[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014175208A1 - 流動層システムおよび流動層炉の運転方法 - Google Patents

流動層システムおよび流動層炉の運転方法 Download PDF

Info

Publication number
WO2014175208A1
WO2014175208A1 PCT/JP2014/061145 JP2014061145W WO2014175208A1 WO 2014175208 A1 WO2014175208 A1 WO 2014175208A1 JP 2014061145 W JP2014061145 W JP 2014061145W WO 2014175208 A1 WO2014175208 A1 WO 2014175208A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
bed furnace
gas
fluidized
furnace
Prior art date
Application number
PCT/JP2014/061145
Other languages
English (en)
French (fr)
Inventor
弘 舩越
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to AU2014258500A priority Critical patent/AU2014258500B2/en
Priority to CN201480022322.4A priority patent/CN105143805B/zh
Priority to JP2015513741A priority patent/JP5880783B2/ja
Publication of WO2014175208A1 publication Critical patent/WO2014175208A1/ja
Priority to US14/862,741 priority patent/US10011794B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/726Start-up
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/20Inlets for fluidisation air, e.g. grids; Bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • F23C10/30Control devices specially adapted for fluidised bed, combustion apparatus for controlling the level of the bed or the amount of material in the bed
    • F23C10/32Control devices specially adapted for fluidised bed, combustion apparatus for controlling the level of the bed or the amount of material in the bed by controlling the rate of recirculation of particles separated from the flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories or equipment specially adapted for furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories or equipment specially adapted for furnaces of these types
    • F27B15/10Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories or equipment specially adapted for furnaces of these types
    • F27B15/18Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories or equipment specially adapted for furnaces of these types
    • F27B15/20Arrangements of monitoring devices, of indicators, of alarm devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0993Inert particles, e.g. as heat exchange medium in a fluidized or moving bed, heat carriers, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1253Heating the gasifier by injecting hot gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2206/00Fluidised bed combustion
    • F23C2206/10Circulating fluidised bed
    • F23C2206/103Cooling recirculating particles

