WO2014163079A1 - ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体 - Google Patents
ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体 Download PDFInfo
- Publication number
- WO2014163079A1 WO2014163079A1 PCT/JP2014/059641 JP2014059641W WO2014163079A1 WO 2014163079 A1 WO2014163079 A1 WO 2014163079A1 JP 2014059641 W JP2014059641 W JP 2014059641W WO 2014163079 A1 WO2014163079 A1 WO 2014163079A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particle powder
- ferrite particle
- resin composition
- ferrite
- bonded
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0001—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
- C01G49/0036—Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2505/00—Use of metals, their alloys or their compounds, as filler
- B29K2505/08—Transition metals
- B29K2505/12—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/42—Magnetic properties
Definitions
- the present invention relates to a ferrite particle powder for bonded magnet and a resin composition for bonded magnet that can obtain a bonded magnet molded body having a good magnetic force and magnetic force waveform by injection molding, and the ferrite particle powder and the composition
- the present invention relates to a bonded magnet molded body using.
- bond magnets have advantages such as light weight, good dimensional accuracy, and easy mass production of complex shapes compared to sintered magnets, so for toys, office equipment, acoustic equipment, and motors. It is widely used for various applications such as.
- rare earth magnet powders and ferrite particle powders typified by Nd—Fe—B are known.
- rare earth magnet powder has high magnetic properties, it is also expensive and has limited uses.
- ferrite particle powder is inferior in terms of magnetic properties as compared with rare earth magnet powder, but it is inexpensive and chemically stable, so it is used in a wide range of applications.
- Bond magnets are generally manufactured by kneading a rubber or plastics material and magnetic powder and then molding them in a magnetic field or by mechanical means.
- the bonded magnet molded body obtained by injection molding or the like is required to maximize the magnetic potential inherent in the filled magnetplumbite type ferrite particle powder. That is, it is possible to realize a high magnetic force and a complex multipolar waveform by having a feature that the ferrite particles are easily oriented with respect to the external magnetic field.
- multi-pole magnetization is often performed when processing into large and small complicated shapes by injection molding. Therefore, in order to satisfy the required multipolar magnetic force waveform and the required magnetic force, high orientation of the ferrite powder during the flow of the resin composition is strongly required.
- the magnet roll it is indispensable to reduce the diameter of the magnet roll as the apparatus is miniaturized. However, it is difficult to secure a high magnetic force by reducing the volume of the magnet due to the reduction in diameter. Increasing the content of the ferrite particle powder increases the magnetic potential, but it is difficult to secure a viscosity suitable for the orientation of the ferrite particle powder. It is also difficult to ensure the strength required for the magnet roll by increasing the ferrite content.
- the ferrite particle powder used for the bond magnet and the resin composition for the bond magnet made of ferrite particles and an organic binder are also required to satisfy the above requirements.
- a method for producing ferrite particle powder (Patent Document 1), a method for controlling the particle size distribution of ferrite particle powder (Patent Document 2), an average particle diameter of 1.50 ⁇ m or more with an alkaline earth metal as a constituent, and a melt flow value
- a method of using a ferrite magnetic powder of 91 g / 10 min or more to form a bonded magnet (Patent Document 3), an average particle diameter of 2.5 ⁇ m or less, a specific surface area of 1.25 m 2 / g or more, and then annealing.
- the average particle diameter measured by a dry air dispersion laser diffraction method is set to Ra ( ⁇ m
- the specific surface area diameter measured by the air permeation method is Da ( ⁇ m)
- a method of controlling Ra ⁇ 2.5 ⁇ m and Ra-Da ⁇ 0.5 ⁇ m (Patent Document 4)
- chloride saturation Ferrite fired at a temperature of 1050 ° C. to 1300 ° C. under vapor pressure is mixed with fine ferrite powder having a small particle size, and annealed at a temperature of 800 to 1100 ° C.
- a method for obtaining a ferrite having an energy product of 2.0 MGOe or more with a low decrease in coercive force is also known.
- the ferrite particle powder or the bonded magnet molded product using the resin composition for bonded magnets described in Patent Documents 1 to 5 is excellent in all of high orientation, high magnetic force, and mechanical strength. It's hard to say.
- the present invention is a ferrite magnet powder powder for bonded magnets, characterized in that the crystallite size in the orientation state in XRD measurement is 500 nm or more and the average particle diameter in the Fischer method is 1.30 ⁇ m or more. 1).
- the present invention is the ferrite particle powder for bonded magnet according to claim 1, wherein the mechanical orientation ratio in EVA kneading-roll orientation evaluation is 0.84 or more (Invention 2).
- the present invention is the ferrite particle powder for bonded magnets according to the present invention 1 or 2, which is a magnetoplumbite type ferrite particle powder (Invention 3).
- the present invention is characterized in that the ferrite powder for bonded magnets according to any one of the present inventions 1 to 3 is contained in an amount of 83 to 93% by weight and an organic binder component is contained in an amount of 7 to 17% by weight. It is a resin composition for bonded magnets (Invention 4).
- the present invention provides a molded article characterized by using any one of the ferrite particle powders for bonded magnets according to any one of the present inventions 1 to 3 or the resin composition for bonded magnets according to the present invention 4. There is (Invention 5).
- the present invention is the molded body according to the present invention 4, wherein the molded body is obtained by injection molding. (Invention 6).
- the ferrite particle powder for bonded magnets according to the present invention has powder characteristics in which the crystallite size in the orientation state in XRD measurement is 500 nm or more, and the average particle diameter in the Fischer method is controlled to 1.30 ⁇ m or more.
- the kneading compound containing the powder is injection-molded, it is a magnetic powder having high orientation and high magnetic force, and is suitable as a magnetic powder for a bond magnet.
- high orientation means that, at the same ferrite content, the saturation magnetic flux density (4 ⁇ Is) is high and the residual magnetic flux density (Br) is also high, and only the orientation rate (Br / 4 ⁇ Is) is high. Different. Even if the orientation ratio is the same, if the saturation magnetic flux density (4 ⁇ Is) itself is low, the residual magnetic flux density (Br) is also low, and the high orientation is not achieved.
- the resin composition for bonded magnets according to the present invention is suitable as a resin composition for bonded magnets because a molded article having excellent mechanical strength and magnetic properties can be obtained.
- the ferrite particle powder for bonded magnet according to the present invention (hereinafter referred to as “ferrite particle powder”) will be described.
- the composition of the ferrite particle powder according to the present invention is not particularly limited as long as it is a magnetoplumbite type ferrite, and may be either Sr-based ferrite particle powder or Ba-based ferrite particle powder. Moreover, you may contain dissimilar elements, such as La, Nd, Pr, Co, Zn.
