WO2014175029A1 - Process for manufacturing gas barrier film and surface modification method - Google Patents
Process for manufacturing gas barrier film and surface modification method Download PDFInfo
- Publication number
- WO2014175029A1 WO2014175029A1 PCT/JP2014/059796 JP2014059796W WO2014175029A1 WO 2014175029 A1 WO2014175029 A1 WO 2014175029A1 JP 2014059796 W JP2014059796 W JP 2014059796W WO 2014175029 A1 WO2014175029 A1 WO 2014175029A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas barrier
- excimer
- barrier film
- polysilazane
- surface modification
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/06—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
- B05D3/061—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
- B05D3/065—After-treatment
- B05D3/067—Curing or cross-linking the coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2252/00—Sheets
- B05D2252/02—Sheets of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/04—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
- B05D3/0486—Operating the coating or treatment in a controlled atmosphere
Definitions
- the present invention relates to a method for producing a gas barrier film produced by irradiating a polysilazane layer containing a polysilazane compound with an excimer lamp to form a gas barrier layer by surface modification, and a surface modification used in the method for producing a gas barrier film. It relates to the processing method.
- a gas barrier film in which a metal oxide thin film such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used for packaging articles that require blocking of various gases such as water vapor and oxygen, Widely used in packaging applications to prevent the deterioration of food, industrial products and pharmaceuticals.
- a metal oxide thin film such as aluminum oxide, magnesium oxide, or silicon oxide
- packaging articles that require blocking of various gases such as water vapor and oxygen
- gases such as water vapor and oxygen
- liquid crystal display elements, solar cells, organic electroluminescence (hereinafter abbreviated as organic EL) elements, and the like are used in liquid crystal display elements, solar cells, organic electroluminescence (hereinafter abbreviated as organic EL) elements, and the like.
- organic EL elements, and the like are required to have high gas barrier properties (gas barrier properties) because internal penetration of water vapor or air causes deterioration in quality.
- VUV vacuum ultraviolet light
- Patent Document 1 proposes a method of producing a silicon oxide film by applying vacuum ultraviolet light irradiation to a coating film coated with a silazane compound solution.
- This method uses light energy in the range of 100 to 200 nm as a wavelength called vacuum ultraviolet light, which is larger than the interatomic bonding force in the silazane compound.
- This allows the formation of a silicon oxide film (gas barrier layer) at a relatively low temperature by advancing an oxidation reaction with active oxygen or ozone while directly breaking the atomic bonds by the action of only photons called photon processes. It can be carried out.
- a method of converting a part or all of a silazane compound coating film into a silicon oxide film by irradiating an excimer lamp of a VUV light source having an illuminance of 40 mW / cm 2 for 3 to 10 minutes is disclosed.
- Patent Document 2 discloses a method of irradiating an excimer lamp in an environment that does not contain water vapor and oxygen, in which the water vapor concentration is 140 ppm or less and the oxygen concentration is 0.5 vol% or less. .
- Patent Documents 1 and 2 there is no description regarding a method of forming a silicon oxide film while continuously transporting a substrate or the like. There is no mention of the related production stability.
- Patent Document 3 discloses a film base coated with polysilazane in an environment where the water vapor concentration is 1000 to 4000 ppm and the oxygen concentration is 0.05 to 21% by volume while the substrate is continuously conveyed by a roll-to-roll method.
- a method for producing a gas barrier film by irradiating a material with vacuum ultraviolet light to perform a modification treatment is disclosed.
- Patent Document 3 makes no mention of the excimer lamp life in continuous production and production stability related thereto.
- excimer lamps are not only reduced in illuminance due to long-time lighting, but also excimer lamp tubes are fragile due to vacuum ultraviolet light emitted from the lamps themselves, which causes excimer lamp damage. Yes. The time at which this excimer lamp breaks is not uniform and there is no sign of breakage, and it is difficult to predict when the excimer lamp breaks.
- JP 2009-255040 A International Publication No. 2011/007543 Special table 2009-503157
- the present invention has been made in view of the above-mentioned problems, and the problem to be solved is to use a surface modification treatment method by excimer lamp irradiation performed in a continuous production method, and to reduce the life of the excimer lamp (for example, decrease in lamp illuminance or By providing a method for producing a gas barrier film capable of stably forming a gas barrier layer even in a continuous production system, and a surface modification method used therefor, by suppressing damage to the excimer lamp) is there.
- the present inventor has developed a substrate having a polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one surface side of the substrate.
- Gas barrier film manufactured by carrying out a surface modification process for modifying the gas barrier layer by continuously transporting the inside of the surface modification process equipped with an excimer lamp emitting light and irradiating the polysilazane layer with excimer light
- the life of the excimer lamp is reduced by applying a gas barrier film manufacturing method that controls the average water vapor concentration in the space region between the excimer lamp and the substrate during the surface modification treatment to a specific range.
- a polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one surface side on a substrate is continuously conveyed in a surface modification step including an excimer lamp that emits excimer light,
- a method for producing a gas barrier film, wherein the polysilazane layer is irradiated with the excimer light to perform a surface modification treatment for modifying the gas barrier layer A method for producing a gas barrier film, wherein an average water vapor concentration in a space region between the excimer lamp and the base material during the surface modification treatment is in a range of 150 to 930 ppm.
- a surface modification treatment method which is used in the method for producing a gas barrier film according to any one of items 1 to 7.
- a method for producing a gas barrier film having suitability for continuous production capable of suppressing a decrease in lamp illuminance of an excimer lamp and a decrease in lifetime of an excimer lamp, and capable of stably forming a gas barrier layer And a surface modification treatment method used therefor.
- the technical feature of the present invention is that the average water vapor concentration in the space region between the excimer lamp and the substrate during the surface modification treatment (hereinafter also referred to as the treatment space) is controlled within the range of 150 to 930 ppm. If the average water vapor concentration during the surface modification treatment is 150 ppm or more, the illuminance caused by the reaction between the ammonia component generated from the polysilazane layer by the excimer light and the excimer lamp tube A decrease can be prevented. On the other hand, if the average water vapor concentration during the surface modification treatment is 930 ppm or less, the excimer lamp activated by the excimer light reacts with moisture in the atmosphere to prevent the excimer lamp from becoming weak. Can do. Therefore, the illuminance stability and fragility resistance of the excimer lamp tube can be improved by performing the surface modification treatment in a treatment space having an average water vapor concentration in the range of 150 to 930 ppm.
- the method for producing a gas barrier film of the present invention comprises a polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one side of a substrate, and a surface having an excimer lamp that emits excimer light.
- a method for producing a gas barrier film which is produced by carrying out a surface modification treatment for continuously conveying the inside of a reforming process, irradiating the excimer light to the polysilazane layer, and modifying the gas barrier layer,
- An average water vapor concentration in a space region between the excimer lamp and the base material during the surface modification treatment is in a range of 150 to 930 ppm.
- the peak irradiance of the lamp tube surface of the excimer lamp it is 50 mW / cm 2 or more, further 80 mW / cm 2 or more It is preferable from the viewpoint of excellent illuminance stability during continuous irradiation of the lamp.
- the shortest distance between the surface of the lamp tube of the excimer lamp and the polysilazane layer surface on the base material in the facing position within the range of 0.1 to 9.0 mm, stable base material transportability and This is preferable from the viewpoint of excellent illuminance stability during continuous irradiation of the lamp.
- a plurality of excimer lamps are installed from the viewpoint of productivity, and more than 10 excimer lamps are arranged in parallel in the transport direction of the base material. It is preferable that
- the “gas barrier property” as used in the present invention means suppression of permeation of gas such as water molecules and oxygen molecules, and water vapor permeability (temperature: measured by a method based on JIS K 7129-1992). 40 ⁇ 0.5 ° C., relative humidity (RH): 90 ⁇ 2%) is 1 ⁇ 10 ⁇ 1 g / (m 2 ⁇ 24 h) or less, and oxygen measured by a method according to JIS K 7126-1987 It means that the permeability is 1 mL / m 2 ⁇ 24 h ⁇ atm or less.
- the average water vapor concentration in the space region between the excimer lamp and the base material during the surface modification treatment referred to in the present invention is a capacitance type for 10 places in the space region in a state where the excimer lamp is caused to emit light.
- the water vapor concentration is measured using a dew point meter or a mirror-cooled dew point meter, and the arithmetic average value is defined as the average water vapor concentration in the spatial region referred to in the present invention.
- the measured temperature cannot be generally defined because the temperature in the space region varies depending on the irradiation conditions of the excimer lamp.
- vacuum ultraviolet light specifically mean light having a wavelength in the range of 100 to 200 nm.
- ⁇ is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
- the method for producing a gas barrier film of the present invention comprises a polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one side of a substrate, and a surface having an excimer lamp that emits excimer light.
- a method for producing a gas barrier film which is produced by carrying out a surface modification treatment for modifying a gas barrier layer by continuously conveying the inside of a modification step and irradiating the excimer light to the polysilazane layer.
- An average water vapor concentration in a space region between the excimer lamp and the base material during the reforming treatment is in a range of 150 to 930 ppm.
- a layer obtained by modifying a polysilazane layer formed by applying a coating liquid having a polysilazane compound is referred to as a gas barrier layer.
- the spatial region in which the average water vapor concentration defined in the present invention is controlled within the range of 150 to 930 ppm during the surface modification treatment is specifically the spatial region S shown in FIG. 1B described later.
- an excimer light irradiation region 7 irradiated from the excimer lamp 3 is defined.
- the method for producing a gas barrier film of the present invention comprises a substrate having an excimer lamp that emits excimer light on a substrate having a polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one surface side.
- the polysilazane layer is subjected to surface modification treatment under the condition that the inside of the reforming process is continuously conveyed and the average water vapor concentration in the space region between the excimer lamp and the substrate is in the range of 150 to 930 ppm. It is characterized by being modified into a gas barrier layer.
- the average water vapor concentration during the surface modification treatment is 150 ppm or more, it is possible to prevent a decrease in illuminance due to the reaction between the ammonia component generated from the polysilazane layer by the excimer light and the excimer lamp tube. it can.
- the average water vapor concentration during the surface modification treatment is 930 ppm or less, the excimer lamp activated by the excimer light reacts with moisture in the atmosphere to prevent the excimer lamp from becoming weak. Can do. Therefore, the illuminance stability and fragility resistance of the excimer lamp tube can be improved by performing the surface modification treatment within the range of 150 to 930 ppm as the water vapor concentration.
- the shortest distance between the surface of the lamp tube of the excimer lamp at the facing position and the polysilazane layer surface on the substrate is in the range of 0.1 to 9.0 mm.
- the surface modification step according to the present invention is a preferred embodiment in which a plurality of excimer lamps, preferably 10 or more excimer lamps are arranged in parallel with respect to the substrate transport direction.
- FIG. 1A is an external view showing an example of a xenon excimer irradiation unit that can be used in the method for producing a gas barrier film of the present invention.
- the xenon excimer irradiation unit 1 includes an excimer lamp holder 2, an excimer lamp 3, and a plurality of nitrogen gas and water vapor supply pipe inlets 4.
- FIG. 1B is a cross-sectional view taken along the line AA of the xenon excimer light irradiation unit 1 shown in FIG. 1A.
- the excimer lamp holder 2 is supplied with nitrogen gas (N 2 ) and water vapor (H 2 O) containing a predetermined water vapor concentration from a nitrogen gas and water vapor supply pipe inlet 4.
- N 2 nitrogen gas
- H 2 O water vapor
- concentration were controlled toward 9 can be injected.
- the excimer lamp 3 irradiates the excimer light 7 toward the lower substrate 9.
- the water vapor concentration in the vicinity of the excimer lamp 3 according to the present invention can be measured in the space region S shown in FIG. 1B by directly arranging a water vapor concentration measuring sensor or sampling with a tube or the like.
- region said by this invention is defined as the excimer light irradiation area
- the number of samplings in the excimer light irradiation area 7 is set to 10 and the average value is obtained, and this is set as the average water vapor concentration in the excimer light irradiation area 7 which is the space area S.
- a method of controlling the water vapor concentration in the mixed gas supplied from the nitrogen gas and water vapor supply pipe inlet 4 so as to obtain a desired water vapor concentration is preferable.
- a plurality of groups are provided in the excimer irradiation region of the excimer lamp at an appropriate interval inside the excimer light irradiation unit 34 having a structure in which the periphery is sealed as shown in FIG.
- the water vapor concentration measurement sensor is arranged, an average value of a plurality of measurement data is obtained, and the excimer light irradiation is performed by the humidification or dehumidification by the water vapor concentration adjusting device provided in the excimer light irradiation unit 34 from the measurement result.
- a method for controlling the water vapor concentration inside the unit 34 and the excimer irradiation area of the excimer lamp to a predetermined condition is also a suitable method.
- a commercially available capacitance type dew point meter or mirror cooled dew point meter can be preferably used.
- the shortest distance h between the lamp tube surface of the excimer lamp 3 and the surface of the polysilazane layer 8 on the substrate is in the range of 0.1 to 9.0 mm. Is preferred.
- the excimer light vacuum ultraviolet light
- the substrate surface can be irradiated.
- FIG. 2 is a schematic cross-sectional view showing a configuration of a gas barrier film manufacturing apparatus that has a surface modification treatment unit according to the present invention and can continuously convey and manufacture a gas barrier film, and is laminated as an example.
- a roll-to-roll manufacturing apparatus that continuously conveys a roll-shaped film substrate 21 is shown.
- a polysilazane is coated by applying a feeding unit 31 for feeding out the film base material 21 from a state where the film base material 21 is laminated in a roll shape, and a coating liquid containing a polysilazane compound on the film base material 21.
- the coater 32 equipped in the coating part for forming the layer, the drying part 33 for drying the polysilazane layer formed on the film substrate 21, and the polysilazane layer by irradiating the polysilazane layer on the film substrate 21 with excimer light
- the film base 21 is fed out from a laminating roll obtained by laminating the long film base 21 in a roll shape in the feeding section 31.
- a coating liquid having a polysilazane compound is applied on the film substrate 21 with a desired wet film thickness while controlling the amount supplied to the coater 32 using a wet coating type coater 32 equipped in the coating unit.
- the wet polysilazane layer 8 is formed on the film substrate 21.
- the formed film substrate 21 having the wet polysilazane layer 8 is moved to the drying unit 33, and the polysilazane layer 8 on the film substrate 21 is removed by a dryer using drying means such as warm air and a heater. dry.
- the film substrate 21 on which the dried polysilazane layer 8 is formed moves to the excimer light irradiation unit 34 which is the next step.
- Excimer light irradiating section 34 for irradiating excimer light and subjecting polysilazane layer 8 to surface modification treatment includes a plurality of excimer light irradiating units U1 to U30 shown in FIG. 20 is provided. Further, a pipe (not shown) for supplying nitrogen gas and water vapor to each of the excimer light irradiation units U1 to U30 and a water vapor concentration in the excimer light irradiation unit 34 are adjusted to form nitrogen gas and a water vapor atmosphere. A gas and water vapor inlet 36 and a nitrogen gas and water vapor outlet 37 are provided. A vapor concentration measurement sensor (not shown) is provided inside the excimer light irradiation unit 34, and the water vapor concentration in the mixed gas of nitrogen gas and water vapor is controlled to a predetermined condition according to the measurement information.
- suction wall 38 As a member for reducing the surface of the film base 21 opposite to the coating film to the atmospheric pressure. Since there is a gap between the plurality of transport rolls 20, the film base 21 side of the suction wall 38 is sucked from the suction port 39 using a vacuum pump (not shown). The surface on the opposite side can be depressurized with respect to atmospheric pressure.
- Reference numeral 40 denotes a position for measuring the pressure during decompression.
- the excimer light irradiation unit 34 is configured by a plurality of excimer lamps (excimer light irradiation unit 1) to increase the processing efficiency. This is a preferable configuration from the point that
- 10 or more excimer lamps are arranged in parallel with respect to the transport direction of the film substrate.
- a method using a small number of excimer lamps it is necessary to impart a high irradiation energy amount to the substrate in order to achieve the desired modification treatment, and the temperature of the substrate rises due to such excimer light irradiation.
- the base material is easily damaged by heat.
- 10 or more excimer lamps it is possible to suppress thermal damage to the substrate and perform surface modification treatment continuously at a high speed.
- the peak illuminance on the surface of the lamp tube of the excimer lamp is preferably 50 mW / cm 2 or more, more preferably in the range of 50 to 500 mW / cm 2 , further preferably 80 mW. / Cm 2 or more, particularly preferably in the range of 80 to 200 mW / cm 2 . If the peak illuminance is 50 mW / cm 2 or more, there is no concern about a reduction in the reforming efficiency. If the peak illuminance is 500 mW / cm 2 or less, ablation (evaporation or scattering of components due to thermal destruction) may occur in the polysilazane layer.
- the substrate is preferable because it does not damage the substrate.
- it is necessary to reduce the number of excimer lamps or the reforming process.
- the reforming process efficiency is sufficient. There is a problem that the life of the excimer lamp is shortened.
- the range of 50 to 500 mW / cm 2 is preferable from the viewpoint of satisfying the above conditions.
- the peak illuminance on the surface of the excimer lamp can be measured by placing an illuminometer (C9536 / H95535-172 manufactured by Hamamatsu Photonics) at a predetermined position below the surface of the excimer lamp. In order to obtain a desired peak illuminance, the type of excimer lamp is selected or the applied voltage is adjusted as appropriate.
- an illuminometer C9536 / H95535-172 manufactured by Hamamatsu Photonics
- the amount of excimer light irradiation energy on the polysilazane layer surface is preferably in the range of 200 to 20000 mJ / cm 2 , and more preferably in the range of 500 to 10000 mJ / cm 2 . If it is 200 mJ / cm 2 or more, the modification can be carried out sufficiently, and if it is 20000 mJ / cm 2 or less, it is not over-reformed and cracking and thermal deformation of the substrate can be prevented.
- the irradiation time is preferably within a range of 0.1 second to 10 minutes, and more preferably within a range of 0.5 second to 3 minutes. .
- an excimer lamp is used as a vacuum ultraviolet light source, and a rare gas excimer lamp is preferably used.
- a rare gas atom such as Xe, Kr, Ar, Ne, etc. is called an inert gas because it does not form a molecule by chemically bonding.
- the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
- Oxygen is required for the reaction at the time of ultraviolet light irradiation, but excimer light is absorbed by oxygen, so if oxygen is present, the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to carry out in a state where the oxygen concentration is as low as possible. That is, the oxygen concentration at the time of excimer light irradiation is preferably in the range of 10 to 10000 ppm, more preferably in the range of 50 to 5000 ppm.
- the gas satisfying the irradiation atmosphere is preferably a dry inert gas, and particularly preferably a dry nitrogen gas from the viewpoint of cost.
- the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
- the polysilazane compound is irradiated with excimer light from an excimer lamp to modify a part of the polysilazane compound to silicon oxide (SiO 2 ).
- the polysilazane applied to the formation of the polysilazane layer according to the present invention is a polymer having a silicon-nitrogen bond in the molecular structure and serving as a precursor of silicon oxynitride.
- the polysilazane to be applied is not particularly limited. Is preferably a compound having a structure represented by the following general formula (1).
- R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms).
- Alkyl groups alkenyl groups (preferably alkenyl groups having 2 to 20 carbon atoms), cycloalkyl groups (preferably cycloalkyl groups having 3 to 10 carbon atoms), aryl groups (preferably carbon atoms).
- R 1 , R 2 and R 3 are aryl groups
- silyl groups preferably silyl groups having 3 to 20 carbon atoms
- alkylamino groups preferably 1 to 40 carbon atoms, more preferably alkyl having 1 to 20 carbon atoms
- An amino group or an alkoxy group (preferably an alkoxy group having 1 to 30 carbon atoms).
- R 1 , R 2 and R 3 is a hydrogen atom.
- the alkyl group in R 1 , R 2 and R 3 is a linear or branched alkyl group.
- an alkyl group the alkyl group applicable to a conventionally well-known polysilazane can be used.
- the compound having a main skeleton composed of the unit represented by the general formula (1) preferably has a number average molecular weight in the range of 100 to 50,000.
- the number average molecular weight here can be determined by measuring with a gel permeation chromatograph (GPC).
- perhydropolysilazane (abbreviation: PHPS) in which all of R 1, R 2, and R 3 are hydrogen atoms is particularly preferable from the viewpoint of the denseness as a gas barrier layer to be obtained.
- Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings.
- the molecular weight is in the range of about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and there are liquid or solid substances, and the state varies depending on the molecular weight.
- a hydrogen atom in R 1 polysilazane having an organic group in R 2 and R 3, or an organic group R 1 and R 2, those having a hydrogen atom in R 3 - (R 1 R 2 It has a cyclic structure mainly having a polymerization degree of 3 to 5 with SiNR 3 ) — as a repeating unit.
