[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014178332A1 - Gas barrier film and method for producing same - Google Patents

Gas barrier film and method for producing same Download PDF

Info

Publication number
WO2014178332A1
WO2014178332A1 PCT/JP2014/061624 JP2014061624W WO2014178332A1 WO 2014178332 A1 WO2014178332 A1 WO 2014178332A1 JP 2014061624 W JP2014061624 W JP 2014061624W WO 2014178332 A1 WO2014178332 A1 WO 2014178332A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
gas barrier
inorganic layer
polysilazane
Prior art date
Application number
PCT/JP2014/061624
Other languages
French (fr)
Japanese (ja)
Inventor
西尾 昌二
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015514827A priority Critical patent/JPWO2014178332A1/en
Priority to US14/888,332 priority patent/US20160059261A1/en
Publication of WO2014178332A1 publication Critical patent/WO2014178332A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present invention relates to a gas barrier film and a method for producing the same. More specifically, the present invention relates to a gas barrier film having excellent barrier layer adhesion and low water vapor and oxygen permeability, and further, an electronic device using the gas barrier film, particularly an organic EL element (organic electroluminescent element). ) And the like.
  • a gas barrier film in which a metal oxide thin film such as aluminum oxide, magnesium oxide, silicon oxide or the like is formed on a plastic substrate or film surface is used for packaging an article that requires blocking of various gases such as water vapor and oxygen, Widely used in packaging applications to prevent the deterioration of food, industrial products and pharmaceuticals.
  • flexible electronic devices such as flexible solar cell elements, liquid crystal display elements, organic electroluminescence (hereinafter abbreviated as organic EL) elements, and many studies have been made. ing.
  • organic EL organic electroluminescence
  • a chemical deposition method in which an organic silicon compound typified by tetraethoxysilane (TEOS) is used and grown on a substrate while oxygen plasma oxidation is performed under reduced pressure.
  • TEOS tetraethoxysilane
  • Chemical Vapor Deposition and vapor deposition methods such as physical deposition methods in which metal silicon is evaporated using a semiconductor laser and deposited on a substrate in the presence of oxygen are known.
  • inorganic vapor deposition methods have been preferably applied to the formation of inorganic films such as silicon oxide, silicon nitride, and silicon oxynitride, and the composition of inorganic films for obtaining good gas barrier properties, and Many studies have been made on the layer structure including these inorganic films.
  • Such defects in the inorganic film for example, in the case of organic EL, cause the generation of black spots called dark spots that do not emit light, and the size of the dark spots grows under high temperature and high humidity, which also affects the durability of the element itself. Will be given.
  • the present inventor applied a solution of an inorganic precursor compound on the above-mentioned gas-phase-forming film and dried it as one of barrier layer forming methods in addition to such gas-layer film formation.
  • the defect part of the inorganic film formed by the above-mentioned vapor phase method can be effectively repaired, and further, the gas barrier property of the laminated film itself can be improved.
  • studies have been made to develop a high gas barrier property by repairing the above-described defective portion by using polysilazane as an inorganic precursor compound (Japanese Patent Laid-Open No. 2012-106421).
  • Polysilazane (for example, perhydroxypolysilazane) is a compound having — (SiH 2 —NH) — as a basic skeleton.
  • polysilazane When polysilazane is subjected to heat treatment or wet heat treatment in an oxidizing atmosphere, it changes into silicon oxide via silicon oxynitride.
  • a direct substitution reaction from nitrogen to oxygen is caused by oxygen or water vapor in the atmosphere, it changes to silicon oxide with a relatively small volume shrinkage, so there are relatively few defects in the film due to the volume shrinkage. It is known that a dense film can be obtained.
  • a relatively dense silicon oxynitride film By controlling the oxidizing property of the atmosphere, a relatively dense silicon oxynitride film can be obtained.
  • Bonding of atoms is called a photon process using light energy having a wavelength of 100 to 200 nm called vacuum ultraviolet light (hereinafter also referred to as “VUV” or “VUV light”) having an energy larger than the bonding force between each atom of polysilazane.
  • VUV vacuum ultraviolet light
  • a silicon oxynitride film or a silicon oxide film can be formed at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by the action of only photons.
  • this method is also suitable for manufacturing in a roll-to-roll system with good productivity.
  • the inventors of the present invention formed a coating liquid containing a polysilazane solution on the first barrier layer formed by the above-described vapor phase method, modified the polysilazane by ultraviolet irradiation, and then applied the second.
  • a new problem has been found that when the film is exposed to a high-temperature and high-humidity environment, the formed barrier layer disappears and the barrier property is remarkably lowered.
  • the surface of the polysilazane film modified by UV irradiation is oxidized due to the effect of oxygen and moisture taken in from the outside, but the oxygen element is not taken into the inside sufficiently, and the reaction
  • the present invention has been made in view of the above circumstances, and the object thereof is to form a second barrier layer formed from a coating liquid containing polysilazane on a vapor deposition film, and to have excellent adhesion of the barrier layer.
  • An object of the present invention is to provide a barrier film capable of preventing composition changes even when exposed to a high temperature and high humidity environment and maintaining high barrier properties.
  • the present inventor conducted intensive research to solve the above problems. As a result, in the gas barrier film having a vapor deposition film and a polysilazane modified film, by introducing at least one kind of metal oxide nanoparticles and metal nitride nanoparticles into the polysilazane modified film, The inventors have found that this can be solved, and have completed the present invention.
  • the present invention modifies the first barrier layer (first inorganic layer) formed by vapor deposition on at least one surface of the substrate (support) and the polysilazane coating film on the first inorganic layer.
  • a gas barrier film comprising a second barrier layer (second inorganic layer) formed by the method, wherein the polysilazane coating film contains at least one kind of nanoparticles of metal oxide and metal nitride
  • the polysilazane coating film is modified by irradiating the polysilazane coating film with vacuum ultraviolet light having a wavelength of 200 nm or less.
  • the present invention includes a first barrier layer (first inorganic layer) formed by vapor deposition on at least one surface of a substrate (support), and a polysilazane coating film on the first inorganic layer.
  • a gas barrier film comprising a second barrier layer (second inorganic layer) formed, wherein the polysilazane coating film contains at least one kind of nanoparticles of a metal oxide and a metal nitride,
  • the polysilazane coating film is modified by irradiating the polysilazane coating film with vacuum ultraviolet light having a wavelength of 200 nm or less.
  • the barrier layer is formed by modifying the polysilazane film by irradiation with vacuum ultraviolet light
  • the barrier layer is modified from the surface side irradiated with vacuum ultraviolet light.
  • oxygen and moisture hardly diffuse inside the barrier layer, and an unreacted (unmodified) region where ammonia can be generated by hydrolysis remains.
  • This unreacted (unmodified) region reacts gradually under high temperature and high humidity to produce a by-product, and the diffusion of the by-product may cause the barrier layer to be deformed or destroyed. As a result, there is a problem that the barrier property is gradually lowered.
  • the gas barrier film of the present invention is excellent in adhesion of the barrier layer and has low water vapor and oxygen permeability even under high temperature and high humidity.
  • the gas barrier film of the present invention has excellent barrier layer adhesion and low water vapor and oxygen permeability even under high temperature and high humidity. The detailed reason is unknown, but it is considered as follows. It is done.
  • At least one kind of metal oxide and metal nitride contained in the polysilazane-containing coating solution according to the present invention has a functional group such as a hydroxyl group on the surface, which is a polysilazane Si—N bond.
  • a functional group such as a hydroxyl group on the surface, which is a polysilazane Si—N bond.
  • the nanoparticle surface is modified with polysilazane.
  • the second inorganic layer of the present invention obtained by modifying the polysilazane coating film formed by applying and drying such a polysilazane-containing coating solution is in a state where the soft unmodified region is reinforced with hard nanoparticles. It is considered that high strength can be obtained even in an environment.
  • the first inorganic layer becomes more flexible and the surface reactivity is improved, and the interaction with the second inorganic layer becomes stronger. Conceivable.
  • the inorganic layer obtained in this way is in a state in which a large amount of nitrogen is left, so that it is considered that both high gas barrier properties and wet heat resistance can be achieved.
  • X to Y indicating a range means “X or more and Y or less”, and measurement of operation and physical properties is room temperature (20 to 25 ° C.) / Relative humidity 40 to 50. Measured under the condition of%.
  • the gas barrier film of the present invention has a substrate and a barrier layer.
  • the gas barrier film of the present invention may further contain other members.
  • the gas barrier film of the present invention can be applied, for example, between the base material and the barrier layer, between the barrier layer and the barrier layer, on the barrier layer, or on the surface where the barrier layer of the base material is not formed. You may have the member.
  • the other members are not particularly limited, and members used for conventional gas barrier films can be used in the same manner or appropriately modified. Specifically, functional layers such as a smooth layer, an anchor coat layer, a bleed-out prevention layer, a protective layer, a hygroscopic layer, and an antistatic layer can be used.
  • the first barrier layer and the second barrier layer may exist one by one or may have a laminated structure of two or more layers.
  • the first barrier layer and the second barrier layer may be alternately stacked, and the first barrier layers or the second barrier layers may be adjacent to each other.
  • the barrier layer may be formed on at least one surface of the substrate.
  • the gas barrier film of the present invention includes both a form in which a barrier layer is formed on one surface of a substrate and a form in which barrier layers are formed on both surfaces of a substrate.
  • the substrate used in the present invention is not particularly limited as long as it is a long support and can hold the barrier layer.
  • a plastic film or sheet is usually used, and a film or sheet made of a colorless and transparent resin is preferably used.
  • the plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold a barrier layer, a hard coat layer, and the like, and can be appropriately selected according to the purpose of use.
  • Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide.
  • Resin cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring-modified polycarbonate resin, alicyclic ring
  • thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
  • These base materials may be used alone or in combination of two or more.
  • the thickness of the base material used in the gas barrier film according to the present invention is not particularly limited because it is appropriately selected depending on the application, but is typically preferably 5 to 500 ⁇ m, more preferably 25 to 250 ⁇ m. .
  • the gas barrier film of the present invention may have a smooth layer (underlying layer, primer layer) between the surface of the substrate having the barrier layer, preferably between the substrate and the barrier layer.
  • the smooth layer is provided in order to flatten the rough surface of the substrate on which the protrusions and the like exist, or to fill the unevenness and pinholes generated in the barrier layer with the protrusions on the substrate and to flatten the surface.
  • Such a smooth layer may be formed of any material, but preferably includes a carbon-containing polymer, and more preferably includes a carbon-containing polymer. That is, the gas barrier film of the present invention preferably further has a smooth layer containing a carbon-containing polymer between the substrate and the barrier layer.
  • the smooth layer may also contain a carbon-containing polymer, preferably a curable resin.
  • the curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material or the like with an active energy ray such as an ultraviolet ray to be cured is heated. And thermosetting resins obtained by curing. These curable resins may be used alone or in combination of two or more.
  • Examples of the active energy ray-curable material used for forming the smooth layer include a composition containing an acrylate compound, a composition containing an acrylate compound and a mercapto compound containing a thiol group, epoxy acrylate, urethane acrylate, and polyester.
  • Examples include compositions containing polyfunctional acrylate monomers such as acrylates, polyether acrylates, polyethylene glycol acrylates, and glycerol methacrylates.
  • UV curable organic / inorganic hybrid hard coating material manufactured by JSR Corporation An OPSTAR (registered trademark) series (a compound obtained by bonding an organic compound having a polymerizable unsaturated group to silica fine particles) can be used. It is also possible to use any mixture of the above-mentioned compositions, and an active energy ray-curable material containing a reactive monomer having at least one photopolymerizable unsaturated bond in the molecule. If there is no restriction in particular.
  • thermosetting materials include TutProm Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, Unicom manufactured by DIC, Inc. Dick (registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), silicon resin X-12-2400 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., Nittobo Co., Ltd.
  • thermosetting urethane resin consisting of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicone resin, polyamidoamine-epichlorohydrin Butter, and the like can be mentioned.
  • the method for forming the smooth layer is not particularly limited, but a coating solution containing a curable material is applied to a dry coating method such as a spin coating method, a spray method, a blade coating method, a dipping method, a gravure printing method, or a vapor deposition method.
  • a dry coating method such as a spin coating method, a spray method, a blade coating method, a dipping method, a gravure printing method, or a vapor deposition method.
  • active energy rays such as visible light, infrared rays, ultraviolet rays, X-rays, ⁇ rays, ⁇ rays, ⁇ rays, electron beams, and / or heating.
  • a method of forming by curing is preferred.
  • the smoothness of the smooth layer is a value expressed by the surface roughness specified in JIS B 0601: 2001, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less.
  • the surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (atomic force microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens of times with a stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of ⁇ m many times.
  • AFM atomic force microscope
  • the thickness of the smooth layer is not particularly limited, but is preferably in the range of 0.1 to 10 ⁇ m.
  • an anchor coat layer may be formed as an easy-adhesion layer for the purpose of improving adhesion (adhesion).
  • the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One type or two or more types can be used in combination.
  • a commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., “X-12-2400” 3% isopropyl alcohol solution) can be used.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10.0 ⁇ m.
  • bleed-out prevention layer In the base material having a smooth layer, unreacted oligomers or the like may migrate from the base material to the surface during heating, and the base material surface may be contaminated.
  • the bleed-out prevention layer has a function of suppressing contamination of the substrate surface.
  • a bleed-out prevention layer is normally provided in the surface opposite to the smooth layer of the base material which has a smooth layer.
  • the bleed-out prevention layer may have the same configuration as the smooth layer as long as it has the above function. That is, the bleed-out prevention layer can be formed by applying a photosensitive resin composition on a substrate and then curing it.
  • the total thickness of the base material and the control layer is 5 It is preferably ⁇ 500 ⁇ m, more preferably 25 to 250 ⁇ m.
  • an intermediate layer may be formed between the first inorganic layer and the second inorganic layer.
  • the intermediate layer can be formed for the purpose of enhancing the gas barrier property of the first barrier layer, for the purpose of enhancing the adhesion between the first barrier layer and the second barrier layer, or the like. Under the present circumstances, the said intermediate
  • the intermediate layer may be any of an inorganic layer, an organic layer, an organic-inorganic hybrid layer, and the like, but is preferably an inorganic layer.
  • the material for the inorganic layer is not particularly limited, and may be the same material as the first inorganic layer or the second inorganic layer, or a different material may be used.
  • Examples of the material used for the inorganic layer of the intermediate layer include zirconia and titania.
  • a polymer material obtained by polymerizing a crosslinkable monomer can be used as a material for the organic layer.
  • the crosslinkable monomer is not particularly limited, and examples thereof include an acryloyl group, a methacryloyl group, and an oxirane group.
  • Silsesquioxane can be used as the material of the organic / inorganic hybrid layer.
  • the thickness of the intermediate layer is preferably 0.05 to 10 nm, and more preferably 0.1 to 5 nm. However, when the same material as the first inorganic layer or the second inorganic layer is used as the material of the intermediate layer, and the thickness of the intermediate layer exceeds 10 nm, it belongs to the first inorganic layer or the second inorganic layer. .
  • the first inorganic layer is formed by vapor deposition, but can be formed by chemical vapor deposition (CVD) or physical vapor deposition (PVD).
  • the first inorganic layer may include at least one oxide, nitride, oxynitride, or oxycarbide selected from the group consisting of silicon, aluminum, and titanium.
  • At least one oxide, nitride, oxynitride, oxycarbide or oxynitride carbide selected from the group consisting of silicon, aluminum, and titanium, specifically, silicon oxide (SiO 2 ), silicon nitride, These composites include silicon oxynitride (SiON), silicon oxycarbide (SiOC), silicon carbide, aluminum oxide, titanium oxide, and aluminum silicate.
  • silicon oxynitride SiON
  • silicon nitride SiN
  • hydrogenated silicon nitride SiNH
  • silicon oxycarbide SiOC
  • silicon oxide SiO 2
  • aluminum silicate SiAlO
  • silicon oxynitride carbide SiONC
  • a 1st inorganic layer has gas barrier property by having the above compounds.
  • the permeated water amount measured by the method described in Examples below is 0. is preferably 1g / (m 2 ⁇ 24h) or less, and more preferably 0.01g / (m 2 ⁇ 24h) or less.
  • the physical vapor deposition method is a method of depositing a target material, for example, a thin film such as a carbon film, on the surface of the material in a gas phase by a physical method.
  • a sputtering method DC sputtering, RF Sputtering, ion beam sputtering, magnetron sputtering, etc.
  • vacuum deposition ion plating, and the like.
  • a silicon compound As a raw material compound, a silicon compound, a titanium compound, and an aluminum compound are used. Conventionally known compounds can be used for these.
  • the decomposition gas used when decomposing the raw material gas containing metal to obtain the inorganic compound includes hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, nitrous oxide. Examples include gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, and water vapor. Further, the decomposition gas may be mixed with an inert gas such as argon gas or helium gas.
  • the thickness of the first inorganic layer of the present invention is preferably 10 to 1000 nm, and more preferably 150 to 200 nm. If it is said range, it will be hard to be influenced by a defect part and the part with the low density between crystals, and high gas barrier property will be acquired. Further, even when it is deformed, the destruction of the inorganic layer can be reduced, which is preferable in practice.
  • FIG. 1 is a schematic view showing an example of a vacuum plasma CVD apparatus used for forming the first inorganic layer according to the present invention.
  • the vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface side inside the vacuum chamber 102. Further, a cathode electrode 103 is disposed on the ceiling side inside the vacuum chamber 102 at a position facing the susceptor 105.
  • a heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102.
  • a heat medium is disposed in the heat medium circulation system 106.
  • the heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium.
  • a heating / cooling device 160 having a storage device is provided.
  • International Publication No. WO12 / 014653 can be referred to.
  • the first inorganic layer includes a first inorganic layer containing carbon, silicon, and oxygen as constituent elements.
  • a more preferred form is the first inorganic layer that satisfies the following requirements (i) to (ii).
  • composition Having such a composition is preferable from the viewpoint of achieving both high gas barrier properties and flexibility.
  • the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is expressed by the following formula (A) or (B It is preferable to have an order of magnitude relationship represented by
  • Formula (A) Carbon average atomic ratio) ⁇ (silicon average atomic ratio) ⁇ (oxygen average atomic ratio)
  • Formula (B) (Oxygen average atomic ratio) ⁇ (silicon average atomic ratio) ⁇ (carbon average atomic ratio) If so, the bending resistance is further improved, which is more preferable.
  • (I) The distance (L) from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (silicon atoms Ratio), a silicon distribution curve showing the relationship between the L and the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (atomic ratio of oxygen), and In the carbon distribution curve showing the relationship between L and the ratio of the amount of carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (the atomic ratio of carbon), the carbon distribution curve has at least two extreme values. preferable.
  • the first inorganic layer preferably has at least three extreme values in the carbon distribution curve, more preferably at least four extreme values, but may have five or more extreme values.
  • the carbon distribution curve has at least two extreme values, the carbon atom ratio continuously changes with a concentration gradient, and the gas barrier performance during bending is enhanced.
  • the upper limit of the extreme value of the carbon distribution curve is not particularly limited, but is preferably 30 or less, more preferably 25 or less, for example. Since the number of extreme values is also caused by the film thickness of the barrier layer, it cannot be specified unconditionally.
  • one extreme value of the carbon distribution curve and the first inorganic layer in the film thickness direction of the first inorganic layer at the extreme value adjacent to the extreme value is preferably 200 nm or less, more preferably 100 nm or less, and 75 nm or less. It is particularly preferred. With such a distance between extreme values, the first inorganic layer has moderate flexibility because the first inorganic layer has sites with a high carbon atom ratio (maximum value) at an appropriate period. In addition, the generation of cracks when the gas barrier film is bent can be more effectively suppressed / prevented.
  • the extreme value means the maximum value or the minimum value of the atomic ratio of the element to the distance (L) from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer.
  • the maximum value is a point where the value of the atomic ratio of the element (oxygen, silicon or carbon) changes from increase to decrease when the distance from the surface of the first inorganic layer is changed, And the atom of the element at a position where the distance from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer from the point is further changed within the range of 4 to 20 nm, rather than the value of the atomic ratio of the element at that point This is the point at which the ratio value decreases by 3 at% or more.
  • the atomic ratio value of the element is reduced by 3 at% or more in any range when changing in the range of 4 to 20 nm.
  • This varies depending on the film thickness of the first inorganic layer. For example, when the film thickness of the first inorganic layer is 300 nm, the atomic ratio value of the element at the position where the distance from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer is changed by 20 nm is 3 at. % Is preferable.
  • the minimum value in the present specification is a point where the value of the atomic ratio of the element (oxygen, silicon or carbon) changes from decrease to increase when the distance from the surface of the first inorganic layer is changed, and
  • the atomic ratio of the element at the position where the distance from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer is further changed within the range of 4 to 20 nm from the value of the atomic ratio of the element at that point This means that the value increases by 3 at% or more. That is, when changing in the range of 4 to 20 nm, the atomic ratio value of the element only needs to increase by 3 at% or more in any range.
  • the lower limit of the distance between the extreme values in the case of having at least three extreme values is particularly high because the smaller the distance between the extreme values, the higher the effect of suppressing / preventing crack generation when the gas barrier film is bent. Not limited.
  • the absolute value of the difference between the maximum value and the minimum value of the carbon atomic ratio in the carbon distribution curve is preferably 3 at% or more, and more preferably 5 at% or more. Preferably, it is 7 at% or more.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 3 at% or more, the gas barrier performance during bending is enhanced.
  • the “maximum value” is the atomic ratio of each element that is maximum in the distribution curve of each element, and is the highest value among the maximum values.
  • the “minimum value” is the atomic ratio of each element that is the minimum in the distribution curve of each element, and is the lowest value among the minimum values.
  • the resulting gas barrier film has sufficient gas barrier properties and flexibility.
  • the relationship of the above (atomic ratio of oxygen), (atomic ratio of silicon) and (atomic ratio of carbon) is at least 90% or more (upper limit: 100%) of the thickness of the barrier layer. ) And more preferably at least 93% or more (upper limit: 100%).
  • “at least 90% or more of the thickness of the barrier layer” does not need to be continuous in the barrier layer, and only needs to satisfy the above-described relationship at a portion of 90% or more.
  • the silicon distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve are obtained by using X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon in combination.
  • XPS X-ray photoelectron spectroscopy
  • rare gas ion sputtering such as argon in combination.
  • XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside of the sample.
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the etching time is the distance (L) from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer in the film thickness direction. Since there is a general correlation, the “distance from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer” is calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. The distance from the surface of one inorganic layer can be employed.
  • the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve were prepared under the following measurement conditions.
  • Etching ion species Argon (Ar + ); Etching rate (converted to SiO 2 thermal oxide film): 0.05 nm / sec; Etching interval (SiO 2 equivalent value): 10 nm;
  • X-ray photoelectron spectrometer manufactured by Thermo Fisher Scientific, model name “VG Theta Probe”; Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval.
  • the first inorganic layer is substantially uniform in the film surface direction (direction parallel to the surface of the first inorganic layer). It is preferable that the fact that the first inorganic layer is substantially uniform in the film surface direction means that the oxygen distribution curve and the carbon distribution curve are measured at any two measurement points on the film surface of the first inorganic layer by XPS depth profile measurement.
  • the oxygen carbon distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the maximum value of the atomic ratio of carbon in each carbon distribution curve And the absolute value of the difference between the minimum values is the same as each other or within 5 at%.
  • the carbon distribution curve is substantially continuous.
  • the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously.
  • the carbon distribution curve is calculated from the etching rate and the etching time. The distance (x, unit: nm) from the surface of the first inorganic layer in the film thickness direction of at least one of the first inorganic layers to be formed, and the atomic ratio of carbon (C, unit: at%) In the relationship, the condition expressed by the following formula (1) is satisfied.
  • the first inorganic layer has a sublayer
  • a plurality of sublayers that satisfy all of the above conditions (i) to (ii) may be stacked to form the first inorganic layer.
  • the materials of the plurality of sublayers may be the same or different.
  • the layer satisfying the requirements of (i) to (ii), which is a preferred form of the first inorganic layer, is preferably a layer formed by a plasma CVD (PECVD) method, and a substrate is formed as a pair of films. More preferably, it is formed on a roller and formed by a plasma CVD method in which plasma is generated by discharging between the pair of film forming rollers.
  • the plasma CVD method may be a Penning discharge plasma type plasma CVD method.
  • each of the pair of film forming rollers has the above-mentioned base. More preferably, a material is disposed and discharged between a pair of film forming rollers to generate plasma.
  • the film forming gas used in such a plasma CVD method preferably includes an organic silicon compound and oxygen, and the content of oxygen in the film forming gas is determined by the organosilicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount necessary for complete oxidation.
  • the barrier layer is preferably a layer formed by a continuous film forming process.
  • an apparatus that can be used when producing the first inorganic layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source, and the pair of pairs. It is preferable that the apparatus has a configuration capable of discharging between the film forming rollers. For example, when the manufacturing apparatus shown in FIG. 2 is used, a roll-to-roll system is used while using a plasma CVD method. It can also be manufactured.
  • FIG. 2 is a schematic view showing an example of a manufacturing apparatus that can be suitably used for manufacturing the first inorganic layer.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
  • the manufacturing apparatus 31 shown in FIG. 2 includes a delivery roller 32, transport rollers 33, 34, 35, and 36, film formation rollers 39 and 40, a gas supply pipe 41, a plasma generation power source 42, and a film formation roller 39. And magnetic field generators 43 and 44 installed inside 40 and a winding roller 45.
  • a manufacturing apparatus at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generating power source 42, and the magnetic field generating apparatuses 43 and 44 are arranged in a vacuum chamber (not shown). ing.
  • the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump. Details relating to the apparatus can be referred to conventionally known documents, for example, Japanese Patent Application Laid-Open No. 2011-73430.
  • the first inorganic layer is formed by a plasma CVD method using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode shown in FIG.
  • a plasma CVD apparatus roll-to-roll method
  • This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode.
  • Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
  • the second barrier layer is formed by applying a coating liquid containing a polysilazane compound and nanoparticles (hereinafter also referred to as “nanoparticle-containing polysilazane-containing coating liquid”) onto a substrate, and applying a vacuum having a wavelength of 200 nm or less to the obtained coating film. It is formed by irradiating with ultraviolet light (step (1)).
  • Nanoparticle-containing polysilazane-containing coating solution contains a polysilazane compound and nanoparticles.
  • Polysilazane compound is a polymer having a bond such as Si—N, Si—H, or N—H in its structure, such as SiO 2 , Si 3 N 4 , and their intermediate solid solution SiO x N y . Functions as an inorganic precursor.
  • the polysilazane compound is not particularly limited, but is preferably a compound that is converted to silica by being converted to silica at a relatively low temperature in consideration of the modification treatment described later, for example, in JP-A-8-112879. It is preferable that it is a compound which has the main skeleton which consists of a unit represented by the following general formula (1) of description.
  • R 1 , R 2 and R 3 represent a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. At this time, R 1 , R 2 and R 3 may be the same or different.
  • examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms.
  • the aryl group include aryl groups having 6 to 30 carbon atoms.
  • non-condensed hydrocarbon group such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc.
  • non-condensed hydrocarbon group such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, nap
  • the (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group.
  • the substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R 1 to R 3 to be substituted. For example, when R 1 , R 2 and R 3 are alkyl groups, they are not further substituted with an alkyl group.
  • R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
  • Perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred.
  • a barrier layer (gas barrier film) formed from such polysilazane exhibits high density.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and can be a liquid or solid substance (depending on the molecular weight).
  • the perhydropolysilazane may be a commercially available product.
  • Examples of the commercially available product include AQUAMICA NN120, NN120-10, NN120-20, NN110, NAX120, NAX120-20, NAX110, NL120A, NL120-20, NL110A, NL150A, NP110, NP140 (all are made by AZ Electronic Materials Co., Ltd.) and the like.
  • the content of the polysilazane compound in the nanoparticle-containing polysilazane-containing coating solution varies depending on the desired film thickness of the barrier layer, the pot life of the coating solution, and the like, but is 0. It is preferably 2 to 35% by mass.
  • Nanoparticle The nanoparticle in the present invention means a particle having an average particle diameter of 1 nm or more and 1000 nm or less as a sphere equivalent diameter.
  • the nanoparticle of the present invention is at least one kind of metal oxide and metal nitride.