Definitions

  • the present invention relates to a fluidized bed system in which a fluidized medium forms a fluidized bed and a method for operating a fluidized bed furnace.
  • This application claims priority based on Japanese Patent Application No. 2013-90942 for which it applied to Japan on April 24, 2013, and uses the content here.
  • gasification raw materials such as coal, biomass and tire chips instead of natural gas, which is expected to increase in price
  • the gasified gas thus generated is used for power generation systems, hydrogen production, synthetic fuel (synthetic petroleum) production, chemical fertilizer (urea) and other chemical products.
  • gasification raw materials used as raw materials for gasification gas coal, in particular, has a recoverable period of about 150 years, which is more than three times the extractable period of oil, and reserves are unevenly distributed compared to oil. Therefore, it is expected as a natural resource that can be supplied stably over a long period of time.
  • Patent Document 1 As a technology for gasifying coal and other gasification raw materials, a technology for gasifying gasification raw materials (steam gasification) has been developed in a fluidized bed furnace in which a fluidized medium forms a fluidized bed with steam at about 800 ° C. (For example, Patent Document 1).
  • Patent Documents 2 and 3 provided with a nozzle for blowing a fluid into a particle layer in the gasification furnace. There is. Moreover, there exists patent document 4 regarding the technique of a fluid combustion furnace.
  • the fluidized medium in the fluidized bed furnace is at room temperature. Therefore, if water vapor is supplied at the start of startup, the water vapor is condensed into water in the fluidized bed furnace, and the fluid medium is fixed.
  • the pressure loss in the supply hole for supplying the gas to the gas is different. More specifically, the flow rate of air required to cause the fluidized medium to flow substantially uniformly in the fluidized bed furnace (to form the fluidized bed) is larger than the flow rate of water vapor. Therefore, the pressure loss of air in the supply hole is larger than the pressure loss of water vapor.
  • the hole diameter and the number of holes of the supply holes are designed assuming normal operation (that is, when water vapor is supplied into the fluidized bed furnace). Therefore, considering the pressure loss that occurs when supplying air at a flow rate necessary for forming a fluidized bed, it is necessary to relatively increase the lift of the blower used during start-up operation, and the output is large and expensive. A blower must be adopted.
  • the present invention reduces the difference between the pressure loss of the gas when starting the fluidized bed furnace and the pressure loss of the gas when operating normally, and is used when starting the operation. It is an object of the present invention to provide a fluidized bed system and a fluidized bed furnace operating method capable of reducing the lift of the blower to be performed and reducing the cost required for the blower.
  • a fluidized bed system includes a fluidized bed furnace that contains a fluidized medium, a first nozzle group that is provided in the fluidized bed furnace and includes one or a plurality of nozzles that have holes for supplying gas.
  • a second nozzle group that is different from the first nozzle group, and that is provided in the fluidized bed furnace and that includes one or a plurality of nozzles having holes for supplying gas;
  • the first supply unit that supplies gas into the fluidized bed furnace through one of the nozzle group and the second nozzle group, and the fluidized bed furnace through both the first nozzle group and the second nozzle group.
  • the second supply unit When performing a start-up operation with the second supply unit that supplies the gas, the second supply unit is controlled to supply the gas into the fluidized bed furnace, thereby forming a fluidized bed of the fluidized medium in the fluidized bed furnace, During normal operation, stop the gas supply by the second supply unit. Together they control the first supplying unit, by supplying a gas into the fluidized bed furnace, and a control unit to form a fluidized bed of the fluidized medium in the fluidized bed furnace.
  • the gas supplied by the first supply unit may be water vapor, and the gas supplied by the second supply unit may be air.
  • the fluidized bed furnace operating method includes a first or a plurality of nozzles having holes provided in the fluidized bed furnace when starting up the fluidized bed furnace containing the fluidized medium.
  • the first nozzle group and the second nozzle when the gas is supplied into the fluidized bed furnace, the fluidized bed of the fluidized medium is formed in the fluidized bed furnace, and the fluidized bed furnace containing the fluidized medium is normally operated. Gas is supplied into the fluidized bed furnace through one of the groups, and a fluidized bed of a fluidized medium is formed in the fluidized bed furnace.
  • Another fluidized bed system includes a fluidized bed furnace containing a fluidized medium, a plurality of nozzles provided in the fluidized bed furnace and having holes for supplying gas, and a plurality of nozzles.
  • a supply unit that supplies gas into the bed furnace, and a gas bed is supplied to the fluidized bed furnace through a plurality of nozzles during start-up operation, thereby forming a fluidized bed of fluidized medium in the fluidized bed furnace.
  • gas is supplied into the fluidized bed furnace through a specific number of nozzles that are less than the nozzle that was the source of gas during the startup operation.
  • a control mechanism for forming a fluidized bed of the fluidized medium When operating, in the fluidized bed furnace, gas is supplied into the fluidized bed furnace through a specific number of nozzles that are less than the nozzle that was the source of gas during the startup operation.
  • a control mechanism for forming a fluidized bed of the fluidized medium.
  • the gas supplied when the supply unit performs the start-up operation may be air, and the gas supplied during the normal operation may be water vapor.
  • control mechanism includes an opening / closing unit that opens or closes a hole of a specific nozzle and an opening / closing unit that controls the opening / closing unit during start-up operation to open a hole of the specific nozzle and performs normal operation. And a control unit that closes the hole of the specific nozzle.
  • control mechanism is configured to include a filter provided in a hole of a specific nozzle among the plurality of nozzles, and the filter has a function of allowing the passage of air and preventing the passage of water vapor. Good.
  • the fluidized bed furnace when starting up the fluidized bed furnace containing the fluidized medium, the fluidized bed furnace passes through a plurality of nozzles provided in the fluidized bed furnace. Gas is supplied into the fluidized bed in the fluidized bed furnace, the fluidized bed is formed in the fluidized bed furnace, and the fluidized bed furnace containing the fluidized medium is normally operated. Gas is supplied into the fluidized bed furnace through a smaller number of specific nozzles than the original nozzle, and a fluidized bed of the fluidized medium is formed in the fluidized bed furnace.
  • the lift of the blower used during the start-up operation can be reduced. Can be reduced. As a result, the cost required for the blower can be reduced.
  • FIG. 2 is a partially enlarged view of a fluidized bed furnace and its vicinity in FIG. 1 for explaining a mechanism for reducing a difference between a pressure loss during a start-up operation and a pressure loss during a normal operation. It is a vertical sectional view of the nozzle shown in FIG. 2A.
  • FIG. 2B is a horizontal sectional view of the nozzle taken along line IIc-IIc in FIG. 2B. It is a flowchart for demonstrating the flow of a process of the operating method of a fluidized bed system.
  • FIG. 6 is a partially enlarged view of a fluidized bed furnace and its vicinity in FIG. 5 for explaining a mechanism for reducing a difference between a pressure loss during a start-up operation and a pressure loss during a normal operation.
  • FIG. 6B is a vertical sectional view of the nozzle shown in FIG. 6A.
  • FIG. 6B is a horizontal sectional view of the nozzle taken along line VIc-VIc in FIG. 6B. It is a figure for demonstrating the specific structure of the fluidized bed system concerning the 3rd Embodiment of this invention.
  • FIG. 8 is a partially enlarged view of the fluidized bed furnace and its vicinity in FIG. 7 for explaining a mechanism for reducing the difference between the pressure loss during the start-up operation and the pressure loss during the normal operation.
  • FIG. 8B is a vertical sectional view of the nozzle shown in FIG. 8A.
  • FIG. 8B is a horizontal sectional view of the nozzle taken along line VIIIc-VIIIc in FIG. 8B.
  • FIG. 1 is a diagram for explaining a specific configuration of a fluidized bed system 100 according to the first embodiment of the present invention.
  • a fluidized bed system 100 includes a combustion furnace 110, a media separator (cyclone) 112, loop seals 114a and 114b, a fluidized bed furnace 130, a first wind box 140, and a second wind.
  • the box 150 is configured to include a first supply unit 160, a valve 170, a second supply unit 180, and a control unit 190.
  • the flow of a substance such as a fluidized medium, gasified raw material, gasified gas, air, water vapor, and combustion exhaust gas is indicated by solid arrows, and the signal flow is indicated by broken arrows.
  • the fluidized bed system 100 is a circulating fluidized bed gasification system, and a fluid medium composed of sand such as silica sand having a particle size of about 300 ⁇ m is circulated as a heat medium throughout the system. ing. Specifically, the fluid medium is first heated to about 900 ° C. to 1000 ° C. in the combustion furnace 110 and introduced into the medium separator 112 together with the combustion exhaust gas. In the medium separator 112, the combustion exhaust gas and the high-temperature fluid medium are separated, and the separated combustion exhaust gas is heat-recovered by a heat exchanger (for example, a boiler) not shown.
  • a heat exchanger for example, a boiler
  • the high-temperature fluid medium separated by the medium separator 112 is introduced into the fluidized bed furnace 130 through the loop seal 114a.
  • the loop seal 114a prevents the inflow of gas (combustion exhaust gas) from the medium separator 112 to the fluidized bed furnace 130 and the outflow of gas (gasification gas, fluidized gas) from the fluidized bed furnace 130 to the medium separator 112. Take on.
  • the fluid medium introduced from the medium separator 112 into the fluidized bed furnace 130 via the loop seal 114a is caused by fluid gas supplied from one or both of the first wind box 140 and the second wind box 150 described later. It flows and is returned to the combustion furnace 110 through the loop seal 114b.
  • the loop seal 114b plays a role of preventing outflow of gas (gasification gas, fluidized gas) from the fluidized bed furnace 130 to the combustion furnace 110 and inflow of gas (combustion exhaust gas) from the combustion furnace 110 to the fluidized bed furnace 130. .
  • the fluidized medium moves through the combustion furnace 110, the medium separator 112, the loop seal 114a, the fluidized bed furnace 130, and the loop seal 114b in this order, and again the combustion furnace. By being introduced to 110, these are circulated.
  • a first wind box 140 and a second wind box 150 are provided below the fluidized bed furnace 130.
  • the first supply unit 160 is driven, and the fluid gas (here, water vapor) supplied from the first supply unit 160 is temporarily stored in the first wind box 140.
  • the steam stored in the first wind box 140 is supplied from the bottom of the fluidized bed furnace 130 into the fluidized bed furnace 130. In this way, by supplying water vapor to the high-temperature fluid medium introduced from the medium separator 112, a fluidized bed (bubble fluidized bed) is formed in the fluidized bed furnace 130.
  • Gasified raw materials such as coal, biomass, and tire chips are introduced into the fluidized bed furnace 130, and the introduced gasified raw materials are gasified by the heat of the fluidized medium at about 800 ° C to 900 ° C. As a result, gasified gas (synthetic gas) is generated.
  • the fluidized medium accommodated in the fluidized bed furnace 130 Is normal temperature (for example, 30 ° C.). Therefore, when starting the start-up, if steam is supplied, the steam is condensed in the fluidized bed furnace 130 to become water, and the fluidized medium is fixed by the water, so that the fluidized bed cannot be formed.
  • a fluidized gas such as air that does not condense even at room temperature is supplied to form a fluidized bed in the fluidized bed furnace 130. Then, with the formation of the fluidized bed, the fluidized medium floats, the vertical height of the fluidized medium accommodated in the fluidized bed furnace 130 increases, and the fluidized medium overflows from the fluidized bed furnace 130 and is loop-sealed. 114 b is sent to the combustion furnace 110. As described above, when the formation of the fluidized bed is started in the fluidized bed furnace 130, the circulation of the fluidized medium is started.
  • the temperature of the circulating fluid medium rises.
  • a temperature suitable for gasification of the gasification raw material for example, about 800 ° C. to 900 ° C.
  • the fluidized gas supplied to the fluidized bed furnace 130 is A normal operation is started by switching to a gasifying agent (water vapor) for gasifying the gasification raw material.
  • the minimum flow rate of air necessary for forming a fluidized bed of fluidized medium in the fluidized bed furnace 130 (U0 / Umf should be 1 or more) is larger than the minimum flow rate of water vapor.
  • U0 / Umf is an index indicating the fluidized state of the fluidized bed. If U0 / Umf is 1 or more, it can be considered that the fluidized medium forms a fluidized bed.
  • U0 is the speed at which the fluid (fluid gas) moves in the fluidized bed
  • Umf is the fluidization start speed.
  • the difference in the minimum flow rate is due to a difference in physical properties (for example, mass density and viscosity) between air and water vapor, and a difference in temperature.
  • the pressure loss of air in the supply hole becomes larger than the pressure loss of water vapor.
  • the pressure loss of the air at 30 ° C. is 500
  • it is 20 times or more the pressure loss of water vapor at 0 ° C.
  • the diameter and the number of holes of the supply holes are designed assuming normal operation (that is, when steam is supplied into the fluidized bed furnace 130), when supplying air at a flow rate necessary for forming the fluidized bed, Considering the pressure loss that occurs, it is necessary to relatively increase the lift of the blower used during the start-up operation (for example, about 20 times that of the blower for supplying water vapor). Moreover, when the lift of the blower is relatively small, the desired U0 / Umf is not obtained, and the state of the fluidized bed becomes unstable.
  • the fluidized bed system 100 by devising the structure of the supply hole for supplying the fluidized gas to the fluidized bed furnace 130, the pressure loss of the fluidized gas (air) during the start-up operation, Reduce the difference from the pressure loss of flowing gas (water vapor) during normal operation.
  • the pressure loss of air air
  • water vapor water
  • FIGS. 2A to 2C are views for explaining a mechanism for reducing the difference between the pressure loss during the start-up operation and the pressure loss during the normal operation.
  • FIG. 2A is a diagram illustrating the fluidized bed furnace 130 in FIG.
  • FIG. 2B is a vertical sectional view of the nozzles 142 and 152
  • FIG. 2C is a horizontal sectional view of the nozzles 142 and 152 along the line IIc-IIc in FIG. 2B.
  • the fluid medium is omitted for easy understanding.
  • a first wind box 140 and a second wind box 150 are provided below the fluidized bed furnace 130.
  • the first wind box 140 is provided with a main nozzle group (first nozzle group) 144 composed of a plurality of nozzles 142 (shown here with 10 nozzles for convenience of explanation). 144 is arranged in the fluidized bed furnace 130. As shown in FIGS. 2B and 2C, the nozzle 142 is provided with a plurality (four in this case) of holes (supply holes) 142a for supplying a flowing gas at equal intervals in the circumferential direction. Through this, the fluidized gas is supplied into the fluidized bed furnace 130.
  • the second wind box 150 is provided with an auxiliary nozzle group (second nozzle group) 154 including a plurality of nozzles 152 (shown here as five nozzles for convenience of explanation). 154 is disposed in the fluidized bed furnace 130.
  • the nozzles 152 are formed with the same number (four in this case) of holes 152a (supply holes) having substantially the same diameter as the nozzles 142 at equal intervals in the circumferential direction (FIG. 2B). And FIG. 2C). Therefore, the fluidized gas is supplied into the fluidized bed furnace 130 through the hole 152 a provided in the nozzle 152.
  • the first supply unit 160 is connected to the first wind box 140 through the pipe 162.
  • the first supply unit 160 is used only during normal operation, and supplies steam (fluid gas) into the fluidized bed furnace 130 only through the main nozzle group 144 in accordance with a control command from the control unit 190 described later.
  • the valve 170 is provided in a communication pipe 172 that communicates the pipe 162 and the pipe 182, and its opening / closing is controlled by the control unit 190. Control of opening / closing of the valve 170 by the control unit 190 will be described in detail later.
  • the second supply unit 180 is composed of, for example, a blower, and is connected to the first wind box 140 and the second wind box 150 through the pipe 162 and the pipe 182.
  • the second supply unit 180 is used only at the time of start-up operation, and air (fluid gas) is supplied into the fluidized bed furnace 130 through both the main nozzle group 144 and the auxiliary nozzle group 154 in accordance with a control command from the control unit 190. Supply.
  • the control unit 190 is composed of a semiconductor integrated circuit including a CPU (central processing unit), reads programs and parameters for operating the CPU itself from the ROM, and cooperates with a RAM as a work area and other electronic circuits.
  • the entire fluidized bed system 100 is managed and controlled.
  • the control unit 190 controls driving of the combustion furnace 110, driving of the medium separator 112, driving of the first supply unit 160, opening and closing of the valve 170, and driving of the second supply unit 180.
  • control unit 190 opens and closes the valve 170 and controls the second supply unit 180 when starting the fluidized bed system 100, and controls both the main nozzle group 144 and the auxiliary nozzle group 154 or the main nozzle group 154.
  • a fluidized bed of a fluidized medium is formed in the fluidized bed furnace 130 by supplying air into the fluidized bed furnace 130 only through the nozzle group 144.
  • the control unit 190 closes the valve 170 and controls the first supply unit 160 to supply water vapor into the fluidized bed furnace 130 only through the main nozzle group 144.
  • a fluidized bed of a fluidized medium is formed in the fluidized bed furnace 130.
  • control unit 190 determines that the number of nozzles 142 and 152 (total area of the holes 142a and 152a) used during the start-up operation is larger than the number of nozzles 142 (total area of the hole 142a) used during normal operation.
  • the first supply unit 160, the valve 170, and the second supply unit 180 are controlled so as to increase the number of the supply units.
  • the pressure loss during the start-up operation and the normal operation can be reduced.
  • the hole diameters and the numbers of the holes 142a of the nozzle 142 and the holes 152a of the nozzle 152 are substantially equal, and the number of the nozzles 152 is half that of the nozzle 142.
  • the head of the second supply unit 180 is compared with the configuration of the conventional main nozzle group 144 alone. The cost required for the second supply unit 180 can be reduced.
  • FIG. 3 is a flowchart for explaining the processing flow of the operation method of the fluidized bed system 100
  • FIG. 4 shows the flow rate of air supplied into the fluidized bed furnace 130 and the fluidized bed furnace 130. It is a figure which shows the time-dependent change of the flow volume of water vapor
  • the fluidized bed system 100 is in a stopped state before the start-up operation of the fluidized bed system 100 is started. Further, in the operation method of the fluidized bed system 100 according to the present embodiment, when a stop instruction is given by an operator, the process being performed at that time is stopped.
  • control unit 190 When the control unit 190 receives an instruction indicating that the startup operation is started by the worker (YES in step S210), the control unit 190 determines whether or not the valve 170 is closed (step S212). Note that if there is no instruction indicating that the start operation is to be started by the operator (NO in step S210), the standby state of the instruction indicating that the start operation is to be started is maintained.
  • step S212 If it is determined that the valve 170 is closed (YES in step S212), the control unit 190 opens the valve 170 (step S214). If it is determined that the valve 170 is open (NO in step S212), the process proceeds to step S216.
  • the control unit 190 starts driving the second supply unit 180 (time t0 in FIG. 4), and air of a predetermined flow rate C is introduced into the fluidized bed furnace 130.
  • the second supply unit 180 is controlled (step S216).
  • the flow rate C is a value that can form a fluidized bed when air is supplied to the fluidized bed furnace 130 through the main nozzle group 144 and the auxiliary nozzle group 154.
  • air is supplied to the fluidized bed furnace 130 through the main nozzle group 144 and the auxiliary nozzle group 154, and a fluidized bed of a fluidized medium is formed in the fluidized bed furnace 130. Thereby, circulation of a fluid medium is started.
  • control unit 190 starts the operation of the combustion furnace 110 and the medium separator 112 (Step S218), and starts heating the fluidized medium. Furthermore, the control unit 190 starts measuring the temperature of the fluidized medium in the fluidized bed furnace 130 via a temperature measurement unit (not shown). The control unit 190 controls the combustion furnace 110 so that the temperature Tf of the fluid medium in the fluidized bed furnace 130 is within a predetermined temperature range TA.
  • the temperature range TA is a temperature desired in the fluidized bed furnace 130 (for example, a temperature suitable for gasification of the gasification raw material), for example, a temperature range of 800 ° C. to 900 ° C.
  • the control unit 190 maintains the flow rate of the air supplied by the second supply unit 180 at the flow rate C until the temperature Tf falls within the temperature range TA (NO in S220), and the temperature Tf falls within the temperature range TA. If it is determined that (YES in step S220, time t1 in FIG. 4), the valve 170 is closed (step S222, time t2 in FIG. 4). As a result, the supply of air to the fluidized bed furnace 130 through the auxiliary nozzle group 154 is stopped. That is, in FIG. 4, the supply amount of air shown by hatching is the supply amount to the fluidized bed furnace 130 through the main nozzle group 144, and the supply amount of air shown by cross hatching is the fluidized bed through the auxiliary nozzle group 154. This is the supply amount to the furnace 130.
  • control unit 190 starts driving the first supply unit 160 (time t3 in FIG. 4), and gradually increases the flow rate of water vapor supplied by the first supply unit 160 (S224). Further, the control unit 190 gradually decreases the flow rate of air supplied by the second supply unit 180 until the second supply unit 180 stops (step S226, processing from time t4 to time t5 in FIG. 4). . By doing so, the fluidized gas supplied to the fluidized bed furnace 130 can be switched from air to water vapor while maintaining the formation of the fluidized bed in the fluidized bed furnace 130.
  • the control unit 190 performs steps S224 and S226 described above.
  • the fluidized bed furnace 130 is performed.
  • the gasification raw material is introduced into the normal operation is started (step S230). That is, during normal operation, steam is supplied to the fluidized bed furnace 130 only through the main nozzle group 144.
  • the flow rate D is a value that can form a fluidized bed when water vapor is supplied to the fluidized bed furnace 130 only through the main nozzle group 144.
  • the control unit 190 performs normal operation until a stop instruction is received from the worker (NO in step S232). When the stop instruction is received (YES in step S232), the operation process ends.
  • steps S210 to S228 among the start-up operations (steps S210 to S228 (time t0 to time t5), steps S210 to S222 (time t0 to time t0).
  • steps S210 to S222 time t0 to time t0.
  • the fluidized bed furnace 130 is started up.
  • the difference between the pressure loss of air and the pressure loss of water vapor during normal operation can be reduced, and as a result, the head of the second supply unit 180 used during start-up operation can be reduced. Thereby, the cost required for the second supply unit 180 can be reduced.
  • fluidized bed system 300 In the first embodiment described above, the fluidized bed system 100 including two supply units (the first supply unit 160 and the second supply unit 180) has been described. In the second embodiment, a fluidized bed system 300 including only one supply unit will be described.
  • FIG. 5 is a diagram for explaining a specific configuration of the fluidized bed system 300 according to the second embodiment, and FIGS. 6A to 6C illustrate pressure loss during start-up operation and pressure during normal operation. It is a figure for demonstrating the mechanism which reduces the difference with a loss.
  • 6A is a partially enlarged view of the fluidized bed furnace 130 and the vicinity of the fluidized bed furnace 130 in FIG. 5
  • FIG. 6B is a vertical sectional view of the nozzle 342
  • FIG. 6C is a VIc-VIc line in FIG. 6B.
  • the fluid medium is omitted for easy understanding.
  • the fluidized bed system 300 includes a combustion furnace 110, a medium separator 112, loop seals 114 a and 114 b, a fluidized bed furnace 130, an air box 340, a supply unit 360, and a control unit 390. It is comprised including.
  • a substance such as a fluid medium, gasification raw material, gasification gas, air, water vapor, and combustion exhaust gas is indicated by a solid line arrow, and a signal flow is indicated by a broken line arrow.
  • components that are substantially the same as the components described in the first embodiment described above are denoted by the same reference numerals, redundant description thereof is omitted, and the wind box 340 having a function different from that of the first embodiment.
  • the supply unit 360 and the control unit 390 will be described in detail.
  • an air box 340 is provided below the fluidized bed furnace 130 according to the present embodiment.
  • the air box 340 is provided with a plurality of nozzles 342 (indicated here by nine nozzles for convenience of description) (indicated by 342a and 342b in FIG. 6A), and the plurality of nozzles 342 are provided in the fluidized bed furnace 130. It is arranged inside.
  • the nozzle 342 is provided with four holes (supply holes) 344 for supplying a flowing gas at equal intervals in the circumferential direction. It is supplied into the fluidized bed furnace 130.
  • the air box 340 is provided with an opening / closing section 350 that opens (hereinafter referred to as “open”) or closes (hereinafter referred to as “close”) holes 344 of the nozzles 342b among the plurality of nozzles 342, which will be described later.
  • the control unit 390 controls the opening and closing. Control of opening / closing of the opening / closing unit 350 by the control unit 390 will be described in detail later.
  • the supply unit 360 is connected to the wind box 340 through the pipe 362.
  • the supply unit 360 supplies air (fluid gas) into the fluidized bed furnace 130 through both the nozzle 342a group and the nozzle 342b group in accordance with a control command from the control unit 390, or the nozzle 342a group (startup) Steam (fluid gas) is supplied into the fluidized bed furnace 130 only through a smaller number of specific nozzles than the nozzles 342a and 342b that are air supply sources during operation.
  • the control unit 390 is composed of a semiconductor integrated circuit including a CPU (Central Processing Unit), reads programs and parameters for operating the CPU itself from the ROM, and cooperates with the RAM as a work area and other electronic circuits.
  • the entire fluidized bed system 300 is managed and controlled.
  • the control unit 390 controls driving of the combustion furnace 110, driving of the medium separator 112, opening / closing of the opening / closing unit 350, and driving of the supply unit 360.
  • the control unit 390 controls the opening / closing unit 350 to open / close the holes of the nozzle 342b group, and drives the supply unit 360 to operate the nozzle 342a.
  • a fluidized bed of a fluidized medium is formed in the fluidized bed furnace 130 by supplying air into the fluidized bed furnace 130 through both the group and the nozzle 342b group or only the nozzle 342a group.
  • the control unit 390 controls the opening / closing unit 350 to close the holes of the nozzle 342b group and drives the supply unit 360 so that the fluid flows only through the nozzle 342a group.
  • a fluidized bed of a fluidized medium is formed in the fluidized bed furnace 130.
  • control unit 390 determines that the number of nozzles 342a and nozzles 342b used during the start-up operation (total area of the holes 344) is the number of nozzles 342a used during normal operation (the total area of the holes 344).
  • the opening / closing part 350 is controlled to open / close so as to be greater than That is, in this embodiment, the opening / closing part 350 and the control part 390 constitute a control mechanism that reduces the difference between the pressure loss during the start-up operation and the pressure loss during the normal operation.
  • FIG. 7 is a diagram for explaining a specific configuration of the fluidized bed system 400 according to the third embodiment.
  • FIGS. 8A to 8C show pressure loss during start-up operation and pressure during normal operation. It is a figure for demonstrating the mechanism which reduces the difference with a loss.
  • 8A is a partially enlarged view of the fluidized bed furnace 130 and the vicinity of the fluidized bed furnace 130 in FIG. 7,
  • FIG. 8B is a vertical sectional view of the nozzle 442, and
  • FIG. 8C is a VIIIc-VIIIc line in FIG. 8B. It is a horizontal sectional view of the nozzle 442 in FIG.
  • the fluid medium is omitted for easy understanding.
  • the fluidized bed system 400 includes a combustion furnace 110, a medium separator 112, loop seals 114 a and 114 b, a fluidized bed furnace 130, an air box 440, a supply unit 360, and a control unit 490. It is comprised including.
  • the flow of substances such as fluidized medium, gasified raw material, gasified gas, air, water vapor, and combustion exhaust gas is indicated by solid arrows, and the signal flow is indicated by broken arrows.
  • components that are substantially the same as the components described in the first and second embodiments described above are denoted by the same reference numerals, and redundant description is omitted. What is the first and second embodiments?
  • the wind box 440 and the control unit 490 having different functions will be described in detail.
  • a wind box 440 is provided below the fluidized bed furnace 130 according to the present embodiment.
  • the air box 440 is provided with a plurality of nozzles 342 and 442 groups (here, nine nozzles are shown for convenience of explanation), and the plurality of nozzles 342 and 442 groups are arranged in the fluidized bed furnace 130.
  • the nozzle 442 is provided with four holes (supply holes) 444 for supplying a flowing gas at equal intervals in the circumferential direction. It is supplied into the fluidized bed furnace 130.
  • the hole 444 is provided with a filter 446 having a function of allowing air to pass and preventing passage of water vapor.
  • the control unit 490 is composed of a semiconductor integrated circuit including a CPU (central processing unit), reads a program and parameters for operating the CPU itself from the ROM, and cooperates with a RAM as a work area and other electronic circuits.
  • the entire fluidized bed system 400 is managed and controlled.
  • the control unit 490 controls driving of the combustion furnace 110, driving of the medium separator 112, and driving of the supply unit 360.
  • control unit 490 drives the supply unit 360 to supply air to the wind box 440 when the fluidized bed system 400 is activated.
  • the filter 446 provided in the nozzle 442 group has a function of allowing air to pass through, not only the nozzle 342 group but also the nozzle 442 group can supply air into the fluidized bed furnace 130.
  • the fluidized bed of the fluidized medium can be formed in the fluidized bed furnace 130 with the supplied air.
  • the filter 446 provided in the nozzle 442 group prevents the passage of water vapor. Therefore, water vapor is not supplied into the fluidized bed furnace 130 from the hole 444 of the nozzle 442 group. Accordingly, water vapor is supplied into the fluidized bed furnace 130 only through the nozzle 342 group, and a fluidized bed of a fluidized medium is formed in the fluidized bed furnace 130.
  • the filter 446 and the control unit 490 constitute a control mechanism that reduces the difference between the pressure loss during the start-up operation and the pressure loss during the normal operation.
  • the filter 446 is provided in the hole 444 of the nozzle 442
  • the total area of the holes 444 through which the flowing gas flows during the startup operation is larger than the total area of the holes 444 through which the flowing gas flows during the normal operation.
  • the difference between the pressure loss during the start-up operation and the pressure loss during the normal operation can be reduced.
  • the gas supplied to the fluidized bed furnace 130 at the start-up operation is air and the gas supplied to the fluidized bed furnace 130 at the normal operation is steam is described as an example.
  • the type of gas supplied to the fluidized bed furnace 130 is not limited.
  • an inert gas such as nitrogen may be introduced instead of water vapor or air.
  • the same gas may be supplied to the fluidized bed furnace 130 during the start-up operation and during the normal operation. For example, even if the gas is the same, the pressure loss in the supply hole is different if the temperature is different. Therefore, the difference between the pressure loss during the start-up operation and the pressure loss during the normal operation can be reduced by using the above configuration.
  • the fluidized bed system 100, 300, 400 demonstrated the structure provided with the combustion furnace 110 in embodiment mentioned above, the combustion furnace 110 is not an essential structure, You may heat a fluidized medium with a heater etc. .
  • the holes 142a, 152a, 344, and 444 in the nozzles 152, 342b, and 442 used only during the start-up operation and the nozzles 142, 342a, and 342 used during both the start-up operation and the normal operation are used.
  • the hole diameter and the number of holes are substantially equal has been described as an example, the hole diameter may be different or the number of holes may be different.
  • the case where the holes are formed at equal intervals in the circumferential direction of the nozzle has been described. However, the holes are not necessarily formed at equal intervals in the circumferential direction.
  • the main nozzle group 144, the auxiliary nozzle group 154, the nozzle 342a group, the nozzle 342b group, the nozzle 342 group, and the nozzle 442 group are configured by a plurality of nozzles, but are configured by one nozzle. May be.
  • the control unit 190 increases the water vapor flow rate while reducing the air flow rate when the gas supplied to the fluidized bed furnace 130 is switched from air to water vapor.
  • the case where the first supply unit 160 and the second supply unit 180 are controlled has been described as an example.
  • the control unit 190 switches the gas supplied to the fluidized bed furnace 130 from air to water vapor, the control unit 190 first stops the supply of air to the fluidized bed furnace 130 and then starts the supply of water vapor. Good.
  • each process in the operation method of the fluidized bed system (fluidized bed furnace) of this specification does not necessarily need to process in time series in the order described as a flowchart, and may include a parallel process.
  • Patent Document 1 is intended to increase the pressure loss by providing a constriction part in the blowing nozzle, and also has a configuration in which the flowing gas is supplied into the fluidized bed furnace through only one of the plurality of nozzle groups. It is different from the present invention in that it does not have.
  • Patent Document 3 is different from the present invention in that the nozzles are divided into a plurality of nozzle groups and different control is not performed on these nozzle groups.
  • the present invention can be used for a fluidized bed system in which a fluidized medium forms a fluidized bed and a method for operating a fluidized bed furnace.
  • Fluidized bed system 110 Combustion furnace 130 Fluidized bed furnace 142, 152, 342, 442 Nozzle 142a, 152a, 344, 444 Hole 144 Main nozzle group (first nozzle group) 154 Auxiliary nozzle group (second nozzle group) 160 1st supply part 180 2nd supply part 190 Control part 350 Opening and closing part (control mechanism) 360 Supply unit 390, 490 Control unit (control mechanism) 446 filter (control mechanism)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