- the polysilazane used has a main skeleton composed of units represented by the general formula (1) as described above, but the units represented by the general formula (1) may be cyclized as described above. In that case, the cyclic portion becomes a terminal group, and when such cyclization is not performed, the terminal of the main skeleton can be a group similar to R 1 , R 2 , R 3 or a hydrogen atom.
- polysilazanes applicable to the present invention include repeating units such as [(SiH 2 ) n (NH) m ] and [(SiH 2 ) r O as described in JP-A-62-195024. (In these formulas, n, m and r are 1, 2 or 3, respectively) and a polysilazane as described in JP-A-2-84437 is reacted with a boron compound.
- a polyborosilazane having excellent heat resistance produced by reacting a polysilazane and a metal alkoxide as described in JP-A-63-81122, JP-A-63-191832 and JP-A-2-77427.
- Copolymer silazanes advantageous for film formation, JP-A-5-23827, JP-A-4-272020, JP-A-5-93275, JP-A-5-214268, JP-A-5-30750, JP-A-5-338524 Application to metals such as plastics and aluminum with addition or addition of a catalytic compound for promoting ceramization to polysilazane as described in the publication Possible, it may be used as well, such as low temperature curing type polysilazane more ceramics at low temperatures.
- the polysilazane compound according to the present invention is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane compound-containing coating solution.
- Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials Co., Ltd.
- the polysilazane compound-containing coating solution according to the present invention can be prepared by adding the following catalyst and solvent together with the above-described polysilazane compound, if necessary.
- a catalyst In the polysilazane-containing coating solution, a catalyst may be added in order to accelerate the reaction for converting the polysilazane compound into a silicon oxide compound.
- a conventionally known catalyst can be used.
- compounds described in JP-A-10-279362 can be referred to.
- the addition amount of the catalyst with respect to the polysilazane compound is preferably 0.1 ppm or more and 5.0% or less as a mass ratio with respect to the total mass of the polysilazane compound as a solid content concentration ratio in the polysilazane compound-containing coating solution. More preferably, it is the range of 100 ppm or more and 3.0% or less.
- solvent As the organic solvent used for the preparation of the polysilazane compound-containing coating solution, it is preferable to avoid alcohol-based or water-containing solvents that easily react with the polysilazane compound.
- the polysilazane compound concentration in the polysilazane compound-containing coating solution varies depending on the film thickness of the target polysilazane compound-containing layer (gas barrier layer) and the pot life of the coating solution, but is generally within the range of 0.2 to 35% by mass. Preferably there is.
- the method for applying the polysilazane compound-containing coating solution according to the present invention is preferably a wet coating method, and the wet coating method applicable to the present invention is not particularly limited and is appropriately selected from conventionally known methods. Can be used. Specific examples of coating methods include spin coating, roll coating, flow coating, ink jet, spray coating, printing, dip coating, casting film formation, bar coating, and gravure printing. It is done.
- the thickness of the polysilazane compound-containing layer according to the present invention is appropriately set according to the purpose, but the thickness after drying is preferably in the range of 1 nm to 100 ⁇ m, more preferably 10 nm to 10 ⁇ m. Within the range, most preferably within the range of 10 nm to 1 ⁇ m.
- the drying process after applying the polysilazane compound-containing coating solution on the substrate mainly removes the organic solvent, and therefore the drying conditions (temperature, treatment time) should be set appropriately according to the method of heat treatment to be applied.
- the heat treatment temperature is preferably a high temperature from the viewpoint of rapid processing, but it is preferable to appropriately determine the temperature to be applied and the treatment time in consideration of thermal damage to the substrate that is the resin film being used. .
- the heat treatment temperature is preferably set to 150 ° C. or less.
- the treatment time is preferably set to a short time so that the solvent is removed and thermal damage to the substrate is reduced. If the heat treatment temperature is 150 ° C. or lower, it is preferably set within 30 minutes.
- the atmosphere in the drying process after coating the polysilazane compound-containing coating solution on the substrate is preferably controlled to be relatively low humidity, but the humidity in a low humidity environment changes with temperature, so the relationship between temperature and humidity
- the preferred form is indicated by the dew point temperature.
- the preferred dew point temperature is 4 ° C. or less (temperature 25 ° C./humidity 25%), the more preferred dew point temperature is ⁇ 8 ° C. (temperature 25 ° C./humidity 10%) or less, and the more preferred dew point temperature is ⁇ 31 ° C. (temperature 25 ° C.). / Humidity 1%) or less.
- the pressure in the vacuum drying can be selected in the range of normal pressure to 0.1 MPa.
- the base material applicable to the present invention is not particularly limited as long as it is made of an organic material capable of holding a polysilazane compound-containing polysilazane layer, but is flexible from the viewpoint of imparting continuous transportability. It is preferable that it is a film base material that can be bent.
- Examples of the material for the film base include polyacrylic acid ester, polymethacrylic acid ester, polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate (abbreviation: PBT), polyethylene naphthalate (abbreviation: PEN), polycarbonate (abbreviation: PC), polyarylate, polyvinyl chloride (abbreviation: PVC), polyethylene (abbreviation: PE), polyethylene copolymer such as ethylene-cyclic olefin, polypropylene (abbreviation: PP), polystyrene (abbreviation: PS), polyamide (abbreviation) : PA), Polyetheretherketone, Polysulfone, Polyethersulfone, Polyimide, Polyetherimide, and other polymers, and heat-resistant transparent film base material based on silsesquioxane having an organic-inorganic hybrid structure (product name Si a-DEC, manufactured by Chisso Corporation), and further can
- the thickness of the film substrate is preferably in the range of 5 to 500 ⁇ m, more preferably in the range of 10 to 250 ⁇ m, from the viewpoints of handleability and mechanical strength. Moreover, it is preferable that a glass transition temperature (Tg) is 100 degreeC or more. Moreover, it is preferable that a heat shrinkage rate is also low.
- Tg glass transition temperature
- An overcoat layer may be formed on the gas barrier layer according to the present invention for the purpose of further improving the flexibility.
- the organic material used for forming the overcoat layer is preferably an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin layer using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group. Can be used.
- the gas barrier film according to the present invention may have an anchor layer (also referred to as a smooth layer) between the base material and the gas barrier layer for the purpose of improving the adhesion between the base material and the gas barrier layer. .
- the anchor layer can also suppress a phenomenon (bleed out) that unreacted oligomers move from the resin base material to the surface and contaminate the contact surface.
- the anchor layer is preferably smooth in order to form a gas barrier layer thereon, and the surface roughness Ra value is preferably in the range of 0.3 to 3 nm, more preferably 0. It is in the range of 5 to 1.5 nm. If the surface roughness Ra value is 0.3 nm or more, the surface has an appropriate smoothness, and can maintain the smoothness when forming a gas barrier layer by the roller transportability and the surface modification treatment method of the present invention. . On the other hand, when the thickness is 3 nm or less, it is possible to prevent a minute defect from being generated in the gas barrier layer when forming the gas barrier layer, and to obtain a high level of gas barrier properties and adhesion.
- thermosetting resin and an active energy ray curable resin can be cited because smoothness is required, but an active energy ray curable resin is preferable because it is easy to mold.
- curable resins can be used singly or in combination of two or more.
- the curable resin may be a commercially available product or a synthetic product.
- the active energy ray-curable material examples include a composition containing an acrylate compound, a composition containing an acrylate compound and a mercapto compound containing a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene
- examples thereof include compositions containing polyfunctional acrylate monomers such as glycol acrylate and glycerol methacrylate.
- curable bifunctional acrylate NK ester from Shin-Nakamura Chemical Co., Ltd.
- A-DCP tricyclodecane dimethanol diacrylate
- UV curable organic / inorganic hybrid hard coating material from OPSR (registered by JSR Corporation) Trademark) series (compounds obtained by bonding an organic compound having a polymerizable unsaturated group to silica fine particles) and the like can be used.
- the thickness of the anchor layer is preferably in the range of 0.3 to 10 ⁇ m, more preferably in the range of 0.5 to 5 ⁇ m from the viewpoint of adjusting curl.
- a bleed-out preventing layer can be formed on the substrate before the polysilazane layer is formed on the substrate.
- the bleed-out prevention layer suppresses a phenomenon in which, when a base material having an anchor layer (smooth layer) is heated, unreacted oligomers are transferred from the base material to the surface and contaminate the contact surface.
- a base material having an anchor layer smooth layer
- the bleed-out prevention layer may basically have the same configuration as the anchor layer described above as long as it has this function.
- the curable resin constituting the anchor layer can be used in the same manner. Furthermore, a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule, a unitary unsaturated organic compound having one polymerizable unsaturated group in the molecule, or the like can be added. Moreover, you may contain a mat agent as an additive. As the matting agent, inorganic particles having an average particle diameter of about 0.1 to 5 ⁇ m are preferable.
- the bleed-out prevention layer is blended with other components as necessary, and is prepared as a coating solution using a diluting solvent as necessary, and the coating solution is applied to the surface of the film substrate 21 by a conventionally known coating method. Then, it can be produced by irradiating with ultraviolet rays or ionizing radiation and curing.
- the thickness of the bleed-out preventing layer is preferably in the range of 1 to 10 ⁇ m, more preferably 2 to 2 from the viewpoint of preventing the curling of the substrate when the bleed-out preventing layer is provided only on one side of the substrate.
- the range is 7 ⁇ m.
- a dry gas barrier layer may be provided in addition to the gas barrier layer formed by the surface modification treatment method of the present invention.
- the gas barrier property can be further improved by a synergistic effect by repairing fine defects of the dry gas barrier layer by a uniform film by coating. I can expect.
- a film containing an oxide or nitride, nitride oxide, or carbide containing one or more metal atoms selected from Zr as a main component can be used.
- Silicon oxide, silicon nitride oxide, silicon nitride, aluminum oxide, oxidation Silicon aluminum, silicon aluminum nitride oxide, ZTO, ITO, and ZnO are preferably used.
- These films may contain a certain proportion of carbon, or may be gradient films having a composition change in the film thickness direction.
- the dry gas barrier layer can be produced by physical vapor deposition (eg, vacuum vapor deposition, ion plating, sputtering) or chemical vapor deposition (eg, PECVD, Cat-CVD, atmospheric pressure plasma, ALD) ) Can be used.
- physical vapor deposition eg, vacuum vapor deposition, ion plating, sputtering
- chemical vapor deposition eg, PECVD, Cat-CVD, atmospheric pressure plasma, ALD
- a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) Z7501 manufactured by JSR Corporation is used. After coating with a die coater so as to be 4 ⁇ m, after drying at 80 ° C. for 3 minutes as a drying condition, 1.0 J / cm 2 as a curing condition using a high-pressure mercury lamp in an air atmosphere. Curing was performed to form an anchor layer. At this time, the maximum cross-sectional height Rt (p), which is the surface roughness, was 16 nm.
- the surface roughness Rt (p) is calculated from an uneven cross-sectional curve continuously measured by a detector having a stylus having a minimum tip radius using an AFM (Atomic Force Microscope). The measurement was performed a number of times within a section having a measurement distance of 30 ⁇ m with a stylus having a very small tip radius, and the average roughness regarding the amplitude of fine irregularities was obtained.
- a polysilazane layer (8) was formed by applying and drying a coating liquid containing a polysilazane compound on the anchor layer surface of the PEN film provided with the anchor layer and the bleed-out prevention layer according to the following method. .
- ⁇ Preparation of polysilazane compound-containing coating solution 20% by mass of perhydropolysilazane containing 5% by mass of an amine catalyst and 20% by mass dibutyl ether solution of uncatalyzed perhydropolysilazane (Aquamica (registered trademark) NN120-20 manufactured by AZ Electronic Materials Co., Ltd.)
- a dibutyl ether solution (Aquamica (registered trademark) NAX120-20 manufactured by AZ Electronic Materials Co., Ltd.) is mixed and used to adjust the amine catalyst to 1% by mass in solid content, and further diluted with dibutyl ether.
- a dibutyl ether solution containing 5% by mass of perhydropolysilazane was prepared, and this was used as a polysilazane compound-containing coating solution.
- the prepared polysilazane compound-containing coating solution is lined on the anchor layer surface of the PEN film using a die coater equipped in the coating section (32).
- the drying part (33) shown in FIG. 2 is dried at a drying temperature of 50 ° C. for 1 minute at a dew point of 10 ° C., and then at a drying temperature of 80 ° C.
- the polysilazane layer (8) having a thickness of 150 nm after drying was formed at a dew point of 5 ° C. for 2 minutes.
- the film base material (21) having the polysilazane layer (8) formed through the coating part (32) and the drying part (33) is transported to the excimer light irradiation part (34) and subjected to surface modification treatment by excimer light irradiation. Went.
- Excimer light irradiation uses a xenon excimer lamp (wavelength: 172 nm, peak illuminance: 120 mW / cm 2 ) manufactured by MD Excimer as the excimer lamp 3, and the film substrate (21) transport direction as shown in FIG.
- 30 excimer lamps U1 to U30 were arranged.
- the installation position of the excimer lamp was adjusted so that the shortest distance (h) between the excimer lamp tube surface and the surface of the substrate being conveyed was 3 mm.
- the peak illuminance was measured at a position 3 mm from the lamp tube surface of the excimer lamp (3) using an illuminometer (C9536 / H95535-172 manufactured by Hamamatsu Photonics).
- the excimer lamp holder (2) supplying a N 2 gas and water vapor, N 2 towards the flanks of the excimer lamp width hand the film base surface and the injection density control water vapor (see FIG. 1B. ).
- the oxygen concentration at the time of excimer light irradiation is such that nitrogen gas and water vapor are also supplied to the enclosure surrounding the entire excimer lamp, so that the oxygen concentration between the excimer lamp tube surface and the film substrate becomes 0.1% or less. Adjustments were made as follows.
- the water vapor concentration is 30 total of Zentol digital dew point meters (XDT series) manufactured by Mitsubishi Chemical Analytech Co., Ltd. in the space area (S) of each excimer lamp, and the excimer lamp (3) and film base While constantly monitoring the water vapor concentration in the space region (S) between the materials (21), the average water vapor concentration was controlled to be 151 ppm (dew point -39 ° C.).
- the polysilazane layer (8) was irradiated with excimer light and subjected to surface modification treatment to be modified into a gas barrier layer, whereby a gas barrier film 1 was produced.
- gas barrier films 2 to 17 In the production of the gas barrier film 1, the water vapor concentration in the space region (S) between the excimer lamp (3) and the film base material (21) in the excimer light irradiation section (34), the peak illuminance of each excimer lamp (3) ( mW / cm 2 ), gas barrier film in the same manner except that the shortest distance (h) between the tube surface of the excimer lamp (3) and the surface of the film base (21) is changed to the combination shown in Table 1, respectively. 2 to 17 were produced.
- gas barrier films 1A to 17A were used as gas barrier films at the initial production stage (immediately after the excimer lamp was turned on).
- gas barrier films 1B to 17B were manufactured while being continuously conveyed and manufactured as excimer lamps after being irradiated for 1000 hours.
- gas barrier films 1C to 17C were manufactured while being manufactured continuously and sampled at the time when 60000 m was produced as a gas barrier film.
- gas barrier films 1A to 17A, gas barrier films 1B to 17B, and gas barrier films 1C to 17C produced above were evaluated for water vapor permeability (gas barrier properties) according to the following method.
- the water vapor transmission rate was measured by the following method.
- Vapor deposition equipment JEE-400 vacuum vapor deposition equipment manufactured by JEOL Ltd.
- Constant temperature and humidity oven Yamato Humidic Chamber IG47M
- Raw material Metal that reacts with moisture and corrodes: Calcium (granular)
- Water vapor impermeable metal Aluminum ( ⁇ 3-5mm, granular)
- a vacuum deposition apparatus vacuum deposition apparatus JEE-400 manufactured by JEOL Ltd.
- the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the film sample.
- the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere
- the cell for evaluation was produced by irradiating with ultraviolet rays.
- the obtained sample whose both surfaces are sealed with aluminum is stored in a high-temperature and high-humidity environment of 60 ° C. and 90% RH. Based on the method described in Japanese Patent Application Laid-Open No. 2005-283561, the corrosion amount of metallic calcium is introduced into the cell. The amount of moisture permeated (g / m 2 / day) was calculated.
- ⁇ The rate of increase in the moisture content of the gas barrier film prepared after irradiating the gas barrier film prepared immediately after the lamp is lit for 1000 hours is less than 1.5 times.
- ⁇ 1000 relative to the gas barrier film prepared immediately after the lamp is lit.
- the rate of increase in the moisture content of the gas barrier film produced after irradiation for a period of time is 1.5 times or more and less than 5.0 times.
- ⁇ The rate of increase in the moisture content of the gas barrier film sampled after the production of 60000 m with respect to the gas barrier film produced immediately after the lamp is lit is less than 1.5 times. ⁇ : after the production of 60000 m with respect to the gas barrier film produced immediately after the lamp is lit. The increase rate of the moisture content of the sampled gas barrier film is 1.5 times or more and less than 5.0 times. X: The moisture content of the gas barrier film sampled after preparation of 60000 m with respect to the gas barrier film prepared immediately after the lamp is turned on. The increase rate is 5.0 times or more Table 1 shows the results obtained.
- the water vapor concentration in the region between the excimer lamp and the base material should be regulated within the range of 150 to 930 ppm when performing surface modification treatment with excimer light after continuous conveyance. Makes it possible to obtain a gas barrier film having a good gas barrier property, and further, a gas barrier film having an excellent gas barrier property even after being irradiated with an excimer lamp for a long time or after being manufactured for a long time. Can be manufactured stably.
- the method for producing a gas barrier film of the present invention has a suitability for continuous production, can suppress a reduction in lamp illuminance and excimer lamp life of an excimer lamp, and can stably form a gas barrier layer.
- the gas barrier film produced by these can be suitably used as a sealing film for liquid crystal display elements, solar cells, organic EL elements and the like.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
Abstract
The present invention addresses the problem of providing: a process for manufacturing a gas barrier film, said process enabling continuous production and being capable of minimizing the reduction in illuminance or lifetime of an excimer lamp and forming a gas barrier layer stably; and a surface modification method which is to be applied thereto. This process for manufacturing a gas barrier film includes: applying a coating liquid that contains a polysilazane compound to at least one surface of a substrate to form a polysilazane layer; and passing the substrate provided with the polysilazane layer continuously through a surface modification section equipped with excimer lamps which emit an excimer radiation, and thus irradiating the polysilazane layer with the excimer radiation to conduct surface modification for modifying a gas barrier layer. The process is characterized in that, during the surface modification, the average water vapor concentration in a space region between the excimer lamps and the substrate is controlled to 150 to 930ppm.
Description
本発明は、ポリシラザン化合物を含むポリシラザン層にエキシマランプを照射して表面改質してガスバリアー層を形成して製造するガスバリアーフィルムの製造方法と、ガスバリアーフィルムの製造方法に用いる表面改質処理方法に関する。
The present invention relates to a method for producing a gas barrier film produced by irradiating a polysilazane layer containing a polysilazane compound with an excimer lamp to form a gas barrier layer by surface modification, and a surface modification used in the method for producing a gas barrier film. It relates to the processing method.
従来、プラスチック基板やフィルム表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜を形成したガスバリアー性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するための包装用途等に広く用いられている。また、包装用途以外にも、液晶表示素子、太陽電池、有機エレクトロルミネッセンス(以下、有機ELと略記する)素子等で使用されている。特に、液晶表示素子や有機EL素子などでは、水蒸気や空気の内部浸透が品質の劣化を招く要因となるため、高度なガスバリアー性(ガス遮断性)が要求されている。
Conventionally, a gas barrier film in which a metal oxide thin film such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used for packaging articles that require blocking of various gases such as water vapor and oxygen, Widely used in packaging applications to prevent the deterioration of food, industrial products and pharmaceuticals. In addition to packaging applications, they are used in liquid crystal display elements, solar cells, organic electroluminescence (hereinafter abbreviated as organic EL) elements, and the like. In particular, liquid crystal display elements, organic EL elements, and the like are required to have high gas barrier properties (gas barrier properties) because internal penetration of water vapor or air causes deterioration in quality.
このような問題点を解決するために、透明フィルム基材上に金属酸化物薄膜を形成してガスバリアー性を付与する新たな技術が種々検討されており、その中の一つとしてポリシラザンを塗布したフィルム基材に真空紫外光(以下、「VUV」、「VUV光」ともいう。)を照射することにより、ガスバリアー性に優れたフィルムを製造する方法が開示されている(例えば、特許文献1、2及び3参照。)。
In order to solve such problems, various new techniques for forming a metal oxide thin film on a transparent film substrate to impart gas barrier properties have been studied, and one of them is polysilazane coating. A method for producing a film having excellent gas barrier properties by irradiating the film substrate with vacuum ultraviolet light (hereinafter also referred to as “VUV” or “VUV light”) has been disclosed (for example, Patent Documents). See 1, 2 and 3.)