  • the metal of the nanoparticles of the present invention is not particularly limited, but at least selected from the group consisting of Si, Ti, Al, Zr, Zn, Ba, Sr, Ca, Mg, V, Cr, Mo, Li, and Mn. It is preferably selected from oxides and nitrides containing any one element.
  • the particle size is preferably 1 to 120 nm, more preferably 5 to 100 nm, in terms of a sphere equivalent diameter. If the particle size of the water absorbent is 1 to 120 nm in terms of the equivalent sphere diameter, it is preferable because transparency can be maintained and the amount of water absorption per unit mass is increased. Considering further improvement in gas barrier properties (for example, water vapor barrier properties) and durability, the sphere equivalent diameter of the nanoparticles is more preferably 8 to 90 nm, and particularly preferably 10 to 70 nm.
  • sphere equivalent diameter means the diameter of a sphere when the particle size is converted to a sphere having the same volume as that of the particle.
  • a concentrated particle size analyzer “FPAR-1000” manufactured by Otsuka Electronics Co., Ltd. After measuring dispersibility and measuring dispersibility, an average volume is obtained and converted to a sphere equivalent diameter.
  • the nanoparticles of the present invention can be appropriately selected from compounds having a water absorption function centering on alkaline earth metals.
  • the particles are included in the nanoparticles used in the present invention.
  • the boehmite type of aluminum oxide is particularly useful.
  • the nanoparticles can be selected from metal elements such as Ti, Mg, Ba, Ca.
  • the nanoparticles can be spherical platelets or other shapes.
  • Platelets or other relatively flat particles may have a partial or complete orientation of the relatively flat surface of a particularly useful particle that may be parallel to the surface of the substrate.
  • Nanoparticles may be included in the coating formulation at 3 to 90 percent, preferably 30 to 75 percent, more preferably 40 to 70 percent of the solid content of the extreme cured coating.
  • the particles may be dispersed in a polar solvent such as DMF, DMSO and water coating formulations. Prior to dispersion of the nanoparticles, their surface may be modified. Silane modified particles, especially epoxy silane modified particles, can be used in embodiments of the present invention.
  • a surfactant may be included for the preparation of a stable dispersion of nanoparticles.
  • Such surfactants include nitric acid, formic acid, citric acid, ammonium citrate, ammonium polymethacrylate, and silane.
  • a polysilazane-containing coating solution may be prepared and the nanoparticles may be added to the curable component that is a dispersion in a solvent.
  • the nanoparticle content in the nanoparticle-containing polysilazane-containing coating solution varies depending on the desired film thickness of the barrier layer, the pot life of the coating solution, and the like.
  • the content is preferably from 01 to 0.5% by mass.
  • the mixing ratio of the polysilazane compound and the nanoparticles is not particularly limited. Considering the effect of improving the adhesion of the barrier layer and gas barrier properties (especially gas barrier properties under high temperature and high humidity), the nanoparticles are preferably 0.5 to 20% by mass with respect to 100% by mass of the polysilazane compound. More preferably, they are mixed at a ratio of 1 to 10% by mass. With such a mixing ratio, the nanoparticles appropriately interact with the Si—N bond of the polysilazane compound, and the strength of the second inorganic layer in a wet heat environment can be further improved. In addition, since the nanoparticles appropriately interact with the first inorganic layer, the adhesion between the first and second inorganic layers can be further improved.
  • the nanoparticle-containing polysilazane-containing coating solution may further contain an amine catalyst, a metal, and a solvent.
  • Amine catalyst and metal An amine catalyst and a metal can promote the conversion of a polysilazane compound into a silicon oxide compound in the modification treatment described below.
  • the amine catalyst that can be used is not particularly limited, but N, N-dimethylethanolamine, N, N-diethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N ′ -Tetramethyl-1,3-diaminopropane, N, N, N ', N'-tetramethyl-1,6-diaminohexane.
  • the metal that can be used is not particularly limited, and examples thereof include platinum compounds such as platinum acetylacetonate, palladium compounds such as palladium propionate, and rhodium compounds such as rhodium acetylacetonate.
  • the amine catalyst and the metal are preferably contained in an amount of 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, and further preferably 0.5 to 2% by mass with respect to the polysilazane compound.
  • amount of the catalyst added is within the above range, it is preferable because excessive silanol formation, film density reduction, and film defect increase due to rapid progress of the reaction can be prevented.
  • solvent that can be contained in the nanoparticle-containing polysilazane-containing coating solution is not particularly limited as long as it does not react with the polysilazane compound and the nanoparticles, and a known solvent can be used.
  • a known solvent can be used.
  • Specific examples include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons; ether solvents such as aliphatic ethers and alicyclic ethers.
  • examples of the hydrocarbon solvent include pentane, 2,2,4-trimethylpentane, hexane, cyclohexane, toluene, xylene, solvesso, turben, methylene chloride, trichloroethane, and the like.
  • examples of ether solvents include dibutyl ether, dioxane, and tetrahydrofuran. These solvents can be used alone or in admixture of two or more. These solvents can be appropriately selected according to the purpose in consideration of the solubility of the polysilazane compound and the evaporation rate of the solvent.
  • a polysilazane coating film is formed by applying and drying a polysilazane-containing coating solution containing metal oxide nanoparticles or metal nitride nanoparticles on the first inorganic layer.
  • a conventionally known appropriate wet coating method can be employed as a method of forming a polysilazane coating film by applying a polysilazane-containing coating solution.
  • a conventionally known appropriate wet coating method can be employed. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the coating thickness can be appropriately set according to the purpose.
  • the coating thickness is preferably 10 to 1000 nm after drying, more preferably 20 to 600 nm, and still more preferably 40 to 400 nm. If the film thickness is 10 nm or more, sufficient barrier properties can be obtained, and if it is 1000 nm or less, stable coating properties can be obtained at the time of layer formation, and high light transmittance can be realized.
  • the coating film After applying the coating solution, it is preferable to dry the coating film. By drying the coating film, the organic solvent contained in the coating film can be removed.
  • the drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 20 to 200 ° C, more preferably 50 to 120 ° C. When the heat treatment is performed in such a temperature range, it is preferable from the viewpoint of preventing the plastic film from being deformed or its strength from being deteriorated.
  • the modification treatment in the present invention refers to a conversion reaction of a polysilazane compound to silicon oxide, and the gas barrier film of the present invention as a whole has a gas barrier property (water vapor permeability is 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ day).
  • the following is a process for forming an inorganic thin film at a level that can contribute to the development of:
  • Such a modification treatment can be performed by irradiating vacuum ultraviolet light (hereinafter referred to as “VUV” or “VUV light”) having a wavelength of 200 nm or less.
  • VUV vacuum ultraviolet light
  • VUV light By using VUV light, the oxidation reaction by active oxygen or ozone is advanced while directly cutting the atomic bonds by the action of only photons called photon processes, so that the silicon oxynitride film or the silicon oxide film is formed at a relatively low temperature. Formation can be performed. In addition, this method is also suitable for manufacturing in a roll-to-roll system with good productivity.
  • Vacuum ultraviolet light irradiation treatment excimer irradiation treatment
  • the modification treatment method is treatment by vacuum ultraviolet light irradiation (excimer irradiation treatment).
  • the wavelength to be used needs to be 200 nm or less from the viewpoint of efficiently performing the modification, and light energy of 100 to 200 nm larger than the interatomic bonding force in the polysilazane compound may be used.
  • a photon process a method of forming a silicon oxide film at a temperature of not higher than ° C.
  • the light source of vacuum ultraviolet light is not particularly limited, and a known light source can be used.
  • a low pressure mercury lamp, an excimer lamp, etc. are mentioned.
  • an excimer lamp, particularly a xenon (Xe) excimer lamp is preferable to use.
  • Such an excimer light (vacuum ultraviolet light) irradiation apparatus can use a commercially available lamp (for example, Ushio Electric Co., Ltd., M.D.Com Co., Ltd.).
  • Excimer lamps are characterized in that excimer light is concentrated at one wavelength and almost no light other than the necessary light is emitted, and is highly efficient. Moreover, since excess light is not radiated
  • the Xe excimer lamp is excellent in luminous efficiency because it emits short wavelength 172 nm vacuum ultraviolet light at a single wavelength. Since the Xe excimer lamp has a short wavelength of 172 nm and a high energy, it is known that the bond breaking ability of organic compounds is high.
  • the irradiation intensity of vacuum ultraviolet light irradiation varies depending on the base material used, the composition and concentration of the first barrier layer, etc., but is preferably 1 to 100 kW / cm 2 , and preferably 1 to 10 W / cm 2. Is more preferable.
  • the time of irradiation with vacuum ultraviolet light varies depending on the substrate used, the composition and concentration of the first barrier layer, etc., but is preferably 0.1 second to 10 minutes, preferably 0.5 seconds to 3 minutes. It is more preferable.
  • Integrated light quantity of vacuum ultraviolet light is not particularly limited, preferably from 200 ⁇ 5000mJ / cm 2, and more preferably 500 ⁇ 3000mJ / cm 2. It is preferable that the accumulated amount of vacuum ultraviolet light is 200 mJ / cm 2 or more because high barrier properties can be obtained by sufficient modification. On the other hand, when the cumulative amount of vacuum ultraviolet light is 5000 mJ / cm 2 or less, it is preferable because a barrier layer having high smoothness can be formed without deformation of the substrate.
  • the irradiation temperature of the vacuum ultraviolet light varies depending on the substrate to be applied, and can be appropriately determined by those skilled in the art.
  • the irradiation temperature of the vacuum ultraviolet light is preferably 50 to 200 ° C, more preferably 80 to 150 ° C. It is preferable for the irradiation temperature to be within the above-mentioned range since deformation of the base material, deterioration of strength, etc. are unlikely to occur and the characteristics of the base material are not impaired.
  • Oxygen is required for the reaction at the time of ultraviolet irradiation, but vacuum ultraviolet light is absorbed by oxygen, so the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to carry out in a state where the concentration and water vapor concentration are low. That is, the oxygen concentration at the time of vacuum ultraviolet light irradiation is preferably 10 to 20,000 volume ppm (0.001 to 2 volume%), more preferably 50 to 10,000 volume ppm, and most preferably 100 to 5000 ppm. Also, the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.
  • a dry inert gas is preferable, and dry nitrogen gas is particularly preferable from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • Irradiation energy amount of the vacuum ultraviolet light at the coated surface is preferably 200 ⁇ 10000mJ / cm 2, and more preferably 500 ⁇ 5000mJ / cm 2. If it is 200 mJ / cm 2 or more, sufficient modification is possible, and if it is 10,000 mJ / cm 2 or less, generation of cracks due to excessive modification and thermal deformation of the substrate can be suppressed.
  • vacuum ultraviolet light used for reforming may be generated by plasma formed in a gas containing at least one of CO 2 and CH 4.
  • the coating film to be irradiated with ultraviolet rays is mixed with oxygen and a small amount of moisture at the time of application, and adsorbed oxygen and adsorbed water may also exist in the substrate and adjacent layers. If oxygen or the like is used, the oxygen source required for generation of active oxygen or ozone for performing the reforming process may be sufficient without newly introducing oxygen into the irradiation chamber. Also, since 172 nm vacuum ultraviolet light such as Xe excimer lamp is absorbed by oxygen, the amount of vacuum ultraviolet light reaching the coating film may decrease, so the oxygen concentration should be set low during irradiation with vacuum ultraviolet light. In addition, it is preferable that the vacuum ultraviolet light be able to efficiently reach the coating film.
  • the film thickness, density, and the like of the barrier layer obtained by the above-described modification treatment can be controlled by appropriately selecting application conditions, vacuum ultraviolet light irradiation conditions, and the like.
  • the film thickness and density of the barrier layer can be controlled by appropriately selecting the irradiation method of vacuum ultraviolet light from continuous irradiation, irradiation divided into a plurality of times, and so-called pulse irradiation, etc. in which the plurality of times of irradiation is short. Can be done.
  • the film density of the barrier layer can be appropriately set according to the purpose.
  • the film density of the barrier layer is preferably in the range of 1.5 to 2.6 g / cm 3 . Within this range, the density of the film can be improved and deterioration of gas barrier properties and film deterioration under high temperature and high humidity conditions can be prevented.
  • the second inorganic layer preferably has an appropriate surface smoothness.
  • the center line average roughness (Ra) of the second inorganic layer is preferably 50 nm or less, and more preferably 10 nm or less.
  • the lower limit of the center line average roughness (Ra) of the second inorganic layer is not particularly limited, but is practically 0.01 nm or more and preferably 0.1 nm or more. If it is the 2nd inorganic layer which has such Ra, the 2nd barrier layer will closely be formed on the 2nd inorganic layer corresponding to the unevenness in the 2nd inorganic layer satisfactorily.
  • the second barrier layer more efficiently covers defects such as cracks and dangling bonds generated in the second inorganic layer, thereby forming a dense surface. Therefore, it is possible to more effectively suppress and prevent a decrease in gas barrier properties (for example, low oxygen permeability and high water vapor barrier properties) under high temperature and high humidity conditions.
  • gas barrier properties for example, low oxygen permeability and high water vapor barrier properties
  • the center line average roughness (Ra) of the barrier layer is a value measured by the method described in the following examples.
  • the method for forming the second inorganic layer having the centerline average roughness (Ra) is not particularly limited.
  • a method of providing the following control layer between the substrate and the second inorganic layer; a method of providing an intermediate layer (particularly, the following first inorganic layer) between the second inorganic layer and the second barrier layer The method of controlling the surface roughness by selecting the substrate; the method of controlling the surface roughness of the underlayer; the method of performing the surface treatment before applying the PHPS layer; (Ra) can be controlled within the above range.
  • the degree of the modification treatment is confirmed by determining each atomic composition ratio of silicon (Si) atoms, nitrogen (N) atoms, oxygen (O) atoms, etc. by XPS analysis of the formed second inorganic layer. it can.
  • the gas barrier film obtained has a high gas barrier property due to the repair effect of the second barrier layer and the like. Therefore, the gas barrier property of the second inorganic layer may be somewhat low. More specifically, the water vapor transmission rate of the second inorganic layer is preferably 0.5 g / m 2 ⁇ day or less, and more preferably 0.2 g / m 2 ⁇ day or less.
  • the “water vapor transmission rate” is a value measured by the method described in Examples.
  • the gas barrier film of the present invention may be provided with various functional layers in addition to the inorganic layer of the present invention and the substrate of the present invention.
  • the functional layer include an optical functional layer such as an antireflection layer, a polarizing layer, a color filter, and a light extraction efficiency improving layer; a mechanical functional layer such as a hard coat layer and a stress relaxation layer; an antistatic layer and a conductive layer.
  • An electric functional layer such as: an antifogging layer; an antifouling layer; a printing layer, and the like.
  • the gas barrier having the barrier layer of the present invention in which at least the inorganic layer of the present invention and the organic layer of the present invention are laminated on the surface of the plastic film opposite to the surface on which the barrier layer satisfying the conditions of the present invention is formed.
  • a conductive laminate layer can also be provided.
  • the gas barrier laminate layer prevents stress concentration and breakage on the barrier layer by suppressing the dimensional change of the gas barrier film by preventing the intrusion of water molecules from the opposite side of the film, resulting in increased durability. It has the feature that it can.
  • the base material of the present invention described above, the first inorganic layer of the present invention, the second inorganic layer of the present invention, the functional layer and other thicknesses are all arbitrarily adjusted by adjusting the coating solution concentration and coating speed. Can do.
  • the gas barrier film of the present invention exhibits excellent gas barrier properties.
  • Water vapor permeability of the gas barrier film of the present invention can achieve the following 0.01g / m 2 ⁇ day, preferably 0.005g / m 2 ⁇ day or less, more preferably 0.003 g / m 2 ⁇ day or less, more preferably 0.001 g / m 2 ⁇ day or less.
  • the barrier layer exhibits excellent adhesion. That is, the adhesion between the organic layer of the present invention constituting the barrier layer and the inorganic layer of the present invention is excellent. Such excellent water vapor permeability and adhesion are maintained even after the gas barrier film is bent a plurality of times. Therefore, the barrier film of the present invention is suitably used for a flexible image display element and the like.
  • the gas barrier film of the present invention can be preferably used for a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air.
  • the device include electronic devices such as an organic EL element, a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and a solar cell (PV). From the viewpoint that the effect of the present invention can be obtained more efficiently, it is preferably used for an organic EL device or a solar cell, and particularly preferably used for an organic EL device.
  • Organic EL device Examples of organic EL elements using a gas barrier film are described in detail in JP-A-2007-30387.
  • Example 1-1 A biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 ⁇ m, width: 350 mm, manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”) was used as the substrate.
  • PEN film thickness: 100 ⁇ m, width: 350 mm, manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7501 manufactured by JSR Corporation is applied to the easy-adhesion surface of the substrate, and after applying with a wire bar so that the film thickness after drying becomes 4 ⁇ m, drying conditions: 80 ° C. After drying in 3 minutes, using a high-pressure mercury lamp in an air atmosphere, curing conditions: 1.0 J / cm 2 curing was performed to form a smooth layer.
  • the maximum cross-sectional height Rt (p) representing the surface roughness at this time was 16 nm.
  • the surface roughness is calculated from an uneven sectional curve continuously measured with a detector having a stylus having a minimum tip radius using an AFM (Atomic Force Microscope AFM: manufactured by Digital Instruments), and the minimum tip radius is calculated.
  • AFM Automatic Force Microscope AFM: manufactured by Digital Instruments
  • first inorganic layer silicon oxycarbide (SiOC)
  • SiOC silicon oxycarbide
  • Feed rate of raw material gas (hexamethyldisiloxane (HMDSO)): 50 sccm (StandardCubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 500 sccm Degree of vacuum in the vacuum chamber: 3Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Film conveyance speed: 0.5 m / min.
  • HMDSO hexamethyldisiloxane
  • O 2 oxygen gas
  • silicon nitride nanoparticles As agglomerated fine particles to be pulverized and dispersed, silicon nitride particles (product number 636703 manufactured by Sigma-Aldrich) are mixed to a concentration of 5% by mass using methyl ethyl ketone (MEK) as a dispersion medium, and uniform using a disper. Mixed.
  • MEK methyl ethyl ketone
  • a bead mill (“Super Apex Mill SAM-05 type” manufactured by Kotobuki Giken Kogyo Co., Ltd.) was used as a disperser, and coarse aggregated fine particles were first crushed with a homogenizer to obtain a particle-dispersed stock solution.
  • the particle-dispersed stock solution was put into a 0.5-liter stirring vessel made of zirconia in a bead mill, and stirring particles made of zirconia and having a particle diameter of 20 ⁇ m were put so as to be 70% by volume of the stirring vessel.
  • Fig. 3 shows a pulverization / dispersion device using a circulation system using a bead mill and a dispersion tank. While circulating the particle dispersion stock solution 19 between the bead mill stirring vessel 16 provided with the stirring blade 15 and the dispersion tank 18 provided with the stirring blade 17, the bead mill stirring blade 15 is operated at a rotational speed of 3000 rpm to obtain the particle dispersion stock solution. 19 was stirred. Thereby, the agglomerated fine particles in the particle-dispersed stock solution 19 were pulverized with the agitated particles, and the pulverization / dispersion treatment for dispersing the pulverized fine particles was performed to obtain the average particle size shown in Table 1.
  • the average particle diameter (sphere equivalent diameter) of silicon nitride nanoparticles obtained by pulverization / dispersion in this way is measured using a concentrated particle size analyzer “FPAR-1000” manufactured by Otsuka Electronics Co., Ltd., and the dispersibility is measured. did.
  • the results of average particle diameter (sphere equivalent diameter) are shown in Table 1.
  • the coating solution prepared above was applied to the vapor-deposited film, and a modification (silica conversion) treatment was performed under the following conditions to produce a second inorganic layer with a thickness of 100 nm.
  • barrier layer Modification (silica conversion) treatment of polysilazane layer by ultraviolet light
  • the polysilazane layer thus formed was subjected to silica conversion treatment under the conditions of dew point temperature of ⁇ 8 ° C. or lower according to the following method.
  • Example 1-1 a gas barrier film was produced in the same manner as in Example 1-1 except that the average particle diameter of the silicon nitride nanoparticles added to the polysilazane-containing coating solution was 26 nm.
  • Example 1-1 a gas barrier film was produced in the same manner as in Example 1-1 except that the average particle diameter of the silicon nitride nanoparticles added to the polysilazane-containing coating solution was 44 nm.
  • Example 1-1 a gas barrier film was produced in the same manner as in Example 1-1 except that the average particle diameter of the silicon nitride nanoparticles added to the polysilazane-containing coating solution was 53 nm.
  • Example 1-1 a gas barrier film was produced in the same manner as in Example 1-1 except that the average particle diameter of the silicon nitride nanoparticles added to the polysilazane-containing coating solution was 95 nm.
  • Example 1-1 a gas barrier film was produced in the same manner as in Example 1-1 except that the average particle diameter of the silicon nitride nanoparticles added to the polysilazane-containing coating solution was 104 nm.
  • Example 1--7 A gas barrier film was produced in the same manner as in Example 1-1, except that titanium oxide nanoparticles having an average particle diameter of 5 nm were added to the polysilazane-containing coating solution.
  • Example 1-8 A gas barrier film was produced in the same manner as in Example 1-7, except that in Example 1-7, the average particle size of the titanium nitride nanoparticles added to the polysilazane-containing coating solution was 50 nm.
  • Example 1-9 A gas barrier film was produced in the same manner as in Example 1-7, except that in Example 1-7, the average particle size of the titanium nitride nanoparticles added to the polysilazane-containing coating solution was 100 nm.
  • Example 1-10 A gas barrier film was produced in the same manner as in Example 1-1, except that alumina nanoparticles having an average particle diameter of 5 nm were added to the polysilazane-containing coating solution.
  • Example 1-10 a gas barrier film was produced in the same manner as in Example 1-10 except that the average particle diameter of the alumina nanoparticles added to the polysilazane-containing coating solution was 50 nm.
  • Example 1-10 a gas barrier film was produced in the same manner as in Example 1-10, except that the average particle diameter of the alumina nanoparticles added to the polysilazane-containing coating solution was 100 nm.
  • Example 1-13 In Example 1-1, a gas barrier film was prepared in the same manner as in Example 1-1 except that zirconia nanoparticles having an average particle diameter of 5 nm were added to the polysilazane-containing coating solution.
  • Example 1-13 a gas barrier film was produced in the same manner as in Example 1-13, except that the average particle diameter of the zirconia nanoparticles added to the polysilazane-containing coating solution was 50 nm.
  • Example 1-13 a gas barrier film was produced in the same manner as in Example 1-13, except that the average particle diameter of the zirconia nanoparticles added to the polysilazane-containing coating solution was 100 nm.
  • Example 1-16 A gas barrier film was produced in the same manner as in Example 1-1, except that zinc oxide nanoparticles having an average particle diameter of 5 nm were added to the polysilazane-containing coating solution.
  • Example 1-16 a gas barrier film was produced in the same manner as in Example 1-16, except that the average particle diameter of the zinc oxide nanoparticles added to the polysilazane-containing coating solution was 50 nm.
  • Example 1-16 a gas barrier film was produced in the same manner as in Example 1-16 except that the average particle diameter of the zinc oxide nanoparticles added to the polysilazane-containing coating solution was 100 nm.
  • Example 1-1 a gas barrier film was prepared in the same manner as in Example 1-1, except that the silicon nitride nanoparticles were not added to the polysilazane-containing coating solution.
  • Example 2-1 A plastic film was prepared by the following method, and nano-silicon nitride particles having a particle size of 32 nm were used. The thickness of the first inorganic layer (silicon oxycarbide film (SiOC)) was changed to 150 nm. Similarly, a gas barrier film was produced.
  • SiOC silicon oxycarbide film
  • a polyethylene naphthalate film (PEN film, 100 ⁇ m thick, manufactured by Teijin DuPont, trade name: Teonex Q65FA) was cut into a 20 cm square, and a barrier layer was formed on the smooth surface side in the same manner as in Example 1-1. evaluated.
  • PEN film 100 ⁇ m thick, manufactured by Teijin DuPont, trade name: Teonex Q65FA
  • Example 2-2 A gas barrier film was produced in the same manner as in Example 2-1, except that the first inorganic layer (silicon oxide film (SiO 2 )) was produced by the following method.
  • an SiO 2 film was formed by plasma CVD under the following film forming conditions.
  • Film forming condition material gas (hexamethyldisiloxane (HMDSO)) supply amount: 50 sccm
  • Example 2-3 A gas barrier film was produced in the same manner as in Example 2-1, except that the first inorganic layer (aluminosilicate film (SiAlO)) was produced by the following method.
  • the first inorganic layer aluminosilicate film (SiAlO)
  • the splice roll was loaded into a roll-to-roll sputter coater.
  • the deposition chamber pressure was pumped down to 2 ⁇ 10 ⁇ 6 Torr.
  • a gas mixture containing 51 sccm argon and 30 sccm oxygen at a pressure of 2 kW and 600 V, 1 millitorr, and a web speed of 0.43 meters / min, a Si—Al (95/5) target (Academic Pris
  • a 150 nm thick SiAlO inorganic oxide layer was deposited on the substrate by reactive sputtering of John Materials (available commercially from Academy Precision Materials).
  • Example 2-4 A gas barrier film was produced in the same manner as in Example 2-2 except that the first inorganic layer (silicon hydronitride film (SiNH)) was produced by the following method.
  • the first inorganic layer (silicon hydronitride film (SiNH) (N component other than Si: 97) under the same conditions as in Example 2-2 except that the raw material gas of the following plasma CVD raw material gas formulation 1 was introduced. Mol%)).
  • Plasma CVD source gas recipe 1 Silane gas: 25 sccm Ammonia gas: 15 sccm Nitrogen gas: 200sccm
  • Example 2-5 A barrier layer was produced in the same manner as in Example 2-1, except that the first inorganic layer (silicon oxynitride film (SiON)) was produced by the following method.
  • a silicon oxynitride film (SiON) having a film thickness of 150 nm was formed as a gas barrier film on a base material using a general CVD apparatus (PD-220NA manufactured by Samco Co., Ltd.) that performs film formation by the CCP-CVD method.
  • a general CVD apparatus PD-220NA manufactured by Samco Co., Ltd.
  • PEN film 100 ⁇ m thickness, manufactured by Teijin DuPont, trade name: Teonex Q65FA
  • the area of the base material was 300 cm 2 .
  • the substrate was set at a predetermined position in the vacuum chamber, and the vacuum chamber was closed. Next, when the inside of the vacuum chamber was evacuated and the pressure reached 0.01 Pa, silane gas (5% nitrogen dilution) and oxygen gas (5% nitrogen dilution) were introduced as reaction gases.
  • the flow rate of silane gas was 50 sccm
  • the flow rate of oxygen gas was 5 sccm
  • nitrogen gas was adjusted so that the pressure in the vacuum chamber was 100 Pa.
  • Example 2-1 A barrier film was prepared in the same manner as in Example 2-1, except that a polysilazane modified film (PHPS), which is the second inorganic layer of the present application, was prepared and used as the first inorganic layer in the following manner. Produced.
  • PHPS polysilazane modified film
  • Polysilazane-containing coating liquid prepared using Si 3 N 4 having a particle size of 32 nm without forming a vapor deposition film on the surface of the substrate is dried with a wireless bar. Apply to 300 nm, treat and dry for 1 minute in an atmosphere of temperature 85 ° C. and humidity 55% RH, and further 10 minutes in an atmosphere of temperature 25 ° C. and humidity 10% RH (dew point temperature ⁇ 8 ° C.)
  • the polysilazane layer was formed by holding and dehumidifying.
  • Reforming treatment conditions The base material on which the polysilazane layer fixed on the operation stage was formed was subjected to a reforming treatment under the following conditions to form a barrier layer.
  • Excimer lamp light intensity 130 mW / cm 2 (172 nm)
  • Distance between sample and light source 1mm
  • Stage heating temperature 70 ° C
  • Oxygen concentration in the irradiation device 500 ppm
  • Excimer lamp irradiation time 10 seconds.
  • Example 2-2 A barrier film was produced in the same manner as in Example 2-1, except that the nanoparticles were not added to the polysilazane-containing coating solution.
  • Vapor deposition device JEOL Ltd., vacuum evaporation device JEE-400 Constant temperature and humidity oven: Yamato Humidic Chamber IG47M (raw materials) Metal that reacts with water and corrodes: Calcium (granular) Water vapor-impermeable metal: Aluminum ( ⁇ 3-5mm, granular).
  • the mask was removed in a vacuum state, and aluminum, which is a water vapor-impermeable metal, was vapor-deposited on the entire surface of one side of the sheet and temporarily sealed.
  • the vacuum state is released, and it is immediately transferred to a dry nitrogen gas atmosphere, and a quartz glass with a thickness of 0.2 mm is bonded to the aluminum vapor-deposited surface via an ultraviolet curing resin for sealing (manufactured by Nagase ChemteX Corporation).
  • the water vapor transmission rate measurement sample was produced by irradiating ultraviolet rays to cure and adhere the resin and performing main sealing.
  • the obtained sample (evaluation cell) was stored in a constant temperature and humidity oven Yamato Humidic Chamber IG47M under high temperature and high humidity of 60 ° C. and 90% RH, and based on the method described in JP-A-2005-283561.
  • the amount of moisture permeated into the cell was calculated from the amount of corrosion of metallic calcium.
  • Deterioration resistance is 80% or more and less than 90%.
  • Deterioration resistance is 60% or more and less than 80%.
  • Deterioration resistance is 30% or more and less than 60%.
  • Deterioration resistance is less than 30%.
  • the gas barrier films according to the present invention having a barrier layer containing nanoparticles are gas barrier films containing no nanoparticles (Example 1 Compared to 19), the water vapor transmission rate was significantly lower.
  • the effect that the gas barrier property is greatly improved by using the nanoparticle-containing barrier layer is not limited to the silicon nitride nanoparticles, but also for many metal oxide and metal nitride nanoparticles. It is the same. Further, at least when the average particle diameter of the nanoparticles is about 5 to 100 nm, a sufficient gas barrier property is obtained and the long-term storage property is sufficient.
  • the gas barrier film according to the present invention having a barrier layer containing nanoparticles exhibited good gas barrier properties and water vapor permeability even when the material of the first inorganic layer was changed.
  • the first inorganic layer is formed by vapor deposition (Example 2-1 to Example 2-5)
  • the first inorganic layer is substituted with a barrier layer obtained by modifying the polysilazane coating film (comparison) Compared to Example 2-1)
  • the gas barrier property was good and the long-term storage property was also excellent. It is considered that the adhesion between the base material and the barrier layer is improved by forming the first inorganic layer by a vapor deposition method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The purpose of the present invention is to provide a gas barrier film which is obtained by forming a second barrier layer from a coating liquid containing a polysilazane on a vapor deposition film, and which exhibits excellent adhesion of the barrier layer and is free from a composition change even if exposed to high temperature and high humidity, thereby maintaining high barrier properties. A gas barrier film according to the present invention is characterized by comprising a first barrier layer (a first inorganic layer) that is formed on at least one surface of a base (a supporting body) by a vapor deposition method, and a second barrier layer (a second inorganic layer) that is formed on the first inorganic layer by modifying a polysilazane coating film. This gas barrier film is also characterized in that the polysilazane coating film contains nanoparticles of a metal oxide and/or a metal nitride and the modification of the polysilazane coating film is carried out by irradiating the polysilazane coating film with vacuum ultraviolet light having a wavelength of 200 nm or less.