流動層システムは、流動層炉(130)内に設けられたメインノズル群(144)(第1のノズル群)と、流動層炉内に設けられた補助ノズル群(154)(第2のノズル群)と、第1のノズル群を通じて、流動層炉内にガスを供給する第1供給部(160)と、第1のノズル群および第2のノズル群の双方を通じて、流動層炉内にガスを供給する第2供給部(180)と、起動運転する際に、第2供給部を制御し、流動層炉内にガスを供給させることで、流動層炉内において流動媒体の流動層を形成させ、通常運転する際に、第2供給部によるガスの供給を停止させるとともに第1供給部を制御し、流動層炉内にガスを供給させることで、流動層炉内において流動媒体の流動層を形成させる制御部(190)と、を備える。

Description

流動層システムおよび流動層炉の運転方法
 本発明は、流動媒体が流動層を形成する流動層システムおよび流動層炉の運転方法に関する。
 本願は、2013年4月24日に日本に出願された特願2013-90942号に基づき優先権を主張し、その内容をここに援用する。
 近年、価格の高騰が予想される天然ガスに代えて、石炭やバイオマス、タイヤチップ等のガス化原料をガス化してガス化ガスを生成する技術が開発されている。このようにして生成されたガス化ガスは、発電システムや、水素の製造、合成燃料(合成石油)の製造、化学肥料(尿素)等の化学製品の製造等に利用されている。ガス化ガスの原料となるガス化原料のうち、特に石炭は、可採年数が150年程度と、石油の可採年数の3倍以上であり、また、石油と比較して埋蔵地が偏在していないため、長期に亘り安定供給が可能な天然資源として期待されている。
 石炭等のガス化原料をガス化する技術として、800℃程度の水蒸気によって流動媒体が流動層を形成している流動層炉内で、ガス化原料をガス化する技術(水蒸気ガス化)が開発されている(例えば、特許文献1)。
 また、流動媒体が流動層を形成している流動層炉内で、ガス化原料をガス化する技術に関して、ガス化炉中の粒子層中に流体を吹き出すノズルを設けた、特許文献2および3がある。また、流動燃焼炉の技術に関して、特許文献4がある。
日本国特許第3933105号公報 日本国特開2003-172504号公報 日本国特開昭59-109705号公報 日本国特開2007-170704号公報
 流動層炉を起動する前の状態、すなわち、流動層炉の停止状態では、流動層炉内の流動媒体は常温である。したがって、起動開始時に水蒸気を供給すると流動層炉において、水蒸気が凝縮して水となり、流動媒体が固着してしまう。
 そこで、流動層炉を起動運転する際には、流動層炉内に空気を供給して流動層を形成し、流動媒体を加熱して、通常運転が可能となる温度(例えば、水の沸点以上)まで流動媒体を加熱する。そして、流動媒体の温度が、通常運転が可能となる温度まで上昇した後、初めて流動層炉内に水蒸気を供給している。
 このように、流動層炉を起動運転する際には流動層炉内に空気を供給し、通常運転する際には流動層炉内に水蒸気を供給するが、空気と水蒸気とでは、流動層炉にガスを供給するための供給孔における圧力損失が異なる。具体的に説明すると、流動層炉内で流動媒体を実質的に均一に流動させるため(流動層を形成するため)に必要な空気の流量は、水蒸気の流量よりも大きい。そのため、供給孔における空気の圧力損失は、水蒸気の圧力損失よりも大きくなる。
 一般的に、供給孔の孔径や孔数は、通常運転(すなわち、流動層炉内に水蒸気を供給した場合)を想定して設計される。そのため、流動層の形成に必要な流量の空気を供給する際に生じる圧力損失を勘案すると、起動運転する際に利用されるブロワの揚程を相対的に大きくする必要があり、出力が大きく高価なブロワを採用しなければならない。
 このような空気を供給するブロワは流動層炉を起動運転する際のみに利用され、通常運転する際には利用されないため、コストを要する割に利用効率が低下する。
 本発明は、このような課題に鑑み、流動層炉を起動運転する際のガスの圧力損失と、通常運転する際のガスの圧力損失との差を低減することで、起動運転する際に利用するブロワの揚程を低減することができ、ブロワに要するコストを削減することが可能な流動層システムおよび流動層炉の運転方法を提供することを目的としている。
 本発明の流動層システムは、流動媒体を収容する流動層炉と、流動層炉内に設けられ、ガスを供給するための孔を有する1または複数のノズルで構成される第1のノズル群と、第1のノズル群とは異なるノズル群であって、流動層炉内に設けられ、ガスを供給するための孔を有する1または複数のノズルで構成される第2のノズル群と、第1のノズル群および第2のノズル群のいずれか一方を通じて、流動層炉内にガスを供給する第1供給部と、第1のノズル群および第2のノズル群の双方を通じて、流動層炉内にガスを供給する第2供給部と、起動運転する際に、第2供給部を制御し、流動層炉内にガスを供給させることで、流動層炉内において流動媒体の流動層を形成させ、通常運転する際に、第2供給部によるガスの供給を停止させるとともに第1供給部を制御し、流動層炉内にガスを供給させることで、流動層炉内において流動媒体の流動層を形成させる制御部と、を備える。
 また、第1供給部が供給するガスが水蒸気であり、第2供給部が供給するガスが空気であってもよい。
 また、本発明の流動層炉の運転方法は、流動媒体を収容する流動層炉を起動運転する際に、流動層炉内に設けられた、孔を有する1または複数のノズルで構成される第1のノズル群、および、第1のノズル群とは異なるノズル群であって、流動層炉内に設けられた、孔を有する1または複数のノズルで構成される第2のノズル群の双方を通じて、流動層炉内にガスを供給し、流動層炉内において流動媒体の流動層を形成し、流動媒体を収容する流動層炉を通常運転する際に、第1のノズル群および第2のノズル群のいずれか一方を通じて、流動層炉内にガスを供給し、流動層炉内において流動媒体の流動層を形成する。
 また、本発明の他の流動層システムは、流動媒体を収容する流動層炉と、流動層炉内に設けられ、ガスを供給するための孔を有する複数のノズルと、複数のノズルを通じて、流動層炉内にガスを供給する供給部と、起動運転する際に、複数のノズルを通じて、流動層炉内にガスを供給させることで、流動層炉内において流動媒体の流動層を形成させ、通常運転する際に、複数のノズルのうち、起動運転の際にガスの供給元となったノズルより少ない数の特定のノズルを通じて、流動層炉内にガスを供給させることで、流動層炉内において流動媒体の流動層を形成させる制御機構と、を備える。
 また、供給部が起動運転する際に供給するガスが空気であり、通常運転する際に供給するガスが水蒸気であってもよい。
 また、制御機構は、特定のノズルの孔を開放または閉塞する開閉部と、起動運転する際に、開閉部を制御して、特定のノズルの孔を開放させ、通常運転する際に、開閉部を制御して、特定のノズルの孔を閉塞させる制御部と、を含んで構成されてもよい。
 また、制御機構は、複数のノズルのうち、特定のノズルが有する孔に設けられたフィルタを含んで構成され、フィルタは、空気を通過させるとともに、水蒸気の通過を防止する機能を有してもよい。
 また、本発明の他の流動層炉の運転方法は、流動媒体を収容する流動層炉を起動運転する際に、流動層炉内に設けられた、孔を有する複数のノズルを通じて、流動層炉内にガスを供給し、流動層炉内において流動媒体の流動層を形成し、流動媒体を収容する流動層炉を通常運転する際に、複数のノズルのうち、起動運転の際にガスの供給元となったノズルより少ない数の特定のノズルを通じて、流動層炉内にガスを供給し、流動層炉内において流動媒体の流動層を形成する。
 本発明によれば、流動層炉を起動運転する際のガスの圧力損失と、通常運転する際のガスの圧力損失との差を低減することで、起動運転する際に利用するブロワの揚程を低減することができる。その結果、ブロワに要するコストを削減することが可能となる。
本発明の第1の実施形態にかかる流動層システムの具体的な構成を説明するための図である。 起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減する機構を説明するための、図1における流動層炉およびその近傍の部分拡大図である。 図2Aに示すノズルの垂直断面図である。 図2BのIIc-IIc線に沿ったノズルの水平断面図である。 流動層システムの運転方法の処理の流れを説明するためのフローチャートである。 流動層炉内へ供給される空気の流量、流動層炉内へ供給される水蒸気の流量、および、流動層炉内の温度の経時変化を示す図である。 本発明の第2の実施形態にかかる流動層システムの具体的な構成を説明するための図である。 起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減する機構を説明するための、図5における流動層炉およびその近傍の部分拡大図である。 図6Aに示すノズルの垂直断面図である。 図6BのVIc-VIc線に沿ったノズルの水平断面図である。 本発明の第3の実施形態にかかる流動層システムの具体的な構成を説明するための図である。 起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減する機構を説明するための、図7における流動層炉およびその近傍の部分拡大図である。 図8Aに示すノズルの垂直断面図である。 図8BのVIIIc-VIIIc線に沿ったノズルの水平断面図である。
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
(第1の実施形態:流動層システム100)
 図1は、本発明の第1の実施形態にかかる流動層システム100の具体的な構成を説明するための図である。図1に示すように、流動層システム100は、燃焼炉110と、媒体分離器(サイクロン)112と、ループシール114a、114bと、流動層炉130と、第1風箱140と、第2風箱150と、第1供給部160と、バルブ170と、第2供給部180と、制御部190とを含んで構成される。なお、図1中、流動媒体、ガス化原料、ガス化ガス、空気、水蒸気、燃焼排ガス等の物質の流れを実線の矢印で示し、信号の流れを破線の矢印で示す。
 本実施形態において、流動層システム100は、循環流動層式ガス化システムであり、粒径が300μm程度の硅砂(珪砂)等の砂で構成される流動媒体を、熱媒体としてシステム全体に循環させている。具体的には、まず、流動媒体は、燃焼炉110で900℃~1000℃程度に加熱され、燃焼排ガスと共に媒体分離器112に導入される。媒体分離器112において、燃焼排ガスと高温の流動媒体とが分離され、分離された燃焼排ガスは、不図示の熱交換器(例えば、ボイラー)等で熱回収される。
 一方、媒体分離器112で分離された高温の流動媒体は、ループシール114aを介して流動層炉130に導入される。ループシール114aは、媒体分離器112から流動層炉130へのガス(燃焼排ガス)の流入および流動層炉130から媒体分離器112へのガス(ガス化ガス、流動ガス)の流出を防止する役割を担う。
 ループシール114aを介して、媒体分離器112から流動層炉130に導入された流動媒体は、後述する第1風箱140および第2風箱150のいずれか一方または双方から供給される流動ガスによって流動し、ループシール114bを介して燃焼炉110に戻される。ループシール114bは、流動層炉130から燃焼炉110へのガス(ガス化ガス、流動ガス)の流出および燃焼炉110から流動層炉130へのガス(燃焼排ガス)の流入を防止する役割を担う。
 このように、本実施形態にかかる流動層システム100において、流動媒体は、燃焼炉110、媒体分離器112、ループシール114a、流動層炉130、ループシール114bを、この順に移動し、再度燃焼炉110に導入されることにより、これらを循環する。
 また、流動層炉130の下方には、第1風箱140および第2風箱150が設けられている。そして、流動層システム100を通常運転する際には、第1供給部160が駆動され、第1供給部160から供給された流動ガス(ここでは、水蒸気)が、第1風箱140に一時的に貯留され、この第1風箱140に貯留された水蒸気が、流動層炉130の底面から流動層炉130内に供給される。このように、媒体分離器112から導入された高温の流動媒体に水蒸気を供給することにより、流動層炉130内において流動層(気泡流動層)が形成される。
 流動層炉130には、石炭やバイオマス、タイヤチップ等のガス化原料(固体原料)が導入され、導入されたガス化原料は、流動媒体が有する800℃~900℃程度の熱によってガス化され、これによってガス化ガス(合成ガス)が生成される。
 ここで、流動層システム100の起動運転と、通常運転について説明すると、流動層システム100を起動する前の状態、すなわち、流動層システム100の停止状態では、流動層炉130に収容された流動媒体は常温(例えば、30℃)である。したがって、起動を開始する際に、水蒸気を供給すると流動層炉130内において水蒸気が凝縮して水となり、水によって流動媒体が固着し、流動層が形成できなくなる。
 そこで、流動層システム100を起動運転する際には、まず、常温でも凝縮しない空気等の流動ガスを供給して、流動層炉130内において流動層を形成する。そうすると、流動層の形成に伴って、流動媒体が浮上し、流動層炉130に収容された流動媒体の鉛直方向の高さが高くなり、流動媒体は、流動層炉130からオーバーフローしてループシール114bへ送出され、燃焼炉110へ導入される。このように、流動層炉130内において流動層の形成が開始されることにより、上記流動媒体の循環が開始される。
 ついで、燃焼炉110の運転を開始することで、循環する流動媒体の温度が上昇する。そして、流動層炉130に導入される流動媒体の温度が、ガス化原料のガス化に適した温度(例えば、800℃~900℃程度)になると、流動層炉130に供給する流動ガスを、ガス化原料をガス化するためのガス化剤(水蒸気)に切り替えて、通常運転を開始する。
 このように、流動層炉130を起動運転する際には流動層炉130内に空気を供給し、通常運転する際には流動層炉130内に水蒸気を供給するが、空気と水蒸気とでは、流動層炉130に流動ガスを供給するための供給孔における圧力損失が異なる。具体的に説明すると、流動層炉130内で流動媒体の流動層を形成する(U0/Umfが1以上となるようにする)ために必要な空気の最低流量は、水蒸気の最低流量よりも大きい。ここで、U0/Umfは、流動層の流動状態を示す指標であり、U0/Umfが1以上であると、流動媒体が流動層を形成しているとみなすことができる。なお、U0は、流体(流動ガス)が流動層内を移動する速度であり、Umfは、流動化開始速度である。最低流量の相違は、空気と水蒸気との物性(例えば、質量密度や粘度)の相違や、温度の相違による。
 このように、流動層を形成するための空気の最低流量が、水蒸気の最低流量よりも大きいため、供給孔における空気の圧力損失は、水蒸気の圧力損失よりも大きくなってしまう。例えば、同一の孔径、および、同一の孔数の供給孔において、同一のU0/Umfとなるように、30℃の空気または500℃の水蒸気を供給すると、30℃の空気の圧力損失は、500℃の水蒸気の圧力損失の例えば20倍以上となる。
 供給孔の孔径や孔数は、通常運転(すなわち、流動層炉130内に水蒸気を供給した場合)を想定して設計されるので、流動層の形成に必要な流量の空気を供給する際に生じる圧力損失を勘案すると、起動運転する際に利用するブロワの揚程を相対的に大きくする(例えば、水蒸気を供給するためのブロワの20倍程度にする)必要がある。また、ブロワの揚程が相対的に小さいと、所望するU0/Umfにならず、流動層の状態が不安定になる。
 そこで、本実施形態にかかる流動層システム100では、流動層炉130に流動ガスを供給するための供給孔の構造を工夫することで、起動運転する際の流動ガス(空気)の圧力損失と、通常運転する際の流動ガス(水蒸気)の圧力損失との差を低減する。以下、起動運転する際の空気の圧力損失と、通常運転する際の水蒸気の圧力損失との差を低減する機構について詳述する。
 図2A~図2Cは、起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減する機構を説明するための図であり、図2Aは、図1における流動層炉130および流動層炉130近傍の部分拡大図であり、図2Bは、ノズル142、152の垂直断面図であり、図2Cは、図2BのIIc-IIc線におけるノズル142、152の水平断面図である。なお、図2A~図2C中、理解を容易にするため、流動媒体を省略する。
 図2Aに示すように、流動層炉130の下方には、第1風箱140および第2風箱150が設けられている。
 第1風箱140には、複数のノズル142(ここでは、説明の便宜上10本のノズルで示す)で構成されるメインノズル群(第1のノズル群)144が設けられており、メインノズル群144が流動層炉130内に配されている。図2Bおよび図2Cに示すように、ノズル142には、流動ガスを供給するための孔(供給孔)142aが周方向に等間隔で複数(ここでは、4つ)設けられており、孔142aを通じて流動ガスが流動層炉130内に供給される。
 第2風箱150には、複数のノズル152(ここでは、説明の便宜上5本のノズルで示す)で構成される補助ノズル群(第2のノズル群)154が設けられており、補助ノズル群154が流動層炉130内に配されることとなる。本実施形態において、ノズル152には、ノズル142と実質的に等しい孔径の孔152a(供給孔)がノズル142と同数(ここでは、4つ)周方向に等間隔に形成されている(図2Bおよび図2C参照)。したがって、ノズル152に設けられた孔152aを通じて流動ガスが流動層炉130内に供給される。
 第1供給部160は、配管162を通じて第1風箱140に接続される。第1供給部160は、通常運転する際にのみ利用され、後述する制御部190による制御指令に応じて、メインノズル群144のみを通じて、流動層炉130内に水蒸気(流動ガス)を供給する。
 バルブ170は、配管162と配管182とを連通する連通管172に設けられ、制御部190によって、その開閉が制御される。制御部190によるバルブ170の開閉の制御については、後に詳述する。
 第2供給部180は、例えば、ブロワで構成され、配管162および配管182を通じて第1風箱140および第2風箱150に接続される。第2供給部180は、起動運転する際にのみ利用され、制御部190による制御指令に応じて、メインノズル群144および補助ノズル群154の双方を通じて、流動層炉130内に空気(流動ガス)を供給する。
 制御部190は、CPU(中央処理装置)を含む半導体集積回路で構成され、ROMからCPU自体を動作させるためのプログラムやパラメータ等を読み出し、ワークエリアとしてのRAMや他の電子回路と協働して流動層システム100全体を管理および制御する。本実施形態において、制御部190は、燃焼炉110の駆動、媒体分離器112の駆動、第1供給部160の駆動、バルブ170の開閉、第2供給部180の駆動を制御する。
 具体的に説明すると、制御部190は、流動層システム100を起動運転する際に、バルブ170を開閉し、第2供給部180を制御し、メインノズル群144および補助ノズル群154の双方もしくはメインノズル群144のみを通じて、流動層炉130内に空気を供給させることで、流動層炉130内において流動媒体の流動層を形成させる。また、制御部190は、流動層システム100を通常運転する際に、バルブ170を閉じ、第1供給部160を制御し、メインノズル群144のみを通じて、流動層炉130内に水蒸気を供給させることで、流動層炉130内において流動媒体の流動層を形成させる。
 換言すれば、制御部190は、起動運転時に利用されるノズル142、152の数(孔142a、152aの総面積)が、通常運転時に利用されるノズル142の数(孔142aの総面積)よりも多くなるように、第1供給部160、バルブ170、第2供給部180を制御する。
 このように、起動運転時に流動ガスが流通する孔142a、152aの総面積を通常運転時の流動ガスが流通する孔142aの総面積よりも大きくすることで、起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減することができる。例えば、本実施形態で説明した、ノズル142の孔142aとノズル152の孔152aの孔径と数とを実質的に等しくし、ノズル152の数をノズル142の半分にした構成では、30℃の空気の圧力損失を、500℃の水蒸気の圧力損失の10倍程度に低減することが可能となる。
 したがって、ノズル142(すなわち、孔142aの孔径と数)を通常運転時に供給する水蒸気を基準にして設計したとしても、従来のメインノズル群144のみの構成と比較して第2供給部180の揚程を低減することができ、第2供給部180に要するコストを削減することが可能となる。
(流動層システム100の運転方法)
 続いて、流動層システム100(流動層炉130)の運転方法について説明する。図3は、流動層システム100の運転方法の処理の流れを説明するためのフローチャートであり、図4は、流動層炉130内へ供給される空気の流量、流動層炉130内へ供給される水蒸気の流量、および、流動層炉130内の温度の経時変化を示す図である。
 なお、上記運転方法の説明において、流動層システム100の起動運転を開始する前は、流動層システム100が停止状態にあると仮定する。また、本実施形態における流動層システム100の運転方法において、作業者による停止指示があったときには、そのときに遂行している処理を停止する。
 制御部190は、作業者による起動運転を開始する旨を示す指示を受け付けると(ステップS210におけるYES)、バルブ170が閉じられているか否かを判定する(ステップS212)。なお、作業者による起動運転を開始する旨を示す指示がない場合(ステップS210におけるNO)、起動運転を開始する旨を示す指示の待機状態を維持する。
 バルブ170が閉じられていると判定すると(ステップS212におけるYES)、制御部190はバルブ170を開く(ステップS214)。なお、バルブ170が開かれていると判定した場合(ステップS212におけるNO)、ステップS216へ処理を移す。
 バルブ170が開状態になると、制御部190は、第2供給部180の駆動を開始する(図4における時刻t0)とともに、予め定められた流量Cの空気が流動層炉130に導入されるように、第2供給部180を制御する(ステップS216)。ここで、流量Cは、メインノズル群144および補助ノズル群154を通じて、流動層炉130に空気を供給した場合に流動層を形成することができる値である。そうすると、メインノズル群144および補助ノズル群154を通じて、空気が流動層炉130に供給され、流動層炉130において流動媒体の流動層が形成される。これにより、流動媒体の循環が開始される。
 また、制御部190は、燃焼炉110および媒体分離器112の運転を開始し(ステップS218)、流動媒体の加熱を開始する。さらに、制御部190は、不図示の温度測定部を介して、流動層炉130内の流動媒体の温度の測定を開始する。なお、制御部190は、流動層炉130内の流動媒体の温度Tfが予め定められた温度範囲TA内になるように燃焼炉110を制御する。ここで、温度範囲TAは、流動層炉130において所望される温度(例えば、ガス化原料のガス化に適した温度)であり、例えば、800℃~900℃の温度範囲である。
 そして、制御部190は、温度Tfが温度範囲TA内になるまで(S220におけるNO)、第2供給部180が供給する空気の流量を流量Cに維持し、温度Tfが温度範囲TA内になったと判定すると(ステップS220におけるYES、図4における時刻t1)、バルブ170を閉じる(ステップS222、図4における時刻t2)。その結果、補助ノズル群154を通じた流動層炉130への空気の供給が停止される。つまり、図4中、ハッチングで示した空気の供給量がメインノズル群144を通じた流動層炉130への供給量であり、クロスハッチングで示した空気の供給量が補助ノズル群154を通じた流動層炉130への供給量である。
 続いて、制御部190は、第1供給部160の駆動を開始する(図4における時刻t3)とともに、第1供給部160が供給する水蒸気の流量を徐々に上げていく(S224)。また、制御部190は、第2供給部180が停止するまで、第2供給部180が供給する空気の流量を徐々に下げていく(ステップS226、図4における時刻t4から時刻t5までの処理)。こうすることで、流動層炉130内における流動層の形成を維持したまま、流動層炉130に供給される流動ガスを空気から水蒸気に切り替えることができる。
 制御部190は、第1供給部160が供給する水蒸気の流量が予め定められた流量Dになり、かつ、第2供給部180が停止するまで(ステップS228におけるNO)、上記ステップS224およびステップS226の処理を遂行し、第1供給部160が供給する水蒸気の流量が流量Dになり、かつ、第2供給部180が停止すると(ステップS228におけるYES、図4における時刻t5)、流動層炉130にガス化原料を導入し通常運転を開始する(ステップS230)。つまり、通常運転する際には、メインノズル群144のみを通じて水蒸気が流動層炉130へ供給される。ここで、流量Dは、メインノズル群144のみを通じて、流動層炉130に水蒸気を供給した場合に流動層を形成することができる値である。
 そして、制御部190は、作業者による停止指示があるまで(ステップS232におけるNO)、通常運転を遂行し、停止指示を受け付けると(ステップS232におけるYES)、運転処理を終了する。
 以上説明したように、本実施形態にかかる流動層システム100の運転方法によれば、起動運転(上記ステップS210~ステップS228(時刻t0~時刻t5)のうち、ステップS210~ステップS222(時刻t0~時刻t2)の期間における孔142a、152aの総面積を通常運転の際(上記ステップS230、時刻t5以降)における孔142aの総面積よりも大きくすることで、流動層炉130を起動運転する際の空気の圧力損失と、通常運転する際の水蒸気の圧力損失との差を低減することができる。その結果、起動運転する際に利用する第2供給部180の揚程を低減することが可能となる。これにより、第2供給部180に要するコストを削減することができる。