特許文献1には、シラザン化合物溶液を塗布した塗膜に真空紫外光照射を施すことにより、酸化ケイ素膜を作製する方法が提案されている。この方法は、シラザン化合物内の原子間結合力より大きい、真空紫外光と呼ばれる波長として100~200nmの範囲内の光エネルギーを用いる。これにより、光量子プロセスと呼ばれる光子のみによる作用により、原子の結合を直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、酸化ケイ素膜(ガスバリアー層)の形成を行うことができる。例えば、40mW/cm2の照度を有するVUV光源のエキシマランプを3~10分間照射することにより、シラザン化合物塗膜の一部、あるいは全てを酸化ケイ素膜へと転化させる方法が開示されている。
Patent Document 1 proposes a method of producing a silicon oxide film by applying vacuum ultraviolet light irradiation to a coating film coated with a silazane compound solution. This method uses light energy in the range of 100 to 200 nm as a wavelength called vacuum ultraviolet light, which is larger than the interatomic bonding force in the silazane compound. This allows the formation of a silicon oxide film (gas barrier layer) at a relatively low temperature by advancing an oxidation reaction with active oxygen or ozone while directly breaking the atomic bonds by the action of only photons called photon processes. It can be carried out. For example, a method of converting a part or all of a silazane compound coating film into a silicon oxide film by irradiating an excimer lamp of a VUV light source having an illuminance of 40 mW / cm 2 for 3 to 10 minutes is disclosed.
また、特許文献2には、水蒸気濃度が140ppm以下で、酸素濃度が0.5体積%以下という、実質的に水蒸気及び酸素を含まない環境下で、エキシマランプを照射する方法が開示されている。
Patent Document 2 discloses a method of irradiating an excimer lamp in an environment that does not contain water vapor and oxygen, in which the water vapor concentration is 140 ppm or less and the oxygen concentration is 0.5 vol% or less. .
しかしながら、特許文献1及び2に記載の方法には、連続的に基材等を搬送させながら酸化ケイ素膜を形成する方法に関する記載は全く無く、また、連続生産する際のエキシマランプの寿命及びそれに関連した生産安定性についても、一切言及がなされていない。
However, in the methods described in Patent Documents 1 and 2, there is no description regarding a method of forming a silicon oxide film while continuously transporting a substrate or the like. There is no mention of the related production stability.
特許文献3には、ロール・ツー・ロール方式で、基材を連続搬送させながら、水蒸気濃度が1000~4000ppm、酸素濃度が0.05~21体積%の環境下で、ポリシラザンを塗布したフィルム基材に真空紫外光を照射して改質処理を施して、ガスバリアーフィルムを製造する方法が開示されている。
Patent Document 3 discloses a film base coated with polysilazane in an environment where the water vapor concentration is 1000 to 4000 ppm and the oxygen concentration is 0.05 to 21% by volume while the substrate is continuously conveyed by a roll-to-roll method. A method for producing a gas barrier film by irradiating a material with vacuum ultraviolet light to perform a modification treatment is disclosed.
しかしながら、特許文献3には、連続生産する際のエキシマランプの寿命及びそれに関連した生産安定性については、一切言及されていない。
However, Patent Document 3 makes no mention of the excimer lamp life in continuous production and production stability related thereto.
また、エキシマランプは、長時間点灯により、照度の低下だけでなく、ランプ自身から発する真空紫外光によりエキシマランプ管がもろくなり、これに起因してエキシマランプの破損が発生することが知られている。このエキシマランプの破損が発生する時間は、一様ではなく、かつ破損発生の兆候も見られず、エキシマランプの破損が発生する時期を予測することが困難であった。
In addition, excimer lamps are not only reduced in illuminance due to long-time lighting, but also excimer lamp tubes are fragile due to vacuum ultraviolet light emitted from the lamps themselves, which causes excimer lamp damage. Yes. The time at which this excimer lamp breaks is not uniform and there is no sign of breakage, and it is difficult to predict when the excimer lamp breaks.
このようなランプ破損は突然発生するため、連続搬送方式で改質処理を行う際には、生産安定性に確保する上では大きな障害となっている。すなわち、上記のようなエキシマランプの破損が発生すると、塗膜に照射される光量が低下し、目標とする性能に到達することができず、結果として製品のロスが発生することとなる。特に、照射部を複数のエキシマランプにより構成する場合には、破損発生までの時間が短いと、常にランプのどれかに破損が発生し、安定した性能が発揮できない。また、点灯時間に対する照度低下が速い場合も、ランプの交換頻度が多くなり、生産安定性を低下させることになる。
Since such lamp breakage occurs suddenly, it is a major obstacle to ensuring production stability when the reforming process is performed by the continuous conveyance method. That is, when the excimer lamp is broken as described above, the amount of light applied to the coating film is reduced, the target performance cannot be reached, and as a result, a product loss occurs. In particular, in the case where the irradiating unit is constituted by a plurality of excimer lamps, if the time until the breakage is short, any of the lamps is always broken, and stable performance cannot be exhibited. In addition, when the illuminance decrease with respect to the lighting time is fast, the replacement frequency of the lamp is increased and the production stability is lowered.
本発明は、上記問題に鑑みてなされたものであり、その解決課題は、連続生産方式で行うエキシマランプ照射による表面改質処理方法を用い、エキシマランプの寿命低下(例えば、ランプ照度の低下や、エキシマランプの破損)を抑制することにより、連続生産方式においても、安定してガスバリアー層を形成することができるガスバリアーフィルムの製造方法と、それに用いる表面改質処理方法を提供することである。
The present invention has been made in view of the above-mentioned problems, and the problem to be solved is to use a surface modification treatment method by excimer lamp irradiation performed in a continuous production method, and to reduce the life of the excimer lamp (for example, decrease in lamp illuminance or By providing a method for producing a gas barrier film capable of stably forming a gas barrier layer even in a continuous production system, and a surface modification method used therefor, by suppressing damage to the excimer lamp) is there.
本発明者は、上記課題に鑑み鋭意検討を進めた結果、基材上の少なくとも一方の面側に、ポリシラザン化合物を有する塗布液を塗布して形成されたポリシラザン層を有する基材を、エキシマ光を発光するエキシマランプを具備した表面改質工程内を連続的に搬送して、前記ポリシラザン層にエキシマ光を照射して、ガスバリアー層を改質する表面改質処理を行い製造するガスバリアーフィルムの製造方法であって、表面改質処理時のエキシマランプと基材間の空間領域における平均水蒸気濃度を特定の範囲に制御するガスバリアーフィルムの製造方法を適用することにより、エキシマランプの寿命低下(ランプ照度の低下や、エキシマランプの破損)を抑制することができ、連続生産時において安定してガスバリアー層を形成することができるガスバリアーフィルムの製造方法と、それに用いる表面改質処理方法を実現することができることを見出し、本発明に至った。
As a result of intensive studies in view of the above problems, the present inventor has developed a substrate having a polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one surface side of the substrate. Gas barrier film manufactured by carrying out a surface modification process for modifying the gas barrier layer by continuously transporting the inside of the surface modification process equipped with an excimer lamp emitting light and irradiating the polysilazane layer with excimer light The life of the excimer lamp is reduced by applying a gas barrier film manufacturing method that controls the average water vapor concentration in the space region between the excimer lamp and the substrate during the surface modification treatment to a specific range. (Decrease in lamp illuminance and excimer lamp breakage) can be suppressed, and a gas barrier layer can be stably formed during continuous production. That a method for producing gas barrier film, found that it is possible to achieve a surface modification treatment method used therefor, leading to the present invention.
すなわち、本発明の上記課題は、下記の手段により解決される。
That is, the above-mentioned problem of the present invention is solved by the following means.
1.基材上の少なくとも一方の面側に、ポリシラザン化合物を有する塗布液を塗布して形成されたポリシラザン層を、エキシマ光を発光するエキシマランプを具備した表面改質工程内を連続的に搬送し、前記ポリシラザン層に前記エキシマ光を照射して、ガスバリアー層を改質する表面改質処理を行い製造するガスバリアーフィルムの製造方法であって、
前記表面改質処理時の前記エキシマランプと前記基材間の空間領域における平均水蒸気濃度が、150~930ppmの範囲内とすることを特徴とするガスバリアーフィルムの製造方法。 1. A polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one surface side on a substrate is continuously conveyed in a surface modification step including an excimer lamp that emits excimer light, A method for producing a gas barrier film, wherein the polysilazane layer is irradiated with the excimer light to perform a surface modification treatment for modifying the gas barrier layer,
A method for producing a gas barrier film, wherein an average water vapor concentration in a space region between the excimer lamp and the base material during the surface modification treatment is in a range of 150 to 930 ppm.
前記表面改質処理時の前記エキシマランプと前記基材間の空間領域における平均水蒸気濃度が、150~930ppmの範囲内とすることを特徴とするガスバリアーフィルムの製造方法。 1. A polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one surface side on a substrate is continuously conveyed in a surface modification step including an excimer lamp that emits excimer light, A method for producing a gas barrier film, wherein the polysilazane layer is irradiated with the excimer light to perform a surface modification treatment for modifying the gas barrier layer,
A method for producing a gas barrier film, wherein an average water vapor concentration in a space region between the excimer lamp and the base material during the surface modification treatment is in a range of 150 to 930 ppm.
2.前記エキシマランプのランプ管表面におけるピーク照度が、50mW/cm2以上であることを特徴とする第1項に記載のガスバリアーフィルムの製造方法。
2. 2. The method for producing a gas barrier film according to claim 1, wherein a peak illuminance on the surface of the lamp tube of the excimer lamp is 50 mW / cm 2 or more.
3.前記エキシマランプのランプ管表面におけるピーク照度が、80mW/cm2以上であることを特徴とする第1項又は第2項に記載のガスバリアーフィルムの製造方法。
3. 3. The method for producing a gas barrier film according to claim 1 or 2, wherein the excimer lamp has a peak illuminance on the surface of the lamp tube of 80 mW / cm 2 or more.
4.対向する位置にある前記エキシマランプのランプ管表面と前記基材上のポリシラザン層面との最短距離が、0.1~9.0mmの範囲内であることを特徴とする第1項から第3項までのいずれか一項に記載のガスバリアーフィルムの製造方法。
4. The first to third items, wherein the shortest distance between the surface of the lamp tube of the excimer lamp and the surface of the polysilazane layer on the substrate in the facing position is within a range of 0.1 to 9.0 mm. The manufacturing method of the gas barrier film as described in any one of the above.
5.前記表面改質工程が、複数個のエキシマランプが設置されていることを特徴とする第1項から第4項までのいずれか一項に記載のガスバリアーフィルムの製造方法。
5. The method for producing a gas barrier film according to any one of Items 1 to 4, wherein the surface modification step includes a plurality of excimer lamps.
6.前記表面改質工程が、前記エキシマランプが前記基材の搬送方向に対し10基以上並列に配置されていることを特徴とする第1項から第5項までのいずれか一項に記載のガスバリアーフィルムの製造方法。
6. The gas according to any one of claims 1 to 5, wherein in the surface modification step, 10 or more of the excimer lamps are arranged in parallel with respect to the transport direction of the base material. A method for producing a barrier film.
7.前記ポリシラザン化合物が、パーヒドロポリシラザンであることを特徴とする第1項から第6項までのいずれか一項に記載のガスバリアーフィルムの製造方法。
7. The method for producing a gas barrier film according to any one of Items 1 to 6, wherein the polysilazane compound is perhydropolysilazane.
8.第1項から第7項までのいずれか一項に記載のガスバリアーフィルムの製造方法に用いることを特徴とする表面改質処理方法。
8. A surface modification treatment method, which is used in the method for producing a gas barrier film according to any one of items 1 to 7.
本発明の上記手段により、連続生産適性を有し、エキシマランプのランプ照度の低下やエキシマランプの寿命低下を抑制でき、かつガスバリアー層を安定して形成することができるガスバリアーフィルムの製造方法及びそれに用いる表面改質処理方法を提供することができる。
By the above means of the present invention, a method for producing a gas barrier film having suitability for continuous production, capable of suppressing a decrease in lamp illuminance of an excimer lamp and a decrease in lifetime of an excimer lamp, and capable of stably forming a gas barrier layer And a surface modification treatment method used therefor.
すなわち、本発明の技術的特徴は、表面改質処理時のエキシマランプと基材間の空間領域(以下、処理空間ともいう。)における平均水蒸気濃度を、150~930ppmの範囲内に制御して表面改質処理を施すことを特徴とするが、表面改質処理時の平均水蒸気濃度が150ppm以上であれば、エキシマ光によりポリシラザン層から発生するアンモニア成分とエキシマランプ管とが反応することによる照度低下を防止することができる。一方、表面改質処理時の平均水蒸気濃度が930ppm以下であれば、エキシマ光によって活性化されるエキシマランプ管と、雰囲気中の水分とが反応することにより、エキシマランプの脆弱化を防止することができる。したがって、平均水蒸気濃度として150~930ppmの範囲内にある処理空間で表面改質処理を行うことにより、エキシマランプ管の照度安定性及び脆弱耐性を向上することができる。
That is, the technical feature of the present invention is that the average water vapor concentration in the space region between the excimer lamp and the substrate during the surface modification treatment (hereinafter also referred to as the treatment space) is controlled within the range of 150 to 930 ppm. If the average water vapor concentration during the surface modification treatment is 150 ppm or more, the illuminance caused by the reaction between the ammonia component generated from the polysilazane layer by the excimer light and the excimer lamp tube A decrease can be prevented. On the other hand, if the average water vapor concentration during the surface modification treatment is 930 ppm or less, the excimer lamp activated by the excimer light reacts with moisture in the atmosphere to prevent the excimer lamp from becoming weak. Can do. Therefore, the illuminance stability and fragility resistance of the excimer lamp tube can be improved by performing the surface modification treatment in a treatment space having an average water vapor concentration in the range of 150 to 930 ppm.
本発明のガスバリアーフィルムの製造方法は、基材上の少なくとも一方の面側に、ポリシラザン化合物を有する塗布液を塗布して形成されたポリシラザン層を、エキシマ光を発光するエキシマランプを具備した表面改質工程内を連続的に搬送し、前記ポリシラザン層に前記エキシマ光を照射して、ガスバリアー層を改質する表面改質処理を行い製造するガスバリアーフィルムの製造方法であって、
前記表面改質処理時の前記エキシマランプと前記基材間の空間領域における平均水蒸気濃度が、150~930ppmの範囲内とすることを特徴とする。この特徴は、請求項1から請求項8に係る発明に共通する技術的特徴である。 The method for producing a gas barrier film of the present invention comprises a polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one side of a substrate, and a surface having an excimer lamp that emits excimer light. A method for producing a gas barrier film, which is produced by carrying out a surface modification treatment for continuously conveying the inside of a reforming process, irradiating the excimer light to the polysilazane layer, and modifying the gas barrier layer,
An average water vapor concentration in a space region between the excimer lamp and the base material during the surface modification treatment is in a range of 150 to 930 ppm. This feature is a technical feature common to the inventions according toclaims 1 to 8.
前記表面改質処理時の前記エキシマランプと前記基材間の空間領域における平均水蒸気濃度が、150~930ppmの範囲内とすることを特徴とする。この特徴は、請求項1から請求項8に係る発明に共通する技術的特徴である。 The method for producing a gas barrier film of the present invention comprises a polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one side of a substrate, and a surface having an excimer lamp that emits excimer light. A method for producing a gas barrier film, which is produced by carrying out a surface modification treatment for continuously conveying the inside of a reforming process, irradiating the excimer light to the polysilazane layer, and modifying the gas barrier layer,
An average water vapor concentration in a space region between the excimer lamp and the base material during the surface modification treatment is in a range of 150 to 930 ppm. This feature is a technical feature common to the inventions according to
本発明の実施態様としては、本発明の目的とする効果をより発現できる観点から、前記エキシマランプのランプ管表面におけるピーク照度が、50mW/cm2以上であること、更には80mW/cm2以上であることが、ランプの連続照射時の照度安定性に優れている観点から好ましい。
The embodiments of the present invention, from the viewpoint of further expressing the aimed effects of the present invention, the peak irradiance of the lamp tube surface of the excimer lamp, it is 50 mW / cm 2 or more, further 80 mW / cm 2 or more It is preferable from the viewpoint of excellent illuminance stability during continuous irradiation of the lamp.
また、対向する位置にある前記エキシマランプのランプ管表面と前記基材上のポリシラザン層面との最短距離を0.1~9.0mmの範囲内に設定することにより、安定した基材搬送性とランプの連続照射時の照度安定性に優れている観点から好ましい。
Further, by setting the shortest distance between the surface of the lamp tube of the excimer lamp and the polysilazane layer surface on the base material in the facing position within the range of 0.1 to 9.0 mm, stable base material transportability and This is preferable from the viewpoint of excellent illuminance stability during continuous irradiation of the lamp.
また、前記表面改質工程は、生産性の観点から複数個のエキシマランプが設置されていること、更には前記エキシマランプが、前記基材の搬送方向に10基以上並列に配置されている構成であることが好ましい。
Further, in the surface modification step, a plurality of excimer lamps are installed from the viewpoint of productivity, and more than 10 excimer lamps are arranged in parallel in the transport direction of the base material. It is preferable that
なお、本発明でいう「ガスバリアー性」とは、水分子や酸素分子等の気体の透過を抑制することを示し、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(温度:40±0.5℃、相対湿度(RH):90±2%)が1×10-1g/(m2・24h)以下であり、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1mL/m2・24h・atm以下であることを意味する。
The “gas barrier property” as used in the present invention means suppression of permeation of gas such as water molecules and oxygen molecules, and water vapor permeability (temperature: measured by a method based on JIS K 7129-1992). 40 ± 0.5 ° C., relative humidity (RH): 90 ± 2%) is 1 × 10 −1 g / (m 2 · 24 h) or less, and oxygen measured by a method according to JIS K 7126-1987 It means that the permeability is 1 mL / m 2 · 24 h · atm or less.
また、本発明でいう表面改質処理時におけるエキシマランプと基材間の空間領域における平均水蒸気濃度とは、エキシマランプを発光させた状態で、当該空間領域の10か所について、静電容量式露点計又は鏡面冷却式露点計を用いて水蒸気濃度を測定し、その算術平均値をもって、本発明でいう空間領域における平均水蒸気濃度と定義する。なお、測定温度は、エキシマランプの照射条件により空間領域の温度が変化するため、一概に規定することはできない。
Further, the average water vapor concentration in the space region between the excimer lamp and the base material during the surface modification treatment referred to in the present invention is a capacitance type for 10 places in the space region in a state where the excimer lamp is caused to emit light. The water vapor concentration is measured using a dew point meter or a mirror-cooled dew point meter, and the arithmetic average value is defined as the average water vapor concentration in the spatial region referred to in the present invention. Note that the measured temperature cannot be generally defined because the temperature in the space region varies depending on the irradiation conditions of the excimer lamp.
また、本発明において、「真空紫外線」、「真空紫外光」、「VUV」、「VUV光」とは、具体的には波長が100~200nmの範囲内にある光を意味する。
In the present invention, “vacuum ultraviolet light”, “vacuum ultraviolet light”, “VUV”, and “VUV light” specifically mean light having a wavelength in the range of 100 to 200 nm.
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the following description, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
《ガスバリアーフィルムの製造方法》
本発明のガスバリアーフィルムの製造方法は、基材上の少なくとも一方の面側に、ポリシラザン化合物を有する塗布液を塗布して形成されたポリシラザン層を、エキシマ光を発光するエキシマランプを具備した表面改質工程内を連続的に搬送し、前記ポリシラザン層に前記エキシマ光を照射して、ガスバリアー層を改質する表面改質処理を行い製造するガスバリアーフィルムの製造方法であって、前記表面改質処理時の前記エキシマランプと前記基材間の空間領域における平均水蒸気濃度が、150~930ppmの範囲内とすることを特徴とする。 << Method for producing gas barrier film >>
The method for producing a gas barrier film of the present invention comprises a polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one side of a substrate, and a surface having an excimer lamp that emits excimer light. A method for producing a gas barrier film, which is produced by carrying out a surface modification treatment for modifying a gas barrier layer by continuously conveying the inside of a modification step and irradiating the excimer light to the polysilazane layer. An average water vapor concentration in a space region between the excimer lamp and the base material during the reforming treatment is in a range of 150 to 930 ppm.
本発明のガスバリアーフィルムの製造方法は、基材上の少なくとも一方の面側に、ポリシラザン化合物を有する塗布液を塗布して形成されたポリシラザン層を、エキシマ光を発光するエキシマランプを具備した表面改質工程内を連続的に搬送し、前記ポリシラザン層に前記エキシマ光を照射して、ガスバリアー層を改質する表面改質処理を行い製造するガスバリアーフィルムの製造方法であって、前記表面改質処理時の前記エキシマランプと前記基材間の空間領域における平均水蒸気濃度が、150~930ppmの範囲内とすることを特徴とする。 << Method for producing gas barrier film >>
The method for producing a gas barrier film of the present invention comprises a polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one side of a substrate, and a surface having an excimer lamp that emits excimer light. A method for producing a gas barrier film, which is produced by carrying out a surface modification treatment for modifying a gas barrier layer by continuously conveying the inside of a modification step and irradiating the excimer light to the polysilazane layer. An average water vapor concentration in a space region between the excimer lamp and the base material during the reforming treatment is in a range of 150 to 930 ppm.