Description

ガスバリア性フィルムおよびその製造方法Gas barrier film and method for producing the same
 本発明は、ガスバリア性フィルムおよびその製造方法に関する。より詳細には、本発明は、バリア層の密着性に優れ、水蒸気および酸素透過率の低いガスバリア性フィルムに関し、さらに、このガスバリア性フィルムを用いた電子デバイス、特に有機EL素子(有機電界発光素子)などの画像表示素子に関する。 The present invention relates to a gas barrier film and a method for producing the same. More specifically, the present invention relates to a gas barrier film having excellent barrier layer adhesion and low water vapor and oxygen permeability, and further, an electronic device using the gas barrier film, particularly an organic EL element (organic electroluminescent element). ) And the like.
 従来、プラスチック基材やフィルム表面に、酸化アルミニウム、酸化マグネシウム、酸化珪素等の金属酸化物の薄膜を形成したガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するための包装用途等に広く用いられている。また、包装用途以外にも、フレキシブル性を有する太陽電池素子、液晶表示素子、有機エレクトロルミネッセンス(以下、有機ELと略記する)素子等のフレキシブル電子デバイスへの展開が要望され、多くの検討がなされている。しかし、これらフレキシブル電子デバイスにおいては、ガラス基材レベルの非常に高いガスバリア性が要求されるため、現状では十分な性能を有するガスバリア性フィルムは得られていない。 Conventionally, a gas barrier film in which a metal oxide thin film such as aluminum oxide, magnesium oxide, silicon oxide or the like is formed on a plastic substrate or film surface is used for packaging an article that requires blocking of various gases such as water vapor and oxygen, Widely used in packaging applications to prevent the deterioration of food, industrial products and pharmaceuticals. In addition to packaging applications, there are demands for the development of flexible electronic devices such as flexible solar cell elements, liquid crystal display elements, organic electroluminescence (hereinafter abbreviated as organic EL) elements, and many studies have been made. ing. However, in these flexible electronic devices, since a gas barrier property at a glass substrate level is required, gas barrier films having sufficient performance have not been obtained at present.
 この様なガスバリア性フィルムを形成する方法として、テトラエトキシシラン(TEOS)に代表される有機珪素化合物を用いて、減圧下において酸素プラズマ酸化しながら基材上に成長させる化学堆積法(プラズマCVD法:Chemical Vapor Deposition)や半導体レーザーを用いて金属珪素を蒸発させ酸素の存在下で基材上に堆積する物理堆積法といった気相法が知られている。 As a method for forming such a gas barrier film, a chemical deposition method (plasma CVD method) in which an organic silicon compound typified by tetraethoxysilane (TEOS) is used and grown on a substrate while oxygen plasma oxidation is performed under reduced pressure. : Chemical Vapor Deposition) and vapor deposition methods such as physical deposition methods in which metal silicon is evaporated using a semiconductor laser and deposited on a substrate in the presence of oxygen are known.
 これらの気相法による無機製膜方法は、酸化珪素や窒化珪素、酸化窒化珪素等の無機膜の形成に好ましく適用されてきており、良好なガスバリア性を得るための無機膜の組成検討、および、これら無機膜を含む層構成の検討が多くなされている。 These inorganic vapor deposition methods have been preferably applied to the formation of inorganic films such as silicon oxide, silicon nitride, and silicon oxynitride, and the composition of inorganic films for obtaining good gas barrier properties, and Many studies have been made on the layer structure including these inorganic films.
 しかし、上述のような気相法では欠陥を有さない膜を形成することは非常に困難であり、例えば製膜レートを極端に低くして欠陥の生成を抑制する必要がある。このため生産性が要求される工業的レベルにおいては、フレキシブル電子デバイスに要求されるガスバリア性は得られていない。気相法による無機膜の膜厚を単純に増加させたり、無機膜を複数層積層するといった検討もなされたが、欠陥が連続成長したりかえってクラックが増加したりするため、ガスバリア性の向上には至っていない。 However, it is very difficult to form a film having no defects by the vapor phase method as described above. For example, it is necessary to extremely reduce the film forming rate to suppress the generation of defects. For this reason, the gas barrier property required for flexible electronic devices has not been obtained at an industrial level where productivity is required. Studies such as simply increasing the film thickness of the inorganic film by the vapor phase method or laminating a plurality of inorganic films have been made, but since defects grow continuously or cracks increase, the gas barrier property is improved. Has not reached.
 このような無機膜の欠陥は、例えば有機ELの場合、ダークスポットと呼ばれる発光しない黒点の発生を招いたり高温高湿下においてダークスポットのサイズが成長したりと、素子自体の耐久性にも影響を与えてしまう。 Such defects in the inorganic film, for example, in the case of organic EL, cause the generation of black spots called dark spots that do not emit light, and the size of the dark spots grows under high temperature and high humidity, which also affects the durability of the element itself. Will be given.
 一方で本発明者は過去に、このような気層製膜に加え、バリア層形成方法の一つとして、前述の気相形成膜上に無機前駆体化合物の溶液を塗布し、乾燥して形成した塗布層を、熱や光によって改質することで、上述の気相法によって製膜された無機膜の欠陥部を効果的に修復しさらには積層した膜自体のガスバリア性を向上させる検討を行ってきた。特に、無機前駆体化合物としてポリシラザンを用いることで前述した欠陥部の修復によって高度なガスバリア性を発現させようとする検討を行っている(特開2012-106421号公報)。 On the other hand, in the past, the present inventor applied a solution of an inorganic precursor compound on the above-mentioned gas-phase-forming film and dried it as one of barrier layer forming methods in addition to such gas-layer film formation. By modifying the applied layer with heat or light, the defect part of the inorganic film formed by the above-mentioned vapor phase method can be effectively repaired, and further, the gas barrier property of the laminated film itself can be improved. I went. In particular, studies have been made to develop a high gas barrier property by repairing the above-described defective portion by using polysilazane as an inorganic precursor compound (Japanese Patent Laid-Open No. 2012-106421).
 ポリシラザン(例として、パーヒドロキシポリシラザン)は、-(SiH-NH)-を基本骨格とする化合物である。ポリシラザンに酸化性雰囲気中で加熱処理または湿熱処理を施すと、酸化窒化珪素を経由して酸化珪素へと変化する。この際、雰囲気中の酸素や水蒸気により窒素から酸素への直接的な置換反応を生じるために比較的体積収縮が少ない状態で酸化珪素へと変化するため、体積収縮による膜中欠陥が少ない比較的緻密な膜が得られることが知られている。雰囲気の酸化性を制御することで、比較的緻密な酸化窒化珪素膜を得ることもできる。 Polysilazane (for example, perhydroxypolysilazane) is a compound having — (SiH 2 —NH) — as a basic skeleton. When polysilazane is subjected to heat treatment or wet heat treatment in an oxidizing atmosphere, it changes into silicon oxide via silicon oxynitride. At this time, since a direct substitution reaction from nitrogen to oxygen is caused by oxygen or water vapor in the atmosphere, it changes to silicon oxide with a relatively small volume shrinkage, so there are relatively few defects in the film due to the volume shrinkage. It is known that a dense film can be obtained. By controlling the oxidizing property of the atmosphere, a relatively dense silicon oxynitride film can be obtained.
 しかし、ポリシラザンの熱改質または湿熱改質による緻密な酸化窒化珪素膜あるいは酸化珪素膜の形成には高温が必要であり、プラスチック等のフレキシブル基材に適用することは困難であった。 However, a high temperature is required to form a dense silicon oxynitride film or silicon oxide film by thermal modification or wet heat modification of polysilazane, and it has been difficult to apply to a flexible substrate such as plastic.
 このような問題を解決する手段として、ポリシラザン溶液から塗布形成した塗膜に真空紫外光照射を施すことにより、酸化窒化珪素膜あるいは酸化珪素膜を形成する方法が提案された。 As a means for solving such a problem, a method of forming a silicon oxynitride film or a silicon oxide film by applying vacuum ultraviolet light to a coating film formed from a polysilazane solution has been proposed.
 ポリシラザンの各原子間結合力より大きいエネルギーを有する真空紫外光(以下、「VUV」、「VUV光」ともいう)と呼ばれる波長100~200nmの光エネルギーを用いて、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、酸化窒化珪素膜あるいは酸化珪素膜の形成を行うことが可能となった。また、この方法は、生産性が良好なロールツーロール方式での製造にも適している。 Bonding of atoms is called a photon process using light energy having a wavelength of 100 to 200 nm called vacuum ultraviolet light (hereinafter also referred to as “VUV” or “VUV light”) having an energy larger than the bonding force between each atom of polysilazane. A silicon oxynitride film or a silicon oxide film can be formed at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by the action of only photons. In addition, this method is also suitable for manufacturing in a roll-to-roll system with good productivity.
 具体的には、通常、樹脂フィルム基材の上にポリシラザンを塗布し、同様に紫外線照射を行った場合、照射した面の表面近傍が改質されバリア層(窒素高濃度層)を形成する。同時に基材側からの水分持ち込みと推定される酸化挙動が起き、バリア層下の内部は酸化膜(酸化ケイ素層)となる挙動が報告されている(例えば、国際公開第2011/007543号)。 Specifically, usually, when polysilazane is applied onto a resin film substrate and similarly irradiated with ultraviolet rays, the vicinity of the surface of the irradiated surface is modified to form a barrier layer (high nitrogen concentration layer). At the same time, an oxidation behavior presumed to be caused by moisture from the substrate side occurs, and a behavior has been reported in which the inside of the barrier layer becomes an oxide film (silicon oxide layer) (for example, International Publication No. 2011/007543).
 本発明者らは鋭意検討の結果、上述した気相法で製膜した第1のバリア層の上に、ポリシラザン溶液を含む塗布液を製膜し、紫外線照射によりポリシラザンを改質して第2のバリア層を形成させたガスバリア性フィルムにおいて、高温高湿環境にさらされると製膜したバリア層が消失し、バリア性が著しく低下するという新たな課題を見出した。 As a result of intensive studies, the inventors of the present invention formed a coating liquid containing a polysilazane solution on the first barrier layer formed by the above-described vapor phase method, modified the polysilazane by ultraviolet irradiation, and then applied the second. In the gas barrier film in which the barrier layer is formed, a new problem has been found that when the film is exposed to a high-temperature and high-humidity environment, the formed barrier layer disappears and the barrier property is remarkably lowered.
 特に下層にバリア層を有する場合、紫外線照射により改質されたポリシラザン膜の表面付近は、外部から取り込まれる酸素や水分の効果により酸化が進むものの、その内部まで十分に酸素元素が取り込まれず、反応が不十分な未改質領域が存在し、この未改質領域が、上述したように高温高湿下にさらされることがバリア層の劣化要因となっていることが分かってきた。 Especially when the barrier layer is in the lower layer, the surface of the polysilazane film modified by UV irradiation is oxidized due to the effect of oxygen and moisture taken in from the outside, but the oxygen element is not taken into the inside sufficiently, and the reaction However, it has been found that there is an unmodified region that is insufficient, and that the unmodified region is exposed to high temperature and high humidity as described above, which causes deterioration of the barrier layer.
 したがって、本発明は、上記事情を鑑みてなされたものであり、その目的は、蒸着膜上にポリシラザンを含む塗布液から製膜した第2のバリア層を形成し、バリア層の密着性に優れ、高温高湿環境にさらされても組成変化が防止され、高いバリア性を維持しうるバリアフィルムを提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and the object thereof is to form a second barrier layer formed from a coating liquid containing polysilazane on a vapor deposition film, and to have excellent adhesion of the barrier layer. An object of the present invention is to provide a barrier film capable of preventing composition changes even when exposed to a high temperature and high humidity environment and maintaining high barrier properties.
 本発明者は、上記の問題を解決すべく、鋭意研究を行った。その結果、蒸着膜およびポリシラザン改質膜を有するガスバリア性フィルムにおいてポリシラザン改質膜に金属酸化物ナノ粒子および金属窒化物ナノ粒子の少なくともいずれか一種類のナノ粒子を導入することによって、上記課題が解決できることを見出し、本発明を完成するに至った。 The present inventor conducted intensive research to solve the above problems. As a result, in the gas barrier film having a vapor deposition film and a polysilazane modified film, by introducing at least one kind of metal oxide nanoparticles and metal nitride nanoparticles into the polysilazane modified film, The inventors have found that this can be solved, and have completed the present invention.
 すなわち、本発明は、基材(支持体)の少なくとも一方の面に蒸着法で形成した第1のバリア層(第一無機層)と、前記第一無機層上にポリシラザン塗布膜を改質することにより形成した第2のバリア層(第二無機層)と、を含むガスバリア性フィルムであって、前記ポリシラザン塗布膜は、金属酸化物および金属窒化物の少なくともいずれか一種類のナノ粒子を含有し、前記ポリシラザン塗布膜の改質は前記ポリシラザン塗布膜に波長200nm以下の真空紫外光を照射することにより行うことを特徴とするガスバリア性フィルムである。 That is, the present invention modifies the first barrier layer (first inorganic layer) formed by vapor deposition on at least one surface of the substrate (support) and the polysilazane coating film on the first inorganic layer. A gas barrier film comprising a second barrier layer (second inorganic layer) formed by the method, wherein the polysilazane coating film contains at least one kind of nanoparticles of metal oxide and metal nitride The polysilazane coating film is modified by irradiating the polysilazane coating film with vacuum ultraviolet light having a wavelength of 200 nm or less.
本発明に係る第一無機層の形成に用いられる真空プラズマCVD装置の一例を示す模式図である。It is a schematic diagram which shows an example of the vacuum plasma CVD apparatus used for formation of the 1st inorganic layer which concerns on this invention. 本発明に係る第一無機層の形成に用いられる他の製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the other manufacturing apparatus used for formation of the 1st inorganic layer which concerns on this invention. 本発明に係るナノ粒子の粒径を制御するためのビーズミルである。It is a bead mill for controlling the particle size of the nanoparticles according to the present invention.
 本発明は、基材(支持体)の少なくとも一方の面に蒸着法で形成した第1のバリア層(第一無機層)と、前記第一無機層上にポリシラザン塗布膜を改質することにより形成した第2のバリア層(第二無機層)と、を含むガスバリア性フィルムであって、前記ポリシラザン塗布膜は、金属酸化物および金属窒化物の少なくともいずれか一種類のナノ粒子を含有し、前記ポリシラザン塗布膜の改質は前記ポリシラザン塗布膜に波長200nm以下の真空紫外光を照射することにより行うことを特徴とするガスバリア性フィルムである。上記の構成によれば、ポリシラザンの柔らかい未改質領域が硬いナノ粒子によって補強されるため、高温高湿下でのバリア性の高いガスバリア性フィルムが提供される。 The present invention includes a first barrier layer (first inorganic layer) formed by vapor deposition on at least one surface of a substrate (support), and a polysilazane coating film on the first inorganic layer. A gas barrier film comprising a second barrier layer (second inorganic layer) formed, wherein the polysilazane coating film contains at least one kind of nanoparticles of a metal oxide and a metal nitride, The polysilazane coating film is modified by irradiating the polysilazane coating film with vacuum ultraviolet light having a wavelength of 200 nm or less. According to the above configuration, since the soft unmodified region of polysilazane is reinforced by the hard nanoparticles, a gas barrier film having a high barrier property under high temperature and high humidity is provided.
 バリア層をポリシラザン膜に真空紫外光を照射し改質することにより形成する場合、バリア層は、真空紫外光が照射される表面側から改質される。このため、バリア層内部に酸素や水分が拡散しにくく、加水分解によってアンモニアを発生しうる未反応(未改質)領域が残留してしまう。この未反応(未改質)領域は高温高湿下で徐々に反応して副生成物が生じ、この副生成物の拡散により、バリア層が変形したり、破壊されたりする場合がある。その結果、バリア性が徐々に低下するという問題があった。 When the barrier layer is formed by modifying the polysilazane film by irradiation with vacuum ultraviolet light, the barrier layer is modified from the surface side irradiated with vacuum ultraviolet light. For this reason, oxygen and moisture hardly diffuse inside the barrier layer, and an unreacted (unmodified) region where ammonia can be generated by hydrolysis remains. This unreacted (unmodified) region reacts gradually under high temperature and high humidity to produce a by-product, and the diffusion of the by-product may cause the barrier layer to be deformed or destroyed. As a result, there is a problem that the barrier property is gradually lowered.
 より高いガスバリア性を得るためには、ポリシラザン膜を改質する紫外線の光量を増やし、複数のバリア層を積層する必要がある。しかしながら、改質の進行度や積層数が増え、膜が厚くなるほど、生産性が低下するとともに、膜中の内部収縮応力が増大し、フレキシブルガスバリア性フィルムとしての特徴である柔軟性(可撓性)が低下し、屈曲等の物理的ストレスに対する耐久性が低下してしまうという問題もあった。 In order to obtain higher gas barrier properties, it is necessary to increase the amount of ultraviolet light that modifies the polysilazane film and to stack a plurality of barrier layers. However, as the degree of progress of modification and the number of layers increase and the film becomes thicker, the productivity decreases and the internal shrinkage stress in the film increases, and the flexibility (flexibility) that is a characteristic of a flexible gas barrier film ) And the durability against physical stress such as bending is also reduced.
 これに対し、本発明のガスバリア性フィルムは、バリア層の密着性に優れ、高温高湿下においても水蒸気および酸素透過率が低い。 On the other hand, the gas barrier film of the present invention is excellent in adhesion of the barrier layer and has low water vapor and oxygen permeability even under high temperature and high humidity.
 本発明のガスバリア性フィルムがバリア層の密着性に優れ、高温高湿下においても水蒸気および酸素透過率が低いことについて、その詳細な理由は不明であるが、以下のような理由であると考えられる。 The gas barrier film of the present invention has excellent barrier layer adhesion and low water vapor and oxygen permeability even under high temperature and high humidity. The detailed reason is unknown, but it is considered as follows. It is done.
 従来のナノ粒子を含まないポリシラザン塗布膜を改質して形成した無機層は、窒素を多く含む未改質部分が多く残存する。未改質な部分を多く含むポリシラザン層が湿熱環境ですぐに劣化してしまうのは、その物理的、化学的強度の弱さによると考えられる。 In an inorganic layer formed by modifying a conventional polysilazane coating film that does not contain nanoparticles, many unmodified portions containing a large amount of nitrogen remain. The reason why the polysilazane layer containing many unmodified parts deteriorates immediately in the wet heat environment is considered to be due to the weak physical and chemical strength.
 本発明に係るポリシラザン含有塗布液に含まれる金属酸化物および金属窒化物の少なくともいずれか一種類のナノ粒子は、表面に水酸基などの官能基を有しており、これがポリシラザンのSi-N結合と反応することによりナノ粒子表面はポリシラザンで修飾された状態となる。このようなポリシラザン含有塗布液を塗布、乾燥させて形成したポリシラザン塗布膜を改質して得られる本発明の第二無機層は、柔らかい未改質領域が硬いナノ粒子によって補強された状態となり湿熱環境下においても高強度が得られると考えられる。また、下層の蒸着膜(第一無機層)に炭素や窒素が含まれる場合、第一無機層がより柔軟かつ表面の反応性が向上した状態となり、第二無機層との相互作用が強くなると考えられる。このようにして得られる無機層は窒素を多く残した状態であるため高いガスバリア性と耐湿熱性を両立することができると考えられる。 At least one kind of metal oxide and metal nitride contained in the polysilazane-containing coating solution according to the present invention has a functional group such as a hydroxyl group on the surface, which is a polysilazane Si—N bond. By reacting, the nanoparticle surface is modified with polysilazane. The second inorganic layer of the present invention obtained by modifying the polysilazane coating film formed by applying and drying such a polysilazane-containing coating solution is in a state where the soft unmodified region is reinforced with hard nanoparticles. It is considered that high strength can be obtained even in an environment. Also, when carbon or nitrogen is contained in the lower vapor deposition film (first inorganic layer), the first inorganic layer becomes more flexible and the surface reactivity is improved, and the interaction with the second inorganic layer becomes stronger. Conceivable. The inorganic layer obtained in this way is in a state in which a large amount of nitrogen is left, so that it is considered that both high gas barrier properties and wet heat resistance can be achieved.
 なお、上記のメカニズムは推定によるものであり、本発明は上記メカニズムに何ら限定されるものではない。 Note that the above mechanism is based on estimation, and the present invention is not limited to the above mechanism.
 以下、本発明の好ましい実施形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。 Hereinafter, preferred embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment.
 また、本明細書において、特記しない限り、範囲を示す「X~Y」は「X以上Y以下」を意味し、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。 In this specification, unless otherwise specified, “X to Y” indicating a range means “X or more and Y or less”, and measurement of operation and physical properties is room temperature (20 to 25 ° C.) / Relative humidity 40 to 50. Measured under the condition of%.
 《ガスバリア性フィルム》
 本発明のガスバリア性フィルムは、基材と、バリア層とを有する。本発明のガスバリア性フィルムは、他の部材をさらに含むものであってもよい。本発明のガスバリア性フィルムは、例えば、基材とバリア層との間に、バリア層とバリア層との間、バリア層の上に、または基材のバリア層が形成されていない面に、他の部材を有していてもよい。ここで、他の部材としては、特に制限されず、従来のガスバリア性フィルムに使用される部材を同様にしてあるいは適宜修飾して使用できる。具体的には、平滑層、アンカーコート層、ブリードアウト防止層、保護層、吸湿層や帯電防止層といった機能化層などが挙げられる。
《Gas barrier film》
The gas barrier film of the present invention has a substrate and a barrier layer. The gas barrier film of the present invention may further contain other members. The gas barrier film of the present invention can be applied, for example, between the base material and the barrier layer, between the barrier layer and the barrier layer, on the barrier layer, or on the surface where the barrier layer of the base material is not formed. You may have the member. Here, the other members are not particularly limited, and members used for conventional gas barrier films can be used in the same manner or appropriately modified. Specifically, functional layers such as a smooth layer, an anchor coat layer, a bleed-out prevention layer, a protective layer, a hygroscopic layer, and an antistatic layer can be used.
 なお、本発明において、第1のバリア層および第2のバリア層は、各1層ずつ存在してもあるいは各2層以上の積層構造を有していてもよい。また、第1のバリア層と第2のバリア層とは交互に積層されていてもよく、第1のバリア層同士または第2のバリア層同士が、隣接していてもよい。 In the present invention, the first barrier layer and the second barrier layer may exist one by one or may have a laminated structure of two or more layers. In addition, the first barrier layer and the second barrier layer may be alternately stacked, and the first barrier layers or the second barrier layers may be adjacent to each other.
 さらに、本発明では、バリア層は、基材の少なくとも一方の面に形成されていればよい。このため、本発明のガスバリア性フィルムは、基材の一方の面にバリア層が形成される形態、および基材の両面にバリア層が形成される形態双方を包含する。 Furthermore, in the present invention, the barrier layer may be formed on at least one surface of the substrate. For this reason, the gas barrier film of the present invention includes both a form in which a barrier layer is formed on one surface of a substrate and a form in which barrier layers are formed on both surfaces of a substrate.
 [基材]
 本発明に用いられる基材は、長尺な支持体であって、バリア層を保持することができるものであれば、特に限定されない。
[Base material]
The substrate used in the present invention is not particularly limited as long as it is a long support and can hold the barrier layer.
 基材には、通常、プラスチックフィルムまたはシートが用いられ、無色透明な樹脂からなるフィルムまたはシートが好ましく用いられる。用いられるプラスチックフィルムは、バリア層、ハードコート層等を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。 As the substrate, a plastic film or sheet is usually used, and a film or sheet made of a colorless and transparent resin is preferably used. The plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold a barrier layer, a hard coat layer, and the like, and can be appropriately selected according to the purpose of use. Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide. Resin, cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring-modified polycarbonate resin, alicyclic ring Examples thereof include thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
 これらの基材は単独で用いても、2種以上を組み合わせて用いてもよい。 These base materials may be used alone or in combination of two or more.
 本発明に係るガスバリア性フィルムに用いられる基材の厚みは、用途によって適宜選択されるため特に制限がないが、典型的には5~500μmであることが好ましく、より好ましくは25~250μmである。 The thickness of the base material used in the gas barrier film according to the present invention is not particularly limited because it is appropriately selected depending on the application, but is typically preferably 5 to 500 μm, more preferably 25 to 250 μm. .
 [平滑層(下地層、プライマー層)]
 本発明のガスバリア性フィルムは、基材のバリア層を有する面、好ましくは基材とバリア層との間に平滑層(下地層、プライマー層)を有していてもよい。平滑層は突起等が存在する基材の粗面を平坦化するために、あるいは、基材に存在する突起により、バリア層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、いずれの材料で形成されてもよいが、炭素含有ポリマーを含むことが好ましく、炭素含有ポリマーから構成されることがより好ましい。すなわち、本発明のガスバリア性フィルムは、基材とバリア層との間に、炭素含有ポリマーを含む平滑層をさらに有することが好ましい。
[Smooth layer (underlayer, primer layer)]
The gas barrier film of the present invention may have a smooth layer (underlying layer, primer layer) between the surface of the substrate having the barrier layer, preferably between the substrate and the barrier layer. The smooth layer is provided in order to flatten the rough surface of the substrate on which the protrusions and the like exist, or to fill the unevenness and pinholes generated in the barrier layer with the protrusions on the substrate and to flatten the surface. Such a smooth layer may be formed of any material, but preferably includes a carbon-containing polymer, and more preferably includes a carbon-containing polymer. That is, the gas barrier film of the present invention preferably further has a smooth layer containing a carbon-containing polymer between the substrate and the barrier layer.
 また、平滑層は、炭素含有ポリマー、好ましくは硬化性樹脂を含んでもよい。前記硬化性樹脂としては特に制限されず、活性エネルギー線硬化性材料等に対して紫外線等の活性エネルギー線を照射し硬化させて得られる活性エネルギー線硬化性樹脂や、熱硬化性材料を加熱することにより硬化して得られる熱硬化性樹脂等が挙げられる。該硬化性樹脂は、単独でもまたは2種以上組み合わせて用いてもよい。 The smooth layer may also contain a carbon-containing polymer, preferably a curable resin. The curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material or the like with an active energy ray such as an ultraviolet ray to be cured is heated. And thermosetting resins obtained by curing. These curable resins may be used alone or in combination of two or more.
 平滑層の形成に用いられる活性エネルギー線硬化性材料としては、例えば、アクリレート化合物を含有する組成物、アクリレート化合物とチオール基を含有するメルカプト化合物とを含有する組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを含有する組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 
OPSTAR(登録商標)シリーズ(シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物)を用いることができる。また、上記のような組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している活性エネルギー線硬化性材料であれば特に制限はない。
Examples of the active energy ray-curable material used for forming the smooth layer include a composition containing an acrylate compound, a composition containing an acrylate compound and a mercapto compound containing a thiol group, epoxy acrylate, urethane acrylate, and polyester. Examples include compositions containing polyfunctional acrylate monomers such as acrylates, polyether acrylates, polyethylene glycol acrylates, and glycerol methacrylates. Specifically, UV curable organic / inorganic hybrid hard coating material manufactured by JSR Corporation
An OPSTAR (registered trademark) series (a compound obtained by bonding an organic compound having a polymerizable unsaturated group to silica fine particles) can be used. It is also possible to use any mixture of the above-mentioned compositions, and an active energy ray-curable material containing a reactive monomer having at least one photopolymerizable unsaturated bond in the molecule. If there is no restriction in particular.
 熱硬化性材料としては、具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、アデカ社製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標) EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製のシリコン樹脂 X-12-2400(商品名)、日東紡績株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂、ポリアミドアミン-エピクロルヒドリン樹脂等が挙げられる。 Specific examples of thermosetting materials include TutProm Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, Unicom manufactured by DIC, Inc. Dick (registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), silicon resin X-12-2400 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., Nittobo Co., Ltd. Inorganic / organic nanocomposite material SSG coating, thermosetting urethane resin consisting of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicone resin, polyamidoamine-epichlorohydrin Butter, and the like can be mentioned.
 平滑層の形成方法は、特に制限はないが、硬化性材料を含む塗布液をスピンコーティング法、スプレー法、ブレードコーティング法、ディップ法、グラビア印刷法等のウエットコーティング法、または蒸着法等のドライコーティング法により塗布し塗膜を形成した後、可視光線、赤外線、紫外線、X線、α線、β線、γ線、電子線等の活性エネルギー線の照射および/または加熱により、前記塗膜を硬化させて形成する方法が好ましい。 The method for forming the smooth layer is not particularly limited, but a coating solution containing a curable material is applied to a dry coating method such as a spin coating method, a spray method, a blade coating method, a dipping method, a gravure printing method, or a vapor deposition method. After applying the coating method to form a coating film, irradiation with active energy rays such as visible light, infrared rays, ultraviolet rays, X-rays, α rays, β rays, γ rays, electron beams, and / or heating, the coating films are formed. A method of forming by curing is preferred.
 平滑層の平滑性は、JIS B 0601:2001年で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。 The smoothness of the smooth layer is a value expressed by the surface roughness specified in JIS B 0601: 2001, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less.
 表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。 The surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (atomic force microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens of times with a stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of μm many times.
 平滑層の厚さとしては、特に制限されないが、0.1~10μmの範囲が好ましい。 The thickness of the smooth layer is not particularly limited, but is preferably in the range of 0.1 to 10 μm.
 [アンカーコート層]
 本発明に係る基材の表面には、接着性(密着性)の向上を目的として、アンカーコート層を易接着層として形成してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を、1種または2種以上併せて使用することができる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化型ポリマー溶液(信越化学工業株式会社製、「X-12-2400」の3%イソプロピルアルコール溶液)を用いることができる。
[Anchor coat layer]
On the surface of the substrate according to the present invention, an anchor coat layer may be formed as an easy-adhesion layer for the purpose of improving adhesion (adhesion). Examples of the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One type or two or more types can be used in combination. A commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., “X-12-2400” 3% isopropyl alcohol solution) can be used.
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10.0μm程度が好ましい。 The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10.0 μm.
 [ブリードアウト防止層]
 平滑層を有する基材は、加熱の際に基材中から表面に未反応のオリゴマー等が移行して、基材表面が汚染されうる。ブリードアウト防止層は、当該基材表面の汚染を抑制する機能を有する。ブリードアウト防止層を有する場合、ブリードアウト防止層は、通常、平滑層を有する基材の平滑層とは反対の面に設けられる。
[Bleed-out prevention layer]
In the base material having a smooth layer, unreacted oligomers or the like may migrate from the base material to the surface during heating, and the base material surface may be contaminated. The bleed-out prevention layer has a function of suppressing contamination of the substrate surface. When it has a bleed-out prevention layer, a bleed-out prevention layer is normally provided in the surface opposite to the smooth layer of the base material which has a smooth layer.
 ブリードアウト防止層は、上記機能を有していれば、平滑層と同じ構成であってもよい。すなわち、ブリードアウト防止層は、感光性樹脂組成物を基材上に塗布した後、硬化させることによって形成されうる。 The bleed-out prevention layer may have the same configuration as the smooth layer as long as it has the above function. That is, the bleed-out prevention layer can be formed by applying a photosensitive resin composition on a substrate and then curing it.
 基材上に、上述のアンカーコート層、平滑層、およびブリードアウト層からなる群から選択される少なくとも1つの制御層が形成される場合には、基材および制御層の総膜厚は、5~500μmであることが好ましく、25~250μmであることがより好ましい。 When at least one control layer selected from the group consisting of the above-described anchor coat layer, smooth layer, and bleed-out layer is formed on the base material, the total thickness of the base material and the control layer is 5 It is preferably ˜500 μm, more preferably 25 to 250 μm.
 また、第一無機層と第二無機層との層間に中間層が形成されてもよい。 Further, an intermediate layer may be formed between the first inorganic layer and the second inorganic layer.
 前記中間層は、第1のバリア層のガスバリア性を強化する目的、第1のバリア層と第2のバリア層との接着性を強化する目的等で形成されうる。この際、前記中間層は、本発明の効果を損なわない範囲で形成される。 The intermediate layer can be formed for the purpose of enhancing the gas barrier property of the first barrier layer, for the purpose of enhancing the adhesion between the first barrier layer and the second barrier layer, or the like. Under the present circumstances, the said intermediate | middle layer is formed in the range which does not impair the effect of this invention.