- the particle shape of the ferrite particle powder according to the present invention is a plate shape, more preferably a substantially hexagonal plate shape.
- the crystallite size at the time of orientation of the ferrite particle powder according to the present invention is 500 nm or more. If it is less than 500 nm, the crystallinity is low, and the mechanical orientation rate of the ferrite particle powder in EVA kneading-roll orientation evaluation is also low. More preferably, it is 700 to 2000 nm, and still more preferably 800 to 1800 nm.
- the mechanical orientation ratio of the ferrite particle powder in the EVA kneading-roll orientation evaluation according to the present invention is preferably 0.84 or more.
- the orientation ratio is lower than 0.84, the ferrite particles are not highly oriented in the resin during injection molding, which is not preferable.
- it is 0.85 or more.
- the upper limit of the mechanical orientation rate is 1.
- the average particle size of the ferrite particle powder according to the present invention is 1.30 ⁇ m or more.
- a preferable average particle diameter is 1.40 ⁇ m or more, and more preferably 1.50 ⁇ m or more.
- the average particle size of the ferrite particle powder is usually 4.00 ⁇ m or less.
- the BET specific surface area value of the ferrite particle powder according to the present invention is preferably 1.5 to 2.5 m 2 / g.
- the average thickness of the ferrite particle powder according to the present invention is preferably 0.2 to 1.0 ⁇ m as observed with a scanning electron microscope. When the average thickness is outside the above range, it is difficult to obtain a bonded magnet having high magnetic characteristics because high filling cannot be performed when forming a bonded magnet.
- the thickness is preferably 0.3 to 1.0 ⁇ m, more preferably 0.4 to 0.7 ⁇ m.
- the plate ratio (average plate diameter / thickness) of the ferrite particle powder according to the present invention is preferably 2.0 to 7.0 as observed with a scanning electron microscope. More preferably, it is 2.0 to 5.0.
- the resin composition containing the ferrite particle powder can flow in the flow direction in parallel with the orientation plane.
- the saturation magnetization value ⁇ s of the ferrite particle powder according to the present invention is preferably 65.0 to 73.0 Am 2 / kg (65.0 to 73.0 emu / g), and the coercive force Hc is 206.9 to 279 kA / m ( 2600 to 3500 Oe), and Br is preferably 160 to 200 mT (1600 to 2000 G).
- the ferrite particle powder according to the present invention is obtained by blending and mixing raw material powders at a predetermined blending ratio, molding the resulting mixture with a roller compactor, and molding the resulting molded product in the air at a temperature range of 900 to 1250 ° C. After calcination with, pulverization using a vibration mill, washing with water, followed by annealing in the atmosphere at a temperature range of 700 to 1100 ° C.
- the raw material powder may be appropriately selected from oxide powders, hydroxide powders, carbonate powders, nitrate powders, sulfate powders, chloride powders and the like of various metals that form magnetoplumbite ferrite.
- the particle size is preferably 2.0 ⁇ m or less.
- a flux to the raw material mixed powder and fire it.
- various fluxes can be used, for example, SrCl 2 ⁇ 2H 2 O, CaCl 2 ⁇ 2H 2 O, MgCl 2 , KCl, NaCl, BaCl 2 ⁇ 2H 2 O and Na 2 B 4 O 7. It is.
- the addition amount is preferably 0.1 to 10 parts by weight per 100 parts by weight of the raw material mixed powder. More preferred is 0.1 to 8.0 parts by weight.
- Bi 2 O 3 may be added to and mixed with the raw material mixed powder or the pulverized powder after firing.
- large particles and small particles may be mixed from the viewpoint of controlling the particle size distribution.
- the raw material mixture was pressed between two rolls with a screw and compressed and granulated.
- the compression pressure of the pressure roll is preferably 70 kg / cm 2 or more, more preferably 80 kg / cm 2 or more.
- the ferritization reaction is a solid phase reaction, and the closer the distance between the raw material Fe 2 O 3 and SrCO 3 , the better the reactivity and the higher the diffraction peak intensity in XRD. Further, since the flux becomes a binder even under the same compression pressure conditions, the bulk specific gravity of the granulated product increases as the amount of the flux added increases, which is preferable for the ferritization reaction. On the other hand, if the amount of flux added is excessive or the combination or ratio of the flux is not optimal, the crystallinity tends to decrease. A small amount of water may be added as a binder component when compressing and granulating.
- a vibration mill for the pulverization after calcining in the temperature range of 900 to 1250 ° C. and then pulverizing and annealing heat treatment in the temperature range of 700 to 1100 ° C. .
- a vibration mill for pulverization at this time, a ferrite particle powder having the desired characteristics of the present invention can be obtained.
- the ratio of the ferrite particle powder in the resin composition for bonded magnets is 83 to 93 parts by weight, and the total amount of the organic binder component and the silane coupling agent component is 17 to 7 parts by weight.
- the organic binder is not particularly limited as long as it is used in conventional bonded magnets.
- Rubber, vinyl chloride resin, ethylene-vinyl acetate copolymer resin, ethylene-ethyl acrylate copolymer resin, PPS resin, polyamide ( Nylon) resin, polyamide elastomer, polymerized fatty acid-based polyamide and the like can be selected and used depending on the application, but when priority is given to the strength and rigidity of the molded body, a polyamide resin is suitable.
- well-known mold release agents such as a metal fatty acid and a fatty acid amide, can be added as needed.
- silane coupling agent of the present invention those having any one of a vinyl group, an epoxy group, an amino group, a methacryl group, and a mercapto group as a functional group, and a methoxy group or an ethoxy group can be used.
- a vinyl group, an epoxy group, an amino group, a methacryl group, and a mercapto group as a functional group
- a methoxy group or an ethoxy group can be used as a vinyl group, an epoxy group, an amino group, a methacryl group, and a mercapto group as a functional group, and a methoxy group or an ethoxy group.
- the residual magnetic flux density Br of the resin composition for bonded magnets according to the present invention is preferably 230 mT (2300 G) or more, more preferably 235 mT (2350 G) or more in a magnetic measurement method described later.
- the coercive force iHc is preferably 206.9 to 278.5 kA / m (2600 to 3500 Oe), more preferably 214.9 to 258.6 kA / m (2700 to 3250 Oe).
- the maximum energy product BHmax is preferably 10.3 kJ / m 3 (1.30 MGOe) or more, more preferably 10.7 kJ / m 3 (1.35 MGOe) or more.