従って、本発明においては、ポリシラザン化合物を有する塗布液を塗布して形成されたポリシラザン層に改質処理を施した層を、ガスバリアー層と称す。
Therefore, in the present invention, a layer obtained by modifying a polysilazane layer formed by applying a coating liquid having a polysilazane compound is referred to as a gas barrier layer.
なお、本発明において、表面改質処理時に、本発明で規定する平均水蒸気濃度を150~930ppmの範囲内に制御する空間領域とは、具体的には、後述する図1Bに示す空間領域Sの領域内で、エキシマランプ3より照射されるエキシマ光照射領域7と定義する。
In the present invention, the spatial region in which the average water vapor concentration defined in the present invention is controlled within the range of 150 to 930 ppm during the surface modification treatment is specifically the spatial region S shown in FIG. 1B described later. Within the region, an excimer light irradiation region 7 irradiated from the excimer lamp 3 is defined.
以下、本発明の表面改質処理方法で適用する具体的な各要件について説明する。
Hereinafter, specific requirements applied in the surface modification treatment method of the present invention will be described.
はじめに、本発明のガスバリアーフィルムの製造方法について、図を交えて説明する。
First, a method for producing a gas barrier film of the present invention will be described with reference to the drawings.
本発明のガスバリアーフィルムの製造方法は、少なくとも一方の面側に、ポリシラザン化合物を有する塗布液を塗布して形成されたポリシラザン層を有する基材を、エキシマ光を発光するエキシマランプを具備した表面改質工程内を連続的に搬送し、前記エキシマランプと前記基材間の空間領域の平均水蒸気濃度が150~930ppmの範囲内である条件下で、前記ポリシラザン層に表面改質処理を施して、ガスバリアー層に改質することを特徴としている。
The method for producing a gas barrier film of the present invention comprises a substrate having an excimer lamp that emits excimer light on a substrate having a polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one surface side. The polysilazane layer is subjected to surface modification treatment under the condition that the inside of the reforming process is continuously conveyed and the average water vapor concentration in the space region between the excimer lamp and the substrate is in the range of 150 to 930 ppm. It is characterized by being modified into a gas barrier layer.
すなわち、前述のように、表面改質処理時の平均水蒸気濃度が150ppm以上であれば、エキシマ光によりポリシラザン層から発生するアンモニア成分とエキシマランプ管とが反応することによる照度低下を防止することができる。一方、表面改質処理時の平均水蒸気濃度が930ppm以下であれば、エキシマ光によって活性化されるエキシマランプ管と、雰囲気中の水分とが反応することにより、エキシマランプの脆弱化を防止することができる。したがって、水蒸気濃度として150~930ppmの範囲内で表面改質処理を行うことにより、エキシマランプ管の照度安定性及び脆弱耐性を向上することができる。
That is, as described above, if the average water vapor concentration during the surface modification treatment is 150 ppm or more, it is possible to prevent a decrease in illuminance due to the reaction between the ammonia component generated from the polysilazane layer by the excimer light and the excimer lamp tube. it can. On the other hand, if the average water vapor concentration during the surface modification treatment is 930 ppm or less, the excimer lamp activated by the excimer light reacts with moisture in the atmosphere to prevent the excimer lamp from becoming weak. Can do. Therefore, the illuminance stability and fragility resistance of the excimer lamp tube can be improved by performing the surface modification treatment within the range of 150 to 930 ppm as the water vapor concentration.
また、対向する位置にあるエキシマランプのランプ管表面と基材上のポリシラザン層面との最短距離が、0.1~9.0mmの範囲内であることが好ましい態様である。
Also, it is preferable that the shortest distance between the surface of the lamp tube of the excimer lamp at the facing position and the polysilazane layer surface on the substrate is in the range of 0.1 to 9.0 mm.
また、本発明に係る表面改質工程が、複数個のエキシマランプ、好ましくはエキシマランプが基材の搬送方向に対し10基以上並列に配置されている構成が好ましい実施の態様である。
Also, the surface modification step according to the present invention is a preferred embodiment in which a plurality of excimer lamps, preferably 10 or more excimer lamps are arranged in parallel with respect to the substrate transport direction.
図1Aは、本発明のガスバリアーフィルムの製造方法に用いることができるキセノンエキシマ照射ユニットの一例を示す外観図である。図1Aにおいて、キセノンエキシマ照射ユニット1は、エキシマランプホルダー2とエキシマランプ3と、複数の窒素ガス及び水蒸気供給用配管入口4とを備えている。
FIG. 1A is an external view showing an example of a xenon excimer irradiation unit that can be used in the method for producing a gas barrier film of the present invention. 1A, the xenon excimer irradiation unit 1 includes an excimer lamp holder 2, an excimer lamp 3, and a plurality of nitrogen gas and water vapor supply pipe inlets 4.
図1Bは、図1Aで示したキセノンエキシマ光照射ユニット1のA-Aの切断面における断面図である。図1Bにおいて、エキシマランプホルダー2内には、窒素ガス及び水蒸気供給用配管入口4から、窒素ガス(N2)と、所定の水蒸気濃度となる条件で含む水蒸気(H2O)とが供給され、窒素ガス及び水蒸気供給用配管5を通って、エキシマランプ3の幅手の両サイドから、下方に位置するポリシラザン化合物を有する塗布液を塗布して形成されたポリシラザン層8を表面に有する基材9に向かって窒素ガス及び濃度が制御された水蒸気6を噴射させることができる。また、エキシマランプ3は、エキシマ光7を下方の基材9に向かって照射する。
1B is a cross-sectional view taken along the line AA of the xenon excimer light irradiation unit 1 shown in FIG. 1A. In FIG. 1B, the excimer lamp holder 2 is supplied with nitrogen gas (N 2 ) and water vapor (H 2 O) containing a predetermined water vapor concentration from a nitrogen gas and water vapor supply pipe inlet 4. A substrate having a polysilazane layer 8 formed on the surface by applying a coating solution having a polysilazane compound located below from both sides of the excimer lamp 3 through the piping 5 for supplying nitrogen gas and water vapor. The nitrogen gas and the water vapor | steam 6 by which the density | concentration were controlled toward 9 can be injected. The excimer lamp 3 irradiates the excimer light 7 toward the lower substrate 9.
本発明に係るエキシマランプ3の近傍の水蒸気濃度は、図1Bに示す空間領域Sを、水蒸気濃度測定センサーを直接配置もしくは、チューブ等でのサンプリングにより測定できる。なお、本発明でいう空間領域とは、前述のように、エキシマランプ3より照射されるエキシマ光照射領域7であると定義する。
The water vapor concentration in the vicinity of the excimer lamp 3 according to the present invention can be measured in the space region S shown in FIG. 1B by directly arranging a water vapor concentration measuring sensor or sampling with a tube or the like. In addition, the space area | region said by this invention is defined as the excimer light irradiation area | region 7 irradiated from the excimer lamp 3 as mentioned above.
この時、エキシマ光の照射領域7内での測定のサンプリング数は10か所とし、その平均値を求め、これを空間領域Sであるエキシマ光の照射領域7における平均水蒸気濃度とする。測定された水蒸気濃度情報に従って、所望の水蒸気濃度となるように、窒素ガス及び水蒸気供給用配管入口4から供給する混合気体中の水蒸気濃度を制御する方法が好ましい。また、後述の図2に示すような周囲を密閉した構造であるエキシマ光照射部34の内部に、適当な間隔でエキシマランプのエキシマ光の照射領域に複数基(例えば、10基)の水蒸気濃度測定センサーSを配置し、複数の測定データの平均値を求め、その測定結果より、窒素ガス及び水蒸気供給用配管入口4から供給する混合気体中の水蒸気濃度を制御する方法も適用することができる。
At this time, the number of samplings in the excimer light irradiation area 7 is set to 10 and the average value is obtained, and this is set as the average water vapor concentration in the excimer light irradiation area 7 which is the space area S. According to the measured water vapor concentration information, a method of controlling the water vapor concentration in the mixed gas supplied from the nitrogen gas and water vapor supply pipe inlet 4 so as to obtain a desired water vapor concentration is preferable. In addition, a plurality of (for example, 10) water vapor concentrations in an excimer light irradiation region of an excimer lamp at an appropriate interval inside an excimer light irradiation unit 34 having a structure in which the periphery is sealed as shown in FIG. It is also possible to apply a method in which the measurement sensor S is arranged, an average value of a plurality of measurement data is obtained, and the concentration of water vapor in the mixed gas supplied from the nitrogen gas and water vapor supply pipe inlet 4 is controlled based on the measurement result. .
また、その他の方法としては、後述の図2に示すような周囲を密閉した構造であるエキシマ光照射部34の内部に、適当な間隔でエキシマランプのエキシマ照射領域に複数基、例えば、10基の水蒸気濃度測定センサーを配置し、複数の測定データの平均値を求め、その測定結果より、エキシマ光照射部34の内部に設けた水蒸気濃度調整装置により、加湿あるいは除湿を行って、エキシマ光照射部34の内部及びエキシマランプのエキシマ照射領域の水蒸気濃度を所定の条件に制御する方法も、好適な方法である。
Further, as another method, a plurality of groups, for example, 10 groups, are provided in the excimer irradiation region of the excimer lamp at an appropriate interval inside the excimer light irradiation unit 34 having a structure in which the periphery is sealed as shown in FIG. The water vapor concentration measurement sensor is arranged, an average value of a plurality of measurement data is obtained, and the excimer light irradiation is performed by the humidification or dehumidification by the water vapor concentration adjusting device provided in the excimer light irradiation unit 34 from the measurement result. A method for controlling the water vapor concentration inside the unit 34 and the excimer irradiation area of the excimer lamp to a predetermined condition is also a suitable method.
水蒸気濃度測定センサーとしては、一般に市販されている静電容量式露点計や鏡面冷却式露点計を好ましく用いることができる。
As the water vapor concentration measurement sensor, a commercially available capacitance type dew point meter or mirror cooled dew point meter can be preferably used.
また、図1Bに示すように、本発明においては、エキシマランプ3のランプ管表面と基材上のポリシラザン層8面との最短距離hが、0.1~9.0mmの範囲内であることが好ましい。
As shown in FIG. 1B, in the present invention, the shortest distance h between the lamp tube surface of the excimer lamp 3 and the surface of the polysilazane layer 8 on the substrate is in the range of 0.1 to 9.0 mm. Is preferred.
すなわち、当該最短距離hが0.1mm以上であれば、表面改質処理時に、エキシマランプと基材間に、それぞれ接触することなく、安定した搬送性を確保することができる。一方、短距離hが9.0mm以下であれば、エキシマランプより照射されるエキシマ光(真空紫外光)が、大気中の酸素や水分子に吸収されることなく、所望のエキシマ光を、安定して基材表面に照射することができる。
That is, when the shortest distance h is 0.1 mm or more, stable transportability can be ensured without contact between the excimer lamp and the base material during the surface modification treatment. On the other hand, if the short distance h is 9.0 mm or less, the excimer light (vacuum ultraviolet light) emitted from the excimer lamp is not absorbed by oxygen or water molecules in the atmosphere, and the desired excimer light is stabilized. Then, the substrate surface can be irradiated.
図2は、本発明に係る表面改質処理部を有し、連続搬送してガスバリアーフィルムを製造することができるガスバリアーフィルム製造装置の構成を示す概略断面図であり、一例として、積層したロール状のフィルム基材21を用いて連続搬送するロール・ツー・ロール方式の製造装置を示してある。
FIG. 2 is a schematic cross-sectional view showing a configuration of a gas barrier film manufacturing apparatus that has a surface modification treatment unit according to the present invention and can continuously convey and manufacture a gas barrier film, and is laminated as an example. A roll-to-roll manufacturing apparatus that continuously conveys a roll-shaped film substrate 21 is shown.
図2に示すガスバリアーフィルム製造装置30では、フィルム基材21をロール状に積層した状態から繰り出すための繰り出し部31と、フィルム基材21上にポリシラザン化合物を含有する塗布液を塗布してポリシラザン層を形成するための塗布部に装備したコーター32と、フィルム基材21上に形成したポリシラザン層を乾燥する乾燥部33と、フィルム基材21上のポリシラザン層にエキシマ光を照射してポリシラザン層を改質処理するエキシマ光照射部34と、改質処理により得られたガスバリアーフィルムをロール状に巻き取る巻き取り部35を備え、フィルム基材を連続的に搬送しながら表面改質処理を行う。
In the gas barrier film manufacturing apparatus 30 shown in FIG. 2, a polysilazane is coated by applying a feeding unit 31 for feeding out the film base material 21 from a state where the film base material 21 is laminated in a roll shape, and a coating liquid containing a polysilazane compound on the film base material 21. The coater 32 equipped in the coating part for forming the layer, the drying part 33 for drying the polysilazane layer formed on the film substrate 21, and the polysilazane layer by irradiating the polysilazane layer on the film substrate 21 with excimer light An excimer light irradiation unit 34 for modifying the film and a winding unit 35 for winding the gas barrier film obtained by the modification process into a roll shape, and performing the surface modification process while continuously transporting the film substrate. Do.
より具体的な方法としては、繰り出し部31において、長尺のフィルム基材21をロール状に積層した積層ロールからフィルム基材21を繰り出す。次いで、塗布部に装備した湿式塗布方式のコーター32を用いて、フィルム基材21上にポリシラザン化合物を有する塗布液を、コーター32への供給量を制御しながら所望の湿潤膜厚で塗布して、フィルム基材21上に湿潤状態のポリシラザン層8を形成する。次いで、形成した湿潤状態のポリシラザン層8を有するフィルム基材21を乾燥部33に移動し、温風、加熱ヒーター等の乾燥手段を用いた乾燥機によって、フィルム基材21上のポリシラザン層8を乾燥する。
As a more specific method, the film base 21 is fed out from a laminating roll obtained by laminating the long film base 21 in a roll shape in the feeding section 31. Next, a coating liquid having a polysilazane compound is applied on the film substrate 21 with a desired wet film thickness while controlling the amount supplied to the coater 32 using a wet coating type coater 32 equipped in the coating unit. Then, the wet polysilazane layer 8 is formed on the film substrate 21. Next, the formed film substrate 21 having the wet polysilazane layer 8 is moved to the drying unit 33, and the polysilazane layer 8 on the film substrate 21 is removed by a dryer using drying means such as warm air and a heater. dry.
乾燥したポリシラザン層8を形成したフィルム基材21は、次工程であるエキシマ光照射部34に移動する。
The film substrate 21 on which the dried polysilazane layer 8 is formed moves to the excimer light irradiation unit 34 which is the next step.
エキシマ光を照射してポリシラザン層8に表面改質処理を施すエキシマ光照射部34は、複数の図1に示したエキシマ光照射ユニットU1~U30と、フィルム基材21を搬送するための搬送手段20を備えている。さらに、個々のエキシマ光照射ユニットU1~U30に窒素ガス及び水蒸気を供給するための配管(不図示)とエキシマ光照射部34内の水蒸気濃度を調整し、窒素ガス及び水蒸気雰囲気にするための窒素ガス及び水蒸気のガス注入口36と、窒素ガス及び水蒸気の排出口37とを備えている。このエキシマ光照射部34内部には、蒸気濃度測定センサー(不図示)が設けられており、その測定情報に従って、窒素ガス及び水蒸気の混合ガス中の水蒸気濃度を所定の条件に制御する。
Excimer light irradiating section 34 for irradiating excimer light and subjecting polysilazane layer 8 to surface modification treatment includes a plurality of excimer light irradiating units U1 to U30 shown in FIG. 20 is provided. Further, a pipe (not shown) for supplying nitrogen gas and water vapor to each of the excimer light irradiation units U1 to U30 and a water vapor concentration in the excimer light irradiation unit 34 are adjusted to form nitrogen gas and a water vapor atmosphere. A gas and water vapor inlet 36 and a nitrogen gas and water vapor outlet 37 are provided. A vapor concentration measurement sensor (not shown) is provided inside the excimer light irradiation unit 34, and the water vapor concentration in the mixed gas of nitrogen gas and water vapor is controlled to a predetermined condition according to the measurement information.
搬送ロール20によって搬送されるフィルム基材21の下部には、フィルム基材21の塗膜と反対側の面を大気圧に対して減圧にするための部材として、吸引壁38が存在する。複数の搬送ロール20の間には間隙が存在するため、吸引壁38のフィルム基材21側を吸引口39から真空ポンプ(不図示)を用いて吸引することにより、フィルム基材21の塗膜と反対側の面を大気圧に対して減圧にすることができる。40は、減圧の際の圧力を測定する位置を示している。
At the lower part of the film base 21 transported by the transport roll 20, there is a suction wall 38 as a member for reducing the surface of the film base 21 opposite to the coating film to the atmospheric pressure. Since there is a gap between the plurality of transport rolls 20, the film base 21 side of the suction wall 38 is sucked from the suction port 39 using a vacuum pump (not shown). The surface on the opposite side can be depressurized with respect to atmospheric pressure. Reference numeral 40 denotes a position for measuring the pressure during decompression.
本発明の表面改質処理方法においては、図2に例示したように、エキシマ光照射部34が複数個のエキシマランプ(エキシマ光照射ユニット1)で構成されていることが、処理効率を上げることができる点から好ましい構成である。
In the surface modification treatment method of the present invention, as illustrated in FIG. 2, the excimer light irradiation unit 34 is configured by a plurality of excimer lamps (excimer light irradiation unit 1) to increase the processing efficiency. This is a preferable configuration from the point that
より好ましくは、エキシマランプがフィルム基材の搬送方向に対し10基以上並列に配置されている構成であることが好ましい実施の態様である。少数のエキシマランプを用いた方法では、所望の改質処理を達成するためには高照射エネルギー量を基材に付与する必要があり、このようなエキシマ光の照射により、基材の温度が上昇して、基材が熱によるダメージを受けやすくなる。これに対し、エキシマランプを10基以上使用することにより、基材への熱ダメージを抑制し、かつ連続的に高速で表面改質処理を行うことが可能となる。
More preferably, it is a preferred embodiment that 10 or more excimer lamps are arranged in parallel with respect to the transport direction of the film substrate. In a method using a small number of excimer lamps, it is necessary to impart a high irradiation energy amount to the substrate in order to achieve the desired modification treatment, and the temperature of the substrate rises due to such excimer light irradiation. Thus, the base material is easily damaged by heat. On the other hand, by using 10 or more excimer lamps, it is possible to suppress thermal damage to the substrate and perform surface modification treatment continuously at a high speed.
《エキシマ処理》
次いで、ポリシラザン化合物を含有するポリシラザン層の改質処理として、上記で説明した本発明のエキシマ光を発光するエキシマランプを用いた表面改質処理(以下、エキシマ処理ともいう。)の詳細について説明する。 《Excimer processing》
Next, as the modification treatment of the polysilazane layer containing the polysilazane compound, details of the surface modification treatment using the excimer lamp that emits excimer light according to the present invention described above (hereinafter also referred to as excimer treatment) will be described. .
次いで、ポリシラザン化合物を含有するポリシラザン層の改質処理として、上記で説明した本発明のエキシマ光を発光するエキシマランプを用いた表面改質処理(以下、エキシマ処理ともいう。)の詳細について説明する。 《Excimer processing》
Next, as the modification treatment of the polysilazane layer containing the polysilazane compound, details of the surface modification treatment using the excimer lamp that emits excimer light according to the present invention described above (hereinafter also referred to as excimer treatment) will be described. .
本発明におけるエキシマ光照射工程において、エキシマランプのランプ管表面におけるピーク照度としては、好ましくは50mW/cm2以上であり、より好ましくは50~500mW/cm2の範囲内であり、更に好ましくは80mW/cm2以上であり、特に好ましくは、80~200mW/cm2の範囲内である。ピーク照度が50mW/cm2以上であれば、改質効率の低下の懸念がなく、500mW/cm2以下であれば、ポリシラザン層にアブレーション(熱破壊による構成成分の蒸発や飛散)が生じることがなく、基材にダメージを与えないため好ましい。一般に、低い照度条件では、所望の照度を得るためには、多数のエキシマランプ、あるいは改質処理の低速化が必要となり、逆に高い照度条件では、改質処理効率としては十分であるが、エキシマランプの寿命が短くなるという問題を抱えており、本発明では、50~500mW/cm2の範囲内とすることが、上記の条件を両立することができる観点から好ましい。
In the excimer light irradiation step in the present invention, the peak illuminance on the surface of the lamp tube of the excimer lamp is preferably 50 mW / cm 2 or more, more preferably in the range of 50 to 500 mW / cm 2 , further preferably 80 mW. / Cm 2 or more, particularly preferably in the range of 80 to 200 mW / cm 2 . If the peak illuminance is 50 mW / cm 2 or more, there is no concern about a reduction in the reforming efficiency. If the peak illuminance is 500 mW / cm 2 or less, ablation (evaporation or scattering of components due to thermal destruction) may occur in the polysilazane layer. And is preferable because it does not damage the substrate. Generally, in order to obtain a desired illuminance under low illuminance conditions, it is necessary to reduce the number of excimer lamps or the reforming process. Conversely, under high illuminance conditions, the reforming process efficiency is sufficient. There is a problem that the life of the excimer lamp is shortened. In the present invention, the range of 50 to 500 mW / cm 2 is preferable from the viewpoint of satisfying the above conditions.