 中間層は、無機層、有機層、および有機無機ハイブリッド層等のいずれであってもよいが、無機層であることが好ましい。 The intermediate layer may be any of an inorganic layer, an organic layer, an organic-inorganic hybrid layer, and the like, but is preferably an inorganic layer.
 無機層の材料としては、特に制限されず、第一無機層または第二無機層と同じ材料であってもよく、異なる材料を使用してもよい。中間層の無機層に使用される材料の例としては、ジルコニア、チタニア等が挙げられる。 The material for the inorganic layer is not particularly limited, and may be the same material as the first inorganic layer or the second inorganic layer, or a different material may be used. Examples of the material used for the inorganic layer of the intermediate layer include zirconia and titania.
 有機層の材料としては、架橋性のモノマーを重合した高分子材料を用いることができる。架橋性のモノマーとしては、特に限定されず、アクリロイル基、メタクリロイル基、又はオキシラン基などが挙げられる。 As a material for the organic layer, a polymer material obtained by polymerizing a crosslinkable monomer can be used. The crosslinkable monomer is not particularly limited, and examples thereof include an acryloyl group, a methacryloyl group, and an oxirane group.
 有機無機ハイブリット層の材料としては、シルセスキオキサンを用いることができる。 Silsesquioxane can be used as the material of the organic / inorganic hybrid layer.
 前記中間層の厚さとしては、0.05~10nmであることが好ましく、0.1~5nmであることがより好ましい。但し、中間層の材料として第一無機層または第二無機層と同じ材料を使用する場合において、中間層の厚みが10nmを超える場合は、第一無機層または第二無機層に属することとする。 The thickness of the intermediate layer is preferably 0.05 to 10 nm, and more preferably 0.1 to 5 nm. However, when the same material as the first inorganic layer or the second inorganic layer is used as the material of the intermediate layer, and the thickness of the intermediate layer exceeds 10 nm, it belongs to the first inorganic layer or the second inorganic layer. .
 [第1のバリア層(第一無機層)]
 前記第一無機層は蒸着法によって形成されるものであるが、化学気相蒸着法(CVD法)または物理蒸着法(PVD法)によって形成することができる。ここで、第一無機層は、ケイ素、アルミニウムおよびチタンからなる群より選択される少なくとも1種の酸化物、窒化物、酸窒化物または酸炭化物の少なくとも1種を含んでもよい。ケイ素、アルミニウムおよびチタンからなる群より選択される少なくとも1種の酸化物、窒化物、酸窒化物、酸炭化物または酸窒化炭化物としては、具体的には、酸化ケイ素(SiO)、窒化ケイ素、酸窒化ケイ素(SiON)、酸炭化ケイ素(SiOC)、炭化ケイ素、酸化アルミニウム、酸化チタン、およびアルミニウムシリケートなどのこれらの複合体が挙げられる。これらのうち好ましくは酸窒化ケイ素(SiON)、窒化ケイ素(SiN)、水素化窒化ケイ素(SiNH)、酸炭化ケイ素(SiOC)、酸化ケイ素(SiO)、アルミニウムシリケート(SiAlO)および酸窒化炭化ケイ素(SiONC)である。これらは、副次的な成分として他の元素を含有してもよい。
[First barrier layer (first inorganic layer)]
The first inorganic layer is formed by vapor deposition, but can be formed by chemical vapor deposition (CVD) or physical vapor deposition (PVD). Here, the first inorganic layer may include at least one oxide, nitride, oxynitride, or oxycarbide selected from the group consisting of silicon, aluminum, and titanium. As the at least one oxide, nitride, oxynitride, oxycarbide or oxynitride carbide selected from the group consisting of silicon, aluminum, and titanium, specifically, silicon oxide (SiO 2 ), silicon nitride, These composites include silicon oxynitride (SiON), silicon oxycarbide (SiOC), silicon carbide, aluminum oxide, titanium oxide, and aluminum silicate. Of these, silicon oxynitride (SiON), silicon nitride (SiN), hydrogenated silicon nitride (SiNH), silicon oxycarbide (SiOC), silicon oxide (SiO 2 ), aluminum silicate (SiAlO) and silicon oxynitride carbide (SiONC). These may contain other elements as secondary components.
 第一無機層は上記のような化合物を有することで、ガスバリア性を有する。ここで、第一無機層のガスバリア性は、基材上に第一無機層を形成させた積層体で算出した際に、後述の実施例に記載の方法により測定された透過水分量が0.1g/(m・24h)以下であることが好ましく、0.01g/(m・24h)以下であることがより好ましい。 A 1st inorganic layer has gas barrier property by having the above compounds. Here, when the gas barrier property of the first inorganic layer is calculated using a laminate in which the first inorganic layer is formed on the base material, the permeated water amount measured by the method described in Examples below is 0. is preferably 1g / (m 2 · 24h) or less, and more preferably 0.01g / (m 2 · 24h) or less.
 物理蒸着法(PVD法)は、気相中で物質の表面に物理的手法により、目的とする物質、例えば、炭素膜等の薄膜を堆積する方法であり、例えば、スパッタリング法(DCスパッタリング、RFスパッタリング、イオンビームスパッタリング、およびマグネトロンスパッタリング等)、真空蒸着法、イオンプレーティング法などが挙げられる。 The physical vapor deposition method (PVD method) is a method of depositing a target material, for example, a thin film such as a carbon film, on the surface of the material in a gas phase by a physical method. For example, a sputtering method (DC sputtering, RF Sputtering, ion beam sputtering, magnetron sputtering, etc.), vacuum deposition, ion plating, and the like.
 原料化合物としては、ケイ素化合物、チタン化合物、およびアルミニウム化合物を用いる。これらは、従来公知の化合物を用いることができる。 As a raw material compound, a silicon compound, a titanium compound, and an aluminum compound are used. Conventionally known compounds can be used for these.
 また、金属を含む原料ガスを分解して無機化合物を得る際に使用する分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気などが挙げられる。また、上記分解ガスを、アルゴンガス、ヘリウムガスなどの不活性ガスと混合してもよい。 In addition, the decomposition gas used when decomposing the raw material gas containing metal to obtain the inorganic compound includes hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, nitrous oxide. Examples include gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, and water vapor. Further, the decomposition gas may be mixed with an inert gas such as argon gas or helium gas.
 本発明の第一無機層の厚みは、10~1000nmであることが好ましく、150~200nmであることがより好ましい。上記の範囲であれば、欠陥部分や結晶間の密度の低い部分による影響を受けにくく、高ガスバリア性が得られる。また変形した場合においても無機層の破壊を少なくすることができ、実用上好ましい。 The thickness of the first inorganic layer of the present invention is preferably 10 to 1000 nm, and more preferably 150 to 200 nm. If it is said range, it will be hard to be influenced by a defect part and the part with the low density between crystals, and high gas barrier property will be acquired. Further, even when it is deformed, the destruction of the inorganic layer can be reduced, which is preferable in practice.
 以下、CVD法のうち、好適な形態であるプラズマCVD法について具体的に説明する。 Hereinafter, the plasma CVD method which is a preferable form among the CVD methods will be described in detail.
 図1は、本発明に係る第一無機層の形成に用いられる真空プラズマCVD装置の一例を示す模式図である。 FIG. 1 is a schematic view showing an example of a vacuum plasma CVD apparatus used for forming the first inorganic layer according to the present invention.
 図1において、真空プラズマCVD装置101は、真空槽102を有しており、真空槽102の内部の底面側には、サセプタ105が配置されている。また、真空槽102の内部の天井側には、サセプタ105と対向する位置にカソード電極103が配置されている。真空槽102の外部には、熱媒体循環系106と、真空排気系107と、ガス導入系108と、高周波電源109が配置されている。熱媒体循環系106内には熱媒体が配置されている。熱媒体循環系106には、熱媒体を移動させるポンプと、熱媒体を加熱する加熱装置と、冷却する冷却装置と、熱媒体の温度を測定する温度センサと、熱媒体の設定温度を記憶する記憶装置とを有する加熱冷却装置160が設けられている。図1に記載の真空プラズマCVD装置の詳細については、国際公開番号WO12/014653を参照することができる。 In FIG. 1, the vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface side inside the vacuum chamber 102. Further, a cathode electrode 103 is disposed on the ceiling side inside the vacuum chamber 102 at a position facing the susceptor 105. A heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102. A heat medium is disposed in the heat medium circulation system 106. The heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium. A heating / cooling device 160 having a storage device is provided. For the details of the vacuum plasma CVD apparatus shown in FIG. 1, International Publication No. WO12 / 014653 can be referred to.
 (第一無機層の他の好適な形態)
 また、本発明の第一無機層の他の好適な一実施形態として、第一無機層は構成元素に炭素、ケイ素、及び酸素を含む第一無機層がある。より好適な形態は、以下の(i)~(ii)の要件を満たす第一無機層である。
(Other suitable forms of the first inorganic layer)
As another preferred embodiment of the first inorganic layer of the present invention, the first inorganic layer includes a first inorganic layer containing carbon, silicon, and oxygen as constituent elements. A more preferred form is the first inorganic layer that satisfies the following requirements (i) to (ii).
 (i)第一無機層の膜厚方向における第一無機層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、炭素分布曲線が少なくとも2つの極値を有する、
 (ii)炭素分布曲線における炭素の原子比の最大値と最小値との差の絶対値が3at%以上である。
(I) The distance (L) from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (silicon atomic ratio) A distribution curve showing the relationship between L and the oxygen distribution curve showing the relationship between the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (atomic ratio of oxygen); In the carbon distribution curve showing the relationship between the ratio of the amount of carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (the atomic ratio of carbon), the carbon distribution curve has at least two extreme values,
(Ii) The absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 3 at% or more.
 かような組成をもつことで、ガスバリア性と屈曲性を高度に両立することができる観点から好ましい。 Having such a composition is preferable from the viewpoint of achieving both high gas barrier properties and flexibility.
 更に、第一無機層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有することが好ましい。 Furthermore, in the region of 90% or more of the total thickness of the first inorganic layer, the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is expressed by the following formula (A) or (B It is preferable to have an order of magnitude relationship represented by
 式(A)
  (炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
 式(B)
  (酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
であれば、屈曲耐性がさらに向上し、より好ましい。
Formula (A)
(Carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
Formula (B)
(Oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
If so, the bending resistance is further improved, which is more preferable.
 以下、上記好適な実施形態について説明する。 Hereinafter, the preferred embodiment will be described.
 (i)前記第一無機層の膜厚方向における前記第一無機層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、炭素分布曲線が少なくとも2つの極値を有することが好ましい。該第一無機層は、前記炭素分布曲線が少なくとも3つの極値を有することが好ましく、少なくとも4つの極値を有することがより好ましいが、5つ以上有してもよい。炭素分布曲線が少なくとも2つの極値を有することで、炭素原子比率が濃度勾配を有して連続的に変化し、屈曲時のガスバリア性能が高まる。なお、炭素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは30以下、より好ましくは25以下である。極値の数は、バリア層の膜厚にも起因するため、一概に規定することはできない。 (I) The distance (L) from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (silicon atoms Ratio), a silicon distribution curve showing the relationship between the L and the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (atomic ratio of oxygen), and In the carbon distribution curve showing the relationship between L and the ratio of the amount of carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (the atomic ratio of carbon), the carbon distribution curve has at least two extreme values. preferable. The first inorganic layer preferably has at least three extreme values in the carbon distribution curve, more preferably at least four extreme values, but may have five or more extreme values. When the carbon distribution curve has at least two extreme values, the carbon atom ratio continuously changes with a concentration gradient, and the gas barrier performance during bending is enhanced. The upper limit of the extreme value of the carbon distribution curve is not particularly limited, but is preferably 30 or less, more preferably 25 or less, for example. Since the number of extreme values is also caused by the film thickness of the barrier layer, it cannot be specified unconditionally.
 ここで、少なくとも3つの極値を有する場合においては、前記炭素分布曲線の有する1つの極値および該極値に隣接する極値における前記第一無機層の膜厚方向における前記第一無機層の表面からの距離(L)の差の絶対値(以下、単に「極値間の距離」とも称する)が、いずれも200nm以下であることが好ましく、100nm以下であることがより好ましく、75nm以下であることが特に好ましい。このような極値間の距離の距離であれば、第一無機層中に炭素原子比が多い部位(極大値)が適度な周期で存在するため、第一無機層に適度な屈曲性を付与し、ガスバリア性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。なお、本明細書において極値とは、前記第一無機層の膜厚方向における前記第一無機層の表面からの距離(L)に対する元素の原子比の極大値または極小値のことをいう。また、本明細書において極大値とは、第一無機層の表面からの距離を変化させた場合に元素(酸素、ケイ素または炭素)の原子比の値が増加から減少に変わる点であって、かつその点の元素の原子比の値よりも、該点から第一無機層の膜厚方向における第一無機層の表面からの距離をさらに4~20nmの範囲で変化させた位置の元素の原子比の値が3at%以上減少する点のことをいう。すなわち、4~20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上減少していればよい。これは、第一無機層の膜厚により変動する。例えば、第一無機層がの膜厚が300nmである場合は、第一無機層の膜厚方向における第一無機層の表面からの距離を20nm変化させた位置の元素の原子比の値が3at%以上減少する点が好ましい。さらに、本明細書において極小値とは、第一無機層の表面からの距離を変化させた場合に元素(酸素、ケイ素または炭素)の原子比の値が減少から増加に変わる点であり、かつその点の元素の原子比の値よりも、該点から第一無機層の膜厚方向における第一無機層の表面からの距離をさらに4~20nmの範囲で変化させた位置の元素の原子比の値が3at%以上増加する点のことをいう。すなわち、4~20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上増加していればよい。ここで、少なくとも3つの極値を有する場合の、極値間の距離の下限は、極値間の距離が小さいほどガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果が高いため、特に制限されない。 Here, in the case of having at least three extreme values, one extreme value of the carbon distribution curve and the first inorganic layer in the film thickness direction of the first inorganic layer at the extreme value adjacent to the extreme value. The absolute value of the difference in distance (L) from the surface (hereinafter also simply referred to as “distance between extreme values”) is preferably 200 nm or less, more preferably 100 nm or less, and 75 nm or less. It is particularly preferred. With such a distance between extreme values, the first inorganic layer has moderate flexibility because the first inorganic layer has sites with a high carbon atom ratio (maximum value) at an appropriate period. In addition, the generation of cracks when the gas barrier film is bent can be more effectively suppressed / prevented. In this specification, the extreme value means the maximum value or the minimum value of the atomic ratio of the element to the distance (L) from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer. Further, in this specification, the maximum value is a point where the value of the atomic ratio of the element (oxygen, silicon or carbon) changes from increase to decrease when the distance from the surface of the first inorganic layer is changed, And the atom of the element at a position where the distance from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer from the point is further changed within the range of 4 to 20 nm, rather than the value of the atomic ratio of the element at that point This is the point at which the ratio value decreases by 3 at% or more. That is, it is sufficient that the atomic ratio value of the element is reduced by 3 at% or more in any range when changing in the range of 4 to 20 nm. This varies depending on the film thickness of the first inorganic layer. For example, when the film thickness of the first inorganic layer is 300 nm, the atomic ratio value of the element at the position where the distance from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer is changed by 20 nm is 3 at. % Is preferable. Furthermore, the minimum value in the present specification is a point where the value of the atomic ratio of the element (oxygen, silicon or carbon) changes from decrease to increase when the distance from the surface of the first inorganic layer is changed, and The atomic ratio of the element at the position where the distance from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer is further changed within the range of 4 to 20 nm from the value of the atomic ratio of the element at that point This means that the value increases by 3 at% or more. That is, when changing in the range of 4 to 20 nm, the atomic ratio value of the element only needs to increase by 3 at% or more in any range. Here, the lower limit of the distance between the extreme values in the case of having at least three extreme values is particularly high because the smaller the distance between the extreme values, the higher the effect of suppressing / preventing crack generation when the gas barrier film is bent. Not limited.
 さらに、該第一無機層は、(ii)前記炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が3at%以上であることが好ましく、5at%以上であることがより好ましく、7at%以上であることがさらに好ましい。炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が3at%以上であることで、屈曲時のガスバリア性能が高まる。なお、本明細書において、「最大値」とは、各元素の分布曲線において最大となる各元素の原子比であり、極大値の中で最も高い値である。同様にして、本明細書において、「最小値」とは、各元素の分布曲線において最小となる各元素の原子比であり、極小値の中で最も低い値である。 Further, in the first inorganic layer, (ii) the absolute value of the difference between the maximum value and the minimum value of the carbon atomic ratio in the carbon distribution curve is preferably 3 at% or more, and more preferably 5 at% or more. Preferably, it is 7 at% or more. When the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 3 at% or more, the gas barrier performance during bending is enhanced. In the present specification, the “maximum value” is the atomic ratio of each element that is maximum in the distribution curve of each element, and is the highest value among the maximum values. Similarly, in this specification, the “minimum value” is the atomic ratio of each element that is the minimum in the distribution curve of each element, and is the lowest value among the minimum values.
 また、第一無機層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C)ことが好ましい。かような条件となることで、得られるガスバリア性フィルムのガスバリア性や屈曲性が十分となる。ここで、上記炭素分布曲線において、上記(酸素の原子比)、(ケイ素の原子比)および(炭素の原子比)の関係は、バリア層の膜厚の、少なくとも90%以上(上限:100%)の領域で満たされることがより好ましく、少なくとも93%以上(上限:100%)の領域で満たされることがより好ましい。ここで、バリア層の膜厚の少なくとも90%以上とは、バリア層中で連続していなくてもよく、単に90%以上の部分で上記した関係を満たしていればよい。 Also, in the region of 90% or more (upper limit: 100%) of the film thickness of the first inorganic layer, (atomic ratio of oxygen), (atomic ratio of silicon), and (atomic ratio of carbon) increase in order (atomic ratio) Is preferably O> Si> C). By satisfying such conditions, the resulting gas barrier film has sufficient gas barrier properties and flexibility. Here, in the carbon distribution curve, the relationship of the above (atomic ratio of oxygen), (atomic ratio of silicon) and (atomic ratio of carbon) is at least 90% or more (upper limit: 100%) of the thickness of the barrier layer. ) And more preferably at least 93% or more (upper limit: 100%). Here, “at least 90% or more of the thickness of the barrier layer” does not need to be continuous in the barrier layer, and only needs to satisfy the above-described relationship at a portion of 90% or more.
 前記ケイ素分布曲線、前記酸素分布曲線、前記炭素分布曲線、および前記酸素炭素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は膜厚方向における前記第一無機層の膜厚方向における前記第一無機層の表面からの距離(L)に概ね相関することから、「第一無機層の膜厚方向における第一無機層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出される第一無機層の表面からの距離を採用することができる。なお、本発明では、ケイ素分布曲線、酸素分布曲線、炭素分布曲線および酸素炭素分布曲線は、下記測定条件にて作成した。 The silicon distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve are obtained by using X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon in combination. Thus, it can be created by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside of the sample. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time). In this way, in the element distribution curve with the horizontal axis as the etching time, the etching time is the distance (L) from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer in the film thickness direction. Since there is a general correlation, the “distance from the surface of the first inorganic layer in the film thickness direction of the first inorganic layer” is calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. The distance from the surface of one inorganic layer can be employed. In the present invention, the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve were prepared under the following measurement conditions.
 (測定条件)
 エッチングイオン種:アルゴン(Ar);
 エッチング速度(SiO熱酸化膜換算値):0.05nm/sec;
 エッチング間隔(SiO換算値):10nm;
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名”VG Theta Probe”;
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800×400μmの楕円形。
(Measurement condition)
Etching ion species: Argon (Ar + );
Etching rate (converted to SiO 2 thermal oxide film): 0.05 nm / sec;
Etching interval (SiO 2 equivalent value): 10 nm;
X-ray photoelectron spectrometer: manufactured by Thermo Fisher Scientific, model name “VG Theta Probe”;
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 × 400 μm oval.
 膜面全体において均一でかつ優れたガスバリア性を有する第一無機層を形成するという観点から、第一無機層が膜面方向(第一無機層の表面に平行な方向)において実質的に一様であることが好ましい。ここで、第一無機層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定により第一無機層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線および前記酸素炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が、互いに同じであるかもしくは5at%以内の差であることをいう。 From the viewpoint of forming a first inorganic layer that is uniform over the entire film surface and has excellent gas barrier properties, the first inorganic layer is substantially uniform in the film surface direction (direction parallel to the surface of the first inorganic layer). It is preferable that Here, the fact that the first inorganic layer is substantially uniform in the film surface direction means that the oxygen distribution curve and the carbon distribution curve are measured at any two measurement points on the film surface of the first inorganic layer by XPS depth profile measurement. When the oxygen carbon distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the maximum value of the atomic ratio of carbon in each carbon distribution curve And the absolute value of the difference between the minimum values is the same as each other or within 5 at%.
 さらに、前記炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される前記第一無機層のうちの少なくとも1層の膜厚方向における該第一無機層の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、下記数式(1)で表される条件を満たすことをいう。 Furthermore, it is preferable that the carbon distribution curve is substantially continuous. Here, the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously. Specifically, the carbon distribution curve is calculated from the etching rate and the etching time. The distance (x, unit: nm) from the surface of the first inorganic layer in the film thickness direction of at least one of the first inorganic layers to be formed, and the atomic ratio of carbon (C, unit: at%) In the relationship, the condition expressed by the following formula (1) is satisfied.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、第一無機層がサブレイヤーを有する場合、上記条件(i)~(ii)を全て満たすサブレイヤーが複数積層されて第一無機層を形成していてもよい。サブレイヤーを2層以上備える場合には、複数のサブレイヤーの材質は、同一であってもよいし異なっていてもよい。 When the first inorganic layer has a sublayer, a plurality of sublayers that satisfy all of the above conditions (i) to (ii) may be stacked to form the first inorganic layer. When two or more sublayers are provided, the materials of the plurality of sublayers may be the same or different.
 第一無機層の好適な形態である、(i)~(ii)の要件を満たす層は、プラズマCVD(PECVD)法により形成される層であることが好ましく、さらに基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法により形成されることがより好ましい。なお、前記プラズマCVD法はペニング放電プラズマ方式のプラズマCVD法であっても良い。 The layer satisfying the requirements of (i) to (ii), which is a preferred form of the first inorganic layer, is preferably a layer formed by a plasma CVD (PECVD) method, and a substrate is formed as a pair of films. More preferably, it is formed on a roller and formed by a plasma CVD method in which plasma is generated by discharging between the pair of film forming rollers. The plasma CVD method may be a Penning discharge plasma type plasma CVD method.
 プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに前記基材を配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に基材を配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在する基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できるばかりか、通常のローラーを使用しないプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、略同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記条件(i)~(ii)を全て満たす層を形成することが可能となる。 When generating plasma in the plasma CVD method, it is preferable to generate plasma discharge in a space between a plurality of film forming rollers. A pair of film forming rollers is used, and each of the pair of film forming rollers has the above-mentioned base. More preferably, a material is disposed and discharged between a pair of film forming rollers to generate plasma. In this way, by using a pair of film forming rollers, placing a base material on the pair of film forming rollers, and discharging between the pair of film forming rollers, one film forming roller It is possible not only to produce a thin film efficiently because it is possible to form a film on the surface part of the base material existing in the film while simultaneously forming a film on the surface part of the base material present on the other film forming roller. Compared with the plasma CVD method using no roller, the film formation rate can be doubled, and a film having substantially the same structure can be formed, so that the extreme value in the carbon distribution curve can be at least doubled, and it is efficient. It is possible to form a layer that satisfies all of the above conditions (i) to (ii).
 また、このようにして一対の成膜ローラー間に放電する際には、前記一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機ケイ素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。また、本発明のガスバリア性フィルムにおいては、前記バリア層が連続的な成膜プロセスにより形成された層であることが好ましい。 Further, when discharging between the pair of film forming rollers in this way, it is preferable to reverse the polarities of the pair of film forming rollers alternately. Further, the film forming gas used in such a plasma CVD method preferably includes an organic silicon compound and oxygen, and the content of oxygen in the film forming gas is determined by the organosilicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount necessary for complete oxidation. In the gas barrier film of the present invention, the barrier layer is preferably a layer formed by a continuous film forming process.
 また、生産性の観点から、ロールツーロール方式で前記基材の表面上に前記第一無機層を形成させることが好ましい。また、このようなプラズマCVD法により第一無機層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図2に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロールツーロール方式で製造することも可能となる。 Also, from the viewpoint of productivity, it is preferable to form the first inorganic layer on the surface of the substrate by a roll-to-roll method. Further, an apparatus that can be used when producing the first inorganic layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source, and the pair of pairs. It is preferable that the apparatus has a configuration capable of discharging between the film forming rollers. For example, when the manufacturing apparatus shown in FIG. 2 is used, a roll-to-roll system is used while using a plasma CVD method. It can also be manufactured.
 以下、図2を参照しながら、第一無機層の形成方法について、より詳細に説明する。なお、図2は、第一無機層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, the method for forming the first inorganic layer will be described in more detail with reference to FIG. FIG. 2 is a schematic view showing an example of a manufacturing apparatus that can be suitably used for manufacturing the first inorganic layer. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 図2に示す製造装置31は、送り出しローラー32と、搬送ローラー33、34、35、36と、成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、成膜ローラー39および40の内部に設置された磁場発生装置43、44と、巻取りローラー45とを備えている。また、このような製造装置においては、少なくとも成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、磁場発生装置43、44とが図示を省略した真空チャンバ内に配置されている。さらに、このような製造装置31において前記真空チャンバは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバ内の圧力を適宜調整することが可能となっている。装置に関する詳細は従来公知の文献、例えば、特開2011-73430号公報を参照することができる。 The manufacturing apparatus 31 shown in FIG. 2 includes a delivery roller 32, transport rollers 33, 34, 35, and 36, film formation rollers 39 and 40, a gas supply pipe 41, a plasma generation power source 42, and a film formation roller 39. And magnetic field generators 43 and 44 installed inside 40 and a winding roller 45. In such a manufacturing apparatus, at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generating power source 42, and the magnetic field generating apparatuses 43 and 44 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 31, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump. Details relating to the apparatus can be referred to conventionally known documents, for example, Japanese Patent Application Laid-Open No. 2011-73430.
 上記したように、本実施形態のより好ましい態様としては、第一無機層を、図2に示す対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いたプラズマCVD法によって成膜する。これは、対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロールツーロールでの搬送時の耐久性と、バリア性能とが両立する第一無機層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリア性フィルムを、安価でかつ容易に量産することができる点でも優れている。 As described above, as a more preferable aspect of the present embodiment, the first inorganic layer is formed by a plasma CVD method using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode shown in FIG. This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode. This is because it is possible to efficiently produce the first inorganic layer having both the barrier performance and the barrier performance. Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
 [第2のバリア層(第二無機層)]
 第2のバリア層は、ポリシラザン化合物およびナノ粒子を含む塗布液(以下、「ナノ粒子含有ポリシラザン含有塗布液」とも称する)を基材上に塗布し、得られた塗膜に波長200nm以下の真空紫外光を照射して形成される(工程(1))。
[Second barrier layer (second inorganic layer)]
The second barrier layer is formed by applying a coating liquid containing a polysilazane compound and nanoparticles (hereinafter also referred to as “nanoparticle-containing polysilazane-containing coating liquid”) onto a substrate, and applying a vacuum having a wavelength of 200 nm or less to the obtained coating film. It is formed by irradiating with ultraviolet light (step (1)).
 (ナノ粒子含有ポリシラザン含有塗布液)
 ナノ粒子含有ポリシラザン含有塗布液は、ポリシラザン化合物およびナノ粒子を含む。
(Nanoparticle-containing polysilazane-containing coating solution)
The nanoparticle-containing polysilazane-containing coating solution contains a polysilazane compound and nanoparticles.
 ポリシラザン化合物
 ポリシラザン化合物とは、その構造内にSi-N、Si-H、N-H等の結合を有するポリマーであり、SiO、Si、およびこれらの中間固溶体SiO等の無機前駆体として機能する。
Polysilazane compound A polysilazane compound is a polymer having a bond such as Si—N, Si—H, or N—H in its structure, such as SiO 2 , Si 3 N 4 , and their intermediate solid solution SiO x N y . Functions as an inorganic precursor.
 前記ポリシラザン化合物は、特に制限されないが、後述する改質処理を行うことを考慮すると、比較的低温でセラミック化してシリカに変性する化合物であることが好ましく、例えば、特開平8-112879号公報に記載の下記の一般式(1)で表される単位からなる主骨格を有する化合物であることが好ましい。 The polysilazane compound is not particularly limited, but is preferably a compound that is converted to silica by being converted to silica at a relatively low temperature in consideration of the modification treatment described later, for example, in JP-A-8-112879. It is preferable that it is a compound which has the main skeleton which consists of a unit represented by the following general formula (1) of description.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(1)において、R、R及びRは、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基を表す。この際、R、R及びRは、それぞれ、同じであってもあるいは異なるものであってもよい。ここで、アルキル基としては、炭素原子数1~8の直鎖、分岐鎖または環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6~30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1~8のアルコキシ基で置換されたシリル基を有する炭素原子数1~8のアルキル基が挙げられる。より具体的には、3-(トリエトキシシリル)プロピル基、3-(トリメトキシシリル)プロピル基などが挙げられる。上記R~Rに場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシル基(-OH)、メルカプト基(-SH)、シアノ基(-CN)、スルホ基(-SOH)、カルボキシル基(-COOH)、ニトロ基(-NO)などがある。なお、場合によって存在する置換基は、置換するR~Rと同じとなることはない。例えば、R、R及びRがアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R、R及びRは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ビニル基、3-(トリエトキシシリル)プロピル基または3-(トリメトキシシリルプロピル)基である。R、R及びRすべてが水素原子であるパーヒドロポリシラザン(PHPS)が特に好ましい。このようなポリシラザンから形成されるバリア層(ガスバリア膜)は高い緻密性を示す。 In the general formula (1), R 1 , R 2 and R 3 represent a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. At this time, R 1 , R 2 and R 3 may be the same or different. Here, examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms. More specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like. Examples of the aryl group include aryl groups having 6 to 30 carbon atoms. More specifically, non-condensed hydrocarbon group such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc. Can be mentioned. The (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group. The substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R 1 to R 3 to be substituted. For example, when R 1 , R 2 and R 3 are alkyl groups, they are not further substituted with an alkyl group. Among these, R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group. Perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred. A barrier layer (gas barrier film) formed from such polysilazane exhibits high density.