(第2の実施形態:流動層システム300)
 上述した第1の実施形態では、2つの供給部(第1供給部160、第2供給部180)を備える流動層システム100について説明した。第2の実施形態では、供給部を1つのみ備えた流動層システム300について説明する。
 図5は、第2の実施形態にかかる流動層システム300の具体的な構成を説明するための図であり、図6A~図6Cは、起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減する機構を説明するための図である。特に、図6Aは、図5における流動層炉130および流動層炉130近傍の部分拡大図であり、図6Bは、ノズル342の垂直断面図であり、図6Cは、図6BのVIc-VIc線におけるノズル342の水平断面図である。なお、図6A~図6C中、理解を容易にするため、流動媒体を省略する。
 図5に示すように、流動層システム300は、燃焼炉110と、媒体分離器112と、ループシール114a、114bと、流動層炉130と、風箱340と、供給部360と、制御部390とを含んで構成される。なお、図5中、流動媒体、ガス化原料、ガス化ガス、空気、水蒸気、燃焼排ガス等の物質の流れを実線の矢印で示し、信号の流れを破線の矢印で示す。また、上述した第1の実施形態において説明した構成要素と実質的に等しい構成要素は、同一の符号を付して、重複説明を省略し、第1の実施形態とは機能の異なる風箱340、供給部360、制御部390について詳述する。
 図6Aに示すように、本実施形態にかかる流動層炉130の下方には、風箱340が設けられている。風箱340には、複数(ここでは、説明の便宜上9本のノズルで示す)のノズル342(図6A中、342a、342bで示す)が設けられており、複数のノズル342が流動層炉130内に配されている。また、図6Bおよび図6Cに示すように、ノズル342には、流動ガスを供給するための孔(供給孔)344が周方向に等間隔で4つ設けられており、孔344を通じて流動ガスが流動層炉130内に供給される。
 また、風箱340には、複数のノズル342のうち、ノズル342bの孔344をそれぞれ開放(以下、開と称する)または閉塞(以下、閉と称する)する開閉部350が設けられており、後述する制御部390によって、その開閉が制御される。制御部390による開閉部350の開閉の制御については、後に詳述する。
 供給部360は、配管362を通じ風箱340に接続される。供給部360は、制御部390による制御指令に応じて、ノズル342a群、およびノズル342b群の双方を通じて、流動層炉130内に空気(流動ガス)を供給するか、あるいは、ノズル342a群(起動運転の際に空気の供給元となるノズル342a、342bより少ない数の特定のノズル)のみを通じて、流動層炉130内に水蒸気(流動ガス)を供給する。
 制御部390は、CPU(中央処理装置)を含む半導体集積回路で構成され、ROMからCPU自体を動作させるためのプログラムやパラメータ等を読み出し、ワークエリアとしてのRAMや他の電子回路と協働して流動層システム300全体を管理および制御する。本実施形態において、制御部390は、燃焼炉110の駆動、媒体分離器112の駆動、開閉部350の開閉、供給部360の駆動を制御する。
 具体的に説明すると、制御部390は、流動層システム300を起動運転する際に、開閉部350を制御して、ノズル342b群の孔を開閉させるとともに、供給部360を駆動して、ノズル342a群およびノズル342b群の双方もしくはノズル342a群のみを通じて、流動層炉130内に空気を供給させることで、流動層炉130内において流動媒体の流動層を形成させる。また、制御部390は、流動層システム300を通常運転する際に、開閉部350を制御して、ノズル342b群の孔を閉じるとともに、供給部360を駆動して、ノズル342a群のみを通じて、流動層炉130内に水蒸気を供給させることで、流動層炉130内において流動媒体の流動層を形成させる。
 換言すれば、制御部390は、起動運転時に利用されるノズル342a群、ノズル342b群の数(孔344の総面積)が、通常運転時に利用されるノズル342a群の数(孔344の総面積)よりも多くなるように、開閉部350を開閉制御する。すなわち、本実施形態において、開閉部350および制御部390が、起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減する制御機構を構成する。
 このように、起動運転時に流動ガスが流通する孔344の総面積を通常運転時の流動ガスが流通する孔344の総面積よりも大きくすることで、起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減することができる。
(第3の実施形態:流動層システム400)
 上述した第2の実施形態では、開閉部350によってノズル342bの孔344を開閉することで、起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減する流動層システム300について説明した。しかし、他の構成を利用しても、起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減することができる。
 図7は、第3の実施形態にかかる流動層システム400の具体的な構成を説明するための図であり、図8A~図8Cは、起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減する機構を説明するための図である。特に、図8Aは、図7における流動層炉130および流動層炉130近傍の部分拡大図であり、図8Bは、ノズル442の垂直断面図であり、図8Cは、図8BのVIIIc-VIIIc線におけるノズル442の水平断面図である。なお、図8A~図8C中、理解を容易にするため、流動媒体を省略する。
 図7に示すように、流動層システム400は、燃焼炉110と、媒体分離器112と、ループシール114a、114bと、流動層炉130と、風箱440と、供給部360と、制御部490とを含んで構成される。なお、図7中、流動媒体、ガス化原料、ガス化ガス、空気、水蒸気、燃焼排ガス等の物質の流れを実線の矢印で示し、信号の流れを破線の矢印で示す。また、上述した第1および第2の実施形態において説明した構成要素と実質的に等しい構成要素は、同一の符号を付して、重複説明を省略し、第1および第2の実施形態とは機能の異なる風箱440、制御部490について詳述する。
 図8Aに示すように、本実施形態にかかる流動層炉130の下方には、風箱440が設けられている。風箱440には、複数(ここでは、説明の便宜上9本のノズルで示す)のノズル342、442群が設けられており、複数のノズル342、442群が流動層炉130内に配されている。また、図8Bおよび図8Cに示すように、ノズル442には、流動ガスを供給するための孔(供給孔)444が周方向に等間隔で4つ設けられており、孔444を通じて流動ガスが流動層炉130内に供給される。
 また、孔444には、空気を通過させるとともに、水蒸気の通過を防止する機能を有するフィルタ446が設けられている。
 制御部490は、CPU(中央処理装置)を含む半導体集積回路で構成され、ROMからCPU自体を動作させるためのプログラムやパラメータ等を読み出し、ワークエリアとしてのRAMや他の電子回路と協働して流動層システム400全体を管理および制御する。本実施形態において、制御部490は、燃焼炉110の駆動、媒体分離器112の駆動、供給部360の駆動を制御する。
 具体的に説明すると、制御部490は、流動層システム400を起動運転する際に、供給部360を駆動して、風箱440に空気を供給する。この場合、ノズル442群に設けられたフィルタ446は、空気を通過させる機能を有しているため、ノズル342群のみならず、ノズル442群を通じて、流動層炉130内に空気を供給することができ、供給された空気で、流動層炉130内において流動媒体の流動層を形成させることが可能となる。
 一方、流動層システム400を通常運転する際に、制御部490が供給部360を駆動して、風箱440に水蒸気を供給すると、ノズル442群に設けられたフィルタ446は、水蒸気の通過を防止する機能を有しているため、ノズル442群の孔444から流動層炉130内に水蒸気が供給されることはない。したがって、ノズル342群のみを通じて、流動層炉130内に水蒸気を供給させ、流動層炉130内において流動媒体の流動層を形成させる。
 換言すれば、本実施形態において、フィルタ446および制御部490が、起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減する制御機構を構成する。
 このように、ノズル442の孔444にフィルタ446を設けるといった簡易な構成で、起動運転時に流動ガスが流通する孔444の総面積を通常運転時の流動ガスが流通する孔444の総面積よりも大きくすることができ、起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減することが可能となる。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば、上述した実施形態において、起動運転時に流動層炉130に供給されるガスが空気であり、通常運転時に流動層炉130に供給されるガスが水蒸気である場合を例に挙げて説明した。しかし、流動層炉130に供給されるガスの種類に限定はなく、例えば、水蒸気や空気に代えて、窒素等の不活性ガスを導入してもよい。また、起動運転時と通常運転時とで同じガスを流動層炉130に供給してもよい。例えば、同じガスであっても、温度が相違すれば供給孔における圧力損失が異なる。そのため、上記構成を利用することで、起動運転する際の圧力損失と通常運転する際の圧力損失との差を低減することができる。
 また、上述した実施形態において、流動層システム100、300、400が、燃焼炉110を備える構成について説明したが、燃焼炉110は必須の構成ではなく、ヒータ等で流動媒体を加熱してもよい。
 また、上述した実施形態において、起動運転時にのみ利用するノズル152、342b、442と、起動運転時および通常運転時の双方で利用するノズル142、342a、342とにおける孔142a、152a、344、444の孔径および孔数が実質的に等しい場合を例に挙げて説明したが、孔径が異なっても、孔数が異なってもよい。また、上述した実施形態において、孔がノズルの周方向に等間隔に形成されている場合について説明したが、孔は必ずしも周方向に等間隔に形成される必要はない。
 また、上述した実施形態において、メインノズル群144、補助ノズル群154、ノズル342a群、ノズル342b群、ノズル342群、ノズル442群は複数本のノズルによって構成されているが、1のノズルで構成されてもよい。
 また、上述した第1の実施形態において、制御部190は、流動層炉130へ供給されるガスを空気から水蒸気に切替える際に、空気の流量を減らしながら、水蒸気の流量を増やしていくように第1供給部160および第2供給部180を制御している場合を例に挙げて説明した。しかし、制御部190は、流動層炉130へ供給されるガスを空気から水蒸気に切替える際に、まず、流動層炉130への空気の供給を停止し、その後、水蒸気の供給を開始してもよい。
 なお、本明細書の流動層システム(流動層炉)の運転方法における各工程は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的な処理を含んでもよい。
 なお、複数のノズル群を用いた流動層炉内への流動ガスの供給は、上述の特許文献2にも記載されている。しかしながら、特許文献1は、吹き出しノズルに絞り部を設けて圧力損失を大きくすることを目的としており、また、複数のノズル群のいずれか一方のみを通じて流動層炉内に流動ガスを供給させる構成を備えない点で本発明とは異なる。
 また、ノズルから流動層炉内への流動ガスの供給量の制御は、上述の特許文献3にも記載されている。しかしながら、特許文献3は、ノズルを複数のノズル群に分け、これらのノズル群に対し異なる制御を行わない点で本発明とは異なる。
 本発明は、流動媒体が流動層を形成する流動層システムおよび流動層炉の運転方法に利用することができる。
100、300、400  流動層システム
110  燃焼炉
130  流動層炉
142、152、342、442  ノズル
142a、152a、344、444  孔
144  メインノズル群(第1のノズル群)
154  補助ノズル群(第2のノズル群)
160  第1供給部
180  第2供給部
190  制御部
350  開閉部(制御機構)
360  供給部
390、490  制御部(制御機構)
446  フィルタ(制御機構)