エキシマランプのランプ管表面におけるピーク照度の測定は、照度計(浜松ホトニクス製、C9536/H9535-172)を、エキシマランプのランプ管面下部に所定の位置に配置して測定することができる。所望のピーク照度を得るためには、エキシマランプの種類の選択、あるいは印加電圧等を適宜調整する。
The peak illuminance on the surface of the excimer lamp can be measured by placing an illuminometer (C9536 / H95535-172 manufactured by Hamamatsu Photonics) at a predetermined position below the surface of the excimer lamp. In order to obtain a desired peak illuminance, the type of excimer lamp is selected or the applied voltage is adjusted as appropriate.
ポリシラザン層面におけるエキシマ光の照射エネルギー量は、200~20000mJ/cm2の範囲内であることが好ましく、500~10000mJ/cm2の範囲内であることがより好ましい。200mJ/cm2以上であれば、改質を十分に行うことができ、20000mJ/cm2以下であれば、過剰改質にならずクラック発生や、基材の熱変形を防止することができる。
The amount of excimer light irradiation energy on the polysilazane layer surface is preferably in the range of 200 to 20000 mJ / cm 2 , and more preferably in the range of 500 to 10000 mJ / cm 2 . If it is 200 mJ / cm 2 or more, the modification can be carried out sufficiently, and if it is 20000 mJ / cm 2 or less, it is not over-reformed and cracking and thermal deformation of the substrate can be prevented.
また、エキシマ光の照射時間を長くすることで、ポリシラザン層に占める改質部分の膜厚を厚くすることが可能となる。しかし、照射時間が長過ぎると改質処理を施すポリシラザン層面の平面性の劣化やガスバリアーフィルムとしたときに、他の構成材料にダメージを与える場合がある。本発明においては、連続生産を可能にするためにも、照射時間としては0.1秒~10分の範囲内にすることが好ましく、より好ましくは0.5秒~3分の範囲内である。
In addition, it is possible to increase the film thickness of the modified portion in the polysilazane layer by extending the excimer light irradiation time. However, if the irradiation time is too long, the planarity of the polysilazane layer subjected to the modification treatment may be deteriorated or the gas barrier film may be damaged. In the present invention, in order to enable continuous production, the irradiation time is preferably within a range of 0.1 second to 10 minutes, and more preferably within a range of 0.5 second to 3 minutes. .
本発明においては、真空紫外光源としてエキシマランプを用いることを特徴とし、希ガスエキシマランプが好ましく用いられる。Xe、Kr、Ar、Neなどの希ガスの原子は、化学的に結合して分子を作らないため、不活性ガスと呼ばれる。
In the present invention, an excimer lamp is used as a vacuum ultraviolet light source, and a rare gas excimer lamp is preferably used. A rare gas atom such as Xe, Kr, Ar, Ne, etc. is called an inert gas because it does not form a molecule by chemically bonding.
Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。
The Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
紫外線光照射時の反応には、酸素が必要であるが、エキシマ光は、酸素による吸収があるため、酸素が存在すると紫外線照射工程での効率が低下しやすいことから、エキシマ光の照射においては、可能な限り酸素濃度の低い状態で行うことが好ましい。すなわち、エキシマ光照射時の酸素濃度は、10~10000ppmの範囲内とすることが好ましく、より好ましくは50~5000ppmの範囲内である。
Oxygen is required for the reaction at the time of ultraviolet light irradiation, but excimer light is absorbed by oxygen, so if oxygen is present, the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to carry out in a state where the oxygen concentration is as low as possible. That is, the oxygen concentration at the time of excimer light irradiation is preferably in the range of 10 to 10000 ppm, more preferably in the range of 50 to 5000 ppm.
エキシマ光照射時に、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
In the excimer light irradiation, the gas satisfying the irradiation atmosphere is preferably a dry inert gas, and particularly preferably a dry nitrogen gas from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
《ポリシラザン化合物及び各構成材料》
〔ポリシラザン化合物〕
本発明の表面改質処理方法においては、ポリシラザン化合物にエキシマランプによりエキシマ光を照射して、ポリシラザン化合物の一部を酸化ケイ素(SiO2)へと改質する。 <Polysilazane compounds and constituent materials>
[Polysilazane compound]
In the surface modification treatment method of the present invention, the polysilazane compound is irradiated with excimer light from an excimer lamp to modify a part of the polysilazane compound to silicon oxide (SiO 2 ).
〔ポリシラザン化合物〕
本発明の表面改質処理方法においては、ポリシラザン化合物にエキシマランプによりエキシマ光を照射して、ポリシラザン化合物の一部を酸化ケイ素(SiO2)へと改質する。 <Polysilazane compounds and constituent materials>
[Polysilazane compound]
In the surface modification treatment method of the present invention, the polysilazane compound is irradiated with excimer light from an excimer lamp to modify a part of the polysilazane compound to silicon oxide (SiO 2 ).
〔一般式(1)で表される構造を有する化合物〕
本発明に係るポリシラザン層の形成に適用するポリシラザンとは、分子構造内にケイ素-窒素結合を有するポリマーで、酸窒化ケイ素の前駆体となるポリマーであり、適用するポリシラザンとしては、特に制限はないが、下記一般式(1)で表される構造を有する化合物であることが好ましい。 [Compound having the structure represented by the general formula (1)]
The polysilazane applied to the formation of the polysilazane layer according to the present invention is a polymer having a silicon-nitrogen bond in the molecular structure and serving as a precursor of silicon oxynitride. The polysilazane to be applied is not particularly limited. Is preferably a compound having a structure represented by the following general formula (1).
本発明に係るポリシラザン層の形成に適用するポリシラザンとは、分子構造内にケイ素-窒素結合を有するポリマーで、酸窒化ケイ素の前駆体となるポリマーであり、適用するポリシラザンとしては、特に制限はないが、下記一般式(1)で表される構造を有する化合物であることが好ましい。 [Compound having the structure represented by the general formula (1)]
The polysilazane applied to the formation of the polysilazane layer according to the present invention is a polymer having a silicon-nitrogen bond in the molecular structure and serving as a precursor of silicon oxynitride. The polysilazane to be applied is not particularly limited. Is preferably a compound having a structure represented by the following general formula (1).
上記一般式(1)において、R1、R2及びR3は、それぞれ独立に、水素原子、アルキル基(好ましくは、炭素原子数1~30のアルキル基、より好ましくは炭素原子数1~20のアルキル基)、アルケニル基(好ましくは、炭素原子数2~20のアルケニル基)、シクロアルキル基(好ましくは、炭素原子数3~10のシクロアルキル基)、アリール基(好ましくは、炭素原子数6~30のアリール基)、シリル基(好ましくは、炭素原子数3~20のシリル基)、アルキルアミノ基(好ましくは、炭素原子数1~40、より好ましくは炭素原子数1~20のアルキルアミノ基)又はアルコキシ基(好ましくは、炭素原子数1~30のアルコキシ基)を表す。ただし、R1、R2及びR3の少なくとも1つは、水素原子であることが好ましい。
In the general formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms). Alkyl groups), alkenyl groups (preferably alkenyl groups having 2 to 20 carbon atoms), cycloalkyl groups (preferably cycloalkyl groups having 3 to 10 carbon atoms), aryl groups (preferably carbon atoms). 6-30 aryl groups), silyl groups (preferably silyl groups having 3 to 20 carbon atoms), alkylamino groups (preferably 1 to 40 carbon atoms, more preferably alkyl having 1 to 20 carbon atoms) An amino group) or an alkoxy group (preferably an alkoxy group having 1 to 30 carbon atoms). However, it is preferable that at least one of R 1 , R 2 and R 3 is a hydrogen atom.
上記R1、R2及びR3におけるアルキル基は、直鎖又は分岐鎖のアルキル基である。アルキル基としては、従来公知のポリシラザンに適用することができるアルキル基を用いることができる。
The alkyl group in R 1 , R 2 and R 3 is a linear or branched alkyl group. As an alkyl group, the alkyl group applicable to a conventionally well-known polysilazane can be used.
上記一般式(1)で表される単位からなる主骨格を有する化合物は、数平均分子量としては100~5万の範囲内であることが好ましい。なお、ここでいう数平均分子量は、ゲル浸透クロマトグラフ(GPC)により測定して求めることができる。
The compound having a main skeleton composed of the unit represented by the general formula (1) preferably has a number average molecular weight in the range of 100 to 50,000. In addition, the number average molecular weight here can be determined by measuring with a gel permeation chromatograph (GPC).
本発明では、得られるガスバリアー層としての緻密性の観点からは、R1、R2及びR3の全てが水素原子であるパーヒドロポリシラザン(略称:PHPS)が特に好ましい。パーヒドロポリシラザンは、直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は、数平均分子量(Mn)で約600~2000(ポリスチレン換算)の範囲内で、液体又は固体の物質があり、その状態は分子量により異なる。
In the present invention, perhydropolysilazane (abbreviation: PHPS) in which all of R 1, R 2, and R 3 are hydrogen atoms is particularly preferable from the viewpoint of the denseness as a gas barrier layer to be obtained. Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The molecular weight is in the range of about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and there are liquid or solid substances, and the state varies depending on the molecular weight.
一般式(1)において、R1に水素原子、R2及びR3に有機基を有するポリシラザン、又はR1及びR2に有機基、R3に水素原子を有するものは-(R1R2SiNR3)-を繰り返し単位として、主に重合度が3~5の環状構造を有している。
In the general formula (1), a hydrogen atom in R 1, polysilazane having an organic group in R 2 and R 3, or an organic group R 1 and R 2, those having a hydrogen atom in R 3 - (R 1 R 2 It has a cyclic structure mainly having a polymerization degree of 3 to 5 with SiNR 3 ) — as a repeating unit.
用いるポリシラザンは、上記のごとく、一般式(1)で表される単位からなる主骨格を有するが、一般式(1)で表される単位は、上記に記載したように環状化することがあり、その場合にはその環状部分が末端基となり、このような環状化がされない場合には、主骨格の末端はR1、R2、R3と同様の基又は水素原子とすることができる。
The polysilazane used has a main skeleton composed of units represented by the general formula (1) as described above, but the units represented by the general formula (1) may be cyclized as described above. In that case, the cyclic portion becomes a terminal group, and when such cyclization is not performed, the terminal of the main skeleton can be a group similar to R 1 , R 2 , R 3 or a hydrogen atom.
本発明に適用可能なポリシラザンとしては、その他に、特開昭62-195024号公報に記載されているような繰り返し単位が〔(SiH2)n(NH)m〕及び〔(SiH2)rO〕(これらの式中、n、m、rはそれぞれ1,2又は3である)で表されるポリシロキサザン、特開平2-84437号に記載されているようなポリシラザンにボロン化合物を反応させて製造する耐熱性に優れたポリボロシラザン、特開昭63-81122号公報、同63-191832号公報、特開平2-77427号公報に記載されているようなポリシラザンとメタルアルコキシドとを反応させて製造するポリメタロシラザン、特開平1-138108号公報、同1-138107号公報、同1-203429号公報、同1-203430号公報、同4-63833号公報、同3-320167号公報に記載されているような分子量を増加させ(上記公報の前者4件)、耐加水分解性を向上させた(上記公報の後者2件)、無機シラザン高重合体や改質ポリシラザン、特開平2-175726号、同5-86200号、同5-331293号、同3-31326号に記載されているようなポリシラザンに有機成分を導入した厚膜化に有利な共重合シラザン、特開平5-238827号公報、特開平4-272020号公報、同5-93275号公報、同5-214268号公報、同5-30750号公報、同5-338524号公報に記載されているようなポリシラザンにセラミック化を促進するための触媒的化合物を付加又は添加したプラスチックスやアルミニウムなどの金属への施工が可能で、より低温でセラミックス化する低温硬化タイプポリシラザンなども同様に使用できる。
Other polysilazanes applicable to the present invention include repeating units such as [(SiH 2 ) n (NH) m ] and [(SiH 2 ) r O as described in JP-A-62-195024. (In these formulas, n, m and r are 1, 2 or 3, respectively) and a polysilazane as described in JP-A-2-84437 is reacted with a boron compound. A polyborosilazane having excellent heat resistance produced by reacting a polysilazane and a metal alkoxide as described in JP-A-63-81122, JP-A-63-191832 and JP-A-2-77427. Polymetallosilazanes produced by the methods described in JP-A-1-138108, 1-138107, 1-203429 and 1-203430. The molecular weight was increased as described in JP-A-4-63833 and JP-A-3-320167 (the former 4 cases in the above publication), and the hydrolysis resistance was improved (the latter 2 cases in the above publication). Inorganic silazane high polymers and modified polysilazanes, and polysilazanes described in JP-A-2-175726, 5-86200, 5-331293, and 3-31326, in which organic components are introduced. Copolymer silazanes advantageous for film formation, JP-A-5-23827, JP-A-4-272020, JP-A-5-93275, JP-A-5-214268, JP-A-5-30750, JP-A-5-338524 Application to metals such as plastics and aluminum with addition or addition of a catalytic compound for promoting ceramization to polysilazane as described in the publication Possible, it may be used as well, such as low temperature curing type polysilazane more ceramics at low temperatures.
また、本発明に係るポリシラザン化合物は、有機溶媒に溶解した溶液の状態で市販されており、市販品をそのままポリシラザン化合物含有塗布液として使用することができる。ポリシラザン溶液の市販品としては、例えば、AZエレクトロニックマテリアルズ株式会社製のNN120-20、NAX120-20、NL120-20などが挙げられる。
The polysilazane compound according to the present invention is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane compound-containing coating solution. Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials Co., Ltd.
〔ポリシラザン化合物含有塗布液の調製〕
本発明に係るポリシラザン化合物含有塗布液は、上記説明したポリシラザン化合物と共に、必要に応じて、下記に示す触媒や溶媒を添加して、調製することができる。 [Preparation of polysilazane compound-containing coating solution]
The polysilazane compound-containing coating solution according to the present invention can be prepared by adding the following catalyst and solvent together with the above-described polysilazane compound, if necessary.
本発明に係るポリシラザン化合物含有塗布液は、上記説明したポリシラザン化合物と共に、必要に応じて、下記に示す触媒や溶媒を添加して、調製することができる。 [Preparation of polysilazane compound-containing coating solution]
The polysilazane compound-containing coating solution according to the present invention can be prepared by adding the following catalyst and solvent together with the above-described polysilazane compound, if necessary.
(触媒)
ポリシラザン含有塗布液中には、ポリシラザン化合物を酸化珪素化合物へ転化する反応を促進するため、触媒を添加することもできる。 (catalyst)
In the polysilazane-containing coating solution, a catalyst may be added in order to accelerate the reaction for converting the polysilazane compound into a silicon oxide compound.
ポリシラザン含有塗布液中には、ポリシラザン化合物を酸化珪素化合物へ転化する反応を促進するため、触媒を添加することもできる。 (catalyst)
In the polysilazane-containing coating solution, a catalyst may be added in order to accelerate the reaction for converting the polysilazane compound into a silicon oxide compound.
本発明に好ましく用いられる触媒としては、従来公知の触媒を用いることができ、例えば、特開平10-279362号公報の記載の化合物を参照することができる。
As the catalyst preferably used in the present invention, a conventionally known catalyst can be used. For example, compounds described in JP-A-10-279362 can be referred to.
ポリシラザン化合物に対する触媒の添加量は、ポリシラザン化合物含有塗布液中における固形分濃度比率として、ポリシラザン化合物の全質量に対し、質量比として0.1ppm以上、5.0%以下であることが好ましい。さらに好ましくは、100ppm以上、3.0%以下の範囲である。
The addition amount of the catalyst with respect to the polysilazane compound is preferably 0.1 ppm or more and 5.0% or less as a mass ratio with respect to the total mass of the polysilazane compound as a solid content concentration ratio in the polysilazane compound-containing coating solution. More preferably, it is the range of 100 ppm or more and 3.0% or less.
(溶媒)
ポリシラザン化合物含有塗布液の調製に用いる有機溶媒としては、ポリシラザン化合物と容易に反応するようなアルコール系や水分を含有する溶媒は避けることが好ましい。 (solvent)
As the organic solvent used for the preparation of the polysilazane compound-containing coating solution, it is preferable to avoid alcohol-based or water-containing solvents that easily react with the polysilazane compound.
ポリシラザン化合物含有塗布液の調製に用いる有機溶媒としては、ポリシラザン化合物と容易に反応するようなアルコール系や水分を含有する溶媒は避けることが好ましい。 (solvent)
As the organic solvent used for the preparation of the polysilazane compound-containing coating solution, it is preferable to avoid alcohol-based or water-containing solvents that easily react with the polysilazane compound.
ポリシラザン化合物含有塗布液中におけるポリシラザン化合物濃度としては、目的とするポリシラザン化合物含有層(ガスバリア層)の膜厚や塗布液のポットライフによっても異なるが、概ね0.2~35質量%の範囲内であることが好ましい。
The polysilazane compound concentration in the polysilazane compound-containing coating solution varies depending on the film thickness of the target polysilazane compound-containing layer (gas barrier layer) and the pot life of the coating solution, but is generally within the range of 0.2 to 35% by mass. Preferably there is.
〔塗布方法〕
本発明に係るポリシラザン化合物含有塗布液を塗布する方法としては、湿式塗布方法であることが好ましく、本発明に適用可能な湿式塗布方法としては、特に制限は無く、従来公知の方法から適宜選択して用いることができる。具体例な塗布方法としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。 [Coating method]
The method for applying the polysilazane compound-containing coating solution according to the present invention is preferably a wet coating method, and the wet coating method applicable to the present invention is not particularly limited and is appropriately selected from conventionally known methods. Can be used. Specific examples of coating methods include spin coating, roll coating, flow coating, ink jet, spray coating, printing, dip coating, casting film formation, bar coating, and gravure printing. It is done.
本発明に係るポリシラザン化合物含有塗布液を塗布する方法としては、湿式塗布方法であることが好ましく、本発明に適用可能な湿式塗布方法としては、特に制限は無く、従来公知の方法から適宜選択して用いることができる。具体例な塗布方法としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。 [Coating method]
The method for applying the polysilazane compound-containing coating solution according to the present invention is preferably a wet coating method, and the wet coating method applicable to the present invention is not particularly limited and is appropriately selected from conventionally known methods. Can be used. Specific examples of coating methods include spin coating, roll coating, flow coating, ink jet, spray coating, printing, dip coating, casting film formation, bar coating, and gravure printing. It is done.
本発明に係るポリシラザン化合物含有層の膜厚は、目的に応じて適宜設定されるが、乾燥後の厚さとしては、1nm~100μmの範囲内であることが好ましく、さらに好ましくは10nm~10μmの範囲内であり、最も好ましくは10nm~1μmの範囲内である。
The thickness of the polysilazane compound-containing layer according to the present invention is appropriately set according to the purpose, but the thickness after drying is preferably in the range of 1 nm to 100 μm, more preferably 10 nm to 10 μm. Within the range, most preferably within the range of 10 nm to 1 μm.
〔乾燥工程〕
ポリシラザン化合物含有塗布液を基材上に塗布した後の乾燥工程は、主に有機溶媒を取り除くため、乾燥条件(温度、処理時間)としては、適用する熱処理等の方法に準じて適宜設定することができ、熱処理温度は迅速処理の観点から高い温度であることが好ましいが、使用している樹脂フィルムである基材に対する熱ダメージを考慮し、付与する温度と処理時間を適宜決定することが好ましい。例えば、基材として、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレートフィルムを用いる場合には、熱処理温度は150℃以下を設定することが好ましい。処理時間は溶媒が除去され、かつ基材への熱ダメージが少なくなるように短時間に設定することが好ましく、熱処理温度が150℃以下であれば、30分以内に設定することが好ましい。 [Drying process]
The drying process after applying the polysilazane compound-containing coating solution on the substrate mainly removes the organic solvent, and therefore the drying conditions (temperature, treatment time) should be set appropriately according to the method of heat treatment to be applied. The heat treatment temperature is preferably a high temperature from the viewpoint of rapid processing, but it is preferable to appropriately determine the temperature to be applied and the treatment time in consideration of thermal damage to the substrate that is the resin film being used. . For example, when a polyethylene terephthalate film having a glass transition temperature (Tg) of 70 ° C. is used as the substrate, the heat treatment temperature is preferably set to 150 ° C. or less. The treatment time is preferably set to a short time so that the solvent is removed and thermal damage to the substrate is reduced. If the heat treatment temperature is 150 ° C. or lower, it is preferably set within 30 minutes.
ポリシラザン化合物含有塗布液を基材上に塗布した後の乾燥工程は、主に有機溶媒を取り除くため、乾燥条件(温度、処理時間)としては、適用する熱処理等の方法に準じて適宜設定することができ、熱処理温度は迅速処理の観点から高い温度であることが好ましいが、使用している樹脂フィルムである基材に対する熱ダメージを考慮し、付与する温度と処理時間を適宜決定することが好ましい。例えば、基材として、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレートフィルムを用いる場合には、熱処理温度は150℃以下を設定することが好ましい。処理時間は溶媒が除去され、かつ基材への熱ダメージが少なくなるように短時間に設定することが好ましく、熱処理温度が150℃以下であれば、30分以内に設定することが好ましい。 [Drying process]
The drying process after applying the polysilazane compound-containing coating solution on the substrate mainly removes the organic solvent, and therefore the drying conditions (temperature, treatment time) should be set appropriately according to the method of heat treatment to be applied. The heat treatment temperature is preferably a high temperature from the viewpoint of rapid processing, but it is preferable to appropriately determine the temperature to be applied and the treatment time in consideration of thermal damage to the substrate that is the resin film being used. . For example, when a polyethylene terephthalate film having a glass transition temperature (Tg) of 70 ° C. is used as the substrate, the heat treatment temperature is preferably set to 150 ° C. or less. The treatment time is preferably set to a short time so that the solvent is removed and thermal damage to the substrate is reduced. If the heat treatment temperature is 150 ° C. or lower, it is preferably set within 30 minutes.
ポリシラザン化合物含有塗布液を基材上に塗布した後の乾燥工程における雰囲気は、比較的低湿に制御されていることが好ましいが、低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は、4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は-8℃(温度25℃/湿度10%)以下、さらに好ましい露点温度は-31℃(温度25℃/湿度1%)以下である。また、水分を取り除きやすくするため、減圧乾燥してもよい。減圧乾燥における圧力は常圧~0.1MPaの範囲で選択することができる。
The atmosphere in the drying process after coating the polysilazane compound-containing coating solution on the substrate is preferably controlled to be relatively low humidity, but the humidity in a low humidity environment changes with temperature, so the relationship between temperature and humidity The preferred form is indicated by the dew point temperature. The preferred dew point temperature is 4 ° C. or less (temperature 25 ° C./humidity 25%), the more preferred dew point temperature is −8 ° C. (temperature 25 ° C./humidity 10%) or less, and the more preferred dew point temperature is −31 ° C. (temperature 25 ° C.). / Humidity 1%) or less. Moreover, you may dry under reduced pressure in order to make it easy to remove a water | moisture content. The pressure in the vacuum drying can be selected in the range of normal pressure to 0.1 MPa.
〔基材〕
本発明に適用可能な基材としては、ポリシラザン化合物含有のポリシラザン層を保持することができる有機材料で作製されたものであれば特に限定されないが、連続搬送適性を付与する観点からは、可撓性を有し、折り曲げ可能なフィルム基材であることが好ましい。 〔Base material〕
The base material applicable to the present invention is not particularly limited as long as it is made of an organic material capable of holding a polysilazane compound-containing polysilazane layer, but is flexible from the viewpoint of imparting continuous transportability. It is preferable that it is a film base material that can be bent.
本発明に適用可能な基材としては、ポリシラザン化合物含有のポリシラザン層を保持することができる有機材料で作製されたものであれば特に限定されないが、連続搬送適性を付与する観点からは、可撓性を有し、折り曲げ可能なフィルム基材であることが好ましい。 〔Base material〕
The base material applicable to the present invention is not particularly limited as long as it is made of an organic material capable of holding a polysilazane compound-containing polysilazane layer, but is flexible from the viewpoint of imparting continuous transportability. It is preferable that it is a film base material that can be bent.
フィルム基材の材料としては、例えば、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリエチレンテレフタレート(略称:PET)、ポリブチレンテレフタレート(略称:PBT)、ポリエチレンナフタレート(略称:PEN)、ポリカーボネート(略称:PC)、ポリアリレート、ポリ塩化ビニル(略称:PVC)、ポリエチレン(略称:PE)、エチレン-環状オレフィン等のポリエチレン共重合体、ポリプロピレン(略称:PP)、ポリスチレン(略称:PS)、ポリアミド(略称:PA)、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等のポリマー、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム基材(製品名Sila-DEC、チッソ株式会社製)、更には前記ポリマーを2層以上積層して成る基材等を挙げることができる。
Examples of the material for the film base include polyacrylic acid ester, polymethacrylic acid ester, polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate (abbreviation: PBT), polyethylene naphthalate (abbreviation: PEN), polycarbonate (abbreviation: PC), polyarylate, polyvinyl chloride (abbreviation: PVC), polyethylene (abbreviation: PE), polyethylene copolymer such as ethylene-cyclic olefin, polypropylene (abbreviation: PP), polystyrene (abbreviation: PS), polyamide (abbreviation) : PA), Polyetheretherketone, Polysulfone, Polyethersulfone, Polyimide, Polyetherimide, and other polymers, and heat-resistant transparent film base material based on silsesquioxane having an organic-inorganic hybrid structure (product name Si a-DEC, manufactured by Chisso Corporation), and further can be given substrate or the like formed by laminating the polymer of two or more layers.
フィルム基材の厚さは、取扱性や機械的強度の観点から、5~500μmの範囲内が好ましく、更に好ましくは10~250μmの範囲内である。また、ガラス転移温度(Tg)は、100℃以上であることが好ましい。また、熱収縮率も低いことが好ましい。
The thickness of the film substrate is preferably in the range of 5 to 500 μm, more preferably in the range of 10 to 250 μm, from the viewpoints of handleability and mechanical strength. Moreover, it is preferable that a glass transition temperature (Tg) is 100 degreeC or more. Moreover, it is preferable that a heat shrinkage rate is also low.
〔ガスバリアーフィルムにおけるガスバリアー層以外の構成層〕
本発明に係るガスバリアーフィルムにおいては、本発明に係るガスバリアー層以外に、必要に応じて各種機能層を設けてもよい。 [Constituent layers other than the gas barrier layer in the gas barrier film]
In the gas barrier film according to the present invention, various functional layers may be provided as necessary in addition to the gas barrier layer according to the present invention.
本発明に係るガスバリアーフィルムにおいては、本発明に係るガスバリアー層以外に、必要に応じて各種機能層を設けてもよい。 [Constituent layers other than the gas barrier layer in the gas barrier film]
In the gas barrier film according to the present invention, various functional layers may be provided as necessary in addition to the gas barrier layer according to the present invention.
(オーバーコート層)
本発明に係るガスバリアー層の上には、屈曲性を更に改善する目的で、オーバーコート層を形成しても良い。オーバーコート層の形成に用いられる有機物としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂層を好ましく用いることができる。 (Overcoat layer)
An overcoat layer may be formed on the gas barrier layer according to the present invention for the purpose of further improving the flexibility. The organic material used for forming the overcoat layer is preferably an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin layer using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group. Can be used.
本発明に係るガスバリアー層の上には、屈曲性を更に改善する目的で、オーバーコート層を形成しても良い。オーバーコート層の形成に用いられる有機物としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂層を好ましく用いることができる。 (Overcoat layer)
An overcoat layer may be formed on the gas barrier layer according to the present invention for the purpose of further improving the flexibility. The organic material used for forming the overcoat layer is preferably an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin layer using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group. Can be used.
(アンカー層)
本発明に係るガスバリアーフィルムにおいては、基材とガスバリアー層の間に、基材とガスバリアー層との密着性改良を目的として、アンカー層(平滑層ともいう。)を有してもよい。 (Anchor layer)
The gas barrier film according to the present invention may have an anchor layer (also referred to as a smooth layer) between the base material and the gas barrier layer for the purpose of improving the adhesion between the base material and the gas barrier layer. .
本発明に係るガスバリアーフィルムにおいては、基材とガスバリアー層の間に、基材とガスバリアー層との密着性改良を目的として、アンカー層(平滑層ともいう。)を有してもよい。 (Anchor layer)
The gas barrier film according to the present invention may have an anchor layer (also referred to as a smooth layer) between the base material and the gas barrier layer for the purpose of improving the adhesion between the base material and the gas barrier layer. .
アンカー層には、樹脂基材を加熱した際に、樹脂基材中から未反応のオリゴマー等が表面に移動して、接触する面を汚染してしまう現象(ブリードアウト)を抑制することもできる。アンカー層は、その上にガスバリアー層を形成するため、平滑であることが好ましく、その表面粗さRa値としては、0.3~3nmの範囲内であることが好ましく、より好ましくは0.5~1.5nmの範囲内である。表面粗さRa値が0.3nm以上であれば、表面が適度な平滑性を有し、ローラー搬送性及び本発明の表面改質処理方法によるガスバリアー層形成時に平滑性を維持することができる。一方、3nm以下であれば、ガスバリアー層形成時に、ガスバリアー層に微小な欠陥が生じることを防止でき、高度なガスバリアー性や密着性等を得ることができる。
When the resin base material is heated, the anchor layer can also suppress a phenomenon (bleed out) that unreacted oligomers move from the resin base material to the surface and contaminate the contact surface. . The anchor layer is preferably smooth in order to form a gas barrier layer thereon, and the surface roughness Ra value is preferably in the range of 0.3 to 3 nm, more preferably 0. It is in the range of 5 to 1.5 nm. If the surface roughness Ra value is 0.3 nm or more, the surface has an appropriate smoothness, and can maintain the smoothness when forming a gas barrier layer by the roller transportability and the surface modification treatment method of the present invention. . On the other hand, when the thickness is 3 nm or less, it is possible to prevent a minute defect from being generated in the gas barrier layer when forming the gas barrier layer, and to obtain a high level of gas barrier properties and adhesion.
アンカー層の構成材料としては、平滑性が必要なことから、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。かような硬化性樹脂は、単独でもまたは2種以上組み合わせても用いることができる。また、硬化性樹脂は市販品を用いてもよいし、合成品を用いてもよい。
As the constituent material of the anchor layer, a thermosetting resin and an active energy ray curable resin can be cited because smoothness is required, but an active energy ray curable resin is preferable because it is easy to mold. Such curable resins can be used singly or in combination of two or more. The curable resin may be a commercially available product or a synthetic product.
活性エネルギー線硬化性材料としては、例えば、アクリレート化合物を含有する組成物、アクリレート化合物とチオール基を含有するメルカプト化合物とを含有する組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを含有する組成物等が挙げられる。具体的には、新中村化学工業株式会社の硬化性2官能アクリレートNKエステル A-DCP(トリシクロデカンジメタノールジアクリレート)、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズ(シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物)等を用いることができる。
Examples of the active energy ray-curable material include a composition containing an acrylate compound, a composition containing an acrylate compound and a mercapto compound containing a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene Examples thereof include compositions containing polyfunctional acrylate monomers such as glycol acrylate and glycerol methacrylate. Specifically, curable bifunctional acrylate NK ester from Shin-Nakamura Chemical Co., Ltd. A-DCP (tricyclodecane dimethanol diacrylate), UV curable organic / inorganic hybrid hard coating material from OPSR (registered by JSR Corporation) Trademark) series (compounds obtained by bonding an organic compound having a polymerizable unsaturated group to silica fine particles) and the like can be used.
アンカー層の厚さとしては、カールを調整する観点から、0.3~10μmの範囲内が好ましく、さらに好ましくは、0.5~5μmの範囲内である。
The thickness of the anchor layer is preferably in the range of 0.3 to 10 μm, more preferably in the range of 0.5 to 5 μm from the viewpoint of adjusting curl.
(ブリードアウト防止層)
本発明に係るガスバリアーフィルムにおいては、基材上にポリシラザン層を作製する前に、基材上にブリードアウト防止層を形成することができる。ブリードアウト防止層は、アンカー層(平滑層)を有する基材を加熱した際に、基材中から未反応のオリゴマーなどが表面へ移行して、接触する面を汚染してしまう現象を抑制する目的で、アンカー層を有する基材面とは反対側の面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的には、先に述べたアンカー層と同じ構成を取るものであっても構わない。 (Bleed-out prevention layer)
In the gas barrier film according to the present invention, a bleed-out preventing layer can be formed on the substrate before the polysilazane layer is formed on the substrate. The bleed-out prevention layer suppresses a phenomenon in which, when a base material having an anchor layer (smooth layer) is heated, unreacted oligomers are transferred from the base material to the surface and contaminate the contact surface. For the purpose, it is provided on the surface opposite to the substrate surface having the anchor layer. The bleed-out prevention layer may basically have the same configuration as the anchor layer described above as long as it has this function.
本発明に係るガスバリアーフィルムにおいては、基材上にポリシラザン層を作製する前に、基材上にブリードアウト防止層を形成することができる。ブリードアウト防止層は、アンカー層(平滑層)を有する基材を加熱した際に、基材中から未反応のオリゴマーなどが表面へ移行して、接触する面を汚染してしまう現象を抑制する目的で、アンカー層を有する基材面とは反対側の面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的には、先に述べたアンカー層と同じ構成を取るものであっても構わない。 (Bleed-out prevention layer)
In the gas barrier film according to the present invention, a bleed-out preventing layer can be formed on the substrate before the polysilazane layer is formed on the substrate. The bleed-out prevention layer suppresses a phenomenon in which, when a base material having an anchor layer (smooth layer) is heated, unreacted oligomers are transferred from the base material to the surface and contaminate the contact surface. For the purpose, it is provided on the surface opposite to the substrate surface having the anchor layer. The bleed-out prevention layer may basically have the same configuration as the anchor layer described above as long as it has this function.
ブリードアウト防止層を構成する感光性樹脂としては、アンカー層を構成する硬化性樹脂を同様に使用することができる。さらに、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、あるいは分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等を添加することができる。また、添加剤として、マット剤を含有しても良い。マット剤としては、平均粒子径が0.1~5μm程度の無機粒子が好ましい。
As the photosensitive resin constituting the bleed-out prevention layer, the curable resin constituting the anchor layer can be used in the same manner. Furthermore, a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule, a unitary unsaturated organic compound having one polymerizable unsaturated group in the molecule, or the like can be added. Moreover, you may contain a mat agent as an additive. As the matting agent, inorganic particles having an average particle diameter of about 0.1 to 5 μm are preferable.
ブリードアウト防止層には、必要に応じて他の成分を配合し、必要に応じて希釈溶剤を用いて塗布液として調製し、当該塗布液をフィルム基材21表面に従来公知の塗布方法によって塗布した後、紫外線や電離放射線等を照射して硬化させることにより作製することができる。
The bleed-out prevention layer is blended with other components as necessary, and is prepared as a coating solution using a diluting solvent as necessary, and the coating solution is applied to the surface of the film substrate 21 by a conventionally known coating method. Then, it can be produced by irradiating with ultraviolet rays or ionizing radiation and curing.
ブリードアウト防止層の厚さとしては、ブリードアウト防止層を基材の一方の面にのみ設けた場合における基材のカールを防止する観点から、1~10μmの範囲が好ましく、更に好ましくは2~7μmの範囲である。
The thickness of the bleed-out preventing layer is preferably in the range of 1 to 10 μm, more preferably 2 to 2 from the viewpoint of preventing the curling of the substrate when the bleed-out preventing layer is provided only on one side of the substrate. The range is 7 μm.
(乾式ガスバリアー層)
本発明に係るガスバリアーフィルムにおいては、本発明の表面改質処理方法により形成するガスバリアー層のほかに、乾式ガスバリアー層を設けてもよい。例えば、乾式ガスバリアー層の上に本発明に係るガスバリアー層を設けることで、塗布による均質な膜により乾式ガスバリアー層の有する微細な欠陥の補修による相乗効果によりガスバリアー性の更なる向上が期待できる。 (Dry gas barrier layer)
In the gas barrier film according to the present invention, a dry gas barrier layer may be provided in addition to the gas barrier layer formed by the surface modification treatment method of the present invention. For example, by providing the gas barrier layer according to the present invention on the dry gas barrier layer, the gas barrier property can be further improved by a synergistic effect by repairing fine defects of the dry gas barrier layer by a uniform film by coating. I can expect.
本発明に係るガスバリアーフィルムにおいては、本発明の表面改質処理方法により形成するガスバリアー層のほかに、乾式ガスバリアー層を設けてもよい。例えば、乾式ガスバリアー層の上に本発明に係るガスバリアー層を設けることで、塗布による均質な膜により乾式ガスバリアー層の有する微細な欠陥の補修による相乗効果によりガスバリアー性の更なる向上が期待できる。 (Dry gas barrier layer)
In the gas barrier film according to the present invention, a dry gas barrier layer may be provided in addition to the gas barrier layer formed by the surface modification treatment method of the present invention. For example, by providing the gas barrier layer according to the present invention on the dry gas barrier layer, the gas barrier property can be further improved by a synergistic effect by repairing fine defects of the dry gas barrier layer by a uniform film by coating. I can expect.
乾式ガスバリアー層には、Si、Ta、Nb、Al、In、W、Sn、Zn、Ti、Cu、Ce、Ca、Na、B、Pb、Mg、P、Ba、Ga、Ge、Li、K、Zrから選ばれる1種以上の金属原子を含む酸化物又は窒化物、窒酸化物、炭化物を主成分として含む膜を用いることができ、酸化ケイ素、窒酸化ケイ素、窒化ケイ素、酸化アルミ、酸化ケイ素アルミ、窒酸化ケイ素アルミ、ZTO、ITO、ZnOが好ましく用いられる。またこれらの膜には一定割合の炭素が含有されていてもよく、膜厚方向に組成変化のある傾斜膜でもよい。
For dry gas barrier layers, Si, Ta, Nb, Al, In, W, Sn, Zn, Ti, Cu, Ce, Ca, Na, B, Pb, Mg, P, Ba, Ga, Ge, Li, K A film containing an oxide or nitride, nitride oxide, or carbide containing one or more metal atoms selected from Zr as a main component can be used. Silicon oxide, silicon nitride oxide, silicon nitride, aluminum oxide, oxidation Silicon aluminum, silicon aluminum nitride oxide, ZTO, ITO, and ZnO are preferably used. These films may contain a certain proportion of carbon, or may be gradient films having a composition change in the film thickness direction.
乾式ガスバリアー層の製造方法としては、物理蒸着法(例えば、真空蒸着法、イオンプレーティング法、スパッタリング法など)や化学蒸着法(例えば、PECVD、Cat-CVD、大気圧プラズマ法、ALD法など)を用いることができる。
The dry gas barrier layer can be produced by physical vapor deposition (eg, vacuum vapor deposition, ion plating, sputtering) or chemical vapor deposition (eg, PECVD, Cat-CVD, atmospheric pressure plasma, ALD) ) Can be used.
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。なお、以下の説明で、各構成要素のあとの括弧内に記載の数字は、図1A、図1B及び図2に記載した各構成要素の符号を表す。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented. In the following description, the numerals in parentheses after each component represent the reference numerals of the components described in FIGS. 1A, 1B, and 2.
《ガスバリアーフィルムの作製》
〔ガスバリアーフィルム1の作製〕
(基材の準備)
フィルム基材(21)として、両面に易接着加工された厚さ125μmのポリエチレンナフタレートフィルム(帝人デュポンフィルム株式会社製、極低熱収PEN テオネックスQ83)を用いた(以下、PENフィルム略記する。)。当該PENフィルムの40℃、90%RH条件下における水蒸気透過度は、4.8g/(m2・24hr)であった。 <Production of gas barrier film>
[Preparation of gas barrier film 1]
(Preparation of base material)
A 125 μm thick polyethylene naphthalate film (manufactured by Teijin DuPont Films Ltd., extremely low heat yield PEN Teonex Q83) that was easily bonded on both sides was used as the film substrate (21) (hereinafter abbreviated as PEN film). ). The water vapor permeability of the PEN film under conditions of 40 ° C. and 90% RH was 4.8 g / (m 2 · 24 hr).
〔ガスバリアーフィルム1の作製〕
(基材の準備)
フィルム基材(21)として、両面に易接着加工された厚さ125μmのポリエチレンナフタレートフィルム(帝人デュポンフィルム株式会社製、極低熱収PEN テオネックスQ83)を用いた(以下、PENフィルム略記する。)。当該PENフィルムの40℃、90%RH条件下における水蒸気透過度は、4.8g/(m2・24hr)であった。 <Production of gas barrier film>
[Preparation of gas barrier film 1]
(Preparation of base material)
A 125 μm thick polyethylene naphthalate film (manufactured by Teijin DuPont Films Ltd., extremely low heat yield PEN Teonex Q83) that was easily bonded on both sides was used as the film substrate (21) (hereinafter abbreviated as PEN film). ). The water vapor permeability of the PEN film under conditions of 40 ° C. and 90% RH was 4.8 g / (m 2 · 24 hr).
(ブリードアウト防止層の形成)
上記PENフィルムの片面に、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)Z7535を、乾燥後の膜厚が4μmになるようにダイコーターで塗布した後、乾燥条件として80℃で、3分間の乾燥を行った後、大気雰囲気下で、高圧水銀ランプを使用して、硬化条件として1.0J/cm2で硬化を行い、ブリードアウト防止層を形成した。 (Formation of bleed-out prevention layer)
After applying UV curable organic / inorganic hybrid hard coating material OPSTAR (registered trademark) Z7535 manufactured by JSR Corporation on one side of the PEN film with a die coater so that the film thickness after drying becomes 4 μm, drying conditions are applied. After drying at 80 ° C. for 3 minutes, curing was performed at 1.0 J / cm 2 as a curing condition using a high-pressure mercury lamp in an air atmosphere to form a bleed-out prevention layer.
上記PENフィルムの片面に、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)Z7535を、乾燥後の膜厚が4μmになるようにダイコーターで塗布した後、乾燥条件として80℃で、3分間の乾燥を行った後、大気雰囲気下で、高圧水銀ランプを使用して、硬化条件として1.0J/cm2で硬化を行い、ブリードアウト防止層を形成した。 (Formation of bleed-out prevention layer)
After applying UV curable organic / inorganic hybrid hard coating material OPSTAR (registered trademark) Z7535 manufactured by JSR Corporation on one side of the PEN film with a die coater so that the film thickness after drying becomes 4 μm, drying conditions are applied. After drying at 80 ° C. for 3 minutes, curing was performed at 1.0 J / cm 2 as a curing condition using a high-pressure mercury lamp in an air atmosphere to form a bleed-out prevention layer.
(アンカー層の形成)
次いで、上記PENフィルムのブリードアウト防止層を形成した面とは反対側の面に、JSR株式会社製UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)Z7501を、乾燥後の膜厚が4μmになるようにダイコーターで塗布した後、乾燥条件として、80℃で、3分間の乾燥を行った後、大気雰囲気下、高圧水銀ランプを使用して、硬化条件として1.0J/cm2で硬化を行い、アンカー層を形成した。このとき、表面粗さである最大断面高さRt(p)は、16nmであった。 (Formation of anchor layer)
Next, on the surface opposite to the surface on which the bleed-out prevention layer of the PEN film is formed, a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) Z7501 manufactured by JSR Corporation is used. After coating with a die coater so as to be 4 μm, after drying at 80 ° C. for 3 minutes as a drying condition, 1.0 J / cm 2 as a curing condition using a high-pressure mercury lamp in an air atmosphere. Curing was performed to form an anchor layer. At this time, the maximum cross-sectional height Rt (p), which is the surface roughness, was 16 nm.
次いで、上記PENフィルムのブリードアウト防止層を形成した面とは反対側の面に、JSR株式会社製UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)Z7501を、乾燥後の膜厚が4μmになるようにダイコーターで塗布した後、乾燥条件として、80℃で、3分間の乾燥を行った後、大気雰囲気下、高圧水銀ランプを使用して、硬化条件として1.0J/cm2で硬化を行い、アンカー層を形成した。このとき、表面粗さである最大断面高さRt(p)は、16nmであった。 (Formation of anchor layer)
Next, on the surface opposite to the surface on which the bleed-out prevention layer of the PEN film is formed, a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) Z7501 manufactured by JSR Corporation is used. After coating with a die coater so as to be 4 μm, after drying at 80 ° C. for 3 minutes as a drying condition, 1.0 J / cm 2 as a curing condition using a high-pressure mercury lamp in an air atmosphere. Curing was performed to form an anchor layer. At this time, the maximum cross-sectional height Rt (p), which is the surface roughness, was 16 nm.
なお、表面粗さであるRt(p)は、AFM(原子間力顕微鏡)を用いて、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出する。極小の先端半径の触針により測定距離が30μmの区間内を多数回測定し、微細な凹凸の振幅に関する平均の粗さとして求めた。
The surface roughness Rt (p) is calculated from an uneven cross-sectional curve continuously measured by a detector having a stylus having a minimum tip radius using an AFM (Atomic Force Microscope). The measurement was performed a number of times within a section having a measurement distance of 30 μm with a stylus having a very small tip radius, and the average roughness regarding the amplitude of fine irregularities was obtained.
(ポリシラザン化合物含有層の形成)
次に、上記アンカー層及びブリードアウト防止層を設けたPENフィルムのアンカー層面の上に、下記の方法に従って、ポリシラザン化合物を含有する塗布液を塗布及び乾燥して、ポリシラザン層(8)を形成した。 (Formation of polysilazane compound-containing layer)
Next, a polysilazane layer (8) was formed by applying and drying a coating liquid containing a polysilazane compound on the anchor layer surface of the PEN film provided with the anchor layer and the bleed-out prevention layer according to the following method. .
次に、上記アンカー層及びブリードアウト防止層を設けたPENフィルムのアンカー層面の上に、下記の方法に従って、ポリシラザン化合物を含有する塗布液を塗布及び乾燥して、ポリシラザン層(8)を形成した。 (Formation of polysilazane compound-containing layer)
Next, a polysilazane layer (8) was formed by applying and drying a coating liquid containing a polysilazane compound on the anchor layer surface of the PEN film provided with the anchor layer and the bleed-out prevention layer according to the following method. .
〈ポリシラザン化合物含有塗布液の調製〉
無触媒のパーヒドロポリシラザンの20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製 アクアミカ(登録商標)NN120-20)とアミン触媒を固形分で5質量%含有するパーヒドロポリシラザンの20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製 アクアミカ(登録商標)NAX120-20)を混合して用い、アミン触媒を固形分で1質量%となるように調整した後、さらにジブチルエーテルで希釈することにより、パーヒドロポリシラザンを5質量%含有するジブチルエーテル溶液を調製し、これをポリシラザン化合物含有塗布液として用いた。 <Preparation of polysilazane compound-containing coating solution>
20% by mass of perhydropolysilazane containing 5% by mass of an amine catalyst and 20% by mass dibutyl ether solution of uncatalyzed perhydropolysilazane (Aquamica (registered trademark) NN120-20 manufactured by AZ Electronic Materials Co., Ltd.) A dibutyl ether solution (Aquamica (registered trademark) NAX120-20 manufactured by AZ Electronic Materials Co., Ltd.) is mixed and used to adjust the amine catalyst to 1% by mass in solid content, and further diluted with dibutyl ether. Thus, a dibutyl ether solution containing 5% by mass of perhydropolysilazane was prepared, and this was used as a polysilazane compound-containing coating solution.
無触媒のパーヒドロポリシラザンの20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製 アクアミカ(登録商標)NN120-20)とアミン触媒を固形分で5質量%含有するパーヒドロポリシラザンの20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製 アクアミカ(登録商標)NAX120-20)を混合して用い、アミン触媒を固形分で1質量%となるように調整した後、さらにジブチルエーテルで希釈することにより、パーヒドロポリシラザンを5質量%含有するジブチルエーテル溶液を調製し、これをポリシラザン化合物含有塗布液として用いた。 <Preparation of polysilazane compound-containing coating solution>
20% by mass of perhydropolysilazane containing 5% by mass of an amine catalyst and 20% by mass dibutyl ether solution of uncatalyzed perhydropolysilazane (Aquamica (registered trademark) NN120-20 manufactured by AZ Electronic Materials Co., Ltd.) A dibutyl ether solution (Aquamica (registered trademark) NAX120-20 manufactured by AZ Electronic Materials Co., Ltd.) is mixed and used to adjust the amine catalyst to 1% by mass in solid content, and further diluted with dibutyl ether. Thus, a dibutyl ether solution containing 5% by mass of perhydropolysilazane was prepared, and this was used as a polysilazane compound-containing coating solution.
〈ポリシラザン化合物含有塗布液の塗布〉
上記調製したポリシラザン化合物含有塗布液を、図2に示すガスバリアーフィルム製造装置(30)を用いて、PENフィルムのアンカー層面の上に、塗布部(32)に装備したダイコーターを用いて、ラインスピード1.0m/minで連続塗布したのち、図2に示す乾燥部(33)で乾燥温度が50℃で、乾燥雰囲気の露点10℃で1分間乾燥した後、乾燥温度80℃で、乾燥雰囲気の露点5℃で2分間乾燥して、乾燥後の膜厚が150nmのポリシラザン層(8)を形成した。 <Application of coating liquid containing polysilazane compound>
Using the gas barrier film manufacturing apparatus (30) shown in FIG. 2, the prepared polysilazane compound-containing coating solution is lined on the anchor layer surface of the PEN film using a die coater equipped in the coating section (32). After continuous application at a speed of 1.0 m / min, the drying part (33) shown in FIG. 2 is dried at a drying temperature of 50 ° C. for 1 minute at a dew point of 10 ° C., and then at a drying temperature of 80 ° C. The polysilazane layer (8) having a thickness of 150 nm after drying was formed at a dew point of 5 ° C. for 2 minutes.
上記調製したポリシラザン化合物含有塗布液を、図2に示すガスバリアーフィルム製造装置(30)を用いて、PENフィルムのアンカー層面の上に、塗布部(32)に装備したダイコーターを用いて、ラインスピード1.0m/minで連続塗布したのち、図2に示す乾燥部(33)で乾燥温度が50℃で、乾燥雰囲気の露点10℃で1分間乾燥した後、乾燥温度80℃で、乾燥雰囲気の露点5℃で2分間乾燥して、乾燥後の膜厚が150nmのポリシラザン層(8)を形成した。 <Application of coating liquid containing polysilazane compound>
Using the gas barrier film manufacturing apparatus (30) shown in FIG. 2, the prepared polysilazane compound-containing coating solution is lined on the anchor layer surface of the PEN film using a die coater equipped in the coating section (32). After continuous application at a speed of 1.0 m / min, the drying part (33) shown in FIG. 2 is dried at a drying temperature of 50 ° C. for 1 minute at a dew point of 10 ° C., and then at a drying temperature of 80 ° C. The polysilazane layer (8) having a thickness of 150 nm after drying was formed at a dew point of 5 ° C. for 2 minutes.
(表面改質処理)
上記塗布部(32)及び乾燥部(33)を経て形成したポリシラザン層(8)を有するフィルム基材(21)を、エキシマ光照射部(34)に搬送し、エキシマ光照射による表面改質処理を行った。 (Surface modification treatment)
The film base material (21) having the polysilazane layer (8) formed through the coating part (32) and the drying part (33) is transported to the excimer light irradiation part (34) and subjected to surface modification treatment by excimer light irradiation. Went.
上記塗布部(32)及び乾燥部(33)を経て形成したポリシラザン層(8)を有するフィルム基材(21)を、エキシマ光照射部(34)に搬送し、エキシマ光照射による表面改質処理を行った。 (Surface modification treatment)
The film base material (21) having the polysilazane layer (8) formed through the coating part (32) and the drying part (33) is transported to the excimer light irradiation part (34) and subjected to surface modification treatment by excimer light irradiation. Went.
エキシマ光の照射は、エキシマランプ3として、MDエキシマ社製のキセノンエキシマランプ(波長:172nm、ピーク照度:120mW/cm2)を用い、図2に示すようにフィルム基材(21)の搬送方向に平行して、30基のエキシマランプU1~U30を配置した。エキシマランプ管面と搬送されている基材表面間の最短距離(h)は、3mmとなるようにエキシマランプの設置位置を調整した。なお、ピーク照度は、照度計(浜松ホトニクス製、C9536/H9535-172)を用い、エキシマランプ(3)のランプ管面から3mmの位置で測定した。
Excimer light irradiation uses a xenon excimer lamp (wavelength: 172 nm, peak illuminance: 120 mW / cm 2 ) manufactured by MD Excimer as the excimer lamp 3, and the film substrate (21) transport direction as shown in FIG. In parallel with this, 30 excimer lamps U1 to U30 were arranged. The installation position of the excimer lamp was adjusted so that the shortest distance (h) between the excimer lamp tube surface and the surface of the substrate being conveyed was 3 mm. The peak illuminance was measured at a position 3 mm from the lamp tube surface of the excimer lamp (3) using an illuminometer (C9536 / H95535-172 manufactured by Hamamatsu Photonics).
エキシマランプホルダー(2)には、N2ガス及び水蒸気を供給し、エキシマランプ幅手の両サイドからフィルム基材面に向かってN2が及び濃度制御された水蒸気を噴射した(図1B参照。)。その際、エキシマ光照射時の酸素濃度は、エキシマランプ全体を囲っている筺体にも窒素ガス及び水蒸気を供給してエキシマランプ管面とフィルム基材間の酸素濃度が0.1%以下となるように調整を行った。
The excimer lamp holder (2), supplying a N 2 gas and water vapor, N 2 towards the flanks of the excimer lamp width hand the film base surface and the injection density control water vapor (see FIG. 1B. ). At that time, the oxygen concentration at the time of excimer light irradiation is such that nitrogen gas and water vapor are also supplied to the enclosure surrounding the entire excimer lamp, so that the oxygen concentration between the excimer lamp tube surface and the film substrate becomes 0.1% or less. Adjustments were made as follows.
また、水蒸気濃度は、(株)三菱化学アナリテック製のゼントールデジタル露点計(XDTシリーズ)を各エキシマランプの空間領域(S)に、計30基配置し、エキシマランプ(3)とフィルム基材(21)間の空間領域(S)の水蒸気濃度を常時モニターしながら、平均水蒸気濃度が151ppm(露点-39℃)となるように制御した。
In addition, the water vapor concentration is 30 total of Zentol digital dew point meters (XDT series) manufactured by Mitsubishi Chemical Analytech Co., Ltd. in the space area (S) of each excimer lamp, and the excimer lamp (3) and film base While constantly monitoring the water vapor concentration in the space region (S) between the materials (21), the average water vapor concentration was controlled to be 151 ppm (dew point -39 ° C.).
上記の条件で、ポリシラザン層(8)にエキシマ光を照射して表面改質処理を行ってガスバリアー層に改質して、ガスバリアーフィルム1を作製した。
Under the above-mentioned conditions, the polysilazane layer (8) was irradiated with excimer light and subjected to surface modification treatment to be modified into a gas barrier layer, whereby a gas barrier film 1 was produced.
〔ガスバリアーフィルム2~17の作製〕
上記ガスバリアーフィルム1の作製において、エキシマ光照射部(34)におけるエキシマランプ(3)とフィルム基材(21)間の空間領域(S)の水蒸気濃度、各エキシマランプ(3)のピーク照度(mW/cm2)、エキシマランプ(3)の管面とフィルム基材(21)表面間の最短距離(h)を、それぞれ表1に記載の組み合わせに変更した以外は同様にして、ガスバリアーフィルム2~17を作製した。 [Production ofgas barrier films 2 to 17]
In the production of thegas barrier film 1, the water vapor concentration in the space region (S) between the excimer lamp (3) and the film base material (21) in the excimer light irradiation section (34), the peak illuminance of each excimer lamp (3) ( mW / cm 2 ), gas barrier film in the same manner except that the shortest distance (h) between the tube surface of the excimer lamp (3) and the surface of the film base (21) is changed to the combination shown in Table 1, respectively. 2 to 17 were produced.
上記ガスバリアーフィルム1の作製において、エキシマ光照射部(34)におけるエキシマランプ(3)とフィルム基材(21)間の空間領域(S)の水蒸気濃度、各エキシマランプ(3)のピーク照度(mW/cm2)、エキシマランプ(3)の管面とフィルム基材(21)表面間の最短距離(h)を、それぞれ表1に記載の組み合わせに変更した以外は同様にして、ガスバリアーフィルム2~17を作製した。 [Production of
In the production of the
《ガスバリアーフィルムの評価》
〔各評価用のサンプルの作製〕
上記ガスバリアーフィルムの作製において、作製初期(エキシマランプ点灯直後)のガスバリアーフィルムを、ガスバリアーフィルム1A~17Aとした。 << Evaluation of gas barrier film >>
[Preparation of samples for each evaluation]
In the production of the gas barrier film, gas barrier films 1A to 17A were used as gas barrier films at the initial production stage (immediately after the excimer lamp was turned on).
〔各評価用のサンプルの作製〕
上記ガスバリアーフィルムの作製において、作製初期(エキシマランプ点灯直後)のガスバリアーフィルムを、ガスバリアーフィルム1A~17Aとした。 << Evaluation of gas barrier film >>
[Preparation of samples for each evaluation]
In the production of the gas barrier film, gas barrier films 1A to 17A were used as gas barrier films at the initial production stage (immediately after the excimer lamp was turned on).
次いで、連続搬送しながら製造し、エキシマランプとして、1000時間照射した後に作製したガスバリアーフィルムを、ガスバリアーフィルム1B~17Bとした。
Next, gas barrier films 1B to 17B were manufactured while being continuously conveyed and manufactured as excimer lamps after being irradiated for 1000 hours.
同様に、連続製造しながら製造し、ガスバリアーフィルムとして60000m作製した時点でサンプリングしたガスバリアーフィルムを、ガスバリアーフィルム1C~17Cとした。
Similarly, gas barrier films 1C to 17C were manufactured while being manufactured continuously and sampled at the time when 60000 m was produced as a gas barrier film.
〔ガスバリアー性の評価〕
上記作製したガスバリアーフィルム1A~17A、ガスバリアーフィルム1B~17B、ガスバリアーフィルム1C~17Cについて、下記の方法に従って水蒸気透過率(ガスバリアー性)の評価を行った。 [Evaluation of gas barrier properties]
The gas barrier films 1A to 17A, gas barrier films 1B to 17B, and gas barrier films 1C to 17C produced above were evaluated for water vapor permeability (gas barrier properties) according to the following method.
上記作製したガスバリアーフィルム1A~17A、ガスバリアーフィルム1B~17B、ガスバリアーフィルム1C~17Cについて、下記の方法に従って水蒸気透過率(ガスバリアー性)の評価を行った。 [Evaluation of gas barrier properties]
The gas barrier films 1A to 17A, gas barrier films 1B to 17B, and gas barrier films 1C to 17C produced above were evaluated for water vapor permeability (gas barrier properties) according to the following method.
(水蒸気透過率の測定)
水蒸気透過率は、以下の方法により測定した。 (Measurement of water vapor transmission rate)
The water vapor transmission rate was measured by the following method.
水蒸気透過率は、以下の方法により測定した。 (Measurement of water vapor transmission rate)
The water vapor transmission rate was measured by the following method.
〈測定装置〉
蒸着装置:日本電子(株)製真空蒸着装置JEE-400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
原材料:水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
〈水蒸気透過率評価用セルの作製〉
真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、上記作製した各ガスバリアーフィルムの蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、フィルム試料片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。 <measuring device>
Vapor deposition equipment: JEE-400 vacuum vapor deposition equipment manufactured by JEOL Ltd.
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
Raw material: Metal that reacts with moisture and corrodes: Calcium (granular)
Water vapor impermeable metal: Aluminum (φ3-5mm, granular)
<Production of water vapor permeability evaluation cell>
Using a vacuum deposition apparatus (vacuum deposition apparatus JEE-400 manufactured by JEOL Ltd.), portions other than the portions to be deposited (9 locations of 12 mm × 12 mm) of each of the produced gas barrier films were masked to deposit metallic calcium. Thereafter, the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the film sample. After aluminum sealing, the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere The cell for evaluation was produced by irradiating with ultraviolet rays.
蒸着装置:日本電子(株)製真空蒸着装置JEE-400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
原材料:水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
〈水蒸気透過率評価用セルの作製〉
真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、上記作製した各ガスバリアーフィルムの蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、フィルム試料片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。 <measuring device>
Vapor deposition equipment: JEE-400 vacuum vapor deposition equipment manufactured by JEOL Ltd.
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
Raw material: Metal that reacts with moisture and corrodes: Calcium (granular)
Water vapor impermeable metal: Aluminum (φ3-5mm, granular)
<Production of water vapor permeability evaluation cell>
Using a vacuum deposition apparatus (vacuum deposition apparatus JEE-400 manufactured by JEOL Ltd.), portions other than the portions to be deposited (9 locations of 12 mm × 12 mm) of each of the produced gas barrier films were masked to deposit metallic calcium. Thereafter, the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the film sample. After aluminum sealing, the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere The cell for evaluation was produced by irradiating with ultraviolet rays.
得られた両面をアルミニウムにより封止したサンプルを60℃、90%RHの高温高湿環境下で保存し、特開2005-283561号公報記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量(g/m2/day)を計算した。
The obtained sample whose both surfaces are sealed with aluminum is stored in a high-temperature and high-humidity environment of 60 ° C. and 90% RH. Based on the method described in Japanese Patent Application Laid-Open No. 2005-283561, the corrosion amount of metallic calcium is introduced into the cell. The amount of moisture permeated (g / m 2 / day) was calculated.
(ガスバリアー性の評価:作製初期のガスバリアーフィルム)
上記作製初期(エキシマランプ点灯直後)のガスバリアーフィルム1A~17Aについて、上記の方法で水蒸気透過率を測定した後、下記の評価ランクに従ってガスバリアー性を評価した。 (Evaluation of gas barrier properties: gas barrier film at the initial stage of production)
For the gas barrier films 1A to 17A at the initial stage of production (immediately after the excimer lamp was turned on), the water vapor permeability was measured by the above method, and then the gas barrier properties were evaluated according to the following evaluation rank.
上記作製初期(エキシマランプ点灯直後)のガスバリアーフィルム1A~17Aについて、上記の方法で水蒸気透過率を測定した後、下記の評価ランクに従ってガスバリアー性を評価した。 (Evaluation of gas barrier properties: gas barrier film at the initial stage of production)
For the gas barrier films 1A to 17A at the initial stage of production (immediately after the excimer lamp was turned on), the water vapor permeability was measured by the above method, and then the gas barrier properties were evaluated according to the following evaluation rank.
◎:水蒸気透過率が、1×10-3g/m2/day未満である
○:水蒸気透過率、1×10-3g/m2/day以上、3×10-3g/m2/day未満である
△:水蒸気透過率が、3×10-3g/m2/day以上、1×10-1g/m2/day未満である
×:水蒸気透過率が、1×10-1g/m2/day以上である
(耐久性の評価1:1000時間照射した後の耐久性)
上記測定したガスバリアーフィルム1A~17A(作製直後)の水分量を基準として、それぞれエキシマランプとして1000時間照射した後に作製したガスバリアーフィルム1B~17Bの水分量の増加率を測定し、下記の基準に従って、耐久性1の評価を行った。 A: Water vapor transmission rate is less than 1 × 10 −3 g / m 2 / day B: Water vapor transmission rate, 1 × 10 −3 g / m 2 / day or more, 3 × 10 −3 g / m 2 / day Δ: The water vapor transmission rate is 3 × 10 −3 g / m 2 / day or more and less than 1 × 10 −1 g / m 2 / day ×: The water vapor transmission rate is 1 × 10 −1 g / m 2 / day or more (Durability Evaluation 1: Durability after 1000 hours of irradiation)
Based on the measured moisture content of the gas barrier films 1A to 17A (immediately after production), the rate of increase in the moisture content of the gas barrier films 1B to 17B produced after irradiation for 1000 hours as an excimer lamp was measured. Thus,durability 1 was evaluated.
○:水蒸気透過率、1×10-3g/m2/day以上、3×10-3g/m2/day未満である
△:水蒸気透過率が、3×10-3g/m2/day以上、1×10-1g/m2/day未満である
×:水蒸気透過率が、1×10-1g/m2/day以上である
(耐久性の評価1:1000時間照射した後の耐久性)
上記測定したガスバリアーフィルム1A~17A(作製直後)の水分量を基準として、それぞれエキシマランプとして1000時間照射した後に作製したガスバリアーフィルム1B~17Bの水分量の増加率を測定し、下記の基準に従って、耐久性1の評価を行った。 A: Water vapor transmission rate is less than 1 × 10 −3 g / m 2 / day B: Water vapor transmission rate, 1 × 10 −3 g / m 2 / day or more, 3 × 10 −3 g / m 2 / day Δ: The water vapor transmission rate is 3 × 10 −3 g / m 2 / day or more and less than 1 × 10 −1 g / m 2 / day ×: The water vapor transmission rate is 1 × 10 −1 g / m 2 / day or more (Durability Evaluation 1: Durability after 1000 hours of irradiation)
Based on the measured moisture content of the gas barrier films 1A to 17A (immediately after production), the rate of increase in the moisture content of the gas barrier films 1B to 17B produced after irradiation for 1000 hours as an excimer lamp was measured. Thus,
○:ランプ点灯直後に作製したガスバリアーフィルムに対する1000時間照射した後に作製したガスバリアーフィルムの水分量の増加率が、1.5倍未満である
△:ランプ点灯直後に作製したガスバリアーフィルムに対する1000時間照射した後に作製したガスバリアーフィルムの水分量の増加率が、1.5倍以上、5.0倍未満である
×:ランプ点灯直後に作製したガスバリアーフィルムに対する1000時間照射した後に作製したガスバリアーフィルムの水分量の増加率が、5.0倍以上である
(耐久性の評価2:60000m作製後の耐久性)
上記測定したガスバリアーフィルム1A~13A(作製直後)の水分量を基準として、それぞれエキシマランプを連続点灯し、60000mのガスバリアーフィルムを作製した時点でサンプリングしたガスバリアーフィルム1B~17Bの水分量の増加率を測定し、下記の基準に従って、耐久性1の評価を行った。 ○: The rate of increase in the moisture content of the gas barrier film prepared after irradiating the gas barrier film prepared immediately after the lamp is lit for 1000 hours is less than 1.5 times. Δ: 1000 relative to the gas barrier film prepared immediately after the lamp is lit. The rate of increase in the moisture content of the gas barrier film produced after irradiation for a period of time is 1.5 times or more and less than 5.0 times. X: Gas produced after irradiation for 1000 hours to the gas barrier film produced immediately after the lamp is lit The rate of increase in the moisture content of the barrier film is 5.0 times or more (durability evaluation 2: durability after preparation of 60000 m)
Based on the measured moisture content of the gas barrier films 1A to 13A (immediately after production), each of the excimer lamps was continuously turned on, and the moisture content of the gas barrier films 1B to 17B sampled when the 60000 m gas barrier film was produced. The increase rate was measured, anddurability 1 was evaluated according to the following criteria.
△:ランプ点灯直後に作製したガスバリアーフィルムに対する1000時間照射した後に作製したガスバリアーフィルムの水分量の増加率が、1.5倍以上、5.0倍未満である
×:ランプ点灯直後に作製したガスバリアーフィルムに対する1000時間照射した後に作製したガスバリアーフィルムの水分量の増加率が、5.0倍以上である
(耐久性の評価2:60000m作製後の耐久性)
上記測定したガスバリアーフィルム1A~13A(作製直後)の水分量を基準として、それぞれエキシマランプを連続点灯し、60000mのガスバリアーフィルムを作製した時点でサンプリングしたガスバリアーフィルム1B~17Bの水分量の増加率を測定し、下記の基準に従って、耐久性1の評価を行った。 ○: The rate of increase in the moisture content of the gas barrier film prepared after irradiating the gas barrier film prepared immediately after the lamp is lit for 1000 hours is less than 1.5 times. Δ: 1000 relative to the gas barrier film prepared immediately after the lamp is lit. The rate of increase in the moisture content of the gas barrier film produced after irradiation for a period of time is 1.5 times or more and less than 5.0 times. X: Gas produced after irradiation for 1000 hours to the gas barrier film produced immediately after the lamp is lit The rate of increase in the moisture content of the barrier film is 5.0 times or more (durability evaluation 2: durability after preparation of 60000 m)
Based on the measured moisture content of the gas barrier films 1A to 13A (immediately after production), each of the excimer lamps was continuously turned on, and the moisture content of the gas barrier films 1B to 17B sampled when the 60000 m gas barrier film was produced. The increase rate was measured, and
○:ランプ点灯直後に作製したガスバリアーフィルムに対する60000m作製後にサンプリングしたガスバリアーフィルムの水分量の増加率が、1.5倍未満である
△:ランプ点灯直後に作製したガスバリアーフィルムに対する60000m作製後にサンプリングしたガスバリアーフィルムの水分量の増加率が、1.5倍以上、5.0倍未満である
×:ランプ点灯直後に作製したガスバリアーフィルムに対する60000m作製後にサンプリングしたガスバリアーフィルムの水分量の増加率が、5.0倍以上である
以上により得られた結果を、表1に示す。 ○: The rate of increase in the moisture content of the gas barrier film sampled after the production of 60000 m with respect to the gas barrier film produced immediately after the lamp is lit is less than 1.5 times. Δ: after the production of 60000 m with respect to the gas barrier film produced immediately after the lamp is lit. The increase rate of the moisture content of the sampled gas barrier film is 1.5 times or more and less than 5.0 times. X: The moisture content of the gas barrier film sampled after preparation of 60000 m with respect to the gas barrier film prepared immediately after the lamp is turned on. The increase rate is 5.0 times or more Table 1 shows the results obtained.
△:ランプ点灯直後に作製したガスバリアーフィルムに対する60000m作製後にサンプリングしたガスバリアーフィルムの水分量の増加率が、1.5倍以上、5.0倍未満である
×:ランプ点灯直後に作製したガスバリアーフィルムに対する60000m作製後にサンプリングしたガスバリアーフィルムの水分量の増加率が、5.0倍以上である
以上により得られた結果を、表1に示す。 ○: The rate of increase in the moisture content of the gas barrier film sampled after the production of 60000 m with respect to the gas barrier film produced immediately after the lamp is lit is less than 1.5 times. Δ: after the production of 60000 m with respect to the gas barrier film produced immediately after the lamp is lit. The increase rate of the moisture content of the sampled gas barrier film is 1.5 times or more and less than 5.0 times. X: The moisture content of the gas barrier film sampled after preparation of 60000 m with respect to the gas barrier film prepared immediately after the lamp is turned on. The increase rate is 5.0 times or more Table 1 shows the results obtained.
表1に記載の結果より明らかなように、連続搬送してエキシマ光による表面改質処理を行う際に、エキシマランプと基材間の領域の水蒸気濃度を150~930ppmの範囲内に規定することにより、良好なガスバリアー性を有するガスバリアーフィルムを得ることができ、更に、長時間にわたりエキシマランプの照射を行っても、あるいは長時間にわたり製造した後でも、ガスバリアー性に優れたガスバリアーフィルムを安定して製造することができる。
As is clear from the results shown in Table 1, the water vapor concentration in the region between the excimer lamp and the base material should be regulated within the range of 150 to 930 ppm when performing surface modification treatment with excimer light after continuous conveyance. Makes it possible to obtain a gas barrier film having a good gas barrier property, and further, a gas barrier film having an excellent gas barrier property even after being irradiated with an excimer lamp for a long time or after being manufactured for a long time. Can be manufactured stably.
本発明のガスバリアーフィルムの製造方法は、連続生産適性を有し、エキシマランプのランプ照度の低下やエキシマランプの寿命低下を抑制でき、かつガスバリアー層を安定して形成することができる製造方法であり、これらにより製造したガスバリアーフィルムは、液晶表示素子、太陽電池、有機EL素子等の封止用フィルムとして好適に利用できる。
The method for producing a gas barrier film of the present invention has a suitability for continuous production, can suppress a reduction in lamp illuminance and excimer lamp life of an excimer lamp, and can stably form a gas barrier layer. The gas barrier film produced by these can be suitably used as a sealing film for liquid crystal display elements, solar cells, organic EL elements and the like.
1 (キセノン)エキシマ光照射ユニット
2 エキシマランプホルダー
3 エキシマランプ
4 窒素ガス及び水蒸気の配管入口
5 窒素ガス及び水蒸気配管
6 窒素ガス及び水蒸気
7 エキシマ光照射領域
8 ポリシラザン層
9 基材
20 搬送手段
21 フィルム基材
30 ガスバリアーフィルム製造装置
31 繰り出し部
32 塗布部
33 乾燥部
34 エキシマ光照射部
35 巻き取り部
36 ガス注入口
37 窒素ガス及び水蒸気の排出口
h ランプ管表面とポリシラザン層面との最短距離
U1~U30 エキシマ光照射ユニット DESCRIPTION OF SYMBOLS 1 (Xenon) excimerlight irradiation unit 2 Excimer lamp holder 3 Excimer lamp 4 Nitrogen gas and water vapor piping inlet 5 Nitrogen gas and water vapor piping 6 Nitrogen gas and water vapor 7 Excimer light irradiation area 8 Polysilazane layer 9 Base material 20 Conveyance means 21 Film Base material 30 Gas barrier film manufacturing apparatus 31 Feeding section 32 Coating section 33 Drying section 34 Excimer light irradiation section 35 Winding section 36 Gas inlet 37 Nitrogen gas and water vapor outlet h Minimum distance between the lamp tube surface and the polysilazane layer surface U1 ~ U30 Excimer light irradiation unit
2 エキシマランプホルダー
3 エキシマランプ
4 窒素ガス及び水蒸気の配管入口
5 窒素ガス及び水蒸気配管
6 窒素ガス及び水蒸気
7 エキシマ光照射領域
8 ポリシラザン層
9 基材
20 搬送手段
21 フィルム基材
30 ガスバリアーフィルム製造装置
31 繰り出し部
32 塗布部
33 乾燥部
34 エキシマ光照射部
35 巻き取り部
36 ガス注入口
37 窒素ガス及び水蒸気の排出口
h ランプ管表面とポリシラザン層面との最短距離
U1~U30 エキシマ光照射ユニット DESCRIPTION OF SYMBOLS 1 (Xenon) excimer
Claims (8)
- 基材上の少なくとも一方の面側に、ポリシラザン化合物を有する塗布液を塗布して形成されたポリシラザン層を、エキシマ光を発光するエキシマランプを具備した表面改質工程内を連続的に搬送し、前記ポリシラザン層に前記エキシマ光を照射して、ガスバリアー層を改質する表面改質処理を行い製造するガスバリアーフィルムの製造方法であって、
前記表面改質処理時の前記エキシマランプと前記基材間の空間領域における平均水蒸気濃度が、150~930ppmの範囲内とすることを特徴とするガスバリアーフィルムの製造方法。 A polysilazane layer formed by applying a coating liquid having a polysilazane compound on at least one surface side on a substrate is continuously conveyed in a surface modification step including an excimer lamp that emits excimer light, A method for producing a gas barrier film, wherein the polysilazane layer is irradiated with the excimer light to perform a surface modification treatment for modifying the gas barrier layer,
A method for producing a gas barrier film, wherein an average water vapor concentration in a space region between the excimer lamp and the base material during the surface modification treatment is in a range of 150 to 930 ppm. - 前記エキシマランプのランプ管表面におけるピーク照度が、50mW/cm2以上であることを特徴とする請求項1に記載のガスバリアーフィルムの製造方法。 2. The method for producing a gas barrier film according to claim 1, wherein a peak illuminance on the surface of the lamp tube of the excimer lamp is 50 mW / cm 2 or more.
- 前記エキシマランプのランプ管表面におけるピーク照度が、80mW/cm2以上であることを特徴とする請求項1又は請求項2に記載のガスバリアーフィルムの製造方法。 The method for producing a gas barrier film according to claim 1 or 2, wherein a peak illuminance on the surface of the lamp tube of the excimer lamp is 80 mW / cm 2 or more.
- 対向する位置にある前記エキシマランプのランプ管表面と前記基材上のポリシラザン層面との最短距離が、0.1~9.0mmの範囲内であることを特徴とする請求項1から請求項3までのいずれか一項に記載のガスバリアーフィルムの製造方法。 The shortest distance between the surface of the lamp tube of the excimer lamp and the surface of the polysilazane layer on the substrate in the opposite positions is in the range of 0.1 to 9.0 mm. The manufacturing method of the gas barrier film as described in any one of the above.
- 前記表面改質工程が、複数個のエキシマランプが設置されていることを特徴とする請求項1から請求項4までのいずれか一項に記載のガスバリアーフィルムの製造方法。 The method for producing a gas barrier film according to any one of claims 1 to 4, wherein the surface modification step includes a plurality of excimer lamps.
- 前記表面改質工程が、前記エキシマランプが前記基材の搬送方向に対し10基以上並列に配置されていることを特徴とする請求項1から請求項5までのいずれか一項に記載のガスバリアーフィルムの製造方法。 The gas according to any one of claims 1 to 5, wherein in the surface modification step, 10 or more of the excimer lamps are arranged in parallel with respect to a transport direction of the base material. A method for producing a barrier film.
- 前記ポリシラザン化合物が、パーヒドロポリシラザンであることを特徴とする請求項1から請求項6までのいずれか一項に記載のガスバリアーフィルムの製造方法。 The method for producing a gas barrier film according to any one of claims 1 to 6, wherein the polysilazane compound is perhydropolysilazane.
- 請求項1から請求項7までのいずれか一項に記載のガスバリアーフィルムの製造方法に用いることを特徴とする表面改質処理方法。 A surface modification treatment method, which is used in the method for producing a gas barrier film according to any one of claims 1 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015513653A JP6222224B2 (en) | 2013-04-23 | 2014-04-03 | Method for producing gas barrier film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013089919 | 2013-04-23 | ||
JP2013-089919 | 2013-04-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014175029A1 true WO2014175029A1 (en) | 2014-10-30 |
Family
ID=51791610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/059796 WO2014175029A1 (en) | 2013-04-23 | 2014-04-03 | Process for manufacturing gas barrier film and surface modification method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6222224B2 (en) |
WO (1) | WO2014175029A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011007543A1 (en) * | 2009-07-17 | 2011-01-20 | 三井化学株式会社 | Laminate and process for production thereof |
JP2012016854A (en) * | 2010-07-07 | 2012-01-26 | Konica Minolta Holdings Inc | Gas barrier film, organic photoelectric conversion element, and organic electroluminescent element |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5691309B2 (en) * | 2010-09-06 | 2015-04-01 | コニカミノルタ株式会社 | Gas barrier film and electronic device using the same |
JP5552975B2 (en) * | 2010-09-07 | 2014-07-16 | コニカミノルタ株式会社 | Gas barrier film and organic electronic device having gas barrier film |
JP5798747B2 (en) * | 2011-01-14 | 2015-10-21 | 三井化学株式会社 | Manufacturing method of laminate |
JP5888329B2 (en) * | 2011-06-27 | 2016-03-22 | コニカミノルタ株式会社 | Gas barrier film, method for producing gas barrier film, and electronic device |
US20150099126A1 (en) * | 2012-04-25 | 2015-04-09 | Konica Minolta, Inc. | Gas barrier film, substrate for electronic device and electronic device |
WO2014092085A1 (en) * | 2012-12-14 | 2014-06-19 | コニカミノルタ株式会社 | Gas barrier film, method for manufacturing same, and electronic device using same |
-
2014
- 2014-04-03 JP JP2015513653A patent/JP6222224B2/en not_active Expired - Fee Related
- 2014-04-03 WO PCT/JP2014/059796 patent/WO2014175029A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011007543A1 (en) * | 2009-07-17 | 2011-01-20 | 三井化学株式会社 | Laminate and process for production thereof |
JP2012016854A (en) * | 2010-07-07 | 2012-01-26 | Konica Minolta Holdings Inc | Gas barrier film, organic photoelectric conversion element, and organic electroluminescent element |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014175029A1 (en) | 2017-02-23 |
JP6222224B2 (en) | 2017-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6504284B2 (en) | Gas barrier film, method for producing the same, and electronic device using the same | |
JP5880442B2 (en) | GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE | |
JP5895687B2 (en) | Gas barrier film | |
US20150247241A1 (en) | Method for producing gas barrier film, gas barrier film, and electronic device | |
TWI647110B (en) | Method for manufacturing laminate | |
WO2014163062A1 (en) | Method for manufacturing gas barrier film, gas barrier film, and electronic device | |
JP6398986B2 (en) | Gas barrier film | |
JP2012131194A (en) | Gas barrier film | |
WO2014178332A1 (en) | Gas barrier film and method for producing same | |
JP5861644B2 (en) | Method for producing gas barrier film and gas barrier film | |
JP2014240051A (en) | Gas barrier film, manufacturing method of gas barrier film, and manufacturing apparatus of gas barrier film | |
JP2014240462A (en) | Gas barrier film, method for manufacturing gas barrier film, and apparatus for manufacturing gas barrier film | |
JP2017095758A (en) | Method for producing gas barrier film | |
WO2014119754A1 (en) | Gas barrier film, method for producing same, and electronic device using same | |
JP2016022595A (en) | Gas barrier film, production method thereof, and electronic device having gas barrier film | |
WO2015083706A1 (en) | Gas barrier film and method for producing same | |
JP6222224B2 (en) | Method for producing gas barrier film | |
JP2016022589A (en) | Gas barrier film | |
JP5825216B2 (en) | Gas barrier film manufacturing method and manufacturing apparatus | |
WO2017047346A1 (en) | Electronic device and method for sealing electronic device | |
JP2016193526A (en) | Gas barrier film, and electronic device using the gas barrier film | |
JP6341207B2 (en) | Gas barrier film manufacturing equipment | |
JP6287634B2 (en) | Gas barrier film, method for producing the same, and electronic device using the same | |
JP2013226758A (en) | Method for manufacturing gas barrier film | |
WO2017010249A1 (en) | Gas barrier film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14788455 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015513653 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14788455 Country of ref document: EP Kind code of ref document: A1 |