 パーヒドロポリシラザンは直鎖構造と6員環および8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体または固体の物質でありうる(分子量によって異なる)。当該パーヒドロポリシラザンは、市販品を使用してもよく、当該市販品としては、アクアミカ NN120、NN120-10、NN120-20、NN110、NAX120、NAX120-20、NAX110、NL120A、NL120-20、NL110A、NL150A、NP110、NP140(いずれも、AZエレクトロニックマテリアルズ株式会社製)等が挙げられる。 Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and can be a liquid or solid substance (depending on the molecular weight). The perhydropolysilazane may be a commercially available product. Examples of the commercially available product include AQUAMICA NN120, NN120-10, NN120-20, NN110, NAX120, NAX120-20, NAX110, NL120A, NL120-20, NL110A, NL150A, NP110, NP140 (all are made by AZ Electronic Materials Co., Ltd.) and the like.
 ナノ粒子含有ポリシラザン含有塗布液中のポリシラザン化合物の含有量は、所望のバリア層の膜厚や塗布液のポットライフ等によっても異なるが、ナノ粒子含有ポリシラザン含有塗布液の全量に対して、0.2~35質量%であることが好ましい。 The content of the polysilazane compound in the nanoparticle-containing polysilazane-containing coating solution varies depending on the desired film thickness of the barrier layer, the pot life of the coating solution, and the like, but is 0. It is preferably 2 to 35% by mass.
 ナノ粒子
 本発明におけるナノ粒子とは、平均粒子径が球相当径で1nm以上1000nm以下の粒子を意味する。
Nanoparticle The nanoparticle in the present invention means a particle having an average particle diameter of 1 nm or more and 1000 nm or less as a sphere equivalent diameter.
 本発明のナノ粒子は、金属酸化物および金属窒化物の少なくともいずれか一種類のナノ粒子である。本発明のナノ粒子の金属は、特に限定されないが、Si、Ti、Al、Zr、Zn、Ba、Sr、Ca、Mg、V、Cr、Mo、Li、およびMnからなる群から選択される少なくともいずれか一種の元素を含有する酸化物、および窒化物から選択されることが好ましい。 The nanoparticle of the present invention is at least one kind of metal oxide and metal nitride. The metal of the nanoparticles of the present invention is not particularly limited, but at least selected from the group consisting of Si, Ti, Al, Zr, Zn, Ba, Sr, Ca, Mg, V, Cr, Mo, Li, and Mn. It is preferably selected from oxides and nitrides containing any one element.
 粒子サイズは、球相当径で1~120nmであることが好ましく、5~100nmであることがより好ましい。水吸収剤の粒子サイズが球相当径で1~120nmであれば、透明性を保持でき、かつ、単位質量当たりの吸水量が増加するため好ましい。ガスバリア性(例えば、水蒸気バリア性)や耐久性のより向上などを考慮すると、ナノ粒子の球相当径は、8~90nmがさらにより好ましく、10~70nmが特に好ましい。 The particle size is preferably 1 to 120 nm, more preferably 5 to 100 nm, in terms of a sphere equivalent diameter. If the particle size of the water absorbent is 1 to 120 nm in terms of the equivalent sphere diameter, it is preferable because transparency can be maintained and the amount of water absorption per unit mass is increased. Considering further improvement in gas barrier properties (for example, water vapor barrier properties) and durability, the sphere equivalent diameter of the nanoparticles is more preferably 8 to 90 nm, and particularly preferably 10 to 70 nm.
 なお、ここにいう「球相当径」とは、粒子サイズをそれと体積が等しい球に換算したときの球の直径を意味し、本発明では大塚電子社製濃厚系粒径アナライザー「FPAR-1000」を用いて測定し、分散性を測定した後、平均体積を求めて、球相当径に換算する。 Here, “sphere equivalent diameter” means the diameter of a sphere when the particle size is converted to a sphere having the same volume as that of the particle. In the present invention, a concentrated particle size analyzer “FPAR-1000” manufactured by Otsuka Electronics Co., Ltd. After measuring dispersibility and measuring dispersibility, an average volume is obtained and converted to a sphere equivalent diameter.
 本発明のナノ粒子は、アルカリ土類金属を中心に、水吸収機能を有する化合物から適宜選択できる。例えばSi、TiO、Al、ZrO、ZnO、BaO、SrO、CaO、MgO、VO、CrO、MoO、およびLiMnOからなる群より選択される少なくとも一種を含有するナノ粒子は、本発明に使用されるナノ粒子に含まれる。酸化アルミニウムのベーマイト型が特に有用である。さらに、ナノ粒子は、Ti、Mg、Ba、Caのような金属元素から選択することもできる。ナノ粒子は、球プレートレット、若しくは他の形状であってもよい。プレートレット若しくは他の比較的フラットな粒子(高アスペクト比)は特に有用な粒子の比較的フラットな表面の部分的若しくは完全な配向性は基材の表面に対して平行であってもよい。ナノ粒子は、極端な硬化コーティングの固体含有量の3~90パーセントで、好ましくは30~75パーセントで、より好ましくは40~70パーセントで、当該コーティング配合液中に含まれていてもよい。粒子は、極性溶媒、例えばDMF、DMSO及び水のコーティング配合液に分散させていてもよい。ナノ粒子の分散前、それらの表面は修飾されてもよい。シラン修飾粒子、特にエポキシシラン修飾粒子は、本発明の実施の形態において使用することができる。界面活性剤は、ナノ粒子の安定な分散液の調製のために含有されていてもよい。当該界面活性剤には、硝酸、ギ酸、クエン酸、アンモニウムクエン酸塩、アンモニウムポリメタクリレート、及びシランが含まれる。ポリシラザン含有塗布液を調製し、ナノ粒子を、溶媒中の分散液である硬化可能な成分に対して加えてもよい。 The nanoparticles of the present invention can be appropriately selected from compounds having a water absorption function centering on alkaline earth metals. For example, nano containing at least one selected from the group consisting of Si 3 N 4 , TiO 2 , Al 2 O 3 , ZrO 2 , ZnO, BaO, SrO, CaO, MgO, VO, CrO, MoO 2 , and LiMnO 2. The particles are included in the nanoparticles used in the present invention. The boehmite type of aluminum oxide is particularly useful. Furthermore, the nanoparticles can be selected from metal elements such as Ti, Mg, Ba, Ca. The nanoparticles can be spherical platelets or other shapes. Platelets or other relatively flat particles (high aspect ratio) may have a partial or complete orientation of the relatively flat surface of a particularly useful particle that may be parallel to the surface of the substrate. Nanoparticles may be included in the coating formulation at 3 to 90 percent, preferably 30 to 75 percent, more preferably 40 to 70 percent of the solid content of the extreme cured coating. The particles may be dispersed in a polar solvent such as DMF, DMSO and water coating formulations. Prior to dispersion of the nanoparticles, their surface may be modified. Silane modified particles, especially epoxy silane modified particles, can be used in embodiments of the present invention. A surfactant may be included for the preparation of a stable dispersion of nanoparticles. Such surfactants include nitric acid, formic acid, citric acid, ammonium citrate, ammonium polymethacrylate, and silane. A polysilazane-containing coating solution may be prepared and the nanoparticles may be added to the curable component that is a dispersion in a solvent.
 ナノ粒子含有ポリシラザン含有塗布液中のナノ粒子の含有量は、所望のバリア層の膜厚や塗布液のポットライフ等によっても異なるが、ナノ粒子含有ポリシラザン含有塗布液の全量に対して、0.01~0.5質量%であることが好ましい。 The nanoparticle content in the nanoparticle-containing polysilazane-containing coating solution varies depending on the desired film thickness of the barrier layer, the pot life of the coating solution, and the like. The content is preferably from 01 to 0.5% by mass.
 また、ポリシラザン化合物とナノ粒子との混合比は、特に制限されない。バリア層の密着性、ガスバリア性(特に、高温高湿下でのガスバリア性)の向上効果などを考慮すると、ナノ粒子を、ポリシラザン化合物100質量%に対して、好ましくは0.5~20質量%、より好ましくは1~10質量%の割合で、混合する。このような混合比であれば、ナノ粒子が、ポリシラザン化合物のSi-N結合と適切に相互作用し、湿熱環境下での第二無機層の強度をより向上できる。また、ナノ粒子が、第一無機層とも適度に相互作用するため、第一及び第二無機層間の密着性をより向上できる。 In addition, the mixing ratio of the polysilazane compound and the nanoparticles is not particularly limited. Considering the effect of improving the adhesion of the barrier layer and gas barrier properties (especially gas barrier properties under high temperature and high humidity), the nanoparticles are preferably 0.5 to 20% by mass with respect to 100% by mass of the polysilazane compound. More preferably, they are mixed at a ratio of 1 to 10% by mass. With such a mixing ratio, the nanoparticles appropriately interact with the Si—N bond of the polysilazane compound, and the strength of the second inorganic layer in a wet heat environment can be further improved. In addition, since the nanoparticles appropriately interact with the first inorganic layer, the adhesion between the first and second inorganic layers can be further improved.
 前記ナノ粒子含有ポリシラザン含有塗布液は、さらにアミン触媒、金属、および溶媒を含んでいてもよい。 The nanoparticle-containing polysilazane-containing coating solution may further contain an amine catalyst, a metal, and a solvent.
 アミン触媒および金属
 アミン触媒および金属は、後述する改質処理において、ポリシラザン化合物の酸化ケイ素化合物への転化を促進しうる。
Amine catalyst and metal An amine catalyst and a metal can promote the conversion of a polysilazane compound into a silicon oxide compound in the modification treatment described below.
 用いられうるアミン触媒としては、特に制限されないが、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサンが挙げられる。 The amine catalyst that can be used is not particularly limited, but N, N-dimethylethanolamine, N, N-diethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N ′ -Tetramethyl-1,3-diaminopropane, N, N, N ', N'-tetramethyl-1,6-diaminohexane.
 また、用いられうる金属としては、特に制限されないが、白金アセチルアセトナート等の白金化合物、プロピオン酸パラジウム等のパラジウム化合物、ロジウムアセチルアセト
ナート等のロジウム化合物が挙げられる。
In addition, the metal that can be used is not particularly limited, and examples thereof include platinum compounds such as platinum acetylacetonate, palladium compounds such as palladium propionate, and rhodium compounds such as rhodium acetylacetonate.
 アミン触媒および金属は、ポリシラザン化合物に対して、0.05~10質量%含むことが好ましく、0.1~5質量%含むことがより好ましく、0.5~2質量%含むことがさらに好ましい。触媒添加量を上記範囲とすると、反応の急激な進行よる過剰なシラノール形成、膜密度の低下、および膜欠陥の増大等を防止しうることから好ましい。 The amine catalyst and the metal are preferably contained in an amount of 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, and further preferably 0.5 to 2% by mass with respect to the polysilazane compound. When the amount of the catalyst added is within the above range, it is preferable because excessive silanol formation, film density reduction, and film defect increase due to rapid progress of the reaction can be prevented.
 溶媒
 ナノ粒子含有ポリシラザン含有塗布液に含有されうる溶媒としては、ポリシラザン化合物及びナノ粒子と反応するものでなければ特に制限はなく、公知の溶媒が用いられうる。具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ハロゲン化炭化水素等の炭化水素系溶媒;脂肪族エーテル、脂環式エーテル等のエーテル系溶媒が挙げられる。より詳細には、炭化水素溶媒としては、ペンタン、2,2,4-トリメチルペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン、塩化メチレン、トリクロロエタン等が挙げられる。また、エーテル系溶媒としては、ジブチルエーテル、ジオキサン、テトラヒドロフラン等が挙げられる。これらの溶媒は単独で、または2種以上を混合して用いられうる。これらの溶媒は、ポリシラザン化合物の溶解度や溶剤の蒸発速度等を考慮し、目的に応じて適宜選択されうる。
Solvent The solvent that can be contained in the nanoparticle-containing polysilazane-containing coating solution is not particularly limited as long as it does not react with the polysilazane compound and the nanoparticles, and a known solvent can be used. Specific examples include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons; ether solvents such as aliphatic ethers and alicyclic ethers. More specifically, examples of the hydrocarbon solvent include pentane, 2,2,4-trimethylpentane, hexane, cyclohexane, toluene, xylene, solvesso, turben, methylene chloride, trichloroethane, and the like. Examples of ether solvents include dibutyl ether, dioxane, and tetrahydrofuran. These solvents can be used alone or in admixture of two or more. These solvents can be appropriately selected according to the purpose in consideration of the solubility of the polysilazane compound and the evaporation rate of the solvent.
 (ポリシラザン塗布膜の形成)
 第一無機層上に金属酸化物ナノ粒子または金属窒化物ナノ粒子を含有するポリシラザン含有塗布液を塗布、乾燥させることによりポリシラザン塗布膜を形成する。
(Formation of polysilazane coating film)
A polysilazane coating film is formed by applying and drying a polysilazane-containing coating solution containing metal oxide nanoparticles or metal nitride nanoparticles on the first inorganic layer.
 ポリシラザン含有塗布液を塗布してポリシラザン塗布膜を形成する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。 As a method of forming a polysilazane coating film by applying a polysilazane-containing coating solution, a conventionally known appropriate wet coating method can be employed. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
 塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の厚さが10~1000nmであることが好ましく、20~600nmであることがより好ましく、40~400nmであることがさらに好ましい。膜厚が10nm以上であれば十分なバリア性を得ることができ、1000nm以下であれば、層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。 The coating thickness can be appropriately set according to the purpose. For example, the coating thickness is preferably 10 to 1000 nm after drying, more preferably 20 to 600 nm, and still more preferably 40 to 400 nm. If the film thickness is 10 nm or more, sufficient barrier properties can be obtained, and if it is 1000 nm or less, stable coating properties can be obtained at the time of layer formation, and high light transmittance can be realized.
 塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。 After applying the coating solution, it is preferable to dry the coating film. By drying the coating film, the organic solvent contained in the coating film can be removed.
 塗膜の乾燥温度は、適用する基材によっても異なるが、20~200℃であることが好ましく、50~120℃であることがより好ましい。加熱処理をこのような温度範囲で行うと、プラスチックフィルムが変形したり、その強度が劣化したりするなどの防止の観点から好ましい。 The drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 20 to 200 ° C, more preferably 50 to 120 ° C. When the heat treatment is performed in such a temperature range, it is preferable from the viewpoint of preventing the plastic film from being deformed or its strength from being deteriorated.
 (改質処理)
 本発明における改質処理とは、ポリシラザン化合物の酸化ケイ素への転化反応を指し、また本発明のガスバリア性フィルムが全体としてガスバリア性(水蒸気透過率が、1×10-3g/m・day以下)を発現するに貢献できるレベルの無機薄膜を形成する処理をいう。
(Modification process)
The modification treatment in the present invention refers to a conversion reaction of a polysilazane compound to silicon oxide, and the gas barrier film of the present invention as a whole has a gas barrier property (water vapor permeability is 1 × 10 −3 g / m 2 · day). The following is a process for forming an inorganic thin film at a level that can contribute to the development of:
 このような改質処理は、波長200nm以下の真空紫外光(以下、「VUV」または「VUV光」)を照射することより行うことができる。 Such a modification treatment can be performed by irradiating vacuum ultraviolet light (hereinafter referred to as “VUV” or “VUV light”) having a wavelength of 200 nm or less.
 VUV光を用いて、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、酸化窒化珪素膜あるいは酸化珪素膜の形成を行うことができる。また、この方法は生産性が良好なロールツーロール方式での製造にも適している。 By using VUV light, the oxidation reaction by active oxygen or ozone is advanced while directly cutting the atomic bonds by the action of only photons called photon processes, so that the silicon oxynitride film or the silicon oxide film is formed at a relatively low temperature. Formation can be performed. In addition, this method is also suitable for manufacturing in a roll-to-roll system with good productivity.
 真空紫外光照射処理:エキシマ照射処理
 本発明において、改質処理方法は、真空紫外光照射による処理(エキシマ照射処理)である。真空紫外光照射による処理は、改質を効率的に行う観点から使用する波長は200nm以下である必要があり、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用いればよく、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。
Vacuum ultraviolet light irradiation treatment: excimer irradiation treatment In the present invention, the modification treatment method is treatment by vacuum ultraviolet light irradiation (excimer irradiation treatment). In the treatment by the vacuum ultraviolet light irradiation, the wavelength to be used needs to be 200 nm or less from the viewpoint of efficiently performing the modification, and light energy of 100 to 200 nm larger than the interatomic bonding force in the polysilazane compound may be used. Preferably, light energy having a wavelength of 100 to 180 nm is used, and an atomic bond is directly cut by an action of only a photon called a photon process, so that an oxidation reaction with active oxygen or ozone proceeds and a relatively low temperature (about 200 nm). This is a method of forming a silicon oxide film at a temperature of not higher than ° C.
 真空紫外光の光源としては、特に限定されず、公知のものが使用されうる。例えば、低圧水銀ランプ、エキシマランプ等が挙げられる。これらのうち、エキシマランプ、特にキセノン(Xe)エキシマランプを用いることが好ましい。 The light source of vacuum ultraviolet light is not particularly limited, and a known light source can be used. For example, a low pressure mercury lamp, an excimer lamp, etc. are mentioned. Of these, it is preferable to use an excimer lamp, particularly a xenon (Xe) excimer lamp.
 このようなエキシマ光(真空紫外光)の照射装置は、市販のランプ(例えば、ウシオ電機株式会社製、株式会社エム・ディ・コム製)を使用することが可能である。 Such an excimer light (vacuum ultraviolet light) irradiation apparatus can use a commercially available lamp (for example, Ushio Electric Co., Ltd., M.D.Com Co., Ltd.).
 エキシマランプは、エキシマ光が一つの波長に集中し、必要な光以外がほとんど放射されない点に特徴を有し、効率性が高い。また、余分な光が放射されないことから、対象物の温度を低く保つことができる。さらに、始動・再始動に時間を要さないことから、瞬時に点灯点滅が可能となる。特に、Xeエキシマランプは、波長の短い172nmの真空紫外光を単一波長で放射することから、発光効率に優れている。当該Xeエキシマランプは、172nmと波長が短く、エネルギーが高いことから、有機化合物の結合の切断能が高いことが知られている。 Excimer lamps are characterized in that excimer light is concentrated at one wavelength and almost no light other than the necessary light is emitted, and is highly efficient. Moreover, since excess light is not radiated | emitted, the temperature of a target object can be kept low. Further, since no time is required for starting and restarting, lighting and blinking can be performed instantaneously. In particular, the Xe excimer lamp is excellent in luminous efficiency because it emits short wavelength 172 nm vacuum ultraviolet light at a single wavelength. Since the Xe excimer lamp has a short wavelength of 172 nm and a high energy, it is known that the bond breaking ability of organic compounds is high.
 真空紫外光照射の照射強度は、使用する基材や第1のバリア層の組成、濃度等によっても異なるが、1~100kW/cmであることが好ましく、1~10W/cmであることがより好ましい。 The irradiation intensity of vacuum ultraviolet light irradiation varies depending on the base material used, the composition and concentration of the first barrier layer, etc., but is preferably 1 to 100 kW / cm 2 , and preferably 1 to 10 W / cm 2. Is more preferable.
 真空紫外光照射の時間は、使用する基材や第1のバリア層の組成、濃度等によっても異なるが、0.1秒~10分であることが好ましく、0.5秒~3分であることがより好ましい。 The time of irradiation with vacuum ultraviolet light varies depending on the substrate used, the composition and concentration of the first barrier layer, etc., but is preferably 0.1 second to 10 minutes, preferably 0.5 seconds to 3 minutes. It is more preferable.
 真空紫外光の積算光量は、特に制限されないが、200~5000mJ/cmであることが好ましく、500~3000mJ/cmであることがより好ましい。真空紫外光の積算光量が200mJ/cm以上であると、十分な改質が行われることにより高いバリア性が得られうることから好ましい。一方、真空紫外光の積算光量が5000mJ/cm以下であると、基材が変形することなく平滑性の高いバリア層が形成されうることから好ましい。 Integrated light quantity of vacuum ultraviolet light is not particularly limited, preferably from 200 ~ 5000mJ / cm 2, and more preferably 500 ~ 3000mJ / cm 2. It is preferable that the accumulated amount of vacuum ultraviolet light is 200 mJ / cm 2 or more because high barrier properties can be obtained by sufficient modification. On the other hand, when the cumulative amount of vacuum ultraviolet light is 5000 mJ / cm 2 or less, it is preferable because a barrier layer having high smoothness can be formed without deformation of the substrate.
 また、真空紫外光の照射温度は、適用する基材によっても異なり、当業者によって適宜決定されうる。真空紫外光の照射温度は、50~200℃であることが好ましく、80~150℃であることがより好ましい。照射温度が上記範囲内であると、基材の変形や強度の劣化等が生じにくく、基材の特性が損なわれないことから好ましい。 Further, the irradiation temperature of the vacuum ultraviolet light varies depending on the substrate to be applied, and can be appropriately determined by those skilled in the art. The irradiation temperature of the vacuum ultraviolet light is preferably 50 to 200 ° C, more preferably 80 to 150 ° C. It is preferable for the irradiation temperature to be within the above-mentioned range since deformation of the base material, deterioration of strength, etc. are unlikely to occur and the characteristics of the base material are not impaired.
 紫外線照射時の反応には、酸素が必要であるが、真空紫外光は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外光の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外光照射時の酸素濃度は、10~20,000体積ppm(0.001~2体積%)とすることが好ましく、より好ましくは50~10,000体積ppmであり、最も好ましくは100~5000ppmである。また、転化プロセスの間の水蒸気濃度は、好ましくは1000~4000体積ppmの範囲である。 Oxygen is required for the reaction at the time of ultraviolet irradiation, but vacuum ultraviolet light is absorbed by oxygen, so the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to carry out in a state where the concentration and water vapor concentration are low. That is, the oxygen concentration at the time of vacuum ultraviolet light irradiation is preferably 10 to 20,000 volume ppm (0.001 to 2 volume%), more preferably 50 to 10,000 volume ppm, and most preferably 100 to 5000 ppm. Also, the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.
 真空紫外光照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 As the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet light, a dry inert gas is preferable, and dry nitrogen gas is particularly preferable from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 塗膜面における真空紫外光の照射エネルギー量は、200~10000mJ/cmであることが好ましく、500~5000mJ/cmであることがより好ましい。200mJ/cm以上であれば、十分な改質が可能である、10000mJ/cm以下であれば過剰改質によるクラック発生や、基材の熱変形を抑えることができる。 Irradiation energy amount of the vacuum ultraviolet light at the coated surface is preferably 200 ~ 10000mJ / cm 2, and more preferably 500 ~ 5000mJ / cm 2. If it is 200 mJ / cm 2 or more, sufficient modification is possible, and if it is 10,000 mJ / cm 2 or less, generation of cracks due to excessive modification and thermal deformation of the substrate can be suppressed.
 また、改質に用いられる真空紫外光は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。 Further, the vacuum ultraviolet light used for reforming, CO, may be generated by plasma formed in a gas containing at least one of CO 2 and CH 4.
 紫外線照射の対象となる塗膜は、塗布時に酸素および微量の水分が混入し、さらには基材や隣接層等にも吸着酸素や吸着水が存在しうる。当該酸素等を利用すれば、照射庫内に新たに酸素を導入しなくとも、改質処理を行う活性酸素やオゾンの発生に要する酸素源は十分でありうる。また、Xeエキシマランプのような172nmの真空紫外光は酸素により吸収されるため、塗膜に到達する真空紫外光量が減少する場合があることから、真空紫外光の照射時には、酸素濃度を低く設定し、真空紫外光が効率よく塗膜まで到達できる条件とすることが好ましい。 The coating film to be irradiated with ultraviolet rays is mixed with oxygen and a small amount of moisture at the time of application, and adsorbed oxygen and adsorbed water may also exist in the substrate and adjacent layers. If oxygen or the like is used, the oxygen source required for generation of active oxygen or ozone for performing the reforming process may be sufficient without newly introducing oxygen into the irradiation chamber. Also, since 172 nm vacuum ultraviolet light such as Xe excimer lamp is absorbed by oxygen, the amount of vacuum ultraviolet light reaching the coating film may decrease, so the oxygen concentration should be set low during irradiation with vacuum ultraviolet light. In addition, it is preferable that the vacuum ultraviolet light be able to efficiently reach the coating film.
 上述の改質処理によって得られるバリア層の膜厚や密度等は、塗布条件や真空紫外光照射の条件等を適宜選択することにより制御することができる。例えば、真空紫外光の照射方法を、連続照射、複数回に分割した照射、複数回の照射が短時間な、いわゆるパルス照射等から適宜選択することで、バリア層の膜厚や密度等が制御されうる。 The film thickness, density, and the like of the barrier layer obtained by the above-described modification treatment can be controlled by appropriately selecting application conditions, vacuum ultraviolet light irradiation conditions, and the like. For example, the film thickness and density of the barrier layer can be controlled by appropriately selecting the irradiation method of vacuum ultraviolet light from continuous irradiation, irradiation divided into a plurality of times, and so-called pulse irradiation, etc. in which the plurality of times of irradiation is short. Can be done.
 また、バリア層の膜密度は、目的に応じて適切に設定され得る。例えば、バリア層の膜密度は、1.5~2.6g/cmの範囲にあることが好ましい。この範囲内であれば、膜の緻密さが向上しガスバリア性の劣化や、高温高湿条件下での膜の劣化を防止することができる。 Further, the film density of the barrier layer can be appropriately set according to the purpose. For example, the film density of the barrier layer is preferably in the range of 1.5 to 2.6 g / cm 3 . Within this range, the density of the film can be improved and deterioration of gas barrier properties and film deterioration under high temperature and high humidity conditions can be prevented.
 また、第二無機層は、適度な表面の平滑性を有することが好ましい。具体的には、第二無機層の表面の平滑性としては、第二無機層の中心線平均粗さ(Ra)が、50nm以下であることが好ましく、10nm以下であることがより好ましい。このような第二無機層の中心線平均粗さ(Ra)の下限は、特に制限されないが、実用上、0.01nm以上であり、0.1nm以上であることが好ましい。このようなRaを有する第二無機層であれば、当該第二無機層中の凹凸に良好に対応して第2のバリア層が第二無機層上に密接して形成される。このため、第二無機層に生じるクラックやダングリングボンド等の欠陥を第2のバリア層がより効率よく被覆して、密な表面を形成する。ゆえに、高温高湿条件下でのガスバリア性(例えば、低酸素透過性、高水蒸気バリア性)の低下をより有効に抑制・防止できる。なお、本明細書において、バリア層の中心線平均粗さ(Ra)は、下記実施例に記載される方法によって測定される値である。 The second inorganic layer preferably has an appropriate surface smoothness. Specifically, as the smoothness of the surface of the second inorganic layer, the center line average roughness (Ra) of the second inorganic layer is preferably 50 nm or less, and more preferably 10 nm or less. The lower limit of the center line average roughness (Ra) of the second inorganic layer is not particularly limited, but is practically 0.01 nm or more and preferably 0.1 nm or more. If it is the 2nd inorganic layer which has such Ra, the 2nd barrier layer will closely be formed on the 2nd inorganic layer corresponding to the unevenness in the 2nd inorganic layer satisfactorily. For this reason, the second barrier layer more efficiently covers defects such as cracks and dangling bonds generated in the second inorganic layer, thereby forming a dense surface. Therefore, it is possible to more effectively suppress and prevent a decrease in gas barrier properties (for example, low oxygen permeability and high water vapor barrier properties) under high temperature and high humidity conditions. In the present specification, the center line average roughness (Ra) of the barrier layer is a value measured by the method described in the following examples.
 上記中心線平均粗さ(Ra)を有する第二無機層の形成方法は、特に制限されない。例えば、下記の制御層を基材と第二無機層との間に設ける方法;中間層(特に、下記の第一無機層)を第二無機層と第2のバリア層との間に設ける方法;基材の選択により表面粗さを制御する方法;下地層の表面粗さを制御する方法;PHPS層塗布前に表面処理を行う方法などの方法によって、第二無機層の中心線平均粗さ(Ra)を上記範囲に制御できる。 The method for forming the second inorganic layer having the centerline average roughness (Ra) is not particularly limited. For example, a method of providing the following control layer between the substrate and the second inorganic layer; a method of providing an intermediate layer (particularly, the following first inorganic layer) between the second inorganic layer and the second barrier layer The method of controlling the surface roughness by selecting the substrate; the method of controlling the surface roughness of the underlayer; the method of performing the surface treatment before applying the PHPS layer; (Ra) can be controlled within the above range.
 改質処理の程度については、形成された第二無機層をXPS分析することによって、ケイ素(Si)原子、窒素(N)原子、酸素(O)原子等の各原子組成比を求めることで確認できる。 The degree of the modification treatment is confirmed by determining each atomic composition ratio of silicon (Si) atoms, nitrogen (N) atoms, oxygen (O) atoms, etc. by XPS analysis of the formed second inorganic layer. it can.
 なお、第2のバリア層の補修効果等により、得られるガスバリア性フィルムは高いガスバリア性を有する。よって、第二無機層のガスバリア性は多少低くてもよい。より具体的には、第二無機層の水蒸気透過率は、0.5g/m・day以下であることが好ましく、0.2g/m・day以下であることがより好ましい。なお、上記「水蒸気透過率」は実施例に記載の方法によって測定される値である。 Note that the gas barrier film obtained has a high gas barrier property due to the repair effect of the second barrier layer and the like. Therefore, the gas barrier property of the second inorganic layer may be somewhat low. More specifically, the water vapor transmission rate of the second inorganic layer is preferably 0.5 g / m 2 · day or less, and more preferably 0.2 g / m 2 · day or less. The “water vapor transmission rate” is a value measured by the method described in Examples.
 [機能層]
 さらに本発明のガスバリア性フィルムは、本発明の無機層および本発明の基材以外に、種々の機能層を設置してもよい。該機能層の例としては、反射防止層、偏光層、カラーフィルター、および光取出効率向上層等の光学機能層;ハードコート層や応力緩和層等の力学的機能層;帯電防止層や導電層などの電気的機能層;防曇層;防汚層;被印刷層などが挙げられる。
[Functional layer]
Furthermore, the gas barrier film of the present invention may be provided with various functional layers in addition to the inorganic layer of the present invention and the substrate of the present invention. Examples of the functional layer include an optical functional layer such as an antireflection layer, a polarizing layer, a color filter, and a light extraction efficiency improving layer; a mechanical functional layer such as a hard coat layer and a stress relaxation layer; an antistatic layer and a conductive layer. An electric functional layer such as: an antifogging layer; an antifouling layer; a printing layer, and the like.
 さらに、本発明の条件を満たすバリア層を形成した面とは反対側のプラスチックフィルム面には、少なくとも本発明の無機層と本発明の有機層とが積層された本発明のバリア層を有するガスバリア性ラミネート層を設けることもできる。ガスバリア性ラミネート層は、フィルム反対面からの水分子の侵入を防ぐことでガスバリア性フィルムの寸法変化を抑制することによりバリア層への応力集中や破壊を防止し、結果として耐久性を高めることができるという特徴を有する。 Furthermore, the gas barrier having the barrier layer of the present invention in which at least the inorganic layer of the present invention and the organic layer of the present invention are laminated on the surface of the plastic film opposite to the surface on which the barrier layer satisfying the conditions of the present invention is formed. A conductive laminate layer can also be provided. The gas barrier laminate layer prevents stress concentration and breakage on the barrier layer by suppressing the dimensional change of the gas barrier film by preventing the intrusion of water molecules from the opposite side of the film, resulting in increased durability. It has the feature that it can.
 上述した本発明の基材、本発明の第一無機層、本発明の第二無機層、機能層やその他の厚みは、いずれも塗布液濃度や塗布速度を調節することにより任意に調節することができる。 The base material of the present invention described above, the first inorganic layer of the present invention, the second inorganic layer of the present invention, the functional layer and other thicknesses are all arbitrarily adjusted by adjusting the coating solution concentration and coating speed. Can do.
 [ガスバリア性フィルムの性能]
 本発明のガスバリア性フィルムは、優れたガスバリア性を示す。本発明のガスバリア性フィルムの水蒸気透過率は、0.01g/m・day以下を達成することができ、好ましくは0.005g/m・day以下、より好ましくは0.003g/m・day以下、さらに好ましくは0.001g/m・day以下である。また、本発明のガスバリア性フィルムは、バリア層が優れた密着性を示す。すなわち、バリア層を構成する本発明の有機層と本発明の無機層との間の密着性が優れている。このような優れた水蒸気透過率や密着性は、ガスバリア性フィルムを複数回屈曲した後であっても維持される。したがって、本発明のバリアフィルムは、フレキシブルな画像表示素子などに好適に利用される。
[Performance of gas barrier film]
The gas barrier film of the present invention exhibits excellent gas barrier properties. Water vapor permeability of the gas barrier film of the present invention can achieve the following 0.01g / m 2 · day, preferably 0.005g / m 2 · day or less, more preferably 0.003 g / m 2 · day or less, more preferably 0.001 g / m 2 · day or less. In the gas barrier film of the present invention, the barrier layer exhibits excellent adhesion. That is, the adhesion between the organic layer of the present invention constituting the barrier layer and the inorganic layer of the present invention is excellent. Such excellent water vapor permeability and adhesion are maintained even after the gas barrier film is bent a plurality of times. Therefore, the barrier film of the present invention is suitably used for a flexible image display element and the like.
 [電子デバイス]
 本発明のガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく用いることができる。前記デバイスの例としては、例えば、有機EL素子、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等の電子デバイスを挙げることができる。本発明の効果がより効率的に得られるという観点から、有機EL素子または太陽電池に好ましく用いられ、有機EL素子に特に好ましく用いられる。
[Electronic device]
The gas barrier film of the present invention can be preferably used for a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. Examples of the device include electronic devices such as an organic EL element, a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and a solar cell (PV). From the viewpoint that the effect of the present invention can be obtained more efficiently, it is preferably used for an organic EL device or a solar cell, and particularly preferably used for an organic EL device.
 (有機EL素子)
 ガスバリア性フィルムを用いた有機EL素子の例は、特開2007-30387号公報に詳しく記載されている。
(Organic EL device)
Examples of organic EL elements using a gas barrier film are described in detail in JP-A-2007-30387.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
 (実施例1-1)
 [基材]
 基材として、2軸延伸ポリエチレンナフタレートフィルム(PENフィルム、厚み:100μm、幅:350mm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)を用いた。
Example 1-1
[Base material]
A biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 μm, width: 350 mm, manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”) was used as the substrate.
 [平滑層,アンカーコート層の作製]
 基材の易接着面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR Z7501を塗布、乾燥後の膜厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件;80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;1.0J/cm硬化を行い、平滑層を形成した。
[Production of smooth layer and anchor coat layer]
A UV curable organic / inorganic hybrid hard coat material OPSTAR Z7501 manufactured by JSR Corporation is applied to the easy-adhesion surface of the substrate, and after applying with a wire bar so that the film thickness after drying becomes 4 μm, drying conditions: 80 ° C. After drying in 3 minutes, using a high-pressure mercury lamp in an air atmosphere, curing conditions: 1.0 J / cm 2 curing was performed to form a smooth layer.
 このときの表面粗さを表す最大断面高さRt(p)は16nmであった。 The maximum cross-sectional height Rt (p) representing the surface roughness at this time was 16 nm.
 なお、表面粗さは、AFM(原子間力顕微鏡 AFM:Digital Instruments社製)を用い、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が30μmの区間内を多数回測
定し、微細な凹凸の振幅に関する平均の粗さから求めた。
The surface roughness is calculated from an uneven sectional curve continuously measured with a detector having a stylus having a minimum tip radius using an AFM (Atomic Force Microscope AFM: manufactured by Digital Instruments), and the minimum tip radius is calculated. Was measured many times in the section having a measurement direction of 30 μm with the stylus of No. 1 and obtained from the average roughness with respect to the amplitude of fine irregularities.
 [第一無機層(酸炭化ケイ素(SiOC))の作製]
 図2に記載の装置に基材を、装置に装着して、下記製膜条件(プラズマCVD条件)にて基材上にバリア薄膜層を300nmの厚さで作製した。得られた第一無機層に含まれる炭素原子の炭素分布曲線は、上記(i)および(ii)の条件を満たす。
[Production of first inorganic layer (silicon oxycarbide (SiOC))]
A substrate was mounted on the apparatus shown in FIG. 2, and a barrier thin film layer was formed to a thickness of 300 nm on the substrate under the following film forming conditions (plasma CVD conditions). The carbon distribution curve of carbon atoms contained in the obtained first inorganic layer satisfies the above conditions (i) and (ii).
 (製膜条件)
原料ガス(ヘキサメチルジシロキサン(HMDSO))の供給量:50sccm(StandardCubic Centimeter per Minute)
酸素ガス(O)の供給量:500sccm
真空チャンバ内の真空度:3Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度;0.5m/min。
(Film forming conditions)
Feed rate of raw material gas (hexamethyldisiloxane (HMDSO)): 50 sccm (StandardCubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 500 sccm
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Film conveyance speed: 0.5 m / min.
 [窒化ケイ素ナノ粒子の作製]
 解粒して分散させる凝集微粒子として、窒化珪素の粒子(シグマアルドリッチ社製 製品番号636703)を分散媒としてメチルエチルケトン(MEK)を用い5質量%濃度になるように混合しディスパーを用いて均一になるように混合した。
[Production of silicon nitride nanoparticles]
As agglomerated fine particles to be pulverized and dispersed, silicon nitride particles (product number 636703 manufactured by Sigma-Aldrich) are mixed to a concentration of 5% by mass using methyl ethyl ketone (MEK) as a dispersion medium, and uniform using a disper. Mixed.
 次に、分散機としてビーズミル(コトブキ技研工業株式会社製「スーパーアペックスミルSAM-05型」)を用い、まずホモジナイザーで粗大な凝集微粒子を解砕し、粒子分散原液を得た。前記粒子分散原液をビーズミルのジルコニア製0.5リットル攪拌容器に入れ、ここにジルコニア製の粒径20μmの攪拌粒子を攪拌容器の70容量%になるように入れた。 Next, a bead mill ("Super Apex Mill SAM-05 type" manufactured by Kotobuki Giken Kogyo Co., Ltd.) was used as a disperser, and coarse aggregated fine particles were first crushed with a homogenizer to obtain a particle-dispersed stock solution. The particle-dispersed stock solution was put into a 0.5-liter stirring vessel made of zirconia in a bead mill, and stirring particles made of zirconia and having a particle diameter of 20 μm were put so as to be 70% by volume of the stirring vessel.
 図3はビーズミルと分散用タンクを用いた循環方式による解粒・分散装置を示すものである。攪拌翼15を設けたビーズミルの攪拌容器16と攪拌羽根17を設けた分散用タンク18の間で粒子分散原液19を循環させながら、ビーズミルの攪拌翼15を回転数3000rpmで作動させて粒子分散原液19を攪拌した。これにより粒子分散原液19中の凝集微粒子を攪拌粒子で解粒すると共に解粒した微粒子を分散させる解粒・分散処理を行い、表1に示す平均粒径にした。このように解粒・分散処理して得た窒化ケイ素ナノ粒子の平均粒子径(球相当径)を大塚電子社製濃厚系粒径アナライザー「FPAR-1000」を用いて測定し、分散性を測定した。平均粒子径(球相当径)の結果を表1に示した。 Fig. 3 shows a pulverization / dispersion device using a circulation system using a bead mill and a dispersion tank. While circulating the particle dispersion stock solution 19 between the bead mill stirring vessel 16 provided with the stirring blade 15 and the dispersion tank 18 provided with the stirring blade 17, the bead mill stirring blade 15 is operated at a rotational speed of 3000 rpm to obtain the particle dispersion stock solution. 19 was stirred. Thereby, the agglomerated fine particles in the particle-dispersed stock solution 19 were pulverized with the agitated particles, and the pulverization / dispersion treatment for dispersing the pulverized fine particles was performed to obtain the average particle size shown in Table 1. The average particle diameter (sphere equivalent diameter) of silicon nitride nanoparticles obtained by pulverization / dispersion in this way is measured using a concentrated particle size analyzer “FPAR-1000” manufactured by Otsuka Electronics Co., Ltd., and the dispersibility is measured. did. The results of average particle diameter (sphere equivalent diameter) are shown in Table 1.
 [ナノ粒子含有ポリシラザン含有塗布液の調製]
 無触媒のパーヒドロポリシラザンを40質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製、NN120-20)と、アミン触媒を含むパーヒドロポリシラザン40質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製、NAX120-20)とを、4:1の割合で混合し、更にジブチルエーテルと2,2,4-トリメチルペンタンの溶剤質量比が65:35となるように混合した溶媒で、塗布液の固形分が5質量%になるように希釈調整した。この溶液に平均粒子径11nmのナノ窒化ケイ素粒子分散液を5質量%加え、塗布液を調製した。
[Preparation of nanoparticle-containing polysilazane-containing coating solution]
Dibutyl ether solution containing 40% by mass of non-catalyzed perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20), and 40% by mass of dihydrolether containing perhydropolysilazane containing amine catalyst (AZ Electronic Materials ( Co., Ltd., NAX120-20), mixed at a ratio of 4: 1, and further coated with a solvent in which the solvent mass ratio of dibutyl ether and 2,2,4-trimethylpentane was 65:35. The dilution was adjusted so that the solid content of the liquid was 5% by mass. To this solution, 5% by mass of a nano silicon nitride particle dispersion having an average particle diameter of 11 nm was added to prepare a coating solution.
 上記蒸着膜に上記で調製した塗布液を塗布して下記条件で改質(シリカ転化)処理を行い、第二無機層を100nmの厚さで作製した。 The coating solution prepared above was applied to the vapor-deposited film, and a modification (silica conversion) treatment was performed under the following conditions to produce a second inorganic layer with a thickness of 100 nm.
 [バリア層の形成:紫外光によるポリシラザン層の改質(シリカ転化)処理]
 上記形成したポリシラザン層に対し、下記の方法に従って、露点温度が-8℃以下の条件下で、シリカ転化処理を実施した。
[Formation of barrier layer: Modification (silica conversion) treatment of polysilazane layer by ultraviolet light]
The polysilazane layer thus formed was subjected to silica conversion treatment under the conditions of dew point temperature of −8 ° C. or lower according to the following method.
 (紫外線照射装置)
 装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 照射波長:172nm
 ランプ封入ガス:Xe
 (照射条件)
 稼動ステージ上に固定したポリシラザン層を形成した基材に対し、以下の条件でポリシラザンの改質処理を行い、バリア層を形成した。
(UV irradiation device)
Equipment: Ex D irradiation system MODEL manufactured by M.D. Com: MECL-M-1-200
Irradiation wavelength: 172 nm
Lamp filled gas: Xe
(Irradiation conditions)
The base material on which the polysilazane layer fixed on the operation stage was formed was subjected to polysilazane modification treatment under the following conditions to form a barrier layer.
     エキシマランプ光強度:200mW/cm (172nm)
     試料と光源の距離:1mm
     ステージ加熱温度:95℃
     照射装置内の酸素濃度:500ppm
     照射装置内の水蒸気濃度:50ppm
     エキシマランプ照射時間:10秒
 (実施例1-2)
 実施例1-1において、ポリシラザン含有塗布液に加えた窒化ケイ素ナノ粒子の平均粒子径が26nmである以外は実施例1-1と同様にガスバリア性フィルムを作製した。
Excimer lamp light intensity: 200 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 95 ° C
Oxygen concentration in the irradiation device: 500 ppm
Water vapor concentration in the irradiation device: 50 ppm
Excimer lamp irradiation time: 10 seconds (Example 1-2)
In Example 1-1, a gas barrier film was produced in the same manner as in Example 1-1 except that the average particle diameter of the silicon nitride nanoparticles added to the polysilazane-containing coating solution was 26 nm.
 (実施例1-3)
 実施例1-1において、ポリシラザン含有塗布液に加えた窒化ケイ素ナノ粒子の平均粒子径が44nmである以外は実施例1-1と同様にガスバリア性フィルムを作製した。
(Example 1-3)
In Example 1-1, a gas barrier film was produced in the same manner as in Example 1-1 except that the average particle diameter of the silicon nitride nanoparticles added to the polysilazane-containing coating solution was 44 nm.
 (実施例1-4)
 実施例1-1において、ポリシラザン含有塗布液に加えた窒化ケイ素ナノ粒子の平均粒子径が53nmである以外は実施例1-1と同様にガスバリア性フィルムを作製した。
(Example 1-4)
In Example 1-1, a gas barrier film was produced in the same manner as in Example 1-1 except that the average particle diameter of the silicon nitride nanoparticles added to the polysilazane-containing coating solution was 53 nm.
 (実施例1-5)
 実施例1-1において、ポリシラザン含有塗布液に加えた窒化ケイ素ナノ粒子の平均粒子径が95nmである以外は実施例1-1と同様にガスバリア性フィルムを作製した。
(Example 1-5)
In Example 1-1, a gas barrier film was produced in the same manner as in Example 1-1 except that the average particle diameter of the silicon nitride nanoparticles added to the polysilazane-containing coating solution was 95 nm.
 (実施例1-5)
 実施例1-1において、ポリシラザン含有塗布液に加えた窒化ケイ素ナノ粒子の平均粒子径が104nmである以外は実施例1-1と同様にガスバリア性フィルムを作製した。
(Example 1-5)
In Example 1-1, a gas barrier film was produced in the same manner as in Example 1-1 except that the average particle diameter of the silicon nitride nanoparticles added to the polysilazane-containing coating solution was 104 nm.
 (実施例1-7)
 実施例1-1において、ナノ粒子として平均粒子径5nmの酸化チタンナノ粒子をポリシラザン含有塗布液に加えた以外は実施例1-1と同様にガスバリア性フィルムを作製した。
(Example 1-7)
A gas barrier film was produced in the same manner as in Example 1-1, except that titanium oxide nanoparticles having an average particle diameter of 5 nm were added to the polysilazane-containing coating solution.
 (実施例1-8)
 実施例1-7において、ポリシラザン含有塗布液に加えた窒化チタンナノ粒子の平均粒子径が50nmである以外は実施例1-7と同様にガスバリア性フィルムを作製した。
(Example 1-8)
A gas barrier film was produced in the same manner as in Example 1-7, except that in Example 1-7, the average particle size of the titanium nitride nanoparticles added to the polysilazane-containing coating solution was 50 nm.
 (実施例1-9)
 実施例1-7において、ポリシラザン含有塗布液に加えた窒化チタンナノ粒子の平均粒子径が100nmである以外は実施例1-7と同様にガスバリア性フィルムを作製した。
(Example 1-9)
A gas barrier film was produced in the same manner as in Example 1-7, except that in Example 1-7, the average particle size of the titanium nitride nanoparticles added to the polysilazane-containing coating solution was 100 nm.
 (実施例1-10)
 実施例1-1において、ナノ粒子として平均粒子径5nmのアルミナナノ粒子をポリシラザン含有塗布液に加えた以外は実施例1-1と同様にガスバリア性フィルムを作製した。
(Example 1-10)
A gas barrier film was produced in the same manner as in Example 1-1, except that alumina nanoparticles having an average particle diameter of 5 nm were added to the polysilazane-containing coating solution.
 (実施例1-11)
 実施例1-10において、ポリシラザン含有塗布液に加えたアルミナナノ粒子の平均粒子径が50nmである以外は実施例1-10と同様にガスバリア性フィルムを作製した。
(Example 1-11)
In Example 1-10, a gas barrier film was produced in the same manner as in Example 1-10 except that the average particle diameter of the alumina nanoparticles added to the polysilazane-containing coating solution was 50 nm.
 (実施例1-12)
 実施例1-10において、ポリシラザン含有塗布液に加えたアルミナナノ粒子の平均粒子径が100nmである以外は実施例1-10と同様にガスバリア性フィルムを作製した。
(Example 1-12)
In Example 1-10, a gas barrier film was produced in the same manner as in Example 1-10, except that the average particle diameter of the alumina nanoparticles added to the polysilazane-containing coating solution was 100 nm.
 (実施例1-13)
 実施例1-1において、ナノ粒子として平均粒子径5nmのジルコニアナノ粒子をポリシラザン含有塗布液に加えた以外は実施例1-1と同様にガスバリア性フィルムを作製した。
(Example 1-13)
In Example 1-1, a gas barrier film was prepared in the same manner as in Example 1-1 except that zirconia nanoparticles having an average particle diameter of 5 nm were added to the polysilazane-containing coating solution.
 (実施例1-14)
 実施例1-13において、ポリシラザン含有塗布液に加えたジルコニアナノ粒子の平均粒子径が50nmである以外は実施例1-13と同様にガスバリア性フィルムを作製した。
(Example 1-14)
In Example 1-13, a gas barrier film was produced in the same manner as in Example 1-13, except that the average particle diameter of the zirconia nanoparticles added to the polysilazane-containing coating solution was 50 nm.
 (実施例1-15)
 実施例1-13において、ポリシラザン含有塗布液に加えたジルコニアナノ粒子の平均粒子径が100nmである以外は実施例1-13と同様にガスバリア性フィルムを作製した。
(Example 1-15)
In Example 1-13, a gas barrier film was produced in the same manner as in Example 1-13, except that the average particle diameter of the zirconia nanoparticles added to the polysilazane-containing coating solution was 100 nm.
 (実施例1-16)
 実施例1-1において、ナノ粒子として平均粒子径5nmの酸化亜鉛ナノ粒子をポリシラザン含有塗布液に加えた以外は実施例1-1と同様にガスバリア性フィルムを作製した。
(Example 1-16)
A gas barrier film was produced in the same manner as in Example 1-1, except that zinc oxide nanoparticles having an average particle diameter of 5 nm were added to the polysilazane-containing coating solution.
 (実施例1-17)
 実施例1-16において、ポリシラザン含有塗布液に加えた酸化亜鉛ナノ粒子の平均粒子径が50nmである以外は実施例1-16と同様にガスバリア性フィルムを作製した。
(Example 1-17)
In Example 1-16, a gas barrier film was produced in the same manner as in Example 1-16, except that the average particle diameter of the zinc oxide nanoparticles added to the polysilazane-containing coating solution was 50 nm.
 (実施例1-18)
 実施例1-16において、ポリシラザン含有塗布液に加えた酸化亜鉛ナノ粒子の平均粒子径が100nmである以外は実施例1-16と同様にガスバリア性フィルムを作製した。
(Example 1-18)
In Example 1-16, a gas barrier film was produced in the same manner as in Example 1-16 except that the average particle diameter of the zinc oxide nanoparticles added to the polysilazane-containing coating solution was 100 nm.
 (比較例1-1)
 実施例1-1において、ポリシラザン含有塗布液に窒化ケイ素ナノ粒子を加えなかった以外は実施例1-1と同様にガスバリア性フィルムを作製した。
(Comparative Example 1-1)
In Example 1-1, a gas barrier film was prepared in the same manner as in Example 1-1, except that the silicon nitride nanoparticles were not added to the polysilazane-containing coating solution.
 (実施例2-1)
 プラスチックフィルムを以下の方法で作製し、粒径32nmのナノ窒化珪素粒子を使用し、第一無機層(酸炭化ケイ素膜(SiOC))の膜厚を150nmとした以外は実施例1-1と同様にしてガスバリア性フィルムを作製した。
Example 2-1
A plastic film was prepared by the following method, and nano-silicon nitride particles having a particle size of 32 nm were used. The thickness of the first inorganic layer (silicon oxycarbide film (SiOC)) was changed to 150 nm. Similarly, a gas barrier film was produced.
 ポリエチレンナフタレートフィルム(PENフィルム、100μm厚、帝人デュポン社製、商品名:テオネックスQ65FA)を20cm角に裁断し、その平滑面側に実施例1-1と同様にしてでバリア層を形成して評価した。 A polyethylene naphthalate film (PEN film, 100 μm thick, manufactured by Teijin DuPont, trade name: Teonex Q65FA) was cut into a 20 cm square, and a barrier layer was formed on the smooth surface side in the same manner as in Example 1-1. evaluated.
 (実施例2-2)
 第一無機層(酸化ケイ素膜(SiO))を以下の方法で作製した以外は実施例2-1と同様にしてガスバリア性フィルムを作製した。
(Example 2-2)
A gas barrier film was produced in the same manner as in Example 2-1, except that the first inorganic layer (silicon oxide film (SiO 2 )) was produced by the following method.
 プラスチックフィルムの片面上に、下記の製膜条件でプラズマCVD法にてSiO膜の成膜を行った。 On one surface of the plastic film, an SiO 2 film was formed by plasma CVD under the following film forming conditions.
 製膜条件
原料ガス(ヘキサメチルジシロキサン(HMDSO))の供給量:50sccm
酸素ガス(O)の供給量:1000sccm
真空チャンバ内の真空度:3.5Pa
プラズマ発生用電源からの印加電力:0.5kW
プラズマ発生用電源の周波数:13.56MHz
フィルムの搬送速度;0.5m/min。
Film forming condition material gas (hexamethyldisiloxane (HMDSO)) supply amount: 50 sccm
Supply amount of oxygen gas (O 2 ): 1000 sccm
Degree of vacuum in the vacuum chamber: 3.5Pa
Applied power from the power source for plasma generation: 0.5 kW
Frequency of power source for plasma generation: 13.56 MHz
Film conveyance speed: 0.5 m / min.
 (実施例2-3)
 第一無機層(アルミノシリケート膜(SiAlO))を以下の方法で作製した以外は実施例2-1と同様にしてガスバリア性フィルムを作製した。
(Example 2-3)
A gas barrier film was produced in the same manner as in Example 2-1, except that the first inorganic layer (aluminosilicate film (SiAlO)) was produced by the following method.
 ロールツーロール(roll-to-roll)スパッターコーター中にスプライスロールを装填した。成膜チャンバの圧力を2×10-6トールまでポンプで低下させた。2kWおよび600V、1ミリトールの圧力で51sccmのアルゴンおよび30sccmの酸素を含有する気体混合物、および0.43メートル/分のウェブ速度を使用して、Si-Al(95/5)ターゲット(アカデミープリシジョン マテリアルズ(AcademyPrecision Materials)から市販品として入手可能)を反応スパッタリングすることによって、厚さ150nmのSiAlO無機酸化物層を基材の上に堆積させた。 The splice roll was loaded into a roll-to-roll sputter coater. The deposition chamber pressure was pumped down to 2 × 10 −6 Torr. Using a gas mixture containing 51 sccm argon and 30 sccm oxygen at a pressure of 2 kW and 600 V, 1 millitorr, and a web speed of 0.43 meters / min, a Si—Al (95/5) target (Academic Pris A 150 nm thick SiAlO inorganic oxide layer was deposited on the substrate by reactive sputtering of John Materials (available commercially from Academy Precision Materials).
 (実施例2-4)
 第一無機層(水素化窒化珪素膜(SiNH))を以下の方法で作製した以外は実施例2-2と同様にしてガスバリア性フィルムを作製した。
(Example 2-4)
A gas barrier film was produced in the same manner as in Example 2-2 except that the first inorganic layer (silicon hydronitride film (SiNH)) was produced by the following method.
 製膜条件
 下記のプラズマCVD原料ガス処方1の原料ガスを導入した以外は実施例2-2と同様の条件で第一無機層(水素化窒化珪素膜(SiNH)(Siを除くN成分:97モル%))を形成した。
プラズマCVD原料ガス処方1
 シランガス:25sccm
 アンモニアガス:15sccm
 窒素ガス:200sccm
プラズマCVD原料ガス処方2
 シランガス:25sccm
 アンモニアガス:50sccm
 窒素ガス:165sccm。
Film Formation Conditions The first inorganic layer (silicon hydronitride film (SiNH) (N component other than Si: 97) under the same conditions as in Example 2-2 except that the raw material gas of the following plasma CVD raw material gas formulation 1 was introduced. Mol%)).
Plasma CVD source gas recipe 1
Silane gas: 25 sccm
Ammonia gas: 15 sccm
Nitrogen gas: 200sccm
Plasma CVD source gas recipe 2
Silane gas: 25 sccm
Ammonia gas: 50sccm
Nitrogen gas: 165 sccm.
 (実施例2-5)
 第一無機層(酸窒化珪素膜(SiON))を以下の方法で作製した以外は、実施例2-1と同様にしてバリア層を作製した。
(Example 2-5)
A barrier layer was produced in the same manner as in Example 2-1, except that the first inorganic layer (silicon oxynitride film (SiON)) was produced by the following method.
 CCP-CVD法による成膜を行なう一般的なCVD装置(サムコ社製PD-220NA)を用いて、基材に、ガスバリア膜として膜厚150nmの酸窒化珪素膜(SiON)を形成した。 A silicon oxynitride film (SiON) having a film thickness of 150 nm was formed as a gas barrier film on a base material using a general CVD apparatus (PD-220NA manufactured by Samco Co., Ltd.) that performs film formation by the CCP-CVD method.
 基材は、ポリエチレンナフタレートフィルム(PENフィルム、100μm厚、帝人デュポン社製、商品名:テオネックスQ65FA)を用いた。なお、基材の面積は300cmとした。 As the substrate, a polyethylene naphthalate film (PEN film, 100 μm thickness, manufactured by Teijin DuPont, trade name: Teonex Q65FA) was used. The area of the base material was 300 cm 2 .
 基材を真空チャンバ内の所定位置にセットして、真空チャンバを閉塞した。次いで、真空チャンバ内を排気して、圧力が0.01Paとなった時点で、反応ガスとして、シランガス(5%窒素希釈)、酸素ガス(5%窒素希釈)を導入した。なお、シランガスの流量は50sccm、酸素ガスの流量は5sccm、窒素ガスとした。さらに、真空チャンバ内の圧力が100Paとなるように、真空チャンバ内の排気を調整した。 The substrate was set at a predetermined position in the vacuum chamber, and the vacuum chamber was closed. Next, when the inside of the vacuum chamber was evacuated and the pressure reached 0.01 Pa, silane gas (5% nitrogen dilution) and oxygen gas (5% nitrogen dilution) were introduced as reaction gases. The flow rate of silane gas was 50 sccm, the flow rate of oxygen gas was 5 sccm, and nitrogen gas. Further, the exhaust in the vacuum chamber was adjusted so that the pressure in the vacuum chamber was 100 Pa.
 (比較例2-1)
 第一無機層として蒸着膜ではなく、本願の第二無機層であるポリシラザン改質膜(PHPS)を以下の方法で作製して使用した以外は、実施例2-1と同様にしてバリアフィルムを作製した。
(Comparative Example 2-1)
A barrier film was prepared in the same manner as in Example 2-1, except that a polysilazane modified film (PHPS), which is the second inorganic layer of the present application, was prepared and used as the first inorganic layer in the following manner. Produced.
 ポリシラザン塗布膜の形成
 基材表面に蒸着膜を形成することなく、粒径32nmのSiを使用して作製したポリシラザン含有塗布液をワイヤレスバーにて、乾燥後の(平均)膜厚が300nmとなるように塗布し、温度85℃、湿度55%RHの雰囲気下で1分間処理して乾燥させ、更に温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行って、ポリシラザン層を形成した。
Formation of polysilazane coating film Polysilazane-containing coating liquid prepared using Si 3 N 4 having a particle size of 32 nm without forming a vapor deposition film on the surface of the substrate is dried with a wireless bar. Apply to 300 nm, treat and dry for 1 minute in an atmosphere of temperature 85 ° C. and humidity 55% RH, and further 10 minutes in an atmosphere of temperature 25 ° C. and humidity 10% RH (dew point temperature −8 ° C.) The polysilazane layer was formed by holding and dehumidifying.
 (バリア層の形成:紫外光によるポリシラザン層の改質(シリカ転化)処理)
 次いで、上記形成したポリシラザン層に対し、下記の方法に従って、露点温度が-8℃以下の条件下で、改質(シリカ転化)処理を実施した。
(Barrier layer formation: Polysilazane layer modification (silica conversion) treatment with ultraviolet light)
Subsequently, the polysilazane layer formed above was subjected to a modification (silica conversion) treatment under the condition of a dew point temperature of −8 ° C. or lower according to the following method.
 装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 照射波長:172nm
 ランプ封入ガス:Xe。
Equipment: Ex D irradiation system MODEL manufactured by M.D. Com: MECL-M-1-200
Irradiation wavelength: 172 nm
Lamp filled gas: Xe.
 改質処理条件
 稼動ステージ上に固定したポリシラザン層を形成した基材に対し、以下の条件で改質処理を行って、バリア層を形成した。
Reforming treatment conditions The base material on which the polysilazane layer fixed on the operation stage was formed was subjected to a reforming treatment under the following conditions to form a barrier layer.
 エキシマランプ光強度:130mW/cm(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:500ppm
 エキシマランプ照射時間:10秒。
Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 500 ppm
Excimer lamp irradiation time: 10 seconds.
 (比較例2-2)
 ポリシラザン含有塗布液にナノ粒子を加えなかった以外は実施例2-1と同様にしてバリアフィルムを作製した。
(Comparative Example 2-2)
A barrier film was produced in the same manner as in Example 2-1, except that the nanoparticles were not added to the polysilazane-containing coating solution.
 [評価1:ガスバリア性の評価]
 上記作成したガスバリア性フィルムのガスバリア性は、下記のように水蒸気透過率を測定することにより評価した。
[Evaluation 1: Evaluation of gas barrier properties]
The gas barrier property of the gas barrier film prepared above was evaluated by measuring the water vapor transmission rate as follows.
 (水蒸気透過率測定試料の作製装置)
 蒸着装置:日本電子株式会社製、真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 (原材料)
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)。
(Water vapor permeability measurement sample preparation device)
Vapor deposition device: JEOL Ltd., vacuum evaporation device JEE-400
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
(raw materials)
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor-impermeable metal: Aluminum (φ3-5mm, granular).
 (水蒸気透過率測定試料の作製)
 真空蒸着装置(日本電子株式会社製、真空蒸着装置 JEE-400)を用い、作製したガスバリア性フィルムのバリア層表面に、マスクを通して12mm×12mmのサイズで金属カルシウムを蒸着膜厚が80nmとなるように蒸着させた。
(Preparation of water vapor transmission rate measurement sample)
Using a vacuum evaporation system (manufactured by JEOL Ltd., vacuum evaporation system JEE-400), deposit metal calcium with a size of 12 mm x 12 mm on the barrier layer surface of the produced gas barrier film through a mask so that the deposited film thickness becomes 80 nm. Vapor deposited.
 その後、真空状態のままマスクを取り去り、シート片側全面に水蒸気不透過性の金属であるアルミニウムを蒸着させて仮封止をした。次いで、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下に移して、アルミニウム蒸着面に封止用紫外線硬化樹脂(ナガセケムテックス株式会社製)を介して厚さ0.2mmの石英ガラスを張り合わせ、紫外線を照射して樹脂を硬化接着させて本封止することで、水蒸気透過率測定試料を作製した。 Thereafter, the mask was removed in a vacuum state, and aluminum, which is a water vapor-impermeable metal, was vapor-deposited on the entire surface of one side of the sheet and temporarily sealed. Next, the vacuum state is released, and it is immediately transferred to a dry nitrogen gas atmosphere, and a quartz glass with a thickness of 0.2 mm is bonded to the aluminum vapor-deposited surface via an ultraviolet curing resin for sealing (manufactured by Nagase ChemteX Corporation). The water vapor transmission rate measurement sample was produced by irradiating ultraviolet rays to cure and adhere the resin and performing main sealing.
 得られた試料(評価用セル)を恒温恒湿度オーブンYamato Humidic Chamber IG47Mを用いて、60℃、90%RHの高温高湿下で保存し、特開2005-283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。 The obtained sample (evaluation cell) was stored in a constant temperature and humidity oven Yamato Humidic Chamber IG47M under high temperature and high humidity of 60 ° C. and 90% RH, and based on the method described in JP-A-2005-283561. The amount of moisture permeated into the cell was calculated from the amount of corrosion of metallic calcium.
 [評価2:長期保存性評価]
 作製したガスバリア性フィルムを85℃、90%RHの高温高湿条件下に30日保存後、上記水蒸気バリア性評価試料を作製し、下記の式により耐劣化度(%)を算出し、水蒸気バリア性を評価した。
[Evaluation 2: Long-term storage stability evaluation]
The gas barrier film thus prepared was stored for 30 days under high temperature and high humidity conditions of 85 ° C. and 90% RH, and then the above water vapor barrier property evaluation sample was prepared, and the degree of deterioration resistance (%) was calculated by the following formula. Sex was evaluated.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 下記のランク付けの数値が大きいほど長期保存性が良好である。 ¡The longer the ranking value, the better the long-term storage.
 5:耐劣化度が、90%以上である。 5: Deterioration resistance is 90% or more.
 4:耐劣化度が、80%以上、90%未満である。 4: Deterioration resistance is 80% or more and less than 90%.
 3:耐劣化度が、60%以上、80%未満である。 3: Deterioration resistance is 60% or more and less than 80%.
 2:耐劣化度が、30%以上、60%未満である。 2: Deterioration resistance is 30% or more and less than 60%.
 1:耐劣化度が、30%未満である。 1: Deterioration resistance is less than 30%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1のように、ナノ粒子を含有するバリア層を有する本発明に係るガスバリア性フィルム(実施例1-1~実施例1-18)は、ナノ粒子を含まないガスバリア性フィルム(実施例1-19)に比べて大幅に低い水蒸気透過率を示した。このようにバリア層としてナノ粒子を含有するものを使用することによりガスバリア性が大幅に向上するという効果は、窒化ケイ素ナノ粒子に限らず、多くの金属酸化物および金属窒化物のナノ粒子についても同様である。また、少なくともナノ粒子の平均粒子径5~100nm程度においては、十分なガスバリア性が得られ、長期保存性も十分であった。 As shown in Table 1, the gas barrier films according to the present invention having a barrier layer containing nanoparticles (Example 1-1 to Example 1-18) are gas barrier films containing no nanoparticles (Example 1 Compared to 19), the water vapor transmission rate was significantly lower. As described above, the effect that the gas barrier property is greatly improved by using the nanoparticle-containing barrier layer is not limited to the silicon nitride nanoparticles, but also for many metal oxide and metal nitride nanoparticles. It is the same. Further, at least when the average particle diameter of the nanoparticles is about 5 to 100 nm, a sufficient gas barrier property is obtained and the long-term storage property is sufficient.
 さらに、表2のように、ナノ粒子を含有するバリア層を有する本発明に係るガスバリア性フィルムは、第一無機層の材料を変化させても良好なガスバリア性および水蒸気透過性を示した。また、第一無機層を蒸着法により形成すると(実施例2-1~実施例2-5)、ポリシラザン塗布膜を改質して得られたバリア層で第一無機層を代用した場合(比較例2-1)に比べて、ガスバリア性が良好となり、長期保存性にも優れていた。第一無機層を蒸着法により形成することにより基材とバリア層との密着性が良好となるためと考えられる。 Furthermore, as shown in Table 2, the gas barrier film according to the present invention having a barrier layer containing nanoparticles exhibited good gas barrier properties and water vapor permeability even when the material of the first inorganic layer was changed. In addition, when the first inorganic layer is formed by vapor deposition (Example 2-1 to Example 2-5), when the first inorganic layer is substituted with a barrier layer obtained by modifying the polysilazane coating film (comparison) Compared to Example 2-1), the gas barrier property was good and the long-term storage property was also excellent. It is considered that the adhesion between the base material and the barrier layer is improved by forming the first inorganic layer by a vapor deposition method.
 なお、本出願は、2013年5月1日に出願された日本特許出願番号第2013-096587号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2013-096587 filed on May 1, 2013, the disclosure of which is referred to and incorporated as a whole.
  1・・・ガスバリア性フィルム、
  2・・・基材、
  3・・・CVD層、
  101・・・プラズマCVD装置、
  102・・・真空槽、
  103・・・カソード電極、
  105・・・サセプタ、
  106・・・熱媒体循環系、
  107・・・真空排気系、
  108・・・ガス導入系、
  109・・・高周波電源
  160・・・加熱冷却装置、
  110・・・基材、
  31・・・製造装置、
  32・・・送り出しローラー、
  33、34、35、36・・・搬送ローラー、
  39、40・・・成膜ローラー、
  41・・・ガス供給管、
  42・・・プラズマ発生用電源、
  43、44・・・磁場発生装置、
  45・・・巻取りローラー
  15・・・攪拌翼、
  16・・・ビーズミルの攪拌容器、
  17・・・攪拌羽根、
  18・・・分散用タンク、
  19・・・粒子分散原液。
1 ... Gas barrier film,
2 ... base material,
3 ... CVD layer,
101 ... Plasma CVD apparatus,
102 ... Vacuum tank,
103 ... cathode electrode,
105 ... susceptor,
106 ... heat medium circulation system,
107 ... vacuum exhaust system,
108 ... gas introduction system,
109 ... high frequency power supply 160 ... heating and cooling device,
110 ... base material,
31 ... Manufacturing equipment,
32 ... Delivery roller,
33, 34, 35, 36 ... transport rollers,
39, 40 ... film forming roller,
41 ... gas supply pipe,
42 ... Power source for plasma generation,
43, 44 ... Magnetic field generator,
45 ... take-up roller 15 ... stirring blade,
16: Stirring container of bead mill,
17 ... stirring blade,
18: Dispersion tank,
19: Particle dispersion stock solution.

Claims (6)

  1.  基材(支持体)の少なくとも一方の面に蒸着法で形成した第1のバリア層(第一無機層)と、
     前記第一無機層上にポリシラザン塗布膜を改質することにより形成した第2のバリア層(第二無機層)と、
    を含むガスバリア性フィルムであって、
     前記ポリシラザン塗布膜は、金属酸化物および金属窒化物の少なくともいずれか一種類のナノ粒子を含有し、
     前記ポリシラザン塗布膜の改質は、前記ポリシラザン塗布膜に波長200nm以下の真空紫外光を照射することにより行うことを特徴とするガスバリア性フィルム。
    A first barrier layer (first inorganic layer) formed by vapor deposition on at least one surface of a substrate (support);
    A second barrier layer (second inorganic layer) formed by modifying a polysilazane coating film on the first inorganic layer;
    A gas barrier film comprising
    The polysilazane coating film contains at least one kind of nanoparticles of metal oxide and metal nitride,
    The gas barrier film according to claim 1, wherein the modification of the polysilazane coating film is performed by irradiating the polysilazane coating film with vacuum ultraviolet light having a wavelength of 200 nm or less.
  2.  前記第1のバリア層(第一無機層)は、酸窒化ケイ素(SiON)、窒化ケイ素(SiN)、水素化窒化ケイ素(SiNH)、酸炭化ケイ素(SiOC)、酸化ケイ素(SiO)、アルミニウムシリケート(SiAlO)および酸窒化炭化ケイ素(SiONC)からなる群より選択される少なくとも一種を含む酸化物、窒化物、酸窒化物、酸炭化物または酸窒化炭化物である、請求項1に記載のガスバリア性フィルム。 The first barrier layer (first inorganic layer) includes silicon oxynitride (SiON), silicon nitride (SiN), hydrogenated silicon nitride (SiNH), silicon oxycarbide (SiOC), silicon oxide (SiO 2 ), aluminum The gas barrier property according to claim 1, which is an oxide, nitride, oxynitride, oxycarbide or oxynitride carbide containing at least one selected from the group consisting of silicate (SiAlO) and silicon oxynitride carbide (SiONC). the film.
  3.  前記ナノ粒子が、Si、Ti、Al、Zr、Zn、Ba、Sr、Ca、Mg、V、Cr、Mo、Li、およびMnからなる群から選択される少なくとも一種の元素を含有する酸化物および窒化物からなる群から選択される少なくともいずれか一種であって、平均粒子径が球相当径で5~100nmである請求項1または2に記載のガスバリア性フィルム。 An oxide containing at least one element selected from the group consisting of Si, Ti, Al, Zr, Zn, Ba, Sr, Ca, Mg, V, Cr, Mo, Li, and Mn; 3. The gas barrier film according to claim 1, wherein the gas barrier film is at least one selected from the group consisting of nitrides and has an average particle diameter of 5 to 100 nm in terms of a sphere equivalent diameter.
  4.  前記ナノ粒子が、Si、TiO、Al、ZrO、ZnO、BaO、SrO、CaO、MgO、VO、CrO、MoO、およびLiMnOからなる群から選択される少なくとも一種を含有する平均粒子径が球相当径で5~100nmのナノ粒子である請求項1~3のいずれか一項に記載のガスバリア性フィルム。 The nanoparticles are at least one selected from the group consisting of Si 3 N 4 , TiO 2 , Al 2 O 3 , ZrO 2 , ZnO, BaO, SrO, CaO, MgO, VO, CrO, MoO 2 , and LiMnO 2. The gas barrier film according to any one of claims 1 to 3, which is a nanoparticle having an average particle diameter of 5 to 100 nm in terms of a sphere equivalent diameter.
  5.  基材(支持体)の少なくとも一方の面に蒸着法により第1のバリア層(第一無機層)を形成する工程と、
     前記第一無機層上に金属酸化物および金属窒化物の少なくともいずれか一種類のナノ粒子を含有するポリシラザン含有塗布液を塗布、乾燥させることによりポリシラザン塗布膜を形成する工程と、
     前記ポリシラザン塗布膜を波長200nm以下の真空紫外光の照射により改質する工程と、
    を有するガスバリア性フィルムの製造方法。
    Forming a first barrier layer (first inorganic layer) by vapor deposition on at least one surface of a substrate (support);
    Applying a polysilazane-containing coating solution containing at least any one kind of metal oxide and metal nitride on the first inorganic layer, and forming a polysilazane coating film by drying;
    Modifying the polysilazane coating film by irradiation with vacuum ultraviolet light having a wavelength of 200 nm or less;
    The manufacturing method of the gas-barrier film which has this.
  6.  請求項1~4のいずれか一項に記載のガスバリア性フィルム、または請求項5に記載の方法によって製造されたガスバリア性フィルムを有する電子デバイス。 An electronic device having the gas barrier film according to any one of claims 1 to 4 or the gas barrier film produced by the method according to claim 5.
PCT/JP2014/061624 2013-05-01 2014-04-24 Gas barrier film and method for producing same WO2014178332A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015514827A JPWO2014178332A1 (en) 2013-05-01 2014-04-24 Gas barrier film and method for producing the same
US14/888,332 US20160059261A1 (en) 2013-05-01 2014-04-24 Gas barrier film and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013096587 2013-05-01
JP2013-096587 2013-05-01

Publications (1)

Publication Number Publication Date
WO2014178332A1 true WO2014178332A1 (en) 2014-11-06

Family

ID=51843464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061624 WO2014178332A1 (en) 2013-05-01 2014-04-24 Gas barrier film and method for producing same

Country Status (3)

Country Link
US (1) US20160059261A1 (en)
JP (1) JPWO2014178332A1 (en)
WO (1) WO2014178332A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115510A1 (en) * 2014-01-31 2015-08-06 コニカミノルタ株式会社 Gas-barrier film and method for manufacturing same
CN107531014A (en) * 2015-04-22 2018-01-02 琳得科株式会社 Gas barrier film, electronic device part and electronic device
WO2018230525A1 (en) * 2017-06-14 2018-12-20 パナソニックIpマネジメント株式会社 Display device and method for producing display device
JP2021504185A (en) * 2017-11-28 2021-02-15 エルジー・ケム・リミテッド Barrier film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016106846A1 (en) 2016-04-13 2017-10-19 Osram Oled Gmbh Multilayer encapsulation, encapsulation process and optoelectronic device
US12074030B2 (en) * 2018-05-08 2024-08-27 Sony Semiconductor Solutions Corporation Etching method of oxide semiconductor film, oxide semiconductor workpiece, and electronic device
CN113053915A (en) * 2021-03-08 2021-06-29 武汉华星光电半导体显示技术有限公司 Display panel and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067186A1 (en) * 2010-11-19 2012-05-24 コニカミノルタホールディングス株式会社 Manufacturing method for gas barrier film, and gas barrier film
JP2013022799A (en) * 2011-07-20 2013-02-04 Konica Minolta Holdings Inc Gas barrier film, and method of manufacturing the gas barrier film
JP2013052561A (en) * 2011-09-02 2013-03-21 Konica Minolta Advanced Layers Inc Gas barrier film and method for manufacturing gas barrier film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747623A (en) * 1994-10-14 1998-05-05 Tonen Corporation Method and composition for forming ceramics and article coated with the ceramics
DE102005034817A1 (en) * 2005-07-26 2007-02-01 Clariant International Limited Process for producing a thin vitreous coating on substrates to reduce gas permeation
KR101687049B1 (en) * 2009-07-17 2016-12-15 미쓰이 가가쿠 가부시키가이샤 Multilayered material and method of producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067186A1 (en) * 2010-11-19 2012-05-24 コニカミノルタホールディングス株式会社 Manufacturing method for gas barrier film, and gas barrier film
JP2013022799A (en) * 2011-07-20 2013-02-04 Konica Minolta Holdings Inc Gas barrier film, and method of manufacturing the gas barrier film
JP2013052561A (en) * 2011-09-02 2013-03-21 Konica Minolta Advanced Layers Inc Gas barrier film and method for manufacturing gas barrier film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115510A1 (en) * 2014-01-31 2015-08-06 コニカミノルタ株式会社 Gas-barrier film and method for manufacturing same
CN107531014A (en) * 2015-04-22 2018-01-02 琳得科株式会社 Gas barrier film, electronic device part and electronic device
WO2018230525A1 (en) * 2017-06-14 2018-12-20 パナソニックIpマネジメント株式会社 Display device and method for producing display device
JP2021504185A (en) * 2017-11-28 2021-02-15 エルジー・ケム・リミテッド Barrier film
US11458703B2 (en) 2017-11-28 2022-10-04 Lg Chem, Ltd. Barrier film
JP7252228B2 (en) 2017-11-28 2023-04-04 エルジー・ケム・リミテッド barrier film

Also Published As

Publication number Publication date
JPWO2014178332A1 (en) 2017-02-23
US20160059261A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
WO2014178332A1 (en) Gas barrier film and method for producing same
JP5786940B2 (en) Gas barrier film and method for producing the same
WO2014119750A1 (en) Gas barrier film
JP6252493B2 (en) Gas barrier film
WO2015002156A1 (en) Gas-barrier film and method for producing same, and electronic device using same
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
JP6398986B2 (en) Gas barrier film
JP6319316B2 (en) Method for producing gas barrier film
WO2016043141A1 (en) Gas barrier film
WO2015182623A1 (en) Gas barrier film and electronic device using same
JP6617701B2 (en) Gas barrier film and method for producing the same
WO2014119754A1 (en) Gas barrier film, method for producing same, and electronic device using same
WO2017104332A1 (en) Gas barrier film
JP2014141055A (en) Gas barrier film
WO2015190572A1 (en) Gas barrier film laminate and electronic component employing same
JPWO2015083706A1 (en) Gas barrier film and method for producing the same
JP6295864B2 (en) Gas barrier film, method for producing the same, and electronic device using the same
WO2015029732A1 (en) Gas barrier film and process for manufacturing gas barrier film
WO2015146886A1 (en) Gas barrier film, method for manufacturing same, and electronic device using same
WO2015029795A1 (en) Method for producing gas barrier film
JPWO2015146886A6 (en) Gas barrier film, method for producing the same, and electronic device using the same
WO2014125877A1 (en) Gas barrier film
JP6295865B2 (en) Gas barrier film
WO2014188981A1 (en) Gas barrier film
JP2015047790A (en) Gas barrier film and electronic device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14792078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015514827

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14888332

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14792078

Country of ref document: EP

Kind code of ref document: A1