Claims (8)

  1.  流動媒体を収容する流動層炉と、
     前記流動層炉内に設けられ、ガスを供給するための孔を有する1または複数のノズルで構成される第1のノズル群と、
     前記第1のノズル群とは異なるノズル群であって、前記流動層炉内に設けられ、ガスを供給するための孔を有する1または複数のノズルで構成される第2のノズル群と、
     前記第1のノズル群および前記第2のノズル群のいずれか一方を通じて、前記流動層炉内にガスを供給する第1供給部と、
     前記第1のノズル群および前記第2のノズル群の双方を通じて、前記流動層炉内にガスを供給する第2供給部と、
     起動運転する際に、前記第2供給部を制御し、前記流動層炉内にガスを供給させることで、前記流動層炉内において流動媒体の流動層を形成させ、通常運転する際に、前記第2供給部によるガスの供給を停止させるとともに前記第1供給部を制御し、前記流動層炉内にガスを供給させることで、前記流動層炉内において流動媒体の流動層を形成させる制御部と、
    を備える流動層システム。
  2.  前記第1供給部が供給するガスが水蒸気であり、前記第2供給部が供給するガスが空気である請求項1に記載の流動層システム。
  3.  流動媒体を収容する流動層炉を起動運転する際に、前記流動層炉内に設けられた、孔を有する1または複数のノズルで構成される第1のノズル群、および、前記第1のノズル群とは異なるノズル群であって、前記流動層炉内に設けられた、孔を有する1または複数のノズルで構成される第2のノズル群の双方を通じて、前記流動層炉内にガスを供給し、前記流動層炉内において流動媒体の流動層を形成し、
     前記流動層炉を通常運転する際に、前記第1のノズル群および前記第2のノズル群のいずれか一方を通じて、前記流動層炉内にガスを供給し、前記流動層炉内において流動媒体の流動層を形成する流動層炉の運転方法。
  4.  流動媒体を収容する流動層炉と、
     前記流動層炉内に設けられ、ガスを供給するための孔を有する複数のノズルと、
     前記複数のノズルを通じて、前記流動層炉内にガスを供給する供給部と、
     起動運転する際に、前記複数のノズルを通じて、前記流動層炉内にガスを供給させることで、前記流動層炉内において流動媒体の流動層を形成させ、通常運転する際に、前記複数のノズルのうち、前記起動運転の際にガスの供給元となったノズルより少ない数の特定のノズルを通じて、前記流動層炉内にガスを供給させることで、前記流動層炉内において流動媒体の流動層を形成させる制御機構と、
    を備える流動層システム。
  5.  前記供給部が前記起動運転する際に供給するガスが空気であり、前記通常運転する際に供給するガスが水蒸気である請求項4に記載の流動層システム。
  6.  前記制御機構は、
     前記特定のノズルの孔を開放または閉塞する開閉部と、
     起動運転する際に、前記開閉部を制御して、前記特定のノズルの孔を開放させ、通常運転する際に、前記開閉部を制御して、前記特定のノズルの孔を閉塞させる制御部と、
    を含んで構成される請求項4または5に記載の流動層システム。
  7.  前記制御機構は、前記複数のノズルのうち、前記特定のノズルが有する孔に設けられたフィルタを含んで構成され、
     前記フィルタは、空気を通過させるとともに、水蒸気の通過を防止する機能を有する請求項5に記載の流動層システム。
  8.  流動媒体を収容する流動層炉を起動運転する際に、前記流動層炉内に設けられた、孔を有する複数のノズルを通じて、前記流動層炉内にガスを供給し、前記流動層炉内において流動媒体の流動層を形成し、
     前記流動層炉を通常運転する際に、前記複数のノズルのうち、前記起動運転の際にガスの供給元となったノズルより少ない数の特定のノズルを通じて、前記流動層炉内にガスを供給し、前記流動層炉内において流動媒体の流動層を形成する流動層炉の運転方法。
PCT/JP2014/061145 2013-04-24 2014-04-21 流動層システムおよび流動層炉の運転方法 WO2014175208A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2014258500A AU2014258500B2 (en) 2013-04-24 2014-04-21 Fluidized bed system and method for operating fluidized bed furnace
CN201480022322.4A CN105143805B (zh) 2013-04-24 2014-04-21 流动层系统和流动层炉的运行方法
JP2015513741A JP5880783B2 (ja) 2013-04-24 2014-04-21 流動層システムおよび流動層炉の運転方法
US14/862,741 US10011794B2 (en) 2013-04-24 2015-09-23 Fluidized bed system and method for operating fluidized bed furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013090942 2013-04-24
JP2013-090942 2013-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/862,741 Continuation US10011794B2 (en) 2013-04-24 2015-09-23 Fluidized bed system and method for operating fluidized bed furnace

Publications (1)

Publication Number Publication Date
WO2014175208A1 true WO2014175208A1 (ja) 2014-10-30

Family

ID=51791784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061145 WO2014175208A1 (ja) 2013-04-24 2014-04-21 流動層システムおよび流動層炉の運転方法

Country Status (5)

Country Link
US (1) US10011794B2 (ja)
JP (1) JP5880783B2 (ja)
CN (1) CN105143805B (ja)
AU (1) AU2014258500B2 (ja)
WO (1) WO2014175208A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022502244A (ja) * 2018-10-01 2022-01-11 ミレーナ−オルガ ジョイント イノベーション アセッツ ベスローテン フェンノートシャップMILENA−OLGA Joint Innovation Assets B.V. 燃料から合成ガスを生成する為の反応器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1030435B1 (de) * 2022-04-08 2023-11-14 Thyssenkrupp Ind Solutions Ag Anlage und ein Verfahren zur Wärmebehandlung von mineralischem Material
WO2023194194A1 (de) * 2022-04-08 2023-10-12 thyssenkrupp Polysius GmbH Anlage und ein verfahren zur wärmebehandlung von mineralischem material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264001A (ja) * 1992-03-18 1993-10-12 Ishikawajima Harima Heavy Ind Co Ltd 加圧流動層ボイラの起動方法
JPH07332614A (ja) * 1994-03-10 1995-12-22 Ebara Corp 流動層ガス化及び熔融燃焼方法並びに装置
JPH08296973A (ja) * 1995-04-28 1996-11-12 Kansai Electric Power Co Inc:The 有機物ガス化炉の炉底残渣排出装置
WO2012066802A1 (ja) * 2010-11-19 2012-05-24 荏原環境プラント株式会社 流動床炉及び廃棄物の処理方法
JP2013050271A (ja) * 2011-08-31 2013-03-14 Kiyoshi Asai 流動層式熱反応装置、及びその使用方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167918A (en) * 1978-04-13 1979-09-18 Combustion Engineering, Inc. Fluid-bed air-supply system
SE423928B (sv) * 1978-09-12 1982-06-14 Stal Laval Turbin Ab Virvelbeddsbrennkammare
US4349969A (en) * 1981-09-11 1982-09-21 Foster Wheeler Energy Corporation Fluidized bed reactor utilizing zonal fluidization and anti-mounding pipes
JPS59109705A (ja) 1982-12-15 1984-06-25 Babcock Hitachi Kk 流動層燃焼装置
FR2563444A1 (fr) * 1984-04-25 1985-10-31 Charbonnages De France Injecteur de gaz de fluidisation a effet progressif pour lit fluidise
JPS6396482A (ja) 1986-10-14 1988-04-27 株式会社小松製作所 流動層炉のガス分散ノズル装置
US5014632A (en) * 1988-08-16 1991-05-14 A. Ahlstrom Corporation Distributor plate in a fluidized bed reactor
US5183641A (en) * 1988-08-16 1993-02-02 A. Ahlstrom Corporation Distributor plate in a fluidized bed reactor
US5372791A (en) 1992-04-20 1994-12-13 Foster Wheeler Energy Corporation Fluidized bed system and a fluidization and cooling nozzle for use therein
TW332857B (en) * 1993-02-26 1998-06-01 Kawasaki Heavy Ind Ltd Cement clinker
WO1997048950A1 (fr) * 1996-06-21 1997-12-24 Ebara Corporation Procede et appareil de gazeification de lit fluidise
JP2000346310A (ja) 1999-06-10 2000-12-15 Babcock Hitachi Kk 流動層ボイラおよび流動層ボイラへの空気供給方法
JP2003172504A (ja) 2001-12-03 2003-06-20 Ebara Corp 流体吹き出しノズル、および流動層反応装置
CN1313766C (zh) 2003-06-11 2007-05-02 上海锅炉厂有限公司 用蒸汽代替空气进行高压流化风的方法
JP3933105B2 (ja) 2003-07-25 2007-06-20 石川島播磨重工業株式会社 流動層ガス化システム
CN2634306Y (zh) 2003-08-08 2004-08-18 浙江大学 集流化焚烧和移动冷渣于一体的垃圾焚烧炉
CN100526719C (zh) 2005-01-04 2009-08-12 王天伟 流化床锅炉热料点火方式
JP4714912B2 (ja) 2005-12-20 2011-07-06 独立行政法人土木研究所 加圧流動焼却設備及びその立上げ方法
JP5256807B2 (ja) * 2008-03-21 2013-08-07 株式会社Ihi ガス化設備の運転方法
CN102042587B (zh) 2009-10-14 2012-09-19 财团法人工业技术研究院 流体化床燃烧炉及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264001A (ja) * 1992-03-18 1993-10-12 Ishikawajima Harima Heavy Ind Co Ltd 加圧流動層ボイラの起動方法
JPH07332614A (ja) * 1994-03-10 1995-12-22 Ebara Corp 流動層ガス化及び熔融燃焼方法並びに装置
JPH08296973A (ja) * 1995-04-28 1996-11-12 Kansai Electric Power Co Inc:The 有機物ガス化炉の炉底残渣排出装置
WO2012066802A1 (ja) * 2010-11-19 2012-05-24 荏原環境プラント株式会社 流動床炉及び廃棄物の処理方法
JP2013050271A (ja) * 2011-08-31 2013-03-14 Kiyoshi Asai 流動層式熱反応装置、及びその使用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022502244A (ja) * 2018-10-01 2022-01-11 ミレーナ−オルガ ジョイント イノベーション アセッツ ベスローテン フェンノートシャップMILENA−OLGA Joint Innovation Assets B.V. 燃料から合成ガスを生成する為の反応器
JP7363004B2 (ja) 2018-10-01 2023-10-18 ミレーナ-オルガ ジョイント イノベーション アセッツ ベスローテン フェンノートシャップ 燃料から合成ガスを生成する為の反応器

Also Published As

Publication number Publication date
US10011794B2 (en) 2018-07-03
US20160010007A1 (en) 2016-01-14
CN105143805B (zh) 2017-03-08
JPWO2014175208A1 (ja) 2017-02-23
AU2014258500A1 (en) 2015-10-15
JP5880783B2 (ja) 2016-03-09
AU2014258500B2 (en) 2016-07-21
CN105143805A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5880783B2 (ja) 流動層システムおよび流動層炉の運転方法
CN102084303A (zh) 用于使用模型预测控制器来优化化学循环燃烧装置的设备
JP2009030600A (ja) タービン用並列燃料制御弁
JP5256802B2 (ja) ガス化設備のガス化炉構造
JP6111769B2 (ja) ガス化ガス生成システム
CN104673401A (zh) 用于密封合成气冷却器的系统和方法
AU2013233638B2 (en) Circulation type gasification furnace
JP6079430B2 (ja) 循環流動層ガス化ガス生成システムの運転方法
JP2009229042A (ja) 循環流動層ガス化装置とその空気流量制御方法及び装置
JP2014237735A (ja) 循環流動層ガス化炉
JP5699523B2 (ja) ガス生成量制御方法及びガス生成量制御装置
JP6201555B2 (ja) 酸化改質装置
JP6500237B2 (ja) 水素生成装置および水素生成装置の運転方法
JP5929253B2 (ja) 酸素燃焼循環流動層ボイラ及びその温度制御装置
KR101403577B1 (ko) 조합 보일러
WO2020022169A1 (ja) ガス化ガスの処理設備及びガス化ガスの処理方法
KR102093302B1 (ko) 복수의 라이저부를 구비한 유동사 하강형 순환유동층 보일러 및 이의 운전방법
JP2011042768A (ja) 循環流動層式ガス化方法及び装置
KR20180096064A (ko) 축열탱크 및 이것을 이용한 축방열 시스템
Zhang et al. The dynamic modeling and simulation on a Shell gasifier
Kumar M et al. Enhance energy efficiency through advanced process control APC
Sarda Development of a Dynamic Model and Control System for Load-Following Operation of Supercritical Pulverized Coal Power Plants
JP4167261B2 (ja) 燃料ガス化複合発電システム
Palencia Díaz et al. Advanced control strategies for cleaner energy conversion in biomass gasification
O'Brien Improving energy efficiency with cogeneration technology

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022322.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513741

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014258500

Country of ref document: AU

Date of ref document: 20140421

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201506826

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14787635

Country of ref document: EP

Kind code of ref document: A1