- the resin composition for bonded magnets according to the present invention can be obtained by a known method for producing a resin composition for bonded magnets.
- a silane coupling agent or the like is added to the ferrite particle powder according to the present invention and mixed uniformly. It is obtained by uniformly mixing with an organic binder component, then melt-kneading using a kneading extruder or the like, and pulverizing or cutting the kneaded product into a granular or pellet form.
- the addition amount of the silane coupling agent is 0.15 to 3.5 parts by weight, preferably 0.2 to 3.0 parts by weight, with respect to 100 parts by weight of the ferrite particle powder according to the present invention. .
- Ferrite particle powder 162.5 g (100 parts by weight), EVA (ethylene-vinyl acetate copolymer resin) 17.7 g (10.9 parts by weight), zinc stearate (Sigma Aldrich Co.) 0.35 g (0.22 weight) Part) was mixed, and the mixture was kneaded with a plast mill (ME-5HP type, manufactured by Toyo Seiki) at 80 ° C. for 20 minutes. After kneading, the kneaded product taken out from the plast mill is heated to 60 to 63 ° C. (especially 62 ° C.) with a biaxial roll (Nishimura Koki No. 88-43) to a thickness of 1.5 to 2.0 mm (especially 2.0 mm).
- a plast mill ME-5HP type, manufactured by Toyo Seiki
- Ferrite particle powder 162.5 g (100 parts by weight), EVA (ethylene-vinyl acetate copolymer resin) 17.7 g (10.9 parts by weight), zinc stearate (Sigma Aldrich Co.) 0.35 g (0.22 weight) Part) was mixed, and the mixture was kneaded at 80 ° C. for 20 minutes with a plast mill (ME-5HP type, manufactured by Toyo Seiki Co., Ltd.). After kneading, the kneaded product taken out from the plast mill is 1.5 to 2.0 mm (especially 2.0 mm) thick with a biaxial roll (Nishimura Koki No. 88-43) heated to 60 to 63 ° C. (especially 62 ° C.).
- Ferrite particle powder 162.5 g (100 parts by weight), EVA (ethylene-vinyl acetate copolymer resin) 17.7 g (10.9 parts by weight), zinc stearate (Sigma Aldrich Co.) 0.35 g (0.22 weight) Part) was mixed, and the mixture was kneaded at 80 ° C. for 20 minutes with a plast mill (ME-5HP type, manufactured by Toyo Seiki Co., Ltd.). After kneading, the kneaded product taken out from the plast mill is heated to 60 to 63 ° C. (especially 62 ° C.) with a biaxial roll (Nishimura Koki No. 88-43) to a thickness of 1.5 to 2.0 mm (especially 2.0 mm).
- test piece molded body for evaluating the injection magnetic force according to the present invention will be described.
- the test piece molded body was prepared by uniformly mixing the ferrite magnetic powder for bonded magnet and the organic binder component in advance and / or melt-kneading after mixing them, pulverizing or cutting into pellets, and as a resin composition for bonded magnet. In a molten state, it was injected into a cavity of a mold at 80 ° C. to obtain a test core having a diameter of 25 mm ⁇ and a thickness of 10.5 mm.
- the tensile strength measured in accordance with the ASTM D638 standard of the test piece molded body for evaluating the injection magnetic force according to the present invention is preferably 70 to 250 MPa.
- the bending strength measured according to the ASTM D790 standard of the test piece molded body for evaluating the injection magnetic force according to the present invention is preferably 30 to 100 MPa.
- the Izod impact strength measured according to the ASTM D256 standard of the test piece molded body for evaluation of injection magnetic force according to the present invention is preferably 5 kJ / m 3 or more, or is not broken.
- the ferrite particle powder is controlled so that the crystallite size in the orientation state in XRD measurement is 500 nm or more and the average particle diameter in the Fischer method is 1.30 ⁇ m or more, thereby containing the ferrite particle powder.
- the ferrite particle powder according to the present invention is injected into the cavity in the magnetic field by controlling the crystallite size to be 500 nm or more in the XRD evaluation and the average particle diameter in the Fisher method to be 1.30 ⁇ m or more.
- the orientation of the ferrite particles with respect to the external magnetic field is improved due to the particle shape in which the orientation plane can flow in parallel with the flow direction and the crystallinity is good.
- the resin composition for bonded magnets according to the present invention contains 83 wt% to 93 wt% of the above-described ferrite particle powder for bonded magnets and 7 wt% to 17 wt% of the organic binder component. It is estimated that the organic binder is uniform and ideally dispersed.
- a typical embodiment of the present invention is as follows.
- the crystallite size of the ferrite particle powder according to the present invention was measured using the TOPAS software of “Bruker AXS KK” (manufactured by Bruker AXS Co., Ltd.).
- the average particle size of the ferrite particle powder according to the present invention was measured using “Sub-Sieve Sizer Model 95” (manufactured by Fisher Scientific).
- the BET specific surface area of the ferrite particle powder according to the present invention was measured using a “fully automatic specific surface area meter Macsorb model-1201” (manufactured by Mountec Co., Ltd.).
- the compression density of the ferrite particle powder according to the present invention the density when the particle powder was compressed at a pressure of 1 t / cm 2 was adopted.
- the saturation magnetic flux density Br and the coercive force iHc of the ferrite particle powder are obtained by compressing the particle powder with a pressure of 1 t / cm 2 using a “DC magnetization characteristic automatic recording device 3257” (manufactured by Yokogawa Hokushin Electric Co., Ltd.). ) And measured in a magnetic field of 14 kOe.
- the melt mass flow rate (MFR) of the resin composition for bonded magnets was obtained by melting at 270 ° C. and measuring with a 10 kg load in accordance with JIS K7210.
- the molding density of the resin composition for bonded magnets was determined by using an electronic hydrometer EW-120SG (Co., Ltd.) as the core formed by melting the bonded magnet composition in a 25 mm ⁇ , 10.5 mm high mold. Measured by Yasuda Seiki Seisakusho).
- Tabletop molding magnetic properties (residual magnetic flux density Br, coercive force iHc, coercive force bHc, maximum energy product BHmax) of the resin composition for bonded magnets are as follows: As a molten state, the magnetic field was oriented at 9 kOe, and then measured using a “DC magnetization characteristic automatic recording device 3257” (manufactured by Yokogawa Hokushin Electric Co., Ltd.) in a magnetic field of 14 kOe.
- test core used for the magnetic measurement by injection molding was injected while applying a magnetic field of 260 ° C. and 4.0 kOe using an injection molding machine J20MII manufactured by Nippon Steel, Ltd., diameter 25.0 mm, thickness 10 A test core of 5 mm was obtained. The injection pressure at the time of test core injection molding was recorded, and the injection property was judged.
- the test piece used for the strength measurement was an injection molding machine J20MII manufactured by Nippon Steel Co., Ltd. to obtain a test piece molded body having a total length of 175 mm, a total width of 12.5 mm, and a thickness of 3.2 mm.
- the injection pressure at the time of the injection molding of the test piece was recorded, and the injection property was judged.
- Tensile strength was measured according to ASTM D638 standard. Test pieces were obtained using an injection molding machine J20MII manufactured by Nippon Steel Co., Ltd., and then measured using a computer measurement control type precision universal testing machine AG-1 manufactured by Shimadzu Corporation.
- Bending strength was measured according to ASTM D790 standard. Test pieces were obtained using an injection molding machine J20MII manufactured by Nippon Steel Co., Ltd., and then measured using a computer measurement control type precision universal testing machine AG-1 manufactured by Shimadzu Corporation.
- Izod impact strength was measured according to ASTM D256 standard. After obtaining a test piece using an injection molding machine J20MII manufactured by Nippon Steel Co., Ltd., Izod Impact Tester No. 1 manufactured by Yasuda Seiki Seisakusho Co., Ltd. 158.
- the addition amounts of SrCl 2 and Na 2 B 4 O 7 were 2.5% by weight and 0.25% by weight, respectively, with respect to the raw material mixed powder.
- the obtained granulated product was fired at 1150 ° C. in the atmosphere for 2 hours.
- the obtained fired product was roughly pulverized and then pulverized with a wet attritor for 30 minutes, washed with water, filtered and dried. Thereafter, a mixed solution of isopropyl alcohol and triethanolamine was added, and the mixture was further pulverized with a dry vibration mill for 30 minutes.
- Example 2 Ferrite particle powder was prepared in the same manner as in Example 1 except that the composition, the type of additive and the amount added were variously changed. The production conditions are shown in Table 1, and the properties of the obtained magnetic powder for bond ferrite are shown in Table 2.
- Comparative Examples 1 to 4 Comparative Examples 1 to 4 were obtained by changing the composition, type and amount of additives, compression pressure during granulation, etc., and using a dry attritor instead of a dry vibration mill to produce ferrite particle powder. did. The production conditions are shown in Table 1, and the properties of the obtained ferrite particles for bonded magnets are shown in Table 2.
- Example 3 ⁇ Manufacture of resin composition for bonded magnet> 25,000 g of the ferrite particle powder obtained in Example 1 was put in a Henschel mixer, 0.5 parts by weight of an aminoalkyl silane coupling agent was added to the ferrite, and mixed for 20 minutes until the relative viscosity was further increased. After adding 11.98 parts by weight of 1.60 12-nylon resin and 0.2 parts by weight of fatty acid amide, the mixture was further mixed for 30 minutes to prepare a resin composition for a bond magnet.
- the obtained mixture of the composition for bonded magnet is quantitatively fed to a biaxial kneader and kneaded at a temperature at which 12-nylon is melted.
- the kneaded material is taken out as a strand and taken out into a pellet size of 2 mm ⁇ ⁇ 3 mm.
- Table 3 shows the production method and characteristics of the resin composition for bonded magnets.
- Example 4 The resin composition for bonded magnets composed of the ferrite particle powder obtained in Example 2, 12-nylon resin, and silane coupling agent was changed in various amounts of 12-nylon resin, silane coupling agent, and release agent. It was prepared in the same manner as in Example 3. Table 3 shows the characteristics of the resin composition for bonded magnets.
- Comparative Examples 5 to 7 (Comparative object with Example 3) Resin compositions for bonded magnets comprising variously obtained ferrite particle powder, 12-nylon resin, and silane coupling agent were prepared in the same manner as in Example 3. Table 3 shows the characteristics of the resin composition for bonded magnets.
- Comparative Example 8 (Comparative object with Example 4) Resin compositions for bonded magnets comprising variously obtained ferrite particle powder, 12-nylon resin, and silane coupling agent were prepared in the same manner as in Example 4. Table 3 shows the characteristics of the resin composition for bonded magnets.
- Example 5 ⁇ Molding of test piece molding> After the bonded magnet resin composition obtained in Example 3 was dried at 100 ° C. for 3 hours, the bonded magnet resin composition was melted at 280 ° C. in an injection molding machine, and the injection time was 0.3 seconds to 80 ° C. A test piece molded body having a total length of 175 mm, a total width of 12.5 mm, and a thickness of 3.2 mm was prepared by injection molding into a set mold. Table 4 shows the injection properties and various properties of the test piece molded body.
- Example 6 A test piece molded body was prepared in the same manner as in Example 5 using the bonded magnet resin composition prepared in Example 4. Table 4 shows the injection properties and various properties of the test piece molded body.
- Comparative Examples 9 to 11 Test piece molded bodies were prepared in the same manner as in Example 5 using various resin compositions for bonded magnets. Table 4 shows the injection properties and various properties of the test piece molded body.
- Comparative Example 12 Test piece molded bodies were prepared in the same manner as in Example 6 using various resin compositions for bonded magnets. Table 4 shows the injection properties and various properties of the test piece molded body.
- the molded product obtained by injection molding the resin composition for bonded magnets according to the present invention has a residual magnetic flux density Br of 230 mT (2300 G) or higher, 4 ⁇ Is of 230 mT (2300 G) or higher, and Br / 4 ⁇ Is. Is 0.96 or more, the coercive force iHc is 206.9 to 278.5 kA / m (2600 to 3500 Oe), and the maximum energy product BHmax is 10.3 kJ / m 3 (1.30 MGOe) or more.
- the bonded magnet manufactured using the ferrite particle powder and / or the bonded magnet resin composition according to the present invention has high orientation, high magnetic force, bending strength, and excellent magnetic properties
- the bonded magnet, particularly ferrite particle powder for mag rolls and / Or suitable as a resin composition for bonded magnets is particularly ferrite particle powder for mag rolls and / Or suitable as a resin composition for bonded magnets.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
また、マグネットロールにおいては、装置の小型化に伴い、マグネットロールの小径化が必須になってきているが、小径化により磁石の体積が減ることで高磁力の確保が難しくなる。フェライト粒子粉末の含有率を上げることで磁力のポテンシャルは高くなるが、フェライト粒子粉末が配向するのに適した粘度の確保が難しくなる。またフェライト含有率を上げることでマグネットロールに要求される強度の確保も難しい。そのため要求磁力および要求強度を満たすためには、樹脂組成物の流動中におけるフェライト粒子粉末の高い配向性が強く要求されている。また、表面磁力の高磁力化とともに、マグネットロール表面の磁力均一性がコピー機、プリンター等から鮮明な画像を得る重要な要素技術として特に要求されているところである。
本発明に係るフェライト粒子粉末の組成は、特に限定されるものではなく、マグネトプランバイト型フェライトであればよく、Sr系フェライト粒子粉末、Ba系フェライト粒子粉末のいずれでもよい。また、La、Nd、Pr、Co、Zn等の異種元素を含有してもよい。
本発明においては、フェライト粒子粉末をXRD測定における配向状態の結晶子サイズが500nm以上であってフィッシャー法における平均粒子径が1.30μm以上に制御することで、当該フェライト粒子粉末を含有する樹脂組成物においてフェライト粒子粉末の配向に適した粘度が確保されるとともに、本発明のフェライト粒子粉末および/またはボンド磁石用樹脂組成物からなる成型体の配向性が優れることについては未だ明らかではないが、本発明者は次のように推定している。
<フェライト粒子粉末の製造>
粉末状のα-Fe2O3を100000gと、SrCO3を15900g(FeとSrのモル比は2Fe:Sr=5.95:1)秤量して、湿式アトライターで30分混合した後、濾過、乾燥した。得られた原料混合粉末にSrCl2及びNa2B4O7の水溶液をそれぞれ添加してよく混合した後、混合物をローラコンパクターで90Kg/cm2の条件下で圧縮造粒した。この時、SrCl2及びNa2B4O7の添加量は、上記原料混合粉末に対してそれぞれ2.5重量%、0.25重量%とした。得られた造粒物を大気中1150℃で2時間焼成した。得られた焼成物を粗粉砕した後に、湿式アトライターで30分粉砕し、水洗、濾過、乾燥した。その後、イソプロピルアルコール及びトリエタノールアミンの混合溶液を添加して、更に乾式振動ミルで30分間粉砕した。この時、イソプロピルアルコール及びトリエタノールアミンの添加量は、上記湿式粉砕乾燥品に対してそれぞれ0.2重量%、0.1重量%の混合溶液を添加して、次いで、得られた粉砕物を大気中970℃で1.5時間熱処理した。製造条件を表1に、得られたボンドフェライト用磁性粉の特性を表2に示す。
組成、添加剤の種類及び添加量などを種々変化させた以外は、前記実施例1と同様にしてフェライト粒子粉末を作成した。
製造条件を表1に、得られたボンドフェライト用磁性粉の特性を表2に示す。
組成、添加剤の種類及び添加量、造粒の際の圧縮圧力などを種々変化させ、乾式振動ミルの変わりに乾式アトライターを使用してフェライト粒子粉末を作成したものを比較例1~4とした。製造条件を表1に、得られたボンド磁石用フェライト粒子粉末の特性を表2に示す。
<ボンド磁石用樹脂組成物の製造>
実施例1で得られたフェライト粒子粉末をヘンシェルミキサーに25000g入れ、アミノアルキル系シランカップリング剤をフェライトに対して0.5重量部添加して20分間均一になるまで混合し、さらに、相対粘度1.60の12-ナイロン樹脂を11.98重量部、脂肪酸アマイドを0.2重量部を投入した後、さらに30分間混合してボンド磁石用樹脂組成物の混合物を用意した。
ボンド磁石用樹脂組成物の製法と特性を表3に示す。
実施例2で得られたフェライト粒子粉末と12-ナイロン樹脂、シランカップリング剤からなるボンド磁石用樹脂組成物を12-ナイロン樹脂、シランカップリング剤、離型剤の添加量を種々変化させて前記実施例3と同様にして作成した。
ボンド磁石用樹脂組成物の特性を表3に示す。
種々得られたフェライト粒子粉末と12-ナイロン樹脂、シランカップリング剤からなるボンド磁石用樹脂組成物を前記実施例3と同様にして作成した。
ボンド磁石用樹脂組成物の特性を表3に示す。
種々得られたフェライト粒子粉末と12-ナイロン樹脂、シランカップリング剤からなるボンド磁石用樹脂組成物を前記実施例4と同様にして作成した。
ボンド磁石用樹脂組成物の特性を表3に示す。
<試験片成形体の成形>
実施例3で得られたボンド磁石用樹脂組成物を100℃で3時間乾燥した後、射出成型機においてボンド磁石用樹脂組成物を280℃で溶融し、射出時間0.3秒で80℃に設定された金型に射出成形して、全長175mm、全幅12.5mm、厚み3.2mmの試験片成形体を用意した。試験片成形体の射出性及び諸特性を表4に示す。
実施例4で作成したボンド磁石用樹脂組成物を、実施例5と同様にして試験片成形体を作成した。試験片成形体の射出性及び諸特性を表4に示す。
種々のボンド磁石用樹脂組成物を用いて、前記実施例5と同様にして試験片成形体を作成した。試験片成形体の射出性及び諸特性を表4に示す。
種々のボンド磁石用樹脂組成物を用いて、前記実施例6と同様にして試験片成形体を作成した。試験片成形体の射出性及び諸特性を表4に示す。
Claims (6)
- XRD測定における配向状態の結晶子サイズが500nm以上であってフィッシャー法における平均粒子径が1.30μm以上であることを特徴とするボンド磁石用フェライト粒子粉末。
- EVA混練-ロール配向評価における機械配向率が0.84以上である請求項1記載のボンド磁石用フェライト粒子粉末。
- マグネトプランバイト型フェライト粒子粉末である請求項1又は2記載のボンド磁石用フェライト粒子粉末。
- 請求項1に記載のボンド磁石用フェライト粒子粉末を83重量%から93重量%含有し、有機バインダー成分を7重量%から17重量%含有することを特徴とするボンド磁石用樹脂組成物。
- 請求項1に記載のボンド磁石用フェライト粒子粉末または請求項4記載のボンド磁石用樹脂組成物を用いたことを特徴とする成型体。
- 成型体が射出成型で得られることを特徴とする請求項5記載の成型体。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/781,777 US11820055B2 (en) | 2013-04-03 | 2014-04-01 | Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same |
EP14778820.2A EP2983178B1 (en) | 2013-04-03 | 2014-04-01 | Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using same |
CN201480017916.6A CN105122389B (zh) | 2013-04-03 | 2014-04-01 | 粘结磁体用铁氧体颗粒粉末、粘结磁体用树脂组合物以及使用它们的成型体 |
JP2015510096A JP6459963B2 (ja) | 2013-04-03 | 2014-04-01 | ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体 |
KR1020157025888A KR102231072B1 (ko) | 2013-04-03 | 2014-04-01 | 본드 자석용 페라이트 입자 분말, 본드 자석용 수지 조성물 및 그것들을 사용한 성형체 |
US18/379,809 US20240033979A1 (en) | 2013-04-03 | 2023-10-13 | Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013078073 | 2013-04-03 | ||
JP2013-078073 | 2013-04-03 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/781,777 A-371-Of-International US11820055B2 (en) | 2013-04-03 | 2014-04-01 | Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same |
US18/379,809 Continuation US20240033979A1 (en) | 2013-04-03 | 2023-10-13 | Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014163079A1 true WO2014163079A1 (ja) | 2014-10-09 |
Family
ID=51658374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/059641 WO2014163079A1 (ja) | 2013-04-03 | 2014-04-01 | ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11820055B2 (ja) |
EP (1) | EP2983178B1 (ja) |
JP (1) | JP6459963B2 (ja) |
KR (1) | KR102231072B1 (ja) |
CN (1) | CN105122389B (ja) |
WO (1) | WO2014163079A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170106315A (ko) * | 2015-01-22 | 2017-09-20 | 파우더테크 컴퍼니 리미티드 | 육각판상 페라이트 분말 및 그 제조 방법, 그 페라이트 분말을 이용한 수지 조성물 및 성형체 |
JP2017183613A (ja) * | 2016-03-31 | 2017-10-05 | パウダーテック株式会社 | フェライト粉、樹脂組成物および成形体 |
WO2020158554A1 (ja) * | 2019-01-31 | 2020-08-06 | Dowaエレクトロニクス株式会社 | マグネトプランバイト型六方晶フェライト磁性粉末およびその製造方法 |
JP7580961B2 (ja) | 2020-07-28 | 2024-11-12 | Dowaエレクトロニクス株式会社 | マグネトプランバイト型六方晶フェライト磁性粉の製造方法及びマグネトプランバイト型六方晶フェライト磁性粉 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014163079A1 (ja) * | 2013-04-03 | 2014-10-09 | 戸田工業株式会社 | ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体 |
WO2015050119A1 (ja) | 2013-10-02 | 2015-04-09 | 戸田工業株式会社 | ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体 |
KR102394256B1 (ko) * | 2014-10-01 | 2022-05-04 | 도다 고교 가부시끼가이샤 | 본드 자석용 페라이트 입자 분말, 본드 자석용 수지 조성물 및 그것들을 사용한 성형체 |
EP3604227A4 (en) | 2017-03-31 | 2021-01-13 | Powdertech Co., Ltd. | FERRITE POWDER, RESIN COMPOSITION AND MOLDED OBJECT |
CN108364742B (zh) * | 2017-12-25 | 2020-06-16 | 日照亿鑫电子材料有限公司 | 一种微晶铁氧体磁芯材料及其在大容量高频变压器中的应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55145303A (en) | 1979-04-28 | 1980-11-12 | Toda Kogyo Corp | Manufacture of hexagonal plate shaped magnetplumbite type ferrite particle powder |
JPH03218606A (ja) | 1990-01-24 | 1991-09-26 | Bridgestone Corp | 合成樹脂磁石用組成物 |
JPH08115809A (ja) * | 1994-10-14 | 1996-05-07 | Tdk Corp | 無機ボンド磁石 |
JPH09106904A (ja) * | 1995-10-11 | 1997-04-22 | Nippon Bene Kogyo Kk | ボンド磁石用フエライト粉末およびこれを用いたボンド磁石 |
JP2000223307A (ja) * | 1997-09-19 | 2000-08-11 | Tdk Corp | 酸化物磁性材料、フェライト粒子、ボンディット磁石、焼結磁石、これらの製造方法および磁気記録媒体 |
JP2002029829A (ja) * | 2000-05-11 | 2002-01-29 | National Institute Of Advanced Industrial & Technology | マグネトプランバイト型フェライト焼結磁石の製造方法 |
JP2005268729A (ja) | 2004-03-22 | 2005-09-29 | Dowa Mining Co Ltd | ボンド磁石用フェライト磁性粉 |
JP2007214510A (ja) | 2006-02-13 | 2007-08-23 | Dowa Holdings Co Ltd | ボンド磁石用フェライト磁性粉およびその製造方法、並びにボンド磁石 |
JP2010263201A (ja) | 2009-04-09 | 2010-11-18 | Dowa Electronics Materials Co Ltd | ボンド磁石用フェライト粉末およびその製造方法並びにこれを用いたボンド磁石 |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3036008A (en) | 1956-12-24 | 1962-05-22 | Magneco Electronics Inc | Permanent magnet ferrite |
US4042516A (en) * | 1974-03-01 | 1977-08-16 | Sakai Chemical Industry Co., Ltd. | Bonded magnets containing single crystalline ferrite particles |
JPS5820890B2 (ja) * | 1974-03-01 | 1983-04-26 | サカイカガクコウギヨウ カブシキガイシヤ | フエライト粒子の製造法 |
JPS61191004A (ja) | 1985-02-20 | 1986-08-25 | Hitachi Metals Ltd | 複合磁石およびその製造方法 |
JPH0797241B2 (ja) | 1986-05-22 | 1995-10-18 | 三田工業株式会社 | 電子写真用トナ−の製法 |
JPS6355122A (ja) | 1986-08-22 | 1988-03-09 | Toshiba Glass Co Ltd | 磁性粉末 |
DE4041962A1 (de) | 1990-12-24 | 1992-06-25 | Univ Schiller Jena | Polymergebundenes anisotropes magnetmaterial |
JP3208739B2 (ja) * | 1991-04-22 | 2001-09-17 | 戸田工業株式会社 | ボンド磁石用フェライト粒子粉末材料の製造法 |
JP3148311B2 (ja) | 1991-10-30 | 2001-03-19 | 戸田工業株式会社 | 磁性トナー用磁性粒子粉末 |
JPH05144622A (ja) | 1991-11-18 | 1993-06-11 | Kawasaki Steel Corp | ボンドマグネツト用コンパウンドの製造方法 |
JPH0742484B2 (ja) | 1992-02-03 | 1995-05-10 | 工業技術院長 | 異方性磁性粉の成形方法 |
JPH06163237A (ja) | 1992-11-26 | 1994-06-10 | Nippon Steel Corp | ソフトフェライト中間製品の再生利用法 |
JP3579436B2 (ja) * | 1993-06-16 | 2004-10-20 | チタン工業株式会社 | マグネトプランバイト型フェライト粉末及びその製造方法 |
US5599627A (en) | 1993-10-08 | 1997-02-04 | Toda Kogyo Corporation | Magnetic particles comprising magnetite core and process for producing the same |
JP2516176B2 (ja) | 1993-12-24 | 1996-07-10 | セイコーエプソン株式会社 | 樹脂結合型永久磁石の製造方法 |
JPH0837106A (ja) | 1994-05-19 | 1996-02-06 | Bridgestone Corp | ボンド磁石用磁性粉,ボンド磁石用組成物及びその製造方法 |
WO1997030782A1 (fr) * | 1996-02-20 | 1997-08-28 | Mikuni Corporation | Procede de production de materiau granulaire |
JP3440741B2 (ja) | 1997-03-04 | 2003-08-25 | 戸田工業株式会社 | 磁気カード用マグネトプランバイト型フェライト粒子粉末 |
WO1999016086A1 (fr) | 1997-09-19 | 1999-04-01 | Tdk Corporation | Corps d'oxyde magnetique, particules de ferrite, aimant agglomere, aimant fritte, procede de fabrication de ces materiaux, et support d'enregistrement magnetique |
JP4540076B2 (ja) | 1998-01-23 | 2010-09-08 | 日立金属株式会社 | ボンド磁石、コンパウンド、マグネットロール及びそれらに用いるフェライト粉末並びにその製造方法 |
US6537463B2 (en) | 1999-03-12 | 2003-03-25 | Hitachi Metals, Ltd. | Resin-bonded magnet, its product, and ferrite magnet powder and compound used therefor |
JP2000357606A (ja) | 1999-04-14 | 2000-12-26 | Hitachi Metals Ltd | 複合型等方性ボンド磁石およびそれを用いた回転機 |
JP2001028305A (ja) | 1999-07-14 | 2001-01-30 | Bridgestone Corp | 樹脂磁石用組成物及び樹脂磁石成形物 |
EP1090884B1 (en) | 1999-10-08 | 2011-01-19 | Hitachi Metals, Ltd. | Method of making ferrite material powder by spray pyrolysis process and method of producing ferrite magnet |
EP1134733A1 (en) | 2000-03-16 | 2001-09-19 | Toda Kogyo Corporation | Magnetic recording medium with a back layer which contains coated hematite particles |
US20020005603A1 (en) * | 2000-05-11 | 2002-01-17 | Mitsuharu Tabuchi | Process for producing magnetoplumbite-type ferrite sintered magnet |
JP3542319B2 (ja) | 2000-07-07 | 2004-07-14 | 昭栄化学工業株式会社 | 単結晶フェライト微粉末 |
CN1209416C (zh) | 2000-10-13 | 2005-07-06 | 株式会社普利斯通 | 合成树脂磁性体组合物以及成型树脂磁性体 |
JP4697366B2 (ja) * | 2000-12-07 | 2011-06-08 | 戸田工業株式会社 | ボンド磁石用ストロンチウムフェライト粒子粉末及び該ストロンチウムフェライト粒子粉末を用いたボンド磁石 |
KR100740027B1 (ko) | 2001-01-23 | 2007-07-18 | 토다 고교 가부시끼가이샤 | 흑색 자성 산화철 입자 및 자성 토너 |
JP4150881B2 (ja) | 2001-01-23 | 2008-09-17 | 戸田工業株式会社 | 黒色磁性酸化鉄粒子粉末 |
JP3997291B2 (ja) | 2002-01-16 | 2007-10-24 | Dowaエレクトロニクス株式会社 | 電子写真現像用キャリヤ |
US7094289B2 (en) | 2002-08-07 | 2006-08-22 | Shoei Chemical Inc. | Method for manufacturing highly-crystallized oxide powder |
US6872325B2 (en) | 2002-09-09 | 2005-03-29 | General Electric Company | Polymeric resin bonded magnets |
US7192628B2 (en) | 2003-05-01 | 2007-03-20 | Sandvik Innovations Llc | Magnetically interactive substrates |
BRPI0414278A (pt) | 2003-09-12 | 2006-11-07 | Neomax Co Ltd | ìmã de ferrita sinterizada |
EP1693355A1 (en) | 2003-12-09 | 2006-08-23 | TDK Corporation | Ferrite magnetic material and ferrite sintered magnet |
KR101375431B1 (ko) | 2006-03-10 | 2014-03-17 | 히타치 긴조쿠 가부시키가이샤 | 회전기, 본드 자석, 마그넷 롤 및 페라이트 소결 자석의 제조 방법 |
JP4877514B2 (ja) | 2006-03-30 | 2012-02-15 | Tdk株式会社 | フェライト焼結磁石の製造方法 |
KR101385869B1 (ko) | 2007-03-30 | 2014-04-17 | 도다 고교 가부시끼가이샤 | 본드 자석용 페라이트 입자 분말, 본드 자석용 수지 조성물및 이들을 이용한 성형체 |
EP1981004A1 (en) | 2007-04-12 | 2008-10-15 | First Data Corporation | Modular payment terminal equipment |
JP5578777B2 (ja) | 2007-09-28 | 2014-08-27 | Dowaエレクトロニクス株式会社 | ボンド磁石用フェライト粉末およびその製造方法、並びに、これを用いたボンド磁石 |
JP5267771B2 (ja) | 2008-01-24 | 2013-08-21 | 戸田工業株式会社 | ボンド磁石用マグネトプランバイト型フェライト粒子粉末及びその製造法、該マグネトプランバイト型フェライト粒子粉末を用いた樹脂組成物、ボンド磁石並びにマグネットロール |
JP5339332B2 (ja) * | 2008-02-29 | 2013-11-13 | 国立大学法人東北大学 | バリウムヘキサフェライトの超臨界微粒子合成法および生成微粒子 |
JP4685893B2 (ja) * | 2008-03-31 | 2011-05-18 | Tdk株式会社 | 焼結磁石の製造方法 |
JP4893680B2 (ja) | 2008-04-03 | 2012-03-07 | 戸田工業株式会社 | ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体 |
JP5393330B2 (ja) | 2008-08-04 | 2014-01-22 | キヤノン株式会社 | 磁性キャリア及び二成分系現像剤 |
US8404338B2 (en) | 2008-09-30 | 2013-03-26 | Sabic Innovative Plastics Ip B.V. | X-ray and/or metal detectable articles and method of making the same |
JP5360445B2 (ja) | 2012-03-30 | 2013-12-04 | 戸田工業株式会社 | ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体 |
WO2014163079A1 (ja) * | 2013-04-03 | 2014-10-09 | 戸田工業株式会社 | ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体 |
WO2015050119A1 (ja) * | 2013-10-02 | 2015-04-09 | 戸田工業株式会社 | ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体 |
KR102394256B1 (ko) * | 2014-10-01 | 2022-05-04 | 도다 고교 가부시끼가이샤 | 본드 자석용 페라이트 입자 분말, 본드 자석용 수지 조성물 및 그것들을 사용한 성형체 |
-
2014
- 2014-04-01 WO PCT/JP2014/059641 patent/WO2014163079A1/ja active Application Filing
- 2014-04-01 JP JP2015510096A patent/JP6459963B2/ja active Active
- 2014-04-01 CN CN201480017916.6A patent/CN105122389B/zh active Active
- 2014-04-01 KR KR1020157025888A patent/KR102231072B1/ko active IP Right Grant
- 2014-04-01 US US14/781,777 patent/US11820055B2/en active Active
- 2014-04-01 EP EP14778820.2A patent/EP2983178B1/en active Active
-
2023
- 2023-10-13 US US18/379,809 patent/US20240033979A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55145303A (en) | 1979-04-28 | 1980-11-12 | Toda Kogyo Corp | Manufacture of hexagonal plate shaped magnetplumbite type ferrite particle powder |
JPH03218606A (ja) | 1990-01-24 | 1991-09-26 | Bridgestone Corp | 合成樹脂磁石用組成物 |
JPH08115809A (ja) * | 1994-10-14 | 1996-05-07 | Tdk Corp | 無機ボンド磁石 |
JPH09106904A (ja) * | 1995-10-11 | 1997-04-22 | Nippon Bene Kogyo Kk | ボンド磁石用フエライト粉末およびこれを用いたボンド磁石 |
JP2000223307A (ja) * | 1997-09-19 | 2000-08-11 | Tdk Corp | 酸化物磁性材料、フェライト粒子、ボンディット磁石、焼結磁石、これらの製造方法および磁気記録媒体 |
JP2002029829A (ja) * | 2000-05-11 | 2002-01-29 | National Institute Of Advanced Industrial & Technology | マグネトプランバイト型フェライト焼結磁石の製造方法 |
JP2005268729A (ja) | 2004-03-22 | 2005-09-29 | Dowa Mining Co Ltd | ボンド磁石用フェライト磁性粉 |
JP2007214510A (ja) | 2006-02-13 | 2007-08-23 | Dowa Holdings Co Ltd | ボンド磁石用フェライト磁性粉およびその製造方法、並びにボンド磁石 |
JP2010263201A (ja) | 2009-04-09 | 2010-11-18 | Dowa Electronics Materials Co Ltd | ボンド磁石用フェライト粉末およびその製造方法並びにこれを用いたボンド磁石 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2983178A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170106315A (ko) * | 2015-01-22 | 2017-09-20 | 파우더테크 컴퍼니 리미티드 | 육각판상 페라이트 분말 및 그 제조 방법, 그 페라이트 분말을 이용한 수지 조성물 및 성형체 |
CN107406272A (zh) * | 2015-01-22 | 2017-11-28 | 保德科技股份有限公司 | 六方板状铁氧体粉及其制造方法、以及采用该铁氧体粉的树脂组合物及成形体 |
EP3248942A4 (en) * | 2015-01-22 | 2018-08-15 | Powdertech Co., Ltd. | Hexagonal plate-shaped ferrite powder, method for producing same, and resin composition and molded article using said ferrite powder |
CN107406272B (zh) * | 2015-01-22 | 2020-02-18 | 保德科技股份有限公司 | 六方板状铁氧体粉及其制造方法、以及采用该铁氧体粉的树脂组合物及成形体 |
KR102380236B1 (ko) * | 2015-01-22 | 2022-03-28 | 파우더테크 컴퍼니 리미티드 | 육각판상 페라이트 분말 및 그 제조 방법, 그 페라이트 분말을 이용한 수지 조성물 및 성형체 |
JP2017183613A (ja) * | 2016-03-31 | 2017-10-05 | パウダーテック株式会社 | フェライト粉、樹脂組成物および成形体 |
WO2020158554A1 (ja) * | 2019-01-31 | 2020-08-06 | Dowaエレクトロニクス株式会社 | マグネトプランバイト型六方晶フェライト磁性粉末およびその製造方法 |
JP2020123701A (ja) * | 2019-01-31 | 2020-08-13 | Dowaエレクトロニクス株式会社 | マグネトプランバイト型六方晶フェライト磁性粉末およびその製造方法 |
JP7262234B2 (ja) | 2019-01-31 | 2023-04-21 | Dowaエレクトロニクス株式会社 | マグネトプランバイト型六方晶フェライト磁性粉末およびその製造方法 |
JP7580961B2 (ja) | 2020-07-28 | 2024-11-12 | Dowaエレクトロニクス株式会社 | マグネトプランバイト型六方晶フェライト磁性粉の製造方法及びマグネトプランバイト型六方晶フェライト磁性粉 |
Also Published As
Publication number | Publication date |
---|---|
JP6459963B2 (ja) | 2019-01-30 |
US11820055B2 (en) | 2023-11-21 |
KR20150138200A (ko) | 2015-12-09 |
US20240033979A1 (en) | 2024-02-01 |
CN105122389B (zh) | 2019-09-27 |
JPWO2014163079A1 (ja) | 2017-02-16 |
EP2983178A1 (en) | 2016-02-10 |
KR102231072B1 (ko) | 2021-03-22 |
EP2983178B1 (en) | 2019-06-19 |
CN105122389A (zh) | 2015-12-02 |
EP2983178A4 (en) | 2016-10-26 |
US20160039128A1 (en) | 2016-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6459963B2 (ja) | ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体 | |
JP5393989B2 (ja) | ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体 | |
US11823823B2 (en) | Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same | |
CN106795006B (zh) | 粘结磁体用铁氧体颗粒粉末、粘结磁体用树脂组合物以及使用它们的成型体 | |
JP5360445B2 (ja) | ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体 | |
JP4379568B2 (ja) | ボンド磁石用マグネトプランバイト型フェライト粒子粉末、その製造法並びに該マグネトプランバイト型フェライト粒子粉末を用いたボンド磁石 | |
JP5267771B2 (ja) | ボンド磁石用マグネトプランバイト型フェライト粒子粉末及びその製造法、該マグネトプランバイト型フェライト粒子粉末を用いた樹脂組成物、ボンド磁石並びにマグネットロール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14778820 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015510096 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157025888 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14781777 Country of ref document: US Ref document number: 2014778820 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |