoparticles can be improved in terms of safety to the human body. .
  • the ultraviolet scattering function tends to be lowered.
  • the composite particles of this document are spherical and are likely to have a form close to agglomeration.
  • JP 2013-56860 A (Claims, Examples)
  • an object of the present invention is to provide a resin powder having an ultraviolet scattering function, a method for producing the same, and a cosmetic containing the resin powder.
  • Another object of the present invention is to provide a resin powder capable of efficiently exhibiting an ultraviolet scattering function even when an ultraviolet scattering agent is contained (or included) in the resin, a method for producing the same, and a cosmetic containing the resin powder. There is to do.
  • Still another object of the present invention is to provide a resin powder capable of achieving both high safety to the human body and an excellent ultraviolet scattering function, a method for producing the same, and a cosmetic containing the resin powder.
  • the present inventors have made a plate-like treatment (for example, crushing) a resin (particularly thermoplastic resin) composition (particularly a particulate resin composition) containing an ultraviolet scattering agent. Surprisingly, it was found that the ultraviolet scattering function can be improved or improved, and the present invention has been completed.
  • the resin powder of the present invention is a resin powder containing an ultraviolet scattering agent [a resin powder containing an ultraviolet scattering agent and a resin (a resin as a binder or a matrix)], and the shape thereof is a plate ( This is a flat plate-like resin powder.
  • the resin constituting the resin powder may be a thermoplastic resin (for example, a polyamide resin).
  • the ultraviolet scattering agent may be, for example, an inorganic compound (for example, a metal oxide).
  • the ultraviolet scattering agent may be in the form of particles (for example, metal oxide particles).
  • Such a particulate ultraviolet scattering agent may be, for example, particles having an average particle diameter of 150 nm or less.
  • Typical ultraviolet scattering agents include metal oxide particles having an average particle diameter of 100 nm or less, and at least one metal oxide particle selected from titanium oxide particles and zinc oxide particles.
  • the ratio of the ultraviolet scattering agent may be, for example, about 5 to 300 parts by weight with respect to 100 parts by weight of the resin constituting the resin powder.
  • the average thickness (average thickness determined from an electron micrograph) of the resin powder of the present invention may be 2 ⁇ m or less, for example.
  • the resin powder of the present invention may be a powder (or a resin particle plate) obtained by plate-forming (for example, crushing) resin particles containing an ultraviolet scattering agent.
  • the average particle diameter of the resin particles may be about 0.5 to 100 ⁇ m.
  • the resin powder of the present invention may be a resin powder (cosmetic resin powder) for use in cosmetics (or cosmetics).
  • the present invention includes a method for producing a resin powder (plate-like resin powder) by subjecting a resin powder containing an ultraviolet scattering agent to a plate-like treatment.
  • the present invention also includes cosmetics (or cosmetics) containing the resin powder (plate-like resin powder).
  • the resin powder of the present invention has an ultraviolet scattering function.
  • the ultraviolet scattering function can be efficiently exhibited even though the ultraviolet scattering agent is contained (or included) in the resin (or not exposed). Therefore, even if the amount of the ultraviolet scattering agent is small, a sufficient ultraviolet scattering function can be obtained, which is preferable.
  • the ultraviolet scattering agent is contained in the resin, direct contact of the ultraviolet scattering agent with the skin can be prevented or suppressed. Moreover, as described above, the ultraviolet scattering agent is excellent in the ultraviolet scattering function despite being contained or dispersed in such a resin. Therefore, the resin powder of the present invention can achieve both high safety for the human body and an excellent ultraviolet scattering function, and is extremely practical and useful.
  • FIG. 1 is an electron micrograph of a plate-like powder (a plate-like resin powder containing titanium oxide particles) obtained in Example 1.
  • FIG. 2 is an electron micrograph of particles (powder) before being plate-formed in Example 1.
  • FIG. 3 is an electron micrograph of the plate-like powder (plate-like resin powder containing zinc oxide particles) obtained in Example 2.
  • 4 is an electron micrograph of particles (powder) before being plate-formed in Example 2.
  • the resin powder of the present invention contains an ultraviolet scattering agent (ultraviolet ray preventing agent).
  • the resin powder of the present invention is a resin powder containing an ultraviolet scattering agent and a resin. And this resin powder has plate shape so that it may mention later.
  • the resin powder of the present invention is composed of a resin. That is, the resin powder of the present invention uses a resin as a matrix (or binder) and contains an ultraviolet scattering agent (or an ultraviolet scattering agent is dispersed) in the matrix (or binder).
  • the resin is not particularly limited, and may be any of a thermoplastic resin and a thermosetting resin (such as an epoxy resin, a silicone resin, and an unsaturated polyester resin).
  • the resin may be at least composed of a thermoplastic resin. Good.
  • thermoplastic resin examples include polyamide resin ⁇ eg, aliphatic polyamide [eg, polyamide 6, polyamide 66, polyamide 610, polyamide 612, polyamide 912, polyamide 1212, polyamide 1012, polyamide 1010, polyamide 11, polyamide 12, Polyamide (for example, copolyamide obtained by copolymerizing the above exemplified polyamide components such as polyamide 66/11, polyamide 66/12, etc.), alicyclic polyamide, aromatic polyamide, etc. ⁇ , polyester resin ⁇ for example, aliphatic polyester resin (Eg, polylactic acid), aromatic polyester resin [polyalkylene arylate (eg, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly (1,4-cyclohexene) Dimethylene terephthalate), polyarylate, liquid crystal polyester, etc.], polycarbonate resin (for example, aromatic polycarbonate such as bisphenol A type polycarbonate), polyphenylene ether resin (polypheny
  • These resins may be used alone or in combination of two or more.
  • the resin may be a water-soluble resin, but may usually be a hydrophobic resin.
  • thermoplastic resins are preferable, and polyamide resins may be particularly preferably used.
  • the polyamide resin is suitable because it has a relatively high affinity for the ultraviolet light scattering agent and is likely to be efficiently formed into a plate by a plate forming process described later.
  • aliphatic polyamides are widely used, have excellent moldability, solvent resistance, etc., and are easily plate-like, so that aliphatic homo- or copolyamides having C 8-16 alkylene chains (particularly polyamide 11 and polyamide 12) Of these, aliphatic homo or copolyamides having a C 10-14 alkylene chain are particularly preferred.
  • the resin powder of the present invention may contain other additives or contact with other additives (for example, when used for cosmetics as described later). It is also preferable in that it is difficult to be affected by other additives and easily maintains the ultraviolet scattering function.
  • the number average molecular weight of the resin is not particularly limited and can be selected according to the type of resin.
  • the resin in gel permeation chromatography (GPC), it may be 3000 or more (for example, 5000 to 1000000), preferably 8000 or more (for example, 10,000 to 500000), more preferably 15000 or more (for example, 20000 to 200000).
  • the melting point (or softening point) is not particularly limited.
  • the melting point (or softening point) of a thermoplastic resin is 300 ° C. or lower (for example, 50 ⁇ 280 ° C.), preferably about 80 to 250 ° C. (for example, 100 to 220 ° C.).
  • the ultraviolet scattering agent (ultraviolet ray preventing agent) is not particularly limited as long as it is an additive having an ultraviolet scattering function, and may be either an organic substance or an inorganic substance, but is usually an inorganic substance (especially an inorganic compound). Good.
  • the ultraviolet scattering agent examples include oxides (for example, metal oxides containing at least a Group 4 metal of the periodic table as a metal component (for example, metal oxides such as titanium oxide and zirconium oxide), zinc oxide and the like), sulfides (For example, metal sulfides such as zinc sulfide), carbonates (for example, calcium carbonate, barium carbonate, etc.), sulfates (for example, barium sulfate, etc.), and the like. These ultraviolet scattering agents may be used alone or in combination of two or more. Note that the ultraviolet scattering agent may have a function as a filler or a colorant.
  • oxides for example, metal oxides containing at least a Group 4 metal of the periodic table as a metal component (for example, metal oxides such as titanium oxide and zirconium oxide), zinc oxide and the like), sulfides (For example, metal sulfides such as zinc sulfide), carbonates (for example, calcium carbonate, barium carbonate
  • metal oxides are preferable, and titanium oxide and zinc oxide are particularly preferable.
  • titanium oxide examples include titanium monoxide (TiO), titanium dioxide (TiO 2 ), dititanium trioxide (Ti 2 O 3 ), and titanium dioxide is particularly preferable. In the present invention, different titanium oxides may be combined.
  • the crystal form (crystal form) of titanium oxide may be any of rutile, anatase, and brookite.
  • rutile type titanium oxide may be suitably used.
  • An ultraviolet scattering agent for example, a metal oxide such as titanium oxide
  • a surface treatment agent for example, a metal oxide such as titanium oxide
  • the surface treatment can suppress the reactivity (or activity) of titanium oxide or the like, improve the dispersibility with respect to the resin, and more easily function as an ultraviolet scattering agent.
  • the surface treatment agent examples include metal oxides (for example, silica, alumina, etc.), organic surface treatment agents (for example, coupling agents (for example, silane coupling agents, titanium coupling agents, etc.), organic acids, alcohols, and siloxanes. Compound, etc.]. These surface treatment agents may be used alone or in combination of two or more.
  • a metal oxide different from the metal oxide constituting the ultraviolet scattering agent is selected as the metal oxide as the surface treatment agent.
  • titanium oxide In this case, a non-titanium metal oxide is used as the surface treatment agent.
  • the surface treatment agent may be composed of at least a metal oxide (such as silica).
  • the ratio of the surface treatment agent is, for example, 30% by weight or less (for example, 0. 1 to 25% by weight), preferably 20% by weight or less (eg 0.5 to 18% by weight), more preferably about 15% by weight or less (eg 1 to 12% by weight). It may be about 20% by weight (for example, 2 to 15% by weight, preferably 3 to 10% by weight).
  • the shape of the ultraviolet scattering agent is not particularly limited, and may be particulate (including spherical), fibrous (or needle or rod), plate, or the like. A preferred shape is particulate.
  • the average particle diameter is, for example, 1 to 1000 nm (for example, It can be selected from the range of about 2 to 800 nm, and may be about 3 to 500 nm, preferably about 5 to 400 nm (eg, 7 to 350 nm), and more preferably about 10 to 300 nm (eg, 15 to 250 nm).
  • the average particle size of the particulate ultraviolet scattering agent is 200 nm or less (eg, 1 to 180 nm), preferably 150 nm or less (eg, 5 to 120 nm), more preferably 100 nm or less (eg, 10 to 80 nm), particularly It may be 50 nm or less (for example, 20 to 50 nm).
  • the UV scattering agent having a small particle diameter since it is safe for the human body even if such a UV scattering agent having a small particle diameter is used, it is safe for the human body while achieving both relatively high transparency and high UV scattering properties. Is preferable.
  • the average particle diameter of the ultraviolet scattering agent can be measured by a conventional method, and may be measured by the same method as the average diameter of the resin powder described later.
  • the ultraviolet scattering agent may be compatible (or compatible) with the resin, but may usually be incompatible with the resin.
  • the proportion of the ultraviolet light scattering agent can be appropriately selected depending on the application and the desired degree of ultraviolet light scattering function.
  • 1 to 1000 parts by weight (100 to 100 parts by weight of resin)
  • it can be selected from the range of about 3 to 500 parts by weight), 5 to 300 parts by weight, preferably 10 to 250 parts by weight (for example, 20 to 220 parts by weight), more preferably 30 to 200 parts by weight (for example, 40 parts by weight).
  • the volume ratio of the ultraviolet scattering agent is, for example, 0.1 to 50% by volume (for example, 0.5 to 45 volume) with respect to the total volume of the resin and the ultraviolet scattering agent. %), Preferably 1 to 40% by volume (eg 1.5 to 35% by volume), more preferably about 2 to 30% by volume (eg 3 to 25% by volume), usually 3 to 50%. It may be on the order of volume% (for example, 5 to 45 volume%, preferably 8 to 40 volume%, more preferably 10 to 35 volume%).
  • the resin powder of the present invention may contain other additives (additives other than ultraviolet scattering agents) as necessary.
  • additives can be appropriately selected depending on the application, for example, stabilizers (such as ultraviolet absorbers), fillers, colorants, dispersants, emulsifiers, fragrances, preservatives, antioxidants, Medicinal ingredients, bulking agents, antifoaming agents, humectants, lubricants and the like can be mentioned. These additives may be used alone or in combination of two or more.
  • ultraviolet absorber examples include aminobenzoic acid (eg, p-aminobenzoic acid) or an ester thereof, salicylic acid ester, cinnamic acid ester (eg, benzyl cinnamate, 2-ethylhexyl methoxycinnamate), dialkylaminohydroxy, etc.
  • aminobenzoic acid eg, p-aminobenzoic acid
  • salicylic acid ester eg, cinnamic acid ester (eg, benzyl cinnamate, 2-ethylhexyl methoxycinnamate), dialkylaminohydroxy, etc.
  • cinnamic acid ester eg, benzyl cinnamate, 2-ethylhexyl methoxycinnamate
  • dialkylaminohydroxy etc.
  • Benzoyl benzoate eg, diethylaminohydroxybenzoyl hexyl benzoate
  • benzophenone compounds eg, 2-hydroxy-4-methoxybenzophenone
  • dibenzoylalkanes eg, 4-tert-butyl-4-methoxydibenzoyl) Methane
  • triazine derivatives for example, 2,4-bis ⁇ [4- (2-ethylhexyloxy) -2-hydroxy] -phenyl ⁇ -6- (4-methoxyphenyl) -1,3,5-triazine
  • Urocanic acid or An ester thereof organic compounds such as ⁇ - carotene and the like.
  • An ultraviolet absorber may be individual or may combine 2 or more types.
  • the filler may be either an inorganic filler or an organic filler. Further, the shape of the filler may be any of particulate, fiber, and needle. Specific fillers include carbonates (calcium carbonate, magnesium carbonate, etc.), sulfates (calcium sulfate, barium sulfate, etc.), phosphates (calcium phosphate, titanium phosphate, etc.), metal oxides (silica, alumina, Iron oxide, magnesium oxide, strontium oxide, cerium oxide, etc.), hydroxyapatite, silicate (mica, calcium silicate, wollastonite, bentonite, zeolite, barley stone, talc, montmorillonite, clay, kaolin, etc.), minerals ( Quartz powder, diatomaceous earth, nepheline sianite, cristobalite, dolomite, etc.), metal nitride (silicon nitride, boron nitride, aluminum nitride,
  • the colorant may be inorganic or organic. Further, the colorant may be a dye or a pigment (and further a dye / pigment). Specific colorants include, for example, inorganic colorants (or inorganic pigments such as carbon black, ultramarine blue, red pepper, black iron oxide, yellow iron oxide, chromium oxide, composite oxide pigments), and organic colorants.
  • the colorant also includes tar pigments (for example, cosmetic tar pigments stipulated by the Ordinance of the Ministry of Health, Labor and Welfare), lake pigments (such as aluminum lakes), and the like.
  • the colorants may be used alone or in combination of two or more.
  • the shape of the resin powder of the present invention is a plate shape (flat plate shape).
  • the average thickness (average thickness of the plate-like primary particles) is, for example, 3 ⁇ m or less (for example, 0.05 to 2.5 ⁇ m), preferably 2 ⁇ m or less (for example, 0.2 mm). 1 to 1.8 ⁇ m), more preferably 1.5 ⁇ m or less (for example, 0.15 to 1.3 ⁇ m), particularly 1.2 ⁇ m or less (for example, 0.2 to 1.2 ⁇ m).
  • Such average thickness is not particularly limited, but can be determined from, for example, an electron micrograph. Specifically, any thickness (maximum, for example, 10 or more (for example, 15 to 100, preferably 20 to 50)) of resin powder extracted (sampled) from an electron micrograph is obtained. Thickness) can be measured, and the average value of these thicknesses can be defined as the average thickness.
  • the average diameter of the resin powder [average value of the length in the plane direction (or direction perpendicular to the thickness direction) of the plate-like primary particles] can be selected from the range of 2 to 700 ⁇ m (for example, 5 to 600 ⁇ m). It may be about 10 to 500 ⁇ m, preferably 15 to 200 ⁇ m, more preferably about 20 to 150 ⁇ m.
  • Such an average diameter is not particularly limited, but can be obtained from an electron micrograph in the same manner as the average thickness. Specifically, for any of a plurality of resin powders extracted (sampled) from an electron micrograph, each diameter or length (maximum diameter or maximum length or major axis) is measured, and these diameters or lengths are measured.
  • the average value can be an average diameter (or average length).
  • the diameter and distribution of the resin powder can be obtained (measured) by a light scattering (dynamic light scattering) method.
  • the diameter of the resin powder by the light scattering method is, for example, 0.01 to 700 ⁇ m (for example, 0.05 to 600 ⁇ m), preferably 0.1 to 500 ⁇ m (for example, 0.2 to 400 ⁇ m). ), More preferably about 0.3 to 300 ⁇ m (for example, 0.5 to 200 ⁇ m).
  • the ratio of the diameter at which the maximum frequency (frequency is maximum) of the resin powder by the light scattering method is, for example, 3 to 30%, preferably 5 to 25%, and more preferably 7 to 20% (for example, 10 to 15%).
  • the resin powder of the present invention includes a plurality of resin particles (or resin particles) including (or encapsulating), in particular, an ultraviolet scattering agent (and other additives as exemplified above if necessary).
  • resin particles may be a powder (aggregate of plate-like particles) obtained by plate-like treatment.
  • resin particles each resin particle, single resin particle
  • the plurality of plate-like resin particles may be aggregated (or laminated), but usually the cohesive force is weak and can be easily separated during synthesis or use. There are many.
  • the method for producing the resin powder (plate-shaped resin powder) of the present invention is not particularly limited.
  • a resin powder containing an ultraviolet scattering agent a resin powder not formed into a plate, simply a resin powder
  • B a method of pulverizing (or crushing) a film (or a sheet or film-like material) formed of a resin containing an ultraviolet scattering agent.
  • the method (A) can be particularly preferably used. In the method (A), it is not necessary to form a film, and it is easy to efficiently obtain a powder having a relatively small variation in size (thickness and particle size).
  • the resin powder containing the ultraviolet scattering agent may be a powder obtained by pulverizing (for example, freeze pulverizing) a resin composition (pellet-shaped resin composition) containing the ultraviolet scattering agent.
  • resin particles containing an ultraviolet scattering agent may be preferably used.
  • resin particles for such resin particles, commercially available products may be used, and those produced by utilizing or applying known methods can be used.
  • Known methods include, for example, a resin as a matrix, an ultraviolet scattering agent (and other additives), an incompatible with the matrix (and the ultraviolet scattering agent), and easy with a medium such as water.
  • a third component for example, sugar, polyethylene glycol, etc.
  • a third component that can be removed is kneaded to obtain a composition containing resin particles containing an ultraviolet scattering agent and the third component, and the third component is removed from the composition. Examples thereof include a method (forced emulsification method) (for example, a method described in JP 2010-132911 A).
  • the shape of the resin particles is not particularly limited, and may be spherical or ellipsoidal, but may be particularly spherical (particularly true spherical).
  • the average particle diameter of the resin particles can be selected from a range of about 0.1 to 500 ⁇ m, for example, 0.2 to 300 ⁇ m (for example, 0.3 to 200 ⁇ m), preferably 0. It may be about 5 to 100 ⁇ m (for example, 1 to 70 ⁇ m), more preferably 2 to 50 ⁇ m (for example, 3 to 40 ⁇ m), and usually about 4 to 30 ⁇ m.
  • the average particle diameter of the resin particles may be 50 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 15 ⁇ m or less. When resin particles having such a particle size are used, it is easy to form a plate efficiently.
  • the plate-forming treatment method is not particularly limited, and examples thereof include a method of crushing resin powder (particularly resin particles).
  • the resin powder particularly, resin particles such as aliphatic polyamide resin
  • various apparatuses or means a plate forming apparatus or a plate forming means
  • Such devices or means include mills (media dispersers), rolls [rolling rolls (two rolls, three rolls, etc.)], medialess dispersers [for example, high-pressure collision dispersers (nanomizer, optimizer, etc.) ), An ultrasonic disperser, etc.].
  • the mill is relatively easy to use and easy to use.
  • the mill can be roughly classified into a so-called wet medium mill in which a medium such as a liquid is interposed and a dry medium mill in which a liquid is not interposed, and any of them can be used in the present invention.
  • Examples of the wet media mill include a ball mill, a side grinder, a dyno mill, a spike mill, a DCP mill, a basket mill, and a paint conditioner.
  • Examples of the dry medium mill include a ball mill, a vibration ball mill, an attritor, and a dry bead mill.
  • Examples of the material of the container used in the medium mill include hardened steel, stainless steel, SUS chrome plating, alumina ceramics, silicon nitride ceramics, zirconia ceramics, silicon carbide ceramics, zirconia reinforced alumina ceramics, and sialon. In particular, it is not limited to these.
  • the medium particles used in the medium mill spherical particles are generally used, and the materials thereof are glass beads, low alkali glass beads, alkali-free glass beads, alumina beads, zirconia beads, zirconia. Examples include yttria beads, titania beads, high-purity alumina beads, and steel balls.
  • the specific gravity of the medium particles (beads) may be, for example, 2.0 or more, preferably 2.5 or more, and more preferably 3.0 or more.
  • the size of the medium particles (beads) can be appropriately selected according to the size of the resin particles to be subjected to the plate-like treatment, and is, for example, about 0.05 to 5 mm (for example, 0.1 to 3 mm). May be.
  • water can be mainly used as the medium (liquid), but water and an aqueous solvent [or a water-soluble solvent, for example, alcohols (alkanols such as methanol, ethanol, isopropyl alcohol; Diols such as 1,2-pentanediol and 1,2-hexanediol), diol monoethers (for example, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and propylene glycol monobutyl ether; diethylene glycol monoethyl ether, tri A mixed solvent with a polyalkylene glycol monoalkyl ether such as ethylene glycol monobutyl ether)] may be used.
  • a water-soluble solvent for example, alcohols (alkanols such as methanol, ethanol, isopropyl alcohol; Diols such as 1,2-pentanediol and 1,2-hexanediol), diol monoethers (for example, alky
  • the resin powder (plate-like resin powder) of the present invention can be used for various applications that require an ultraviolet scattering function, and in particular, can be suitably used for cosmetics (or cosmetics).
  • the present invention includes cosmetics (or cosmetics) containing the resin powder.
  • cosmetics especially skin cosmetics
  • Such cosmetics need only contain at least resin powder, and other known cosmetic ingredients (for example, oils, alcohols, thickeners, etc., as well as other additives described above) Etc.).
  • additives may be contained in the resin powder, or may be contained in the cosmetic separately from the resin powder.
  • Cosmetics can be liquid (lotions, emulsions, creams, gels, etc.), semi-solids (creams, gels, kneads, etc.), solids (granular, powdery, molded products formed into desired shapes, etc.) Or any other shape.
  • the powder adhering to the filter paper was randomly sampled at three locations with a spatula, placed on the observation table, and the sample on the observation table was vapor-deposited with gold.
  • magnification was appropriately selected.
  • Titanium oxide particles [Titanium dioxide, manufactured by DuPont, Ti-Pure (R) Titanium Dioxide Pigment-Paint Coatings-DryGrades R-105, surface treatment (silica, alumina dimethylsiloxane treatment) product] 50 parts by weight, polyamide resin (polyamide 12 , Manufactured by Daicel-Evonik Co., Ltd.) and in the same manner as in Example 1 of JP-A-2005-179646, polyamide particles containing titanium oxide particles (true sphere, average particle diameter of 4.1 ⁇ m, oxidized) The proportion of titanium particles was 50% by weight).
  • the obtained particles were dispersed in water at a ratio of 10% by weight and crushed using a ball mill to form a plate.
  • high purity alumina beads particles (particle size 0.5 mm) were used as the media type of the ball mill used at this time, and the volume of the dispersion and the media was the same.
  • FIG. 2 shows an electron micrograph (1500 times) of the obtained plate-like powder.
  • FIG. 2 also shows an electron micrograph (1500 times) of the polyamide particles themselves including the titanium oxide particles (polyamide particles before plate-like treatment). As is clear from these photographs, each polyamide particle was plate-like.
  • the average thickness of the plate-like powder was 0.94 ⁇ m, the average diameter was 32 ⁇ m, the diameter distribution was 7 to 110 ⁇ m, the maximum frequency was 26 ⁇ m, and the ratio of the maximum frequency was 12%. .
  • the obtained plate-like powder was dispersed in ethanol at a ratio of 5% by weight, and the obtained dispersion was applied onto the preparation glass with a bar coater.
  • UV ultraviolet ray
  • Example 2 In Example 1, instead of titanium oxide, 50 parts by weight of zinc oxide particles (average particle size 20 nm, manufactured by Sakai Chemical Industry Co., Ltd., “FINEX-50S-LP2”, surface treatment (organopolysiloxane) product) are used. Except that, polyamide particles containing zinc oxide particles (true spherical shape, average particle diameter 4.5 ⁇ m, ratio of zinc oxide particles 50% by weight) were obtained in the same manner as Example 1.
  • FIG. 3 shows an electron micrograph (1500 times) of the obtained plate-like powder.
  • FIG. 4 also shows an electron micrograph (1500 times) of polyamide particles containing zinc oxide particles themselves (polyamide particles before plate-like treatment). As is clear from these photographs, each polyamide particle was plate-like.
  • the average thickness of the plate-like powder was 1.00 ⁇ m, the average diameter was 25 ⁇ m, the diameter distribution was 5 to 215 ⁇ m, the maximum frequency was 12 ⁇ m, and the ratio of the maximum frequency was 13%. .
  • UV transmittance was measured in the same manner as in Example 1, it was 0% at 300 nm, 4% at 330 nm, 6% at 360 nm, and 15% at 400 nm.
  • the polyamide particles containing zinc oxide also have a plate-like treatment, whereby the UV transmittance is remarkably lowered and the ultraviolet ray preventing function is greatly improved.
  • Example 3 In Example 1, except that the polyamide resin was changed from 50 parts by weight to 40 parts by weight, the same procedure as in Example 1 was carried out to prepare polyamide particles containing titanium oxide particles (spherical, average particle diameter 4.5 ⁇ m, titanium oxide). The proportion of particles was 55% by weight).
  • the obtained particles were formed into a plate shape in the same manner as in Example 1.
  • the average thickness of the plate-like powder was 1.1 ⁇ m, and the average diameter was 29 ⁇ m.
  • UV transmittance was measured in the same manner as in Example 1, it was 28% at 300 nm, 28% at 330 nm, 28% at 360 nm, and 29% at 400 nm.
  • Example 4 Polyamide particles containing titanium oxide particles in the same manner as in Example 1, except that the titanium oxide particles were changed from 50 parts by weight to 60 parts by weight and the polyamide resin was changed from 50 parts by weight to 40 parts by weight. (True sphere, average particle diameter 5.7 ⁇ m, titanium oxide particle ratio 60 wt%).
  • the obtained particles were formed into a plate shape in the same manner as in Example 1.
  • the average thickness of the plate-like powder was 1.1 ⁇ m, and the average diameter was 24 ⁇ m.
  • UV transmittance was measured in the same manner as in Example 1, it was 28% at 300 nm, 27% at 330 nm, 28% at 360 nm, and 26% at 400 nm.
  • Example 5 In Example 2, except that the polyamide resin was changed from 50 parts by weight to 40 parts by weight, in the same manner as in Example 2, polyamide particles containing zinc oxide particles (true spherical shape, average particle diameter 4.7 ⁇ m, zinc oxide) The proportion of particles was 55% by weight).
  • the obtained particles were formed into a plate shape in the same manner as in Example 1.
  • the average thickness of the plate-like powder was 1.0 ⁇ m, and the average diameter was 33 ⁇ m.
  • UV transmittance was measured in the same manner as in Example 1, it was 0% at 300 nm, 4% at 330 nm, 6% at 360 nm, and 11% at 400 nm.
  • Example 6 Polyamide particles containing zinc oxide particles in the same manner as in Example 1, except that the zinc oxide particles were changed from 50 parts by weight to 60 parts by weight and the polyamide resin was changed from 50 parts by weight to 40 parts by weight. (True sphere, average particle diameter 6.7 ⁇ m, ratio of zinc oxide particles 60% by weight) was obtained.
  • the obtained particles were formed into a plate shape in the same manner as in Example 1.
  • the average thickness of the plate-like powder was 1.0 ⁇ m, and the average diameter was 31 ⁇ m.
  • UV transmittance was measured in the same manner as in Example 1, it was 0% at 300 nm, 2% at 330 nm, 4% at 360 nm, and 10% at 400 nm.
  • the resin powder of the present invention has an ultraviolet scattering function and can be used for various applications that require such an ultraviolet scattering function.
  • such resin powder is suitable for cosmetics (particularly skin cosmetics).
  • Cosmetics (or cosmetics) containing the resin powder of the present invention are not particularly limited, and include creams (facial claims, body creams, lip balms, etc.), foundations, powders (face powders, etc.), eye shadows, eyeliners, Examples include mascara, sunscreen, lotion, milky lotion, beauty essence, scrub agent, and pack agent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 紫外線散乱剤(酸化チタン粒子、酸化亜鉛粒子など)を含む樹脂粉体を板状化処理する。紫外線散乱剤としては、例えば、平均粒子径100nm以下の酸化チタン粒子や酸化亜鉛粒子が挙げられる。また、樹脂粉体を構成する樹脂は、特に、熱可塑性樹脂(例えば、ポリアミド樹脂)であってもよい。このような板状の樹脂粉体は、紫外線散乱剤を含む複数の樹脂粒子を板状化処理して得られる粉体であってもよい。得られた樹脂粉体は、紫外線散乱機能に優れている。

Description

紫外線散乱剤を含有する樹脂粉体及びその製造方法並びに化粧料
 本発明は、紫外線散乱剤(又は紫外線防止剤)を含有する樹脂粉体及びその製造方法並びに前記樹脂粉体を含む化粧料に関する。
 肌を有害な紫外線から守るために、これまでに、サンスクリーン剤、UVカットファンデーションなど様々な化粧品が開発されてきた。その最も一般的な技術は、化粧品の中に、酸化チタンや酸化亜鉛などの紫外線散乱剤を添加剤として配合するというものであった。
 このような紫外線散乱剤は、粒径が小さいほど紫外線散乱効果が高いとされ、化粧料に使われるものは概ね、粒径がナノオーダーのものである。ところが、ナノオーダーのものは皮膚に接触した際の有害性がまだ完全に検証されているわけではない。分野は異なるが、ナノウィスカーであるアスベストによる肺がんの発症が大きな社会問題となったことをきっかけとして、こうした微細な粒子の人体への影響については注意しても注意しすぎることはない、というのが昨今の傾向である。また、酸化亜鉛の場合は、化粧料に多く配合すると、亜鉛イオンが化粧料の添加物を擬似架橋させ、化粧料の粘度を上げてしまうというデメリットもあった。
 このような中、特開2013-56860号公報(特許文献1)には、紫外線防止成分としての酸化亜鉛と酸化チタンとを含有する皮膚化粧料であって、前記酸化亜鉛が、熱可塑性樹脂、熱可塑性エラストマーおよびゴムから選ばれるマトリックス成分に内包された複合粒子として含有されている皮膚化粧料が開示されている。
 この文献の皮膚化粧料では、酸化亜鉛がマトリックス成分に内包されているため、酸化亜鉛が直接肌に触れることを防ぐことができ、ナノ粒子であっても、人体に対する安全性という点では向上できる。しかし、マトリックス成分中に内包させるため、紫外線散乱機能を低下させやすい。とりわけ、この文献の複合粒子は、球状であり、凝集に近い形態をとるためか、紫外線散乱機能の低下が顕著になりやすい。
特開2013-56860号公報(特許請求の範囲、実施例)
 従って、本発明の目的は、紫外線散乱機能を有する樹脂粉体及びその製造方法並びに前記樹脂粉体を含む化粧料を提供することにある。
 本発明の他の目的は、樹脂中に紫外線散乱剤を含有(又は内包)させても、紫外線散乱機能を効率よく発揮できる樹脂粉体及びその製造方法並びに前記樹脂粉体を含む化粧料を提供することにある。
 本発明のさらに他の目的は、人体に対する高い安全性と優れた紫外線散乱機能とを両立できる樹脂粉体及びその製造方法並びに前記樹脂粉体を含む化粧料を提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、紫外線散乱剤を含む樹脂(特に熱可塑性樹脂)組成物(特に粒子状の樹脂組成物)を板状化処理する(例えば、押しつぶす)ことで、意外にも、紫外線散乱機能を向上又は改善できることを見出し、本発明を完成した。
 すなわち、本発明の樹脂粉体は、紫外線散乱剤を含む樹脂粉体[紫外線散乱剤と樹脂(バインダー又はマトリックスとしての樹脂)とを含む樹脂粉体]であって、その形状が、板状(平板状)の樹脂粉体である。
 樹脂粉体において、樹脂粉体を構成する樹脂は、熱可塑性樹脂(例えば、ポリアミド樹脂)であってもよい。
 樹脂粉体において、紫外線散乱剤は、例えば、無機化合物(例えば、金属酸化物)であってもよい。また、紫外線散乱剤は、粒子状(例えば、金属酸化物粒子)であってもよい。このような粒子状の紫外線散乱剤は、例えば、平均粒子径150nm以下の粒子であってもよい。代表的な紫外線散乱剤には、平均粒子径100nm以下の金属酸化物粒子であって、酸化チタン粒子および酸化亜鉛粒子から選択された少なくとも1種の金属酸化物粒子などが含まれる。
 樹脂粉体において、紫外線散乱剤の割合は、樹脂粉体を構成する樹脂100重量部に対して、例えば、5~300重量部程度であってもよい。
 本発明の樹脂粉体の平均厚み(電子顕微鏡写真より求められる平均厚み)は、例えば、2μm以下であってもよい。また、本発明の樹脂粉体において、平均厚みと平均径との割合(電子顕微鏡写真より求められる平均厚みと平均径との割合)は、前者/後者=1/5~1/200程度であってもよい。
 本発明の樹脂粉体は、紫外線散乱剤を含む樹脂粒子を板状化処理して(例えば、押しつぶして)得られる粉体(又は樹脂粒子の板状化物)であってもよい。このような樹脂粉体において、樹脂粒子(板状化処理前の樹脂粒子)の平均粒子径は、0.5~100μm程度であってもよい。
 本発明の樹脂粉体は、化粧料(又は化粧品)に用いるための樹脂粉体(化粧料用樹脂粉体)であってもよい。
 本発明には、紫外線散乱剤を含む樹脂粉体を板状化処理し、前記樹脂粉体(板状の樹脂粉体)を製造する方法も含まれる。
 また、本発明には、前記樹脂粉体(板状の樹脂粉体)を含む化粧料(又は化粧品)も含まれる。
 本発明の樹脂粉体は、紫外線散乱機能を有する。特に、本発明の樹脂粉体では、紫外線散乱剤を樹脂中に含有(又は内包)させている(又は露出させていない)にもかかわらず、紫外線散乱機能を効率よく発揮できる。そのため、紫外線散乱剤の量が少量であっても、十分な紫外線散乱機能を得ることができ、好適である。
 また、本発明の樹脂粉体では、紫外線散乱剤が樹脂中に含まれているため、紫外線散乱剤の皮膚に対する直接的な接触などを防止又は抑制できる。しかも、上記のように、紫外線散乱剤が、このような樹脂中に含有又は分散しているにもかかわらず、紫外線散乱機能に優れている。そのため、本発明の樹脂粉体は、人体に対する高い安全性と、優れた紫外線散乱機能とを両立でき、極めて実用性および有用性が高い。
図1は、実施例1で得られた板状粉体(酸化チタン粒子を含有する板状樹脂粉体)の電子顕微鏡写真である。 図2は、実施例1において、板状化処理する前の粒子(粉体)の電子顕微鏡写真である。 図3は、実施例2で得られた板状粉体(酸化亜鉛粒子を含有する板状樹脂粉体)の電子顕微鏡写真である。 図4は、実施例2において、板状化処理する前の粒子(粉体)の電子顕微鏡写真である。
 [樹脂粉体]
 本発明の樹脂粉体は、紫外線散乱剤(紫外線防止剤)を含んでいる。換言すれば、本発明の樹脂粉体は、紫外線散乱剤と樹脂とを含む樹脂粉体である。そして、この樹脂粉体は、後述するように板状の形状を有する。
 (樹脂)
 本発明の樹脂粉体は、樹脂で構成されている。すなわち、本発明の樹脂粉体は、樹脂をマトリックス(又はバインダー)とし、このマトリックス(又はバインダー)中に紫外線散乱剤を含む(又は紫外線散乱剤が分散している)。
 樹脂としては、特に限定されず、熱可塑性樹脂、熱硬化性樹脂(エポキシ樹脂、シリコーン樹脂、不飽和ポリエステル樹脂など)のいずれであってもよいが、特に、熱可塑性樹脂で少なくとも構成してもよい。
 熱可塑性樹脂としては、例えば、ポリアミド樹脂{例えば、脂肪族ポリアミド[例えば、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド912、ポリアミド1212、ポリアミド1012、ポリアミド1010、ポリアミド11、ポリアミド12、コポリアミド(例えば、ポリアミド66/11、ポリアミド66/12などの前記例示のポリアミド成分が共重合したコポリアミド)など]、脂環族ポリアミド、芳香族ポリアミドなど}、ポリエステル樹脂{例えば、脂肪族ポリエステル樹脂(例えば、ポリ乳酸など)、芳香族ポリエステル樹脂[ポリアルキレンアリレート(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ(1,4-シクロへキサンジメチレンテレフタレート)など)、ポリアリレート、液晶ポリエステルなど]など}、ポリカーボネート樹脂(例えば、ビスフェノールA型ポリカーボネートなどの芳香族ポリカーボネート)、ポリフェニレンエーテル樹脂(ポリフェニレンエーテル、変性ポリフェニレンエーテルなど)、ポリエーテルケトン樹脂(ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテル-ジフェニル-エーテル-フェニル-ケトン-フェニル、ポリエーテルケトンエーテルケトンケトンなど)、ポリアセタール樹脂、ポリスルホン樹脂(ポリスルホン、ポリエーテルスルホンなど)、ポリイミド樹脂(ポリイミド、ポリアミドイミド、ポリエーテルイミドなど)、ポリフェニレンスルフィド樹脂(ポリフェニレンスルフィドなど)、アクリル系樹脂(例えば、ポリメタクリル酸メチルなど)、スチレン系樹脂(例えば、ポリスチレン、AS樹脂などのスチレン共重合体)、オレフィン樹脂[例えば、鎖状オレフィン樹脂(ポリエチレン、ポリプロピレン、ポリメチルペンテンなど)、環状オレフィン樹脂(いわゆるCOP、COCなど)など]、ビニル系樹脂(例えば、ポリ酢酸ビニルなどのビニルエステル系樹脂、ビニルアルコール系樹脂など)、ハロゲン含有樹脂(例えば、ポリ塩化ビニル、ポリ塩化ビニリデンなどの塩素含有樹脂、フッ素樹脂など)、セルロース系樹脂(例えば、セルロースアセテートなどのセルロースアシレート)、熱可塑性エラストマー[分子内にハードセグメントとソフトセグメントとを有するエラストマー、例えば、ポリアミド系エラストマー(例えば、ポリアミド成分(例えば、ポリアミド6、ポリアミド12などの脂肪族ポリアミド成分)をハードセグメント、ポリエーテル成分(例えば、ポリエーテルジオールなど)をソフトセグメントとするポリアミドエラストマーなど)、ポリエステル系エラストマー、ポリウレタン系エラストマー、ポリオレフィン系エラストマー、ポリスチレン系エラストマー、フッ素系エラストマー]などが挙げられる。
 これらの樹脂は、単独で又は2種以上組み合わせてもよい。
 なお、樹脂は、水溶性樹脂であってもよいが、通常、疎水性樹脂であってもよい。
 これらの樹脂の中でも、熱可塑性樹脂が好ましく、特にポリアミド樹脂を好適に用いてもよい。ポリアミド樹脂は、紫外線散乱剤の親和性においても比較的高い上に、後述の板状化処理によって、効率よく板状化しやすいようであり、好適である。なかでも、脂肪族ポリアミドが汎用され、成形性や耐溶剤性などに優れ、板状化し易い点から、C8-16アルキレン鎖を有する脂肪族ホモ又はコポリアミド(特に、ポリアミド11やポリアミド12などのC10-14アルキレン鎖を有する脂肪族ホモ又はコポリアミド)が特に好ましい。また、本発明の樹脂粉体は、他の添加剤を含む場合や他の添加剤と接触する場合(例えば、後述するように、化粧料用途などに用いる場合など)があっても、比較的他の添加剤に侵されにくく、紫外線散乱機能を維持しやすいという点でも好適である。
 なお、樹脂(熱可塑性樹脂、特に脂肪族ポリアミド樹脂などのポリアミド樹脂)の数平均分子量は、特に制限されず、樹脂の種類などに応じて選択でき、例えば、ゲルパーミエーションクロマトグラフィ(GPC)において、ポリスチレン換算で、3000以上(例えば、5000~1000000)、好ましくは8000以上(例えば、10000~500000)、さらに好ましくは15000以上(例えば、20000~200000)であってもよい。
 また、熱可塑性樹脂が、融点(又は軟化点)を有する場合、融点(又は軟化点)は、特に制限されない。特に、紫外線散乱剤を含有させつつ効率よく板状化するという観点からは、熱可塑性樹脂(特に脂肪族ポリアミド樹脂などのポリアミド樹脂)の融点(又は軟化点)は、300℃以下(例えば、50~280℃)、好ましくは80~250℃(例えば、100~220℃)程度であってもよい。
 (紫外線散乱剤)
 紫外線散乱剤(紫外線防止剤)としては、紫外線散乱機能を有する添加剤であれば特に限定されず、有機物、無機物のいずれであってもよいが、通常、無機物(特に無機化合物)であってもよい。
 具体的な紫外線散乱剤としては、酸化物[例えば、周期表第4族金属を少なくとも金属成分として含む金属酸化物(例えば、酸化チタン、酸化ジルコニウムなど)、酸化亜鉛などの金属酸化物]、硫化物(例えば、硫化亜鉛などの金属硫化物)、炭酸塩(例えば、炭酸カルシウム、炭酸バリウムなど)、硫酸塩(例えば、硫酸バリウムなど)などが挙げられる。これらの紫外線散乱剤は、単独で又は2種以上組み合わせてもよい。なお、紫外線散乱剤は、充填剤としての機能や着色剤としての機能を有していてもよい。
 これらのうち、金属酸化物が好ましく、酸化チタン、酸化亜鉛が特に好ましい。
 なお、酸化チタンとしては、一酸化チタン(TiO)、二酸化チタン(TiO)、三酸化二チタン(Ti)などが挙げられ、特に二酸化チタンが好ましい。本発明では、異なる酸化チタンを組み合わせてもよい。
 酸化チタンの結晶形(結晶型)は、ルチル型、アナターゼ型、ブルッカイト型のいずれであってもよい。特に、本発明では、ルチル型酸化チタンを好適に用いてもよい。
 紫外線散乱剤(例えば、酸化チタンなどの金属酸化物など)は、表面処理剤で表面処理されていてもよい。表面処理により、酸化チタンなどの反応性(又は活性)を抑制したり、樹脂に対する分散性を向上でき、紫外線散乱剤としてより一層効率よく機能させやすい。
 表面処理剤としては、金属酸化物(例えば、シリカ、アルミナなど)、有機系表面処理剤[例えば、カップリング剤(例えば、シランカップリング剤、チタンカップリング剤など)、有機酸、アルコール、シロキサン系化合物など]などが挙げられる。これらの表面処理剤は、単独で又は2種以上組み合わせてもよい。なお、紫外線散乱剤が金属酸化物で形成されている場合、表面処理剤としての金属酸化物は、紫外線散乱剤を構成する金属酸化物とは異なる金属酸化物が選択され、例えば、酸化チタンの場合、表面処理剤として、非チタン系金属酸化物が使用される。特に、表面処理剤は、少なくとも金属酸化物(シリカなど)で構成してもよい。
 なお、表面処理されている場合(例えば、表面処理剤で表面処理された酸化チタン)において、表面処理剤の割合は、紫外線散乱剤全体に対して、例えば、30重量%以下(例えば、0.1~25重量%)、好ましくは20重量%以下(例えば、0.5~18重量%)、さらに好ましくは15重量%以下(例えば、1~12重量%)程度であってもよく、1~20重量%(例えば、2~15重量%、好ましくは3~10重量%)程度であってもよい。
 紫外線散乱剤の形状は、特に限定されず、粒子状(球状を含む)、繊維状(又は針状又は棒状)、板状などであってもよい。好ましい形状は、粒子状である。
 粒子状の紫外線散乱剤(例えば、酸化チタン粒子、酸化亜鉛粒子などの金属酸化物粒子)において、平均粒子径(平均一次粒子径又は樹脂中の平均分散径)は、例えば、1~1000nm(例えば、2~800nm)程度の範囲から選択でき、3~500nm、好ましくは5~400nm(例えば、7~350nm)、さらに好ましくは10~300nm(例えば、15~250nm)程度であってもよい。特に、粒子状の紫外線散乱剤の平均粒子径は、200nm以下(例えば、1~180nm)、好ましくは150nm以下(例えば、5~120nm)、さらに好ましくは100nm以下(例えば、10~80nm)、特に50nm以下(例えば、20~50nm)であってもよい。本発明では、このような粒径の小さい紫外線散乱剤を用いても人体に対して安全であるため、比較的高い透明性と高い紫外線散乱特性を両立しつつ、人体に対しても安全であり、好適である。
 紫外線散乱剤の平均粒径は、慣用の方法で測定でき、後述する樹脂粉体の平均径と同一の方法で測定してもよい。
 なお、紫外線散乱剤は、樹脂に対して相溶(又は相容)可能であってもよいが、通常、樹脂に対して非相溶であってもよい。
 紫外線散乱剤(特に酸化チタンなどの金属酸化物)の割合は、用途や所望の紫外線散乱機能の程度などに応じて適宜選択でき、例えば、樹脂100重量部に対して、1~1000重量部(例えば、3~500重量部)程度の範囲から選択でき、5~300重量部、好ましくは10~250重量部(例えば、20~220重量部)、さらに好ましくは30~200重量部(例えば、40~180重量部)、特に50~150重量部(例えば、70~120重量部)程度であってもよい。
 また、紫外線散乱剤(特に酸化チタンなどの金属酸化物)の体積割合は、樹脂および紫外線散乱剤の総体積に対して、例えば、0.1~50体積%(例えば、0.5~45体積%)、好ましくは1~40体積%(例えば、1.5~35体積%)、さらに好ましくは2~30体積%(例えば、3~25体積%)程度であってもよく、通常3~50体積%(例えば、5~45体積%、好ましくは8~40体積%、さらに好ましくは10~35体積%)程度であってもよい。
 (他の添加剤)
 本発明の樹脂粉体は、必要に応じて、他の添加剤(紫外線散乱剤以外の添加剤)を含んでいてもよい。このような他の添加剤としては、用途に応じて適宜選択できるが、例えば、安定剤(紫外線吸収剤など)、充填剤、着色剤、分散剤、乳化剤、香料、防腐剤、抗酸化剤、薬用成分、増量剤、消泡剤、保湿剤、滑剤などが挙げられる。これらの添加剤は、単独で又は2種以上組み合わせてもよい。
 紫外線吸収剤としては、例えば、アミノ安息香酸(例えば、p-アミノ安息香酸など)又はそのエステル、サリチル酸エステル、ケイヒ酸エステル(例えば、ケイヒ酸ベンジル、メトキシケイヒ酸2-エチルヘキシルなど)、ジアルキルアミノヒドロキシベンゾイル安息香酸エステル(例えば、ジエチルアミノヒドロキシベンゾイル安息香酸ヘキシル)、ベンゾフェノン系化合物(例えば、2-ヒドロキシ-4-メトキシベンゾフェノンなど)、ジベンゾイルアルカン類(例えば、4-tert-ブチル-4-メトキシジベンゾイルメタン)、トリアジン誘導体(例えば、2,4-ビス{[4-(2-エチルヘキシルオキシ)-2-ヒドロキシ]-フェニル}-6-(4-メトキシフェニル)-1,3,5-トリアジン)、ウロカニン酸又はそのエステル、β-カロチンなどの有機化合物が挙げられる。紫外線吸収剤は、単独で又は2種以上組み合わせてもよい。
 充填剤としては、無機系充填剤、有機系充填剤のいずれであってもよい。また、充填剤の形状は、粒子状、繊維状、針状などのいずれであってもよい。具体的な充填剤としては、炭酸塩(炭酸カルシウム、炭酸マグネシウムなど)、硫酸塩(硫酸カルシウム、硫酸バリウムなど)、リン酸塩(リン酸カルシウム、リン酸チタンなど)、金属酸化物(シリカ、アルミナ、酸化鉄、酸化マグネシウム、酸化ストロンチウム、酸化セリウムなど)、ヒドロキシアパタイト、ケイ酸塩(マイカ、珪酸カルシウム、ウォラストナイト、ベントナイト、ゼオライト、麦飯石、タルク、モンモリロナイト、クレー、カオリンなど)、鉱物類(石英粉末、珪藻土、ネフェリンサイアナイト、クリストバライト、ドロマイトなど)、金属窒化物(窒化ケイ素、窒化ホウ素、窒化アルミニウム、窒化チタンなど)、金属水酸化物(水酸化アルミニウムなど)、金属炭化物(炭化ケイ素、炭化ホウ素、炭化チタン、炭化タングステンなど)、金属ホウ化物(ホウ化チタン、ホウ化ジルコニウムなど)、金属[例えば、金、プラチナ、パラジウムなどの他、強磁性金属又は合金(例えば、鉄、コバルト、ニッケル、マグネタイト、フェライト)]、炭素(カーボンブラック、黒鉛、カーボンナノチューブなど)、ガラス(ガラス粉末、ガラス球、中空ガラス球、ガラスフレークなど)、架橋樹脂(例えば、架橋ポリメタクリル酸メチル)、繊維状充填剤(例えば、炭素繊維など)、抗菌機能を有する金属(銀、銅、亜鉛など)が担持されたフィラー(例えば、ヒドロキシアパタイト銀、ゼオライト銀)などが挙げられる。充填剤は、単独で又は2種以上組み合わせてもよい。
 着色剤は、無機系であっても、有機系であってもよい。また、着色剤は、染料、顔料(さらには染顔料)のいずれであってもよい。具体的な着色剤としては、例えば、無機系着色剤(又は無機顔料、例えば、カーボンブラック、群青、べんがら、黒色酸化鉄、黄色酸化鉄、酸化クロム、複合酸化物顔料など)、有機系着色剤(例えば、アゾ系顔料、フタロシアニン系顔料(フタロシアニンブルー、フタロシアニングリーンなど)、イソインドリノン系顔料、ペリノン・ペリレン系顔料、スレン系顔料、ジオキサジン顔料、アントラキノン系顔料、インジゴ系顔料、チオインジゴ系顔料、ジケトピロロピロール系顔料、ベンズイミダゾロン系顔料、キナクリドン系顔料、油性染料、分散染料など)などが挙げられる。また、着色剤には、タール色素類(例えば、厚生労働省令に規定される化粧品用のタール色素など)、レーキ顔料(アルミニウムレーキ類など)なども含まれる。着色剤は、単独で又は2種以上組み合わせてもよい。
 (樹脂粉体の形状)
 本発明の樹脂粉体の形状は、板状(平板状)である。このような板状の樹脂粉体において、平均厚み(板状の一次粒子における平均厚み)は、例えば、3μm以下(例えば、0.05~2.5μm)、好ましくは2μm以下(例えば、0.1~1.8μm)、さらに好ましくは1.5μm以下(例えば、0.15~1.3μm)、特に1.2μm以下(例えば、0.2~1.2μm)であってもよい。
 このような平均厚みは、特に限定されないが、例えば、電子顕微鏡写真より求めることができる。具体的には、電子顕微鏡写真から抽出(サンプリング)した任意の複数[例えば、10個以上(例えば、15~100個、好ましくは20~50個)]の樹脂粉体について、それぞれの厚み(最大厚み)を測定し、これらの厚みの平均値を平均厚みとすることができる。
 樹脂粉体の平均径[板状の一次粒子における面方向(又は厚み方向に垂直な方向)の長さの平均値]は、2~700μm(例えば、5~600μm)の範囲から選択でき、例えば、10~500μm、好ましくは15~200μm、さらに好ましくは20~150μm程度であってもよい。
 このような平均径は、特に限定されないが、平均厚みと同様にして、電子顕微鏡写真より求めることができる。具体的には、電子顕微鏡写真から抽出(サンプリング)した任意の複数の樹脂粉体について、それぞれの径又は長さ(最大径又は最大長さ又は長径)を測定し、これらの径又は長さの平均値を平均径(又は平均長さ)とすることができる。
 板状の樹脂粉体において、平均厚みと平均径との割合(比)は、例えば、前者/後者=1/2~1/500(例えば、1/3~300)、好ましくは1/5~1/200、さらに好ましくは1/10~1/150(例えば、1/15~1/100)程度であってもよく、通常1/5~1/100(例えば、1/8~1/80、好ましくは1/10~1/60、さらに好ましくは1/15~1/50程度)であってもよい。なお、このような割合において、平均厚みおよび平均径は、前記のようにして測定した値を用いることができる。
 樹脂粉体の径やその分布は、光散乱(動的光散乱)法により求める(測定する)ことができる。例えば、光散乱法による樹脂粉体の径(径の分布)は、例えば、0.01~700μm(例えば、0.05~600μm)、好ましくは0.1~500μm(例えば、0.2~400μm)、さらに好ましくは0.3~300μm(例えば、0.5~200μm)程度であってもよい。
 また、光散乱法による樹脂粉体の最大頻度(頻度が最大)となる径の割合は、例えば、3~30%、好ましくは5~25%、さらに好ましくは7~20%(例えば、10~15%)程度であってもよい。
 なお、本発明の樹脂粉体は、後述するように、特に、紫外線散乱剤(さらには必要に応じて前記例示の他の添加剤)を含む(又は内包する)複数の樹脂粒子(又は樹脂粒子の集合体又は樹脂粒子の凝集物、以下、単に樹脂粒子ということがある)を板状化処理して得られる粉体(板状粒子の集合体)であってもよい。
 このような粉体では、通常、樹脂粒子(各樹脂粒子、単一の樹脂粒子)が独立して板状化されて(又は板状を有して)いてもよい。なお、本発明の樹脂粉体において、複数の板状の樹脂粒子は、凝集(又は積層)していてもよいが、通常、凝集力は弱く、合成時や使用時において、容易に分離できる場合が多い。
 (樹脂粉体の製造方法)
 本発明の樹脂粉体(板状樹脂粉体)の製造方法は、特に限定されず、例えば、(A)紫外線散乱剤を含む樹脂粉体(板状化されていない樹脂粉体、単に樹脂粉体ということがある)を板状化処理する方法、(B)紫外線散乱剤を含む樹脂で形成されたフィルム(又はシート又はフィルム状物)を、粉砕(又は破砕)する方法などが挙げられる。本発明では、特に、方法(A)を好適に使用できる。方法(A)では、フィルムを形成する必要がない上、比較的大きさ(厚みや粒径)にバラツキの小さい粉体を効率よく得やすい。
 方法(A)において、紫外線散乱剤を含む樹脂粉体としては、紫外線散乱剤を含む樹脂組成物(ペレット状樹脂組成物)を粉砕(例えば、冷凍粉砕など)した粉体などであってもよく、特に、紫外線散乱剤を含む樹脂粒子を好適に用いてもよい。
 このような樹脂粒子は、市販品を用いてもよく、公知の方法を利用又は応用して製造したものを用いることができる。公知の方法としては、例えば、マトリックスとしての樹脂と、紫外線散乱剤(さらには他の添加剤)と、マトリックス(および紫外線散乱剤)に対して非相溶であり、かつ水などの媒体により容易に除去可能な第3成分(例えば、糖、ポリエチレングリコールなど)とを混練し、紫外線散乱剤を含む樹脂粒子と第3成分とを含む組成物を得、この組成物から第3成分を除去する方法(強制乳化法)(例えば、特開2010-132811号公報などに記載の方法)などが挙げられる。
 樹脂粒子の形状は、特に限定されず、球状、楕円体状などであってもよいが、特に球状(特に真球状)であってもよい。
 樹脂粒子(板状化処理前の樹脂粒子)の平均粒子径は、0.1~500μm程度の範囲から選択でき、例えば、0.2~300μm(例えば、0.3~200μm)、好ましくは0.5~100μm(例えば、1~70μm)、さらに好ましくは2~50μm(例えば、3~40μm)、通常4~30μm程度であってもよい。特に、樹脂粒子の平均粒子径は、50μm以下、好ましくは30μm以下、さらに好ましくは20μm以下、特に好ましくは15μm以下であってもよい。このような粒子径の樹脂粒子を使用すると、効率よく板状化しやすい。
 方法(A)において、板状化処理方法としては、特に限定されないが、樹脂粉体(特に樹脂粒子)を押しつぶす方法が挙げられる。本発明では、樹脂粉体(特に脂肪族ポリアミド樹脂などの樹脂粒子)を押しつぶすことで、意外にも、割れを生じることなく板状化できる。このような方法では、物理的な力で押しつぶすことが可能な種々の装置又は手段(板状化装置又は板状化手段)を用いることができる。このような装置又は手段としては、ミル(メディア分散機)、ロール[圧延ロール(二本ロール、三本ロールなど)]、メディアレス分散機[例えば、高圧衝突式分散機(ナノマイザー、アルチマイザーなど)、超音波分散機など]などが挙げられる。
 中でも、ミルは比較的操作性に優れ、利用しやすい。
 ミル(媒体ミル)としては、液体などの媒体を介在させるいわゆる湿式媒体ミルと、液体を介在させない乾式媒体ミルとに大別できるが、本発明ではいずれも利用可能である。
 湿式媒体ミルとしては、ボールミル、サイドグラインダー、ダイノミル、スパイクミル、DCPミル、バスケットミル、ペイントコンディショナーなどが挙げられる。また、乾式媒体ミルとしては、ボールミル、振動ボールミル、アトライター、乾式ビーズミルなどが挙げられる。
 媒体ミルに使われる容器の材質としては、例えば、焼き入れ鋼、ステンレス鋼、SUSクロムメッキ、アルミナセラミックス、窒化珪素セラミックス、ジルコニアセラミックス、炭化珪素セラミックス、ジルコニア強化アルミナセラミックス、サイアロンなどが挙げられるが、特に、これらに制限されるものではない。
 また、媒体ミルに用いられる媒体粒子としては、形状としては球形のものが一般的に使用され、その素材としては、ガラスビーズ、低アルカリガラスビーズ、無アルカリガラスビーズ、アルミナビーズ、ジルコニアビーズ、ジルコニアイットリアビーズ、チタニアビーズ、高純度アルミナビーズ、スチールボールなどが挙げられる。なお、媒体粒子(ビーズ)の比重は、例えば、2.0以上、好ましくは2.5以上、さらに好ましくは3.0以上であってもよい。
 また、媒体粒子(ビーズ)の大きさは、板状化処理に供する樹脂粒子の大きさなどに応じて適宜選択でき、例えば、0.05~5mm(例えば、0.1~3mm)程度であってもよい。
 なお、湿式媒体ミルにおいて、媒体(液体)としては、主に水を用いることができるが、水と水性溶媒[又は水溶性溶媒、例えば、アルコール類(メタノール、エタノール、イソプロピルアルコールなどのアルカノール類;1,2-ペンタンジオール、1,2-ヘキサンジオールなどのジオール類)、ジオールモノエーテル類(例えば、エチレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテルなどのアルキレングリコールモノあアルキルエーテル;ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテルなどのポリアルキレングリコールモノアルキルエーテル)]との混合溶媒を用いてもよい。
 [樹脂粉体の用途]
 本発明の樹脂粉体(板状樹脂粉体)は、紫外線散乱機能が要求される種々の用途に使用できるが、特に、化粧料(又は化粧品)に好適に用いることができる。
 そのため、本発明には、前記樹脂粉体を含む化粧料(又は化粧品)も含まれる。このような化粧料(特に皮膚化粧料)は、少なくとも樹脂粉体を含んでいればよく、公知の化粧料成分(例えば、油剤、アルコール、増粘剤などの他、前記例示の他の添加剤など)を含んでいてもよい。
 なお、他の添加剤は、前記のように、樹脂粉体に含有させてもよく、樹脂粉体とは別に化粧料に含有させてもよい。
 化粧料は、液状(ローション、エマルジョン、クリーム状、ゲル状など)、半固形状(クリーム状、ゲル状、練り状など)、固形状(粒状、粉状、所望の形状に成形した成形体など)などのいずれの形状であってもよい。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、各種物性の測定方法は以下の通りである。
 (樹脂粉体の平均厚みおよび平均径)
 試料(サンプル)9.5gを、2Lの蒸留水で3回洗い、濾過、減圧乾燥機で乾燥させた。
 そして、濾紙に付着しているパウダーを無作為に3箇所、スパチュラでサンプリングし、観察台に載せ、観察台上のサンプルを金で蒸着させた。
 そして、キーエンス社の走査型電子顕微鏡(SEM)VE-8800を用い、所定の倍率(1000倍、2000倍、3000倍、5000倍)で、3Dモードで測定、観察を行った。
 得られた電子顕微鏡写真から、観察視野の中の粒子を60粒(厚み方向および長手方向(板面方向)のそれぞれにおいて測定しやすい粒子を30粒ずつ)選択し、解析モードを用いて、各粒子の厚み(最大厚み)や径(粒子の長手方向の最大長さ)を測定した。なお、板状化処理前の粒子については、30粒だけ選択し、粒径を測定した。
 なお、板状の粒子は、上記の測定条件では、見かけ上、凝集し、厚みなどを測定しがたい場合があったため、倍率は、測定しやすいものを適宜選択した。
 (樹脂粉体の径(又は径の分布))
 試料(サンプル)を水に分散し、レーザー回折/散乱式粒子径分布測定装置(堀場製作所製、LA920)を用いて測定した。
 (実施例1)
 酸化チタン粒子[二酸化チタン、デュポン社製、Ti-Pure(R) Titanium Dioxide Pigment - Paint Coatings-DryGrades R-105、表面処理(シリカ、アルミナジメチルシロキサン処理)品]50重量部、ポリアミド樹脂(ポリアミド12、ダイセル・エボニック(株)製)50重量部を用い、特開2005-179646号公報の実施例1と同様にして、酸化チタン粒子を含むポリアミド粒子(真球状、平均粒子径4.1μm、酸化チタン粒子の割合50重量%)を得た。
 そして、得られた粒子を10重量%の割合で水に分散させた状態で、ボールミルを用いて押し潰すことで板状化した。なお、この際に使用したボールミルのメディア種には、高純度アルミナビーズ(粒径0.5mm)を用い、分散液とメディアの体積は同体積とした。
 得られた板状粉体の電子顕微鏡写真(1500倍)を図1に示す。なお、比較のため、図2に、酸化チタン粒子を含むポリアミド粒子そのもの(板状化処理前のポリアミド粒子)の電子顕微鏡写真(1500倍)も示す。これらの写真から明らかなように、各ポリアミド粒子が板状化されていた。
 なお、板状粉体の平均厚みは0.94μmであり、平均径は32μm、径の分布は7~110μm、頻度最大となる径は26μm、頻度最大となる径の割合は12%であった。
 そして、得られた板状粉体をエタノール中に5重量%の割合で分散し、得られた分散液をバーコーターでプレパラートガラス上に塗布した。
 そして、自然乾燥によりエタノールを乾燥後、UV測定装置にて紫外線(UV)透過度を測定したところ、300nmでは40%、330nmでは38%、360nmでは38%、400nmでは37%であった。
 なお、酸化チタン粒子を含むポリアミド粒子そのもの(板状化処理前のポリアミド粒子)の紫外線透過度を、同様の方法で測定したところ、300nmでは66%、330nmでは66%、360nmでは68%、400nmでは65%であった。
 このように、板状化処理することにより、UV透過度が著しく低下し、紫外線防止機能が大きく向上することがわかった。
 (実施例2)
 実施例1において、酸化チタンに代えて、酸化亜鉛粒子(平均粒子径20nm、堺化学工業(株)製、「FINEX-50S-LP2」、表面処理(オルガノポリシロキサン)品)50重量部を用いること以外は、実施例1と同様にして、酸化亜鉛粒子を含むポリアミド粒子(真球状、平均粒子径4.5μm、酸化亜鉛粒子の割合50重量%)を得た。
 そして、得られた粒子を、実施例1と同様にして板状化した。
 得られた板状粉体の電子顕微鏡写真(1500倍)を図3に示す。なお、比較のため、図4に、酸化亜鉛粒子を含むポリアミド粒子そのもの(板状化処理前のポリアミド粒子)の電子顕微鏡写真(1500倍)も示す。これらの写真から明らかなように、各ポリアミド粒子が板状化されていた。
 なお、板状粉体の平均厚みは1.00μmであり、平均径は25μm、径の分布は5~215μm、頻度最大となる径は12μm、頻度最大となる径の割合は13%であった。
 また、実施例1と同様にして、UV透過度を測定したところ、300nmでは0%、330nmでは4%、360nmでは6%、400nmでは15%であった。
 なお、酸化亜鉛粒子を含むポリアミド粒子そのもの(板状化処理前のポリアミド粒子)の紫外線透過度を、同様の方法で測定したところ、300nmでは10%、330nmでは20%、360nmでは22%、400nmでは27%であった。
 このように、酸化亜鉛を含むポリアミド粒子についても、板状化処理することにより、UV透過度が著しく低下し、紫外線防止機能が大きく向上することがわかった。
 (実施例3)
 実施例1において、ポリアミド樹脂を50重量部から40重量部に変えたこと以外は、実施例1と同様にして、酸化チタン粒子を含むポリアミド粒子(真球状、平均粒子径4.5μm、酸化チタン粒子の割合55重量%)を得た。
 そして、得られた粒子を、実施例1と同様にして板状化した。板状粉体の平均厚みは1.1μmであり、平均径は29μmであった。
 また、実施例1と同様にして、UV透過度を測定したところ、300nmでは28%、330nmでは28%、360nmでは28%、400nmでは29%であった。
 なお、酸化チタン粒子を含むポリアミド粒子そのもの(板状化処理前のポリアミド粒子)の紫外線透過度を、同様の方法で測定したところ、300nmでは42%、330nmでは42%、360nmでは40%、400nmでは41%であった。
 (実施例4)
 実施例1において、酸化チタン粒子を50重量部から60重量部に、ポリアミド樹脂を50重量部から40重量部に変えたこと以外は、実施例1と同様にして、酸化チタン粒子を含むポリアミド粒子(真球状、平均粒子径5.7μm、酸化チタン粒子の割合60重量%)を得た。
 そして、得られた粒子を、実施例1と同様にして板状化した。板状粉体の平均厚みは1.1μmであり、平均径は24μmであった。
 また、実施例1と同様にして、UV透過度を測定したところ、300nmでは28%、330nmでは27%、360nmでは28%、400nmでは26%であった。
 なお、酸化チタン粒子を含むポリアミド粒子そのもの(板状化処理前のポリアミド粒子)の紫外線透過度を、同様の方法で測定したところ、300nmでは42%、330nmでは40%、360nmでは39%、400nmでは38%であった。
 (実施例5)
 実施例2において、ポリアミド樹脂を50重量部から40重量部に変えたこと以外は、実施例2と同様にして、酸化亜鉛粒子を含むポリアミド粒子(真球状、平均粒子径4.7μm、酸化亜鉛粒子の割合55重量%)を得た。
 そして、得られた粒子を、実施例1と同様にして板状化した。板状粉体の平均厚みは1.0μmであり、平均径は33μmであった。
 また、実施例1と同様にして、UV透過度を測定したところ、300nmでは0%、330nmでは4%、360nmでは6%、400nmでは11%であった。
 なお、酸化亜鉛粒子を含むポリアミド粒子そのもの(板状化処理前のポリアミド粒子)の紫外線透過度を、同様の方法で測定したところ、300nmでは0%、330nmでは9%、360nmでは15%、400nmでは15%であった。
 (実施例6)
 実施例1において、酸化亜鉛粒子を50重量部から60重量部に、ポリアミド樹脂を50重量部から40重量部に変えたこと以外は、実施例1と同様にして、酸化亜鉛粒子を含むポリアミド粒子(真球状、平均粒子径6.7μm、酸化亜鉛粒子の割合60重量%)を得た。
 そして、得られた粒子を、実施例1と同様にして板状化した。板状粉体の平均厚みは1.0μmであり、平均径は31μmであった。
 また、実施例1と同様にして、UV透過度を測定したところ、300nmでは0%、330nmでは2%、360nmでは4%、400nmでは10%であった。
 なお、酸化亜鉛粒子を含むポリアミド粒子そのもの(板状化処理前のポリアミド粒子)の紫外線透過度を、同様の方法で測定したところ、300nmでは0%、330nmでは8%、360nmでは14%、400nmでは16%であった。
 本発明の樹脂粉体は、紫外線散乱機能を有しており、このような紫外線散乱機能を必要とする種々の用途に用いることできる。特に、このような樹脂粉体は、化粧料(特に皮膚化粧料)用途に好適である。
 本発明の樹脂粉体を含む化粧料(又は化粧品)としては、特に限定されず、クリーム(フェイシャルクレーム、ボディクリーム、リップクリームなど)、ファンデーション、パウダー(フェイスパウダーなど)、アイシャドー、アイライナー、マスカラ、日焼け止め、化粧水、乳液、美容液、スクラブ剤、パック剤などが挙げられる。

Claims (14)

  1.  紫外線散乱剤を含む樹脂粉体であって、板状である樹脂粉体。
  2.  樹脂粉体を構成する樹脂が熱可塑性樹脂である請求項1記載の樹脂粉体。
  3.  樹脂粉体を構成する樹脂がポリアミド樹脂である請求項1又は2記載の樹脂粉体。
  4.  紫外線散乱剤が金属酸化物粒子である請求項1~3のいずれかに記載の樹脂粉体。
  5.  紫外線散乱剤が、平均粒子径150nm以下の粒子である請求項1~4のいずれかに記載の樹脂粉体。
  6.  紫外線散乱剤が、平均粒子径100nm以下の金属酸化物粒子であって、酸化チタン粒子および酸化亜鉛粒子から選択された少なくとも1種の金属酸化物粒子である請求項1~5のいずれかに記載の樹脂粉体。
  7.  紫外線散乱剤の割合が、樹脂粉体を構成する樹脂100重量部に対して5~300重量部である請求項1~6のいずれかに記載の樹脂粉体。
  8.  電子顕微鏡写真より求められる平均厚みが2μm以下である請求項1~7のいずれかに記載の樹脂粉体。
  9.  電子顕微鏡写真より求められる平均厚みと平均径との割合が、前者/後者=1/5~1/200である請求項1~8のいずれかに記載の樹脂粉体。
  10.  紫外線散乱剤を含む複数の樹脂粒子を板状化処理して得られる粉体である請求項1~9のいずれかに記載の樹脂粉体。
  11.  樹脂粒子の平均粒子径が0.5~100μmである請求項10記載の樹脂粉体。
  12.  化粧料に用いる請求項1~11のいずれかに記載の樹脂粉体。
  13.  紫外線散乱剤を含む樹脂粉体を板状化処理し、請求項1~12のいずれかに記載の樹脂粉体を製造する方法。
  14.  請求項1~12のいずれかに記載の樹脂粉体を含む化粧料。
PCT/JP2014/061596 2013-05-14 2014-04-24 紫外線散乱剤を含有する樹脂粉体及びその製造方法並びに化粧料 WO2014185249A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157032259A KR102164862B1 (ko) 2013-05-14 2014-04-24 자외선 산란제를 함유하는 수지 분체 및 그의 제조 방법, 및 화장료
EP14798119.5A EP2997954B1 (en) 2013-05-14 2014-04-24 Resin powder including ultraviolet scattering agent, production method therefor, and cosmetic
JP2015517017A JP6502254B2 (ja) 2013-05-14 2014-04-24 紫外線散乱剤を含有する樹脂粉体及びその製造方法並びに化粧料
CN201480028050.9A CN105228578A (zh) 2013-05-14 2014-04-24 含有紫外线散射剂的树脂粉体及其制造方法以及化妆材料
US14/786,758 US20160096946A1 (en) 2013-05-14 2014-04-24 Resin powder including ultraviolet scattering agent, producing method therefor, and cosmetic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-102534 2013-05-14
JP2013102534 2013-05-14

Publications (1)

Publication Number Publication Date
WO2014185249A1 true WO2014185249A1 (ja) 2014-11-20

Family

ID=51898229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061596 WO2014185249A1 (ja) 2013-05-14 2014-04-24 紫外線散乱剤を含有する樹脂粉体及びその製造方法並びに化粧料

Country Status (7)

Country Link
US (1) US20160096946A1 (ja)
EP (1) EP2997954B1 (ja)
JP (1) JP6502254B2 (ja)
KR (1) KR102164862B1 (ja)
CN (1) CN105228578A (ja)
TW (1) TW201500457A (ja)
WO (1) WO2014185249A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139506A (ja) * 2015-01-27 2016-08-04 三菱マテリアル電子化成株式会社 銀被覆樹脂粒子及び該粒子を含有する導電性材料
JP2018527315A (ja) * 2015-07-22 2018-09-20 ランダ ラブス(2012)リミテッド 紫外線防御組成物
JP2019521956A (ja) * 2016-05-05 2019-08-08 ランダ ラブス(2012)リミテッド Uv保護組成物およびその使用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098234A (zh) * 2016-06-24 2016-11-09 浙江英美达电缆科技有限公司 一种抗长期紫外老化的铝合金电力电缆
CN106128618A (zh) * 2016-06-24 2016-11-16 浙江英美达电缆科技有限公司 一种抗长期紫外老化的铝合金电线
CN105895190A (zh) * 2016-06-24 2016-08-24 浙江英美达电缆科技有限公司 一种抗长期紫外老化的绕包铝合金电力电缆
CN106046601A (zh) * 2016-06-24 2016-10-26 浙江英美达电缆科技有限公司 一种阻燃抗长期紫外老化的绕包铝合金电力电缆
CN106065138A (zh) * 2016-06-24 2016-11-02 浙江英美达电缆科技有限公司 一种抗长期紫外老化的钢带铠装铝合金电力电缆
CN106098233A (zh) * 2016-06-24 2016-11-09 浙江英美达电缆科技有限公司 一种阻燃抗长期紫外老化的铝合金电力电缆
CN105906992A (zh) * 2016-06-24 2016-08-31 浙江英美达电缆科技有限公司 一种阻燃抗长期紫外老化的钢带铠装铝合金电力电缆
US11166887B2 (en) * 2017-06-08 2021-11-09 Shiseido Company, Ltd. Water-in-oil emulsion cosmetic
CN109758416A (zh) * 2018-12-30 2019-05-17 滁州格锐矿业有限责任公司 一种化妆品填料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632919A (ja) * 1986-06-20 1988-01-07 Seitetsu Kagaku Co Ltd 化粧料
JPH08269433A (ja) * 1995-03-28 1996-10-15 Kao Corp 紫外線遮蔽性板状複合微粒子、及びその製造方法
JP2005179646A (ja) 2003-11-28 2005-07-07 Daicel Chem Ind Ltd 分散体及び着色された有機固体粒子の製造方法
JP2008081455A (ja) * 2006-09-28 2008-04-10 Fujicopian Co Ltd 日焼け止め板状粒子の製造方法、紫外線散乱層転写シート
JP2010132811A (ja) 2008-12-05 2010-06-17 Daicel-Evonik Ltd 球状複合粒子およびその製造方法
JP2013056860A (ja) 2011-09-09 2013-03-28 Daicel-Evonik Ltd 皮膚化粧料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288010A (ja) * 1991-03-15 1992-10-13 Max Fuakutaa Kk 化粧料
JP3751565B2 (ja) * 2002-02-12 2006-03-01 株式会社ナリス化粧品 化粧料
JP4175942B2 (ja) * 2002-10-29 2008-11-05 株式会社クラレ 積層構造体
US7442730B2 (en) * 2003-11-28 2008-10-28 Daicel Chemical Industries, Ltd. Composition having disperse system, and process for producing colored organic solid particle
JP2005179249A (ja) * 2003-12-18 2005-07-07 Kao Corp 粉末化粧料
JP4986385B2 (ja) * 2004-08-11 2012-07-25 日揮触媒化成株式会社 鱗片状複合粒子およびこれを配合した化粧料
JP2008184435A (ja) 2007-01-30 2008-08-14 Trial Corp 紫外線遮蔽性の樹脂粒子及びこれを配合した化粧料
JP5248045B2 (ja) * 2007-06-05 2013-07-31 ダイセル・エボニック株式会社 樹脂粒子の製造方法
DE102008051007A1 (de) * 2008-10-13 2010-04-15 Beiersdorf Ag Polyamid-5-Verbindungen in kosmetischen Zubereitungen
US20120148647A1 (en) * 2009-08-21 2012-06-14 Blueshift Pharma Gmbh Photoresponsive Sunscreen Composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632919A (ja) * 1986-06-20 1988-01-07 Seitetsu Kagaku Co Ltd 化粧料
JPH08269433A (ja) * 1995-03-28 1996-10-15 Kao Corp 紫外線遮蔽性板状複合微粒子、及びその製造方法
JP2005179646A (ja) 2003-11-28 2005-07-07 Daicel Chem Ind Ltd 分散体及び着色された有機固体粒子の製造方法
JP2008081455A (ja) * 2006-09-28 2008-04-10 Fujicopian Co Ltd 日焼け止め板状粒子の製造方法、紫外線散乱層転写シート
JP2010132811A (ja) 2008-12-05 2010-06-17 Daicel-Evonik Ltd 球状複合粒子およびその製造方法
JP2013056860A (ja) 2011-09-09 2013-03-28 Daicel-Evonik Ltd 皮膚化粧料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2997954A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139506A (ja) * 2015-01-27 2016-08-04 三菱マテリアル電子化成株式会社 銀被覆樹脂粒子及び該粒子を含有する導電性材料
JP2018527315A (ja) * 2015-07-22 2018-09-20 ランダ ラブス(2012)リミテッド 紫外線防御組成物
JP2019521956A (ja) * 2016-05-05 2019-08-08 ランダ ラブス(2012)リミテッド Uv保護組成物およびその使用
JP7120629B2 (ja) 2016-05-05 2022-08-17 ランダ ラブス(2012)リミテッド Uv保護組成物およびその使用

Also Published As

Publication number Publication date
TW201500457A (zh) 2015-01-01
JP6502254B2 (ja) 2019-04-17
KR20160007525A (ko) 2016-01-20
EP2997954A1 (en) 2016-03-23
US20160096946A1 (en) 2016-04-07
JPWO2014185249A1 (ja) 2017-02-23
KR102164862B1 (ko) 2020-10-13
CN105228578A (zh) 2016-01-06
EP2997954A4 (en) 2016-10-05
EP2997954B1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2014185249A1 (ja) 紫外線散乱剤を含有する樹脂粉体及びその製造方法並びに化粧料
ES2397179T3 (es) Partículas de aglomerado, procedimiento para la preparación de nanocompuestos, así como su uso
JP5851755B2 (ja) 微粒子分散方法及び分散物
Vinod et al. Inorganic nanoparticles in cosmetics
KR20060121695A (ko) 부동태화 무기 나노입자의 제조를 위한 저 에너지 공정
JP6966861B2 (ja) 顔料混合物
JP4797100B2 (ja) 複合粒子の製造方法及びその製造装置
KR20110124436A (ko) 화장품용의 복합안료 및 그의 제조방법 및 제조장치
JP5578572B2 (ja) 複合粒子
Baah et al. Stop flow lithography synthesis of non-spherical metal oxide particles
KR101224378B1 (ko) 화장품용의 복합안료 및 그의 제조방법 및 제조장치
JP5682982B2 (ja) 中空顆粒
JP2012006893A (ja) 表面処理粉体と特定の複合粉体を含有する化粧料
WO2013161553A1 (ja) 表面修飾無機酸化物微粒子、及び該微粒子を含有するサンスクリーン化粧料
JP5594782B2 (ja) 凝集体の製造方法
TWI612073B (zh) 聚酯類樹脂粒子之製造方法
KR20240118738A (ko) 유기 규소 표면 피복 산화아연 입자, 그 제조 방법, 화장료, 분산체, 방열성 필러 및 수지 조성물
JP2016069521A (ja) 複合粒子、複合粒子の製造方法、及び、その用途
JP2014009228A (ja) 微粒子の水性分散物を含む化粧料
WO2022177004A1 (ja) 表面改質酸化亜鉛粒子、分散液、化粧料、表面改質酸化亜鉛粒子の製造方法
ES2622175T3 (es) Pigmento no micronizado para aplicaciones plásticas
JP2004230378A (ja) 複合粒子およびその製造方法と用途
JP7541331B2 (ja) 紫外線遮蔽材、その製造方法、それを用いた化粧料、および、保護シート
JP7552426B2 (ja) 表面改質酸化亜鉛粒子、分散液、化粧料、表面改質酸化亜鉛粒子の製造方法
Hielscher Innovative use of ultrasound in the manufacture of paints and coatings

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480028050.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015517017

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14786758

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014798119

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157032259

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE